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Abstract

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimiza-
tion problem where the variables can be partitioned into two sets such that fixing the
variables in any one of the sets results in a linear program. We propose a new second order
cone representable (SOCP) relaxation for BBP, which we show is stronger than the stan-
dard SDP relaxation intersected with the boolean quadratic polytope. We then propose
a new branching rule inspired by the construction of the SOCP relaxation. We describe
a new application of BBP called as the finite element model updating problem, which is
a fundamental problem in structural engineering. Our computational experiments on this
problem class show that the new branching rule together with an polyhedral outer approx-
imation of the SOCP relaxation outperforms a state-of-the-art commercial global solver in
obtaining dual bounds.

1 Introduction: Bipartite bilinear program (BBP)

A quadratically constrained quadratic program (QCQP) is called as a bilinear optimization
problem if every degree two term in the constraints and objective involves the product of two
distinct variables. For a given instance of bilinear optimization problem, one often associates
a simple graph constructed as follows: The set of vertices corresponds to the variables in the
instance and there is an edge between two vertices if there is a degree two term involving the
corresponding variables in the instance formulation. Strength of various convex relaxations for
bilinear optimization problems can be analyzed using combinatorial properties of this graph [23,
4, 17].
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When this graph is bipartite, we call the resulting bilinear problem as a bipartite bilinear
program (BBP). In other words, BBP is an optimization problem of the following form:

min x>Q0y + d>1 x+ d>2 y
s.t. x>Qky + a>k x+ b>k y + ck = 0, k ∈ {1, . . . ,m}

l ≤ (x, y) ≤ u
(x, y) ∈ Rn1+n2 ,

(1)

where n1, n2 ∈ Z+, Q0, Qk ∈ Rn1×n2 , d1, ak ∈ Rn1 , d2, bk ∈ Rn2 , ck ∈ R, ∀k ∈ {1, . . . ,m}.
The vectors l, u ∈ Rn1+n2 define the box constraints on the decision variables and, without loss
of generality, we assume that li = 0, ui = 1, ∀i ∈ {1, . . . , n1 + n2}. BBP (1) may include
bipartite bilinear inequality constraints, which can be converted into equality constraints by
adding slack variables, and these slack variables will also be bounded since the original variables
are bounded.

We note that BBP is a special case of the more general biconvex optimization problem [14].
BBP has many applications such as waste water management [12, 7, 13], pooling problem [16,
18], and supply chain [27].

2 Our results

2.1 Second order cone representable relaxation of BBP

A common and successful approach in integer linear programing is to generate cutting-planes
implied by single constraint relaxation, see for example [8, 24, 11, 3]. We take a similar approach
here. We begin by examining one row relaxation of BBP, that is, we study the convex hull of
the set defined by a single constraint defining the feasible region of (1). Our first result is to
show that the convex hull of this set is second order cone (SOCP) representable in the extended
space, where we have introduced new variables wij for xiyj . We formally present this result
next.

Theorem 1. Let n1, n2 ∈ Z+, V1 ∈ {1, . . . , n1}, V2 ∈ {1, . . . , n2}, and E ⊆ V1 × V2. Consider
the one-constraint BBP set

S :=

{
(x, y, w) ∈ [0, 1]n1+n2+|E|

∣∣∣∣ ∑(i,j)∈E qijwij +
∑

i∈V1
aixi +

∑
j∈V2

bjyj + c = 0,

wij = xiyj , ∀(i, j) ∈ E

}
.

Then:

(i) Let (x̄, ȳ, w̄) be an extreme point of S. Then, there exists U ⊆ V1 ∪ V2, of the form

(a) U = {i0, j0} where (i0, j0) ∈ E, or
(b) U = {i0} where i0 ∈ V1 is an isolated node, or

(c) U = {j0} where j0 ∈ V2 is an isolated node,

such that x̄i ∈ {0, 1}, ∀i ∈ V1 \ U , and ȳj ∈ {0, 1}, ∀j ∈ V2 \ U .
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(ii) conv(S) is SOCP-representable.

A proof of Theorem 1 is presented in Section 3.1.

Remark 1. In Theorem 1, part (ii) follows from part (i). For any given choice of U , we first
fix all the variables to 0 or 1 except for those in U . It is then shown that the convex hull of the
resulting set is SOCP-representable and we obtain (ii) by convexifying the union of a finite set
of SOCP representable sets.

It is easy to see that the number of distinct U sets is O(n1n2), and the number of possible fix-
ings is O(2n1+n2). Thus, the number of resulting SOCP representable objects is O(n1n22

n1+n2).

We note that the literature in global optimization theory has many results on convexifying
functions, see for example [1, 32, 25, 39, 40]. However, as is well-known, replacing a constraint
f(x) = b by {x | f̂(x) ≥ b, f̆(x) ≤ b} where f̂ and f̆ are the concave and convex envelop of
f , does not necessarily yield the convex hull of the set {x | f(x) = b}. There are relatively
lesser number of results on convexification of sets [38, 28, 29, 37]. Theorem 1 generalizes results
presented in [37, 15, 21] and is related to results presented in [31, 9].

The SOCP relaxation for the feasible region of the general BBP (1) that we propose,
henceforth referred as SSOCP , is the intersection of the convex hull of each of the constraints
of (1). Formally:

SSOCP =
m⋂
k=1

conv(Sk),

where Sk = {(x, y, w) ∈ [0, 1]n1×n2×|E| |x>Qky + a>k x + b>k y + ck = 0, wij = xiyj ∀(i, j) ∈ E}
and E is the edge set of the graph corresponding to the BBP instance (and not just of one
row). As an aside, note that SSOCP can be further strengthened by adding the convex hull of
single row BBP sets arrived by taking linear combinations of rows.

Next we discuss the strength of SSOCP vis-á-vis the strength of other standard relaxations.
Consider the following two standard relaxations of the feasible region of BBP (1): Let SSDP

be the standard semi-definite programming (SDP) relaxation and let

SQBP := {(x, y, w) ∈ [0, 1]n1+n2+|E| |
∑

(ij)∈E

(Qk)ijwij + a>k x+ b>k y + ck = 0 k ∈ {1, . . . ,m}}

⋂
conv

(
{(x, y, w) ∈ [0, 1]n1+n2+|E| |wij = xiyj ∀(i, j) ∈ E}

)
. (2)

Note that SQBP is a polyhedral set, since the second set in the right-hand-side of (2) is equal
to the Boolean Quadratic Polytope [6]. Two well-known classes of valid inequalities for this set
are the McCormick’s inequalities [1] and the triangle inequalities [30].

Theorem 2. For any BBP, we have that

projx,y,w
(
SSDP

)⋂
SQBP ⊇ SSOCP .
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A proof of Theorem 2 is presented in Section 3.2.

Remark 2. It is possible to show that the convex hull of one row BBP is SOCP representable,
even without introducing the w variables. Thus, it is possible to construct, similar to SSOCP , a
SOCP-representable relaxation of BBP, without introducing w variables. However, this SOCP
relaxation would be weaker. In particular, we are unable to prove the corresponding version of
Theorem 2 for this SOCP relaxation. The strength of SSOCP relaxation is due to the fact that
the extended space w variables ‘interact’ from different constraints.

We note that other SOCP relaxations for QCQPs have been proposed [20, 5]. However,
these are all weaker than the standard SDP relaxation.

We also note that it is polynomial time to optimize on SSDP , although the tractability of
solving SDPs in practice is still limited. On the other hand, solvers for SOCPs are significantly
better in practice. It is NP-hard to optimize on SQBP , although as discussed in Remark 1, the
size of the extended formulation to obtain SSOCP is exponential in size.

2.2 A new branching rule

For details about general branch-and-bound scheme for global optimization see, for example,
[33]. Inspired by the convex relaxation described in Section 2.1, we propose a new rule for
partitioning the domain of a given variable in order to produce two branches. Details of this
new proposed branching rule together with node selection and variable selection rules that we
used in our computational experiments are presented in Section 4.

Here, we sketch the main ideas behind our new proposed branching rule. Suppose we have
decided to branch on the variable x1. As explained in Remark 1, the convex hull of the one
constraint set is obtained by taking the convex hull of union of sets obtained by fixing all but two
(or one) variables. If we are branching on x1, we examine all such two-variable sets involving
x1 obtained from each of the constraints. For each of these sets, there is an ideal point to divide
the range of x1 so that the sum of the volume of the two convex hulls of the two-dimensional sets
corresponding to the two resulting branches is minimized. (See recent papers on importance
of volume minimization in branch-and-bound algorithm [35]). We present a heuristic to find
an “ideal range". We collect all such ideal ranges corresponding to all the two-dimensional sets
involving x1. Then we present a heuristic to select one points (based on corresponding volume
reduction) to finally partition the domain of x1. We also use similar arguments to propose a
new variable selection rule.

2.3 A new application of BBP and computational experiments

A new application of BBP, which motivated our work presented here, is called as the finite
element model updating problem, which is a fundamental methodological problem in structural
engineering. See Section 5.1 for a description of the problem. All the new methods we develop
here are tested on instances of this problem.

Due to the large size of SSOCP , in practice, we consider a lighter version of this relax-
ation. In particular, we write the extended formulation of each row of BBP corresponding only
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to the variables in that row (see details in Section 5.2.1). As our instances are row sparse,
the resulting SOCP relaxation can be solved in reasonable time. Unfortunately, there are no
theoretical guarantees for the bounds of this light version of the relaxation. After some pre-
liminary experimentation, we observed that a polyhedral outer approximation of the SOCP
relaxation produces similar bounds but solves much faster. Therefore, we used this linear pro-
gramming (LP) relaxation in our experiments. Details of this outer approximation is presented
in Section 5.2.2.

Our computational experiments are aimed at making three comparisons. First, we exam-
ined the quality of the dual bound produced at root node via our new method (polyhedral
outer approximation of SOCP relaxation) against SDP, McCormick, and SDP together with
McCormick inequalities. The bounds produced are better for the new method. Second, we
test the performance of the new branching rule against traditional branching rules. Our exper-
iments show that the new branching rule significantly out performs the other branching rules.
Finally, we compare the performance of our naive branch-and-bound implementation against
BARON. In all instances, we close significantly more gap in equal amount of time. All these
results are discussed in detail in Section 5.3.

3 Second order cone representable relaxation and its strength

3.1 Proof of Theorem 1

Consider the bipartite graph G = (V1, V2, E) defined by the set of vertices V1 = {1, . . . , n1}
and V2 = {1, . . . , n2} which is associated to the equation∑

(i,j)∈E

qijxiyj +
∑
i∈V1

aixi +
∑
j∈V2

bjyj + c = 0. (EQ)

In this section, we prove that the convex hull of the set

S = {(x, y, w) ∈ [0, 1]n1+n2+|E| | (EQ), wij = xiyj ∀(i, j) ∈ E}. (3)

is SOCP representable. In addition, the proof provides an implementable procedure to obtain
conv(S). The key idea underlying this result is the fact that, at each extreme point of S, at
most two variables are not fixed to 0 or 1 and, once all variables but two (or one) are fixed, the
convex hull of the resulting object is SOCP representable in R2 (or R). Hence, conv(S) can be
written as the convex hull of an union of SOCP representable sets.

3.1.1 Preliminary results

First we present a few preliminary results that will be used to prove that conv(S) is SOCP
representable.

Lemma 1. [36] Let f : [0, 1]n → R be a continuous function and B ⊆ [0, 1]n be a convex set.
Then

conv({x ∈ B | f(x) = 0}) = conv ({x ∈ B | f(x) ≤ 0})
⋂

conv({x ∈ B | f(x) ≥ 0}).
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Lemma 2. [19] Let f : [0, 1]n → R be a convex function. Then

G := conv({x ∈ [0, 1]n | f(x) ≥ 0}),

is a polytope. Indeed, G can be obtained as the convex hull of finite number of points obtained
as follows: fix all but one variable to 0 or 1 and solve for f(x) = 0.

Lemma 3. [2] Let T ⊂ Rn be a compact set and {Tk}k∈K be a partition of the set of all extreme
points of T . Then,

conv(T ) = conv

(⋃
k∈K

Tk

)
= conv

(⋃
k∈K

conv(Tk)

)
. (4)

In addition, if conv(Tk) is a SOCP representable set for every k ∈ K, then conv(T ) is also a
SOCP representable set.

Lemma 4. Let B = {(x,w) ∈ [0, 1]n×R |x ∈ B0, w = l>x+ l0}, where B0 ⊆ Rn, and l>x+ l0
is an affine function of x. Then,

conv(B) = {(x,w) ∈ [0, 1]n × R |x ∈ conv(B0), w = l>x+ l0}.

Proof. We assume B0 is non-empty, otherwise, there is nothing to prove. Let (x,w) ∈ conv(B).
Then there exist (xi, wi) ∈ B and λi ≥ 0, ∀i ∈ {1, . . . , n + 2}, such that

∑n+2
i=1 λi = 1,

x =
∑n+2

i=1 λix
i and w =

∑n+2
i=1 λiw

i. It follows by the definition of B that xi ∈ B0, ∀i ∈
{1, . . . , n + 2}, and hence x ∈ conv(B0). It also follows from the definition of B that wi =
l>xi + l0, ∀i ∈ {1, . . . , n+ 2}, and hence

w =
n+2∑
i=1

λiw
i =

n+2∑
i=1

λi(l
>xi + l0) = l>

(
n+2∑
i=1

λix
i

)
+ l0 = l>x+ l0.

Conversely, let (x,w) be such that x ∈ conv(B0) and w = l>x+ l0. Then, there exist xi ∈ B0

and λi ≥ 0, ∀i ∈ {1, . . . , n + 1}, such that
∑n+1

i=1 λi = 1, x =
∑n+1

i=1 λix
i. Define wi =

l>xi + l0, ∀i ∈ {1, . . . , n+ 1}. Then (xi, wi) ∈ B, ∀i ∈ {1, . . . , n+ 1}. In addition,

w = l>x+ l0 = l>

(
n+1∑
i=1

λix
i

)
+ l0 =

n+1∑
i=1

λi(l
>xi + l0) =

n+1∑
i=1

λiw
i,

which completes the proof.

3.1.2 Proof of part (i) of Theorem 1

We restate part (i) of Theorem 1 next for easy reference:

Proposition 1. Let (x̄, ȳ, w̄) be an extreme point of the set S defined in (3). Then, there exists
U ⊆ V1 ∪ V2, of the form
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1. U = {i0, j0} where (i0, j0) ∈ E, or,

2. U = {i0} where i0 ∈ V1 is an isolated node, or,

3. U = {j0} where j0 ∈ V2 is an isolated node,

such that x̄i ∈ {0, 1}, ∀i ∈ V1 \ U , and ȳj , ∀j ∈ V2 \ U .

Proof. To prove by contradiction, suppose without loss of generality that 0 < x̄1, x̄2 < 1.
Consider the system of equations

ā1x1 + ā2x2 + c̄ = 0,

w1j − x1ȳj = 0 ∀j : (1, j) ∈ E
w2j − x2ȳj = 0 ∀j : (2, j) ∈ E,

obtained by fixing xi = x̄i, yj = ȳj in (3), wij = x̄iȳj ∀i ∈ V1 \ {1, 2}, ∀j ∈ V2. Since (x̄1, x̄2)
is in the relative interior of {(x1, x2) ∈ [0, 1]2 | ā1x1 + ā2x2 + c̄ = 0}, (x̄, ȳ, w̄) cannot be an
extreme point of S.

3.1.3 Proof of part (ii) of Theorem 1

First, we prove that the two-variable sets we encounter after fixing variables are SOCP repre-
sentable.

Proposition 2. Let S0 = {(x, y) ∈ [0, 1]2 | ax+ by + qxy + c = 0}. Then, conv(S0) is SOCP
representable.

Proof. We may assume S0 6= ∅ and q 6= 0, otherwise the result follows trivially. Define r =
−b/q, s = −a/q and τ = (ab− cq)/q2 to write ax+ by + qxy + c = 0 equivalently as

(x− r)(y − s) = τ. (5)

If τ = 0, then (5) is equivalent to x = r or y = s. In this case, S0 = {(x, y) ∈ [0, 1]2 |x =
r} ∪ {(x, y) ∈ [0, 1]2 | y = s} and hence conv(S0) is a polytope. Suppose τ > 0 (if τ < 0, we
multiply (5) by −1 and repeat the same proof with x − r and τ replaced with −(x − r) and
−τ). Either x − r, y − s ≥ 0 or x − r, y − s ≤ 0. Thus, S0 = S>

0 ∪ S<
0 , where S

>
0 = {(x, y) ∈

[0, 1]2 |x− r, y − s ≥ 0, (5)} and S<
0 = {(x, y) ∈ [0, 1]2 |x− r, y − s ≤ 0, (5)}. Next, we show

that if S>
0 6= ∅, then conv(S>

0 ) is SOCP representable. Using that 4uv = (u + v)2 − (u − v)2,
we can rewrite (5) as√

[(x− r)− (y − s)]2 + (2
√
τ)2 = (x− r) + (y − s).

It now follows from Lemma 1 that conv(S>
0 ) = conv(S>

1 ) ∩ conv(S>
2 ), where

S>
1 = {(x, y) ∈ [0, 1]2 |x− r, y − s ≥ 0,

√
[(x− r)− (y − s)]2 + (2

√
τ)2 ≤ (x− r) + (y − s)}

S>
2 = {(x, y) ∈ [0, 1]2 |x− r, y − s ≥ 0,

√
[(x− r)− (y − s)]2 + (2

√
τ)2 ≥ (x− r) + (y − s)}.
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Notice that S>
1 is SOCP representable. Also, as the square root term in the definition of

S>
2 is a convex function in x and y, it follows from Lemma 2 that S>

2 is a polytope. Thus,
conv(S>

0 ) is SOCP representable. Similarly, we can prove that conv(S<
0 ) is SOCP by repeating

the arguments above after replacing x− r, y− s with −(x− r),−(y− s). Therefore, conv(S0) =
conv(S>

0 ∪ S<
0 ) = conv(conv(S>

0 ) ∪ conv(S<
0 )) is SOCP representable by Lemma 3.

Proposition 3. Let S0 = {(x, y) ∈ [0, 1]2 | y = a0 + a1x + a2x
2}. Then conv(S0) is SOCP

representable.

Proof. We may assume S0 6= ∅ and a2 6= 0, otherwise the result follows trivially. By completing
squares, we can write y = a0 +a1x+a2x

2 equivalently as (x+0.5a1/a2)
2− (a1/2a2)

2 +a0/a2 =
y/a2, and then as

(x+ ā)2 = t ⇔

√
(x+ ā)2 +

(
t− 1

2

)2

=
t+ 1

2
, (6)

where ā = 0.5a1/a2, t = y/a2 + (a1/2a2)
2 − a0/a2, using that 4t = (t+ 1)2 − (t− 1)2. It now

follows from Lemma 1 that conv(S0) = conv(S1) ∩ conv(S2), where

S1 = {(x, y) ∈ [0, 1]2 |

√
(x+ ā)2 +

(
t− 1

2

)2

≤ t+ 1

2
}

S2 = {(x, y) ∈ [0, 1]2 |

√
(x+ ā)2 +

(
t− 1

2

)2

≥ t+ 1

2
}.

Notice that S1 is SOCP representable. Also, as the square root term in the definition of S2 is a
convex function in x and y (because t is an affine function of y), it follows from Lemma 2 that
S2 is a polytope. Thus, conv(S0) is SOCP representable.

Proposition 4. Let S0 = {(x, y, w) ∈ [0, 1]3 | ax+ by + qw + c = 0, w = xy}. Then, conv(S0)
is SOCP representable.

Proof. If q 6= 0, then we can write

S0 = {(x, y, w) ∈ [0, 1]2 × R | (x, y) ∈ B0, w = (−c− ax− by)/q}, (7)

where B0 = {(x, y) ∈ [0, 1]2 | ax + by + qxy + c = 0}. (Note that the bounds on w are
automatically enforced in (7) and it is sufficient to say w ∈ R). Hence, by Proposition 2 and
Lemma 4, conv(S0) is SOCP representable.

Now, suppose q = 0. Four cases: (i) a, b = 0. In this case, we may assume c = 0, otherwise
S0 = ∅. Then, S0 = {(x, y, w) ∈ [0, 1]3 |w = xy}, in which case conv(S0) is a well known
polytope given by the McCormick envelope. (ii) a = 0, b 6= 0. In this case, if −c/b /∈ [0, 1],
then S0 is infeasible. Otherwise, this case is trivial. (iii) a 6= 0, b = 0. Similar to previous case.
(iv) a 6= 0 and b 6= 0. In this case, we can solve ax + by + c = 0 for x, i.e. x = (−c − by)/a.
Let [α, β] be the bounds on y such that the line ax + by + c = 0 intersects the [0, 1]2 box. If
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α = β, then we can set y = α and the result follows trivially. Otherwise, substitute in w = xy
to rewrite S0 as following

S0 = {(x, y, w) ∈ R× [α, β]× [0, 1] | (y, w) ∈ B0, x = (−by − c)/a},

where B0 = {(y, w) ∈ [α, β] × [0, 1] |w = (−c/a)y − (b/a)y2}. Now, it is straightforward via
Proposition 3 (affinely scale y to have bound of [0, 1]) and Lemma 4 that conv(S0) is a SOCP
representable set.

Now we are ready to prove part (ii) of Theorem 1.

Proposition 5. Let S be the set defined in (3). Then conv(S) is SOCP representable.

Proof. By Proposition 1, we can fix various sets of x and y variables that corresponds to the
U sets and prove that the convex hull of each of these sets is SOCP representable. Case (i):
|U | = 1. In this case, the set of unfixed variables satisfy a set of linear equations. Thus this set
is clearly SOCP representable. Case (ii): U = {(i0, j0)}, where (i0, j0) ∈ E. In this case, the
set of unfixed variables satisfy the following constraints:

axi0 + byj0 + qwi0j0 + c = 0, (8)
wi0j0 = xi0yj0 (9)
wij0 = x̄iyj0 ∀(i, j0) ∈ E, i 6= i0 (10)
wi0j = ȳjxi0 ∀(i0, j) ∈ E, j 6= j0, (11)

where the bound constraints on wij0 and wi0j variables are not needed explictly. Thus, by
Proposition 4 and Lemma 4, the above set is SOCP representable. Thus, by Lemma 3, we
obtain that conv(S) is SOCP representable.

3.2 Proof of Theorem 2

In order to prove Theorem 2 it is sufficient to prove that:

projx,y,w
(
SSDP

)
⊇ SSOCP (12)

and

SQBP ⊇ SSOCP . (13)

We prove these two containments next.

Proposition 6. For any BBP, (12) holds.

Proof. In order to prove (12), it is convenient to introduce some notation. Let H be the matrix

variable representing
[
x
y

]
[x>y>]. We write w = projE(H), to imply that if (i, j) ∈ E, then

wij = 1
2

(
Hi(j+n1) +H(j+n1)i

)
.
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Then the standard SDP relaxation may be written as:∑
ij∈E

(Qk)ijwij + a>k x+ b>k y + ck = 0, k ∈ {1, . . . ,m} (14)

projE(H) = w (15) H [x>y>][
x
y

]
1

 � 0. (16)

Let
T k := {(x, y,H,w) | (14) corresponding to k, (15), and (16)}

and as before let

Sk := {(x, y, w) | (14) corresponding to k,wij = xiyj ∀(ij) ∈ E}.

Then by construction

projx,y,w
(
T k
)
⊇ conv(Sk). (17)

Next we need the following:

Claim 1
⋂m

k=1 projx,y,w
(
T k
)

= projx,y,w
(⋂m

k=1

(
T k
))
: Trivially we have that,

m⋂
k=1

projx,y,w
(
T k
)
⊇ projx,y,w

(
m⋂
k=1

(
T k
))

,

holds.
We now verify the converse. For some (x̄, ȳ, w̄) ∈ projx,y,w

(
T k
)
, let

Hk(x̄, ȳ, w̄) :=
{
H | (x̄, ȳ, w̄,H) ∈ T k

}
.

Then observe that Hk(x̄, ȳ, w̄) is the set of matrices H satisfying

projE(H) = w̄ (18) H [x̄>ȳ>][
x̄
ȳ

]
1

 � 0. (19)

Thus Hk(x̄, ȳ, w̄) is independent of k, i.e. if (x̄, ȳ, w̄) ∈
⋂m

k=1 projx,y,w
(
T k
)
then Hk1(x̄, ȳ, w̄) =

Hk2(x̄, ȳ, w̄) for all k1 6= k2. Therefore in particular, if (x̄, ȳ, w̄) ∈
⋂m

k=1 projx,y,w
(
T k
)
, then

there exists H̄ such that (x̄, ȳ, w̄, H̄) ∈
⋂m

k=1 T
k. Thus, (x̄, ȳ, w̄) ∈ projx,y,w

(⋂m
k=1 T

k
)
. �
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Now, we return to the proof of the original statement. Intersecting (17) for all k ∈ {1, . . . ,m}
we obtain,

projx,y,w
(
SSDP

)
= projx,y,w

(
m⋂
k=1

(
T k
))

=
m⋂
k=1

projx,y,w
(
T k
)
⊇

m⋂
k=1

conv(Sk) = SSOCP ,

where the first equality is by definition of SSDP , the second equality via Claim 1, the inequality
is due to (17) and the last equality is by definition of SSOCP .

Proposition 7. For any BBP, (13) holds.

Proof. Recall that SQBP is the set(x, y, w) ∈ [0, 1]n1+n2+|E| |
∑

(ij)∈E

(Qk)ijwij + a>k x+ b>k y + ck = 0 k ∈ {1, . . . ,m}

(20)⋂
conv

(
{(x, y, w) ∈ [0, 1]n1+n2+|E| |wij = xiyj ∀(i, j) ∈ E}

)
. (21)

Let
T k := {(x, y, w) ∈ [0, 1]n1+n2+|E| | (20) corresponding to k, (21)}

and let
Sk := {(x, y, w) | (14) corresponding to k,wij = xiyj ∀(ij) ∈ E}.

Then by construction

T k ⊇ conv(Sk). (22)

Intersecting (22) for all k ∈ {1, . . . ,m} we obtain,

SQBP =
m⋂
k=1

T k ⊇
m⋂
k=1

conv(Sk) = SSOCP .

4 Proposed branch-and-bound algorithm

In this section, we discuss some details of our proposed branch-and-bound algorithm to solve
BBP (1).

4.1 Node selection and partitioning strategies

The most common node selection rule used in the literature is the so-called best-bound-first,
in which a node with the least lower bound (assuming minimization) is chosen for branching.
Other rules may include selection of nodes that have the potential of identifying good feasible
solutions earlier. In our computational experiments, we only use best-bound-first rule. Also, we
use the most simple partitioning operation: rectangular. Example of other operation adopted
in the literature are conical and simplicial [22].
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4.2 Variable selection and point of partitioning

A simple rule for variable selection is to choose a variable with largest range. Another common
rule is to prioritize the variable that is most responsive for the approximation error of nonlinear
terms. For example, suppose we are optimizing in the extended space of (x, y, w), then we
could chose xi (or yj) for which the absolute error |w̄ij − x̄iȳj | is maximized over the set of all
possible pairs (i, j), where (x̄, ȳ, w̄) is the relaxation solution for the current node. We refer to
this rule as the gap-error-rule.

Once the variable is selected, say x1 (without loss of generality), we can list three standard
rules for choosing the partitioning point:
Bisection: partition at the mid point of the domain of x1 in the current node.
Maximum-deviation: partition at x̄1, where (x̄, ȳ, w̄) is the relaxation solution for the current
node.
Incumbent : partition at x∗1, where (x∗, y∗, w∗) is the current best feasible solution, if x∗1 is in
the range of x1 in the current node.

Combination of the above rules have also been proposed. For example, Tawarmalani et al.
[34] propose a rule that is a convex combination of bisection and maximum-deviation branch-
ing rules (biased towards the maximum-deviation), and uses incumbent branching whenever
possible.

In our proposed algorithm, we use specialized variable and branching point selection rules,
which use information collected from multiple disjunctions and, therefore, take into account
the coefficients of the constraints in the model in addition to the variable ranges at the current
node.

New proposed rule Note that we always branch on only one set of variables, either x or y.
We describe our rule assuming we are branching on the x variables. To further ease exposition,
we explain our proposed branching rules for the root node, i.e., we assume that all variables
range from 0 to 1. Consider the three-variable set:

S0 = {(x1, y1, w11) ∈ R3 | qw11 + ax1 + by1 + c = 0, w11 = x1y1},

which is obtained by fixing xi, yj to either 0 or 1 in (EQ), ∀i ∈ V1 \ {1}, ∀j ∈ V2 \ {1}. Like
the proof of Proposition 4, there are two cases of interest.

• q 6= 0. In this case, w11 can be written as affine function of x1 and y1. We can then write
the projection of S0 in the space of (x1, y1) as (we drop the indices to simplify notation,
we also drop the word ’Proj’)

S0 = {(x, y) ∈ [0, 1]2 | (x− r)(y − s) = τ},

where r, s, τ are constants. The equation (x− r)(y − s) = τ represents a hyperbola with
asymptotes x = r and y = s. Two typical instances are plotted in Figure 1-2, where the
continuous thick portion of the curves represents S0 and the whole dotted areas represent
conv(S0). Our goal is to branch at a point that maximizes the eliminated area upon
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Figure 1: Convex hull of the set defined by
the intersection of two branches of a hyperbola
with the [0, 1]2 box. Here, xl (resp. xu) is the
x-coordinate of the intersection point of the left
(resp. right) branch with the line y = 0 (resp.
y = 1).

Figure 2: Convex hull of the set defined by the
intersection of a single branch of a hyperbola with
the [0, 1]2 box. Let A and B are the intersection
points of the curve with the [0, 1]2 box and C is
the point of the curve at which the tangent line
is parallel to AB. Then, xa, xb and xc are the
projections of A,B and C onto the x axis.

branching.

Case 1: Both branches of a hyperbola intersect with the [0, 1]2 box. Let xl (resp. xu) be
the x-coordinate of the intersection point of the left (resp. right) branch with either of
the lines y = 0 or y = 1. The plot on Figure 1 suggests that branching x at any point
x0 ∈ [xl, xu] is a reasonable choice for the case where both branches of the hyperbola
intersect the [0, 1]2 box. Indeed, such branching would eliminate the entire dotted area
between the two branches of the curve.

Case 2: One branch of hyperbola intersects with the [0, 1]2 box. For the case where
only one branch intersects the [0, 1]2 box, as illustrated in Figure 2, we could in principle
compute C that maximizes the area of the triangle 4ABC . To simplify the rule and avoid
excessive computations, we simply choose C to be the point at which the tangent line
to the curve is parallel to the line AB. Moreover, for points in some interval [xl, xu]
containing xc, the area of the triangle 4ABC does not change much, implying that every
point in [xl, xu] may be a good choice to branch at. In our computational experiments,
we compute xl and xu such that xc − xl = γ(xc − xa) and xu − xc = γ(xb − xc) with
γ = 2/3.

• q = 0 and a 6= 0 or b 6= 0. Without loss of generality assume b 6= 0. In this case, y1 is
an affine function of x1 as shown in proof of Proposition 4. Thus, we can study S0 in the
space of (x1, w11), where it is defined by a parabola and we adopt the same rule defined
for the case of Figure 2, i.e. choose points xl and xu as a function of xa and xb. If the
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parabola intersects the [0, 1]2 box in more than two points, we define A and B to be the
left and right most intersection points.

Note that if a 6= 0, then x1 is an affine function or y1. We can identify appropriate points
in the y1 space as above and then translate them to the x space via the affine function.

Thus, corresponding to every three-variable set S0, we associate (i) an x-variable xi, (ii)
an interval [xl, xu] within the domain of xi and (iii) we also approximately compute the area
of conv(S0), (either in the space of (x1, y1), if q 6= 0, or in the space of (x1, w11), if q = 0),
referred to as A0. The actual area we use is that of the polyhedral outer approximation as will
be discussed in Section 5.2.2.

Once the above data is collected for all disjunctions, we use the following Algorithm to
decide on the variable to branch on and the point of partitioning for this variable.

Algorithm 1 Branching rule
1: Input: δ = 1/K, for some positive integer K. Let ε1, ε2 > 0.
2: Let Aik = 0, i ∈ {1, . . . , n1}, k ∈ {1, . . . ,K}. Let pi = 0, i ∈ {1, . . . , n1}
3: Define Iik = [(k− 1)δ, kδ], for k ∈ {1, . . . ,K} (which defines a partition of the range of xi).
4: for Each disjunctions S0 do
5: Compute (a) the index i of x-variable corresponding to S0, (b) domain [xl, xu] and (c)

the area A0.
6: Set pi = pi + 1
7: If [xl, xu] ∩ Iik 6= ∅ for some k ∈ {1, . . . ,K}, set Aik = Aik +A0.
8: end for
9:

10: for i ∈ {1, . . . , n1} do
11: if pi∑n1

l=1 pl
< ε1 then

12: variable i is declared irrelevant.
13: end if
14: end for
15: Let (i∗, k∗) ∈ Argmax{Ai,k | i ∈ {1, . . . , n1}, i is not irrelevant, k ∈ {1, . . . ,K}}
16: if Ai∗k∗ ≥ ε2 then
17: Branch on the variable xi∗ at the mid point of the interval Ii∗k∗ .
18: else
19: Use the bisection rule.
20: end if

In our computational experiments, whenever we use Algorithm 1, we set ε1 = 0.01, ε2 =
1/16 and K = 8. Our implementation is naive, and we have not tried to fine tune any of these
parameters.
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5 Computational experiments

5.1 Finite Element Updating Model

The instances of BBP that we use come from finite element (FE) model updating in structural
engineering. The goal is to update the parameter values in an FE model, so that the model
provides same resonance frequencies and mode shapes that are physically measured from vi-
bration testing at the as-built structure. In this study we adopt the modal dynamic residual
formulation, for which the details can be found in [41]. The formulation is briefly summarized
as follows.

Consider the model updating of a structure with m number of degrees-of-freedom (DOFs).
Corresponding to stiffness parameters that are being updated, the (scaled) updating variables
are first denoted as x ∈ [−1, 1]n1 . Since only some DOFs can be instrumented, we suppose n2
of those are not instrumented, leaving m− n2 of them as instrumented. In the meantime, it’s
assumed that n3 number of vibration modes are measured/observed from the vibration testing
data. For each l-th measured mode, ∀l ∈ {1, . . . , n3}, the experimental results provide λl as
the square of the (angular) resonance frequency, and ȳl ∈ Rm−n2 as the mode shape entries at
the instrumented DOFs. In mathematical terms, the modal dynamic residual formulation can
be stated as the problem of simultaneously solving the following set of equations on stiffness
updating variables x ∈ [−1, 1]n1 and (scaled) unmeasured mode shape entries yl ∈ [−2, 2]n2 ,
∀l ∈ {1, . . . , n3}:

[K0 +

n1∑
i=1

xiKi − λlM ]

[
ȳl

yl

]
= 0, l ∈ {1, . . . , n3}, (23)

where M,K0,Ki ∈ Rm×m, ∀i ∈ {1, . . . , n1}, λl ∈ R+ and ȳl ∈ Rm−n2 , ∀l ∈ {1, . . . , n3},
are problem data. In practice, (23) is unlikely to have a feasible solution set of x and yl,
l ∈ {1, . . . , n3}, because of modeling and measurement inaccuracies. Therefore, we convert the
problem of solving (23) into an optimization problem that aims to minimize the sum of the
residuals, i.e., the absolute difference between left and right-hand-side of each equation. After
some affine transformations and simplifications, this optimization problem can be stated as
following:

min

m∑
k=1

zk (24)

s.t. |x>Qky + a>k x+ b>k y + ck| = zk, k ∈ {1, . . . ,m}
x ∈ [0, 1]n1 , y ∈ [0, 1]n2 ,

where n2 and m correspond to n2n3 and mn3, respectively, in the notation of (23). Finally,
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(24) is equivalent to the following BBP.

min

m∑
k=1

z′k + z′′k (25)

s.t. x>Qky + a>k x+ b>k y + ck = z′k − z′′k , k ∈ {1, . . . ,m}
x ∈ [0, 1]n1 , y ∈ [0, 1]n2 .

0 ≤ z′k, z′′k ≤ u, k ∈ {1, . . . ,m}.

Instances:
The simulated structural example is similar to the planar truss structure in [41]. In order to
simulate measurement noise, we add a normal-distributed random variable to the parameters
λl and ȳl, ∀l ∈ {1, . . . , n3}, with mean zero and variance equal 2% of its actual value. In our
case there are six modes, i.e. n3 = 6. By taking different values for n2, we then generate ten
instances whose number of variables and constraints are given in Table 1.

Table 1: Instances description

Inst # of x-variables # of y-variables # of equations # of bilinear terms
inst1 6 180 312 990
inst2 6 180 312 954
inst3 6 168 312 966
inst4 6 168 312 972
inst5 6 156 312 900
inst6 6 144 312 780
inst7 6 132 312 756
inst8 6 132 312 756
inst9 6 120 312 684
inst10 6 120 312 684

5.2 Simplifying SSOCP

5.2.1 A lighter version of SSOCP

According to Remark 1, the number of disjunction needed to model the convex hull of a
single bilinear equation can be computationally prohibitive for many instances of interest.
To overcome this issue, in our computational experiments, we write the convex hull of each
row only in the space of the variable appearing in it. In particular, for constraint k we work
with G(V k, Ek), where V k is the set of variables appearing in constraint k and Ek represent
the complete bipartite graph between the x and y variables appearing in V k. This possibly
weaker relaxation is much more computationally cheaper that SSOCP for our instances due
to the sparsity on the coefficients of each bilinear equation. We denote this relaxation as
light− SSOCP .
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5.2.2 Polyhedral outer approximation

As shown in Proposition 2 and Proposition 3, all the sets obtained after fixings are SOCP
representable. Some are polyhedral while many of the others are not. Since linear programming
techniques are more efficient and robust, than the non-linear counterpart, we outer approximate
the non-polyhedral sets by polyhedral sets.

As shown in proof of Proposition 5, all the non-linear sets that we need to convexify in
order to obtain the convex hull of the set S defined in (EQ) are of the form

Si0j0 = {(x, y, w) ∈ [0, 1]n1+n2+n1n2 |xi, yj ∈ {0, 1}, ∀i ∈ V1 \ {i0}, ∀j ∈ V2 \ {j0},
q̄wi0j0 + āxi0 + b̄yi0 + c̄ = 0, wij = xiyj , i ∈ V1, j ∈ V2},

for some (i0, j0) ∈ E. Without loss of generality, suppose i0 = 1 and j0 = 1, in which case we
want to outer approximate the following set S0 = {(x1, y1, w11) ∈ R3 | qw1 + ax1 + by1 + c =
0, w11 = x1y1}. There are two cases of interest. The first case occurs when q 6= 0. In
this case, w11 is an affine functions of x1 and y1 as following: w11 = (−c − ax1 − by1)/q;
w1j = x1yj , ∀j ∈ {1, . . . , n2}; wi1 = xiy1, ∀i ∈ {1, . . . , n1}; and wij = xiyj , ∀i ∈ {1, . . . , n1} \
{1}, ∀j ∈ {1, . . . , n2} \ {1}. Hence, we only need to approximate conv(S0) in the space of
(x1, y1). If both branches of the hyperbola defined by qx1y1 + ax1 + by1 + c = 0 intersect the
[0, 1]2 box, than conv(S0) is polyhedral. Suppose only one branch of the hyperbola intersects
the box. Then, we outer approximate conv(S0) by using tangent lines to the curve. In our
implementation, we only use the tangent lines at the intersection points of the curve with the
box, see Figure 3. More tangent lines could be added to better approximate conv(S0), but
based on our preliminary experience on our instances it does not make significant difference.

The second case of interest is q = 0 and a 6= 0 (or b 6= 0) for which we can rewrite S0
as S0 = {(x1, y1, w11) ∈ [0, 1]3 | aw11 = −by21 − cy1, ax1 = −by1 − c}. In this case, x1 is an
affine function of y1 and we only need to approximate conv(S0) in the space of (y1, w11), where
aw11 = −cy1 − by21 defines a parabola as shown in Figure 4. As in the previous case, we outer
approximate the curve by using tangent lines to the curve as illustrated in Figure 4.

5.3 Computation results

5.3.1 Software and Hardware

All of our experiments were ran on a Windows 10 machine with 64-bit operating system, x64
based processor with 2.19GHz, and 32GB RAM. We call MOSEK via CVX from MATLAB
R2015b to solve SDPs. We used Gurobi 7.5.1 to solve LPs and integer programs. We used
BARON 15.6.5 (with CPLEX 12.6 as LP solver and IPOPT as nonlinear solver) as our choice
of commercial global solver, which we call from MATLAB R2015b.

5.3.2 Root node

We assess the strength of our proposed polyhedral outer approximation of light−SSOCP relax-
ation (defined in Section 5.2.1 and referred as SOCP in the tables) against the classical SDP and
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Figure 3: Convex hull of the set defined by the
intersection of one branch of a hyperbola with the
[0, 1]2 box, and its tangential linear outer approx-
imation.

Figure 4: Convex hull of the set defined by the
intersection of parabola with the [0, 1]2 box, and
its tangential linear outer approximation.

McCormick (Mc) relaxations. The numerical results are reported in Table 2, where SDP+Mc
denotes the the intersection of SDP and Mc relaxations. Similarly, SOCP+Mc denotes the
intersection of SOCP and Mc relaxations (since we are not using SSOCP , this could potentially
be stronger than SOCP).

As we see, SOCP produces the best dual bounds among SDP, Mc and SDP + Mc. Also,
SOCPs runs faster than SDP + Mc for all the instances. Finally, SOCP+ Mc produces no
better bounds than SOCPs alone.

A strong relaxation can be obtained by partitioning the domain of some variables and
writing a MILP formulation to model the union of McCormick relaxations over each piece [26,
10]. We call it McCormick Discretization and use the MILP formulation with binary expansion.
We only partition the domain of variables xi’s as the number of x variables is much smaller
than the number of y variables for all of our instances. In Table 3, T defines the level of
discretization, meaning that the range of each variable xi is partitioned into 2T + 1 uniform
sub-intervals. This relaxation becomes tighter as T increases. However, the MILP that need
to be solved becomes harder since the number of binary variables increases as a function of
T . Thus, we give GUROBI a time limit of 10 hours, which is the amount of time given to
all the branch-and-bound algorithm that we report in Section 5.3.3 below. Table 3 reports
the computational results, where the asterisk signalizes that GUROBI reached the time limit
with the given level of discretization. If this is the case, then we report the MILP dual bound
reported by the solver, which is a valid dual bound for our problem. The last column displays
the best bound obtained among all the levels of discretizations reported.

Clearly, McCormick discretization produces better results than SOCP . Therefore, if one
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Table 2: Root relaxations

Mc SDP SDP+Mc SOCP SOCP+Mc
Inst Bound Time Bound Time Bound Time Bound Time Bound Time
1 0.17771 0.07 0.17771 1.81 0.17771 35.89 0.17793 17.59 0.17793 18.42
2 0.00000 0.05 0.00000 1.70 0.00000 38.98 0.00000 20.93 0.00000 21.14
3 0.27543 0.07 0.27194 1.81 0.27543 44.02 0.28202 16.22 0.28202 49.61
4 0.10095 0.08 0.10012 2.14 0.10095 36.13 0.10101 20.71 0.10101 25.87
5 0.34766 0.05 0.34766 1.67 0.34766 31.58 0.34925 13.17 0.34925 12.88
6 0.97758 0.05 0.91629 1.80 0.97758 28.47 1.00267 11.64 1.00267 11.07
7 1.73437 0.07 1.70329 1.38 1.73437 25.29 1.74015 10.76 1.74015 11.68
8 1.99887 0.07 1.97107 1.30 1.99887 21.95 2.01260 17.53 2.01260 21.51
9 1.89400 0.05 1.89222 1.17 1.89400 22.94 1.90191 10.53 1.90191 9.32
10 2.41036 0.05 2.40658 1.16 2.41036 18.95 2.41959 10.07 2.41959 12.29

Table 3: McCormick discretization: dual bounds

Inst T=6 T=8 T=10 T=12* T=14* T=16* Best
1 0.18611 0.20512 1.11852 1.85387 1.40586 0.96121 1.85387
2 0.00000 0.03133 1.05662 2.14709 1.38374 0.04654 2.14709
3 0.29443 0.33575 1.39375 2.14270 1.42642 1.42007 2.14270
4 0.10524 0.11387 1.21446 2.44853 1.63495 1.27218 2.44853
5 0.36159 0.47559 2.15416 3.40272 3.22915 2.67721 3.40272
6 1.25052 2.61325 4.16459 4.06782 3.96512 3.78165 4.16459
7 1.96682 2.17988 3.60737 4.92133 4.69632 4.47471 4.92133
8 2.48886 2.69510 3.63400 4.81890 4.48014 4.19095 4.81890
9 2.05584 2.42150 4.16064 5.54076 5.63110 5.15290 5.63110
10 2.57751 2.80795 4.07475 5.40977 5.28173 5.16376 5.40977

does not want to use branch and bound, then McCormick discretization is the best option.
However, as we see in the next section, better dual bounds can be obtained by combining
SOCP with the new proposed branch-and-bound algorithm.

5.3.3 Branch-and-bound

We assess and compare the performance of the following methods:
- BB : This stands for our implementation of a branch-and-bound algorithm coded in Python.
We use GUROBI as LP solver and run IPOPT at each node to search for feasible solutions.
Our algorithm uses best-bound-first as node selection and rectangular partitioning. We consider
three variants that differ from each other based on the relaxation adopted in each node and in
the way variables and branching points are selected:

- SOCP-1 : Uses the polyhedral relaxation described in Section 5.2.2 with variable selection
and the branching point given by Algorithm 1.
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- SOCP-2 : Uses the same relaxation of BB-SOCP-1 above. The branching variable is se-
lected according to the gap-error-rule explained in Section 4.2. Then uses the incumbent-
rule for branching point selection, whenever possible, otherwise uses the maximum-
deviation-rule.

- SOCP-3 : Same as BB-SOCP-2 except that uses bisection for branching point selection.

- BB-Mc: Uses McCormick relaxation with gap-error-rule as branching variable selection
rule and bisection for branching point selection.

The dual bounds from our computational experiments are reported in Table 4. The stopping
criteria for all the methods was a time limit of 10 hours.

Table 4: Branch-and-bound methods: dual bounds

Inst BB-SOCP-1 BB-SOCP-2 BB-SOCP-3 BB-Mc
1 2.50744 0.18473 0.18228 0.18343
2 2.86438 0.00000 0.00000 0.00000
3 3.13078 0.29109 0.28983 0.28884
4 3.11154 0.10526 0.10246 0.10410
5 3.78958 0.35253 0.35392 0.35405
6 4.63992 1.11105 1.09537 1.15191
7 5.26603 1.99569 1.88331 1.94949
8 5.13128 2.18546 2.18193 2.28761
9 6.10860 2.17509 2.08068 2.10144
10 5.77051 2.48039 2.45158 2.47965

The best dual bound for each instance is clearly given by BB-SOCP-1, which uses our
proposed relaxation and branching rule. All the standard branching rules yield significantly
worse bounds.

5.3.4 McCormick relaxation with BB-SOCP-1 branching rules

The computational results from Section 5.3.3, suggest that the good performance of BB-SOCP-
1 is highly dependent on its branching rules, defined according to Algorithm 1. In this section
we show that the branching rules of Algorithm 1 on them own are not enough to produce good
dual bounds.

Consider the variant of BB-SOCP-1, reffered as BB-SOCP-Mc, which uses only McCormick
relaxation and the same branching rule given by Algorithm 1. Thus, at each node, we col-
lect data from each disjunction S0, run Algorithm 1 to select the branching variable and the
branching point, but we only use the McCormick inequalities to define the relaxation.

In Table 5, we compare the performance of BB-SOCP-1 and BB-SOCP-Mc. It becomes clear
that the strength of BB-SOCP-1 does not come only from the branching rules of Algorithm 1
but also from our proposed relaxation. The discrepancy in the performance of BB-SOCP-1 and
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BB-SOCP-Mc means that, as the algorithm goes down the tree, the SOCP relaxation becomes
much tighter than the McCormick relaxation.

Table 5: BB-SOCP-1 vs. McCormick relaxation with BB-SOCP-1 branching rules

BB-SOCP-1 BB-SOCP-Mc
Inst Dual Bound Gap (%) Dual Bound Gap (%)
1 2.50744 27.9 0.19776 94.3
2 2.86438 18.2 0.02752 99.2
3 3.13078 14.9 0.30514 91.7
4 3.11154 17.1 0.11188 97.0
5 3.78958 8.3 0.40497 90.2
6 4.63992 18.0 1.52070 73.1
7 5.26603 6.0 2.26765 59.5
8 5.13128 9.5 2.68861 52.6
9 6.10860 1.5 2.51461 59.5
10 5.77051 7.9 2.85232 54.2

5.3.5 Comparison of primal bounds and duality gaps

Finally, we report in Table 6 a summary of the performance of BB-SOCP-1, McCormick Dis-
cretization, BARON and BB-Mc. Recall that the stopping criteria for all the methods was
a time limit of 10 hours. Also recall that primal solutions for BB-SOCP-1 and BB-Mc are
obtained using IPOPT.

Table 6: Primal bounds and duality gaps

BB-SOCP-1 Mc Disc BARON BB-Mc
Inst Dual Primal Gap(%) Dual Gap(%) Dual Primal Gap(%) Dual Primal Gap(%)
1 2.50744 3.47847 27.9 1.85387 46.7 0.33122 3.47887 90.5 0.18343 3.47849 94.7
2 2.86438 3.49983 18.2 2.14709 38.6 0.52447 3.49931 85.0 0.00000 3.49983 100.0
3 3.13078 3.68103 14.9 2.14270 41.8 0.47599 3.68306 87.1 0.28884 3.73308 92.3
4 3.11154 3.75223 17.1 2.44853 34.7 0.78630 3.75297 79.0 0.10410 3.75225 97.2
5 3.78958 4.13277 8.3 3.40272 17.7 0.38396 4.13541 90.7 0.35405 4.28165 91.7
6 4.63992 5.66096 18.0 4.16459 26.4 2.26566 5.66053 60.0 1.15191 5.66096 79.7
7 5.26603 5.60009 6.0 4.92133 12.1 3.07096 5.60020 45.2 1.94949 5.69318 65.8
8 5.13128 5.67022 9.5 4.81890 15.0 2.70237 5.67025 52.3 2.28761 5.67252 59.7
9 6.10860 6.20343 1.5 5.63110 9.2 3.67301 6.20346 40.8 2.10144 6.29365 66.6
10 5.77051 6.26853 7.9 5.40977 13.1 2.94060 6.22639 52.8 2.47965 6.30477 60.7

The primal bounds from all the three branch-and-bound methods are similar, suggesting
that the solutions found are close to a global optimal. On the other hand, the dual bounds from
BB-SOCP-1 are significantly better than the dual bounds from all the other methods, which
can be seem by comparing the duality gaps. In particular, the duality gap from BB-SOCP-1
is considerably smaller than the duality gap from Mc Disc, even though we are reporting the
best dual bound obtained among all the levels of discretizations T = 6, 8, · · · , 16, and the
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primal bound we use to compute the duality gap of Mc Disc is the best primal bound from
BB-SOCP-1, BARON and BB-Mc. The standard branching, i.e., the McCormick relaxation
with bisection, yields the worse performance for all the instances.
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