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Abstract

We present a scheme for generating new valid inequalities for mixed integer programs by taking pair-
wise combinations of existing valid inequalities. Our scheme is related to mixed integer rounding and
mixing. The scheme is in general sequence-dependent and therefore leads to an exponential number of
inequalities. For some important cases, we identify combination sequences that lead to a manageable set
of non-dominated inequalities. We illustrate the framework for some deterministic and stochastic integer
programs and we present computational results which show the efficiency of adding the new generated
inequalities as cuts.

1 Introduction

We develop a scheme for generating new valid inequalities for mixed integer programs by taking pair-wise
combinations of existing valid inequalities. Our scheme is related to the mixed integer rounding (MIR)
procedure of Nemhauser and Wolsey [7, 8] and the mixing procedure of Günluk and Pochet [5]. We derive
new inequalities iteratively by a very simple combination of two inequalities at a time, which we call pairing.
As will be seen, the order in which the inequalities are paired is important since the resulting new inequalities
depend on the order.

We describe the pairing procedure for pure integer programs and present a simple extension to MIPs in the
next section. We study two structures in Sections 3 and 4 for which our pairing procedure gives nice results.
We say that a set of inequalities is nested if component by component the coefficients in each successive
inequality are no smaller than the coefficients in the previous inequalities. In the nested case, we show that
there is a unique order for combining the inequalities that gives all of the nondominated inequalities that can
be generated by the procedure. In this case, we obtain only a small number of inequalities and separation
is fast. Moreover, we provide sufficient conditions for which the resulting inequalities are facet-defining. We
say that a set of inequalities is disjoint if each integer variable appears in only one of the inequalities. Such
disjoint sets arise in two-stage stochastic integer programming. Here we are again able to characterize the
nondominated inequalities generated by the procedure, and we give a polynomial time separation algorithm.
We also provide sufficient facet-defining conditions.

Section 5 focuses on some applications of our procedure. In Section 6, we present computational results
for nested and disjoint sets to demonstrate the strength of the inequalities in improving linear programming
relaxation bounds. Final remarks are presented in Section 7.

2 The pairing scheme

Given a set of non-negative integer vectors X ⊂ Zn
+, a vector a ∈ Rn+1 defines a valid inequality for X if

n∑
j=1

ajxj − an+1 ≥ 0 for all x ∈ X.

Given two such valid inequalities defined by vectors a and b, the one defined by a dominates the one defined
by b if aj ≤ bj for all j = 1, . . . , n and an+1 ≥ bn+1. We write a � b.
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The inequality a ≤ b for two vectors a and b of the same dimension is meant to hold component-wise.
Similarly, min(a, b) and max(a, b) is understood to be carried out component-wise. For brevity, given a
vector a and a scalar γ, we define a + γ = a + γ1 and min{a, γ} = min{a, γ1}, where 1 is a vector of ones
of the same dimension as a.

Definition 1 Given a, b ∈ Rn+1 with bn+1 ≥ an+1, we define the pairing of a and b as

a ◦ b = min{a + bn+1 − an+1,max(a, b)},

i.e., (a ◦ b)n+1 = bn+1 and

(a ◦ b)j =

 aj if aj ≥ bj

bj if aj ≤ bj , bj ≤ aj + bn+1 − an+1

aj + bn+1 − an+1 if aj ≤ bj , bj ≥ aj + bn+1 − an+1,

for all j = 1, . . . , n.

Theorem 1 If a, b ∈ Rn+1 define two valid inequalities for X, then a ◦ b defines a valid inequality for X.

Proof: Without loss of generality, assume that bn+1 ≥ an+1. Thus (a ◦ b)n+1 = bn+1. Then, given x ∈ X,
we need to show that

n∑
j=1

(a ◦ b)jxj ≥ bn+1. (1)

Let J = {j ∈ {1, . . . , n} : aj + bn+1 − an+1 < max(aj , bj)} and J = {1, . . . , n} \ J . Then the left-hand side
of (1) can be written as ∑

j∈J

ajxj +
∑
j∈J

max(aj , bj)xj + (bn+1 − an+1)
∑
j∈J

xj . (2)

If there exists j∗ ∈ J such that xj∗ ≥ 1, then (2) is

≥
n∑

j=1

ajxj + (bn+1 − an+1) ≥ bn+1,

where the last inequality follows from the validity of the inequality defined by a. On the other hand, if
xj = 0 for all j ∈ J , then (2) is

≥
∑
j∈J

bjxj +
∑
j∈J

bjxj ≥ bn+1,

where the last inequality follows from the validity of the inequality defined by b. Thus a ◦ b defines a valid
inequality for X. 2

In addition to the above simple and direct proof of Theorem 1, there is an alternate proof that uses the
MIR procedure, and a third proof, for the case of nonnegative coefficients, that follows from Günluk and
Pochet mixing.

Example. Consider the set

X =
{

x ∈ Z3
+ : 3x1 + 5x2 ≥ 3, 5x2 + 4x3 ≥ 5

}
.

The two original inequalities for X are defined by a = (3, 5, 0, 3) and b = (0, 5, 4, 5). The valid inequality
defined by a ◦ b is

3x1 + 5x2 + 2x3 ≥ 5. (3)

To see that (3) can be useful, note that it cuts off the fractional point (0, 3/5, 1/2) which is feasible to the
LP relaxation of X.
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The pairing scheme can be easily applied to mixed-integer sets. The pair (a, g) ∈ Rn+1 × Rp, defines a
valid inequality for a mixed-integer set Y ⊂ Zn

+ × Rp
+ if

n∑
i=1

aixi +
p∑

j=1

gjyj ≥ an+1 for all (x, y) ∈ Y.

Corollary 1.1 If (a1, g1) and (a2, g2) define two valid inequalities for Y , then (a1 ◦a2,max{g1, g2}) defines
a valid inequality for Y .

Note that the standard disjunctive inequality (see, e.g. [7]), obtained from the inequalities (a1, g1) and
(a2, g2) for Y ,

n∑
i=1

max{a1
i , a

2
i }xi +

p∑
j=1

max{g1
j , g2

j }yj ≥ min{a1
n+1, a

2
n+1},

is dominated by the pairing inequality in Corollary 1.
We now consider the pairing inequalities obtained from a set of inequalities. Suppose we have K valid

inequalities for X defined by the vectors {a1, . . . , aK} ⊂ Rn+1. Given a subset of these K vectors, we
can obtain new valid inequalities by carrying out a sequence of pairing operations. For example, the valid
inequality defined by the vector ((ak1 ◦ ak2) ◦ (ak2 ◦ ak3)) ◦ ak4 is obtained from {ak1 , ak2 , ak3 , ak4} with the
parentheses distinguishing the sequence in which the pairings are carried out. Since the ◦ operation is not
associative, the valid inequalities obtained from a given set of vectors depends on the sequence in which the
pairings are done. Thus from the set of K valid inequalities defined by {a1, . . . , aK} we can generate an
exponential number of inequalities depending on the subset of valid inequalities chosen and the sequence
in which they are mixed. A key problem is to identify pairing sequences that lead to good sets of valid
inequalities, i.e., strong inequalities over which separation can be done efficiently.

In the following two sections, we investigate a pairing sequence that leads to two such families of inequal-
ities. This pairing sequence is defined by

Definition 2 Given a finite set of vectors, i.e., A = {a1, . . . , aK}, where a1
n+1 ≤ a2

n+1 ≤ . . . ≤ aK
n+1, we

define sequential pairing of the vectors in A by

∆(A) = ((. . . ((a1 ◦ a2) ◦ a3) ◦ . . . ) ◦ aK).

3 The nested case

Consider a set A = {a1, . . . , aK} ⊂ Rn+1 such that a1 ≤ · · · ≤ aK . We say that the valid inequalities
defined by the vectors in A are (or the set A itself is) nested. Here we consider mixed integer systems where
the coefficients of the integer variables are nested. Nested sets arise, for example, in the dynamic knapsack
problem considered by Loparic, Marchand and Wolsey [6] where the feasible region is given by

X =
{

(x, y) ∈ {0, 1}n × R+ :
i∑

j=1

ajxj + y ≥
i∑

j=1

dj , i = 1, . . . , n
}

, (4)

with a ∈ Rn
+ and d ∈ Rn

+. Here, y is a continuous inventory variable, xj ∈ {0, 1} represents whether the
amount aj is produced in period j, and dj is the demand in period j.

Let Ak = {a1, . . . , ak} for k = 1, . . . ,K, and let Φ(A) ∈ Rn+1 be a vector obtained by an arbitrary
sequence of pairings of the vectors in A. Next, we show that ∆(A) � Φ(A).

Theorem 2 If A = {a1, . . . , aK} is nested, then

∆(A) = min{a1 + aK
n+1 − a1

n+1, a
2 + aK

n+1 − a2
n+1, . . . , a

K−1 + aK
n+1 − aK−1

n+1 , aK}.

Proof: The proof is by induction. For K = 2, we have a1 ≤ a2, then

∆(A2) = min{a1 + a2
n+1 − a1

n+1,max{a1, a2}}
= min{a1 + a2

n+1 − a1
n+1, a

2}.
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Assume that the claim holds for K = k, i.e., ∆(Ak) = min{a1 + ak
n+1 − a1

n+1, a
2 + ak

n+1 − a2
n+1, . . . , a

k−1 +
ak

n+1 − ak−1
n+1, a

k}. Then

∆(Ak+1) = ∆(Ak) ◦ ak+1

= min{∆(Ak) + ak+1
n+1 − ak

n+1,max{∆(Ak), ak+1}}
= min{∆(Ak) + ak+1

n+1 − ak
n+1, a

k+1}
= min{a1 + ak+1

n+1 − a1
n+1, . . . , a

k−1 + ak
n+1 − ak−1

n+1,

ak + ak+1
n+1 − ak

n+1, a
k+1},

where the third equality follows from the fact that ∆(Ak) ≤ ak ≤ ak+1. Thus the claim holds. 2

Lemma 1 If A = {a1, . . . , aA} and B = {b1, . . . , bB} are nested sets such that A∪B = {a1, . . . , aA, b1, . . . , bB}
is nested, then

∆(A ∪B) � ∆(A) ◦∆(B).

Proof: Since ∆(A∪B)n+1 = (∆(A) ◦∆(B))n+1, it is sufficient to show that ∆(A∪B) ≤ ∆(A) ◦∆(B). We
have

∆(A ∪B) = min{a1 + bB
n+1 − a1

n+1, . . . , a
A + bB

n+1 − aA
n+1,

b1 + bB
n+1 − b1

n+1, . . . , b
B}

= min{a1 + aA
n+1 − a1

n+1 + (bB
n+1 − aA

n+1), . . . , a
A + (bB

n+1 − aA
n+1),

min{b1 + bB
n+1 − b1

n+1, . . . , b
B}}

= min{∆(A) + bB
n+1 − aA

n+1,∆(B)}
≤ min{∆(A) + bB

n+1 − aA
n+1,max{∆(A),∆(B)}}

= ∆(A) ◦∆(B).

2

Lemma 2 If a, b, c, d ∈ Rn+1 are such that a � c, b � d, an+1 = cn+1 and bn+1 = dn+1, then a ◦ b � c ◦ d.

Proof: Without loss of generality, assume that dn+1 = bn+1 ≥ an+1 = cn+1. Then

(a ◦ b)n+1 = bn+1 = dn+1 = (c ◦ d)n+1.

Since a � c and b � d, we have max(aj , bj) ≤ max(cj , dj) for all j = 1, . . . , n; and since bn+1 = dn+1,
an+1 = cn+1 and aj ≤ cj for all j = 1, . . . , n, we have aj +bn+1−an+1 = aj +dn+1−cn+1 ≤ cj +dn+1−cn+1

for all j = 1, . . . , n. Thus

(a◦b)j = min{aj+bn+1−an+1,max(aj , bj)} ≤ min{cj+dn+1−cn+1,max(cj , dj)} = (c◦d)j for all j = 1, . . . , n.

The claim then follows from the definition of �. 2

Theorem 3 If A is nested, then ∆(A) � Φ(A) for any Φ(A).

Proof: The proof is by induction on |A|. Note that the claim holds trivially for nested sets A such that
|A| ≤ 2. Assume that the claim holds for all nested sets A such that |A| ≤ k.

Consider a nested set A such that |A| = k+1. Given Φ(A), obtained by an arbitrary sequence of pairings
of the vectors in A, we can write

Φ(A) = Φ(A1) ◦ Φ(A2)
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for some A1, A2 ⊂ A such that A1 ∩ A2 = ∅ and A1 ∪ A2 = A. Note that |A1| ≤ k and |A2| ≤ k. Thus by
our induction hypothesis ∆(A1) � Φ(A1) and ∆(A2) � Φ(A2). We also notice that ∆(A2)n+1 = Φ(A2)n+1

and ∆(A1)n+1 = Φ(A1)n+1. Then

Φ(A) � ∆(A1) ◦∆(A2)
� ∆(A1 ∪A2) = ∆(A),

where the first statement follows from Lemma 2 and the second statement follows from Lemma 1. 2

Lemma 3 If A = {a1, . . . , aK} is nested and B ⊂ A is such that aK ∈ B, then ∆(A) � ∆(B).

Proof: Since ∆(B)n+1 = ∆(A)n+1, it is sufficient to show that ∆(A) ≤ ∆(B). Let A \ B = {ai1 , . . . , ail}
and B = {aj1 , . . . , ajm , aK}. Then

∆(A) = min{ai1 + aK
n+1 − ai1

n+1, . . . , a
il + aK

n+1 − ail
n+1,

aj1 + aK
n+1 − aj1

n+1, . . . , a
jm + aK

n+1 − ajm

n+1, a
K}

= min{ai1 + aK
n+1 − ai1

n+1, . . . , a
il + aK

n+1 − ail
n+1,∆(B)}

≤ ∆(B).

2

Combining Theorem 3 and Lemma 3, we obtain

Theorem 4 Let A = {a1, . . . , aK} be nested. All the non-dominated inequalities obtained by pairings of the
vectors in A are contained in the set ∪K

k=1 {∆(Ak)}.

Hence there are at most K non-dominated inequalities.

Now we give sufficient conditions for the inequalities in ∪K
k=1∆(Ak) to be facet-defining for a particular

class of nested systems. Let A = {a1, . . . , aK} ∈ Rn+1 be a nested set such that ai ≥ 0 for all i = 1, . . . ,K,
and consider the mixed 0-1 set (with one continuous variable):

X =
{

(x, y) ∈ {0, 1}n × R+ :
n∑

j=1

ai
jxj + y ≥ ai

n+1, i = 1, . . . ,K
}

.

Without loss of generality, we assume that ai
j ≤ ai

n+1 for all j = 1, . . . , n and i = 1, . . . ,K, since otherwise
the coefficients can be strengthened to ai

j = ai
n+1. Let Ai = {a1, . . . , ai} for i = 1, . . . ,K, and ∆i = ∆(Ai).

Theorem 5 Given i ∈ {1, . . . ,K}, the sequential pairing inequality

n∑
j=1

∆i
jxj + y ≥ ai

n+1

is facet-defining for conv(X) if, for all k ∈ {i, i + 1, . . . ,K},

(a) there exists j∗ ∈ {1, . . . , n} such that ∆i
j∗ + ak

n+1 − ai
n+1 ≤ ak

j∗ , and

(b)
∑

j∈Z(i) ak
j ≥ ak

n+1 − ai
n+1 where Z(i) = {j ∈ {1, . . . , n} : ai

j = 0}.

Proof: The proof is constructive and the details are given in the Appendix. 2
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4 The disjoint case

A set A = {a1, . . . , aK} ⊂ Rn+1 satisfying

1. ak ≥ 0 for all k = 1, . . . ,K,

2. for any two vectors al and am, al
ja

m
j = 0 for j = 1, . . . , n, and

3. a1
n+1 ≤ a2

n+1 ≤ · · · ≤ aK
n+1.

is said to be disjoint. Here we consider mixed integer systems where the coefficients of the integer variables
are disjoint. An example is the deterministic equivalent formulation of a two-stage stochastic program with
integer second stage variables [3]

min cT y +
∑S

s=1 psq
T
s xs

y ∈ Y ⊆ Rn1−p1
+ × Zp1

+ (5)
Tsy + Wsxs ≥ hs s = 1, . . . , S

xs ∈ Zn2
+ s = 1, . . . , S.

In (5), there are two sets of decision variables. The first-stage variables y are decided prior to a scenario s of
realizations of the uncertain problem parameters (qs, Ts,Ws, hs). The second-stage decisions xs constitute
“recourse” actions corresponding to the scenario s realized. A scenario s occurs with probability ps, and the
objective is to minimize the sum of first-stage and expected second-stage costs. Note that the second-stage
variables constitute a disjoint system.

Theorem 6 If A = {a1, . . . , aK} is disjoint, then

∆(A) = a1 +
K∑

i=2

min{ai
n+1 − ai−1

n+1, a
i}.

Proof: The proof follows directly from Definitions 1 and 2, and the definition of a disjoint set. 2

Lemma 4 Let A = {a1, . . . , aA} and B = {b1, . . . , bB} be disjoint sets such that A ∪ B is disjoint and
aA ≤ bB. Then there exists C ⊆ A ∪B with bB ∈ C such that

∆(C) � ∆(A) ◦∆(B).

Proof: Since ∆(C)n+1 = bB
n+1 = (∆(A) ◦ ∆(B))n+1, it is sufficient to show that ∆(C) ≤ ∆(A) ◦ ∆(B).

From Lemma 6, we have

∆(A) ◦∆(B) = (a1 +
A∑

i=2

min{ai
n+1 − ai−1

n+1, a
i}) ◦ (b1 +

B∑
i=2

min{bi
n+1 − bi−1

n+1, b
i})

= (a1 +
A∑

i=2

min{ai
n+1 − ai−1

n+1, a
i})

+ min{bB
n+1 − aA

n+1, (b
1 +

B∑
i=2

min{bi
n+1 − bi−1

n+1, b
i})}︸ ︷︷ ︸

(dAB)

.

Let i∗ = min{i ∈ {1, . . . , B} : bi
n+1 ≥ aA

n+1} and C = A ∪ {bi∗ , . . . , bB}. Note that C is disjoint. Then

∆(C) = a1 +
A∑

i=2

min{ai
n+1 − ai−1

n+1, a
i}

+ min{bi∗

n+1 − aA
n+1, b

i∗}+
B∑

i=i∗+1

min{bi
n+1 − bi−1

n+1, b
i}︸ ︷︷ ︸

(dC)
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By letting b0
n+1 = −∞, we can write

dAB
j = min{bB

n+1 − aA
n+1,

B∑
i=1

min{bi
n+1 − bi−1

n+1, b
i}}.

Let Ji∗ = {j ∈ {1, . . . , n} : bi∗

j > 0}. Then

dAB
j =

{
min{bB

n+1 − aA
n+1, b

i∗

n+1 − bi∗−1
n+1 , bi∗

j } if j ∈ Ji∗

min{bB
n+1 − aA

n+1,
∑B

i=1,i 6=i∗ min{bi
n+1 − bi−1

n+1, b
i
j}} if j 6∈ Ji∗ ,

dC
j =

{
min{bi∗

n+1 − aA
n+1, b

i∗

j } if j ∈ Ji∗∑B
i=i∗+1 min{bi

n+1 − bi−1
n+1, b

i
j}} if j 6∈ Ji∗ ,

By definition of i∗, we have bi∗

n+1 − aA
n+1 ≤ min{bi∗

n+1 − bi∗−1
n+1 , bB

n+1 − aA
n+1}. Clearly,

∑B
i=i∗+1 min{bi

n+1 −
bi−1
n+1, b

i
j} ≤

∑B
i=1,i 6=i∗ min{bi

n+1 − bi−1
n+1, b

i
j}. Moreover,

B∑
i=i∗+1

min{bi
n+1 − bi−1

n+1, b
i
j} ≤

B∑
i=i∗+1

(bi
n+1 − bi−1

n+1)

= bB
n+1 − bi∗

n+1 ≤ bB
n+1 − aA

n+1.

Consequently, dC ≤ dAB , and therefore ∆(C) ≤ ∆(A) ◦∆(B). 2

As before, we let Φ(A) ∈ Rn+1 be a vector obtained by an arbitrary sequence of pairings of the vectors
in A.

Theorem 7 If A = {a1, . . . , aK} is disjoint, then for any Φ(A), there exists Â ⊆ A with aK ∈ Â such that

∆(Â) � Φ(A).

Proof: The proof is by induction on |A|. The claim holds trivially for any disjoint set A such that |A| ≤ 2.
Assume that the claim holds for any disjoint set A with |A| ≤ k.

Consider a disjoint set A such that |A| = k+1. Given Φ(A) obtained by an arbitrary sequence of pairings
of the vectors in A, we can write

Φ(A) = Φ(A1) ◦ Φ(A2)

for some A1, A2 ⊂ A such that A1∩A2 = ∅ and A1∪A2 = A. Note that |A1| ≤ k and |A2| ≤ k. Thus by our
induction hypothesis, there exists Â1 ⊆ A1 and Â2 ⊆ A2, such that ∆(Â1) � Φ(A1) and ∆(Â2) � Φ(A2).
Then from Lemma 2,

Φ(A) � ∆(Â1) ◦∆(Â2).

By Lemma 4, there exists a subset Â ⊆ (Â1 ∪ Â2) ⊆ A such that

Φ(A) � ∆(Â1) ◦∆(Â2) � ∆(Â).

2

As a consequence of Theorem 7, among all inequalities obtained by pairings of the vectors in a disjoint
set A, it is sufficient to consider the inequalities corresponding to the 2K − 1 vectors in C = {∆(Â) : Â ⊆
A, Â 6= ∅}.

Even though it suffices to consider the inequalities defined by the set C, the number of such inequalities
is exponential in K. Here we present a polynomial time separation algorithm for finding a most violated
inequality in C if one exists. The algorithm is based on solving shortest path problems on a directed graph G
with nodes N = {0, 1, . . . ,K} and arcs (i, j) for all i and j > i. Given a point x∗, the separation problem of
determining whether there exists any violated pairing inequalities can be reduced to finding a shortest path
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from node 0 to node k for 1 ≤ k ≤ K where the length of arc (i, j) is given by
∑n

r=1 min{aj
r, a

j
n+1−ai

n+1}x∗r
for i > 0 and

∑n
r=1 aj

rx
∗
r for i = 0. This is true because a path P = (0, i1, i2, . . . , ik) in G corresponds to a

matrix Â = (ai1 , ai2 , . . . , aik) since the length of the path is equal to the left-hand side of the inequality ∆(Â).
Note that by Lemma 6, the left-hand side of the inequality ∆(Â) is

∑n
r=1 ai1

r x∗r +
∑k

j=2

∑n
r=1 min{aij

r , a
ij

n+1−
a

ij−1
n+1}x∗r , which is exactly the length of P . Therefore, there is a violated inequality with right-hand side

ak
n+1 if and only if the length of a shortest path from 0 to k is less than ak

n+1. Using Dijkstra’s algorithm the
separation problem can be solved in O(K2) time and we can find as many as K violated inequalities from
the shortest paths from 0 to k for k = 1, . . . ,K.

Now we give sufficient conditions for the inequalities in C to be facet-defining for a certain class of disjoint
systems. Let A = {a1, . . . , aK} ∈ Rn+1 be a disjoint set, and consider the mixed 0-1 set

X =
{

(x, y) ∈ {0, 1}n × R+ :
n∑

j=1

ai
jxj + y ≥ ai

n+1, i = 1, . . . ,K
}

,

with one continuous variable. Without loss of generality, as in the nested set case, we assume that ai
j ≤ ai

n+1

for all j = 1, . . . , n and i = 1, . . . ,K. We also assume that

n∑
j=1

ai
j ≥ ai

n+1, i = 1, . . . ,K, (6)

since otherwise, we can replace y by y + (ai
n+1 −

∑n
j=1 ai

j). Consider Â = {aq1 , . . . , aqQ} ⊆ A. Let Q =
{q1, . . . , qQ} and, for brevity, let q = q1, Q = qQ. Define ∆̂ = ∆(Â), where the jth element ∆̂j is given
by ∆̂j = min{ar(j)

n+1 − a
c(r(j))
n+1 , a

r(j)
j }, with r(j) = {i ∈ {1, . . . , n} : ai

j > 0} for j = 1, . . . , n and c(i) =
argmax{k ∈ Q : k < i} for all i ∈ Q.

Theorem 8 Given Â ⊆ A and the corresponding index set Q, the sequential pairing inequality

n∑
j=1

∆̂jxj + y ≥ aQ
n+1

is facet-defining for conv(X) if

(a) max{ai
j : j ∈ {1, . . . , n}} ≥ max{aq

j : j ∈ {1, . . . , n}}+ ai
n+1 − aq

n+1, for all i ∈ Q.

(b)
∑n

j=1 ai
j ≥ ai

n+1 − aQ
n+1 + ai

k, for all k ∈ {1, . . . , n} and i ∈ {Q + 1, . . . ,K}.

Proof: The proof is constructive and the details are given in the Appendix. 2

5 Applications

Dynamic knapsack sets: Consider the set X given by (4) with a ∈ Rn
+ and d ∈ Rn

+. Let dij =
∑j

k=i dk,
Loparic et al. [6] proved that the inequality

y +
i∑

j=1

min{aj , dji}xj ≥ d1i (7)

is valid for conv(X) for i = 1, . . . , n, and facet-defining when i = n. Dynamic knapsack sets are nested.
Applying the pairing sequence ∆ to the inequalities (4) gives the inequalities (7). i = n corresponds to i = K
in Theorem 5, and the inequality corresponding to i = n satisfies the facet-defining conditions (a) and (b) in
Theorem 5. We also notice that conditions (a) and (b) in Theorem 5 provide more facet-defining inequalities
for dynamic knapsack sets.
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Mixed vertex packing: The mixed vertex packing problem (MVPP) is a generalization of the vertex
packing problem having both binary and bounded continuous variables. Let N denote the index set of
binary variables, M denote the index set of continuous variables and N(k) = {i ∈ N : (k, i) ∈ E ∪F}, where
E ⊆ {(i, j) : i, j ∈ N} is defined as the binary edge set and F ⊆ {(i, k) : i ∈ N, k ∈ M} is defined as the
mixed edge set. The feasible solution set of MVPP is

XMVP =
{

(x, y) ∈ {0, 1}n × Rm :

xi + xj ≤ 1, (i, j) ∈ E (8)
aikxi + yk ≤ uk, (i, k) ∈ F (9)

0 ≤ yk ≤ uk, k ∈ M
}

.

For each k ∈ M , let T = {i1, i2, . . . , it} ⊂ N(k) such that aij−1k < aijk for j = 2, 3, . . . , t. Atamtürk et al. [1]
showed that the star inequality ∑

i∈T

āikxi + yk ≤ uk, (10)

where āi1k = ai1k and āijk = aijk − aij−1k for j = 2, . . . , t, is valid for XMVP. Note that the mixed edge set
inequalities form a disjoint set with respect to the binary variables.

We now show that the pairing scheme can generate all of the star inequalities. By complementing the
binary variables for the mixed edge set inequalities (9) corresponding to edge (i, k) ∈ F, i ∈ T , we have

aikx̄i − yk ≥ aik − uk, (i, k) ∈ F, i ∈ T (11)

where x̄i = 1− xi. Applying the pairing sequence ∆ to (11), we obtain∑
i∈T

āikx̄i − yk ≥ aitk − uk

with āi1k = ai1k and āijk = aijk − aij−1k for j = 2, . . . , t. That is,∑
i∈T

āik(1− xi)− yk ≥ aitk − uk,

which is exactly the star inequality (10). It is also shown in [1] that the star inequality is facet-defining for
conv(XMVP) if aitk = maxj∈N(k)ajk and N(i) = ∅ for all i ∈ T . If aitk = maxj∈N(k)ajk, then facet-defining
conditions (a) and (b) in Theorem 8 are also satisfied by the equivalent formulation (11). The condition (b)
is trivially true since aitk = maxj∈N(k)ajk corresponds to Q = K for the disjoint case in Theorem 8 and
condition (a) is also satisfied since the inequalities in condition (a) always hold at equality.

Deterministic lot-sizing: The deterministic uncapacitated lot-sizing problem is to minimize total pro-
duction and inventory holding cost while satisfying demand over a finite discrete-time planning horizon. Let
yi be the production in period i, xi ∈ {0, 1} indicate if there is a production set-up in period i, di be the
demand in period i ∈ {1, . . . , n}, and dst =

∑t
i=s di. The feasible solution set of the lot-sizing problem is

XLS =
{

(x, y) ∈ {0, 1}n × Rn
+ :

i∑
j=1

yj ≥ d1i, 0 ≤ yi ≤ dinxi, i = 1, . . . , n
}

.

Barany et al. [2] described the convex hull of XLS by introducing the (`, S) inequalities∑
i∈S

yi +
∑

i∈L\S

di`xi ≥ d1` (12)

for 1 ≤ ` ≤ n, L = {1, . . . , `} and S ⊆ L.
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We now show that the pairing scheme can generate all of the (`, S) inequalities. For given ` and S, we
use the constraints

∑
j≤k yj ≥ d1k for each k ≤ ` and yj ≤ djnxj for each j ∈ {1, . . . , n} to obtain the

inequalities ∑
j∈Sk

yj +
∑

j∈Lk\Sk

djnxj ≥ d1k for each k ≤ `, (13)

where Lk = {1, 2, . . . , k} and Sk = S ∩ Lk. The family of inequalities (13) is nested (note here 1 ∈ Sk

for each k ≤ `). By Lemma 2, sequential pairing provides the (`, S) inequality in (12) since we have
∆`

j = min{d1` − d11, . . . , d1` − d1(j−1), djn + d1` − d1j , . . . , djn} = d1` − d1(j−1) = dj` corresponding to each
j ∈ L \ S.

Stochastic lot-sizing: The stochastic uncapacitated lot-sizing problem is the stochastic programming
extension of the deterministic formulation. Instead of deterministic cost and demand information for each
time period, the problem parameters are random and evolve as discrete time stochastic processes with a
finite probability space. A scenario tree is used to model this information where each node i in stage t of
the tree represents a possible state of the system. For each node i, let T (i) = (V(i), E(i)) be the subtree
containing all descendants of node i, L(i) be the leaf nodes of the subtree T (i), P(i, j) be the set of nodes
on the path from node i to node j and dij =

∑
k∈P(i,j) dk, where di represents the demand in period t(i) for

node i. For brevity, let T = T (0),V = V(0),L = L(0) and P(i) = P(0, i).
Let yi be the production and xi be the indicator variable for a production set-up in period t(i) corre-

sponding to the state defined by node i. The feasible solution set of the stochastic lot-sizing problem [4]
is

XSLS =
{

(x, y) ∈ {0, 1}n × Rn
+ :

∑
j∈P(i)

yj ≥ d0i, 0 ≤ yi ≤ Mixi, i ∈ V
}

,

where Mi = maxj∈L(i) dij is an upper bound on yi.
Guan et al. [4] developed a family of valid inequalities for XSLS called the (Q, SQ) inequalities. Consider

a set of nodes Q = {1, 2, . . . , Q} ⊂ V, such that d01 ≤ d02 ≤ . . . ≤ d0Q and {m,m + 1, . . . , n− 1, n} ⊆ Q(i)
if m < n and m,n ∈ Q(i), where Q(i) = Q∩ V(i). Let VQ = ∪i∈QP(i) and for each i ∈ VQ let

DQ(i) = max{d0j : j ∈ Q(i)},

D̃Q(i) =
{

0, if {j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)} = ∅
max{d0j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)}, otherwise,

MQ(i) = max{dij : j ∈ Q(i)}, and

δQ(i) = min
{

DQ(i)− D̃Q(i),MQ(i)
}

.

Then, given SQ ⊆ VQ and SQ = VQ \ SQ, the (Q, SQ) inequality∑
i∈SQ

yi +
∑

i∈SQ

δQ(i)xi ≥ MQ(0) (14)

is valid for XSLS.
We can use sequential pairing to generate all (Q, SQ) inequalities. Given a (Q, SQ) tuple, first, we can

use sequential pairing, as in the deterministic lot-sizing case, to generate (`, S) inequalities corresponding to
P(i) for each i ∈ Q as ∑

j∈P(i)∩SQ

xj +
∑

j∈P(i)∩SQ

djiyj ≥ d0i. (15)

Then, we use sequential pairing of the inequalities (15) for i = 1 to Q to obtain∑
i∈SQ

xi +
∑

i∈SQ

δQ(i)yi ≥ d0Q = MQ(0). (16)

To see that sequential pairing leads to the correct coefficients in (16), note that this claim is clearly true
for |Q| = 1 since this case is exactly that of an (`, S) inequality for the deterministic lot-sizing problem.
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Assuming that the claim is true for |Q| = k, we have∑
i∈SQ∩VQk

xi +
∑

i∈SQ∩VQk

δQk
(i)yi ≥ d0k,

where Qk = {1, 2, . . . , k}. By pairing the above inequality with the (`, S) inequality∑
j∈P(k+1)∩SQ

xj +
∑

j∈P(k+1)∩SQ

dj,k+1yj ≥ d0,k+1

corresponding to i = k + 1, the resulting coefficients corresponding to each j ∈ SQ are as follows.

(i) The coefficient corresponding to each i ∈ VQk
\ P(k + 1) remains unchanged and δQk

(i) = δQk+1(i).

(ii) The coefficient corresponding to each i ∈ P(k + 1) \ VQk
is equal to min{d0,k+1 − d0k, di,k+1}, which

is δQk+1(i).

(iii) The coefficient corresponding to each i ∈ P(k + 1) ∩ VQk
is equal to δQk

(i) + d0,k+1 − d0k = δQk+1(i)
since MQk+1(i) = MQk

(i) + d0,k+1 − d0k, D̃Qk+1(i) = D̃Qk
(i) and DQk+1(i) = DQk

(i) + d0,k+1 − d0k.

Thus we have the correct coefficients in (16).

6 Computational Experiments

In this section we provide some numerical results to demonstrate the computational effectiveness of the
pairing scheme on randomly generated instances of mixed-integer programs with nested and disjoint sets of
constraints. All computations have been carried out on a Linux workstation with dual 2.4 GHz Intel Xeon
processors and 2 GB RAM using CPLEX 8.1.

For the nested case, we generated random instances of the model

min
mn∑
j=1

cjxj +
p∑

k=1

hkyk

in∑
j=1

ai
jxj +

p∑
k=1

gi
kyk ≥ bi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . ,mn
yk ≥ 0 k = 1, . . . , p.

This model has n additional binary variables in each successive row, with a total of mn binary variables and
p continuous variables. The constraint coefficients and the right-hand sides were generated such that these
form a nested system and were uniformly distributed within the interval [50, 75] and [50, 100], respectively.
The objective function coefficients were uniformly distributed within the interval [10, 100]. In Table 1 we
present computational results for p ∈ {1, 2, 3}, n ∈ {1, 2, 3} and m ∈ {10, 20, 40}. For each combination of
m,n, and p, we tested five instances and report the average objective function value in the column labelled
“OptVal.” The row labelled “LP” provides the average optimal objective value of the linear programming
relaxation without any cuts; the row labelled “LP+CUTS”(LPC) provides the average optimal objective
value after adding all inequalities obtained through pairing as cuts, which can be done since the total number
of cuts is small and equal to the number of rows; and the row labelled “IP” provides the optimal value of
the corresponding integer programming problem. The column labelled “Gap” provides the percentage LP
relaxation gap, computed as (IP-LP)/LP × 100% and (IP-LPC)/LPC × 100%. We observe that the cuts
yield significant improvements. In 13 of the 27 cases, the gap is reduced to 0% from over 10%. In all but
three of the cases, the gap is reduced by more than half.
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Table 1: Computational Results for the Nested Case
m = 10 m = 20 m = 40

p n OptVal Gap OptVal Gap OptVal Gap
LP 100.59 19.58% 51.10 13.97% 24.43 22.18%

1 1 LP+CUTS 114.41 8.53% 59.40 0.00% 31.18 0.67%
IP 125.08 59.40 31.39
LP 65.88 23.63% 48.87 13.25% 21.21 15.99%

1 2 LP+CUTS 77.80 9.82% 56.33 0.00% 25.02 0.89%
IP 86.27 56.33 25.25
LP 39.71 19.83% 48.19 14.50% 21.43 14.56%

1 3 LP+CUTS 43.27 12.64% 56.36 0.00% 24.95 0.51%
IP 49.53 56.36 25.08
LP 23.00 4.61% 31.47 10.38% 65.86 13.05%

2 1 LP+CUTS 24.11 0.00% 35.12 0.00% 75.75 0.00%
IP 24.11 35.12 75.75
LP 22.62 9.50% 31.45 11.65% 58.21 15.77%

2 2 LP+CUTS 24.99 0.00% 35.60 0.00% 66.96 3.11%
IP 24.99 35.60 69.11
LP 22.02 7.92% 31.42 13.90% 56.89 15.39%

2 3 LP+CUTS 23.92 0.00% 36.49 0.00% 63.95 4.87%
IP 23.92 36.49 67.23
LP 20.28 19.45% 21.99 30.57% 69.13 14.96%

3 1 LP+CUTS 24.18 3.95% 28.03 11.52% 81.29 0.00%
IP 25.18 31.68 81.29
LP 17.05 28.54% 20.39 27.60% 64.66 13.35%

3 2 LP+CUTS 20.47 14.20% 22.81 18.99% 74.62 0.00%
IP 23.86 28.16 74.62
LP 18.99 25.28% 20.06 29.40% 64.13 11.93%

3 3 LP+CUTS 22.52 11.41% 22.74 19.96% 72.82 0.00%
IP 25.42 28.41 72.82

For the disjoint case, we generated random instances of the model

min
m∑

i=1

n∑
j=1

ci
jx

i
j +

p∑
k=1

hkyk

n∑
j=1

ai
jx

i
j +

p∑
k=1

gkyk ≥ bi i = 1, . . . ,m

xi
j ∈ {0, 1} j = 1, . . . , n, i = 1, . . . ,m

yk ≥ 0 k = 1, . . . , p.

Each row of this model has n independent binary variables giving rise to a disjoint system involving a total of
mn binary variables. A total of p continuous variables couple the binary variables together. The constraint
coefficients and the right-hand sides were generated uniformly within the interval [40, 120] and [100, 125]
respectively. The objective function coefficients were uniformly distributed within the interval [10, 100] for
the continuous variables and within the interval [10/m, 100/m] for the binary variables. In Table 2, we
present computational results corresponding to p ∈ {1, 2, 3}, n ∈ {1, 2, 3} and m ∈ {10, 20, 40}. As before,
we report averages over five random instances for each combination of m,n and p. In this case, we use the
shortest path separation routine described in Section 4 to add only violated cuts. The average number of
cuts added is reported in the row labelled “# CUTS.” Once again, we observe that the cuts yield significant
improvements. In 6 of the 27 cases, the gap is reduced to 0%. In 19 of the 27 cases, the gap is reduced by
more than half. The number of cuts ranges from 30, on average for 10 rows, to 491, on average for 40 rows.
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Table 2: Computational Results for the Disjoint Case
m = 10 m = 20 m = 40

p n OptVal Gap OptVal Gap OptVal Gap
LP 1082.24 11.62% 703.83 9.03% 874.35 12.57%

1 1 LP+CUTS 1099.88 10.17% 729.58 5.71% 928.66 7.14%
IP 1224.47 773.73 1000.08

# CUTS 45 163 925
LP 585.63 38.48% 538.49 25.20% 702.46 29.22%

1 2 LP+CUTS 793.18 16.68% 655.58 8.93% 946.30 4.65%
IP 952.00 719.89 992.45

# CUTS 32 162 1317
1 3 LP 410.88 26.45% 446.83 23.08% 559.81 24.67%
1 3 LP+CUTS 480.88 13.92% 452.76 22.05% 619.81 16.59%

IP 558.66 580.87 743.13
# CUTS 10 27 124

LP 685.99 8.36% 388.66 5.96% 497.25 7.69%
2 1 LP+CUTS 693.98 7.29% 400.19 3.17% 522.35 3.03%

IP 748.58 413.29 538.67
# CUTS 34 74 341

LP 507.76 33.72% 356.65 14.23% 464.42 13.56%
2 2 LP+CUTS 710.69 7.22% 415.34 0.12% 529.88 1.38%

IP 766.03 415.83 537.30
# CUTS 39 119 530

LP 400.18 20.50% 339.61 12.71% 437.98 13.60%
2 3 LP+CUTS 448.58 10.89% 357.13 8.21% 470.21 7.25%

IP 503.38 389.06 506.95
# CUTS 20 63 347

LP 533.31 2.84% 285.17 2.09% 387.16 4.80%
3 1 LP+CUTS 542.35 1.19% 291.25 0.00% 406.67 0.00%

IP 548.88 291.25 406.67
# CUTS 25 34 173

LP 433.80 21.02% 280 3.86% 375.75 6.84%
3 2 LP+CUTS 540.33 1.63% 291.23 0.00% 403.35 0.00%

IP 549.27 291.23 403.35
# CUTS 45 59 289

LP 420.45 14.19% 279.87 4.38% 360.44 9.80%
3 3 LP+CUTS 459.61 6.19% 292.69 0.00% 399.61 0.00%

IP 489.95 292.69 399.61
# CUTS 24 67 375

7 Conclusions

We have developed a new and very simple way of pairwise combining linear inequalities for MIPs to obtain
new linear inequalities. These new inequalities can be useful in tightening the LP relaxation for general
MIPs. The order in which the inequalities are combined can have a significant impact on the results.
For some structured systems, we provided combination orders that are optimal in the sense that no other
combination order cannot dominate the set of inequalities given by the optimal order. These structures arise
in multi-period MIPs. We discussed applications of these structures to deterministic and stochastic lot-sizing
problems. One of our goals is to apply the procedure to general multi-period stochastic MIPs. To do this
we need to generalize the structures considered in this paper to scenario trees. We are currently developing
these results.
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Appendix

Theorem 5 Given i ∈ {1, . . . ,K}, the sequential pairing inequality

n∑
j=1

∆i
jxj + y ≥ ai

n+1 (17)

is facet-defining for conv(X) if there exists j∗ ∈ {1, . . . , n} such that for all k ∈ {i, i + 1, . . . ,K},

(a) ∆i
j∗ + ak

n+1 − ai
n+1 ≤ ak

j∗ , and

(b)
∑

j∈Z(i) ak
j ≥ ak

n+1 − ai
n+1 where Z(i) = {j ∈ {1, . . . , n} : ai

j = 0}.

Proof: We construct dim(X) = n+1 linearly independent vectors belonging to X that satisfy (17) at equality.

We construct a vector corresponding to each of the n + 1 variables. Let ey and exj be unit vectors in Rn+1

corresponding to the coordinates y and xj for j = 1, . . . , n. The constructed vectors are denoted by {uj}n
j=0

and are constructed as follows.

(i) Vector u0 corresponds to variable y and is given by

u0 = ai
n+1e

y +
∑

r∈Z(i)

exr .

(ii) Vector uj∗ corresponds to variable xj∗ and is given by

uj∗ = [ai
n+1 −∆i

j∗ ]e
y + exj∗ .

(iii) For each xj where j ∈ {1, . . . , n} \ {Z(i) ∪ {j∗}}, the corresponding vector uj is given by

uj = [ai
n+1 −∆i

j ]e
y + exj +

∑
r∈Z(i)

exr .

Note that there are n− |Z(i)| − 1 such vectors.

(iv) For each xj where j ∈ Z(i), the corresponding vector uj is given by

uj = [ai
n+1 −∆i

j∗ ]e
y + exj + exj∗ .

Feasibility: We need to show that {uj}n
j=0 satisfies

aku ≥ ak
n+1 k = 1, . . . ,K, (18)

u0 ≥ 0, uj ∈ {0, 1} j = 1, . . . , n, (19)

where ak
0 = 1 for all k = 1, . . . ,K.

(i) The vector u0 clearly satisfies (19) since ai
n+1 ≥ 0. The left-hand-side of (18) is

aku0 = ai
n+1 +

∑
j∈Z(i) ak

j

≥
{

ak
n+1 if k < i

ai
n+1 + ak

n+1 − ai
n+1 = ak

n+1 if k ≥ i,

where the inequality for the case k < i follows from the fact that ak
j ≥ 0 for all k, j, and ak

n+1 ≤ ai
n+1

for all k < i; and the inequality for the case k ≥ i follows from condition (b) of the Theorem. Thus u0

satisfies (18).
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(ii) The vector uj∗ clearly satisfies (19) since ∆i
j∗ ≤ ai

j∗ ≤ ai
n+1. The left-hand-side of (18) corresponding

to k < i is
akuj∗ = ai

n+1 −∆i
j∗ + ak

j∗

≥ ai
n+1 − (ak

j∗ + ai
n+1 − ak

n+1) + ak
j∗ = ak

n+1,

where the inequality follows from the fact that ∆i
j∗ ≤ ak

j∗ + ai
n+1 − ak

n+1 for all k = 1, . . . , i. The
left-hand-side of (18) corresponding to k ≥ i is

akuj∗ = ai
n+1 −∆i

j∗ + ak
j∗

≥ ak
n+1 − ai

n+1 + ai
n+1 = ak

n+1,

where the inequality follows from condition (a). Thus uj∗ satisfies (18).

(iii) For a given j ∈ {1, . . . , n} \ {Z(i) ∪ {j∗}}, the vector uj clearly satisfies (19) since ∆i
j ≤ ai

j ≤ ai
n+1.

The left-hand-side of (18) corresponding to k < i is

akuj = ai
n+1 −∆i

j + ak
j +

∑
r∈Z(i) ak

r

= ai
n+1 −∆i

j + ak
j

≥ ai
n+1 − (ak

j + ai
n+1 − ak

n+1) + ak
j = ak

n+1,

where the second line follows from the nested property ak
r ≤ ai

r for all k = 1, . . . , i, r = 1, . . . , n, and
ai

r = 0 for all r ∈ Z(i); and the third line follows from the fact that ∆i
j ≤ ak

j + ai
n+1 − ak

n+1 for all
k = 1, . . . , i. The left-hand-side of (18) corresponding to k ≥ i is

akuj = ai
n+1 −∆i

j + ak
j +

∑
r∈Z(i) ak

r

≥ ai
n+1 −∆i

j + ak
j + ak

n+1 − ai
n+1

= −∆i
j + ak

j + ak
n+1

≥ ak
n+1,

where the second line follows from condition (b), and the last line follows from the fact that ak
j ≥ ai

j ≥
∆i

j for all k = i, i + 1, . . . ,K. Thus uj satisfies (18).

(iv) For a given j ∈ Z(i) the vector uj clearly satisfies (19) since ∆i
j∗ ≤ ai

j∗ ≤ ai
n+1. The vector uj also

satisfies (18) since uj ≥ uj∗ and uj∗ satisfies (18).

Tightness: It is easily verified that the vectors {uj}n
j=0 satisfy the inequality (17) as an equality.

Linear independence: To verify the linear independence of the n + 1 vectors {uj}n
j=0, observe that we can

obtain n + 1 unit vectors from {uj}n
j=0 as follows:

exj = uj − uj∗ for all j ∈ Z(i).

ey = u0 −
∑

j∈Z(i) exj .

exj∗ = uj∗ − [ai
n+1 −∆i

j∗ ]e
y.

exj = uj − [ai
n+1 −∆i

j ]e
y −

∑
r∈Z(i) exr for all j ∈ {1, . . . , n} \ {Z(i) ∪ {j∗}}.

2

Theorem 8 Given Â ⊆ A and the corresponding index set Q, the sequential pairing inequality

n∑
j=1

∆̂jxj + y ≥ aQ
n+1 (20)

is facet-defining for conv(X) if
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(a) max{ai
j : j ∈ {1, . . . , n}} ≥ max{aq

j : j ∈ {1, . . . , n}}+ ai
n+1 − aq

n+1, for all i ∈ Q.

(b)
∑n

j=1 ai
j ≥ ai

n+1 − aQ
n+1 + ai

k, for all k ∈ {1, . . . , n} and i ∈ {Q + 1, . . . ,K}.

Proof: We construct dim(X) = n+1 linearly independent vectors belong to X that satisfy (20) at equality.

We construct a vector corresponding to each of the n+1 variables. Denote s(i) = argmax{ai
j : j ∈ {1, . . . , n}}

for all i ∈ Q. Let ey be the unit vector in Rn+1 corresponding to the coordinate y and exj be the unit vec-
tor in Rn+1 corresponding to the coordinate xj for j = 1, . . . , n. Let Z(Q) = {j ∈ {1, . . . , n} : ∃ i ∈
Q such that ai

j > 0} and Z(Q) = {1, . . . , n} \ Z(Q). We construct the following n + 1 vectors, denoted by
{uj}n

j=0.

(i) Vector u0 corresponds to variable y and is given by

u0 = aQ
n+1e

y +
∑

i∈Z(Q)

exi .

(ii) For each j ∈ Z(Q), the corresponding vector uj is given by

uj = u0 − exj .

(iii) For each j ∈ Z(Q), the corresponding vector uj is given by

uj = (ar(j)
n+1 − ∆̂j)ey +

∑
i∈Z(Q)

exi + exj +
∑

i∈Q, i>r(j)

exs(i) .

Feasibility: We need to show that {uj}n
j=0 satisfies

aku ≥ ak
n+1 k = 1, . . . ,K, (21)

u0 ≥ 0, uj ∈ {0, 1} j = 1, . . . , n, (22)

where ak
0 = 1 for all k = 1, . . . ,K.

(i) The feasibility of u0 is based on (6).

(ii) The feasibility of uj for each j ∈ Z(Q) is based on condition (b).

(iii) For a given j ∈ Z(Q), the vector uj satisfies (22) since ∆̂j ≤ a
r(j)
j ≤ a

r(j)
n+1. The left-hand of (21)

corresponding to i ∈ {1, . . . ,K} \ Q is

a
r(j)
n+1 − ∆̂j +

∑n
j=1 ai

ju
j
j ≥

∑n
j=1 ai

j ≥ ai
n+1,

where the first inequality follows from ∆̂j ≤ a
r(j)
j ≤ a

r(j)
n+1 and the second inequality follows from (6).

The left-hand side of (21) corresponding to i ∈ Q and i = r(j) is

a
r(j)
n+1 − ∆̂j +

n∑
j=1

ai
ju

j
j = a

r(j)
n+1 − ∆̂j + a

r(j)
j ≥ a

r(j)
n+1 = ai

n+1,

where the inequality follows from the definition of ∆̂j .

The left-hand side of (21) corresponding to i ∈ Q and i < r(j) is

a
r(j)
n+1 − ∆̂j +

∑n
j=1 ai

ju
j
j ≥ a

r(j)
n+1 − ∆̂j

≥ a
r(j)
n+1 − (ar(j)

n+1 − a
c(r(j))
n+1 )

= a
c(r(j))
n+1 ≥ ai

n+1,
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where the second inequality follows from the definition of ∆̂j .

The left-hand side of (21) corresponding to i ∈ Q, i > r(j) and r(j) = q is

a
r(j)
n+1 − ∆̂j +

∑n
j=1 ai

ju
j
j = a

r(j)
n+1 − ∆̂j + ai

s(i)

≥ aq
n+1 − aq

j + ai
s(i)

≥ aq
n+1 − aq

j + max{aq
j : j ∈ {1, . . . , n}}+ ai

n+1 − aq
n+1

≥ ai
n+1,

where the first inequality follows from r(j) = q, ∆̂j ≤ aq
j and the second inequality follows from

condition (a).

The left-hand side of (21) corresponding to i ∈ Q, i > r(j) and r(j) 6= q is

a
r(j)
n+1 − ∆̂j +

∑n
j=1 ai

ju
j
j = a

r(j)
n+1 − ∆̂j + ai

s(i)

≥ a
r(j)
n+1 − (ar(j)

n+1 − a
c(r(j))
n+1 ) + ai

s(i)

= a
c(r(j))
n+1 + ai

s(i)

≥ a
c(r(j))
n+1 + max{aq

j : j ∈ {1, . . . , n}}+ ai
n+1 − aq

n+1

≥ ai
n+1,

where the first inequality follows from the definition of ∆̂j , the second inequality follows from condition
(a) and the third inequality follows from the fact that a

c(r(j))
n+1 ≥ aq

n+1.

Tightness:

(i, ii) It is easily verified that u0 and uj for each j ∈ Z(Q) satisfy (20) as an equality.

(iii) For a given j ∈ Z(Q), the left-hand side of (20) corresponding to uj is

uj
0 +

∑n
i=1 ∆̂iu

j
i = (ar(j)

n+1 − ∆̂j) + ∆̂j +
∑

i∈Q,i>r(j) ∆̂s(i)

= a
r(j)
n+1 +

∑
i∈Q,i>r(j)(a

i
n+1 − a

c(i)
n+1) = aQ

n+1,

where the second equality follows from

∆̂s(i) = min{ai
n+1 − a

c(i)
n+1, a

i
s(i)}, and

ai
s(i) = max{ai

j : j ∈ {1, . . . , n}} ≥ ai
n+1 − aq

n+1 ≥ ai
n+1 − a

c(i)
n+1,

which follows from (a).

Linear Independence: To verify the linear independence of the n + 1 vectors {uj}n
j=0, we can obtain the

following n + 1 vectors from {uj}n
j=0 as follows:

ey = u0 −
∑

i∈Z(Q)

exi .

exj = u0 − uj , for each j ∈ Z(Q).

vj = uj − (ar(j)
n+1 − ∆̂j)ey −

∑
i∈Z(Q)

exi

= exj +
∑

i∈Q,i>r(j)

exs(i) , for each j ∈ Z(Q).

By sorting vj according to the decreasing sequence of r(j), it can be verified that vj for each j ∈ Z(Q) forms
a lower triangular. Therefore, these vectors are linearly independent, which implies that original vectors are
linearly independent. 2
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