
Yongpei Guan1 · Shabbir Ahmed1 ·George L. Nemhauser1 ·Andrew J. Miller2

A Branch-and-Cut Algorithm for the Stochastic
Uncapacitated Lot-Sizing Problem ?

December 12, 2004

Abstract. This paper addresses a multi-stage stochastic integer programming formulation
of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (`, S)
inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing
polytope. We then extend the (`, S) inequalities to a general class of valid inequalities, called
the (Q, SQ) inequalities, and we establish necessary and sufficient conditions which guarantee
that the (Q, SQ) inequalities are facet-defining. A separation heuristic for (Q, SQ) inequalities
is developed and incorporated into a branch-and-cut algorithm. A computational study verifies
the usefulness of the (Q, SQ) inequalities as cuts.

Key words. Stochastic Lot-Sizing – Multi-stage Stochastic Integer Programming – Polyhe-
dral Study – Branch-and-Cut

1. Introduction

The deterministic uncapacitated lot-sizing problem is to determine a minimum
cost production and inventory holding schedule for a product so as to satisfy its
demand over a finite discrete-time planning horizon. A standard mixed-integer
programming formulation for the single item, uncapacitated, lot-sizing problem
is (cf. [18]):

(LS) : min
T∑

i=0

(αixi + βiyi + hisi)

s.t. si−1 + xi = di + si i = 0, . . . , T,

xi ≤ Miyi i = 0, . . . , T,

xi, si ≥ 0, yi ∈ {0, 1} i = 0, . . . , T,

s−1 = 0,

where xi represents the production in period i, si represents the inventory at
the end of period i, and yi indicates if there is a production set-up in period
i. Problem parameters αi, βi, hi, and di represent the production cost, set-up
cost, holding cost, and the demand in period i, respectively. Since there is no

1School of Industrial & Systems Engineering, Georgia Institute of Technology, GA 30332
2Department of Industrial Engineering, University of Wisconsin, Madison, WI 53706

? This research has been supported in part by the National Science Foundation under Award
number DMII-0121495.



2 Yongpei Guan et al.

restriction on the production level, the parameter Mi is a sufficiently large upper
bound on xi. In the absence of backlogging, this bound can be set as Mi =∑T

j=i dj . We denote the set of feasible solutions of (LS) as XLS.
Although (LS) is solvable in strongly polynomial time using specialized dy-

namic programming algorithms (cf. [1,10,23,24]), such algorithms are not ap-
plicable when (LS) is embedded, as it frequently is, in various multi-period pro-
duction planning problems. This has motivated the polyhedral study of XLS in
order to improve integer programming approaches for such production planning
problems. Barany, Van Roy and Wolsey [7,8] proved that a complete polyhedral
description of the convex hull of XLS is given by some of the original inequalities
together with the (`, S) inequalities∑

i∈S

xi +
∑
i∈S

di`yi ≥ d0`,

where ` ∈ {0, 1, . . . , T}, S ⊆ {0, 1, . . . , `}, S = {0, 1, . . . , `} \ S, and dij =∑j
k=i dk. The authors reported good computational results for multiple item

capacitated lot-sizing problems using the (`, S) inequalities within a branch-
and-cut scheme. Following Barany et al.’s work, polyhedral structures of many
variants of (LS) have been investigated. These include variants of (LS) involving
sales and safety stocks [15], start-up costs [22], piecewise linear and concave pro-
duction costs [2], and constant [14,20], as well as dynamic [6,5,17,19] production
capacities, only to name a few.

The lot-sizing model (LS) assumes that the cost and demand parameters
are known with certainty for all periods of the planning horizon. However, in
many applications, these parameters are uncertain, and, at best, only some dis-
tributional information may be available. In this case, (LS) can be extended to
explicitly address uncertainty by adopting a stochastic programming [21] ap-
proach. Haugen, Løkketangen and Woodruff [13] proposed a heuristic strategy
for such stochastic lot-sizing problems. Ahmed, King and Parija [3] proposed an
extended reformulation of the uncapacitated stochastic lot-sizing problem whose
LP relaxation is significantly tighter than the standard formulation. They also
point out that the Wagner-Whitin optimality conditions for deterministic un-
capacitated lot-sizing problems, i.e., no production is undertaken if inventory is
available, do not hold in the stochastic case. The stochastic lot-sizing problem
has also been considered as subproblems embedded in some classes of stochas-
tic capacity expansion problems [4], stochastic batch-sizing problems [16], and
stochastic production planning problems [9].

In this paper, we study the polyhedral structure of the uncapacitated stochas-
tic lot-sizing problem. We show that the (`, S) inequalities are also valid for
the stochastic lot-sizing polytope. We generalize the (`, S) inequalities to a new
class of valid inequalities for the stochastic lot-sizing polytope. We provide neces-
sary and sufficient conditions that guarantee that the proposed inequalities are
facet-defining, and develop separation algorithms. Our computational experi-
ments demonstrate that the proposed inequalities are extremely useful within a
branch-and-cut scheme for stochastic lot-sizing problems.



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 3

2. The Stochastic Lot-sizing Problem

A stochastic programming extension of the deterministic formulation (LS) is
presented in [3]. This extension is described next. Each of the problem parame-
ters αi, βi, hi, and di are assumed to evolve as a discrete time stochastic process
with finite probability space. This information structure can be interpreted as a
scenario tree with T levels (or stages) where a node i in stage t of the tree gives
the state of the system that can be distinguished by information available up
to time stage t. Each node i of the scenario tree, except the root node (indexed
as i = 0), has a unique parent a(i), and each non-terminal node i is the root
of a subtree T (i) = (V(i), E(i)), which contains all descendants of node i. For
notational brevity we use T = T (0) and V = V(0) for the whole tree. The set
of leaf nodes of T is denoted by L. The probability associated with the state
represented by node i is pi. The set of nodes on the path from the root node to
node i is denoted by P(i). If i ∈ L then P(i) corresponds to a scenario, and rep-
resents a joint realization of the problems parameters over all periods 1, . . . , T .
We define P(i, j) = {k : k ∈ P(j) ∩ V(i)}, thus P(i) = P(0, i). Similarly, we
let dij =

∑
k∈P(i,j) dk. We let C(i) denote the set of nodes that are immediate

children of node i, i.e., C(i) = {j : a(j) = i}; t(i) denote the time stage or level
of node i in the tree, i.e., t(i) = |P(i)|; L(i) denote the leaf nodes of the subtree
T (i).

Using this notation, a multi-stage stochastic integer programming formula-
tion of the single-item, uncapacitated, stochastic lot-sizing problem is:

(SLS1) : min
∑
i∈V

pi(αixi + βiyi + hisi)

s.t. sa(i) + xi = di + si i ∈ V,

xi ≤ Miyi i ∈ V,

xi, si ≥ 0, yi ∈ {0, 1} i ∈ V,

sa(0) = 0,

where xi represents the production in period t(i) corresponding to the state
defined by node i, similarly si represents the inventory at the end of period t(i)
and yi is the indicator variable for a production set-up in period t(i). An upper
bound on xi is given by

Mi = max
j∈L(i)

dij .

Upon eliminating variables si from (SLS1), we obtain the reformulation:

(SLS) : min
∑
i∈V

(ᾱixi + β̄iyi) (1)

s.t.
∑

j∈P(i)

xj ≥ d0i i ∈ V, (2)

0 ≤ xi ≤ Miyi i ∈ V, (3)
yi ∈ {0, 1} i ∈ V, (4)



4 Yongpei Guan et al.

where ᾱi = piαi +
∑

j∈V(i) pjhj and β̄i = piβi. Throughout this paper, we use
the formulation (SLS) for the stochastic lot-sizing problem. The set of feasible
solutions to (SLS) defined by the constraints (2)-(4) is denoted by XSLS.

3. Valid Inequalities for the Stochastic Lot-Sizing Problem

In this section, we provide valid inequalities for the stochastic lot-sizing problem.
We first show that the well-known (`, S) inequalities, for the deterministic lot-
sizing problem, are valid for (SLS). These inequalities are based on a sequence
of consecutive time periods that can be thought of as a path in the scenario tree
T . Next, we extend the (`, S) inequalities to a general class, called the (Q, SQ)
inequalities, which are derived from subtrees of T .

3.1. The (`, S) inequalities

Theorem 1. Given ` ∈ V and S ⊆ P(`), the (`, S) inequality∑
i∈S

xi +
∑
i∈S

di`yi ≥ d0`,

where S = P(`) \ S, is valid for XSLS.

Proof. The proof is analogous to that of the deterministic case (cf. [7]). Given
a point (x, y) ∈ XSLS, we consider two cases: (a) there exists i ∈ S such that
yi = 1, and (b) yi = 0 for all i ∈ S.

Case (a): Let k = argmin{t(i) : i ∈ S, yi = 1}. Then yi = 0 and xi = 0 for all
i ∈ S ∩ P(a(k)). Hence∑

i∈S

xi +
∑
i∈S

di`yi ≥
∑

i∈P(a(k))

xi + dk` ≥ d0a(k) + dk` = d0`.

Case (b): If yi = 0 for all i ∈ S, then∑
i∈S

xi +
∑
i∈S

di`yi =
∑

i∈P(`)

xi ≥ d0`.

ut

3.2. The (Q, SQ) inequalities

In this section, we extend the (`, S) inequalities to a general class called the
(Q, SQ) inequalities.

Consider a subset Q ⊂ V \ {0} satisfying the following properties:

(A1) If i, j ∈ Q, then d0i 6= d0j .



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 5

(A2) If i, j ∈ Q, then i /∈ P(j) and j /∈ P(i).

(A1) allows us to uniquely index the nodes in the set Q as {1, 2, ..., Q} where
Q = |Q|, such that d01 < d02 < · · · < d0Q. (A2) simply gives us a convenient
way of defining the subtrees over which the (Q, SQ) inequalities are defined. We
will comment on (A1) and (A2) at the end of this section.

Define TQ = {VQ, EQ} to be the subtree of T whose leaf nodes are Q, i.e,
VQ = ∪i∈QP(i). Note that by (A2), all nodes in Q are leaf nodes of TQ. Given
i ∈ VQ, we denote by TQ(i) = {VQ(i), EQ(i)} the subtree of TQ with i as the
root node. Note that VQ(i) = V(i) ∩ VQ. We use Q(i) ⊆ Q to denote the set of
leaf nodes of the subtree TQ(i), i.e., Q(i) = VQ(i) ∩Q.

In addition to (A1) and (A2), we need the following property on the set Q
for the validity of the (Q, SQ) inequalities:

(A3) Given any node k ∈ VQ, and nodes i, j ∈ Q such that i < j and
i, j ∈ Q(k), we have that {i, i + 1, . . . , j − 1, j} ⊆ Q(k).
Given a subset Q, define the following quantities for all nodes i ∈ VQ:

DQ(i) = max{d0j : j ∈ Q(i)} (5)

D̃Q(i) =
{

0, if {j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)} = ∅
max{d0j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)}, otherwise

(6)

MQ(i) = max{dij : j ∈ Q(i)} (7)

∆Q(i) = min
{

DQ(i)− D̃Q(i),MQ(i)
}

. (8)

Given k ∈ Q, let Qk = {1, 2, . . . , k − 1, k} and TQk
= {VQk

, EQk
} be the

subtree of T with leaf nodes Qk. It is easily verified that, if Q satisfies (A1)-
(A3) then every subset Qk for k = 1, . . . , Q satisfies these properties as well.

Now, let K ∈ Q, and suppose there exists a j∗ ∈ VQK
such that j∗ ∈ P(K)

and D̃QK
(j∗) > 0. Then there exists r∗ ∈ Q such that D̃QK

(j∗) = d0r∗ . Clearly
1 ≤ r∗ ≤ K. Let u∗ = argmax{t(i) : i ∈ VQr∗ ∩ P(K)}. Figure 1 illustrates the
relative position of the nodes j∗, r∗, and u∗, and the set VQr∗ . In this figure
QK = {1, 2, 3, r∗,K − 1,K}, Qr∗ = {1, 2, 3, r∗}, VQK

is the set of all nodes and
VQr∗ is the set of nodes within the dotted area as shown in the graph. From
(A3), it follows that u∗ ∈ P(r∗). If not, then there exists a r′ < r∗, r′ ∈ Qr∗ such
that u∗ ∈ P(r′) since u∗ ∈ VQr∗ . Thus, we have r′,K ∈ Q(u∗) and r′ < r∗ ≤ K.
Then according to (A3), we have r∗ ∈ Q(u∗), which contradicts u∗ /∈ P(r∗). For
K, j∗, r∗ and u∗ defined as above, we need the following two lemmas.

Lemma 1. ∆QK
(i) ≥ ∆Qr∗ (i) for all i ∈ P(u∗).

Proof. We have

DQK
(i) = d0K ≥ d0r∗ = DQr∗ (i) for all i ∈ P(u∗). (9)

Furthermore, for all i ∈ P(u∗), we have r∗,K ∈ VQK
(i). It then follows from

(A3) that QK(i) = Qr∗(i) ∪ {r∗ + 1, . . . ,K}. Thus

QK \ QK(i) = {1, . . . ,K} \ (Qr∗(i) ∪ {r∗ + 1, . . . ,K})
= ({1, . . . ,K} \ {r∗ + 1, . . . ,K}) \ Qr∗(i)
= Qr∗ \ Qr∗(i).

(10)



6 Yongpei Guan et al.

Fig. 1. Notation for Lemmas 1 and 2

(For example, in Figure 1, consider node i1 ∈ P(u∗), then QK(i1) = {2, 3, r∗,K−
1,K} and Qr∗(i1) = {2, 3, r∗}. Thus QK \ QK(i1) = Qr∗ \ Qr∗(i1) = {1}.)

Next, note that for all i ∈ P(u∗), (9) implies that d0j ≤ DQK
(i) = d0K

for all j ∈ QK and d0j ≤ DQr∗ (i) = d0r∗ for all j ∈ Qr∗ . Thus for all nodes
i ∈ P(u∗), D̃QK

(i) = max{d0j : j ∈ QK \ QK(i)} and D̃Qr∗ (i) = max{d0j : j ∈
Qr∗ \ Qr∗(i)}. It then follows from (10) that

D̃QK
(i) = D̃Qr∗ (i) for all i ∈ P(u∗). (11)

Since Qr∗(i) ⊂ QK(i), we also have

MQK
(i) ≥ MQr∗ (i) for all i ∈ P(u∗). (12)

The lemma follows from (9), (11), (12) and the definition of ∆. ut

Lemma 2. ∆QK
(i) = ∆Qr∗ (i) for all i ∈ VQr∗ \ P(u∗).

Proof. We first claim that
j∗ 6∈ VQr∗ . (13)

Suppose that j∗ ∈ VQr∗ . Then there exists rj∗ ∈ Q such that rj∗ ≤ r∗ < K,
i.e., rj∗ ∈ QK(j∗). Note that by definition r∗ 6∈ QK(j∗). Since K ∈ QK(j∗) and
rj∗ ≤ r∗ < K, we have a contradiction to (A3). Thus (13) holds.



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 7

Next, we show that

Qr∗(i) = QK(i) for all i ∈ VQr∗ \ P(u∗). (14)

ClearlyQr∗(i) ⊆ QK(i). Now, suppose there exists a k ∈ QK(i) such that k > r∗.
Note that i ∈ VQr∗ and j∗ 6∈ VQr∗ from (13), thus j∗ 6∈ P(i). Furthermore we
also have i 6∈ P(j∗), otherwise by definition of u∗ we would have i ∈ P(u∗).
Thus i 6∈ VQK

(j∗) and so k 6∈ VQK
(j∗). Thus d0r∗ = D̃QK

(j∗) = max{d0j : j ∈
QK \ QK(j∗) and d0j ≤ DQK

(j∗) = d0K} ≥ d0k, which is a contradiction to
k > r∗. Thus (14) is true. (The claim is clear in Figure 1. Consider the node
i2 ∈ VQr∗ \ P(u∗). Here Qr∗(i2) = QK(i2) = {2}.)

From (14), we have

DQK
(i) = DQr∗ (i) for all i ∈ VQr∗ \ P(u∗), (15)

and
MQK

(i) = MQr∗ (i) for all i ∈ VQr∗ \ P(u∗). (16)

From (14) and (15), we have D̃QK
(i) = max{d0j : j ∈ QK \Qr∗(i) and d0j ≤

DQr∗ (i)}. Now, consider the set

{j : j ∈ QK \ Qr∗(i) and d0j ≤ DQr∗ (i)}
= {j : j ∈ (Qr∗ ∪ {r∗ + 1, . . . ,K}) \ Qr∗(i) and d0j ≤ DQr∗ (i)}
= {j : j ∈ Qr∗ \ Qr∗(i) and d0j ≤ DQr∗ (i)},

where the last step follows from the fact that DQr∗ (i) ≤ d0r∗ and d0j > d0r∗ for
all j ∈ {r∗ + 1, . . . ,K}. Thus

D̃QK
(i) = D̃Qr∗ (i) for all i ∈ VQr∗ \ P(u∗). (17)

The lemma follows from (15), (16), (17) and the definition of ∆. ut

We are now ready to state the (Q, SQ) inequalities and prove their validity.

Theorem 2. Given any Q ⊆ V satisfying (A1), (A2), and (A3) and any subset
SQ ⊆ VQ, the inequality∑

i∈SQ

xi +
∑

i∈SQ

∆Q(i)yi ≥ MQ(0),

where SQ = VQ \ SQ, called a (Q, SQ) inequality, is valid for XSLS.

Proof. We show by induction over k ∈ {1, . . . , Q} that any (Qk, SQk
) inequality

is valid for XSLS.

The base case (k = 1): Note that DQ1(i) = d01, D̃Q1(i) = 0, and MQ1(i) = di1

for all i ∈ VQ1 . Given any point (x, y) ∈ XSLS, the left-hand-side of the (Q1, SQ1)
inequality is given by∑

i∈SQ1

xi +
∑

i∈SQ1

min{d01, di1}yi =
∑

i∈SQ1

xi +
∑

i∈SQ1

di1yi ≥ d01 = MQ1(0).



8 Yongpei Guan et al.

The first equality follows from the fact that d01 ≥ di1, the inequality follows
from the validity of the (`, S) inequality with ` = 1 and S = SQ1 , and the last
equality follows from the definition of MQ1(0).

The inductive step: We assume that for all k ∈ {1, . . . ,K−1} (where K−1 <
Q), given any SQk

⊆ VQk
, the (Qk, SQk

) inequality is valid for XSLS. Consider
any SQK

⊆ VQK
, we show that the (QK , SQK

) inequality∑
i∈SQK

xi +
∑

i∈SQK

∆QK
(i)yi ≥ MQK

(0)

is also valid for XSLS.
Let FK = {i ∈ P(K) ∩ SQK

: DQK
(i) − D̃QK

(i) < MQK
(i)}. Given any

solution (x, y) ∈ XSLS, we consider two cases: (a) there exists j∗ ∈ FK such that
yj∗ = 1, and (b) yj = 0 for all j ∈ FK .

Case (a): Note that DQK
(j∗)−D̃QK

(j∗) < MQK
(j∗) implies D̃QK

(j∗) > 0 since
DQK

(j∗) ≥ MQK
(j∗). Thus there exists r∗ ∈ Q such that D̃QK

(j∗) = d0r∗ .
Let SQr∗ = SQK

∩ VQr∗ and SQr∗ = SQK
∩ VQr∗ . The left-hand-side of the

(QK , SQK
) inequality is then equal to∑

i∈SQr∗

xi + (18)

∑
i∈SQK

\SQr∗

xi + (19)

∑
i∈SQr∗

∆QK
(i)yi + (20)

∑
i∈SQK

\SQr∗

∆QK
(i)yi. (21)

As before, let u∗ = argmax{t(i) : i ∈ VQr∗ ∩ P(K)}. Expression (20) can be
further disaggregated into ∑

i∈SQr∗∩P(u∗)

∆QK
(i)yi + (22)

∑
i∈SQr∗ \P(u∗)

∆QK
(i)yi. (23)

From Lemma 1, it follows that

(22) ≥
∑

i∈SQr∗∩P(u∗)

∆Qr∗ (i)yi,



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 9

and from Lemma 2, it follows that

(23) =
∑

i∈SQr∗ \P(u∗)

∆Qr∗ yi.

From the validity of the (Qr∗ , SQr∗ ) inequality, we then have

(18) + (22) + (23) ≥ MQr∗ (0) = d0r∗ .

Now consider the expression (21). Since j∗ ∈ SQK
\SQr∗ and all coefficients are

non-negative, we have that

(21) ≥ DQK
(j∗)− D̃QK

(j∗) = d0K − d0r∗ .

Thus
(18) + (22) + (23) + (21) ≥ d0K ,

which implies

(18) + (19) + (22) + (23) + (21) ≥ d0K = MQK
(0).

Therefore the (QK , SQK
) inequality is valid.

Case (b): The left-hand-side of the (QK , SQK
) inequality equals∑

i∈SQK

xi +
∑

i∈SQK

∆QK
(i)yi

≥
∑

i∈SQK
∩P(K)

xi +
∑

i∈SQK
∩P(K)

∆QK
(i)yi

=
∑

i∈SQK
∩P(K)

xi +
∑

i∈SQK
∩P(K)

MQK
(i)yi

=
∑

i∈SQK
∩P(K)

xi +
∑

i∈SQK
∩P(K)

diKyi

≥ d0K = MQK(0),

where the third expression follows from the fact that yj = 0 for all j ∈ SQK
∩

P(K) such that DQK
(j)−D̃QK

(j) < MQK
(j), the fourth expression follows from

the definition of MQK
(j), and the fifth expression follows from the validity of

the (`, S) inequality with ` = K and S = SQK
∩P(K). Therefore the (QK , SQK

)
inequality is valid. ut

We conclude this section with a discussion of properties (A1) and (A2) and
an example that illustrates the (Q, SQ) inequalities. Suppose property (A1) does
not hold for some Q. In particular, suppose there exists a pair of nodes q1, q2 ∈ Q
such that d0q1 = d0q2 . Without loss of generality, we index the nodes in Q such
that q2 > q1. Let Q′ = Q \ {q2}. Note that Q′ satisfies (A1). From the fact that



10 Yongpei Guan et al.

d0q1 = d0q2 , it can be easily verified that ∆Q′(i) = ∆Q(i) for all i ∈ VQ′ and
MQ′(0) = MQ(0). Now, let SQ′ = SQ ∩ VQ′ and SQ′ = SQ ∩ VQ′ . Then∑

i∈SQ

xi +
∑

i∈SQ

∆Q(i)yi

≥
∑

i∈SQ′

xi +
∑

i∈SQ′

∆Q(i)yi

=
∑

i∈SQ′

xi +
∑

i∈SQ′

∆Q′(i)yi

≥ MQ′(0) = MQ(0).

Thus the (Q, SQ) inequality is valid. However, this inequality is clearly domi-
nated by the (Q′, SQ′) inequality. Consequently, (A1) is without loss of general-
ity.

Suppose property (A2) does not hold for some Q and there exists a pair
of nodes q1, q2 ∈ Q such that q1 ∈ P(q2). Then VQ = VQ\{q1} and we only
need to consider (Q, SQ) inequalities corresponding to Q \ {q1} instead of Q.
Consequently, (A2) is without loss of generality.

Example: Consider an instance of (SLS) with 7 nodes as shown in Figure 2.
The problem parameters are shown in the columns labelled αi, βi and di in
Table 1. The optimal LP relaxation objective value of (SLS) is 3011.84 and the
corresponding optimal solution (x, y) is shown in the columns labelled x1 and
y1 in Table 1. We augment the LP relaxation with 3 (Q, SQ) inequalities:

10y0 ≥ 10, i.e., Q = {0}, SQ = {0}
x0 + x2 + 5y3 ≥ 35, i.e., Q = {2, 3}, SQ = {3}

x0 + 5y1 + 20y2 + 5y4 ≥ 35, i.e., Q = {2, 4}, SQ = {1, 2, 4}

Then we obtain an integral optimal solution as shown in columns labelled x2

and y2 in Table 1 and the corresponding optimal objective value is 3143.

1 4

0 2 5

3 6

Fig. 2. Tree for the example



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 11

αi βi di x1 y1 x2 y2

0 100 1 10 25 0.56 30 1
1 10 2000 15 0 0.00 0 0
2 10 2000 20 5 0.14 0 0
3 10 30 25 10 0.29 5 1
4 1 30 10 10 1.00 5 1
5 1 1 15 15 1.00 15 1
6 1 1 10 10 1.00 10 1

Table 1. Data for the example

4. Facets for the Stochastic Lot-Sizing Problem

In this section we give some classes of facets for the stochastic lot-sizing polyhe-
dron. First, we identify some facets from the original inequalities defining XSLS.
Next, we provide necessary and sufficient conditions under which a (Q, SQ) in-
equality is facet-defining.

We make the assumption

(A4) di > 0 for all i ∈ V

throughout the remainder of this paper. Given (A4), the following results can be
shown by constructing appropriate sets of affinely independent solutions. Recall
that |V| = N .

Proposition 1. The dimension of XSLS is 2N − 1.

Proposition 2. The inequalities

(i) xi ≤ Miyi for i ∈ V \ {0},
(ii) yi ≤ 1 for i ∈ V \ {0},
(iii) xi ≥ 0 for i ∈ V \ {0},

are facet-defining for XSLS.

Note that, the inequalities yi ≥ 0, i ∈ V \ {0}, are not facet-defining because
yi = 0 implies xi = 0, and therefore we can have no more than 2N − 2 affinely
independent solutions satisfying yi = 0.

We now establish a set of conditions guaranteeing that a (Q, SQ) inequality is
facet-defining. Let FQ = {i ∈ SQ : DQ(i)−D̃Q(i) < MQ(i)} and GQ = SQ \FQ.
Thus, VQ = FQ ∪ GQ ∪ SQ. We need the following definitions.

Definition 1. Given Q ⊆ V and SQ ⊆ VQ, the neighborhood of (Q, SQ) is

N (Q, SQ) =
⋃

i∈VQ\(∪j∈SQ
VQ(j))

C(i) \ VQ.

For example, in Figure 3, letQ = {1, 2, 3, 4} and SQ = {0, 3, 5, 9}, thenN (Q, SQ)
contains the two nodes shaded horizontally.



12 Yongpei Guan et al.

Fig. 3. Partitioning of the node set V used in the proof of Theorem 3

Definition 2. Given j ∈ VQ, let qj = max{i : i ∈ Q(j)} and

W(j) =
⋃

i∈Q\Qqj

argmin
{

t(m) : m ∈ SQ ∩ P(i) \ VQqj

}
.

For example, in Figure 3, if j = 9 then qj = 2 and W(j) = {4, 7}; and if j = 6
then qj = 3 and W(j) = {4}.
Theorem 3. The (Q, SQ) inequality∑

i∈SQ

xi +
∑

i∈SQ

∆Q(i)yi ≥ MQ(0)

is facet-defining if and only if

(i) 0 ∈ SQ,
(ii) MQ(0) ≥ maxi∈N (Q,SQ){d0i},
(iii) For each j ∈ VQ,

(a) W(j) ∩ P(i) 6= ∅, ∀i ∈ Q \ Qqj
,

(b) If j ∈ FQ, then D̃Q(j) ≥ d0a(k), ∀k ∈ W(j),
(c) If j ∈ GQ, then d0a(j) ≥ d0a(k), ∀k ∈ W(j),
(d) If j ∈ SQ, then DQ(j) > d0a(k), ∀k ∈ W(j),

(iv) (∪i∈GQargmax{j : j ∈ Q(i)}) ∩ L = ∅.

Proof. The proof is constructive and the details are given in the Appendix.



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 13

Example (continued): Consider the three inequalities added in the example. The
first one is not facet-defining since 0 /∈ SQ. The second one is not facet-defining
since it does not satisfy condition (ii) of Theorem 3. However, the third inequal-
ity is facet-defining. To illustrate the necessity of condition (iii), the inequality
x0 + x1 + x4 + x3 + 10y6 ≥ 45, where Q = {4, 6} and SQ = {6}, is not facet-
defining since DQ(4) = d0a(6) and 6 ∈ W(4), which contradicts condition (d) of
(iii). On the other hand, the inequality x0 + x1 + x4 + x2 + 10y5 ≥ 45, where
Q = {4, 5} and SQ = {5}, satisfies all four conditions of Theorem 3 and there-
fore is facet-defining.

Recall that every (`, S) inequality is a (Q, SQ) inequality with Q = {`} and
SQ = S. We then have the following corollary to Theorem 3.

Corollary 1. An (`, S) inequality is facet-defining if and only if ` and S are
such that

(i) 0 ∈ SQ,
(ii) d0` ≥ maxi∈N(`,S) d0i,
(iv) P(`) \ S 6= ∅, ` /∈ L or P(`) \ S = ∅, ` ∈ L.

In this case, the neighborhood is simply N(`, S) = {j : j ∈ C(i) \P(`) where i <
argmin{t(k) : k ∈ S}}, and condition (iii) is redundant since W(j) = ∅ for all
j ∈ VQ.

Remark 1. From above, we can see that (Q, SQ) inequalities suffice to describe
the convex hull of the deterministic case of (SLS) since in this case, they are
equivalent to the (`, S) inequalities. Moreover, the (Q, SQ) inequalities are also
sufficient to describe the convex hull when (SLS) has two periods [12].

5. Separation of (Q, SQ) inequalities

Given the set Q, and a fractional solution (x∗, y∗) of (SLS), let

S∗Q = {i ∈ VQ : x∗i ≤ ∆Q(i)y∗i }. (24)

If
∑

i∈S∗Q
x∗i +

∑
i∈S

∗
Q

∆Q(i)y∗i < MQ(0), then the (Q, S∗Q) inequality is violated.
On the other hand, if (x∗, y∗) satisfies the (Q, S∗Q) inequality then there are no
violated (Q, SQ) inequalities corresponding to the node set Q, since

min
SQ⊆VQ

 ∑
i∈SQ

x∗i +
∑

i∈SQ

∆Q(i)y∗i

 =
∑

i∈S∗Q

x∗i +
∑

i∈S
∗
Q

∆Q(i)y∗i ≥ MQ(0).

The difficulty in separating (Q, SQ) inequalities is how to determine Q. The
(Q, SQ) inequalities with |Q| = Q can be separated in O(NQ+1) time by enu-
meration since for each such Q, we can check for a violated (Q, SQ) inequality
in O(N) time. Because we don’t know a polynomial algorithm for general Q, we
only check all of the |Q| = 1 and |Q| = 2 inequalities for violations and then



14 Yongpei Guan et al.

we apply a heuristic (Algorithm 1) to try to find some violated inequalities for
larger Q.

The basic idea of Algorithm 1 is to add nodes to Q, using a depth-first
strategy, such that the right-hand-side of the inequality is not changed while the
left-hand-side decreases. The process stops as soon as we find a violated (Q, S∗Q)
inequality. If no violated inequality is found after exhausting the depth-first
search, we re-start the search with a new node.

Algorithm 1 Heuristic separation of {Q, SQ} inequalities with |Q| ≥ 3
Input: a fractional solution (x∗, y∗).
for ` ∈ V do

Step 0. Set Q = {`} and i = `.
Step 1. If |Q| ≥ 3, go to Step 2. Otherwise, go to Step 3.
Step 2. Compute S∗Q as in (24). If the (Q, S∗Q) inequality is violated stop.

Step 3. For some node j ∈ V(a(i)) \ V(i), let Q′ = Q∪ {j}. If a node
k = argmax{d0j : j ∈ V(a(i)) \ V(i), d0j < d0i and

∑
i∈S∗Q′

x∗i +
∑

i∈S
∗
Q′

∆Q′ (i)y∗i <∑
i∈S∗Q

x∗i +
∑

i∈S
∗
Q

∆Q(i)y∗i } exists, go to Step 5. Otherwise, go to Step 4.

Step 4. If i 6= 0, set i← a(i) and go to Step 3. If i = 0 end for.
Step 5. Set Q ← Q∪ {k} and i← k and go to Step 1.

end for

6. Computational Experiments

In this section, we report on the computational effectiveness of the (Q, SQ) in-
equalities on randomly generated instances of single-item, uncapacitated, stochas-
tic lot-sizing problems.

6.1. Implementation

We implemented a branch-and-cut scheme in which complete separation of (Q, SQ)
inequalities is done for |Q| = 1 and |Q| = 2 followed by Algorithm 1. We add
all violated |Q| = 1 inequalities if some are found and repeat until no more are
found. We do the same for |Q| = 2 inequalities. When no more of these are
found, we apply Algorithm 1 and add inequalities one-at-a-time until no further
violation is found.

Our implementation was carried out in C using the callable libraries of
CPLEX 8.1. Default CPLEX options were used throughout. All computations
were carried out on a 2.4GHz Intel Xeon/Linux workstation with 2GB RAM
with one hour time limit per run.

6.2. Test problem generation

A number of instances of (SLS) were generated corresponding to different struc-
tures of the underlying scenario trees, different ratios of the production cost to



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 15

the inventory holding cost, and different ratios of the setup cost to the inventory
holding cost.

We assumed that the underlying scenario tree is balanced with T stages and
K branches per stage. We considered 6 different tree structures with K = 2 and
T ∈ {10, 11}; K = 3 and T ∈ {6, 7}; K = 4 and T ∈ {5, 6}. We considered
three different levels of production to holding cost ratio α/h ∈ {50, 100, 200},
and three different levels of setup to holding cost ratio β/h ∈ {1750, 3500, 7000}.

For each of the 54 combinations of the tree structure, α/h and β/h, we
generated three random instances as follows. For each node i of the tree, the
holding cost hi ∼ U [0.01, 0.05], i.e., a uniform random number in the interval
[0.01, 0.05]; αi ∼ U [0.8(α/h)h̄, 1.2(α/h)h̄] where h̄ = 0.03 is the average holding
cost; βi ∼ U [0.8(β/h)h̄, 1.2(β/h)h̄]; and di ∼ U [10, 100]. Finally, all K children
of a node were assigned equal probabilities.

6.3. Results

Tables 2, 3, and 4 report on the effectiveness of the (Q, SQ) inequalities in tight-
ening the LP relaxation gap for the instances corresponding to K = 2, 3 and 4 at
the root node. The column labelled LP Gap % gives the relative LP relaxation
gap of the original formulation (SLS) with respect to the best feasible solution
found with our branch-and-cut scheme. The columns labelled |Q| = 1, |Q| = 2
and General Q correspond to the results from adding all violated (Q, SQ) in-
equalities for |Q| = 1 and then those for |Q| = 2, and then heuristically for some
violated inequalities with |Q| > 2. For each combination of T , β/h and α/h,
there are two rows corresponding to the columns labelled |Q| = 1, |Q| = 2 and
General Q. The first row gives the LP relaxation gap after adding the (Q, SQ)
inequalities, and the second row gives the number of (Q, SQ) inequalities added.
Note that all reported numbers are averages over three instances. Significant
tightening of the LP relaxation is achieved via the proposed (Q, SQ) inequali-
ties. In some cases, the LP relaxation gap is reduced from over 20% to 0.4%.
Furthermore, in most cases, the LP relaxation gap is small after adding the
inequalities corresponding to |Q| = 1 and |Q| = 2.

The results from our branch-and-cut scheme are reported in Tables 5, 6, and
7 for the instances corresponding to K = 2, 3 and 4, respectively. For each combi-
nation of T , β/h and α/h, there are two rows. The first row gives the performance
of the default CPLEX MIP solver and the second row gives the performance of
our branch-and-cut scheme. We give the number of cutting planes added by the
default CPLEX MIP solver and by our branch-and-cut scheme respectively, the
relative optimality gap upon termination, the number of nodes explored (apart
from the root node), and the total CPU time. The reported data is averaged
over three instances. The numbers in square brackets indicate the number of
instances not solved to default CPLEX optimality tolerance within the allotted
time limit of one hour. The default CPLEX MIP solver adds several types of
cuts including flow covers, Gomory fractional cuts and mixed integer rounding
cuts. Our branch-and-cut algorithm adds (Q, SQ) cuts at each node after the



16 Yongpei Guan et al.

CPLEX default cuts have been added. For the total CPU time, we report the
average CPU time for instances that are solved to default CPLEX optimality
tolerance within the allotted time limit of one hour. Otherwise, we use “∗∗∗” to
represent the case that no instance is solved to default CPLEX optimality tol-
erance within the allotted time. The efficiency of the (Q, SQ) inequalities within
our branch-and-cut is clearly observed. Our branch-and-cut algorithm proves
optimality for all instances for K = 2, has only 11 and 25 instances unsolved to
optimality for K = 3 and K = 4, respectively. In contrast, the unsolved instances
corresponding to default CPLEX are 6, 43 and 52, respectively. For cases where
neither algorithm could prove optimality, our algorithm yielded much smaller
optimality gaps. Moreover, our cuts dramatically reduced the number of nodes
in the tree and, although we added many more cuts, the running times were
smaller as well. Because we add so many (Q, SQ) inequalities, we thought that
the running times might be reduced substantially by deleting cuts that were no
longer tight. However, experiments using cut management did not yield signifi-
cant improvement.

Table 2. Results for the root node (K = 2)

T β/h α/h LP Gap % |Q| = 1 |Q| = 2 General Q
10 1750 50 7.19 0.04 0.01 0.01

3473 1185 18
10 1750 100 6.60 0.04 0.00 0.00

3492 1238 19
10 1750 200 5.28 0.04 0.00 0.00

3451 1124 0
10 3500 50 13.06 0.11 0.01 0.01

3424 2513 51
10 3500 100 12.10 0.10 0.01 0.01

3374 2630 80
10 3500 200 9.87 0.08 0.00 0.00

3433 1868 12
10 7000 50 22.13 0.19 0.02 0.01

3183 4267 98
10 7000 100 20.81 0.26 0.02 0.01

3420 3679 84
10 7000 200 17.35 0.35 0.09 0.02

3238 4718 310
11 1750 50 2.75 0.02 0.01 0.01

7953 2769 29
11 1750 100 2.61 0.02 0.00 0.00

7958 2331 12
11 1750 200 2.26 0.01 0.00 0.00

7880 2233 7
11 3500 50 5.25 0.06 0.02 0.01

7691 6675 291
11 3500 100 4.99 0.04 0.00 0.00

7769 5177 125
11 3500 200 4.36 0.03 0.00 0.00

7911 3204 24
11 7000 50 9.57 0.16 0.02 0.02

7179 12042 280
11 7000 100 9.21 0.16 0.02 0.02

7437 9968 223
11 7000 200 8.17 0.11 0.01 0.01

7656 7452 71



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 17

Table 3. Results for the root node (K = 3)

T β/h α/h LP Gap % |Q| = 1 |Q| = 2 General Q
6 1750 50 10.03 0.62 0.04 0.03

1560 3243 98
6 1750 100 8.26 0.65 0.06 0.04

1479 4139 144
6 1750 200 5.36 0.54 0.02 0.01

1438 5784 33
6 3500 50 16.29 1.29 0.28 0.19

1464 6553 311
6 3500 100 13.76 1.24 0.21 0.17

1442 6939 120
6 3500 200 9.39 0.95 0.06 0.05

1436 7412 78
6 7000 50 23.52 1.97 0.38 0.27

1365 10041 334
6 7000 100 20.93 2.18 0.40 0.31

1422 10044 335
6 7000 200 15.59 1.81 0.24 0.17

1405 12248 183
7 1750 50 4.90 0.28 0.04 0.03

5706 9580 423
7 1750 100 4.38 0.33 0.03 0.02

5524 12058 298
7 1750 200 3.32 0.28 0.01 0.01

5341 15223 77
7 3500 50 8.51 0.55 0.08 0.06

5434 19017 894
7 3500 100 7.75 0.55 0.06 0.05

5384 20521 466
7 3500 200 6.12 0.52 0.04 0.03

5335 21474 361
7 7000 50 14.04 0.75 0.16 0.13

5147 26233 588
7 7000 100 13.03 0.82 0.16 0.13

5184 28916 590
7 7000 200 10.64 0.85 0.13 0.10

5197 29711 592

Table 4. Results for the root node (K = 4)

T β/h α/h LP Gap % |Q| = 1 |Q| = 2 General Q
5 1750 50 8.80 1.35 0.21 0.17

1905 7381 133
5 1750 100 7.42 1.25 0.15 0.08

1894 7347 213
5 1750 200 4.66 1.47 0.09 0.08

1651 18741 61
5 3500 50 13.12 1.68 0.27 0.21

1852 10956 215
5 3500 100 11.40 1.88 0.29 0.20

1842 12182 369
5 3500 200 7.52 2.33 0.30 0.22

1619 21298 321
5 7000 50 14.06 1.53 0.33 0.24

1781 13067 1838
5 7000 100 17.32 3.36 0.75 0.60

1679 18449 341
5 7000 200 12.10 3.28 0.71 0.52

1546 32367 477
6 1750 50 4.25 0.53 0.07 0.05

9779 28553 797
6 1750 100 3.73 0.66 0.08 0.06

9310 53983 904
6 1750 200 2.92 0.69 0.05 0.04

8561 70253 336
6 3500 50 7.17 0.88 0.17 0.12

9380 65631 1438
6 3500 100 6.41 1.05 0.20 0.16

8979 75479 1318
6 3500 200 5.24 1.12 0.15 0.12

8487 74747 645
6 7000 50 11.20 1.32 0.35 0.27

8589 89049 1658
6 7000 100 10.31 1.55 0.45 0.39

8339 93640 1160
6 7000 200 8.84 1.62 0.42 0.35

8383 98949 1358



18 Yongpei Guan et al.

Table 5. Results for branch-and-cut (K = 2)

T β/h α/h No. of cuts Optimality gap % Nodes CPU secs
10 1750 50 519 0.00 1239 4.4

4676 0.00 0 0.7
10 1750 100 505 0.00 103 1.6

4749 0.00 0 0.6
10 1750 200 464 0.00 4 0.7

4575 0.00 0 0.5
10 3500 50 612 0.00 131850 220.2

5996 0.00 0 3.0
10 3500 100 598 0.00 39828 70.8

6129 0.00 0 5.4
10 3500 200 513 0.00 343 2.4

5313 0.00 0 1.8
10 7000 50 671 0.00 1336827 2619.7

7737 0.00 0 13.9
10 7000 100 682 0.00 915006 1715.7

7213 0.00 0 5.0
10 7000 200 597 0.00 13124 26.0

8407 0.00 0 23.5
11 1750 50 882 0.00 30 2.5

10751 0.00 0 1.7
11 1750 100 859 0.00 3 1.9

10301 0.00 0 1.6
11 1750 200 780 0.00 3 1.2

10120 0.00 0 1.6
11 3500 50 1065 0.00 644407 820.2

14946 0.00 0 63.5
11 3500 100 994 0.00 9807 42.9

13071 0.00 0 3.3
11 3500 200 852 0.00 889 9.2

11139 0.00 0 2.5
11 7000 50 1126 0.03[3] 826644 ***

20784 0.00 0 189.0
11 7000 100 1112 0.03[3] 907471 ***

17796 0.00 0 35.9
11 7000 200 1084 0.00 414122 1496.7

15179 0.00 0 15.5

Table 6. Results for branch-and-cut (K = 3)

T β/h α/h No. of cuts Optimality gap % Nodes CPU secs
6 1750 50 523 0.01[1] 1010894 60.1

4957 0.00 0 3.0
6 1750 100 551 0.00 157889 244.9

5896 0.00 4 9.2
6 1750 200 489 0.00 4913 9.1

7259 0.00 0 1.5
6 3500 50 575 0.12[3] 2703911 ***

9507 0.00 373 91.7
6 3500 100 573 0.14[3] 2787691 ***

9618 0.00 438 131.9
6 3500 200 540 0.00 253920 387.6

9091 0.00 20 11.2
6 7000 50 507 0.23[3] 2879642 ***

13746 0.00 9409 2207.5
6 7000 100 528 0.39[3] 3154270 ***

14552 0.05[2] 8356 867.3
6 7000 200 609 0.57[3] 2777630 ***

15072 0.02[2] 5533 90.1
7 1750 50 1236 0.09[3] 1148262 ***

15971 0.00 0 31.7
7 1750 100 1220 0.07[3] 1181449 ***

18187 0.00 13 85.1
7 1750 200 1117 0.02[3] 967725 ***

20653 0.00 0 19.3
7 3500 50 1306 0.21[3] 1076628 ***

28354 0.00 2751 3218.1
7 3500 100 1300 0.17[3] 1089148 ***

27531 0.00 286 724.6
7 3500 200 1209 0.10[3] 1059317 ***

27589 0.00 0 143.4
7 7000 50 1255 0.31[3] 1045952 ***

35932 0.02[1] 2172 3078.9
7 7000 100 1340 0.29[3] 1004477 ***

37756 0.02[3] 2000 ***
7 7000 200 1332 0.27[3] 1085362 ***

38215 0.02[3] 1768 ***



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 19

Table 7. Results for branch-and-cut (K = 4)

T β/h α/h No. of cuts Optimality gap % Nodes CPU secs
5 1750 50 670 0.12[3] 2185170 ***

10158 0.00 251 59.1
5 1750 100 660 0.03[3] 1925658 ***

9585 0.00 47 24.4
5 1750 200 575 0.09[2] 1858810 1506.3

20931 0.00 24 98.2
5 3500 50 694 0.10[3] 1997388 ***

13399 0.00 1794 356.7
5 3500 100 716 0.15[3] 2257218 ***

14643 0.00 208 99.7
5 3500 200 673 0.21[3] 2174847 ***

24571 0.00 480 636.9
5 7000 50 642 0.04[2] 1175516 213.9

18065 0.00 806 1275.2
5 7000 100 858 0.37[3] 1570320 ***

25026 0.10[2] 2057 3451.2
5 7000 200 620 0.33[3] 2009171 ***

36770 0.07[2] 600 993.6
6 1750 50 2071 0.22[3] 658145 ***

40204 0.00 155 817.5
6 1750 100 2043 0.24[3] 643715 ***

67106 0.01[3] 483 ***
6 1750 200 1810 0.17[3] 708248 ***

80495 0.00 198 2003.2
6 3500 50 1984 0.42[3] 633599 ***

79711 0.05[3] 425 ***
6 3500 100 1987 0.47[3] 619146 ***

88734 0.07[3] 143 ***
6 3500 200 1973 0.37[3] 630579 ***

85886 0.04[3] 112 ***
6 7000 50 1771 0.67[3] 611857 ***

102151 0.14[3] 46 ***
6 7000 100 2048 0.72[3] 617064 ***

105606 0.24[3] 0 ***
6 7000 200 2022 0.57[3] 634604 ***

112756 0.24[3] 0 ***



20 Yongpei Guan et al.

Appendix

Theorem 3. The (Q, SQ) inequality∑
i∈SQ

xi +
∑

i∈SQ

∆Q(i)yi ≥ MQ(0)

is facet-defining if and only if

(i) 0 ∈ SQ,
(ii) MQ(0) ≥ maxi∈N (Q,SQ){d0i},
(iii) For each j ∈ VQ,

(a) W(j) ∩ P(i) 6= ∅, ∀i ∈ Q \ Qqj ,
(b) If j ∈ FQ, then D̃Q(j) ≥ d0a(k), ∀k ∈ W(j),
(c) If j ∈ GQ, then d0a(j) ≥ d0a(k), ∀k ∈ W(j),
(d) If j ∈ SQ, then DQ(j) > d0a(k), ∀k ∈ W(j),

(iv) (∪i∈GQargmax{j : j ∈ Q(i)}) ∩ L = ∅.

Proof of sufficiency.
We first describe the construction of 2N−1 vectors that are in XSLS and satisfy
the (Q, SQ) inequality at equality. Then we show that the vectors are linearly
independent.

Given the (Q, SQ) inequality, we partition V into disjoint sets V = {0} ∪
A ∪ Z ∪ B, where A = VQ \ {0}, Z = {j : j ∈ V \ VQ and a(j) ∈ VQ} and
B = V \ (VQ ∪ Z). Note that we have N (Q, SQ) ⊆ Z. Nodes in the set V \ VQ
correspond to a forest, and Z represents the set of root nodes of the subtrees
in this forest. This partitioning is illustrated in Figure 3. Here Q = {1, 2, 3, 4},
VQ = {0, 1, 2, . . . , 9}, SQ = {0, 3, 5, 9}, SQ = {1, 2, 4, 6, 7, 8} (shaded diago-
nally), and A = {1, 2, . . . , 9}. The two horizontally shaded nodes in Z represent
N (Q, SQ).

Construction: We create one vector u0 for the root node {0} and two vectors
uj and vj for each node j ∈ V \ {0}.

We let

u0 = MQ(0)ex0 + ey0 +
∑
i∈Z

(Mie
xi + eyi),

where exi and eyi are unit vectors in R2N corresponding to the coordinates xi

and yi, respectively.

j ∈ B: We let

uj = u0 + eyj , and
vj = u0 + Mje

xj + eyj .

j ∈ A:



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 21

If j ∈ SQ, we let

uj = u0 + (DQ(j)− ε−MQ(0))ex0

+ εexj + eyj

+
∑

i∈W(j)(MQ(i)exi + eyi),
where ε is a sufficiently small positive number, and

vj = u0 + eyj .

If j ∈ SQ, we let

uj = u0 + (DQ(j)−∆Q(j)−MQ(0))ex0

+ ∆Q(j)exj + eyj

+
∑

i∈W(j)(MQ(i)exi + eyi) and
vj = uj + εexj .

j ∈ Z:
If j ∈ N (Q, SQ), we let

uj = u0 −Mje
xj − eyj +

∑
i∈B(Mie

xi + eyi) and
vj = uj + eyj .

If j ∈ Z \N (Q, SQ), define kj = argmin{t(i) : i ∈ SQ ∩P(j)}. Note that
kj ∈ SQ by definition. We let

uj = ukj + (Mkj
−∆Q(kj))e

xkj −Mje
xj − eyj and

vj = uj + eyj .

Feasibility: It is obvious that u0 ∈ XSLS . Consequently, the vectors {uj , vj}j∈B

and {vj}j∈SQ are also feasible.
Now we verify the feasibility of uj for j ∈ SQ. Given j ∈ SQ, uj satisfies

0 ≤ xi ≤ Miyi and yi ∈ {0, 1} for all i ∈ V since x0 < MQ(0) ≤ M0, ∆Q(j) ≤
MQ(j) ≤ Mj and MQ(k) ≤ Mk ∀k ∈ W(j). Therefore, we just need to check
that uj satisfies constraint (2) for all i ∈ V = {0} ∪A ∪ Z ∪B.

Clearly uj satisfies constraint (2) for i = 0. Also, note that if uj satisfies
constraint (2) for i ∈ {0} ∪A, then it satisfies constraint (2) for i ∈ Z ∪B since
xi = Mi and yi = 1 for all i ∈ Z, and the nodes in Z include an ancestor of each
node in B. Therefore, we just need to show that uj satisfies constraint (2) for
i ∈ A = SQ ∪ SQ.

Note that uj yields
x0 = DQ(j)−∆Q(j)
≥ DQ(j)−MQ(j)
= d0a(j),

(25)

where the second line follows from the definition of ∆Q(j) and the third line
follows from the definition of DQ(j) and MQ(j). It then follows that uj satisfies
constraint (2) for all i ∈ P(a(j)).



22 Yongpei Guan et al.

Next, note that uj yields

x0 = DQ(j)−∆Q(j)
≥ DQ(j)− (DQ(j)− D̃Q(j))
= D̃Q(j),

(26)

where the second line follows from the definition of ∆Q(j). If D̃Q(j) > 0, then
we know that there exists rj ∈ Q such that D̃Q(j) = d0rj

. Thus (26) implies
that uj satisfies constraint (2) for all i ∈ VQrj

.
Also, note that uj yields

x0 + xj = DQ(j). (27)

Since 0 ∈ P(i) and j ∈ P(i) for all i ∈ VQ(j), (27) implies that uj satisfies (2)
for all i ∈ VQ(j).

Next, considering (b) and (c) of condition (iii), (25) and (26) imply that uj

satisfies
x0 ≥ d0a(k) ∀k ∈ W(j). (28)

Thus uj satisfies (2) for all i ∈ P(a(k)) ∀k ∈ W(j).
Finally, note that

{0} ∪A = VQ = P(j) ∪ VQrj
∪ VQ(j) ∪

 ⋃
k∈W(j)

P(a(k))

 ∪

 ⋃
k∈W(j)

VQ(k)

 .

So it only remains to check that uj satisfies (2) for all i ∈
⋃

k∈W(j) VQ(k). Given
any k ∈ W(j), note that uj satisfies

x0 + xk ≥ d0a(k) + MQ(k)
= DQ(k),

(29)

where the first line follows from (28) and the second line follows from the def-
inition of DQ(k). Since, for all i ∈ V(k) we have 0 ∈ P(i), k ∈ P(i) and
d0i ≤ DQ(k), it follows that uj satisfies constraint (2) for all i ∈ VQ(k) and
k ∈ W(j).

vj for j ∈ SQ is feasible because vj satisfies constraint (2) since vj ≥ uj and
condition (iv) ensures that vj satisfies 0 ≤ xi ≤ Miyi and yi ∈ {0, 1}.

The feasibility of uj for j ∈ SQ can be established using analogous arguments
as long as ε ≤ ∆Q(j), DQ(j)− ε ≥ D̃Q(j) and DQ(j)− ε ≥ d0a(k) ∀k ∈ W(j).

We now verify the feasibility of uj for j ∈ N (Q, SQ). As before, we only need
to verify that uj satisfies constraint (2) for all i ∈ V. Since the construction of uj

only affects nodes i ∈ V(j), from the feasibility of u0, constraint (2) is satisfied
for all i ∈ V \ V(j). Given any node i ∈ V(j), note that uj satisfies∑

k∈P(i) xk = MQ(0) +
∑

k∈P(i)\P(j) Mk

≥ d0j +
∑

k∈P(i)\P(j) dk

= d0i,

(30)



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 23

where the first line follows from the construction of uj and the second line follows
from condition (ii). Thus uj satisfies (2) for all i ∈ V.

We now verify the feasibility of uj for j ∈ Z \ N (Q, SQ). Since the con-
struction of uj only affects nodes i ∈ V(kj), from the feasibility of ukj (recall
that kj ∈ SQ), constraint (2) is satisfied for all i ∈ V \ V(kj). Given any node
i ∈ V(kj), note that uj satisfies

x0 + xkj ≥ d0a(kj) + Mkj

≥ d0i,
(31)

where the first line follows from (28) and the construction of uj , and the second
line follows the definition of Mkj

and the fact that kj ∈ P(i). Thus uj satisfies
constraint (2) for all i ∈ V.

Finally, vj for j ∈ Z is feasible since vj ≥ uj .

Tightness of the (Q, SQ) inequality: Here we prove the claim that the
(Q, SQ) inequality is tight or active at each of the solutions vectors u0 and
{uj , vj}j∈V\{0}. This claim is true for u0, {uj , vj}j∈B , {vj}j∈SQ and {uj , vj}j∈N (Q,SQ).
Furthermore, for any j ∈ Z \N (Q, SQ), we have that uj and vj satisfy the claim
as long as ukj satisfies the claim since kj ∈ SQ. Similarly the solutions {vj}j∈SQ

satisfy the claim as long as {uj}j∈SQ
satisfy the claim. Therefore, we just need

to prove the claim for {uj}j∈SQ∪SQ
. Here we prove the claim for {uj}j∈SQ

. The
proof for {uj}j∈SQ is nearly identical, see Guan [11] for details.

Since j ∈ SQ and W(j) ⊆ SQ, we have that uj satisfies

xj
i =

{
DQ(j)−∆Q(j) if i = 0
0 if i ∈ SQ \ {0},

and

yj
i =

{
1 if i ∈ {j} ∪W(j)
0 if i ∈ SQ \ ({j} ∪W(j)).

Thus uj satisfies∑
i∈SQ

xj
i +

∑
i∈SQ

∆Q(i)yj
i = DQ(j) +

∑
i∈W(j)

∆Q(i). (32)

It remains to show that the right-hand side of the above expression is equal to
MQ(0).

If W(j) = ∅ then DQ(j) = MQ(0) by definition of W(j). If W(j) 6= ∅, note
that for all i ∈ W(j),

DQ(i)− D̃Q(i) ≤ DQ(i)−DQ(j) ≤ DQ(i)− d0a(i) = MQ(i),

where the first inequality follows from the fact that D̃Q(i) ≥ d0qj
= DQ(j) since

i /∈ VQqj
, and the second inequality follows from the fact that DQ(j) ≥ D̃Q(j) ≥



24 Yongpei Guan et al.

d0a(i) from case (b) of condition (iii) or DQ(j) ≥ d0a(j) ≥ d0a(i) from case (c) of
condition (iii). Thus, for any node i ∈ W(j),

∆Q(i) = DQ(i)− D̃Q(i). (33)

By Property (A2), we index the nodes inW(j) as i1, i2, . . . , iW such that DQ(i1) <

DQ(i2) < . . . < DQ(iW ). From this indexing scheme, the definition of DQ, D̃Q,
and W(j), it follows that D̃Q(i1) = DQ(j), DQ(iW ) = MQ(0), and

DQ(ik) = D̃Q(ik+1) k = 1, 2, . . . ,W − 1.

Thus
DQ(j) +

∑
i∈W(j)

∆Q(i) = MQ(0),

and the (Q, SQ) inequality is tight for uj , j ∈ SQ.

Linear Independence: Given the 2N − 1 vectors u0 and {uj , vj}j∈V\{0}, we
perform a sequence of linear combinations to obtain the following (2N−|VQ|−1)
unit vectors.

j ∈ B:
exj = 1

Mj
(vj − uj), and

eyj = uj − u0.

j ∈ A:
If j ∈ SQ:

eyj = vj − u0.

If j ∈ SQ:
exj = 1

ε (vj − uj).

j ∈ Z:
If j ∈ N (Q, SQ):

eyj = vj − uj , and
exj = 1

Mj
(u0 − uj − eyj +

∑
i∈B(Mie

xi + eyi)).

If j ∈ Z \ N (Q, SQ), let kj = argmin{t(i) : i ∈ SQ ∩ P(j)}.

eyj = vj − uj , and
exj = 1

Mj
(ukj + (Mkj −∆Q(kj))e

xkj − uj − eyj ).

An additional sequence of linear combinations gives the following additional
|VQ| vectors.

u0 = u0 −
∑

i∈Z(Mie
xi + eyi).

j ∈ SQ \ {0},

uj = uj −
∑

i∈Z(Mie
xi + eyi)−

∑
i∈W(j) MQ(i)exi − eyj

= (DQ(j)− ε)ex0 + ey0 +
∑

i∈W(j) eyi + εexj .



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 25

j ∈ SQ,

vj = vj −
∑

i∈Z(Mie
xi + eyi)

− (∆Q(j) + ε)exj −
∑

i∈W(j) MQ(i)exi

= (DQ(j)−∆Q(j))ex0 + ey0 +
∑

i∈W(j) eyi + eyj .

We now construct a matrix M whose rows are the (2N − 1) vectors u0,
{exj}j∈B , {eyj}j∈B , {uj}j∈SQ\{0}, {eyj}j∈SQ\{0}, {exj}j∈SQ

, {vj}j∈SQ
, {exj}j∈N (Q,SQ),

{eyj}j∈N (Q,SQ), {exj}j∈Z\N (Q,SQ), and {eyj}j∈Z\N (Q,SQ). The resulting matrix
M has the following form:

{0} B SQ \ {0} SQ N (Q, SQ) Z \ N (Q, SQ)
x0 y0 x y x y x y x y x y

{0} MQ(0) 1
B I
B I

SQ \ {0} E 1 εI F
SQ \ {0} I

SQ I
SQ G 1 H

N (Q, SQ) I
N (Q, SQ) I

Z \ N (Q, SQ) I
Z \ N (Q, SQ) I

In the matrix M, the submatrices E and F arise from the nonzero elements of
the vectors {uj}j∈SQ\{0}, and the submatrices G and H arise from the nonzero
elements of the vectors {vj}j∈SQ

. Consider the |SQ| × |SQ| submatrix H. This
matrix has a column corresponding to each j ∈ SQ. We arrange the columns of H
such that the column corresponding to i ∈ SQ is before the column corresponding
to j ∈ SQ if DQ(i) > DQ(j) or t(i) < t(j) if DQ(i) = DQ(j). Note that
this arrangement is uniquely defined by assumption (A1) on the set Q. This
arrangement guarantees that, for any j ∈ SQ, the column corresponding to
i ∈ W(j) is before the the column corresponding to j. Consequently, the matrix
H is lower-triangular and then it follows that the matrix M has rank 2N − 1.
This is observed by exchanging rows representing {uj}j∈SQ\{0} and representing
{vj}j∈SQ

, and exchanging columns labelled x in SQ \ {0} and y in SQ. Since M
was obtained by a sequence of elementary row operations on the (2N − 1)× 2N
matrix whose rows are the vectors u0 and {uj , vj}j∈V\{0}, it follows that these
vectors are affinely independent. ut

Lemma 3. Consider a feasible solution (x, y) satisfying the (Q, SQ) inequality at
equality. Let j∗ ∈ VQ be such that yj∗ = 1, and let qj∗ = argmax{i : i ∈ Q(j∗)}.
Then, for all q ∈ (Q\Qqj∗ )∪{qj∗}, there exists exactly one node jq ∈ FQ∩P(q)
such that yjq

= 1 and

(i) xi = yi = 0 ∀i ∈ SQ ∩ P(a(jq)),
(ii) xi = 0 ∀i ∈ P(a(jq)) \ VQrjq

where rjq
= {i ∈ Q : d0i = D̃Q(jq)},

(iii) xi = 0 ∀i ∈ SQ ∩ VQ(jq) and yi = 0 ∀i ∈ SQ ∩ VQ(jq).



26 Yongpei Guan et al.

(iv)
∑

i∈SQrjq

xi+
∑

i∈SQrjq

∆Q(i)yi =
∑

i∈SQrjq

xi+
∑

i∈SQrjq

∆Qrjq
(i)yi =

d0rjq
.

Proof. For all q ∈ Q, define w(q) = argmin{t(i) : i ∈ S̄Q ∩ P(q) and yi = 1}.
First consider q = Q. For brevity, let w = w(Q).

Case (a): If w does not exist, then
∑

i∈P(Q) xi ≥ MQ(0) and i /∈ SQ ∀i ∈ P(Q).
Thus, j∗ /∈ P(Q) since j∗ ∈ SQ and the left-hand side of the (Q, SQ) inequality
is at least ∑

i∈P(Q)

xi + DQ(j∗)− D̃Q(j∗) > MQ(0),

which contradicts the assumption that the feasible solution satisfies the (Q, SQ)
inequality at equality.

Case (b): If w ∈ GQ, then
∑

i∈P(a(w))∩SQ
xi+MQ(w) ≥ d0a(w)+MQ(w) = MQ(0)

since xi = yi = 0 ∀i ∈ P(a(w))∩SQ by the definition of w. Also, j∗ 6= w because
w ∈ GQ and j∗ ∈ FQ. Then the left-hand side of the (Q, SQ) inequality is at least∑

i∈P(a(w))∩SQ

xi + MQ(w) + DQ(j∗)− D̃Q(j∗) > MQ(0),

which again gives a contradiction.

Case (c): If w ∈ FQ, let rw = {i ∈ Q : d0i = D̃Q(w)}. Then by Lemmas 1
and 2, we have∑

i∈SQrw

xi +
∑

i∈SQrw

∆Q(i)yi ≥
∑

i∈SQrw

xi +
∑

i∈SQrw

∆Qrw
(i)yi ≥ d0rw

= D̃Q(w).

Thus the left-hand side of the (Q, SQ) inequality is

≥
∑

i∈SQrw

xi +
∑

i∈SQrw

∆Q(i)yi + DQ(w)− D̃Q(w) (34)

≥ D̃Q(w) + DQ(w)− D̃Q(w) (35)
= DQ(w) = MQ(0) (36)

Therefore, when the (Q, SQ) inequality holds at equality, we have the following
four properties:

(a) xi = yi = 0 ∀i ∈ SQ ∩ P(a(w)),
(b) xi = 0 ∀i ∈ P(a(w)) \ VQrw

,
(c) xi = 0 ∀i ∈ SQ ∩ VQ(w) and yi = 0 ∀i ∈ SQ ∩ VQ(w),
(d)

∑
i∈SQrw

xi +
∑

i∈SQrw
∆Q(i)yi =

∑
i∈SQrw

xi +
∑

i∈SQrw
∆Qrw

(i)yi = d0rw ,



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 27

where (a) follows from the definition of w, (b) and (c) follow from the tightness
of the inequality (34), and (d) follows from the tightness of the inequality (35).
Thus, by letting jQ = w, we have proved the claim for q = Q.

Now, for any q ∈ {Q − 1, . . . , rw + 1}, we have that w(q) = w = jQ. Thus
the claim holds for all such q.

Now consider the case when q = rw. Recall that Qrw
= {1, 2, . . . , rw}. From

property (d), we have ∑
i∈SQrw

xi +
∑

i∈SQrw

∆Qrw
(i)yi = d0rw .

Thus the (Qrw
, SQrw

) inequality is tight. By proceeding recursively in the above
manner, we can show properties (a)-(d) for Qrw

. Note that this recursion ter-
minates when w = j∗. Since, otherwise, there must exist a w selected at some
step such that w ∈ P(j∗), which contradicts property (c) since yj∗ 6= 0. Since
properties (a)-(d) hold at each recursive step and at termination with w = j∗,
the claim is proven. ut

Proof of necessity.
We consider in turn the conditions (i)-(iv) and show that if any condition is
removed, the (Q, SQ) inequality is not facet-defining.

Condition (i): The proof is by contradiction. Suppose 0 ∈ SQ. Since y0 = 1
and ∆Q(0) = MQ(0), then we have xi = 0 ∀i ∈ SQ \ {0} and yi = 0 ∀i ∈ SQ
in order to satisfy the (Q, SQ) inequality at equality. Thus, dim(XSLSF ) ≤
2N −2−|SQ \{0}|−|SQ| < 2N −2, where XSLSF is the set of feasible solutions
satisfying the (Q, SQ) inequality at equality.

Condition (ii): The proof is by contradiction. Suppose there is a node j∗ ∈
N (Q, SQ) such that MQ(0) < d0j∗ . Let w = {i ∈ VQ : j∗ ∈ C(i)}. Then

MQ(0) =
∑

i∈SQ

xi +
∑

i∈SQ

∆Q(i)yi ≥
∑

i∈P(w)

xi

since i ∈ SQ for all i ∈ P(w) by the definition of N (Q, SQ). Then,
∑

i∈P(w) xi ≤
MQ(0) < d0j∗ . Thus, we have yj∗ = 1 for all feasible solutions satisfying the
(Q, SQ) inequality at equality and dim(XSLSF ) < 2N − 2.

Condition (iii): The proof of (a) is by contradiction. Suppose q∗ = argmax{i ∈
Q : W(j) ∩ P(i) = ∅}. Then we have∑

i∈SQ\Qq∗−1

xi +
∑

i∈SQ\Qq∗−1

∆Q\Qq∗−1
(i)yi ≥ MQ(0)

corresponding to leaf node set Q \ Qq∗−1 since i ∈ SQ for all i ∈ P(q∗). Thus,
xi = 0 for all i ∈ SQq∗ \ P(q∗) and yi = 0 for all i ∈ SQq∗ \ P(q∗) are required
for the (Q, SQ) inequality to be tight. This implies dim(XSLSF ) < 2N − 2.



28 Yongpei Guan et al.

The proofs of (b), (c) and (d) are similar. We only prove case (b), see
Guan [11] for proofs of the other two cases. Suppose yj∗ = 1 for some fea-
sible solution satisfying the (Q, SQ) inequality at equality, we will prove that
D̃Q(j∗) ≥ d0a(k) for all k ∈ W(j∗), which implies that if ∃k ∈ W(j∗) such that
D̃Q(j∗) < d0a(k), then yj∗ = 0 for any feasible solution satisfying the (Q, SQ)
inequality at equality and dim(XSLSF ) < 2N − 2.

Now suppose yj∗ = 1 for some feasible solution satisfying the inequality at
equality. Let G(j∗) be the set of nodes {jQ, jrw

, . . .} identified at each recursive
step in the proof of Lemma 3 from the leaf nodes {Q, rw, . . .} except for the
termination step. Define uj = argmax{t(i) : i ∈ P(j) ∩ P(j∗)} ∀j ∈ G(j∗) and
uj∗ = argmax{t(i) : i ∈ P(rj∗) ∩ P(j∗)}. From property (iv) in Lemma 3,

D̃Q(j∗) =
∑

i∈SQrj∗

xi +
∑

i∈SQrj∗

∆Qrj∗
(i)yi (37)

≥
∑

i∈SQrj∗
∩P(uj∗ )

xi +
∑

i∈SQrj∗
∩P(uj∗ )

∆Qrj∗
(i)yi (38)

=
∑

i∈P(uj∗ )

xi (39)

=
∑

i∈P(a(j∗))

xi, (40)

where (39) follows from property (i) of Lemma 3 and (40) follows from property
(ii) of Lemma 3 as jq = j∗. Thus

D̃Q(j∗) ≥
∑

i∈P(a(j∗))

xi ≥
∑

i∈P(uj)

xi ≥
∑

i∈P(a(j))

xi ≥ d0a(j) ∀j ∈ G(j∗), (41)

where the third inequality follows from property (ii) of Lemma 3.
Finally, from the definition of W(j∗), we have W(j∗) ∩ P(q) ∈ P(G(j∗) ∩

P(q)) ∀q ∈ Q \ Qqj∗ . Then, D̃Q(j∗) ≥ d0a(k) ∀k ∈ W(j∗).

Condition (iv): The proof is by contradiction. Suppose, for some j ∈ GQ, there
exists a q ∈ L ∩ Q such that q = argmax{q : q ∈ Q(j)}. Now consider the
values of xj and yj for any feasible solution satisfying the inequality at equality.
If yj = 0, then xj = 0. If yj = 1, then from the recursion in the proof of (c) in
condition (iii), we have

∑
i∈P(a(j)) xi = MQq

(0) − MQq
(j), which implies that

xj ≥ MQq (j) = MQ(j) = Mj in order to keep feasibility since xi = 0 ∀i ∈ VQ(j),
which implies xj = Mj . Thus, we have xj = Mjyj , which is independent of y0 = 1
and

∑
i∈SQ

xi +
∑

i∈SQ
∆Q(i)yi = MQ(0) so that dim(XSLSF ) < 2N − 2. ut



A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem 29

References

1. A. Aggarwal and J. K. Park. Improved algorithms for economic lot size problems. Oper-
ations Research, 41:549–571, 1993.

2. E. H. Aghezzaf and L. A. Wolsey. Modelling piecewise linear concave costs in a tree
partitioning problem. Discrete Applied Mathematics, 50:101–109, 1994.

3. S. Ahmed, A. King and G. Parija. A multi-stage stochastic integer programming approach
for capacity expansion under uncertainty. Journal of Global Optimization, 26:3–24, 2003.

4. S. Ahmed and N. V. Sahinidis. An approximation scheme for stochastic integer programs
arising in capacity expansion. Operations Research, 51:461–471, 2003.

5. A. Atamtürk and S. Kucukyavuz. Lot sizing with inventory bounds and fixed charges.
Operations Research, to appear, 2004.

6. A. Atamtürk and J. C. Muñoz. A study of the lot-sizing polytope. Mathematical Pro-
gramming, to appear, 2004.

7. I. Barany, T. Van Roy, and L. A. Wolsey. Uncapacitated lot-sizing: The convex hull of
solutions. Mathematical Programming Study, 22:32–43, 1984.

8. I. Barany, T. Van Roy, and L. A. Wolsey. Strong formulations for multi-item capacitated
lot sizing. Management Science, 30:1255–1262, 1984.

9. P. Beraldi and A. Ruszczyński. A branch and bound method for stochastic integer prob-
lems under probabilistic constraints. Optimization Methods and Software, 17:359–382,
2002.

10. A. Federgruen and M. Tzur. A simple forward algorithm to solve general dynamic lot sizing
models with n periods in O(n log n) or O(n) time. Management Science, 37:909–925, 1991.

11. Y. Guan. A polyhedral study for stochastic lot-sizing problems. Ph.D. dissertation, Georgia
Institute of Technology (in preparation).

12. Y. Guan, S. Ahmed, A. J. Miller, and G. L. Nemhauser. Formulations and two-period
study for the stochastic uncapacitated lot-sizing problem (in preparation).

13. K. K. Haugen, A. Løkketangen and D. L. Woodruff. Progressive hedging as a meta-
heuristic applied to stochastic lot-sizing. European Journal of Operations Research,
132:103–109, 2001.

14. J. M. Y. Leung, T. L. Magnanti and R. Vachani. Facets and algorithms for capacitated
lot-sizing. Mathematical Programming, 45:331–359, 1989.

15. M. Loparic, Y. Pochet and L. A. Wolsey. The uncapacitated lot-sizing problem with sales
and safety stocks. Mathematical Programming, 89:487–504, 2001.

16. G. Lulli and S. Sen. A branch-and-price algorithm for multi-stage stochastic integer pro-
gramming with application to stochastic batch-sizing problems. Working paper, Depart-
ment of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, 2003.

17. A. J. Miller. Polyhedral Approaches to Capacitated Lot-Sizing Problems. Ph.D. disserta-
tion, Georgia Institute of Technology, 1999.

18. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, 1988.

19. Y. Pochet. Valid inequalities and separation for capacitated economic lot sizing. Opera-
tions Research Letters, 7:109–115, 1988.

20. Y. Pochet and L. A. Wolsey. Lot-sizing with constant batches: Formulation and valid
inequalities. Mathematics of Operations Research, 18:767–785, 1993.

21. A. Ruszczyński and A. Shapiro (eds). Stochastic Programming. Handbooks in Operations
Research and Management Science, 10. Elsevier, 2003.

22. C. P. M. Van Hoesel, A. P. M. Wagelmans and L. A. Wolsey. Polyhedral characteriza-
tion of the economic lot-sizing problem with start-up costs. SIAM Journal on Discrete
Mathematics, 7:141–151, 1994.

23. A. Wagelmans, A. van Hoesel and A. Kolen. Economic lot sizing: An O(n log n) algorithm
that runs in linear time in the Wagner-Whitin case. Operations Research, 40:145–156,
1992.

24. H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model.
Management Science, 5:89–96, 1958.


