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Abstract

This paper develops a solution strategy for two-stage stochastic pro-
grams with integer recourse. The proposed methodology relies on ap-
proximating the underlying stochastic program via sampling, and solving
the approximate problem via a specialized optimization algorithm. We
show that the proposed scheme will produce an optimal solution to the
true problem with probability approaching one exponentially fast as the
sample size is increased. For fixed sample size, we describe statistical and
deterministic bounding techniques to validate the quality of a candidate
optimal solution. Preliminary computational experience with the method
is reported.

Keywords: Stochastic programming, integer recourse, sample average ap-
proximation, branch and bound.

1 Introduction

In the two-stage stochastic programming approach for optimization under un-
certainty, the decision variables are partitioned into two sets. The first stage
variables are those that have to be decided before the actual realization of the
uncertain parameters becomes available. Subsequently, once the random events
have presented themselves, further design or operational policy improvements
can be made by selecting, at a certain cost, the values of the second stage or
recourse variables. The objective is to choose the first stage variables in a way
that the sum of first stage costs and the expected value of the random second
stage or recourse costs is minimized.
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A standard formulation of the two-stage stochastic program is [5, 12]:

Min
x∈X

{
g(x) := cTx+ E[Q(x, ξ(ω))]

}
, (1)

where
Q(x, ξ) := inf

y∈Y

{
qT y : Wy ≥ h− Tx

}
(2)

is the optimal value and ξ := (q, T,W, h) denotes vector of parameters of the
second stage problem. It is assumed that some (or all) of the components of ξ
are random, written ξ(ω), and the expectation in (1) is taken with respect to the
probability distribution of ξ(ω) which is supposed to be known. Problem (1),
with variables x ∈ R

n1 , constitute the first stage which needs to be decided prior
to a realization of ξ(ω), and problem (2), with variables y ∈ R

n2 , constitute the
recourse for given first stage decision and realization ξ of the random data.

This paper is concerned with two-stage stochastic programs where the re-
course is fixed, i.e., the matrix W is constant (not random), and the recourse
variables are restricted to be integers, i.e., Y ⊆ Z

n2 in (2). Such problems
find applications in production planning [10, 17, 6], scheduling [9, 33, 4], rout-
ing [31, 14, 15], location [16], capacity expansion [3], electricity production [32,
8], environmental control [21], and finance [11].

The two key sources of difficulty in solving stochastic programs with integer
recourse are:

1. Exact evaluation of the expected recourse costs. For a given first-stage deci-
sion and a realization of the random data, the recourse costs are computed
via solving an integer program. Thus, for continuous distribution of the
uncertain parameters, the exact evaluation of the expected recourse costs
would require the multi-dimensional integration of integer programming
value functions, which is practically impossible. Even for discrete distri-
butions, an exact computation of the expectation would require solving
the integer recourse problem for all possible realizations of the uncertain
parameters and may be computationally prohibitive.

2. Optimizing the expected recourse costs. Even if the expected recourse
cost function could be evaluated or approximated easily, the stochastic
programming problem (1) involves optimizing this function over the first-
stage decisions. It is well known that value functions of integer programs
are highly non-convex and discontinuous. Consequently this optimization
problem poses severe computational difficulties.

In this paper, we propose a solution strategy for a class of two-stage stochas-
tic programs with integer recourse that addresses the above difficulties. In the
proposed approach, the expected recourse cost function in (1) is replaced by a
sample average approximation, and the corresponding optimization problem is
solved using a specialized algorithm for non-convex optimization. It has been
shown in [27], that a solution to this sample average approximation (SAA)
problem converges to a solution of the true problem as the sample size tends

2



to infinity. Here, we analyze the rate of convergence of the SAA solutions for
stochastic programs with integer recourse. We also describe statistical and de-
terministic bounding techniques to estimate the near optimality of a candidate
solution. Finally, some preliminary computational results are presented.

2 The Sample Average Approximation Method

The main idea of Sample Average Approximation (SAA) approach to solving
stochastic programs is as follows. A sample ξ1, ..., ξN of N realizations of the
random vector ξ(ω) is generated, and consequently the expected value func-
tion E[Q(x, ξ(ω))] is approximated (estimated) by the sample average function
N−1

∑N
n=1 Q(x, ξn). The obtained sample average approximation

Min
x∈X

{
ĝ

N
(x) := cTx+N−1

N∑
n=1

Q(x, ξn)

}
, (3)

of the stochastic program (1) is then solved by a deterministic optimization
algorithm. This approach (and its variants) is also known under various names,
such as the stochastic counterpart method [25] and sample path optimization
method [24], for example.

Let us denote by v̂
N

and x̂
N

the optimal value and an optimal solution of
the SAA problem (3), respectively; and by v∗ and x∗ the optimal value and
an optimal solution of the true problem (1), respectively. The crucial issues to
address are: (i) Whether v̂

N
and x̂

N
converges to their true counterparts v∗

and x∗ as the sample size N is increased? (ii) If so, can we analyze the rate
of convergence, and thereby estimate the required sample size to obtain a true
optimal solution with certain confidence? (iii) Is there an efficient optimization
approach for solving the SAA problem for the required sample size? (iv) Note
that for a given N the solution x̂N is feasible and is a candidate for an optimal
solution to the true problem. Can we provide any information regarding the
quality of this candidate solution?

The above questions have been answered quite satisfactorily for two-stage
stochastic linear programs, i.e., when the first and second stage variables in (1)
and (2) are continuous. It has been proved that for stochastic linear programs
with discrete distributions, an optimal solution of the SAA problem provides
an exact optimal solution of the true problem with probability approaching one
exponentially fast as N increases [30]. Statistical tests for validating a candidate
solution based on optimality gaps [22, 19] as well as optimality conditions [29]
have also been proposed. Furthermore, these sampling techniques have been
integrated with decomposition algorithms to successfully solve stochastic linear
programs of enormous sizes to great precision [18]. Recently, the convergence
of the SAA approach have also been extended to stochastic programs where the
set of first-stage decisions is discrete and finite [13]. Encouraging computational
results using the SAA method to solve certain classes stochastic programs with
finite first-stage decisions have also been reported [34]. In the following section,
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we extend these results to two-stage stochastic programs with integer recourse
and where the space of feasible first-stage decisions is infinite.

3 Convergence Analysis

We discuss in this section some convergence properties of SAA estimators, in
particular applied to two-stage programming with integer recourse. In order
to apply classical results, such as the Law of Large Numbers, it will be conve-
nient to assume here that the generated sample is iid (independent identically
distributed). Note, however, that basic convergence properties can be derived
under much broader conditions. This is relevant in connection with various
variance reduction techniques.

3.1 Discrete First Stage

We begin by briefly reviewing results in [13] on the convergence of the SAA
method when applied to stochastic programs with a finite set of first-stage de-
cisions.

Let us consider instances of two-stage stochastic programs (1) with the fol-
lowing characteristics:

(i) The set of first-stage decisions X is finite (but maybe very large).

(ii) The recourse function Q(x, ·) is measurable and E
∣∣Q(x, ξ(ω))

∣∣ is finite for
every x ∈ X .

Recall that v∗ and v̂
N

denote the optimal values of the true problem and the
SAA problem, respectively. Furthermore, for ε ≥ 0, let Xε and X̂ε

N
denote

the sets of ε-optimal solutions of the true and SAA problems, respectively. In
particular, for ε = 0 these sets become the sets X∗ and X̂

N
of optimal solutions

of the respective problems.
It is possible to show that, under the above assumptions (i) and (ii), v̂N is a

consistent estimator of v∗, i.e., v̂
N
converges with probability one (w.p.1) to v∗

as N → ∞. Moreover, by using theory of Large Deviations it is shown in [13]
that for any ε ≥ 0 and δ ∈ [0, ε] there exists a constant γ(δ, ε) ≥ 0 such that

1− P

(
X̂δ

N
⊂ Xε

)
≤ |X |e−Nγ(δ,ε). (4)

Furthermore, under a mild additional assumption (which always holds in cases
where the distribution of ξ(ω) has a finite support), the constant γ(δ, ε) is pos-
itive, and for small δ and ε can be estimated as

γ(δ, ε) ≥ (ε∗ − δ)2

3σ2
≥ (ε− δ)2

3σ2
, (5)

where ε∗ := minx∈X\Xε g(x) − v∗, and σ2 is the maximal variance of certain
differences between values of the objective function of the SAA problem.
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Note that, since here the setX is finite, ε∗ is always greater than ε, and hence
γ(δ, ε) is positive even if δ = ε. In particular for δ = ε = 0, inequality (4) gives
an exponential rate of convergence of the probability of the event {x̂

N
∈ X∗} to

one, for any choice of optimal solution x̂
N
of the SAA problem. Note, however,

that for large (although finite) feasible sets X the difference ε∗ − ε tends to be
small. Nevertheless, the right hand side estimate of (5) leads to the following
estimate of the sample size N = N(ε, δ, α) which is required to solve the “true”
(expected value) problem with given probability 1−α and given precision ε > 0
by solving the SAA problem with precision δ ∈ [0, ε):

N ≥ 3σ2

(ε− δ)2
log

(
|X |
α

)
. (6)

Although the above bound usually is too conservative to use for a practical calcu-
lation of the required sample size, it shows logarithmic dependence of N(ε, δ, α)
on the size |X | of the first stage problem.

Note that the above results do not make any assumptions regarding the
recourse variables. Thus, the above analysis is directly applicable to two-stage
stochastic programs with integer recourse as long as the set of feasible first-stage
decisions is finite.

3.2 Continuous First Stage

Convergence results of the previous section can be adjusted to deal with cases
where some or all of the first-stage variables are allowed to take continuous
values. Recall that any two norms on the finite dimensional space R

n1 are
equivalent. For technical reasons it will be convenient to use in what follows the
max-norm ‖x‖ := max{|x1|, ..., |xn1 |}. Suppose that the set X is a bounded (not
necessarily finite) subset of R

n1 . For a given ν > 0, consider a finite subset Xν

ofX such that for any x ∈ X there is x′ ∈ Xν satisfying ‖x−x′‖ ≤ ν. If D is the
diameter of the setX , then such setXν can be constructed with |Xν | ≤ (D/ν)n1 .
By reducing the feasible setX to its subsetXν , as a consequence of (6) we obtain
the following estimate of the sample size, required to solve the reduced problem
with an accuracy ε′ > δ:

N ≥ 3σ2

(ε′ − δ)2

(
n1 log

D

ν
− logα

)
. (7)

Suppose, further, that the expectation function g(x) is Lipschitz continuous on
X modulus L. Then an ε′-optimal solution of the reduced problem is an ε-
optimal solution of problem (1) with ε = ε′ + Lν. Let us set ν := (ε− δ)/(2L)
and ε′ := ε − Lν = ε − (ε − δ)/2. By employing (7) we obtain the following
estimate of the sample size N required to solve the true problem (1):

N ≥ 12σ2

(ε− δ)2

(
n1 log

2DL

ε− δ
− logα

)
. (8)
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The above estimate (8) shows that the sample size which is required to solve
the true problem (1) with probability 1− α and accuracy ε > 0 by solving the
SAA problem with accuracy δ < ε, grows linearly in dimension n1 of the first
stage problem.

The estimate (8) is directly applicable to two-stage stochastic programs with
integer recourse provided that the expected value function g(x) is Lipschitz con-
tinuous. It is shown in [26, Proposition 3.6] that, indeed, in the case of two-stage
programming with integer recourse the expected value function g(x) is Lipschitz
continuous on a compact set if the random data vector ξ(ω) has a continuous
distribution and some mild additional conditions are satisfied. On the other
hand, if ξ(ω) has a discrete distribution, then g(x) is not even continuous. We
discuss that case in the following section.

3.3 Continuous First Stage and Discrete Distribution

In this section we discuss two-stage stochastic programs with integer recourse
when the random data vector has a discrete distribution with a finite support.
We show that in such a setting the true and the SAA problems can be equiv-
alently formulated as problems over a finite feasible region. Throughout the
remainder of this paper we make the following assumptions.

(A1) The distribution of the random data vector ξ(ω) has a finite support
Ξ = {ξ1, . . . , ξK} with respective (positive) probabilities p1, . . . , pK . Each
realization ξk = (qk, Tk,W, hk), k = 1, ...,K, of ξ(ω) is called scenario.

Then the expected value E[Q(x, ξ(ω)] is equal to
∑K

k=1 pkQ(x, ξk), and hence
we can write the true problem (1) as follows

Min
x∈X

{
g(x) := cTx+

K∑
k=1

pkQ(x, ξk)
}
. (9)

Here
Q(x, ξk) := inf

y∈Y

{
qT
k y : Wy ≥ hk − Tkx

}
, (10)

with X ⊆ R
n1 , c ∈ R

n1 , Y ⊆ R
n2 , W ∈ R

m2×n1 , and for all k, qk ∈ R
n2 ,

Tk ∈ R
m2×n1 , and hk ∈ R

m2 .
In many applications, the total number of scenarios K is astronomically

large, making the exact evaluation of the sum
∑K

k=1 pkQ(x, ξk) impossible. This
motivates the need for a sampling based approach for solving (9). We shall be
concerned with instances of (9) where:

(A2) The first stage variables are continuous, and the constraint set X is non-
empty, compact, and polyhedral.

(A3) The second stage variables y are purely integer, i.e., Y ⊂ Z
n2 in (2).
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Note that the assumption of purely continuous first-stage variables is without
loss of generality. Mixed-integer first stage variables can be handled in the
framework to follow without any added conceptual difficulty. In addition to
(A1)-(A3), we also assume:

(A4) Q(x, ξk) is finite for all x ∈ X and k = 1, ...,K.

(A5) The second stage constraint matrix is integral, i.e., W ∈ Z
m2×n2 .

Assumption (A4) means, of course, that Q(x, ξk) < +∞ and Q(x, ξk) > −∞
for all x ∈ X and k = 1, ...,K. The first of these two inequalities is known as
the relatively complete recourse property [35]. Since X is compact, relatively
complete recourse can always be accomplished by adding penalty inducing ar-
tificial variables to the second stage problem. Assumption (A5) can be satisfied
by appropriate scaling whenever the matrix elements are rational.

Under assumption (A3) we have that, for any ξ ∈ Ξ, Q(·, ξ) is the optimal
value function of a pure integer program and is well known to be piecewise
constant. That is, for any z ∈ Z

m2 and ξ ∈ Ξ the function Q(·, ξ) is constant
over the set [28]

C(z, ξ) := {x ∈ R
n1 : h− z − 1 ≤ Tx < h− z} , (11)

where the notation “ ≤ ” and “ < ” is understood to be applied componentwise.
It follows then that for any z ∈ Z

m2 the function
∑K

k=1 pkQ(·, ξk) is constant
over the set C(z) := ∩K

k=1C(z, ξk). Note that C(z) is a neither open nor closed
polyhedral region. Now let

Z := {z ∈ Z
m2 : C(z) ∩X �= ∅} .

Since X is bounded by assumption (A2), the set Z is finite. We obtain that
the set X can be represented as the union of a finite number of polyhedral sets
C(z) ∩ X , z ∈ Z. On every set C(z) ∩ X the expected value function g(x) is
linear, and attains its optimal value at an extreme point (a vertex) of C(z)∩X .
Let us define

V :=
⋃
z∈Z

vert
(
C(z) ∩X

)
, (12)

where vert(S) denotes the set of vertices of the polyhedral set S. Note that X is
polyhedral by assumption (A2), and C(z) is polyhedral by definition, thus from
the finiteness of Z it follows that the set V is finite. It has been shown [28],
that under assumptions (A1)-(A5), problem (9) possesses an optimal solution
x∗ such that x∗ ∈ V . By virtue of this result, we can then restate (9) as the
following two-stage stochastic program with finite first-stage decisions:

Min
x∈V

{
g(x) = cTx+

K∑
k=1

pkQ(x, ξk)
}
. (13)

It was proposed in [28] to solve (13) by enumerating the finite set V .
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Let us attempt to estimate |V |. From (11), it is clear that the set Z includes
all the integer vectors z, such that for a fixed hk, the j-th component of z, i.e.
zj takes on the values �hk

j − Tjx� for all x ∈ X . Denote X := {χ ∈ R
m2 : χ =

Tx, x ∈ X}, and let D be the diameter of X . Note that since X is compact,
X is also compact and hence D < ∞. Then, for a fixed hk, zj can take on at
most D + 1 possible values. If we now consider all K scenarios, zj can take on
K(D + 1) possible values. Consequently, we can bound the cardinality of Z as
|Z| ≤ [K(D + 1)]m2 . Now, consider, for any z ∈ Z, the system

cl(C(z)) = {x ∈ R
n1 : x ≥ 0, Tx ≤ hk − z, Tx ≥ hk − z − 1, ∀ k}

= {x ∈ R
n1 : x ≥ 0, Tx ≤ h− z, Tx ≥ h− z − 1},

where h = mink{hk} and h = maxk{hk} and the max and min operations are
component-wise. Assuming that X = {x ∈ R

n1 : Ax ≤ b, x ≥ 0}, where A is
an m1 × n1 matrix, we have that for any z ∈ Z,

cl(C(z)) ∩X = {x ∈ R
n1 : Ax ≤ b, x ≥ 0, Tx ≤ h− z, Tx ≥ h− z − 1}.

The above system is defined by at most n1 + m1 + 2m2 linear inequalities
(including non-negativity), and thus has at most(

n1 +m1 + 2m2

n1

)
< (n1 +m1 + 2m2)m1+2m2

extreme points. We thus have the following upper bound on the cardinality of
V ,

|V | ≤ [K(D + 1)]m2 (n1 +m1 + 2m2)
m1+2m2 . (14)

Thus the cardinality of V , as well the effort required in evaluating a candidate
solution x ∈ V , largely depends on K. We can avoid explicit consideration of
all possible scenarios {ξ1, . . . , ξK} in (13) by using the SAA approach.

Consider a sample {ξ1, . . . , ξN} of the uncertain problem parameters, with
the sample size N much smaller than K. Then the SAA problem corresponding
to (13) is:

Min
x∈V

N

{
ĝ

N
(x) = cTx+

1
N

N∑
n=1

Q(x, ξn)
}
, (15)

where V
N
is the sample counterpart of the set V . That is,

V
N
:= ∪z∈Z

N
vert (C

N
(z) ∩X) , (16)

with C
N
(z) := ∩N

n=1C(z, ξn) and Z
N
:= {z ∈ Z

m2 : C
N
(z) ∩X �= ∅}.

Note that the sets V and V
N
in problems (13) and (15) are not the same –

these sets are induced by the set Ξ and a sampled subset of Ξ, respectively. It
is not immediately obvious whether a solution of (15) even belongs to the set
of candidate optimal solutions V . Fortunately, since the sampled vectors form
a subset of Ξ, it follows that V

N
⊂ V . Thus any solution to (15) is a candidate
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optimal solution to the true problem. We can now directly apply the exponen-
tial convergence results of [13] (see Section 3.1) to stochastic programs with
integer recourse and continuous first-stage variables. In particular, inequality
(4) becomes

1− P

(
X̂δ

N
⊂ Xε

)
≤ |V |e−Nγ(δ,ε), (17)

where, as before, X̂δ
N
is the set of δ-optimal solutions to the SAA problem, Xε is

the set of ε-optimal solutions to the true problem, and the constant γ(δ, ε) can
be estimated using (5). Using (17) and the estimate of |V | in (14), we can now
compute a sample size for the SAA problem to guarantee an ε-optimal solution
to the true problem with probability 1− α as follows:

N ≥ 3σ2

(ε− δ)2
(m2 log[K(D + 1)] + (m1 + 2m2) log (n1 +m1 + 2m2)− logα) .

(18)
Although the above estimate of the sample size N is too conservative for prac-
tical purposes, it shows that N growths at most linearly with respect to the
dimensions of the problem and logarithmically with the number of scenarios K.
This indicates that one can obtain quite accurate solutions to problem involving
a huge number of scenarios using a modest sample size.

Now consider a situation where the “true” distribution of ξ(ω) is continu-
ous while a finite number of scenarios is obtained by a discretization of this
continuous distribution. If such a discretization is sufficiently fine, then a dif-
ference between the corresponding expected values of the objective function is
small. That is, let η be a constant bounding the absolute value of the dif-
ference between the expected values of Q(x, ξ(ω)), taken with respect to the
continuous and discrete distributions of ξ(ω), for all x ∈ X . It follows that if
x̄ is an ε-optimal solution of the expected value problem with respect to one
of these distributions, then x̄ is an (ε + 2η)-optimal solution of the expected
value problem with respect to the other distribution. Therefore, if the expected
value function, taken with respect to the continuous distribution, is Lipschitz
continuous on X , then the estimate (8) can be applied to the problem with a
discretized distribution adjusted for the corresponding constant η. We discuss
this further in Section 6.

4 Solving the SAA problem

The enumeration scheme of Schultz et al. [28] can, in principle, be applied to
solve the SAA problem (15). However, in general, it is very hard to a priori
characterize the set V

N
unless the second-stage problem has very simple struc-

ture. Furthermore, typically the cardinality of V
N
is so large, that enumeration

may be computationally impossible. Alternatively, we can attempt to solve the
deterministic equivalent of (15) using a standard branch and bound algorithm
such as those implemented in commercial integer programming solvers. How-
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ever, such a scheme does not attempt to exploit the decomposable structure of
the problem and is doomed to failure unless the sample sizes are very small.

We propose to use the decomposition based branch and bound (DBB) al-
gorithm developed in [1, 2] to solve the SAA problem. Instead of a priori
characterizing the candidate solution set VN , this algorithm identifies candidate
solutions by successively partitioning the search space. Furthermore, the algo-
rithm makes use of lower bound information to eliminate parts of the search
region and avoid complete enumeration. Since the algorithm does not explicitly
search V

N
, we have to make sure that the final solution produced does belong

to this set to achieve the convergence behavior discussed in Section 3.3. In the
following, we briefly describe the DBB algorithm and argue that it does return
an optimal solution from the set V

N
.

In addition to assumptions (A1)-(A5), the DBB algorithm assumes

(A6) The technology matrix T , linking the first and second stage problems, is
deterministic, i.e., Tk = T for all k.

Let us denote the linear transformation of the first-stage problem variables x
using T by χ := Tx. The variables χ are known as “Tender” variables in the
stochastic programming literature. A principle idea behind the DBB algorithm
is to consider the SAA problem with respect to the tender variables:

min
χ∈X

{
ĜN (χ) := Φ(χ) + Ψ̂N (χ)

}
, (19)

where Φ(χ) := infx∈X

{
cTx : Tx = χ

}
, Ψ̂

N
(χ) := N−1

∑N
n=1 Ψ(χ, ξ

jn),

Ψ(χ, ξ) := inf
y∈Y

{
qT y : Wy ≥ h− χ

}
,

and X := {χ ∈ R
m2 : χ = Tx, x ∈ X}. Typically, X has smaller dimension

than X . More importantly, this transformation induces a special structure to
the discontinuous function Ψ̂N (·). In particular, it can be shown [1, 2] that
Ψ̂

N
: R

m2 → R has the following properties:

(i) it is non-increasing along each component χ
j
, j = 1, . . . ,m2, of χ,

(ii) for any z ∈ Z
m2 , it is constant over the set

CN (z) := {χ : hn − z − 1 ≤ χ < hn − z, n = 1, ..., N} .

Note that the set C
N
(z), used in the previous section, is related to the set C

N
(z)

by the transformation χ = Tx. Note also that the set C
N
(z) is a hyper-rectangle

since it is the Cartesian product of intervals. Thus, the second stage expected
value function Ψ̂

N
(·) is piecewise constant over rectangular regions in the space

of the tender variables χ. The discontinuities of Ψ̂
N
(·) can then only lie at the

boundaries of these regions and, therefore, are all orthogonal to the variable
axes. Furthermore, since X is compact, so is X , thus, the number of such
regions within the feasible set of the problem is finite.
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The DBB algorithm exploits the above structural properties by partition-
ing the space of χ into regions of the form Πm2

j=1[lj, uj), where uj is the j-th
component of a point χ at which the second stage value function Ψ̂

N
(·) may be

discontinuous. Note that Ψ̂
N
(·) can only be discontinuous at a point χ where

at least one of the components of vector hn−χ is integral for some n = 1, ..., N .
Thus, we partition our search space along such values of χ. Branching in this
manner, we can isolate regions over which the second stage value function is
constant, and hence solve the problem exactly. A formal statement of the DBB
algorithm follows [1, 2].

Initialization:

Preprocess the problem by constructing a hyper-rectangle of the form
P0 := Πm1

j=1[l
0
j , u

0
j) such that X ⊂ P0. Add the problem

Min Ĝ
N
(χ) subject to χ ∈ X ∩ P0

to a list L of open subproblems. Set U ← +∞ and the iteration counter
i← 0.

Iteration i:

Step i.1: If L = ∅, terminate with solution χ∗, otherwise select a sub-
problem i, defined as

Min ĜN (χ) subject to χ ∈ X ∩ P i,

from the list L of currently open subproblems. Set L ← L \ {i}.

Step i.2: Obtain a lower bound βi satisfying

βi ≤ inf{ĜN (χ) : χ ∈ X ∩ P i}.

If X ∩ P i = ∅, βi = +∞ by convention. Determine a feasible solution
χi ∈ X and compute an upper bound αi ≥ min{Ĝ

N
(χ) : χ ∈ X} by

setting αi = Ĝ
N
(χi).

Step i.2.a: Set L← minl∈L∪{i} β
l.

Step i.2.b: If αi < U , then χ∗ ← χi and U ← αi.

Step i.2.c: Fathom the subproblem list, i.e., L ← L \ {l : βl ≥ U}.
If βi ≥ U , then go to Step i.1 and select another subproblem.

Step i.3: Partition P i into P i1 and P i2 . Set L ← L∪{i1, i2}, i.e., append
the two subproblems

Min ĜN (χ) s.t. χ ∈ X ∩ P i1 and Min ĜN (χ) s.t. χ ∈ X ∩ P i2

to the list of open subproblems. For selection purposes, set βi1 , βi2 ← βi.
Set i← i+ 1 and go to Step i.1.
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Details of each of the steps of the above algorithm are discussed in [1]. Here,
we briefly describe some of the key features.

Lower Bounding: As mentioned earlier, at iteration i, we shall only consider
partitions of the form P i := Πm2

j=1[l
i
j , u

i
j), where lij is such that (hn

j − lij) is
integral for some n. Consider the problem:

βi := min f(x) + θ (20)
s.t. x ∈ X, Tx = χ, li ≤ χ ≤ ui,

θ ≥ 1
N

N∑
n=1

Ψn(ui − ε), (21)

where ε is sufficiently small such that Ψn(·) is constant over [ui − ε, ui) for all
n. This ε guarantees that the second stage value function for values of χ within
the interior of the partition Πm2

j=1[l
i
j, u

i
j) is approximated. Since we have exactly

characterized the regions over which the Ψn(·) is constant, we can calculate ε a
priori. The non-increasing property of Ψ̂N (·) guarantees that the above prob-
lem provides a lower bound over the partition P i. To solve (20), we first need
to solve N second stage subproblems Ψn(χ) to construct the cut (21). The
master problem (20) can then be solved with respect to the variables (x, χ, θ).
Each of the N subproblems and the master problem can be solved completely
independently, so complete stage and scenario decomposition is achieved.

Upper Bounding: Let χi be an optimal solution of problem (20). Note that
χi ∈ X , and is therefore a feasible solution. We can then compute an upper
bound αi := g(χi) ≥ min{g(χ)|χ ∈ X}.

Fathoming: Once we have isolated a region over which the second stage value
function is constant, the lower and upper bounds over this region become equal.
Subsequently such a region is fathomed in Step i.2.c of the algorithm. In other
words, if, for a partition P i, the second stage expected value function Ψ̂

N
(·) is

constant, then the partition P i will be fathomed in the course of the algorithm.

Branching: To isolate the discontinuous pieces of the second stage value func-
tion, we are required to partition an axis j′ at a point χj′ such that Ψn(·) is
possibly discontinuous at χj′ for some n. We can do this by selecting χj′ such
that hn

j′ − χj′ is integral for some n.

Using the fact that the lower and upper bounds used in the algorithm are
always valid, and that there are only a finite number of partitions of the type P i

to consider, it can be shown that the DBB algorithm produces a global optimal
solution to (19) in a finite number of iterations [1, 2]. Note that the global
optimal solution vector is obtained from solving the lower bounding problem
(20) corresponding to the partition for P for which the lower and upper bounds
have collapsed. Since the bounds on χ for each partition satisfy: hn−z−1 ≤ χ ≤

12



hn−z for some integer z, it is clear that the x-component of the solutions to the
lower bounding problems will always satisfy x ∈ VN . Thus, the DBB algorithm
produces an optimal solution to the SAA problem such that x̂

N
∈ V

N
.

5 Solution Validation

In Sections 3 and 4, we have shown that a candidate solution x̂N , obtained by
appropriately solving a sample average approximating problem with sample size
N , is a true optimal solution with probability approaching one exponentially fast
asN increases. In this section, we describe techniques to estimate the optimality
gap of a candidate solution x̂

N
for a finite sample size N .

5.1 Statistical Bounds

Recall that v̂
N
and v∗ denote the optimal values of the SAA problem and the true

problem, respectively. The following methodology of constructing statistical
lower and upper bounds was suggested in [23] and developed further in [19].

It is well known that
E[v̂

N
] ≤ v∗. (22)

Thus we can obtain a lower bound to the true optimal value by estimating E[v̂
N
]

as follows. By generating M independent samples of the uncertain parameters,
each of size N , and solving the corresponding SAA problems, we obtain optimal
objective values v̂1

N , . . . , v̂M
N . Then the quantity

vM
N =

1
M

M∑
m=1

v̂m
N (23)

is an unbiased estimator of E[v̂
N
], and therefore is a statistical lower bound to

v∗. Note that an estimate of variance of the above estimator can be computed
as

S2
vM

N
:=

1
M(M − 1)

M∑
m=1

(
v̂m

N − vM
N

)2
. (24)

Now consider a feasible solution x̄ ∈ X . For example, we can take x̄ to
be equal to an optimal solution x̂

N
of an SAA problem. We can estimate the

true objective value g(x̄) at the point x̄ by generating an independent sample
ξ1, . . . , ξN ′

, of size N ′, and computing

ĝ
N′ (x̄) = cT x̄+

1
N ′

N ′∑
n=1

Q(x̄, ξn). (25)

We have that ĝ
N′ (x̄) is an unbiased estimator of cT x̄+E[Q(x̄, ξ)]. Consequently,

since x̄ is a feasible point of the true problem, ĝ
N′ (x̄) gives a statistical upper

13



bound on the true optimal solution value. An estimate of the variance of the
above estimator is given by:

S2
bg

N′ (x̄) :=
1

N ′(N ′ − 1)

N ′∑
n=1

[
cT x̄+Q(x̄, ξn)− ĝ

N′ (x̄)
]2
. (26)

Using the above expressions, an estimate of the optimality gap of a candidate
solution x̄ is given by ĝ

N′ (x̄)− vM
N , along with an estimated variance of S2

vM
N
+

S2
bg

N′ (x̄).

5.2 Deterministic Bounds

In this section, we discuss how deterministic bounds on the true optimal value of
certain class of stochastic programs with integer recourse can be computed with-
out resorting to sampling. These bounds are based on replacing the uncertain
parameters by their mean values.

A consequence of the classical Jensen’s inequality is that the objective value
of the mean-value problem corresponding to a stochastic linear program with
only right hand side uncertainty provides a lower bound to the optimal value;
and the objective value of the mean-value problem corresponding to a stochastic
linear program with only cost uncertainty provides an upper bound on the opti-
mal value. These results are not immediately applicable to stochastic programs
with integer recourse, owing to the non-convexities in the value function. Next,
we discuss mean value bounds for certain classes of stochastic integer programs.

Right-hand-side Uncertainty

Consider the deterministic equivalent to the canonical two-stage stochastic pro-
gram with a finite number of scenarios and only right hand uncertainty:

v∗ := min cTx+
K∑

k=1

pkq
T yk (27)

s.t. x ∈ X,

yk ∈ Y, k = 1, . . . ,K,

Tkx+Wyk ≥ hk, k = 1, . . . ,K. (28)

The mean-value problem corresponding to (27) is obtained by replacing the
stochastic parameters Tk and hk by their mean values T and h:

v := min cTx+ qT y (29)
s.t. x ∈ X, y ∈ Y,

Tx+Wy ≥ h. (30)

When the second stage constraint set Y is continuous polyhedral, i.e., the second
stage problem is a linear program, it is well known from Jensen’s inequality that
v ≤ v∗.

14



Let us now consider instances of (27) where the set Y has integrality re-
strictions. Consider the surrogate relaxation of (27) obtained by taking the
probability weighted sum of the constraints (28):

vS := min cTx+
K∑

k=1

pkq
T yk (31)

s.t. x ∈ X,

yk ∈ Y, k = 1, . . . ,K,

Tx+
K∑

k=1

pkWyk ≥ h. (32)

It is well known that vS ≤ v∗. The Lagrangian relaxation obtained by dualizing
constraint (32) is

L(λ) = minx∈X

(
cT − λTT

)
x+

∑K
k=1 pk

[
minyk∈Y (qT − λTW )yk

]
+ λTh.

Since the inner problem with respect to the second stage variables yk is inde-
pendent of the scenarios, the above expression simplifies to

L(λ) = minx∈X(cT − λTT )x+miny∈Y (qT − λTW )y + λTh. (33)

¿From Lagrangian duality it is known that L(λ) ≤ vS , and hence L(λ) ≤ v∗.
Recall that the Lagrangian dual problem is maxλ≥0 L(λ), hence L(λ) is the
value of any feasible solution. Observe that (33) is the Lagrangian relaxation of
the mean-value problem (29) obtained by dualizing constraint (30).

We have thus shown that the objective value of any feasible solution to the
Lagrangian dual problem obtained by dualizing the constraint (30) in the mean
value problem provides a lower bound to the optimal objective value of the
stochastic program with integer recourse.

Cost parameter Uncertainty

Consider now the stochastic program with uncertainties in the recourse cost
parameters only:

v∗ := min cTx+
K∑

k=1

pkq
T
k yk

s.t. x ∈ X,

yk ∈ Y, k = 1, . . . ,K,

Tx+Wyk ≥ h, k = 1, . . . ,K.
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The mean value problem corresponding to the above problem is obtained by
replacing the stochastic parameters qk by its mean values q:

v := min cTx+ qT y

s.t. x ∈ X,

y ∈ Y,

Tx+Wy ≥ h.

Let (x∗, y∗) be an optimal solution to the mean-value problem with a corre-
sponding optimal objective value of v. Clearly such a solution is feasible to the
stochastic program and has an objective value of v, thus v∗ ≤ v. Thus the
mean value problem provides a valid upper bound to the optimal value of the
stochastic program with integer recourse.

Although the computation of mean-value bounds are cheaper, these are signif-
icantly weaker than the statistical bounds discussed in Section 5.1. However,
it should be noted that these bounds are deterministic quantities and have no
variability. The deterministic bounds can be used to discard poor candidate
solutions without additional sampling. More usefully, the bounds can be pre-
computed and used to expedite the branch and bound optimization algorithm
for solving the SAA problems.

6 Numerical Results

In this section, we describe some preliminary computational results using the
sample average approximation method on a small test problem from the litera-
ture.

Summary of the proposed method

We begin by summarizing the proposed method. Let M be the number of
replications, N be the number of scenarios in the sampled problem, and N ′ be
the sample size used to estimate cT x̄ + E[Q(x̄, ξ)] for a given feasible solution
x̄. The SAA method can then be summarized is as follows:

1. For m = 1, . . . ,M , repeat the following steps:

(a) Generate random sample ξ1, . . . , ξN .
(b) Solve the SAA problem

Min
x∈X

{
cTx+

1
N

N∑
n=1

Q(x, ξn)

}
,

and let x̂m
N

be the solution vector, and v̂m
N

be the optimal objective
value.
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(c) Generate independent random sample ξ1, . . . , ξN ′
. Evaluate ĝ

N′ (x̂m
N
)

and S2
bg

N′ (bx
m
N

) using (25) and (26) respectively.

2. Evaluate vM
N and S2

vM
N

using (23) and (24) respectively.

3. For each solution x̂m
N
, m = 1, . . . ,M , estimate the optimality gap by

ĝ
N′ (x̂m

N
)−vM

N , along with an estimated variance of S2
vM

N
+S2

bg
N′ (bx

m
N

). Choose
one of the M candidate solutions.

Note that the optimization in step 1(b) requires us to use the decompo-
sition based branch and bound algorithm of Section 4. The method outlined
above returns several candidate solutions along with estimates of their optimal-
ity gap. The choice of a particular solution from this list can be based on some
post-processing rules such as the smallest estimated gap, or the least estimated
objective value. The parameters M , N , and N ′ may need to be adjusted to
trade-off computational effort with the desired confidence level.

The Test Problem

We demonstrate the proposed methodology by solving the following instance of
a two-stage stochastic integer program from the literature [28, 7]:

Min −1.5x1 − 4x2 + E[Q(x1, x2, ξ1(ω), ξ2(ω))]
s.t. 0 ≤ x1, x2 ≤ 5,

where

Q(x1, x2, ξ1, ξ2) := min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ξ1 −
2
3
x1 −

1
3
x2

6y1 + y2 + 3y3 + 2y4 ≤ ξ2 −
1
3
x1 −

2
3
x2

y1, y2, y3, y4 ∈ {0, 1},

and ξ1(ω) and ξ2(ω) are independent, and both have a uniform discrete distri-
bution with 10000 equidistant equiprobable mass points in the interval [5, 15].
Thus the total number of scenarios in the problem is 108. Also note that the
problem has uncertain parameters only on the right hand side.

Let us try to estimate the cardinality of the candidate set V as defined by
(12) for our test problem. Note that for feasible values of x, the vector Tx takes
on values inside the box [0, 5] × [0, 5]. Then for any fixed value of the right-
hand-side vector hk, the vector hk − Tx is integer valued at the intersection of
the 6 grid lines for which hk

1 − T1x is integer with the 6 grid lines for which
hk

2 − T2x is integer. Thus for all K scenarios, both components of h − Tx can
be integer valued at a maximum of (6K)2 grid points. The 4 bounds on x
intersecting with the above mentioned 12K grid lines will introduce additional
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at most 48K vertices. We can thus bound the cardinality of the candidate set
by |V | ≤ (36K2 + 48K), where K is the number of scenarios.

Note that the considered discrete distribution of ξ = (ξ1, ξ2) is obtained by
a (very fine) discretization of the corresponding uniform distribution. Let us
denote by P1 the uniform probability distribution on the square region S :=
[5, 15]× [5, 15] ⊂ R

2, and by P2 its equidistant discretization with r equidistant
equiprobable mass points in each interval [5, 15]. We have then that the constant

η := sup
x∈X

∣∣EP1 [Q(x, ξ(ω)]− EP2 [Q(x, ξ(ω)]
∣∣ (34)

decreases to zero as r increases at a rate of O(r−1). Indeed, for a given x, the
function Q(x, ·) is constant except possibly on a finite number of orthogonal
lines with integer distances between these lines. There are no more than 20
such lines which intersects the square region S. The discontinuity jump that
Q(x, ·) can have at a point of such a line is an integer and is bounded by the
constant 86. Therefore, η ≤ cr−1 with c = 86(20), for example. In fact, this
estimate of the constant c is very crude and it appears that the convergence of η
to zero is much faster. In the following computational experiments, the optimal
solutions to the SAA problems were different from each other for all generated
samples. This indicates that for the considered discretization with r = 10000
the error of the sample average approximation was considerably bigger than the
constant η.

Implementation

The proposed sampling strategy and the optimization routine was implemented
in C. To reduce the variance within the SAA scheme, we employed the Latin
Hypercube Sampling scheme [20] to generate the uncertain problem parameters.
In the DBB algorithm, we employed enumeration to solve the second stage
integer programs, and the CPLEX 7.0 LP solver to solve the master linear
program. A mean value lower bound for the test instance was pre-computed
by solving the Lagrangian dual problem described in Section 5.2. The mean
value solution and the mean value lower bound was used to initialize the branch
and bound algorithm. The termination tolerance for the DBB scheme was
set at 0.0001. All computations were performed on a 450 MHz Sun Ultra60
workstation.

Numerical results

We first demonstrate the need for special purpose solution strategies to solve
the sample average approximating problem. In Table 1, we compare the branch
and bound nodes and cpu seconds required by the DBB algorithm against that
required by the CPLEX 7.0 integer programming solver for solving the SAA
problem for sample sizes N = 10 to 50. Problems with sample sizes of 200 or
higher, could not be solved by CPLEX 7.0 within 1000 CPU seconds. Conse-
quently, specialized decomposition algorithms are crucial for solving the SAA
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problem efficiently – the DBB can solve 200 sample size instances in less than
5 seconds.

CPLEX 7.0 DBB
N Nodes CPUs Nodes CPUs
10 44 0.06 25 0.00
20 315 0.46 31 0.01
30 1661 2.15 49 0.01
40 3805 6.32 81 0.03
50 58332 96.94 81 0.04

Table 1: Comparison of CPLEX 7.0 and DBB

Tables 2 and 3 presents the computational results for using the SAA method
combined with the DBB algorithm for sample sizes of N = 20 and N = 200.
The number of replications was M = 10, and the sample size to estimate the
objective value was N ′ = 10000. The computations correspond to simple Monte
Carlo sampling, i.e. without the use of Latin Hypercube Sampling scheme. In
these tables, the first column is the replication number m, the second and third
columns are components of the corresponding first stage solution x̂m

N
, column

four is the estimated objective function value with column five displaying the
estimated variance, column six is the estimated lower bound, column seven is
an estimate of the optimality gap of the solution x̂m, and column eight is an
estimate of variance of the optimality gap estimate. It is clear from these table,
that even with modest sample size, very good quality solutions can be obtained
by the proposed methodology. Increasing the sample size to N = 200, we were
able to reduce the variance of the estimates from about 1.96 to about 0.107, a
95 % reduction.

m x1 x2 ĝ
N′ (x1, x2) S2

bg
N′ (x1,x2)

v̂m
N

Gap (est.) Var

1 0.027 4.987 -60.80547 0.02302 -63.73667 0.19937 1.95858
2 0.000 4.245 -59.78910 0.02201 -55.38000 1.21573 1.95757
3 0.000 4.530 -60.50430 0.02228 -62.27000 0.50053 1.95784
4 0.027 4.987 -60.69477 0.02297 -63.73667 0.31007 1.95854
5 0.000 4.500 -60.44130 0.02223 -56.80000 0.56353 1.95779
6 0.000 3.900 -59.88580 0.02267 -61.45000 1.11903 1.95824
7 0.350 4.820 -59.76140 0.02266 -63.65500 1.24343 1.95822
8 0.000 5.000 -60.62720 0.02294 -69.10000 0.37763 1.95850
9 0.000 4.890 -60.77030 0.02292 -58.16000 0.23453 1.95848
10 0.000 2.865 -58.52530 0.02070 -55.76000 2.47953 1.95626

vM
N = −61.00483
S2

vM
N

= 1.93556

Table 2: Simple Monte Carlo N = 20, N ′ = 10000,M = 10
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m x1 x2 ĝ
N′ (x1, x2) S2

bg
N′ (x1,x2)

v̂m
N

Gap (est.) Var

1 0.000 4.905 -60.71670 0.02284 -61.33000 0.90596 0.10745
2 0.000 4.980 -60.44850 0.02248 -62.36500 1.17417 0.10709
3 0.000 4.890 -60.75090 0.02268 -62.05000 0.87177 0.10730
4 0.007 4.997 -60.69747 0.02304 -60.68667 0.92520 0.10765
5 0.000 4.650 -60.49100 0.02249 -59.65500 1.13167 0.10711
6 0.000 4.110 -60.14670 0.02302 -61.38000 1.47597 0.10764
7 0.000 4.890 -60.46580 0.02263 -62.86500 1.15687 0.10725
8 0.020 4.760 -60.35070 0.02255 -62.18000 1.27197 0.10717
9 0.070 4.945 -60.59350 0.02279 -61.97000 1.02917 0.10741
10 0.000 4.995 -60.58240 0.02274 -61.74500 1.04027 0.10736

vM
N = −61.62267
S2

vM
N

= 0.08462

Table 3: Simple Monte Carlo N = 200, N ′ = 100,M = 10

Tables 4 and 5 demonstrates the effect of the variance reduction by using
Latin Hypercube Sampling (LHS). For sample sizes, N = 20 the variance es-
timate was reduced from 1.957 to 0.119, a 94 % reduction; and for N = 200,
the variance estimate was reduced from 0.107 to 0.036, a 66 % reduction. The
robustness of the candidate optimal solutions is also evident from these tables.

m x1 x2 ĝ
N′ (x1, x2) S2

bg
N′ (x1,x2)

v̂m
N

Gap (est.) Var

1 0.010 4.990 -60.61650 0.02281 -62.77500 1.02600 0.11972
2 0.000 5.000 -60.59210 0.02290 -61.40000 1.05040 0.11981
3 0.000 4.920 -60.59980 0.02273 -61.58000 1.04270 0.11964
4 0.000 4.170 -59.84780 0.02212 -62.78000 1.79470 0.11903
5 0.000 3.780 -59.48660 0.02203 -59.52000 2.15590 0.11895
6 0.000 4.230 -59.94800 0.02206 -62.22000 1.69450 0.11897
7 0.000 5.000 -60.67800 0.02271 -61.65000 0.96450 0.11962
8 0.000 4.935 -60.57800 0.02275 -62.09000 1.06450 0.11967
9 0.000 4.770 -60.39320 0.02257 -61.78000 1.24930 0.11949
10 0.000 4.695 -60.39980 0.02262 -60.63000 1.24270 0.11953

vM
N = −61.64250
S2

vM
N

= 0.09691

Table 4: With LHS N = 20, N ′ = 10000,M = 10

7 Concluding Remarks

In this paper, we have extended the sample average approximation method
to two-stage stochastic programs with integer recourse, continuous first-stage
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m x1 x2 ĝ
N′ (x1, x2) S2

bg
N′ (x1,x2)

v̂m
N

Gap (est.) Var

1 0.000 4.995 -60.65330 0.02302 -60.86500 0.18987 0.03613
2 0.000 4.740 -60.42840 0.02254 -60.48500 0.41477 0.03565
3 0.007 4.997 -60.74907 0.02282 -61.39167 0.09410 0.03593
4 0.000 4.890 -60.57400 0.02270 -60.99500 0.26916 0.03581
5 0.000 4.965 -60.64100 0.02274 -60.80500 0.20217 0.03585
6 0.000 4.980 -60.53170 0.02269 -61.26000 0.31147 0.03580
7 0.000 4.980 -60.71420 0.02311 -61.08500 0.12897 0.03623
8 0.000 4.995 -60.68270 0.02279 -60.62000 0.16047 0.03590
9 0.000 4.980 -60.57940 0.02285 -60.18500 0.26377 0.03596
10 0.000 4.980 -60.69060 0.02296 -60.74000 0.15257 0.03607

vM
N = −60.84317
S2

vM
N

= 0.01311

Table 5: With LHS N = 200, N ′ = 10000,M = 10

variables and a huge number of scenarios. The proposed methodology relies
on constructing approximate problems via sampling, and solving these prob-
lems using a novel optimization algorithm. We have argued that the proposed
scheme will produce an optimal solution to the true problem with probability
approaching one exponentially fast as the sample size is increased. For fixed
sample size, we have described statistical and deterministic bounds to validate
the quality of a candidate optimal solution. Our preliminary computational
experiments have demonstrated the efficacy of the proposed method.
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