
Aggregation of Bilinear Bipartite Equality Constraints and its

Application to Structural Model Updating Problem

Santanu S. Dey∗1, Dahye Han†2, and Yang Wang‡3

1,2School of Industrial and Systems Engineering, Georgia Institute of Technology
3School of Civil and Environmental Engineering, Georgia Institute of Technology

Abstract

In this paper, we study the strength of convex relaxations obtained by convexification of
aggregation of constraints for a set S described by two bilinear bipartite equalities. Aggregation
is the process of rescaling the original constraints by scalar weights and adding the scaled con-
straints together. It is natural to study the aggregation technique as it yields a single bilinear
bipartite equality whose convex hull is already understood from previous literature. On the the-
oretical side, we present sufficient conditions when conv(S) can be described by the intersection
of convex hulls of a finite number of aggregations, examples when conv(S) can only be obtained
as the intersection of the convex hull of an infinite number of aggregations, and examples when
conv(S) cannot be achieved exactly from the process of aggregation. Computationally, we ex-
plore different methods to derive aggregation weights in order to obtain tight convex relaxations.
We show that even if an exact convex hull may not be achieved using aggregations, including the
convex hull of an aggregation often significantly tightens the outer approximation of conv(S).
Finally, we apply the aggregation method to obtain convex relaxation for the structural model
updating problem and show that this yields better bounds within a branch-and-bound tree as
compared to not using aggregations.

1 Introduction

In this paper, we are interested in finding good convex relaxations of a bounded set with two bilinear
bipartite equality constraints. The general form of a set with two bilinear bipartite constraints and
bounded variables is:

S :=
{
x ∈ [0, 1]n1 , y ∈ [0, 1]n2

∣∣∣ x⊤Qky + a⊤k x+ b⊤k y + ck = 0, k ∈ {1, 2}
}
, (1)

where Qk ∈ Rn1×n2 , ak ∈ Rn1 , bk ∈ Rn2 , ck ∈ R for all k ∈ {1, 2}. The term bilinear refers to the
fact that the constraints are described using quadratic functions where all the degree two terms
involve products of two distinct variables. The set (1) is referred to as bipartite because variables
can be divided into two groups, x and y, where no degree two terms include variables from the
same group. Note that any problem with different variable bounds can always be scaled so that the
variable bounds are [0, 1], and any inequality constraint can be converted to an equality constraint
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by adding a slack variable, which is also bounded since other variables are bounded. While the
set S is quite general, we will apply our results to an important application from the structural
engineering called the finite element model (FEM) updating problem [17] where finding good convex
relaxation of S can improve the performance of the branch-and-bound process.

1.1 Aggregations

In the papers [7, 18], the authors show that for a set described by a single bilinear bipartite equality
constraint with bounded variables, the convex hull can be obtained using a disjunctive procedure
yielding a second-order cone representable set. In particular, the convexification process of a bilinear
bipartite equality constraint involves finding convex hulls of sets obtained by fixing all but one x
variable and one y variable to their bounds, and then taking the convex hull of all these resulting
convex sets.

Since we understand how to find a convex hull of a bounded set with a one-row bilinear bipartite
equality constraint, in order to obtain good convex relaxations for (1), a natural approach is to
consider aggregation of the two constraints to obtain a one-row relaxation and then convexifying
it. Formally, an aggregation takes the following form,

Sλ :=

{
x ∈ [0, 1]n1 , y ∈ [0, 1]n2

∣∣∣∣∣ λ1 ·
(
x⊤Q1y + a⊤1 x+ b⊤1 y + c1

)
+ λ2 ·

(
x⊤Q2y + a⊤2 x+ b⊤2 y + c2

)
= 0

}
,

where λ = (λ1, λ2) ∈ R2. Now, Sλ is a bounded set with a single bilinear bipartite equality
constraint. We use conv(S) to denote the convex hull of set S.

In this paper, the main object of study is the set,⋂
λ∈T

conv(Sλ), (2)

which is referred to as the aggregation closure of S over T ⊆ R2. We note that since the aggregation
closure is the intersection of convex sets, it is also convex. Moreover, since S ⊆ Sλ for any λ ∈ R2,
we obtain that conv(S) ⊆ conv(Sλ), thus implying that conv(S) ⊆

⋂
λ∈T conv(Sλ) for any T ⊆ R2.

For the rest of the paper, we wish to evaluate the strength of aggregation closure (2) of S, both
theoretically and computationally, to see how it can give a good relaxation for (1), which is a key
element in providing dual bounds for globally solving non-convex problems within a branch-and-
bound tree framework.

The idea of finding a convex hull or valid inequalities for the convex hull of an aggregation
has been successfully used in integer programming. For example, the classical paper [14] studies
how to aggregate inequalities before finding mixed integer rounding inequalities from the aggregated
constraint, and the Gomory mixed-integer cuts can also be viewed as generated from an aggregation
of the original constraints of a MILP [4]. The paper [3] studies the strength of aggregation closure
for packing and covering mixed integer linear sets. See [5] for a discussion on several classes of
cutting-planes developed using aggregations in mixed integer linear programming.

A closely related idea to the aggregation closure is the idea of directly using a relaxation Sλ
for some λ, with the underlying motivation being that Sλ is a much simpler non-convex set to
optimize over rather than the original set. This relaxation is referred to as the surrogate relaxation.
The concept of surrogate constraint was first introduced by [9] in the context of the 0-1 integer
programming. The authors of [1] and [8] showed how this constraint can give a strong relaxation
under certain conditions. Later, authors of [11] generalized the result beyond the 0-1 integer
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programming. Recently, an extensive computational evaluation of the surrogate dual for general
mixed integer nonlinear programs was conducted in [16].

Since aggregating with different weights provides different relaxations that outer approximate
the given set, finding a “good” aggregation is essential. Particularly, the question of whether an
intersection of aggregated constraints can represent a convex hull has been studied for quadratic
inequalities. The paper [21] showed that the convex hull of two quadratic inequalities is given
by at most two aggregated inequalities. The paper [6] expands these results to the case of three
quadratic inequalities. Finally, [2] presents more general sufficient conditions when aggregations
can yield a convex hull of a set defined by quadratically constrained inequalities, and shows specific
conditions when finitely many aggregations would suffice to generate the convex hull. We note here
that all these results are for a direct intersection of aggregations without taking convex hulls, and
they do not hold when bounds are added to the variables. Therefore, these results are not directly
applicable to the case of aggregation closure (2) for the bounded set S.

1.2 Contributions of this paper

The main contributions of this paper are driven by the following questions:

1. Can conv(S) be represented with an intersection of finite number of conv(Sλ)? We show that
for a special case when n1 = n2 = 1 (that is, x and y are one-dimensional), conv(S) can
be obtained with the intersection of the convex hull of at most three aggregated constraints.
However, for n1+n2 ≥ 3, we show a counterexample where an infinite number of aggregations,
that is the full strength of the aggregation closure with all the values of λs (T = R2), are
required to obtain the convex hull.

2. We then ask if the above result can be generalized, so that the intersection of possibly infinitely
many aggregations always provides the convex hull. We answer this question in the negative,
by showing another counterexample with n1 + n2 = 3 variables where even an intersection of
infinitely many aggregations does not result in the convex hull of the original set.

3. If aggregations cannot produce an exact convex hull, can it still be useful to tighten the
feasible region? We explore different aggregation techniques and experiment on randomly
generated bilinear instances as well as instances from real applications. We show that indeed
aggregations can still be powerful in providing much tighter convex relaxation. When used
to build convex relaxations within a branch-and-bound tree, the aggregation approach leads
to improved dual bounds for the finite element model (FEM) updating problem.

Notation and organization of the paper Given a positive integer n, we let [n] := {1, 2, . . . , n}.
For a countable set T , we use |T | to denote the cardinality of the set. The rest of the paper is
organized as follows. In Section 2 we present a list of results that serve as a theoretical evaluation
of the aggregation procedure, followed by Section 3 where we present a computational evaluation of
the aggregation procedure. This section includes experiments to evaluate how to find aggregation
weights for the constraints in practice, and also the application of the resulting method to the FEM
update problem. Section 4 presents our conclusions. Section 5 to Section 7 provides proofs of the
results presented in Section 2.

2 Theoretical evaluation of aggregation

Throughout this section, we make two assumptions about the set S in (1).
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Assumption 1. S is a nonempty set.

Assumption 2. Two constraints are independent of each other so that there exists no λ ∈ R such
that xTQ1y + a⊤1 x+ b⊤1 y + c1 = λ(xTQ2y + a⊤2 x+ b⊤2 y + c2).

If S does not satisfy Assumption 2, then only a single bilinear bipartite equality constraint is
necessary to describe the set instead of two.

Our first main result is the following sufficient condition when the aggregation closure yields
the convex hull.

Theorem 1. Consider the set S described in (1) with n1 = n2 = 1. Then there exists T ⊆ R2

where |T | ≤ 3 such that:

conv(S) =
⋂
λ∈T

conv(Sλ).

Our proof of Theorem 1 is provided in Section 5. The proof considers several cases based on
the structure of the set S. For example, conv(S) can either be a point or a line segment. Within
each of these cases, there are several sub-cases based on whether the quadratic constraints define
non-degenerate hyperbola or union of lines. Our proof is constructive, that is, it explicitly provides
recipes of the three or fewer aggregations needed to obtain the convex hull for each case. We provide
an example below to further illustrate this result.

Example 1. Consider the set below:

S =

{
x, y ∈ [0, 1]2

∣∣∣∣ (x+ 0.5)y = 0.5
(x− 1)(y + 1.5) = −1

}
. (3)

The only point that satisfies both constraints in the [0, 1]2 box is (x, y) = (0.5, 0.5); hence, S is
a singleton and conv(S) = {(0.5, 0.5)}. One convex approximation suggested in [7] is taking an
intersection of the convex hull of each constraint. However, note that this does not yield an exact
convex hull of S as illustrated in Figures 1a and 1b. Now consider the following aggregation with
λ = (1,−1):

Sλ :=
{
x, y ∈ [0, 1]2 | (xy + 0.5y − 0.5)− (xy + 1.5x− y − 0.5) = −1.5x+ 1.5y = 0

}
.

Sλ is a straight line passing through (0.5, 0.5) and

conv(S) = conv(S(1,0)) ∩ conv(S(0,1)) ∩ conv(S(1,−1)),

as shown in Figure 1c.

Based on the result of Theorem 1, we might conjecture that the intersection of the convex hull
of finitely many aggregated sets may represent the convex hull for a more general case of n1 and
n2. However, as soon as we increase the number of bilinear terms by adding just one more variable,
we immediately find an example where infinite aggregations are required to yield the convex hull.

Theorem 2. There exists an instance of set S as described in (1) with n1 + n2 ≥ 3, such that
infinite aggregation is needed to obtain the convex hull. In other words, there exists S such that

conv(S) =
⋂
λ∈R2

conv(Sλ),

and
conv(S) ⊊

⋂
λ∈T

conv(Sλ),

where T ⊆ R2 and |T | <∞.
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(a) Convex hull of each constraint
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(b) Zoom-in of Figure 1a
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y

(c) conv(S) achieved

Figure 1: Each constraint is represented with red and blue curves in the [0, 1]2 box and their
respective convex hulls are shaded areas of the same color. The first subfigure shows that the
intersection of the convex hull of each constraint does not yield a convex hull of S. The second
figure zooms in the middle box portion of the first subfigure and shows that there exists a nonempty
area where the red-shaded area and the blue-shaded area overlap beyond conv(S) = {(0.5, 0.5)}.
In the last subfigure, we see that adding the aggregation conv(S(1,−1)) allows us to achieve conv(S)
by the aggregation closure.

Our proof of Theorem 2 is provided in Section 6. The proof of this result uses the simple set

S =

{
x, y1, y2 ∈ [0, 1]3

∣∣∣∣ xy1 = 0.5
xy2 = 0.5

}
.

It it is easy to see that conv(S) is contained in the hyperplane {x, y1, y2 | y1 = y2}. It turns out
that

⋂
λ∈T conv(Sλ) is not contained in this hyperplane for any finite set T . On the other hand,

the full power of aggregation closure, that is using all aggregation weights, achieves the convex hull
for this set.

Can we always expect to obtain the convex hull with the intersection of infinitely many aggre-
gated sets? The next result shows that this is not a sufficient condition through a counterexample.
It may seem natural that such a set exists that infinite aggregations do not yield the convex hull,
but it was not straightforward to find such an example.

Theorem 3. There exists an instance of the set S as described in (1) with n1 + n2 ≥ 3, such that
the aggregation closure over R2 is not equal to the convex hull of S, that is,

conv(S) ⊊
⋂
λ∈R2

conv(Sλ).

A set that serves as an example for our proof of Theorem 3 is the following:

S =

{
x, y1, y2 ∈ [0, 1]3

∣∣∣∣ −2xy1 + 9xy2 + y1 − 5y2 = 0
5xy1 + 3y1 + 3y2 = 6

}
.

The proof of Theorem 3 relies on finding a point (x∗, y∗1, y
∗
2) /∈ conv(S) but (x∗, y∗1, y

∗
2) ∈ conv(Sλ)

for any λ ∈ R2. Certifying that (x∗, y∗1, y
∗
2) ∈ conv(Sλ) involves explicitly finding points in Sλ and

convex combination weights of these points to obtain (x∗, y∗1, y
∗
2). The entire details of our proof

are presented in Section 7.
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3 Computational evaluation of aggregation

As presented in Section 2, the exact convex hull of a set S described in (1) is given by the intersection
of convex hulls of aggregations in some specific cases. In this section, we would like to evaluate
the quality of bounds given by the aggregation closure even if the exact convex hull cannot be
obtained using it. In order to achieve this goal we will present two computational experiments
on: (i) randomly generated instances; and (ii) instances from the finite element model updating
problem. Before we discuss the results of our experiments, we discuss different methods to find
aggregation weights, convex relaxations to be compared, and what metric we use to evaluate the
strength of the aggregation.

3.1 Finding aggregation weights

A key part of adding the convex hull of an aggregated constraint is finding a “good” way to
aggregate, that is, finding appropriate weights. Although adding convex hulls of many different
aggregations gives a tighter outer approximation of the convex hull of the two constraints, that is

∩λ∈T1conv(Sλ) ⊆ ∩λ∈T2conv(Sλ) for any T2 ⊆ T1,

there is a trade-off with the size and complexity of the problem. We therefore consider adding the
convex hull of exactly one aggregated constraint for two constraints. To find aggregation weights
for the two constraints, we test several heuristic methods. Two of these heuristics are based on the
spirit of separating a relaxed solution (x̂, ŷ). A relaxed solution can be easily obtained by solving
a relaxation problem without aggregation. Given the similarity between the aggregation approach
and the surrogate relaxation approach, the third method follows the approach used in surrogate
duality theory.

1. Grid search: We search for aggregation weights λ from a grid G. In our experiments, we set
the size of G to be 20, where

G = {(1, 2), (1, 22), ..., (1, 25), (1,−2), ..., (1,−25), (2, 1), ..., (25, 1), (−2, 1), ..., (−25, 1)}.

We pick λ ∈ G that maximizes the distance between conv(Sλ) and a relaxed solution (x̂, ŷ)
that we would like to separate. Specifically, define:

d(λ) = min
x,y

||(x, y)− (x̂, ŷ)||

s.t. (x, y) ∈ conv(Sλ)

x ∈ [0, 1]n1 , y ∈ [0, 1]n2 .

(4)

Pick λ∗ = argmax{d(λ), λ ∈ G}.

2. Simple search: Given a relaxed solution (x̂, ŷ), we first fix y to ŷ in Sλ. Then, Sλ|y=ŷ is a
hyperplane in the x space with parameters defined by λ. The resulting hyperplane can be
written in the form of p⊤x = q for some p and q. We wish to pick λ ∈ R2 such that it maximizes
the distance between the hyperplane and x̂. This gives us the following optimization problem
where p⊤x̂− q is the distance between the hyperplane and x̂.

d(ŷ) = max
λ1,λ2,p,q

pT x̂− q

p = λ1Q1ŷ + λ1a1 + λ2Q2ŷ + λ2a2

q = −
(
λ1b

⊤
1 ŷ + λ1c1 + λ2b

⊤
2 ŷ + λ2c2

)
||p||2 ≤ 1,−100 ≤ λ1, λ2 ≤ 100

(5)
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We can similarly define d(x̂) by fixing x to x̂ and find aggregation weights that maximize the
distance between a hyperplane defined with respect to y and ŷ. We then pick λ = (λ1, λ2)
corresponding to the larger to the two d(x̂) or d(ŷ).

3. Surrogate search: We consider finding the aggregation weights based on results from the
surrogate duality literature. In [16], the authors present a Bender’s decomposition-type ap-
proach to find surrogate dual multipliers that will yield the best lower bound. We adopt
algorithm 1 in their paper to find our multipliers. Specifically, the algorithm is based on
constraints of the form g(x) ≤ 0. Hence, we split our equality constraints into two inequality
constraints. Then the algorithm returns surrogate dual multipliers λ ∈ R4

+. We then define
µ = (λ∗1 − λ∗2, λ∗3 − λ∗4) to be our aggregation weights. There is also a generalized version
of surrogate relaxations which allows multiple aggregation weights [10]. Although multiple
aggregations give a tighter relaxation, as we discussed earlier, for the purpose of this paper,
we focus on adding one aggregated constraint to evaluate its performance.

3.2 Convex relaxation

We will consider three types of convex relaxations in our experiments:

1. McCormick relaxation: This is the standard linear programming relaxation using the Mc-
Cormick relaxation of each bilinear term [15]. For specific types of bilinear bipartite prob-
lems, McCormick relaxation is known to perform better than semi-definite programming
relaxation [12].

2. One-row relaxation: We build a polyhedral outer approximation of the convex hull of each
bilinear constraint. This polyhedral relaxation is built in the same way as in section 5.2.2 of
[7]. The final convex relaxation is the intersection of each of these polyhedra together with
other linear constraints and bounds in the problem.

3. Aggregation relaxation: We find aggregation weights for selected subsets of two rows, using
one of the methods from Section 3.1. Then we add the polyhedral outer approximation of
the convex hull of each aggregated constraint to the one-row relaxation.

3.3 Evaluation metric

The main evaluation metric we use to compare the quality of the lower bound achieved is the
relative gap improvement (∆ρ). We first define the relative optimality gap (ρ). Let zopt be the best
primal objective value found and z∗ be the lower bound achieved by a method that we consider.
For example, z∗Mc and z∗1row are the lower bounds achieved from McCormick relaxation and the
one-row relaxation. For aggregation relaxation, we use z∗simple, z

∗
surr, and z∗grid to be the lower

bound achieved from aggregation where the weights are obtained by simple heuristic technique,
surrogate search, and grid search, respectively. Then, the relative optimality gap is defined as:

ρ =
|zopt − z∗|
|zopt|

× 100%.

We choose one of z∗Mc, z
∗
1row, z

∗
simple, z

∗
surr, and z

∗
grid to be the base and calculate how much the

relative gap has improved compared to the base. For example, if we use z∗Mc to be the base, the
relative gap improvement is defined as:

∆ρMc =
z∗ − z∗Mc

zopt − z∗Mc

× 100% =
ρ− ρMc

ρMc
× 100%.
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If we use z∗1row to be the base, the relative gap improvement is defined as:

∆ρ1row =
z∗ − z∗1row
zopt − z∗1row

× 100% =
ρ− ρ1row
ρ1row

× 100%.

Smaller ρ implies that the relative optimality gap is small and larger ∆ρ implies that the relative
gap improvement against the baseline is large. Hence, smaller ρ and larger ∆ρ is desirable.

3.4 Environment and software

All numerical instances are implemented on Julia version 1.7 with Gurobi version 10.1 used to
solve the linear programming relaxation of the lower bounding problem and Ipopt [20] was used to
solve the upper bound problem at each node of the branch-and-bound tree. Gurobi was also used
to solve (4) and (5). BARON version 24.5.8 was used for benchmarking our results. A custom
branch-and-bound was built adapting the Julia package BranchAndBound.jl [13]. The experiments
were run on a personal laptop with a Windows 64-bit operating system with a 1.8GHz processor
and 16GB RAM.

3.5 Randomized experiment

We first test the power of aggregation on randomly generated instances.

3.5.1 Instance generation

We generate random instances of the form:

min
x,y

f⊤x+ g⊤y

s.t. x⊤Qky + a⊤k x+ b⊤k y + ck = 0, k ∈ [2]

x ∈ [0, 1]n1 , y ∈ [0, 1]n2 .

These small dense instances are generated for (n1, n2) ∈ {(2, 2), (3, 3), (5, 5)} with all variables
appearing in each constraint. For fixed n1 and n2, we generate entries of f , g, Qk, ak, bk and ck iid
from discrete uniform distribution on {−10, 10}. We generated 10 instances each for every choice
of (n1, n2).

3.5.2 Evaluation of results on random instances

The results presented in Figure 2 show the relative gap improvement against the McCormick relax-
ation. A lot of the gap from McCormick relaxation is already closed by taking one-row relaxation.
However, adding a single aggregated constraint further closes the gap by nontrivial amounts. The
additional improvement is more than 10% for (n1, n2) ∈ {(2, 2), (3, 3)} instances and almost 8% for
(n1, n2) = (5, 5) instances on average.

Some instances are solved close to optimality with relative optimality gap ρ < 0.01% using
the one-row relaxation without any aggregation. In Figure 3, we focus on the remaining instances
where the one-row relaxation without the aggregation does not close a lot of the gap and highlight
the impact of adding an aggregated constraint. From both figures, we conclude that the largest
improvements are achieved from the grid search method.

We also want to ensure that the search times for aggregation weight are reasonable. Table 1
shows the average time required to find aggregation weights for different methods. Note that the
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Figure 2: Average relative improvement (%) against the gap achieved from the McCormick relax-
ation for different choices of (n1, n2).

Figure 3: Average relative improvement (%) against the gap achieved from the one-row relaxation
for different choices of (n1, n2) for instances excluding ρ1row < 0.01%.

simple search takes almost no time as it requires solving simple convex optimization problems. The
grid search method requires solving |G| number of optimization problems independently; hence, we
use 8 threads to parallelize. We also report the estimated time that would take to solve if we had
the computing power to parallelize solving all |G| number of optimization problems in column “Grid
(parallel est.)”. We note that the time spent can be significantly reduced if all is parallelized. The
time reported for “Grid (parallel est.)” column adds: (i) time to solve a relaxation problem to obtain
a relaxed solution (x̂, ŷ) to separate; (ii) the maximum of the time spent to solve the optimization
problem (4) among λ ∈ G; and (iii) the time spent to select λ∗. We can hence conclude that using
the grid search method is also reasonable in time. Unlike the grid search method, the surrogate
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search method requires solving optimization problems recursively which hinders parallelization.

Table 1: Average time spent in finding aggregation weights (sec)

(n1, n2) Simple Surrogate Grid Grid (parallel est.)

(2, 2) 0.26 6.84 7.21 1.71
(3, 3) 0.63 9.31 8.36 2.27
(5, 5) 1.09 13.51 22.15 5.76

3.6 Finite Element Model updating problem

The finite element model (FEM) update problem is a crucial problem in the field of structural en-
gineering, that seeks to minimize the differences between a structure’s as-built behaviors and those
predicted by its FEM. This problem can be viewed as selecting optimal stiffness parameter values
from a given affine subspace parameterized by α variables, such that the generalized eigenvalues
(λ) between the stiff and mass matrices as well as some entries of corresponding eigenvectors (ψ)
match experimentally observed values from vibration testing [17]. The goal is to minimize the max-
imum absolute difference between the experimental measurements of eigenvalues and eigenvectors
and the eigen-pairs produced by the FEM. This value is represented as δ and the problem can be
reformulated as below:

min
α,λ,ψ,δ

δ

s.t.

K0 +
∑
j∈[k]

αjKj − λiM

ψi = 0 ∀i ∈ [m] (6)

(λ, ψ, δ) ∈ P
α ∈ [αlb, αub], λ ∈ [λlb, λub], ψ ∈ [ψlb, ψub]

where M,K0,Kj ∈ Rn×n for j ∈ [k] and P is a polyhedron modeling the weighted penalties
with respect to the deviation from experimental eigenvalues and eigenvectors. The number n
representing the number of rows of the stiffness matrix K0 corresponds to the degrees of freedom
which represents the number of stories of a structure in simplified models such as the shear frame
model used in this paper; henceforth we refer to an instance with n × n matrices as an n-story
instance. After rescaling and linear transformation, the problem can be equivalently formulated as
a bilinear bipartite problem of the form in (1) where we refer to the α and λ variables as x variables
and refer to the ψ variables as y variables. We use simulated structural instances similar to the
18-story structure in [17]. The instances are available here.

Table 2: Summary of Instances

Data # of x variables (n1) # of y variables (n2) # of bilinear constraints (nm)

12-story 14 24 24
16-story 18 48 48

10
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3.6.1 Selection of rows for aggregation

We note that all the Kj matrices are tridiagonal. Thus, the supports of x variables are very similar
in the constraints corresponding to consecutive rows of (6). Therefore, we choose only to aggregate
constraints corresponding to consecutive rows {1, 2}, {3, 4}, . . . , as it does not create very dense
constraints. Note that convexification takes a long time if we have dense constraints as the number
of disjunctions increases exponentially with the number of variables. Overall, this implies that we
add (n/2) ·m aggregated constraints, which is an addition to the nm bilinear constraints.

3.6.2 branch-and-bound

We apply the convexification idea together with the branch-and-bound algorithm as proposed in
[7]. Specifically, the the bilinear constraints (original and aggregated) whose convex hull is used to
build the convex relaxation are selected once at the root node. At each node of the tree, we update
the bounds on the variables, and recompute the polyhedral outer approximations of the convex
hull of each of these constraints. The branching rule of the branch-and-bound algorithm, chooses
a variable among one of the x variables, such that it minimizes the sum of the volume of resulting
new 2-dimensional convex hulls (after fixing variable). This is precisely the same rule as used in
[7]. A termination criterion for the branch-and-bound process is set to be ρ being less than 0.5%.

Bound reduction: Before we solve the problem, we reduce the bounds on variables using
optimality-based bound tightening (“OBBT”) to reduce the box constraints. These reduced bounds
are then used with all the methods for solving the instance. For example, reduced bounds are
provided to BARON, McCormick relaxation, one-row relaxation and aggregation relaxation. Details
of the bound reduction process are provided in Appendix A.

3.6.3 Evaluation at the root node

We first evaluate the additional root node gap closed in the branch-and-bound tree using the
aggregated constraints. Figure 4 shows that adding nm/2 aggregated constraints can yield an
average relative gap improvement of 2.94%, 2.98%, and 6.82% for 12-story data and 2.56%, 2.84%,
4.88% for 16-story data based on weights found by simple search, surrogate search, and grid search
respectively. It is clear that the grid search significantly improves the relative root node gap
compared to that of the one-row relaxation without aggregated constraints. The simple search and
the surrogate search yielded less effective aggregations.

Finally, Table 3 shows the average time spent to find the aggregation weights using different
methods. The grid search now requires solving |G| × n/2 optimization problems which is 240 for
12-story and 480 optimization problems. This takes a relatively longer time to solve. However,
as we have discussed previously for the case of experiments on random instances, with complete
parallelization, the estimated time is comparable to the simple heuristic method.

Table 3: Average time spent in finding aggregation weights (sec)

data Simple Surrogate Grid Grid (parallel est.)

12-story 2.75 28.31 169.24 4.19
16-story 6.15 82.34 1441.51 8.36
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(a) 12-story data (b) 16-story data

Figure 4: Relative gap improvement (%) against the gap achieved from the one-row relaxation for
different instances.

3.6.4 Evaluation of bounds obtained by the branch-and-bound tree

From both the randomized experiment evaluation and the root node evaluation, we see that the
grid search provides the most improvement. We therefore compare solving the FEM instances using
the global solver BARON, using the one-row relaxation without any aggregated constraints, and
using the aggregation relaxation where the aggregation weights are selected through grid search.
The time limit is set to 1 hour (3600 seconds) for both the commercial solver and the custom
branch-and-bound solver.

In our preliminary experiments, we found that adding the convex hull of additional nm/2
aggregated constraints significantly slows down the solving time at each node of the branch-and-
bound tree. Hence, we limit the number of aggregated constraints to be added to t constraints where
t = 2 for the 12-story instances and t = 5 for 16-story instances. We select the top t-aggregated
constraints by sorting the distance metrics (4) for the nm/2 aggregations.

Tables 4 and 5 show the final relative gap at the end of the time limit (ρ), the relative gap
improvement against using the global solver BARON (∆ρBARON ), and the number of nodes solved
in the branch-and-bound tree. Although we examined 10 instances in each of the 12-story and
16-story data sets, one instance in each data set was solved to optimality by both BARON and
the aggregation approach with grid search within 1 minute, and by one-row relaxation within 10
minutes– all well within the time limit; hence it is excluded from the analysis. First, we see that
using the one-row relaxation provides a much smaller final relative gap compared to the commercial
solver in all instances but instance 8 for the 16-story instances. Secondly, when we compare the
one-row relaxation approach and the relaxation with aggregations approach, adding a subset of
aggregated constraints excels in closing the final gap in most instances despite fewer nodes being
explored. Furthermore, in 12-story instances, 3 out of 9 instances are solved to optimality by the
aggregation technique, whereas only 1 instance is solved to optimality without aggregation.

It is possible that adding aggregated constraints may not benefit the branch-and-bound process.
Recent studies [19] have shown how adding cuts may increase the size of the branch-and-bound tree
due to wrong branching decisions. For instance 3 in 16-story data, even though a similar number of
nodes were explored by the time limit, one-row relaxation without aggregated constraints reached
a smaller final relative gap.

Nevertheless, adding the aggregated constraints outperforms the one-row relaxation without
aggregation in all but one instance in each data set and improves the gap improvement from 68.59%

12



to 81.55% for 12-story data and from 24.56% to 39.22% for the 16-story data.

Table 4: Final gap for 12-story data

ρ (%) ∆ρBARON (%) Number of Nodes

Instance BARON 1Row Grid 1Row Grid 1Row Grid

1 3.61 0.48 0.50† 86.70 86.17† 859 665
2 4.24 0.64 0.51 84.94 88.04 1663 942
3 4.64 1.53 2.43 66.92 47.63 1512 1080
4 4.07 0.90 0.49 77.80 87.89 1636 700
5 3.73 2.60 0.98 30.31 73.73 1784 937
6 4.92 0.89 0.58 81.84 88.12 1582 1019
7 2.54 1.16 0.33 54.11 87.05 1680 1096
8 8.41 3.29 0.91 60.85 89.21 1664 1083
9 4.61 1.21 0.64 73.79 86.11 1597 1094
Average 4.02 1.33 0.75 68.59 81.55 1553 957

†The termination criterion of relative gap 0.5% is reached; hence, the branch-and-bound process ended.
This instance does not count as an instance adding the aggregation slows down the branch-and-bound
process and results in a larger final relative gap.

Table 5: Final gap for 16-story data

ρ (%) ∆ρBARON (%) Number of Nodes

Instance BARON 1Row Grid 1Row Grid 1Row Grid

1 19.53 14.35 11.87 26.55 39.24 496 447
2 6.44 5.67 3.73 11.98 42.13 533 368
3 5.52 3.91 4.55 29.04 17.52 517 513
4 28.64 15.67 14.62 45.29 48.95 682 416
5 4.57 1.72 0.67 62.42 85.38 541 384
6 9.22 5.15 3.67 44.20 60.15 687 520
7 5.15 4.44 3.09 13.90 40.00 518 408
8 6.14 8.57 6.98 -39.57 -13.62 570 531
9 6.26 4.56 4.18 27.26 33.26 509 457
Average 10.16 7.11 5.93 24.56 39.22 561 449

4 Conclusion

We studied the theoretical and computational power of aggregating constraints. We showed that
the aggregations yield a convex hull of a bounded set with two bilinear bipartite equalities for
the two-variable case. As soon as the number of variables increases to 3 or more, a set may need
infinite aggregations to yield the convex hull or even infinite aggregations may not yield the convex
hull. Although there is a theoretical limitation that the exact convex hull may not be achieved
from aggregations, we show computationally that finding “good” aggregations using a grid search
can provide much tighter convex relaxation of the sets. In particular, we applied the aggregation
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procedure to real-life applications on the FEM update problem, where the aggregations benefit the
branch-and-bound process by closing more gaps within a specified time limit.

5 Proof of Theorem 1

Observation 1. We use the following elementary observations regarding the geometry of the 2-
dimensional hyperbola several times in the proof. Given a hyperbola:

G := {(x, y) ∈ R2 | (x− u)(y − v) = w},

• If w = 0, G is just the union of the two lines {(x, y) |x = u} and {(x, y) | y = v}.

• If w > 0, then G is the union of two connected components, one component is contained
in {(x, y) |x > u, y > v} and the other component is contained in {(x, y) |x < u, y < v}.
Moreover, y = w

x−u + v (equation describing G) is convex in {(x, y) |x > u, y > v} and
concave in {(x, y) |x < u, y < v}. In both branches, y = w

x−u + v is monotonically decreasing.

• If w < 0, then G is the union of two connected components (also referred to as branches),
one contained in {(x, y) |x < u, y > v} and the other contained in {(x, y) |x > u, y < v}.
Moreover y = w

x−u+v (equation describing G) is convex in {(x, y) |x < u, y > v} and concave
in {(x, y) |x > u, y < v}. In both branches, y = w

x−u + v is monotonically increasing.

• In particular, if u /∈ (0, 1) or v /∈ (0, 1), then only one branch of G intersects the [0, 1]2 box.

For the purpose of this proof, the set S may be written as:

S =

{
x, y ∈ [0, 1]2

∣∣∣∣ xy + a1x+ b1y + c1 = 0
xy + a2x+ b2y + c2 = 0

}
, (7)

since if q1 = q2 = 0, then there is nothing to prove and if one of q1, q2 is zero, then we may take a
suitable aggregation to arrive at (7).

The general scheme of the proof is illustrated in Figure 5. Figure 5a shows the convex hull of
each constraint separately, and their intersection significantly overestimates the convex hull of S.
In Figure 5b, by taking an affine transformation of the constraints to make one of the constraints
linear, we can represent S equivalently in the following form:

S =

{
x, y ∈ [0, 1]2

∣∣∣∣ xy + a1x+ b1y + c1 = 0
mx− y + b = 0

}
, (8)

where m = −(a1 − a2)/(b1 − b2) and b = −(c1 − c2)/(b1 − b2). Note that equivalently the second
constraint in (8) is an aggregation of the two constraints in (7). Furthermore, from Assumption 1
and Assumption 2, in case b1−b2 = 0, it would imply that a1−a2 ̸= 0. Thus, if b1−b2 = 0, then we
proceed with the rest of the proof by writing the linear constraint in (8) the form of my−x+ b = 0
with m = (b1 − b2)/(a1 − a2) and b = −(c1 − c2)/(a1 − a2) and treat x as y and y as x in the
following proofs.

In Figure 5c, we make one more linear transformation and arrive at the following form of S:

S =

{
x, y ∈ [0, 1]2

∣∣∣∣ (x− r)y − τ = 0
mx− y + b = 0

}
(9)
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Figure 5: Shaded areas in (a) represent the convex hull of each constraint in their original form
with the true feasible region shown as a black dot.

where r = −
(
b1 +

a1
m

)
and τ = −

(
c1 − a1b

m

)
. For notational simplicity, define:

S1 = [0, 1]2 ∩H1, where H1 = {x, y ∈ R2 | (x− r)y = τ}
S2 = [0, 1]2 ∩ l, where l = {(x, y) ∈ R2 |mx− y + b = 0}.

We discuss the possible “shapes” of the set S:

1. τ ̸= 0: In this case, S1 intersects with [0, 1]2 box on only one branch of the hyperbola – we
call this branch the feasible branch. There are two subcases based on how S2 intersects with
S1:

(a) S2 intersects S1 at two points in [0, 1]2 box. In this case, conv(S) is a line segment.

(b) S2 intersects S1 at one point in [0, 1]2 box. In this case, conv(S) is a point.

2. τ = 0: In this case, S1 is the product of two lines intersected with the [0, 1]2 box. Further,
if r ̸∈ [0, 1], then S1 is a line segment and there is nothing to prove. In case r ∈ [0, 1], if
S2 is the line y = 0 or x = r, then there there is nothing to prove. Otherwise, similar to the
previous case, there are two possibilities:

(a) S2 intersects S1 at two points in [0, 1]2 box. In this case, conv(S) is a line segment.

(b) S2 intersects S1 at one point in [0, 1]2 box. In this case, conv(S) is a point.

Figure 6 shows different shapes of S which are intersections of the red curve and blue line.
There are at most 2 elements in S and are marked by black dots. The respective convex hulls of
S1 are shown in red shaded area. When conv(S) ̸= conv(S1) ∩ S2, we find another aggregation S3
that is represented in green with its respective convex hulls represented in green shaded area. Now
we prove for different shapes of S how we obtain the conv(S).

Proof of 1a If a hyperbola S1 with τ ̸= 0 and a line S2 intersect at two points and both points
are on the same branch of the hyperbola S1, then conv(S1)∩conv(S2) is the line segment connecting
the two points belonging to S1 ∩ S2 (see Figure 6). Then conv(S) = conv(S1) ∩ conv(S2).

Proof of 1b A special case of 1b is when the line describing S2 is a tangent to the feasible branch
of the hyperbola corresponding to S1. In this case, the proof is the same as the proof for 1a.
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x

y

conv(S) for 2b case

Figure 6: Different shapes of the set S and their respective convex hull.

In all other cases, the idea is that we can find at least one aggregation that will have one branch
of the hyperbola intersecting with [0, 1]2 box, and the convex hull of this hyperbola intersects with
the line segment mx − y + b = 0 on the “opposite side” of the line intersecting the convex hull of
S1.

Let (x∗, y∗) be the singleton in the set S. When τ > 0, there are three cases for us to consider:

1. m ≥ 0;

2. m < 0 and 1− b ≥ m(r + τ); and

3. m < 0 and 1− b ≤ m(r + τ).

The intersection between conv(S1) and the line S2 is shown as a black line segment in Figure 7).

x

y

x∗

(a) m ≥ 0

x

y

x∗

(b) m < 0, (m+ b)(1− r) ≥ τ

x

y

x∗

(c) m < 0, (m+ b)(1− r) ≤ τ

Figure 7: Red shaded area represents conv(S1) and the blue line is conv(S2) = S2. The black point
represents conv(S) and the black line segment represents conv(S1) ∩ S2.

1. m ≥ 0: We can make the following aggregation from (9) by multiplying (1 + ϵ − r) to the
second equation and adding it to the first equation:

(x− r)y − τ = 0
+ (1 + ϵ− r) × mx− y + b = 0
= (x− r̃) (y − s̃)− τ̃ = 0

where r̃ = 1 + ϵ, s̃ = (r − 1− ϵ)m and τ̃ = τ + (r − 1− ϵ)(b+m+mϵ). The equation τ̃ = 0
is a quadratic function of ϵ; hence, we can always find ϵ ≥ 0 such that τ̃ ̸= 0. Furthermore,
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note that for the line l and H1 to have an intersection in [0, 1]2 box given that m ≥ 0 and
τ > 0, it must be that the y-coordinate of l is greater than or equal to the y-coordinate of
H1 at x = 1:

m+ b ≥ τ

1− r
.

This implies that (m + b)(1 − r) ≥ τ as r < 1 for H1 to have an intersection in [0, 1]2 box.
Then, we have:

τ̃ = τ − (1 + ϵ− r)(m+mϵ+ b) ≤ τ − (1− r)(m+ b) ≤ 0.

Since τ̃ ̸= 0, we obtain τ̃ < 0.

We define the following set:

S3 = [0, 1]2 ∩H3, where H3 = {x, y ∈ R2 | (x− r̃)(y − s̃) = τ̃}.

Since S3 is defined by the branch of H3 satisfying x < r̃, henceforth, we let H3 = {x, y ∈
R2 | (x− r̃)(y − s̃) = τ̃ , x < r̃}.
We note that conv(S1) ∩ S2 is on the line l along the direction that x ≥ x∗ as illustrated in
Figure 7a. We claim that conv(S3) ∩ S2 is on the line l along the direction that x ≤ x∗ so
that conv(S1) ∩ S2 ∩ conv(S3) is the singleton (x∗, y∗). Equivalently, we would like to show
that the half-line:

{(x, y) ∈ l |x > x∗} ∩ conv(H3) = ∅. (10)

Note that following Observation 1, only one branch of H3 intersects [0, 1]
2 box. Since we have

that τ̃ < 0, (10) is implied by:

mx+ b < min{y | (x, y) ∈ conv(H3)} = s̃+
τ̃

x− r̃
∀ x > x∗. (11)

We first show that (11) holds for some x ∈ (x∗, 1). Since S = S1 ∩ S2 = S3 ∩ S2, there is no
other (x, y) ̸= (x∗, y∗) in the [0, 1]2 box such that (x, y) ∈ H3 ∩ l. Furthremore, s̃ + τ̃

x−r̃ is
convex and monotonically increasing, so if we find x ∈ (x∗, 1) such that (11) holds, (11) holds
for all x > x∗. Otherwise, by the Mean Value Theorem, H3 and l should intersect again in
[0, 1]2 box or (11) does not hold for all x ∈ (x∗, 1).

Let x̃ be the x-coordinate of H3 at y = 1. We want to evaluate the y-coordinate of l at x̃ and
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check if it is less than 1. Let this y-coordinate be ỹ.

x̃ = r̃ +
τ̃

1− s̃
= 1 + ϵ+

τ + (r − 1− ϵ)(b+m+mϵ)

1 + (1 + ϵ− r)m
ỹ = mx̃+ b

= m

(
1 + ϵ+

τ + (r − 1− ϵ)(b+m+mϵ)

1 + (1 + ϵ− r)m

)
+ b

=
m

1 + (1 + ϵ− r)m
(1 + ϵ+ (1 + ϵ− r)(1 + ϵ)m+ τ + (r − 1− ϵ)(b+m+mϵ)) + b

=
m

1 + (1 + ϵ− r)m
(1 + ϵ+ τ + (r − 1− ϵ)b) + b

=
m

1 + (1 + ϵ− r)m
(1 + ϵ+ τ + (r − 1− ϵ)b) + b(1 + (1 + ϵ− r)m)

1 + (1 + ϵ− r)m

=
b+ (1 + ϵ+ τ)m

1 + (1 + ϵ− r)m

≤ 1 + (1 + ϵ− r)m
1 + (1 + ϵ− r)m

= 1

where the last inequality follows from the fact that m(τ + r) ≤ 1− b. When m = 0, the line
equation is y = b and it can only have an intersection with [0, 1]2 box if b ∈ [0, 1] so 1− b ≥ 0
and the inequality is satisfied. When m ̸= 0, τ + r is the x-coordinate of H1 at y = 1 which
is less than or equal to the x-coordinate of l at y = 1 (i.e., 1−b

m ).

x

y

x∗

(a) conv(H1) and S2

x

y

x∗

(b) conv(H3) and S2

Figure 8: When τ > 0 and m > 0, the branch of hyperbola H1 intersecting with [0, 1]2 box is
convex and monotonically decreasing whereas the branch of hyperbola H3 intersecting with [0, 1]2

box is convex and monotonically increasing. Hence, min{y | (x, y) ∈ conv(H3)} is precisely the
curve represented by H3 which always lies above the line l for x > x∗.

2. m < 0 and (m + b)(1 − r) ≥ τ : We make the same aggregation as above and define S3 and
H3 in the same way. We note that:

τ̃ = τ − (1 + ϵ− r)(m+mϵ+ b) ≤ τ − (1− r)(m+ b) ≤ 0.

We claim that conv(S3)∩S2 is on the line l along the direction that x ≤ x∗ so that conv(S1)∩
S2 ∩ conv(S3) is the singleton (x∗, y∗). Equivalently, we would like to show that the half-line:

{(x, y) ∈ l |x > x∗} ∩ conv(H3) = ∅. (12)
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Note that following Observation 1, only one branch of H3 intersects [0, 1]2 box. Since we
conclude that τ̃ < 0, (12) implied by:

mx+ b < min{y | (x, y) ∈ conv(H3)} = s̃+
τ̃

x− r̃
∀ x > x∗. (13)

which holds because m < 0 and s̃+ τ̃
x−r̃ is monotonically increasing. Figure 9 illustrates the

proof.

x

y

x∗

(a) conv(H1) and l

x

y

x∗

(b) conv(H3) and l

Figure 9: When τ > 0, m < 0 and (m+ b)(1−r) ≥ τ , the branch of hyperbola H1 intersecting with
[0, 1]2 box is convex and monotonically decreasing whereas the branch of hyperbola H3 intersecting
with [0, 1]2 box is convex and monotonically increasing. Hence, min{y | (x, y) ∈ conv(H3)} is
precisely the curve represented by H3 which always lies above the line l for x > x∗.

3. m < 0 and (m + b)(1 − r) ≤ τ : We make the following aggregation from (9) by multiplying
−(1 + ϵ)/m to the second equation and adding it to the first equation:

(x− r)y − τ = 0
+ −1+ϵ

m × mx− y + b = 0
= (x− r̃) (y − s̃)− τ̃ = 0

where r̃ = r − 1+ϵ
m , s̃ = 1 + ϵ and τ̃ = τ + (1 + ϵ)

(
r − 1+ϵ−b

m

)
. Again, we can always choose

ϵ ≥ 0 such that τ̃ ̸= 0. This time, we define S3 and H3 as follows:

S3 = [0, 1]2 ∩H3, where H3 = {x, y ∈ R2 | (x− r̃)(y − s̃) = τ̃ , y < s̃}.

We note that conv(S1)∩S2 is on the line l along with the direction that x ≥ x∗ as illustrated
in Figure 7c if 1− b ≥ m(r+ τ) which means that the x-coordinate of H3 at y = 1 is greater
than or equal to the x-coordinate of l at y = 1. Then, we have:

τ̃ = τ + (1 + ϵ)

(
r − 1 + ϵ− b

m

)
≤ (1 + ϵ)

(
τ + r − 1− b

m

)
≤ 0.

The last inequality follows from 1 + ϵ > 0 and τ + r ≤ 1−b
m . We claim that conv(S3) ∩ S2 is

on the line l along the direction that x ≥ x∗ so that conv(S1)∩S2 ∩ conv(S3) is the singleton
(x∗, y∗). Equivalently, we would like to show that the half-line:

{(x, y) ∈ l |x < x∗} ∩ conv(H3) = ∅. (14)
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Note that following Observation 1, only one branch of H3 intersects [0, 1]2 box. Since we
conclude that τ̃ < 0, (14) implied by:

mx+ b > max{y | (x, y) ∈ conv(H3)} = s̃+
τ̃

x− r̃
∀ x < x∗. (15)

which holds because m < 0 and s̃+ τ̃
x−r̃ is monotonically increasing. Figure 10 illustrates the

proof.

x

y

x∗

(a) conv(H1) and l

x

y

x∗

(b) conv(H3) and l

Figure 10: When τ > 0, m < 0 and (m+b)(1−r) ≤ τ , the branch of hyperbola H1 intersecting with
[0, 1]2 box is convex and monotonically decreasing whereas the branch of hyperbola H3 intersecting
with [0, 1]2 box is concave and monotonically increasing. Hence, max{y | (x, y) ∈ conv(H3)} is
precisely the curve represented by H3 which always lies above the line l for x > x∗.

So far, we have only discussed the case τ > 0. When τ < 0, we can make the same argument as
above. Note that we can consider (x − r)y = τ as (x − r)(−y) = −τ and define ŷ = −y with the
new variable bounds or box in [0, 1]× [−1, 0] box.

Proof of 2a In case r ∈ {0, 1}, we see that conv(S) = conv(S1) ∩ S2 in Figure 11.

x

y

(a) r = 0

x

y

(b) r = 1

Figure 11: When r = 0 or r = 1 and two points intersect between S1 and S2, conv(S1) is a triangle
that contains S2. Hence the convex hull of S is S2.

When r ∈ (0, 1), we can create the following aggregation where it intersects only at one branch
and returns to the case similar to 1a.

(x− r)y = 0
− (r + ϵ) × mx− y + b = 0
= (x− r̃) (y − s̃)− τ̃ = 0
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(a) r ∈ (0, 1), conv(S1) and S2

x

y

(b) r ∈ (0, 1), conv(S3) and S2

Figure 12: When r ∈ (0, 1) and we convert to a hyperbola with τ̃ ̸= 0 as in the right-hand side
figure, the same proof can be applied as in the case 1a.

where r̃ = −ϵ, s̃ = (r + ϵ)m and τ̃ = (r + ϵ)(b−mϵ). Again, we can always choose ϵ ≥ 0 such that
τ̃ ̸= 0 unless both m = b = 0. But then, if m = b = 0, the equation mx− y+ b = 0 is equivalent to
y = 0 and conv(S) = conv(S1)∩ S2. When we have (x− r̃)(y− s̃) = τ̃ form, we note that only one
branch of this hyperbola intersects [0, 1]2 box and we can apply the same proof as in the case 1a.

Proof of 2b We consider three aggregations as below:
Aggregation 1:

(x− r)y = 0
− r × mx− y + b = 0
= x− (y − rm) = rb

Aggregation 2:

(x− r)y = 0
+ (1− r) × mx− y + b = 0
= (x− 1) (y + (1− r)) = −(1− r)(b+m)

Aggregation 3:

(x− r)y = 0
− 1

m × mx− y + b = 0

=
(
x−

(
r − 1

m

))
(y − 1)− = r + b+1

m .

Note that all three aggregations result in hyperbolas that only have one branch intersection in
[0, 1]2. Let τ̃ = rb, τ̄ = −(1− r)(b+m) and τ̂ = r+ b+1

m . Then note that either τ̃ ̸= 0, τ̄ ̸= 0, τ̂ ̸= 0
or conv(S) = conv(S1) ∩ S2. Suppose by contradiction that τ̃ = τ̄ = τ̂ = 0. Then from τ̃ = 0,
either r = 0 or b = 0. If r = 0 but b ̸= 0, τ̄ = 0 implies that m = −b. τ̂ = 0 then implies that
b = −1. Together, it implies the line equation l is x− y− 1 = 0. But then, this equation intersects
with [0, 1]2 box only at (x, y) = (1, 1); hence, conv(S) = conv(S1) ∩ S2. Now if b = 0 (irrespective
of r value), τ̄ = 0 implies that m = 0. The line equation l becomes y = 0 which brings us back to
the case 2a. Hence, it must be that at least one of τ̃ , τ̄ or τ̂ is nonzero unless we have a trivial case
where S = {(1, 0)} and conv(S) = conv(S1) ∩ S2.

Suppose that τ̄ ̸= 0. By doing a change of variable, we can give a similar argument on the
following set as we have given for the set S from (9):

S =

{
x, y ∈ [0, 1]2

∣∣∣∣ (x− 1)(y + (1− r̄)) = τ̄
mx− y + b = 0

}
(16)
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where r̄ = −(1−r). Figure 13b shows the new hyperbola found in the form of (x−1)(y+(1−r̄)) = τ̄ .
Note linear aggregations of the constraint represent the same set as (9). Starting from (16), we can
obtain another set as in Figure 13c.

x

y

(a) conv(S) for 2b case

x

y

(b) r ∈ (0, 1), conv(S3) and S2

x

y

(c) r ∈ (0, 1), conv(S3) and S2

Figure 13: When r ∈ (0, 1) and we convert to a hyperbola with τ̃ ̸= 0 as in the right-hand side
figure, the same proof can be applied as in the case 1a.

6 Proof of Theorem 2

Consider the set:

S =

{
x, y1, y2 ∈ [0, 1]3

∣∣∣∣ xy1 = 0.5
xy2 = 0.5

}
. (17)

Observation 2. Note that since x ∈ [0.5, 1] for all (x, y1, y2) ∈ S, we have that y1 = y2 for all
(x, y1, y2) ∈ S. Therefore, conv(S) ⊆ {x, y1, y2 ∈ [0, 1]3 | y1 = y2}.

For λ ∈ R2, let

Sλ :=
{
x, y1, y2 ∈ [0, 1]3 |λ1(xy1 − 0.5) + λ2(xy2 − 0.5) = 0

}
.

We first show that the intersection of a finite number of convex hulls of Sλ’s cannot yield the convex
hull of S and next show that the intersection of infinitely many convex hulls of Sλ’s yield the convex
hull of S. Note first since (1, 0.5, 0.5), (0.5, 1, 1) ∈ S, we have that

(
3
4 ,

3
4 ,

3
4

)
∈ conv(S). Moreover,(

3
4 ,

2
3 ,

2
3

)
∈ S. Thus,

(
3
4 ,

17
24 ,

17
24

)
∈ conv(S). Therefore,

(
3
4 ,

17
24 ,

17
24

)
∈ conv(Sλ) for all λ ∈ R2.

In order to prove this results, we will show that there exists an ϵ0 > 0 such that(
3

4
,
17

24
+ ϵ,

17

24
− ϵ
)
∈
⋂
λ∈T

conv(Sλ) for all 0 ≤ ϵ ≤ ϵ0. (18)

Therefore, it is sufficient to prove that for a given value of λ ∈ R2, there exist ϵ̂(λ) > 0, such
that (

3

4
,
17

24
+ ϵ̂(λ),

17

24
− ϵ̂(λ)

)
∈ conv(Sλ),

since we can then take a convex combination with the point
(
3
4 ,

17
24 ,

17
24

)
∈ conv(Sλ) to obtain points

of the form in (18). Finally, taking the smallest (still positive) value of ϵ̂(λ) from the finite set
{ϵ̂(λ) |λ ∈ T} and setting it to ϵ0 completes the proof.

By re-scaling λ, we have the following two cases to consider:
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1. λ1 = 0: In this case, note that
(
3
4 ,

3
4 ,

2
3

)
∈ Sλ.

2. λ1 = 1: For convenience, let θ := λ2. We consider the following sub-cases:

• θ ≥ 4
3 : In this case, note that it can be verified that(

3

4
,
17

24
+ ϵ,

17

24
− ϵ
)
, (19)

satisfies the equation xy1 − 0.5 + θ(xy2 − 0.5) = 0, where ϵ = 1
24 ·

θ+1
θ−1 . Clearly, ϵ > 0.

Note that, equivalently, we have θ = 24ϵ+1
24ϵ−1 . Since θ ≥ 4

3 we obtain that ϵ ≤ 7
24 which

guarantees that 0 ≤ 17
24 + ϵ ≤ 1 and 0 ≤ 17

24 − ϵ ≤ 1. Thus, (19) belongs to Sλ.

• −1 ≤ θ < 4/3: In this case, note that it can be verified that(
x̂(θ), 1,

10

24

)
≡
(
x̂(θ),

17

24
+

7

24
,
17

24
− 7

24

)
, (20)

satisfies the equation xy1 − 0.5 + θ(xy2 − 0.5) = 0, where x̂(θ) = 6θ+6
12+5θ . Note that

0 ≤ x̂(θ) < 3
4 for all −1 ≤ θ < 4

3 . We now take a convex combination between (20) and
the point

5

12
·
(
1

2
, 1, 1

)
+

7

12
·
(
1,

1

2
,
1

2

)
=

(
19

24
,
17

24
,
17

24

)
∈ conv(S) ⊆ conv(Sλ). (21)

Noting that 19
24 >

3
4 > x̂(θ), we obtain that we can always find a convex combination

(with the multiplier to (20) being positive) which is of the form
(
3
4 ,

17
24 + ϵ, 1724 − ϵ

)
with

ϵ = 12+5θ
288−84θ . Since −1 ≤ θ < 4/3, 7

24·19 < ϵ ≤ 7
24 .

• θ < −1: In this case, we again consider the point (19). Note that ϵ = 1
24 ·

θ+1
θ−1 . Clearly,

ϵ > 0 for θ < −1. Moreover, 1
24 ·

θ+1
θ−1 < 1

24 for all θ < −1. This guarantees that

0 ≤ 17
24 + ϵ ≤ 1 and 0 ≤ 17

24 − ϵ ≤ 1. Thus, (19) belongs to Sλ.

Next, we show that infinite aggregations yield a convex hull. First note that, since conv(S) ⊆⋂
λ∈R2 conv(Sλ), we want to show

⋂
λ∈R2 conv(Sλ) ⊆ conv(S). We show the result in two parts.

First, we show that:

⋂
λ∈R2

conv(Sλ) ⊆

x, y1, y2 ∈ [0, 1]3

∣∣∣∣∣∣
x(y1 + y2) ≥ 1
x+ y1 ≤ 1.5
y1 = y2

 , (22)

and then we show that:x, y1, y2 ∈ [0, 1]3

∣∣∣∣∣∣
x(y1 + y2) ≥ 1
x+ y1 ≤ 1.5
y1 = y2

 = conv(S). (23)

We begin by proving (22) in three steps.

Claim 1. ⋂
λ∈R2

conv(Sλ) ⊆
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) ≥ 1

}
.
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First, note that:

S(1,1) =
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) = 1

}
⊆
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) ≥ 1

}
,

and
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) ≥ 1

}
is a convex set on the domain of x, y1, y2 ∈ [0, 1]3. There-

fore, it follows: ⋂
λ∈R2

conv(Sλ) ⊆ conv(S(1,1)) ⊆
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) ≥ 1

}
,

where the second inclusion is due to the convexity of
{
x, y1, y2 ∈ [0, 1]3 |x(y1 + y2) ≥ 1

}
.

Claim 2. ⋂
λ∈R2

conv(Sλ) ⊆
{
x, y1, y2 ∈ [0, 1]3 | y1 = y2

}
Proof. Let λ1 = 1 and λ2 = −θ:

Sλ =
{
x, y1, y2 ∈ [0, 1]3 | (xy1 − 0.5)− θ(xy2 − 0.5) = 0

}
.

If x = 0 and (x, y1, y2) ∈ Sλ, then we must have that θ = 1. In other words, if θ ̸= 1, then
0 /∈ projx(Sλ). Therefore, for θ ̸= 1, the bilinear constraint defining Sλ can be reformulated as:

y1 − θy2 =
0.5(1− θ)

x
.

We now consider two cases:

1. θ < 1: In this case note that y1 − θy2 = 0.5(1− θ)/x ≥ 0.5(1− θ) and

Sλ ⊆ H+
λ :=

{
x, y1, y2 ∈ [0, 1]3 | (y1 − 0.5)− θ(y2 − 0.5) ≥ 0

}
.

2. θ > 1: In this case note that y1 − θy2 = 0.5(1− θ)/x ≤ 0.5(1− θ) and

Sλ ⊆ H−
λ :=

{
x, y1, y2 ∈ [0, 1]3 | (y1 − 0.5)− θ(y2 − 0.5) ≤ 0

}
.

Since H+
λ and H−

λ are both convex, conv(Sλ) ⊆ H+
λ for θ < 1 and conv(Sλ) ⊆ H−

λ for θ > 1. Then
we have: ⋂

λ∈R2

conv(Sλ) ⊆

(⋂
θ<1

H+
λ

)⋂(⋂
θ>1

H−
λ

)
=
{
x, y1, y2 ∈ [0, 1]3 | y1 = y2, y1, y2 ≥ 0.5

}
.

Figure 14 illustrates the proof.

The next claim completes the proof of (22).

Claim 3.  ⋂
λ∈R2

conv(Sλ)

 ⊆ {x, y1, y2 ∈ [0, 1] |x+ y1 ≤ 1.5}
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y1

y2

(a)

y1

y2

(b)

y1

y2

(c)

Figure 14: The intersection becomes a line segment as θ → 1 and θ ← 1.

Proof. Observe that

conv(S(1,0)) = {x, y1, y2 ∈ [0, 1]3 |xy1 ≥ 0.5, x+ y1 ≤ 1.5} ⊆ {x, y1, y2 ∈ [0, 1] |x+ y1 ≤ 1.5} .

Thus, we obtain the result.

Next, we verify (23). Let T ⊆ R3 be the set in the left-hand-side of (23). Note first that
verifying T ⊇ conv(S) is straightforward as the T is convex and contains S.

To prove T ⊆ conv(S), we show that any point in the T can be written as the convex com-
bination of two points in S. In particular, let (x̂, ŷ1, ŷ2) ∈ T . Then, x̂ ≥ 0.5. If x̂ = 0.5 or
ŷ1 = 1, then the constraint x̂(ŷ1 + ŷ2) ≥ 1 with the box constraints on y1, y2 ∈ [0, 1]2 implies that
(x̂, ŷ1, ŷ2) = (0.5, 1, 1) ∈ S. For x̂ > 0.5 and ŷ1 < 1, we verify that

(x̂, ŷ1, ŷ2) = λ(0.5, 1, 1) + (1− λ)(x̃, ỹ1, ỹ2), (24)

where

(x̃, ỹ1, ỹ2) =

(
x̂− 0.5

1− ŷ1
,
1− ŷ1
2x̂− 1

,
1− ŷ1
2x̂− 1

)
, λ =

2x̂ŷ1 − 1

2x̂+ ŷ1 − 2
.

We first verify that (x̃, ỹ1, ỹ2) ∈ S.

• It is straightforward that x̃ỹ1 = 0.5 and x̃ỹ2 = 0.5.

• x̃, ỹ1, ỹ2 ≥ 0 because x̂ > 0.5 and ŷ1 < 1.

• x̃ ≤ 1 because x̂+ ŷ1 ≤ 1.5 which implies x̂− 0.5 ≤ 1− ŷ1.

• ỹ1, ỹ2 ≤ 1 is equivalent to 2x̂ + ŷ1 ≥ 2. This is true because min{2x̂ + ŷ1 | x̂ŷ1 ≥ 0.5, x̂, ŷ1 ∈
[0, 1]} = 2, where the constraint x̂ŷ1 ≥ 0.5 is implied by the constraints x̂(ŷ1 + ŷ2) ≥ 1 and
ŷ1 = ŷ2 defining T .

Also, since (x̂, ŷ1, ŷ2) ∈ T implies that 2x̂ŷ1 ≥ 1 and (2x̂ŷ1− 1)(1− ŷ) ≥ 1, we have that 0 ≤ λ ≤ 1.
it remains to verify (24):

• 0.5λ+ (1− λ)x̃ =
x̂ŷ1 − 0.5

2x̂+ ŷ1 − 2
+

2x̂+ ŷ1 − 2x̂ŷ1 − 1

2x̂+ ŷ1 − 2
· x̂− 0.5

1− ŷ1

=
x̂ŷ1 − 0.5

2x̂+ ŷ1 − 2
+

(2x̂− 1)(1− ŷ1)
2x̂+ ŷ1 − 2

· x̂− 0.5

1− ŷ1

=
x̂ŷ1 − 0.5 + 2(x̂− 0.5)2

2x̂+ ŷ1 − 2
=

2x̂2 + x̂ŷ1 − 2x̂

2x̂+ ŷ1 − 2
= x̂
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• λ+ (1− λ)ỹ1 =
2x̂ŷ1 − 1

2x̂+ ŷ1 − 2
+

2x̂+ ŷ1 − 2x̂ŷ1 − 1

2x̂+ ŷ1 − 2
· 1− ŷ1
2x̂− 1

=
2x̂ŷ1 − 1 + (1− ŷ1)2

2x̂+ ŷ1 − 2
=

2x̂ŷ + ŷ21 − 2ŷ1
2x̂+ ŷ1 − 2

= ŷ1

• λ+ (1− λ)ỹ2 = λ+ (1− λ)ỹ1 = ŷ1 = ŷ2

This completes the proof that infinite aggregations are needed for certain sets with n1 + n2 ≥ 3.

7 Proof of Theorem 3

Consider the set:

S =

{
x, y1, y2 ∈ [0, 1]3

∣∣∣∣ −2xy1 + 9xy2 + y1 − 5y2 = 0
5xy1 + 3y1 + 3y2 = 6

}
.

For λ ∈ R2, let

Sλ := {x, y1, y2 ∈ [0, 1] | λ1(−2xy1 + 9xy2 + y1 − 5y2) + λ2(5xy1 + 3y1 + 3y2 − 6) = 0} .

We consider two cases: (i) λ1 = 0 and λ2 = 1; and (ii) λ1 = 1 and θ := λ2. For both cases, we
show that p̂ = (x̂, ŷ1, ŷ2) =

(
7
10 ,

7
8 ,

1
6

)
∈ conv(Sλ) but p̂ /∈ conv(S). First of all, p̂ /∈ S, because we

can find the following separating hyperplane H that separates S and p̂:

H := {x, y1, y2 ∈ [0, 1] | − 2x+ 10y1 − 10y2 = 5} .

We also define two half spaces:

H> := {x, y1, y2 ∈ [0, 1] | − 2x+ 10y1 − 10y2 > 5} ,
H< := {x, y1, y2 ∈ [0, 1] | − 2x+ 10y1 − 10y2 < 5} .

Since −2 · 7
10 +10 · 78 − 10 · 16 = 341

60 > 5, p̂ ∈ H>. Next we want to show that for all p ∈ S, p ∈ H<,
so that conv(S) ∈ H<. Note that we can write y1 and y2 in terms of x by solving two systems of
equations:

y1 =
54x− 30

45x2 + 8x− 18
, y2 =

12x− 6

45x2 + 8x− 18

Let the denominator function be f(x) = 45x2+8x−18. Then, f(x) = 0 at x = −4−
√
826

45 ≈ −0.7276
and x̄ =

√
826−4
45 ≈ 0.5498. For any x ∈ (x, x̄), f(x) < 0 and f(x) > 0 if x < x or x > x̄.

For boundary constraints of y1, y2 ∈ [0, 1] to be satisfied, we refer to the graph of y1 and y2 in
Figure 15. From this, we note that the only interval of x ∈ [0, 1] such that both y1, y2 ∈ [0, 1] is

when x ≥ 2+4
√
34

45 ≈ 0.5628. Writing the hyperplane equation in terms of x gives:

−2x+ 10y1 − 10y2 =
240− 456x+ 16x2 + 90x3

18− 8x− 45x2
= g(x)

Taking the derivative of g(x) and setting g′(x) = 0 gives the places of local minimum and local
maximum. Among x values that take a local minimum or local maximum, we only consider values

where x ∈
[
2+4

√
34

45 , 1
]
. The only value is the local maximum at x ≈ 0.704 which gives g(x) ≈
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x

y1

(a) y1

x

y2

(b) y2

Figure 15: For y1, the boundary constraint of y1 ∈ [0, 1] is satisfied when x ≥ 5
9 whereas for y2,

the boundary constraint is satisfied when either x ≤ 1
2 or x ≥ 2+4

√
34

45 . These conditions together

require x ≥ 2+4
√
34

45 .

4.197 < 5. At points x = 2+4
√
34

45 and x = 1, g(x) ≈ −5.9653 and g(x) ≈ 3.1429 respectively which
are both less than 5.

Now, consider the following cases to show that p̂ can be obtained from a convex combination of
points in Sλ for any choice of λ. In other words, there exists pi ∈ Sλ and wi ∈ [0, 1] for i = 1, ..., k
with k ≤ 4 such that: (i)

∑
wi = 1; and (ii)

∑
wipi = p̂ = (x̂, ŷ1, ŷ2) = ( 7

10 ,
7
8 ,

1
6).

1. λ1 = 0 and λ2 = 1:

Let p1 =
(
1, 12 ,

2
3

)
, p2 =

(
3
5 , 1, 0

)
, w1 =

1
4 and w2 =

3
4 .

(a)
∑
wi =

1
4 + 3

4 = 1.

(b)
∑
wipi =

1
4 ·
(
1, 12 ,

2
3

)
+ 3

4 ·
(
3
5 , 1, 0

)
=
(
1
4 + 9

20 ,
1
8 + 3

4 ,
1
6

)
=
(

7
10 ,

7
8 ,

1
6

)
.

2. λ1 = 1 and λ2 = θ ≤ −5
3 :

Let p1 =
(
0, 3θ+5

3θ+1 , 1
)
, p2 =

(
1, 6θ

8θ−1 , 0
)
, p3 =

(
1, 3θ−4

8θ−1 , 1
)
, p3 =

(
3θ−1
5θ−2 , 1, 0

)
, with

w1 =
47(1+3θ)

120(1+47θ) , w2 =
122+1343θ−1645θ2

120(1+47θ)(1−2θ) , w3 =
799θ−27

120(1+47θ) , w4 =
−11(1−141θ)(2−5θ)
120(1+47θ)(1−2θ) .

(a)
∑

wi = (w1 + w3) + (w2 + w4) =
940θ+20

120(1+47θ) +
100+4500θ−9400θ2

120(1+47θ)(1−2θ) = 1
6 + 5

6 = 1.

(b) x̂ = w2 + w3 +
3θ−1
5θ−2 · w4

= 122+1343θ−1645θ2

120(1+47θ)(1−2θ) + 799θ−27
120(1+47θ) +

3θ−1
5θ−2 ·

−22+3157θ−7755θ2

120(1+47θ)(1−2θ)

= 122+1343θ−1645θ2

120(1+47θ)(1−2θ) + −27+853θ−1598θ2

120(1+47θ)(1−2θ) +
−11+1584θ−4653θ2

120(1+47θ)(1−2θ)

= 84+3780θ−7896θ2

120(1+47θ)(1−2θ) =
84(1+47θ)(1−2θ)
120(1+47θ)(1−2θ) =

84
120 = 7

10 .

(c) ŷ1 =
3θ+5
3θ+1 · w1 +

6θ
8θ−1 · w2 +

3θ−4
8θ−1 · w3 + w4

= −78960θ3+47670θ2−3885θ−105
120(1+47θ)(1−2θ)(8θ−1) = 105(1+47θ)(1−2θ)(8θ−1)

120(1+47θ)(1−2θ)(8θ−1) =
105
120 = 7

8 .

(d) ŷ2 = w1 + w3 =
940θ+20

120(1+47θ) =
20
120 = 1

6 .

3. λ1 = 1 λ2 = θ ∈
[
−5

3 ,−
3
5

]
:

Let p1 =
(
3θ+5
9 , 0, 1

)
, p2 =

(
1, 6θ

8θ−1 , 0
)
, p3 =

(
1, 3θ−4

8θ−1 , 1
)
, p4 =

(
3θ−1
5θ−2 , 1, 0

)
, with

w1 =
141

40(3θ−4)(5θ−11) , w2 =
402−595θ+100θ2

120(2θ−1)(5θ−11) , w3 =
457−1060θ+300θ2

120(3θ−4)(5θ−11) , w4 =
(5θ−2)(180θ−349)
120(2θ−1)(5θ−11) .
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(a)
∑

wi = w1 + w3 + w2 + w4

= 3·141+457−1060θ+300θ2

120(44−53θ+15θ2)
+ 402−595θ+100θ2+698−2105θ+900θ2

120(11−27θ+10θ2)

= 880−1060θ+300θ2

120(44−53θ+15θ2)
+ 1100−2700θ+1000θ2

120(11−27θ+10θ2)
= 1

6 + 5
6 = 1

(b) x̂ = 3θ+5
9 · w1 + w2 + w3 +

3θ−1
5θ−2 · w4

= 141θ+235
120(3θ−4)(5θ−11) +

402−595θ+100θ2

120(2θ−1)(5θ−11) +
457−1060θ+300θ2

120(3θ−4)(5θ−11) +
(3θ−1)(180θ−349)
120(2θ−1)(5θ−11)

= 692−919θ+300θ2

120(3θ−4)(5θ−11) +
640θ2−1822θ+751
120(2θ−1)(5θ−11)

= (3θ−4)(100θ−173)
120(3θ−4)(5θ−11) +

(2θ−1)(320θ−751)
120(2θ−1)(5θ−11) =

420θ−924
120(5θ−11) =

84(5θ−11)
120(5θ−11) =

7
10

(c) ŷ1 =
6θ

8θ−1w2 +
3θ−4
8θ−1w3 + w4

= 6θ(402−595θ+100θ2)
120(8θ−1)(2θ−1)(5θ−11) +

457−1060θ+300θ2

120(8θ−1)(5θ−11) +
698−2105θ+900θ2

120(2θ−1)(5θ−11)

= 600θ3−3570θ2+2412θ
120(8θ−1)(2θ−1)(5θ−11) +

600θ3−2420θ2+1974θ−457
120(8θ−1)(2θ−1)(5θ−11) + 7200θ3−17740θ2+7689θ−698

120(8θ−1)(2θ−1)(5θ−11)

= −1155+12075θ−23730θ2+8400θ3

120(8θ−1)(2θ−1)(5θ−11) = 105(8θ−1)(2θ−1)(5θ−11)
120(8θ−1)(2θ−1)(5θ−11) =

7
8

(d) ŷ2 = w1 + w3 =
3·141+457−1060θ+300θ2

120(3θ−4)(5θ−11) = 880−1060θ+300θ2

120(3θ−4)(5θ−11) =
20(3θ−4)(5θ−11)
120(3θ−4)(5θ−11) =

1
6

4. λ1 = 1 λ2 = θ ∈
[
−3

5 ,−
211
665

]
:

Let p1 =
(
3θ+5
9 , 0, 1

)
, p2 =

(
1, 6θ

8θ−1 , 0
)
, p3 =

(
4

5θ+7 , 1, 1
)
, p4 =

(
3θ−1
5θ−2 , 1, 0

)
, with

w1 =
−3(211+665θ)

40(65−556θ−160θ2+75θ3)
, w2 =

(−1+8θ)(958−785θ−800θ2+375θ3)
40(−1+2θ)(65−556θ−160θ2+75θ3)

,

w3 =
(7+5θ)(457−1060θ+300θ2)
120(65−556θ−160θ2+75θ3)

, w4 =
(−2+5θ)(1813−17094θ−3355θ2+1200θ3)

120(−1+2θ)(65−556θ−160θ2+75θ3)
.

(a)
∑

wi =
1899+2187θ−11970θ2

120(−1+2θ)(65−556θ−160θ2+75θ3)
+ −2874+25347θ−16440θ2−20325θ3+9000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

+ −3199+11533θ−7070θ2−7900θ3+3000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)
+ −3626+43253θ−78760θ2−19175θ3+6000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= −7800+82320θ−114240θ2−47400θ3+18000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= 120(−1+2θ)(65−556θ−160θ2+75θ3)
120(−1+2θ)(65−556θ−160θ2+75θ3)

= 1

(b) x̂ = 3θ+5
9 w1 + w2 +

4
5θ+7w3 +

3θ−1
5θ−2w4

= −1055−3958θ−1995θ2

120(65−556θ−160θ2+75θ3)
+ −2874+25347θ−16440θ2−20325θ3+9000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

+ 1828−4240θ+1200θ2

120(65−556θ−160θ2+75θ3)
+ −1813+22533θ−47927θ2−11265θ3+3600θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= 773−8198θ−795θ2

120(65−556θ−160θ2+75θ3)
+ −4687+47880θ−64367θ2−31590θ3+12600θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= 773−8198θ−795θ2

120(65−556θ−160θ2+75θ3)
+ (−1+2θ)(4687−38506θ−12645θ2+6300θ3)

120(−1+2θ)(65−556θ−160θ2+75θ3)

= 5460−46704θ−13440θ2+6300θ3

120(65−556θ−160θ2+75θ3)
= 84(65−556θ−160θ2+75θ3)

120(65−556θ−160θ2+75θ3)
= 7

10

(c) ŷ1 =
6θ

8θ−1w2 + w3 + w4

= 17244θ−14130θ2−14400θ3+6750θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)
+ −3199+11533θ−7070θ2−7900θ3+3000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

+ −3626+43253θ−78760θ2−19175θ3+6000θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= −6825+72030θ−99960θ2−41475θ3+15750θ4

120(−1+2θ)(65−556θ−160θ2+75θ3)

= 105(−1+2θ)(65−556θ−160θ2+75θ3)
120(−1+2θ)(65−556θ−160θ2+75θ3)

= 7
8
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(d) ŷ2 = w1 + w3

= −1899−5985θ
120(65−556θ−160θ2+75θ3)

+ 3199−5135θ−3200θ2+1500θ3

120(65−556θ−160θ2+75θ3)

= 1300−11120θ−3200θ2+1500θ3

120(65−556θ−160θ2+75θ3)
= 20(65−556θ−160θ2+75θ3)

120(65−556θ−160θ2+75θ3)
= 1

6

5. λ1 = 1 and λ2 = θ ∈
[
−211

665 ,
1
3

]
∪
[
863+

√
7682449

4110 ,∞
]
:

Let p1 =
(

4
5θ+7 , 1, 1

)
, p2 =

(
1, 844+863θ−2055θ2

1249+728θ−3405θ2
, −(−1+2θ)(211+665θ)

1249+728θ−3405θ2

)
, p3 =

(
3θ−1
5θ−2 , 1, 0

)
, with

w1 =
47(7+5θ)

1080(3+5θ) , w2 =
−1249−728θ+3405θ2

1080(−1+2θ)(3+5θ) , w3 =
277(−2+5θ)
1080(−1+2θ) .

(a)
∑

wi =
47(7+5θ)

1080(3+5θ) +
−1249−728θ+3405θ2

1080(−1+2θ)(3+5θ) + 277(−2+5θ)
1080(−1+2θ)

= −329+423θ+470θ2

1080(−1+2θ)(3+5θ) +
−1249−728θ+3405θ2

1080(−1+2θ)(3+5θ) + −1662+1385θ+6925θ2

1080(−1+2θ)(3+5θ)

= −3240+1080θ+10800θ2

1080(−1+2θ)(3+5θ) = 1080(−1+2θ)(3+5θ)
1080(−1+2θ)(3+5θ) = 1

(b) x̂ = 4
5θ+7w1 + w2 +

3θ−1
5θ−2w3

= 188
1080(3+5θ) +

−1249−728θ+3405θ2

1080(−1+2θ)(3+5θ) + −277+831θ
1080(−1+2θ)

= −188+387θ
1080(−1+2θ)(3+5θ) +

−1249−728θ+3405θ2

1080(−1+2θ)(3+5θ) + −831+1108θ+4155θ2

1080(−1+2θ)(3+5θ)

= −2268+756θ+7560θ2

1080(−1+2θ)(3+5θ) = 756(−1+2θ)(3+5θ)
1080(−1+2θ)(3+5θ) =

7
10

(c) ŷ1 = w1 +
844+863θ−2055θ2

1249+728θ−3405θ2
w2 + w3

= 47(7+5θ)
1080(3+5θ) +

−844−863θ+2055θ2

1080(−1+2θ)(3+5θ) +
277(−2+5θ)
1080(−1+2θ)

= −329+423θ+470θ2

1080(−1+2θ)(3+5θ) +
−844−863θ+2055θ2

1080(−1+2θ)(3+5θ) +
−1662+1385θ+6925θ2

1080(−1+2θ)(3+5θ)

= −2835+945θ+9450θ2

1080(−1+2θ)(3+5θ) = 945(−1+2θ)(3+5θ)
1080(−1+2θ)(3+5θ) =

7
8

(d) ŷ2 = w1 +
−(−1+2θ)(211+665θ)
1249+728θ−3405θ2

w2 =
47(7+5θ)

1080(3+5θ) +
211+665θ
1080(3+5θ) =

540+900θ
1080(3+5θ) =

180(3+5θ)
1080(3+tθ) =

1
6

6. λ1 = 1 and λ2 = θ ∈
[
1
3 ,

863+
√
7682449

4110

]
:

Let p1 =
(

4
5θ+7 , 1, 1

)
, p2 =

(
1, 0, 6θ

3θ+4

)
, p3 =

(
2(976+1137θ)
45(68+69θ) , 1,

844+863θ−2055θ2

27(4+3θ)(21+115θ)

)
, with

w1 =
(7+5θ)(−412+1635θ)
16(712+6629θ+5685θ2)

, w2 =
1
8 , w3 =

9(68+69θ)(21+115θ)
16(712+6629θ+5685θ2)

.

(a)
∑

wi =
(7+5θ)(−412+1635θ)
16(712+6629θ+5685θ2)

+ 1
8 + 9(68+69θ)(21+115θ)

16(712+6629θ+5685θ2)

= −2884+9385θ+8175θ2

16(712+6629θ+5685θ2)
+ 1424+13258θ+11370θ2

16(712+6629θ+5685θ2)
+ 12852+83421θ+71415θ2

16(712+6629θ+5685θ2)

= 11392+106064θ+90960θ2

16(712+6629θ+5685θ2)
= 16(712+6629θ+5685θ2)

16(712+6629θ+5685θ2)
= 1

(b) x̂ = 4
5θ+7w1 + w2 +

2(976+1137θ)
45(68+69θ) w3

= 4(−412+1635θ)
16(712+6629θ+5685θ2)

+ 1
8 + 2(976+1137θ)(21+115θ)

80(712+6629θ+5685θ2)

= −8240+32700θ
80(712+6629θ+5685θ2)

+ 7120+66290θ+56850θ2

80(712+6629θ+5685θ2)
+ 40992+272234θ+261510θ2

80(712+6629θ+5685θ2)

= 39872+371224θ+318360θ2

80(712+6629θ+5685θ2)
= 56(712+6629θ+5685θ2)

80(712+6629θ+5685θ2)
= 7

10
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(c) ŷ1 =
(7+5θ)(−412+1635θ)
16(712+6629θ+5685θ2)

+ 9(68+69θ)(21+115θ)
16(712+6629θ+5685θ2)

= −2884+9385θ+8175θ2

16(712+6629θ+5685θ2)
+ 12852+83421θ+71415θ2

16(712+6629θ+5685θ2)

= 9968+92806θ+79590θ2

16(712+6629θ+5685θ2)
= 14(712+6629θ+5685θ2)

16(712+6629θ+5685θ2)
= 7

8

(d) ŷ2 = w1 +
6θ

3θ+4w2 +
844+863θ−2055θ2

27(4+3θ)(21+115θ)w3

= (7+5θ)(−412+1635θ)
16(712+6629θ+5685θ2)

+ 6θ
8(3θ+4) +

(68+69θ)(844+863θ−2055θ2)
48(4+3θ)(712+6629θ+5685θ2)

= −34608+86664θ+182565θ2+73575θ3

48(4+3θ)(712+6629θ+5685θ2)
+ 25632θ−238644θ2+204588θ3

48(4+3θ)(712+6629θ+5685θ2)

+ 57392+116920θ−80193θ2−141795θ3

48(4+3θ)(712+6629θ+5685θ2)

= 22784+229216θ+341016θ2+136440θ3

48(4+3θ)(712+6629θ+5685θ2)
= 8(4+3θ)(712+6629θ+5685θ2)

48(4+3θ)(712+6629θ+5685θ2)
= 1

6

The proof shows that for any choice of λ = (λ1, λ2) ∈ R2, p̂ ∈ conv(Sλ). Hence, conv(S) ⊊⋂
λ∈R2 conv(Sλ). This counterexample serves as a counterexample for any n1 + n2 > 2 as we can

extend the variable space.
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A Bound Reduction

We begin by first solving the original nonconvex problem for 60 seconds using BARON, which gives
us an objective value that can be used as a cut on δ. Next, we build the one-row relaxation. Then,
for each variable, we maximize and minimize that particular variable over the one-row relaxation
together with the objective cut. We then update the one-row relaxation using the tighter bounds.
This process is applied iteratively 5 times and results in an average bound reduction are reported
in Tables 6 and 7. We note that the bound reduction process significantly reduces the range of
y variables overall. For x variables, the geometric mean is substantially smaller than the average
(arithmetic mean) reflecting that bounds on most of x variables remain unchanged while bounds
on a few x variables are reduced significantly. It is interesting to see how even with such small y
variable bounds, this optimization problem remains challenging to solve to optimality.

Table 6: Bound reduction in percentage (%) for 12-story data

x variables y variables

Instance Average Geo mean† Average Geo mean

1 63.51 58.15 99.29 99.29
2 43.36 16.17 98.90 98.90
3 33.98 0.45 98.70 98.68
4 43.79 32.60 98.86 98.85
5 26.70 0.77 98.36 98.34
6 25.63 1.08 98.37 98.36
7 31.38 5.84 98.58 98.57
8 30.33 0.99 98.60 98.59
9 38.75 7.40 98.89 98.88
10 28.92 0.79 98.52 98.50

†The geometric mean has been shifted by 0.001 to avoid data entry of 0.00.

Table 7: Bound reduction in percentage (%) for 16-story data

x variables y variables

Instance Average Geo mean† Average Geo mean

1 37.33 8.61 98.40 98.39
2 58.27 31.59 98.93 98.93
3 50.68 44.12 98.86 98.85
4 22.16 0.08 97.81 97.79
5 36.11 2.49 98.26 98.25
6 20.56 0.10 97.12 97.10
7 47.82 20.87 98.60 98.60
8 26.57 0.91 98.29 98.27
9 39.74 16.31 98.42 98.41
10 35.10 2.22 97.98 97.97

†The geometric mean has been shifted by 0.001 to avoid data entry of 0.00.
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