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Abstract

Stochastic integer programming problems combine the difficulty of stochastic pro-
gramming with integer programming. In this article, we briefly review some of the
challenges in solving two-stage stochastic integer programming problems, and discuss
the research progress towards these challenges.

1 Introduction

A standard form for a two-stage stochastic integer program (SIP) is as follows:

min
x

c>x + EP [Q(x, ω)]

s.t. Ax = b,
x ∈ Rn1−p1

+ × Zp1
+

(1)

where
Q(x, ω) := min

y
q>y

s.t. Wy = h− Tx,
y ∈ Rn2−p2

+ × Zp2
+ .

(2)

Above, n1, n2, p1, p2 are nonnegative integers with p1 ≤ n1 and p2 ≤ n2, x represents the
first-stage decisions and y represents the second-stage decisions, and ω represents the uncer-
tain data for the second-stage (the parameters (q, h, T ) are actual realization of the random
data) with known distribution P . Throughout we assume that the matrix W is determin-
istic. Much of the structural results in stochastic integer programming are for this case.
Problem (1) seeks a first-stage decision that minimizes first stage costs and the expected
cost of second-stage (recourse) decisions. Note that both first- and second-stage variables
are restricted to be mixed-integer (R and Z denotes reals and integers respectively). If the
second stage variables are continuous (i.e. p2 = 0) then problem (1) involves minimizing a
convex objective subject to mixed-integer constraints. Much of the theory and algorithms
for two-stage stochastic linear programs (that do not rely on convexity of the first stage con-
straints) are then applicable. By two-stage stochastic integer programs we refer to problems
where p2 > 0.

A variety of applications in energy planning [14], manufacturing [9], logistics [19], etc.
can be formulated as two-stage stochastic integer programs of the form (1). In this article we

1



briefly review some important progress in theory and algorithms for solving (1). There has
been significant development in extensions of the two stage stochastic integer programming
framework, e.g. to multistage setting [23] and involving risk averse objectives [28]. However
this article is limited to models of the form (1).

2 Structure

In this section we discuss the structure of the expected value function

EP [Q(x, ω)]

where Q is given by (2). Consider first the value function of a deterministic mixed integer
program (MIP) as a function of the objective and right-hand-side vectors

Φ(q, t) := min
y

q>y

s.t. Wy = t
y ∈ Rn−p

+ × Zp
+,

(3)

where W is a m× n matrix, and t is an m-vector. We make the following assumptions.

(A1) For every t ∈ Rm, there exists y ∈ Rn−p
+ × Zp

+ such that Wy = t.

(A2) The entries of W are integers.

Assumption (A1) guarantees that the MIP (3) is feasible for all t ∈ Rm, and assumption
(A2) guarantees that (3) has an optimal solution if it is feasible and bounded. It is sufficient
to assume that W is rational, however we assume integrality for the ease of exposition. Let
us denote Q := {q : Π(q) 6= ∅} where Π(q) := {π ∈ Rm : W>π ≤ q}. Note that Q is a
closed convex set in Rn.

Theorem 2.1

(a) The value function Φ(·, ·) is lower semicontinuous over Q× Rm.

(b) Given t ∈ Rm, the function Φ(·, t) is continuous over Q; and given q ∈ Q the function
Φ(q, ·) is lower semicontinuous over Rm.

(c) Given q ∈ Q the function Φ(q, ·) is continuous over Rm except over (at most) a count-
able union of hyper-planes.

(d) Given q ∈ Q the function Φ(q, ·) is subaddditive over Rm, i.e. Φ(q, t1 + t2) ≤ Φ(q, t1)+
Φ(q, t2).

(e) Given t ∈ Rm, the function Φ(·, t) is concave over Q.

Next we consider the structure of EP [Q(x, ω)]. This function is given by the expectation
of the MIP value function Q(x, ω) = Φ(q, h− Tx) with respect to the distribution P of the
data ω = (q, h, T ).
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Theorem 2.2 In addition to assumptions (A1) and (A2), assume that the random set Π(q)
is non-empty with probability one, E[||q||||h||] < +∞ and E[||q||||T ||] < +∞. Then the
expected value function EP [Q(x, ω)] is well defined, real-valued and lower semicontinuous on
Rn1.

The above result establishes sufficient conditions for the expected value function to be
well defined and lower semicontinuous. Apart from this continuity property, very little can
be said of the structure of expected value functions of MIPs in general. Figure 1 illustrates
the objective function c>x +EP [Q(x, ω)] of a small instance of (1) with n1 = 2. We see that
the objective function has none of the desirable properties for optimization. It is non-convex
and even discontinuous.
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Figure 1: Objective function of a small SIP

When the distribution of the ω is absolutely continuous, i.e., it has a density function,
then it can be further shown that EP [Q(x, ω)] is continuous on Rn1 , however it is in general
nonconvex.

3 Challenges and progress

There are three levels of difficulty in solving stochastic integer programs of the form (1).

1. Evaluating the second-stage cost for a fixed first-stage decision and a particular real-
ization of the uncertain parameters. Note that this involves solving an instance of
the second-stage problem (2) which may be an NP-hard integer program and involve
significant computational difficulties.
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2. Evaluating the expected second-stage cost for a fixed first-stage decision. If the uncertain
parameters have continuous distribution, this involves integrating the value function
Q(x, ·) of an integer program, and is in general impossible. If the uncertain parameters
have a discrete distribution, this involves solving a (typically huge) number of similar
integer programs.

3. Optimizing the expected second-stage cost. As seen in Section 2, the value function of
an integer program is non-convex and often discontinuous. Consequently, the expected
second-stage cost function E[Q(·, ω)] is non-convex in x. The optimization of such a
complex objective function poses severe difficulties.

In the following, we briefly mention some of the theoretical and algorithmic progress
towards addressing the afore-mentioned difficulties in two-stage stochastic integer program-
ming.

3.1 Difficulty 1

It is typically assumed that a single evaluation of the second-stage problem is somehow
tractable. Without this assumption, very little progress in optimizing the expected value
of this integer program is possible. There has been some work in obtaining approximate
solutions to SIPs through approximate solutions to the integer second-stage problem, e.g.
in [9].

3.2 Difficulty 2

Let us now consider the difficulty of evaluating the expected value of the second-stage in-
teger program E[Q(x, ω)] for a given first-stage decision x. As mentioned earlier, if the
distribution of the uncertain parameters is continuous or if, in case of discrete distributions,
the number of possible realizations is extremely large, then it is practically impossible to
evaluate E[Q(x, ω)] exactly. In this case, one has to resort to approximating the underlying
probability distribution by a manageable distribution.

For example, if the underlying distribution is continuous one may approximate it via
discretization. Theoretical stability results for SIPs (see [24, 25]) suggest that if the approx-
imate distribution is not too “far” from the true distribution, then the optimal solution to
the SIP involving the approximate distribution is close to the true optimal solution.

Alternatively, one may use statistical estimates of the expected value function via Monte
Carlo sampling. This can be done in one of two ways. In interior sampling approaches,
the estimation of E[Q(x, ω)] is carried within the algorithm used to optimize this function.
For example, in the stochastic branch and bound algorithm [21], the feasible domain of the
first-stage variables x is recursively partitioned into subsets, and statistical upper and lower
bounds on the objective function c>x + E[Q(x, ω)] over these subsets are obtained via sam-
pling. These bounds are used to discard inferior subsets of the feasible domain, and further
partition the promising subsets to eventually isolate a subset containing an approximate opti-
mal solution. In exterior sampling approaches, the sampling and optimization are decoupled.
A Monte Carlo sample of the uncertain parameters is generated, and the expectation ob-
jective in the problem is replaced by a sample average. The resulting approximation of the

4



problem is then solved, and its solution serves as a candidate solution to the true problem.
By repeating the sampling-optimization procedure several times, it is possible to obtain sta-
tistical confidence intervals on the obtained candidate solutions. It can be shown that the
number of samples needed to get a fairly accurate solution with high probability is not too
large. Discussion of theoretical and algorithmic issues pertaining to the above approach in
the context of SIP can be found in [16, 1].

Regardless of how the underlying distribution is approximated, an evaluation of the
expected second-stage objective value (under the approximate distribution) requires solving
many similar integer programs. Owing to the absence of a computationally useful duality
theory for integer programming, it is very difficult to take advantage of the similarities in
the different second-stage IPs. When the second-stage variables are pure integer, several
proposals for using Gröbner basis and other test set based methods from computational
algebra for exploiting IP problem similarity have been put forth [11, 27, 33]. For the case of
mixed-integer subproblems, if a cutting plane method is used, then under some conditions
it is possible to transform a cut (or a valid inequality) derived for one of the second-stage
subproblems into a cut for another subproblem by exploiting similarity [6, 12].

3.3 Difficulty 3

Much of the development in SIP has been towards the difficulty of optimizing f(x) :=
c>x + E[Q(x, ω)], i.e., the sum of the first-stage and the expected second-stage costs. We
classify these developments as follows.

Convex approximations of the value function

Consider an SIP with simple integer recourse with only right hand side uncertainty, i.e. q,
T are deterministic, the second-stage problem has a special structure such that the value
function Q is separable and is given by

Q(x, ω) =
m∑

i=1

φi(hi − Tix)

and each separable piece φi is of the form

φ(t) = q+dte+ + q−btc−, t ∈ R,

where dte+ = max{0, dte} and btc− = max{0,−btc}. In this case, a single evaluation of f(x)
is easy, however owing to the non-convex nature of φ, the function f(x) is difficult to optimize.
Fortunately, it has been shown [10] that an expectation of the continuous counterpart of the
simple integer recourse function Q(x, ω) (i.e. where the recourse variables are continuous
instead of being discrete valued) under a particular class of distributions of ω provides the
tightest convex under-estimator for E[Q(x, ω)] over its entire domain. Recently, similar
results for constructing convex approximations of general integer recourse functions (SIPs
involving pure integer second-stage variables) by perturbing the underlying distribution have
been obtained [34]. These convex approximating functions are amenable for optimization and
can be used to provide strong lower bounds within some of the algorithms for optimizing f(x)
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discussed next. An open problem is the refinement of these approximations using additional
constraints on the first stage variables, e.g. bounds on x.

Stage-wise decomposition algorithms

This class of algorithms adopt the natural viewpoint of optimizing the objective function
f(x) := c>x + E[Q(x, ω)] over the set of feasible first-stage decisions (say denoted by X).
Note that E[Q(x, ω)] is not available in closed-form, nor is it suited for direct optimiza-
tion. Typical algorithms in this class progress in the following manner. In an iteration i,
the algorithm builds and/or refines a computationally tractable approximation (typically an
under-estimator) Q̂i(x) of E[Q(x, ω)]. The under-estimating function c>x + Q̂i(x) is opti-
mized with respect to the first-stage variables (this optimization problem is often referred to
as the master problem) to obtain a lower bound on the true optimal objective value as well as
to provide a candidate first-stage solution xi. Corresponding to the candidate solution, the
second-stage expected value function E[Q(xi, ω)] is evaluated. Assuming that the distribu-
tion of ω is discrete, this step involves independent solution of the second-stage problems for
each realization of ω, allowing for a computationally convenient decomposition. The value
c>xi+E[Q(xi, ω)] provides an upper bound on the optimal objective value. The evaluation of
E[Q(xi, ω)] also provides information on how the approximation Q̂i is to be updated/refined
to Q̂i+1 for the master problem of iteration i + 1. The process continues until the bounds
have converged. The details of the various stage-wise decomposition algorithms differ mainly
in how the approximation Q̂i is constructed and updated.

For SIPs with binary first-stage variables and mixed-integer second-stage variables, the
integer L-shaped method [18] approximates the second-stage value function by linear “cuts”
that are exact at the binary solution where the cut is generated and are under-estimates
at other binary solutions. The optimization of the master problem, i.e. optimizing c>x +
Q̂i(x) with respect to the first-stage binary variables, is carried out via a branch-and-bound
strategy. As soon as a new first-stage binary solution is encountered in the branch-and-
bound search, the second-stage subproblems are solved to generate a new cut and to refine
the approximation Q̂i. The integer L-shaped method requires that the second-stage integer
problems (corresponding to the current candidate first-stage solution xi) are all solved to
optimality before a valid cut can be generated. Recall that typical integer programming
algorithms progress by solving a sequence of intermediate linear programming problems.
Using disjunctive programming techniques, it is possible to derive cuts from the solutions to
these intermediate LPs that are valid under-estimators of E[Q(x, ω)] at all binary first-stage
solutions [12, 29]. This avoids solving difficult integer second-stage problems to optimality
in all iterations of the algorithm, providing significant computational advantage.

For SIPs where the first-stage variables are not necessarily all binary, dual functions from
the second-stage integer program can, in principle, be used to construct cuts to build the
approximation Q̂i [8]. Owing to the non-convex nature of IP dual functions, the cuts are
no longer linear, resulting in a non-convex master problem. If the second-stage variables
are pure integer (and the first-stage variables are mixed-integer), then it can be shown that
E[Q(x, ω)] is piece-wise constant over subsets that form a partitioning of the feasible region
of x [27]. Optimization of c>x+E[Q(x, ω)] over such a subset is easy. This leads immediately
to a scheme where the subsets are enumerated, and the one over which the objective function
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value is least is chosen. By exploiting certain monotonicity properties, the subsets can be
enumerated efficiently within a branch-and-bound strategy [2]. Additional properties of the
MIP value function Q(x, ω), such as sub-additivity, can be used to improve the method [17].

Scenario-wise decomposition

Assuming the distribution of ω is discrete, i.e. the random parameter takes one of a finite set
of values (scenarios) {ω1, . . . , ωS} having probabilities {p1, . . . , pS}, the two-stage SIP can
be re-formulated as follows

min
∑S

s=1 ps(c
>xs + q>s ys)

s.t. Axs = b s = 1, . . . , S,
Tsxs + Wsys = hs s = 1, . . . , S,
xs ∈ Rn1−p1

+ × Zp1
+ s = 1, . . . , S,

ys ∈ Rn2−p2
+ × Zp2

+ s = 1, . . . , S,
x1 = x2 = · · · = xS.

Note that copies of the first-stage variable have been introduced for each scenario. The
last constraint, known as the non-anticipativity constraint, guarantee that the first-stage
variables are identical across the different scenarios. Consider the Lagrangian dual problem
obtained by relaxing the non-anticipativity constraints through the introduction of Lagrange
multipliers. Note that for a given set of multipliers, the problem is separable by scenarios,
thus the dual function can be evaluated in a decomposed manner. Optimization of the dual
function can be performed using standard non-smooth optimization techniques. However,
owing to the non-convexities, there exists a duality gap, and one needs to resort to a branch-
and-bound strategy to prove optimality [7].

Cuts for deterministic equivalent MIP

If the number of scenarios (assuming a finite distribution setting) is not astronomical then
a possible approach is to directly solve the deterministic equivalent MIP,

min c>x +
∑S

s=1 psq
>
s ys

s.t. Ax = b
Tsx + Wsys = hs s = 1, . . . , S,
x ∈ Rn1−p1

+ × Zp1
+ s = 1, . . . , S,

ys ∈ Rn2−p2
+ × Zp2

+ s = 1, . . . , S,

using an off-the-shelf solver such as CPLEX or EXPRESS.
One of the most important features of these solvers is the generation of cutting planes by

analyzing the polyhedral structure of the problem. Such cuts significantly improve the linear
programming relaxation of the problem, and expedite linear programming based branch-and-
bound search. Typically such cuts are generated by analyzing a sing row of the constraint
system and do not combine information from multiple rows. In a stochastic integer program
the constraint system is repeated with small changes for each scenario. Thus it is possible to
effectively combine cuts from multiple rows corresponding to different scenarios [30]. Such
cuts have been shown to significantly improve performance over single row cuts. An open
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issue is that such multi-row cuts links second stage variables across multiple scenarios, and
hence destroys decomposability. Algorithmic techniques that can bypass this issue pose an
important challenge.

4 Concluding Remarks

This article offers a very limited view of some of the theoretical and algorithmic concepts in
SIP. The concepts alluded to here have been significantly enriched and extended in recent
years. We have not discussed the large number of important developments in application-
specific areas of SIP (see, e.g., [31] for a bibliography of applications of SIP), and also omitted
the important progress made in approximation algorithms for SIP. We hope that this simple
introduction will pique the readers interest towards further exploration of SIP.
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matical Programming, 83:229–252, 1998.

[28] R. Schultz and S. Tiedemann. Conditional Value-at-Risk in stochastic programs with
mixed-integer recourse. Mathematical Programming, 105: 365-386, 2006.

[29] H. D. Sherali and B. M. P. Fraticelli. A modification of Benders’ decomposition al-
gorithm for discrete subproblems: An approach for stochastic programs with integer
recourse. Journal of Global Optimization, 22:319–342, 2002.

[30] Y. Guan, S. Ahmed and G. L. Nemhauser. Cutting planes for multi-stage stochastic
integer programs. Operations Research, 57:287-298, 2009

[31] L. Stougie and M. H. van der Vlerk. Stochastic integer programming. In Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico et al (eds), John Wiley
& Sons, New York, pages 127–141, 1997.

[32] A. Ruszczynski and A. Shapiro (eds.). Stochastic Programming, Handbooks in Opera-
tions Research and Management Science, Vol. 10. North-Holland, 2003.

[33] S. R. Tayur, R. R. Thomas, and N. R. Natraj. An algebraic geometry algorithm for
scheduling in the presence of setups and correlated demands. Mathematical Program-
ming, 69(3):369–401, 1995.

[34] M.H. van der Vlerk. Convex approximations for complete integer recourse models.
Mathematical Programming, 99:297–310, 2004.

10


