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Abstract

This paper addresses the problem of finding cutting planes for multi-stage stochastic integer programs.

We give a general method for generating cutting planes for multi-stage stochastic integer programs based

on combining inequalities that are valid for the individual scenarios. We apply the method to generate

cuts for a stochastic version of a dynamic knapsack problem and to stochastic lot sizing problems. We

give computational results which show that these new inequalities are very effective in a branch-and-cut

algorithm.

1 Introduction

This paper deals with polyhedral aspects of multi-stage stochastic integer programs. Our basic idea is to ex-
tend known results concerning cutting planes for a deterministic model of the problem to a stochastic model.
In other words, suppose we know valid inequalities that make it possible to solve efficiently the deterministic
model by linear programming or branch-and-cut. In this paper we show how to use this knowledge to get
valid inequalities for a stochastic scenario-tree based model of the problem so that it too can be solved by a
branch-and-cut algorithm. Multi-period production planning problems are a typical example where there is
considerable knowledge of the convex hull of feasible solutions for various deterministic problems. In [9] we
showed how to apply this idea for uncapacitated lot-sizing problems by generalizing the well-known (`, S)
inequalities [2] to a stochastic setting. Here we generalize the basic ideas of [9] so that the results can be
applied to general multi-stage stochastic integer programs involving a scenario tree model of the uncertain
parameters. The key idea of our approach is to combine deterministic valid inequalities corresponding to dif-
ferent scenarios to obtain valid inequalities for the whole scenario tree. The general framework is studied in
detail in the context of stochastic dynamic knapsack problems and stochastic lot-sizing problems. For these
special cases, we provide facet and convex hull defining conditions, and discuss separation procedures. We
also present computational results which show that the approach is computationally feasible for stochastic
lot-sizing problems.

The remainder of the paper is organized as follows. In the next section we present notation and termi-
nology used throughout the paper, and also discuss the underlying combination principle in our approach.
A general framework for obtaining valid inequalities for stochastic scenario-tree integer programs is given
in Section 3. Applications to stochastic dynamic knapsack problems and stochastic lot-sizing problems are
presented in Sections 4 and 5, respectively. Section 6 presents computational results, and Section 7 gives
conclusions and directions for future research.

∗This research has been supported in part by the National Science Foundation under grants DMI-0121495 and DMI-0522485.
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2 Notation and Preliminaries

2.1 Multi-stage stochastic integer programs

Consider the deterministic T -period mixed integer program

min

T∑

t=1

(αtxt + βtyt)

s.t.

t∑

τ=1

(Gtτxτ + Atτyτ ) ≥ bt t = 1, . . . , T

xt ∈ R
p
+, yt ∈ Z

n
+ t = 1, . . . , T.

(1)

In (1), Atτ and Gtτ are matrices, and αt, βt and bt are vectors, respectively, of appropriate dimensions. We
assume, without loss of generality, that the decision vectors in each of the time period t = 1, . . . , T are of
identical dimension.

Now consider the extension of (1) to a stochastic setting. We assume that the problem parameters
(α, β,G,A, b) evolve as a discrete time stochastic process with a finite probability space. This information
structure can be interpreted as a scenario tree T = (V, E) with T levels (or stages) where a node i ∈ V in
stage t of the tree gives the state of the system that can be distinguished by information available up to time
stage t. The probability associated with the state represented by node i is pi. The set of nodes on the path
from the root node (indexed as i = 0) to a node i is denoted by P(i). The decisions (xi, yi) corresponding
to a node i are assumed to be made after observing the realizations (αi, βi, {Gij}j∈P(i), {Aij}j∈P(i), bi) but
are non-anticipative with respect to future realizations. The goal is to minimize expected total costs. The
multi-stage stochastic integer programming extension of (1) is then

min
∑

i∈V

pi(αixi + βiyi)

s.t.
∑

j∈P(i)

(Gijxj + Aijyj) ≥ bi i ∈ V

xi ∈ R
p
+, yi ∈ Z

n
+ i ∈ V.

(2)

Formulation (2) is completely general. Any multi-stage stochastic integer program defined over a scenario
tree can be modelled according to this formulation (cf. [16, 17]). Specific examples of such problems include
stochastic lot-sizing problems [9, 12] (see also Section 5), stochastic capacity planning models [1, 18], and
the stochastic unit commitment problem [15, 19].

2.2 Path and Tree sets

We denote the set of feasible solutions of the multi-stage stochastic integer program (2) by XT , and refer to
this set as the tree set. In this paper, we develop valid inequalities for the tree set XT by combining given
valid inequalities for path sets of the form

Xi =
{

(xj , yj)j∈P(i) :
∑

k∈P(j)

(Gjkxk + Ajkyk) ≥ bj , xj ∈ R
p
+, yj ∈ Z

n
+ j ∈ P(i)

}

for some nodes i ∈ V. Note that the path set Xi includes only those constraints of XT that correspond
to the nodes on the path P(i) from the root node 0 to node i, and hence is a relaxation of the tree set
XT . Moreover, the path set Xi is essentially the feasible region of the deterministic multi-period problem
(1) with t(i) periods, where t(i) is the stage number of node i in the scenario tree T . Consequently, known
valid inequalities for the deterministic model (1) are valid for the path set Xi and also for the tree set
XT . The (deterministic) valid inequalities corresponding to different path sets, called path inequalities, can
be combined to obtain a new valid inequality, called a tree inequality, for the tree set. This idea has been
previously explored in [9] where valid inequalities for deterministic uncapacitated lot-sizing were combined to
derive valid inequalities for stochastic lot-sizing, and in [8] where valid inequalities for general deterministic
two-stage integer programs were combined to obtain inequalities for two-stage stochastic integer programs.
The underlying combination scheme in these papers, as well as in our approach, is a simple operation known
as pairing [8] which is described next.
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2.3 Pairing

Throughout this paper we adopt the following convention. Given two vectors a1 and a2 of the same dimension,
the operations min(a1, a2) and max(a1, a2) are understood to be carried out component-wise. Given a vector
a and a scalar b, we define a+ b = a+ b

�
and min{a, b} = min{a, b

�
}, where

�
is a vector of ones of the same

dimension as a. Also, since all variables are non-negative, we say that an inequality a1x ≥ b1 dominates
another inequality a2x ≥ b2 if a1 ≤ a2 and b1 ≥ b2.

Theorem 1 [8] Suppose the inequalities g1x + a1y ≥ b1 and g2x + a2y ≥ b2 with b1 ≤ b2 are valid for the
set X ⊂ R

p
+ × Z

n
+, then the pairing inequality

ϕx + φy ≥ b2,

where ϕ = max{g1, g2} and φ = min{a1 + (b2 − b1),max{a1, a2}}, is valid for X.

The pairing inequality is a split cut that can be derived as in [4] or via the mixed-integer rounding proce-
dure [13, 14] and, in the special case where all coefficients are nonnegative, via mixing [10].

Given a set of valid inequalities, the pairing operation can be carried out repeatedly to generate new
valid inequalities. The order in which the inequalities are paired differentiates the inequalities. A natural
order is sequential pairing. Given K valid inequalities

gix + aiy ≥ bi i = 1, . . . ,K

for a set X ⊂ R
p
+ ×Z

n
+, such that b1 ≤ b2 ≤ · · · ≤ bK , the sequential pairing inequality is obtained by pairing

the inequality for i = 1 with that for i = 2, and then pairing the resulting inequality with that for i = 3 and
so on in the sequence i = 1, . . . ,K. In [8], problem structures where sequential pairing dominates any other
pairing order has been studied. One such structure is that of two-stage stochastic integer programs.

3 From Paths to Trees

In this section, we derive a family of valid inequalities for the tree set XT from a given set of path inequalities.
We assume that the coefficients of the path inequalities are non-negative. This assumption can be enforced
by weakening any coefficient aj by max{0, aj} (since all variables are assumed to be non-negative). We need
the following additional notation regarding scenario trees. Each node i of the scenario tree T , except the
root node (indexed as i = 0), has a unique parent, and each non-terminal node i is the root of a subtree
T (i) = (V(i), E(i)), which contains all descendants of node i. Thus T = T (0) and V = V(0). The time period
(level) corresponding to a node i will be denoted by t(i). Given a subset of nodes R ⊆ V, let VR = ∪i∈RP(i),
and R(j) = R ∩ V(j) for each j ∈ VR.

3.1 The Tree inequalities

Theorem 2 Given a subset of nodes R = {i1, . . . , iK} ⊆ V, suppose that the inequalities

∑

j∈P(i)

(gijxj + aijyj) ≥ bi (3)

are valid for the path sets Xi for all i ∈ R, and are such that gij ∈ R
p
+, aij ∈ R

n
+ and bi1 ≤ bi2 ≤ · · · ≤ biK

.
Then the tree inequality ∑

j∈VR

ϕj(R)xj + φj(R)yj ≥ biK
(4)

is valid for the tree set XT , where

ϕj(R) = max
i∈R

{gij} and φj(R) = min{max
i∈R

{aij},
∑

ik∈R(j)

(bik
− bik−1

)},

with bi0 = 0.
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Proof: We show, by induction, that the tree inequality (4) corresponding to Rk = {i1, . . . , ik} is valid for
XT for all k ∈ {1, . . . ,K}.

For the base case (k = 1), note that, after coefficient tightening, the path inequality for Xi1 is

∑

j∈P(i1)

(gi1jxj + min{ai1j , bi1}yj) ≥ bi1 . (5)

Inequality (5) is precisely the tree inequality (4) with R = {i1} (in this case, V(R) = P(i1) and R(j) = i1
for all j ∈ V(R)). Moreover any path inequality is valid for XT .

Assume now that the inequality

∑

j∈VRk

(ϕj(Rk)xj + φj(Rk)yj) ≥ bik
(6)

is valid for XT for some k ∈ {1, . . . ,K}. The path inequality for Xik+1
is

∑

j∈P(ik+1)

(gik+1jxj + aik+1jyj) ≥ bik+1
. (7)

Next we pair the inequalities (6) and (7) using Theorem 1. Note that the pairing inequality has a right-hand-
side equal to bik+1

and includes variables from all the nodes in VRk+1
= VRk

∪ P(ik+1). We next show that
the coefficients in the inequality obtained by pairing (6) and (7) are less than or equal to those of the tree
inequality (4) corresponding to Rk+1. If aij = aj in each of the path inequalities (3), then the coefficients in
the inequality obtained by pairing (6) and (7) are equal to that of the tree inequality (4).

We partition VRk+1
into three sets (i) P(ik+1) \ VRk

, (ii) VRk
\ P(ik+1) and (iii) VRk

∩ P(ik+1).

(i) For each j ∈ P(ik+1) \ VRk
, we have

ϕ = max{0, gik+1j}

= max
i∈Rk+1

{gij}

= ϕj(Rk+1),

where the second equality follows from the fact that gij = 0 for all i ∈ Rk for any j ∈ P(ik+1) \ VRk
.

Also

φ = min{φj(Rk) + bik+1
− bik

,max{0, aik+1,j}}

= min{bik+1
− bik

, max
i∈Rk+1

{aij}}

= min{ max
i∈Rk+1

{aij},
∑

ik∈Rk+1(j)

(bik
− bik−1

)}

= φj(Rk+1),

where the second equation follows from the fact that aij = 0 for all i ∈ Rk for any j ∈ P(ik+1) \ VRk
,

and the third equation follows from the fact that Rk+1(j) = {k + 1} for any j ∈ P(ik+1) \ VRk
.

(ii) For each j ∈ VRk
\ P(ik+1), we have

ϕ = max{ϕj(Rk), 0}

= max{max
i∈Rk

{gij}, 0}

= max
i∈Rk+1

{gij}

= ϕj(Rk+1).
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Also

φ = min{φj(Rk) + bik+1
− bik

,max{0, φj(Rk)}}

= φj(Rk)

= min{max
i∈Rk

{aij},
∑

ik∈Rk(j)

(bik
− bik−1

)}

= min{ max
i∈Rk+1

{aij},
∑

ik∈Rk+1(j)

(bik
− bik−1

)}

= φj(Rk+1),

where the first equation follows from the fact that φj(Rk) ≥ 0, and the last equation follows from the
fact that aik+1j = 0 and Rik+1

(j) = Rk(j) for j ∈ VRk
\ P(ik+1).

(iii) For each j ∈ VRk
∩ P(ik+1), we have

ϕ = max{ϕj(Rk), gik+1j}

= max{max
i∈Rk

{gij}, gik+1j}

= max
i∈Rk+1

{gij}

= ϕj(Rk+1);

and
φ = min{φj(Rk) + bik+1

− bik
,max{φj(Rk), aik+1j}} (8)

where φj(Rk) = min{maxi∈Rk
{aij},

∑
ik∈Rk(j)(bik

− bik−1
)}. Consider the following two cases.

(a) If maxi∈Rk
{aij} ≤

∑
ik∈Rk(j)(bik

− bik−1
), then φj(Rk) = maxi∈Rk

{aij}, and from (8)

φ = min{ max
i∈Rk+1

{aij}, max
i∈Rk

{aij} + bik+1
− bik

}

≤ min{ max
i∈Rk+1

{aij},
∑

ik∈Rk(j)

(bik
− bik−1

) + bik+1
− bik

}

= min{ max
i∈Rk+1

{aij},
∑

ik∈Rk+1(j)

(bik
− bik−1

)}

= φj(Rk+1).

(b) If maxi∈Rk
{aij} >

∑
ik∈Rk(j)(bik

− bik−1
), then φj(Rk) =

∑
ik∈Rk(j)(bik

− bik−1
), and from (8)

φ = min{max{
∑

ik∈Rk(j)

(bik
− bik−1

), aik+1j},
∑

ik∈Rk(j)

(bik
− bik−1

) + bik+1
− bik

}

≤ min{max{max
i∈Rk

{aij}, aik+1j},
∑

ik∈Rk+1(j)

(bik
− bik−1

)}

= min{ max
i∈Rk+1

{aij},
∑

ik∈Rk+1(j)

(bik
− bik−1

)}

= φj(Rk+1).

It then follows that the tree inequality (4) corresponding to Rk+1 is dominated by an inequality obtained by
pairing the valid inequalities (6) and (7), and is therefore valid for XT . 2

Example 1 Consider a tree set corresponding to the scenario tree depicted in Figure 1. Assume the three
valid path inequalities corresponding to nodes 2, 3 and 4 are, respectively,

2x1 + 5y1 + 2x2 + 5y2 ≥ 15, (9)

3x1 + 4y1 + 3x3 + 4y3 ≥ 17, and (10)

3x1 + 6y1 + 3x3 + 5y3 + 9x4 + 5y4 ≥ 18. (11)
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Figure 1: Scenario tree for Example 1

Then, according to Theorem 2, the two tree inequalities (4) corresponding to R = {2, 3} and R = {2, 4},

3x1 + 2x2 + 3x3 + 5y1 + 5y2 + 2y3 ≥ 17 and

3x1 + 2x2 + 3x3 + 9x4 + 6y1 + 5y2 + 3y3 + 3y4 ≥ 18, (12)

are valid. 2

3.2 Strengthened Tree inequalities

If the coefficients of the path inequalities are such that, for any j, gij = gj and aij = aj for all i, then the
tree inequality can be strengthened.

Theorem 3 Suppose that the inequalities

∑

j∈P(i)

(gjxj + ajyj) ≥ bi (13)

with gj ∈ R
p
+ and aj ∈ R

n
+ are valid for the path sets Xi for all i ∈ V, and (without loss of generality) bj ≤ bi

for all j ∈ P(i). Given R = {i1, . . . , iK} ⊆ V such that bi1 ≤ bi2 ≤ · · · ≤ biK
, let i′k = argmin{t(j) : j ∈

P(ik) and bj > bik−1
} for each ik ∈ R, and let ΩR = ∪ik∈RP(i′k, ik) and ΩR(j) = ΩR ∪V(j) for any j. Then

the tree inequality (4) corresponding to ΩR dominates the tree inequality corresponding to R.

Proof: The tree inequality corresponding to the set R is

∑

j∈VR

(gjxj + φj(R)yj) ≥ biK
(14)

where φj(R) = min{aj ,
∑

ik∈R(j)(bik
− bik−1

)}, with bi0 = 0. From the definition of ΩR, it follows that

VΩR
= VR, and since bj ≤ bi for all j ∈ P(i), we also have maxi∈ΩR

{bi} = biK
. So the tree inequality

corresponding to ΩR is ∑

j∈VR

(gjxj + φj(ΩR)yj) ≥ biK
(15)

where φj(ΩR) = min{aj ,
∑

ik∈ΩR(j)(bik
− bik−1

)}. It is easy to see that φj(ΩR) ≤ φj(R) for each j ∈ VR.

Thus (15) dominates (14). 2

Example 1 (contd.) By relaxing the inequalities (9) and (10) to

3x1 + 6y1 + 2x2 + 5y2 ≥ 15 and (16)

3x1 + 6y1 + 3x3 + 5y3 ≥ 17, (17)
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the path inequalities (16), (17) and (11) corresponding to nodes 2, 3 and 4 satisfy the requirements of
Theorem 3. Recall that the tree inequality corresponding to R = {2, 4} is (12). The extension of R
according to Theorem 3 is ΩR = {2, 3, 4}. The tree inequality corresponding to ΩR is

3x1 + 2x2 + 3x3 + 9x4 + 6y1 + 5y2 + 3y3 + y4 ≥ 18, (18)

and it dominates (12), the tree inequality for R. 2

4 The stochastic dynamic knapsack problem

The deterministic dynamic knapsack set

XDK =
{

(x, y) ∈ R+ × {0, 1}T : x +

t∑

τ=1

aτyτ ≥ bt t = 1, . . . , T
}

,

where at ∈ R+ and bt ∈ R+, has been studied in [11]. Assuming that the parameters at and bt are stochastic
and evolve according to the scenario tree T = (V, E), and using the notation already described, the stochastic
dynamic knapsack set is

XSDK =
{

(x, y) ∈ R+ × {0, 1}|V| : x +
∑

j∈P(i)

ajyj ≥ bi, i ∈ V
}

, (19)

where ai ∈ R+ and bi ∈ R+ for all i ∈ V. Without loss of generality, we assume bj ≤ bi if j ∈ P(i).
The stochastic dynamic knapsack set XSDK is a simple special case of the tree set XT , involving a single

binary variable and a single constraint corresponding to each node of the scenario tree, and an additional
continuous variable x corresponding to the root node. Considering the original node-specific constraints as
the base path inequalities, we can apply Theorem 2 to obtain the valid tree inequality

x +
∑

j∈VR

φj(R)yj ≥ biK
, (20)

where R = {i1, . . . , iK} ⊆ V and φj(R) = min{aj ,
∑

ik∈R(j)(bik
−bik−1

)} with bi0 = 0. Moreover, since XSDK

satisfies the assumptions of Theorem 3, the tree inequality (20) can be strengthened by replacing R with
ΩR, where ΩR is defined as in Theorem 3.

Example 2 Consider an instance of XSDK where the scenario tree has 5 nodes as shown in Figure 2. The
problem parameters are

a1 = 40, a2 = 15, a3 = 20, a4 = 20, a5 = 40 and b1 = 5, b2 = 15, b3 = 17, b4 = 20, b5 = 40.

From (20), we obtain the valid inequalities

x + 15y1 + 10y2 ≥ 15, corresponding to R = {1, 2}, (21)

x + 20y1 + 10y2 + 5y3 + 5y4 ≥ 20, orresponding to R = {1, 2, 4}, and (22)

x + 40y1 + 10y2 + 25y3 + 5y4 + 20y5 ≥ 40, corresponding to R = {1, 2, 4, 5}. (23)

The inequality (22) corresponding to R = {1, 2, 4} is dominated by the inequality

x + 20y1 + 10y2 + 5y3 + 3y4 ≥ 20 (24)

corresponding to ΩR = {1, 2, 3, 4}, and the inequality (23) corresponding to R = {1, 2, 4, 5} is dominated by
the inequality

x + 40y1 + 10y2 + 25y3 + 3y4 + 20y5 ≥ 40 (25)
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Figure 2: Scenario tree for Example 2

corresponding to ΩR = {1, 2, 3, 4, 5}. 2

We now present some sufficient conditions under which the tree inequality (20) is facet-defining. We
only consider inequalities corresponding to subsets R ⊆ V such that ΩR = R. We denote such subsets as
Ω = {bi1 , . . . , biK

}, and so the corresponding tree inequality is

x +
∑

j∈VΩ

φj(Ω)yj ≥ biK
, (26)

with φj(Ω) = min{aj ,
∑

ik∈Ω(j)(bik
− bik−1

)} and bi0 = 0.

Theorem 4 The tree inequality (26) is facet-defining for XSDK if

(1) for each j ∈ VΩ, aj ≥ max{bi, i ∈ Ω(j)}, and

(2) for each pair j ∈ Ω and r ∈ V(j), bj +
∑

k∈P(r)\P(j) ak ≥ br, and

(3) for each j ∈ V \VΩ, there exists a node s(j) ∈ P(j)∩VΩ such that as(j) +
∑

k∈P(r)\VΩ
ak ≥ br for each

r ∈ P(j) \ {VΩ ∪ j} and as(j) +
∑

k∈P(r)\{VΩ∪j} ak ≥ br for each r ∈ V(j).

Proof: See [6]. 2

Example 2 (contd.) The inequalities (21) and (24) are facet-defining since they satisfy all three suf-
ficient conditions. However, Theorem 4 does not specify whether inequality (25) is facet-defining since
a3 = 20 < max{bi, i ∈ Ω(3)} = b5 = 40, so the sufficient condition (1) is not satisfied. 2

In general, Theorem 4 does not imply that the tree inequalities (26) are sufficient to describe the convex
hull of XSDK. Moreover, there are exponentially many tree inequalities, and we do not have an efficient
separation scheme for the general case. However when the coefficients aj are large relative to the right-hand-
side coefficients we can obtain stronger results.

4.1 Special case: Large coefficients

We consider instances of XSDK with large coefficients, in particular aj ≥ max{bk, k ∈ V(j)} for all j ∈ V. In
this case φj(Ω) =

∑
ik∈Ω(j)(bik

− bik−1
) for all j ∈ V.

8



Theorem 5 If aj ≥ max{bk, k ∈ V(j)} for all j ∈ V, then the family of inequalities (26) corresponding to
all Ω ⊆ V, along with 0 ≤ yj ≤ 1 for all j ∈ V describe the convex hull of XSDK.

Proof: See [6]. 2

Theorem 5 generalizes the convex hull results for the deterministic case, i.e., |Ω| = 1, in [2], and the case
where there are only two stages, i.e., t(j) ≤ 2 for each j ∈ V, in [10].

Example 2 (contd.) If we modify the coefficients to a1 = a2 = a3 = a4 = a5 = 40, then inequali-
ties (26) corresponding to Ω = {1}, {1, 2}, {1, 3}, {1, 3, 4}, {1, 3, 5}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5},
{1, 2, 3, 4, 5} together with 0 ≤ x ≤ 40 and 0 ≤ y1, . . . , y5 ≤ 1 describe the convex hull of all feasible solutions.
2

4.2 Separation

For the case of large coefficients, separation of the tree inequalities can be carried out by solving shortest path
problems on a directed graph G with nodes V and arcs (i, j) for all i with bj > bi. Given a point (x∗, y∗),
the separation problem of determining whether there exists a violated tree inequality can be reduced to
finding a shortest path from node 0 to node k for each k ∈ V where the length of arc (i, j) is given by∑

r∈P(j)(bj − bi)y
∗
r . This is true because a path P = (0, i1, i2, . . . , ik) in G corresponds to a valid tree

inequality of the form (20) with R = {0, i1, i2, . . . , ik} since the length of the path plus x∗ is equal to the
left-hand side of the inequality. Therefore, there is a violated inequality with right-hand side bik

if and only
if the length of a shortest path from 0 to k is less than bik

− x∗. Using Dijkstra’s algorithm the separation
problem can be solved in O(|V|2) time and we can find as many as |V| − 1 violated inequalities from the
shortest paths from 0 to k for each k ∈ V.

Theorem 6 If aj ≥ max{bk, k ∈ V(j)} for all j ∈ V, then there exists a polynomial-time separation
algorithm for the tree inequalities (26).

When the condition that aj ≥ max{bk, k ∈ V(j)} does not hold, the above algorithm may be used as a
separation heuristic by first finding a tree inequality assuming aj ≥ max{bk, k ∈ V(j)} for all j and then
tightening the coefficients of the yj variables to min{aj , φj(R)}.

4.3 Dominance of sequential pairing

Theorem 7 A valid inequality generated by an arbitrary sequence of pairing operations on a subset of the
original inequalities of XSDK is dominated by a convex combination of the tree inequalities (26) for all Ω ⊆ V.

Proof: First consider the case aj ≥ max{bk, k ∈ V(j)} for all j. In this case, the claim is certainly true since,
by Theorem 5, the tree inequalities suffice to describe the convex hull of XSDK. Thus, if aj ≥ max{bk, k ∈
V(j)} for all j, a valid inequality

x +
∑

j∈VR

θj(R)yj ≥ b(R),

where b(R) = maxj∈R{bj}, obtained by an arbitrary sequence of pairing operations of the original inequalities
for a subset R ⊆ V, is dominated by a convex combination of tree inequalities (26)

x +
∑

j∈V
Ωk

φj(Ω
k)yj ≥ b(Ωk) k = 1, . . . ,K

corresponding to subsets of nodes Ω1, . . . ,ΩK . That is, there exists a set of weights λ1, . . . , λK with λk ≥ 0
and

∑K
k=1 λk = 1, such that for all j

θj(R) ≥
K∑

k=1

λkφj(Ω
k) and b(R) ≤

K∑

k=1

λkb(Ωk). (27)
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Now, consider the case of general coefficients aj . Observe that a valid inequality obtained by an arbitrary
sequence of pairing operations on the original constraints of XSDK corresponding to a subset of nodes R ⊆ V
is of the form

x +
∑

j∈VR

min{aj , θj(R)}yj ≥ b(R),

where θj(R) is the coefficient if aj ≥ max{bk, k ∈ V(j)} for all j. Similarly, a tree inequality corresponding
to Ωk ⊆ V is of the form

x +
∑

j∈V
Ωk

min{aj , φj(Ω
k)}yj ≥ b(Ωk),

where φj(R) is the coefficient if aj ≥ max{bk, k ∈ V(j)} for all j. Since b(R) ≤
∑K

k=1 λkb(Ωk) from (27), we
only need to verify that for each j ∈ V

min{aj , θj(R)} ≥
K∑

k=1

λk min{aj , φj(Ω
k)},

with λk ≥ 0 and
∑K

k=1 λk = 1. Indeed, if aj ≥ θj(R), then we have

min{aj , θj(R)} = θj(R) ≥
K∑

k=1

λkφj(Ω
k) ≥

K∑

k=1

λk min{aj , φj(Ω
k)}

where the first inequality follows from (27). On the other hand, if aj ≤ θj(R) then

min{aj , θj(R)} = aj ≥
K∑

k=1

λkaj ≥
K∑

k=1

λk min{aj , φj(Ω
k)}.

2

5 Stochastic lot-sizing

A multi-stage stochastic integer programming formulation of the single-item stochastic lot-sizing problem
defined over a scenario tree T = (V, E) is (cf. [9])

min
∑

i∈V pi(αisi + βixi + γiyi) + αa(0)sa(0)

s.t. sa(i) + xi = di + si i ∈ V
0 ≤ xi ≤ aiyi i ∈ V
sa(0) ≥ 0, si ≥ 0, yi ∈ {0, 1} i ∈ V,

where s, x and y denotes the inventory, production, and set-up variables, and the parameters α, β, γ, and a
denotes holding costs, productions costs, set-up costs, and production capacities, respectively. Eliminating
the inventory variables si for i ∈ V and using s to denote the initial inventory variable sa(0), the feasible
region of the stochastic lot-sizing problem is

XSLP =
{

(s, x, y) ∈ R+ × R
|V|
+ × {0, 1}|V| : s +

∑

j∈P(i)

xj ≥ d0i, xi ≤ aiyi, i ∈ V
}

, (28)

where d0i =
∑

j∈P(i) dj , i.e., the cumulative demand up to node i. Replacing xi with aiyi, we have the
relaxation of XSLP

XRSLP =
{

(s, y) ∈ R+ × {0, 1}|V| : s +
∑

j∈P(i)

ajyj ≥ bi, i ∈ V
}

, (29)

where bi = maxj∈P(i){d0j}. Note that XRSLP is precisely the stochastic dynamic knapsack set XSDK. Hence,
the valid inequalities developed in Section 4 are also valid for XSLP. The following lemma allows us to include
the xj variables in the valid tree inequalities for XRSLP.
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Lemma 1 If s +
∑

j∈VR
πjyj ≥ π0 is a valid inequality for XSLP for some R ⊆ V, and SR ⊆ VR, then

s +
∑

j∈SR

xj +
∑

j∈SR

πjyj ≥ π0 (30)

where SR = VR \ SR, is a valid inequality for XSLP.

Proof: Consider a point (s∗, x∗, y∗) ∈ XSLS. Now construct a point (ŝ, x̂, ŷ) such that x̂j = x∗
j and ŷj = y∗

j

for each j ∈ V \ SR, x̂j = ŷj = 0 for each j ∈ SR, and ŝ = s∗ +
∑

j∈SR
x∗

j . Then for each i ∈ V,

ŝ +
∑

j∈P(i)

x̂i = s∗ +
∑

j∈SR

x∗
i +

∑

j∈P(i)\SR

x∗
i ≥ s∗ +

∑

j∈P(i)

x∗
i ≥ d0i.

Thus (s, x̂, ŷ) ∈ XSLP. Then

π0 ≤ ŝ +
∑

j∈VR

πj ŷj = s∗ +
∑

j∈SR

x∗
j +

∑

j∈VR\SR

πjy
∗
j .

Therefore, inequality (30) is valid for XSLS. 2

Theorem 8 Given a subset R = {i1, . . . , iK} ⊆ V, such that bi1 ≤ · · · ≤ biK
where bi = maxj∈P(i){d0j},

and a subset SR ⊆ VR, the inequality

s +
∑

j∈SR

xj +
∑

j∈SR

φj(R)yj ≥ biK
(31)

is valid for XSLP, where SR = VR \ SR and φj(R) = min{aj ,
∑

ik∈R(j)(bik
− bik−1

)} with bi0 = 0.

Proof: The result follows immediately by applying Lemma 1 to inequality (20) for the stochastic dynamic
knapsack relaxation XRSLP. 2

Next, we consider the tree inequalities (31) for the special case where the production quantities are
uncapacitated. For the case with constant production capacities, valid inequalities derived from a mixing
set relaxation of XSLP are presented in [5].

5.1 The uncapacitated case

Here we assume that aj ≥ max{bk, k ∈ V(j)} for all j ∈ V. Guan et al. [9] proposed the following class of
(Q, SQ) inequalities for this case.

Consider a set of nodes Q = {i1, i2, . . . , iK} ⊂ V, and let Q(j) = Q∩ V(j) for all j ∈ Vs, such that

(i) d0i1 ≤ d0i2 ≤ . . . ≤ d0iK
, and

(ii) if, for any node j, im, in ∈ Q(j), then {im+1, im+2, . . . , in−1} ∈ Q(j).

For each i ∈ VQ define

DQ(i) = max{d0j : j ∈ Q(i)},

D̃Q(i) =

{
0, if {j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)} = ∅
max{d0j : j ∈ Q \ Q(i) such that d0j ≤ DQ(i)}, otherwise,

MQ(i) = max{dij : j ∈ Q(i)}, and

δQ(i) = min
{

DQ(i) − D̃Q(i),MQ(i)
}

.

Then, given SQ ⊆ VQ and SQ = VQ \ SQ, the (Q, SQ) inequality

s +
∑

j∈SQ

xj +
∑

j∈SQ

δQ(j)yj ≥ MQ(0) (32)
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is valid for XSLP.
Guan et al. [9] provide sufficient conditions under which the (Q, SQ) inequalities are facet-defining for the

uncapacitated lot-sizing problem. For two-stage problems, these inequalities suffice to describe the convex
hull [7].

Theorem 9 The (Q, SQ) inequality (32) is a tree inequality of the form (31) corresponding to R = Q.

Proof: The result follows from the definition of the set Q and noting that, in this case, for any j ∈ VQ,
δQ(j) = φj(Q). 2

As observed in [5, 6], tree inequalities beyond the (Q, SQ) inequalities may be needed. The following example
illustrates this fact.

Example 3 Consider a stochastic uncapacitated lot-sizing problem for the scenario tree structure shown in
Figure 1. Let d1 = 10, d2 = 15, d3 = 5 and d4 = 20. The tree inequality corresponding to R = {1, 3, 2, 4}
with SR = {1} is

s + x1 + 10y2 + 15y3 + 10y4 ≥ 35.

This inequality is facet-defining. However, it is not a (Q, SQ) inequality since the set {1, 3, 2, 4} does not
satisfy the necessary requirements on Q. 2

5.2 Separation

Consider the uncapacitated case first. Separation of the tree inequalities (31) corresponds to finding a subset
of nodes R and a partition of VR into SR and SR. Unfortunately this does not appear to be easy, so we use
a heuristic approach. Recall that if we fix SR = ∅ then the lot-sizing tree inequalities (31) are the dynamic
knapsack tree inequalities (26) and hence can be separated exactly in polynomial time by a shortest path
scheme as in Section 4.2. Once we have identified the most violated dynamic knapsack tree inequality (26),
i.e., a subset of nodes R, we can then set SR = {j ∈ VR : x∗

j < φj(R)y∗
j }, where (x∗, y∗) is the current

fractional solution, to find a tree inequality (31). This heuristic can be further enhanced by setting SR as
above for each of the dynamic knapsack tree inequalities identified in the course of the separation algorithm of
Section 4.2 and obtaining a resulting lot-sizing tree inequality, and then choosing the most violated lot-sizing
tree inequality from among these.

For the capacitated case, we first use the above scheme to find tree inequalities assuming aj ≥ max{bk, k ∈
V(j)} and then tighten the coefficients of the yj variables to min{aj , φj(R)}.

6 Computational Experiments

In this section, we present computational results with a branch and cut algorithm to demonstrate the
computational effectiveness of the inequalities generated by our pairing scheme on randomly generated
instances of single-item uncapacitated and capacitated stochastic lot-sizing problems. All computations
have been carried out on a Linux workstation with dual 2.4 GHz Intel Xeon processors and 2 GB RAM.

6.1 Instance generation

Instances were generated based on different structures of the underlying scenario trees, different ratios of the
production cost to the inventory holding cost, and different ratios of the setup cost to the inventory holding
cost. We assumed that the underlying scenario tree is balanced with T stages and K branches per stage.
For the uncapacitated instances we used stage-branch combinations (T,K) = (9, 2), (10, 2), (6, 3) and (7, 3);
production to holding cost ratios β/h = 2 and 4; and setup to holding cost ratios γ/h = 200 and 400.

Corresponding to each of the 16 combinations of K, T , γ/h and β/h three random instances were
generated. In these instances, corresponding to each node i of the tree, the holding cost hi is a random
number uniformly distributed in the interval [0, 10]; the production cost βi is uniformly distributed in the
interval [0.8(α/h)h̄, 1.2(α/h)h̄] where h̄ is the average holding cost; the setup cost γi is uniformly distributed
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in the interval [0.8(β/h)h̄, 1.2(β/h)h̄]; and demand di is uniformly distributed in the interval [0, 100]. Finally,
all K children of a node occur with equal probability 1/K.

For the capacitated instances, we used (T,K) = (9, 2) and (6, 3). Two sizes of productions capacities ai

were used, a large capacity that is uniformly distributed in the interval [40T, 60T ] and a small capacity that
is uniformly distributed in the interval [20T, 40T ]. All other parameters were generated in the same way as
in the uncapacitated case.

6.2 Results

We used CPLEX 8.1 in the default mode as a control and compared its performance to our customized
algorithm which augments default CPLEX by repeatedly solving the linear programming relaxation and
adding the most violated cut found by the separation heuristics until no more cuts can be found, at each
node of the branch-and-cut tree. To get a better understanding of the value of our cuts, we also evaluated
how much they improved the LP at the root node.

Computational results for the stochastic uncapacitated case are shown in Tables 1 and 2. Table 1 gives
the effectiveness of the tree inequalities in tightening the LP relaxation gap at the root node. The LP
relaxation gap of the original formulation without adding any cuts is shown in the column labelled “LP Gap
%.” It is calculated with respect to the best feasible solution found by our branch-and-cut algorithm. The
column labelled “Path” corresponds to the results from adding all violated path inequalities (i.e., |R| = 1);
the column labelled “(Q, SQ)” corresponds to the results after adding (Q, SQ) inequalities developed; the
column labelled “Tree” corresponds to the results after adding violated tree inequalities (31) by the heuristic
separation algorithm.

For each combination of K, T , γ/h and β/h, there are two rows corresponding to the columns labelled
“Path,” “(Q, SQ)” and “Tree.” The first row gives the LP relaxation gap after adding inequalities, and
the second row gives the number of inequalities added. Note that all reported numbers are averages over
three instances. Significant tightening of the LP relaxation is achieved via our approach. In most cases,
the LP relaxation gap is reduced from over 20% to less than 1%. Furthermore, in most cases, we observe
significant improvement by adding tree inequalities to the path inequalities. The tree inequalities also give
better performance than the (Q, SQ) inequalities, and many fewer tree inequalities are needed to get this
improved performance.

The final column labelled “|R|” records the minimum, average and maximum number of elements in R
corresponding to each tree inequality which gives an indication of how much of the scenario tree is used by
each inequality. We observed that |R| ranges from 2 to 40 with an average around 10. We also noticed that
the average number of elements in R for the cases with K = 2 is less than those with K = 3.

Table 2 presents our branch-and-cut results. We compared the number of cuts added by default CPLEX
and by our branch-and-cut scheme respectively, the relative optimality gap upon termination, the number of
nodes explored (apart from the root node), and the total CPU time. For the two rows corresponding to each
combination of K, T , γ/h and β/h in the table, the first one gives the performance of default CPLEX and the
second one gives the performance of our branch-and-cut scheme. The reported data is averaged over three
instances. In the column labelled “optimality gap,” the numbers in square brackets indicate the number of
instances not solved to default CPLEX optimality tolerance within the allotted time limit of one hour. The
default CPLEX MIP solver added several types of cuts including cover cuts, flow cuts, Gomory fractional
cuts and mixed integer rounding cuts. Our branch-and-cut algorithm added up to 500 tree inequalities as
cuts at each node after the CPLEX default cuts have been added. For the total CPU time, as shown in
the column labelled “CPU secs,” we report the average CPU time for instances that are solved to default
CPLEX optimality tolerance within the allotted time limit of one hour. Label “∗ ∗ ∗” represents the case
that no instance is solved to default CPLEX optimality tolerance within the allotted time.

Our branch-and-cut algorithm performs much better than default CPLEX. Our algorithm solves to
optimality half of the instances for K = 2 case and 10 out of 24 instances for K = 3 case, while the default
CPLEX can not solve any of the instances to optimality. For those instances unsolved by both algorithms,
our algorithm yielded much smaller optimality gaps. Moreover, our cuts dramatically reduced the number
of nodes in the branch and bound tree and, although we added many more cuts, the running times were
smaller as well. Furthermore by limiting the number of cuts added as a function of tree depth, we were able
to decrease the running times a bit more than those shown in Table 2.
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Table 1: Results of the root node for the uncapacitated case

K T γ/h β/h LP gap % Path (Q, SQ) Tree |R|

2 9 200 2 16.74 2.37 0.77 0.11 (2, 8, 28)
433 12440 916

2 9 200 4 13.76 2.20 0.92 0.30 (2, 8, 28)
417 13106 784

2 9 400 2 20.67 3.54 1.04 0.13 (2, 9, 31)
318 13094 1027

2 9 400 4 18.22 3.10 1.37 0.33 (2, 8, 24)
359 12760 734

2 10 200 2 15.56 2.73 1.26 1.01 (2, 7, 23)
849 15399 620

2 10 200 4 20.12 3.97 1.50 0.92 (2, 7, 23)
631 15809 1165

2 10 400 2 12.63 2.30 0.93 0.33 (2, 9, 30)
846 15254 1112

2 10 400 4 18.90 4.66 1.96 0.76 (2, 9, 30)
729 15656 1579

3 6 200 2 19.19 3.92 0.96 0.32 (2, 12, 34)
197 11059 849

3 6 200 4 16.13 3.57 0.73 0.18 (2, 12, 33)
183 10877 922

3 6 400 2 25.04 5.11 1.67 0.16 (2, 14, 36)
172 11265 1127

3 6 400 4 22.05 4.65 1.59 0.32 (2, 13, 40)
168 11405 1158

3 7 200 2 22.01 4.17 1.96 1.10 (2, 9, 31)
739 15020 1386

3 7 200 4 17.64 3.12 1.51 1.35 (2, 10, 30)
696 14507 991

3 7 400 2 30.80 8.92 3.82 2.04 (2, 12, 35)
634 14779 1656

3 7 400 4 24.48 4.24 2.31 0.98 (2, 12, 38)
638 14810 2056
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Table 2: Results of the branch-and-cut algorithm for the uncapacitated case

K T γ/h β/h # cuts optimality gap # nodes CPU secs

2 9 200 2 563 0.59[3] 1657049 ***
3823 0 248 149.4

2 9 200 4 551 0.47[3] 1640825 ***
8425 0 189 894.3

2 9 400 2 596 0.99[3] 1570548 ***
14642 0.02[1] 264 956.5

2 9 400 4 521 0.92[3] 1616461 ***
16420 0.08[1] 190 437

2 10 200 2 780 1.78[3] 943455 ***
18567 0.17[2] 655 3264

2 10 200 4 1026 0.95[3] 835008 ***
21241 0.05[2] 133 3521

2 10 400 2 885 2.1[3] 891822 ***
17450 0.42[3] 946 ***

2 10 400 4 858 2.02[3] 924457 ***
27642 1.31[3] 85 ***

3 6 200 2 723 0.61[3] 1996296 ***
9046 0.08[1] 76 87

3 6 200 4 801 0.24[3] 1988059 ***
5545 0 156 512.5

3 6 400 2 566 0.81[3] 2608384 ***
7535 0 291 1045

3 6 400 4 546 0.65[3] 3005068 ***
9812 0.17[1] 130 195.1

3 7 200 2 1129 2.29[3] 790023 ***
29009 0.69[3] 24 ***

3 7 200 4 1014 1.77[3] 828985 ***
37766 0.98[3] 45 ***

3 7 400 2 945 3.62[3] 1000364 ***
25187 1.24[3] 0 ***

3 7 400 4 1069 2.55[3] 1123622 ***
26690 0.82[3] 0 ***
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Table 3: Results of the root node for the capacitated case

Capacity K T γ/h β/h LP gap % Path Tree |R|

2 9 200 2 14.57 2.64 0.17 (2, 6, 19)
439 657

2 9 200 4 11.18 2.16 0.28 (2, 6, 20)
404 598

2 9 400 2 17.54 3.28 0.24 (2, 8, 24)
332 721

2 9 400 4 14.73 3.18 0.25 (2, 9, 28)
342 1013

U [40T, 60T ] 3 6 200 2 13.84 5.16 1.62 (2, 8, 27)
202 897

3 6 200 4 10.91 4.04 1.33 (2, 8, 21)
208 785

3 6 400 2 16.06 8.00 2.80 (2, 10, 29)
178 894

3 6 400 4 14.18 7.34 2.50 (2, 12, 32)
182 1039

2 9 200 2 12.82 3.16 0.49 (2, 6, 21)
403 696

2 9 200 4 9.56 2.65 0.43 (2, 6, 20)
383 701

2 9 400 2 15.07 4.56 1.23 (2, 8, 20)
316 893

2 9 400 4 12.33 4.06 1.03 (2, 8, 24)
339 944

U [20T, 40T ] 3 6 200 2 12.36 4.35 0.48 (2, 8, 24)
189 773

3 6 200 4 8.64 3.85 0.43 (2, 8, 22)
185 877

3 6 400 2 14.08 6.35 1.19 (2, 9, 25)
162 918

3 6 400 4 11.28 5.79 1.12 (2, 10, 28)
175 1004

Tables 3 and 4 present results for the capacitated case. We also tested three instances for each combina-
tion. Table 3 shows the optimality gap reduction after adding path inequalities and the substantially bigger
reductions after adding tree inequalities at the root node. For the branch-and-cut algorithm, as shown in
Table 4, default CPLEX cannot solve any of the instances to optimality while our algorithm solves 16 out of
24 instances to optimality, including all two branch instances. For those unsolved instances, our algorithm
obtains smaller optimality gaps and all final gaps are smaller than 0.5%. For the small capacitated case, 21
out of the 24 instances are solved to optimality by our algorithm while default CPLEX can only solve 4 out
of the 24 instances to optimality. The final optimality gaps by our approach are within 0.15%.

7 Conclusions and future research

We have presented a general method for generating valid inequalities for multi-stage stochastic integer
programs based on combining inequalities that are valid for the individual scenarios. We have applied the
method to a stochastic version of a dynamic knapsack problem and to stochastic lot sizing problems. Our
computational results show that these new inequalities are very effective in a branch-and-cut algorithm and
give much better results than default CPLEX. Since multi-stage stochastic integer programs are very difficult
to solve, and arise in many domains, including network reliability, routing, capacity planning and scheduling,
we are now investigating the application of our method to different structural models. Decomposition
methods involving Lagrangian relaxation [3, 15] and column generation [12, 17, 18] have been very effective in
solving various classes of multi-stage stochastic integer programs. Integration of the proposed cut generation
scheme within such decomposition frameworks is an important unresolved issue.

16



Table 4: Results of the branch-and-cut algorithm for the capacitated case

Capacity K T γ/h β/h # cuts Optimality gap # nodes CPU secs

2 9 200 2 590 0.55[3] 1680099 ***
2695 0 194 73.3

2 9 200 4 569 0.36[3] 1682063 ***
4567 0 215 121.2

2 9 400 2 538 1.11[3] 1727792 ***
6498 0 208 244.4

2 9 400 4 551 0.85[3] 1801839 ***
10789 0 257 821.9

U [40T, 60T ] 3 6 200 2 487 0.37[3] 2370519 ***
5300 0 222 204.4

3 6 200 4 530 0.18[3] 2167495 ***
5057 0 173 215.6

3 6 400 2 561 1.1[3] 2164056 ***
24018 0.45[3] 245 ***

3 6 400 4 586 0.94[3] 2053463 ***
24398 0.47[3] 284 ***

2 9 200 2 561 0.45[3] 1762030 ***
3396 0 248 138.6

2 9 200 4 589 0.30[3] 1732004 ***
4328 0 266 269.1

2 9 400 2 653 0.82[3] 1667112 ***
6915 0 414 626.3

2 9 400 4 573 0.63[3] 1806365 ***
8940 0 497 835.6

U [20T, 40T ] 3 6 200 2 630 0.23[2] 1494500 2444.6
10948 0.15[1] 211 1269.3

3 6 200 4 520 0.21[2] 1800160 2404.0
5096 0 209 222.7

3 6 400 2 571 0.26[2] 1504807 2428.7
14879 0.15[1] 230 1448

3 6 400 4 483 0.24[2] 1835754 2411.3
11406 0.06[1] 384 1323.3
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[4] W. Cook, R. Kannan, and A. J. Schrijver. Chvátal closures for mixed integer programming problems.
Mathematical Programming, 47:155–174, 1990.

[5] M. Di Summa and L. A. Wolsey. Lot-sizing on a tree. CORE Discussion Paper, 2006/44, 2006.

[6] Y. Guan. Pairing Inequalities and Stochastic Lot-Sizing Problems: A Study in Integer Programming.
PhD thesis, Georgia Institute of Technology, 2005.

[7] Y. Guan, S. Ahmed, A. J. Miller, and G. L. Nemhauser. On formulations of the stochastic uncapacitated
lot-sizing problem. Operations Research Letters, 34:241–250, 2006.

[8] Y. Guan, S. Ahmed, and G. L. Nemhauser. Sequential pairing of mixed integer inequalities. Discrete
Optimization, to appear, 2006.

[9] Y. Guan, S. Ahmed, G. L. Nemhauser, and A. J. Miller. A branch-and-cut algorithm for the stochastic
uncapacitated lot-sizing problem. Mathematical Programming, 105:55–84, 2006.
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Supplement: Proofs of Theorems 4 and 5

Theorem 4 Inequality (26) is facet-defining for XSDK if

(1) for each j ∈ VΩ, aj ≥ max{bi, i ∈ Ω(j)},

(2) for each pair j ∈ Ω and r ∈ V(j), bj +
∑

k∈P(r)\P(j) ak ≥ br,

(3) for each j ∈ V \ VΩ, there exists a s(j) ∈ P(j) ∩ VΩ such that as(j) +
∑

k∈P(r)\VΩ
ak ≥ br for each

r ∈ P(j) \ {VΩ ∪ j} and as(j) +
∑

k∈P(r)\{VΩ∪j} ak ≥ br for each r ∈ V(j).

Proof: We construct dim(X) = n+1 linearly independent vectors belonging to X that satisfy (26) at equality.

We construct a vector corresponding to each of the n+1 variables. Let ex and eyj be unit vectors in R
n+1

corresponding to the coordinates x and yj for j = 1, . . . , n. For each j ∈ VΩ, let ρ(j) = min{k : k ∈ Ω(j)}
and Φ(j) = {i ∈ Ω ∪ a(j) : bi ≤ bρ(j)−1}. Note here, we have ba(j) ≤ bρ(j)−1 according to the definition of
Ω and therefore a(j) ∈ Φ(j). Define Ψ(j) = ∪k∈Φ(j)P(k) and Λ(j) = ∪k∈Ψ(j)C(k) \ Ψ(j). The vectors are
denoted by {uj}n

j=0 and are constructed as follows.

(i) Vector u0 corresponds to variable x and is given by

u0 = bQex +
∑

r∈V\VΩ

eyr .

(ii) For each yj where j ∈ VΩ, the corresponding vector uj is given by

uj = bρ(j)−1e
x +

∑

r∈Λ(j)

eyr +
∑

r∈V\VΩ

eyr .

(iii) For each yj where j ∈ V \ VΩ, the corresponding vector uj is given by

uj = us(j) − ej .

Feasibility: We need to show that {uj}n
j=0 satisfies (19) for each i ∈ V.

(i) The vector u0 clearly satisfies (19) corresponding to each i ∈ VΩ since the left-hand-side of (19) is
bQ ≥ bi for each i ∈ VΩ. Corresponding to each i ∈ V \ VΩ, let ξ(i) = argmax{bk : k ∈ P(i) ∩ Ω} and
the left-hand-side of (19) is

bQ +
∑

k∈P(i)\P(ξ(i)) ak

≥ bξ(i) +
∑

k∈P(i)\P(ξ(i)) ak

≥ bi,

where the first inequality follows from the fact that bQ ≥ bξ(i) since ξ(i) ∈ Ω and the second inequality
follows from condition (2).

(ii) It is easy to verify that the vector uj corresponding to each j ∈ VΩ satisfies (19) for each i ∈ Ψ(j).
The reason is that the left-hand-side value is greater than or equal to bρ(j)−1 ≥ bi for each i ∈ Ψ(j).

For each i ∈ VΩ \ Ψ(j), let λ(i) = {k : k ∈ P(i) ∩ Λ(j)}. Then, the left-hand-side of (19) is

bρ(j)−1 + aλ(i) ≥ bi

where the inequality follows from condition (1).

For each i ∈ V \ VΩ, the left-hand-side of (19) for the case that λ(i) exists is

≥ bρ(j)−1 + aλ(i) +
∑

k∈P(i)\P(ξ(i)) ak

≥ bξ(i) +
∑

k∈P(i)\P(ξ(i)) ak

≥ bi
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where the second inequality follows from condition (1) and the last inequality follows from condition
(2). Note here we can also provide a similar argument if λ(i) does not exist.

(iii) The vector uj corresponding to each j ∈ V \ VΩ satisfies (19) for each i ∈ VΩ. It follows from the fact
that s(j) ∈ VΩ and j ∈ V \ VΩ. Condition (3) shows that uj satisfies (19) for each i ∈ V \ VΩ.

Tightness: We need to show that {uj}n
j=0 satisfies (26) at equality.

(i) It is easy to verify that the vector u0 satisfies (26) at equality.

(ii) The vector uj for each j ∈ VΩ satisfies (26) at equality since the left-hand-side of (26) is

= bρ(j)−1 +
∑

r∈Λ(j) φr(Ω)

= bρ(j)−1 +
∑

r∈Λ(j)

∑
i∈Ω(r)(bi − bi−1)

= bQ

where the second equation follows from the fact that ar ≥
∑

i∈Ω(r)(bi − bi−1) for each r ∈ Λ(j).

This is because that r ∈ Λ(j) ⊆ VQ and based on condition (i), we have ar ≥ max{bi, i ∈ Ω(r)} ≥∑
i∈Ω(r)(bi − bi−1). The last equation follows from the fact that Ω(r1) ∩Ω(r2) = ∅ if r1, r2 ∈ Λ(j) and

k ∈ ∪r∈Λ(j)Ω(r) for each k ∈ Ω such that bk ≥ bj .

(iii) The vector uj for each j ∈ V \ VΩ satisfies (26) at equality since us(j) satisfies (26) at equality based
on (ii) and uj = us(j) − ej .

Linear independence: To verify the linear independence of the n + 1 vectors {uj}n
j=0, observe that we can

first obtain |V \ VΩ| unit vectors by getting eyj = uj − us(j) corresponding to each j ∈ V \ VΩ. Besides this,
for each j ∈ VΩ ∪ {0}, let

vj = uj −
∑

r∈V\VΩ

eyr .

We can form a matrix where the |VΩ| vectors form the rows of the matrix and the vector corresponding to i
will be placed above the vector corresponding to j if max{bk : k ∈ VΩ(i)} > max{bk : k ∈ VΩ(j)} or min{bk :
k ∈ VΩ(i)} > min{bk : k ∈ VΩ(j)} if max{bk : k ∈ VΩ(i)} = max{bk : k ∈ VΩ(j)}. Each column corresponds
to each node in VΩ. Column i is placed ahead of column j if max{bk : k ∈ VΩ(i)} > max{bk : k ∈ VΩ(j)}
or min{bk : k ∈ VΩ(i)} > min{bk : k ∈ VΩ(j)} if max{bk : k ∈ VΩ(i)} = max{bk : k ∈ VΩ(j)}. From the
definition of Λ(j) and the construction process of each uj , we can easily observe that these vectors form a
lower triangle matrix. Therefore, all these n + 1 vectors are linearly independent. 2

Theorem 5 If aj ≥ max{bk, k ∈ V(j)} for each j ∈ V, then the family of inequalities (26) for all Ω ⊆ V,
together with 0 ≤ x ≤ bV and 0 ≤ yj ≤ 1 for each j ∈ V describe the convex hull of XSDK.

Proof: We notice that if aj ≥ max{bk, k ∈ V(j)}, then all inequalities (26) are valid and facet-defining
based on Theorem 4 and φj(Ω) =

∑
i∈Ω(j)(bi − bi−1) for each j ∈ VΩ. We also notice that inequalities (19)

are dominated by inequalities (26). We only need to show no fractional extreme points exist after adding
inequalities (26) to XSDK. In the following, we prove this by contradiction and assume u0 = {x0, y0

1 , . . . , y0
n}

is an extreme point that contains fractional elements.

First, assume there is no inequality in (26) such that u0 satisfies it at equality. Without loss of generality,
assume the jth element of u0 is fractional. Then there exists two points u1 = u0 + εeyj and u2 = u0 − εeyj

feasible for XSDK. It contradicts with the assumption that u0 is an extreme point since u0 = (u1 + u2)/2.

If there are some inequalities in (26) such that u0 satisfies them at equality, we define the set of nodes
corresponding to the right-hand-side of each inequality as Φ. That is,

Φ = {j ∈ V : x0 +
∑

k∈VΩ

φk(Ω)y0
k = bj for some Ω ⊆ V}.
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Let α∗ = argmin{bj : j ∈ Φ} and Ωj be any set corresponding to each j ∈ Φ such that x0+
∑

k∈VΩj
φk(Ωj)y

0
k =

bj . In the following, we complete the proof in several steps.

Claim 1: α∗ ∈ Ωj for each j ∈ Φ
Proof: If not, there exists a node β∗ ∈ Φ such that Ωβ∗ ∩ Φ = β∗ and j /∈ Φ for each j ∈ P(β∗) \ β∗.
Without loss of generality, let Ωα∗ = (α1, α2, . . . , αk1 , α∗) and Ωβ∗ = (β1, β2, . . . , βk2 , β∗). We have

x0 +
∑

k∈VΓ

φk(Γ)y0
k > bk2

where Γ = {β1, β2, . . . , βk2} (33)

and
x0 +

∑

k∈VΩβ∗

φk(Ωβ∗)y0
k = bβ∗ (34)

That is,

bβ∗ = x0 +
∑

k∈VΩβ∗

φk(Ωβ∗)y0
k

= x0 +
∑

k∈VΓ

φk(Γ)y0
k + (bβ∗ − bk2

)
∑

k∈P(β∗)

y0
k

> bk2
+ (bβ∗ − bk2

)
∑

k∈P(β∗)

y0
k

where the first equation follows from (34) and the inequality follows from (33). Thus, we have

∑

k∈P(β∗)

y0
k < 1. (35)

Now consider the inequality corresponding to set Θ = {α1, α2, . . . , αk1 , α∗, β∗} and we have

x0 +
∑

k∈VΘ

φk(Θ)y0
k

= x0 +
∑

k∈VΩα∗

φk(Ωα∗)y0
k + (bβ∗ − bα∗)

∑

k∈P(β∗)

y0
k

= bα∗ + (bβ∗ − bα∗)
∑

k∈P(β∗)

y0
k

< bβ∗ ,

where the inequality follows from (35). It contradicts with the fact that x0 +
∑

k∈VΘ
φk(Θ)y0

k ≥ bβ∗ is a
valid inequality. Therefore, the conclusion holds.

Note here, According to the definition of α∗, we have x0+
∑

k∈VΛ
φk(Λ)y0

k > bk1
where Λ = {α1, α2, . . . , αk1}.

Then similarly we have ∑

k∈P(α∗)

y0
k < 1 (36)

since

bα∗ = x0 +
∑

k∈VΩα∗

φk(Ωα∗)y0
k

= x0 +
∑

k∈VΛ

φk(Λ)y0
k + (bα∗ − bk1

)
∑

k∈P(α∗)

y0
k

> bk1
+ (bα∗ − bk1

)
∑

k∈P(α∗)

y0
k,
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which will be used later. 2

Claim 2: ∑

k∈P(j)

y0
k = 1 (37)

for each j ∈ Φ \ {α∗}.
Proof: Note here, for each j ∈ V such that bj ≥ bα∗ , since α∗ ∈ Φ and the inequality corresponding to the
set Ωj = Ωα∗ ∪ {j} is

x0 +
∑

k∈VΩj

φk(Ωj)y
0
k

= x0 +
∑

k∈VΩα∗

φk(Ωα∗)y0
k + (bj − bα∗)

∑

k∈P(j)

y0
k

≥ bj .

Then, we have ∑

k∈P(j)

y0
k ≥ 1 (38)

for each j ∈ V \ {α∗} such that bj ≥ bα∗ .

We also notice that for each j ∈ Φ and assuming Ωj = {α1, . . . , αr, j}, we have

bj = x0 +
∑

k∈VΩj

φk(Ωj)y
0
k

= x0 +
∑

k∈VΩj\{j}

φk(Ωj \ {j})y
0
k + (bj − bαr )

∑

k∈P(j)

y0
k

≥ bαr + (bj − bαr )
∑

k∈P(j)

y0
k.

That is, we have ∑

k∈P(j)

y0
k ≤ 1 (39)

for each j ∈ Φ. Combining (38) and (39), we have

∑

k∈P(j)

y0
k = 1

for each j ∈ Φ \ {α∗}. 2

Claim 3: If there is a j ∈ Φ such that α∗ ∈ P(j), then r ∈ Φ for each r ∈ P(j) \ P(α∗).
Proof: Since j ∈ Φ, then according to (37), we have

∑
k∈P(j) y0

k = 1. For each r ∈ P(j) \ P(α∗), assuming

Ωr = Ωα∗ ∪ {r}, we have

br = x0 +
∑

k∈VΩr

φk(Ωr)y
0
k

= bα∗ + (br − bα∗)
∑

k∈P(r)

y0
k

≤ bα∗ + (br − bα∗)
∑

k∈P(j)

y0
k

= br
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where the inequality follows from the fact that r ∈ P(j) and the last equality follows the fact that∑
k∈P(j) y0

k = 1. The above inequality shows that
∑

k∈P(r) y0
k =

∑
k∈P(j) y0

k = 1 for each r ∈ P(j) \ P(α∗).

Therefore, r ∈ Φ for each r ∈ P(j) \ P(α∗). Then, we have P(j) ∩ C(α∗) ∈ Φ. Since j ∈ Φ, following
from (37), we have

y0
k = 0 for each k ∈ P(j) \ (P(α∗) ∪ C(α∗)). (40)

Similarly, for any pair (i, j) ∈ Φ such that i ∈ P(j) and i 6= α∗, we have
∑

k∈P(i) y0
k = 1 and

∑
k∈P(j) y0

k = 1

follows from (37) and then
y0

k = 0 for each k ∈ P(j) \ P(i). (41)

Based on the results obtained from above Step 1 and Step 2. In the following step, we show that no fractional
solution points exist. 2

Now we show that no fractional solution exists. At first, let VΦ = ∪j∈ΦP(j). If there exists a k ∈ V \ VΦ

such that y0
k is fractional, there are two points u1 = u0 + εeyk and u2 = u0 − εeyk feasible for XSDK. It

contradicts with the assumption that u0 is an extreme point since u0 = (u1 + u2)/2.
Now we only need to prove that y0

k is not fractional for each k ∈ VΦ. Based on (36) and (39), we have

y0
k < 1 for each k ∈ P(α∗) \ {α∗} and y0

k ≤ 1 for each k ∈ VΦ \ P(α∗).

We prove the claim based on the analysis of three cases.
Case 1: x0 = 0. Then, x0 + d1y

0
1 = d1y

0
1 ≤ d1, which implies that y0

1 = 1 and α∗ = 1. Based on (37), we
have y0

k = 0 for each k ∈ VΦ \ {α∗}.

Case 2: x0 6= 0 and α∗ = 1. Following (40), we have y0
k = 0 for each k ∈ VΦ \ C(1). If there are fractional so-

lutions, then 0 < y0
1 < 1 and y0

1 +y0
j = 1 for each j ∈ C(1)∩VΦ. Thus, y0

j = y0
k for any pair (j, k) ∈ C(1)∩VΦ.

Then, any valid inequalities (26) with the right-hand-side value b` where ` ∈ C(1) ∩ VΦ will be equivalent
to x0 + b`y

0
1 + (b` − b1)y

0
` = b`. Then two alternative points u1 = u0 + εb1e

x − εey1 +
∑

k∈C(1)∩VΦ
εeyk and

u2 = u0 − εb1e
x + εey1 −

∑
k∈C(1)∩VΦ

εeyk are feasible for XSDK. It contradicts with the assumption that u0

is an extreme point since u0 = (u1 + u2)/2.

Case 3: x0 6= 0 and α∗ 6= 1. Let Φ1 be the set of nodes in Φ \ {α∗} such that no nodes in VΦ1
\ {Φ1 ∪ {α∗}}

belong to set Φ. That is, VΦ1
∩ Φ = Φ1 ∪ {α∗}. Similarly, let Φ2 be the set of nodes in Φ such that

∪j∈Φ2
V(j) ∩ Φ = Φ2. Based on (41), we have y0

k = 0 for each k ∈ VΦ2
\ VΦ1

. Let Φ′
1 = {j ∈ Φ1 :

there exists a node k ∈ P(j) such that 0 < y0
k < 1}. Note here we have

∑
k∈P(j) y0

k = 1 for each

j ∈ Φ′
1 according to (37). Then, there exists at least one pair (k1, k2) ∈ P(j) for each j ∈ Φ′

1 such that
0 < y0

k1
, y0

k2
< 1.

Now, we initialize two sets Π1 = ∅, Π2 = ∅ and label each node j ∈ Φ′
1 be zero (i.e., `(j) = 0 for each

j ∈ Φ′
1). Then, for each element j ∈ Φ′

1 according to the nondecreasing sequence of bj , we do the following
steps.

(1) Let s(j) = argmin{k ∈ P(j) \ Π1 : 0 < y0
k < 1}.

(2) If `(j) = 0, let Π1 = Π1 ∪ {s(j)}, update `(j) = 1 and `(r) = 1 for each r ∈ V(j)∩Φ′
1. Go back to (1).

(3) Else If `(j) = 1, let Π2 = Π2 ∪ {s(j)}, update `(j) = 2 and `(r) = 2 for each r ∈ V(j) ∩ Φ′
1. Stop.

We can easily observe there exists two points

u1 = u0 + ε
∑

k∈Π1∩P(α∗)

φk(Ωα∗)ex − ε
∑

k∈Π2∩P(α∗)

φk(Ωα∗)ex − ε
∑

k∈Π1

eyk + ε
∑

k∈Π2

eyk

and
u2 = u0 − ε

∑

k∈Π1∩P(α∗)

φk(Ωα∗)ex + ε
∑

k∈Π2∩P(α∗)

φk(Ωα∗)ex + ε
∑

k∈Π1

eyk − ε
∑

k∈Π2

eyk

feasible for XSDK. It contradicts with the assumption that u0 is an extreme point since u0 = (u1 + u2)/2. 2
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