
Dynamic Capacity Acquisition and

Assignment under Uncertainty∗

Shabbir Ahmed† and Renan Garcia
School of Industrial & Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332.

March 29, 2002

Abstract

Given a set of m resources and n tasks, the dynamic capacity acquisi-
tion and assignment problem seeks a minimum cost schedule of capacity
acquisitions for the resources and the assignment of resources to tasks,
over a given planning horizon of T periods. This problem arises, for
example, in the integrated planning of locations and capacities of distri-
bution centers (DCs), and the assignment of customers to the DCs, in
supply chain applications. We consider the dynamic capacity acquisition
and assignment problem in an environment where the assignment costs
and the processing requirements for the tasks are uncertain. Using a sce-
nario based approach, we develop a stochastic integer programming model
for this problem. The highly non-convex nature of this model prevents
the application of standard stochastic programming decomposition algo-
rithms. We use a recently developed decomposition based branch-and-
bound strategy for the problem. Encouraging preliminary computational
results are provided.

Keywords: Capacity expansion, Stochastic integer programming, Decom-
position, Branch & bound.

∗This research has been supported in part by the National Science Foundation (Grant No.
DMI-0099726) and The Logistics Institute Asia-Pacific in Singapore.

†Corresponding author. E-mail: sahmed@isye.gatech.edu

1

1 Introduction

We address the problem of determining a capacity expansion schedule for a set of
resources, and the assignment of resource capacity to tasks over a multi-period
planning horizon. This problem commonly arises in the integrated planning of
locations and capacities of distribution centers (DCs), and the assignment of
customers to the DCs, in supply chain applications, as well as machine pro-
curement planning in manufacturing applications. In this paper, we address
the problem in an uncertain setting. We develop a model that explicitly incor-
porates uncertainty in task processing requirements and costs via a set of sce-
narios. The resulting formulation is a stochastic integer program. The highly
non-convex nature of this model prevents the application of standard stochastic
programming decomposition algorithms. We describe a decomposition based
branch-and-bound strategy to solve the problem to global optimality. Our pre-
liminary computational experience demonstrates that the proposed algorithm
significantly outperforms straight-forward use of commercial solvers, and that
the method is quite insensitive to the number of scenarios.

The remainder of the paper is organized as follows. Section 2 presents a
mathematical statement of the problem under consideration. Section 3 iden-
tifies some of the computational challenges in solving this class of problems.
Section 4 describes a decomposition based branch and bound algorithm for the
problem under consideration. Section 5 reports our preliminary computational
experience using the proposed methodology. Finally, some concluding remarks
are provided in Section 6.

2 Model Development

In this section, we develop a mathematical model for dynamic capacity acquisi-
tion and assignment under uncertainty. We first describe a deterministic formu-
lation, and later extend this formulation to a stochastic setting by introducing
a set of scenarios.

2.1 The Deterministic Problem

Consider the problem of deciding the capacity expansion schedule for a set m
resources over T time periods in order to satisfy the processing requirements
of n tasks. Using variables xit for the capacity acquisition of resource i in
period t, and yijt to indicate whether resource i is assigned to task j in period
t, the combined capacity acquisition and assigned problem can be formulated
as follows:

2

min
∑T

t=1

[∑m
i=1 fit(xit) +

∑m
i=1

∑n
j=1 cijtyijt

]
s.t. x ∈ X ⊆ R

mT
+∑n

j=1 djtyijt ≤
∑

τ≤t xiτ ∀i, t∑m
i=1 yijt = 1 ∀j, t

yijt ∈ {0, 1} ∀i, j, t.

(1)

In the above formulation fit(·) is the expansion cost for resource i in period t, and
cijt is the cost of assigning resource i to task j in period t. The set X denotes
the constraints on capacity acquisition. The parameter djt is the processing
requirement of task j in period t, and accordingly, the second constraint in
problem (1) reflects that the processing requirement of all tasks assigned to
a resource in any period cannot exceed the installed capacity in that period.
The third constraint enforces that each task needs to be assigned to exactly
once resource in each of the periods. The final constraint enforces the binary
restrictions on the assignment variables yijt.

Typically the capacity expansion costs are modeled as fixed-charge cost func-
tions, i.e.

fit(xit) := αitxit + βituit,

with

uit =
{
1 if xit > 0
0 otherwise,

where αit and βit are the variable and fixed cost, respectively, of capacity ac-
quisition of resource i in period t, and uit is the indicator variable for capacity
acquisition. Furthermore, the set X typically represents polyhedral constraints.
In this setting, if the problem parameters, such as processing requirements and
costs, are known with complete certainty, problem (1) is a deterministic mixed-
integer linear program.

Various authors have considered the deterministic problem (1) in the con-
text of integrated facility location and capacity planning. The resources can be
viewed as potential locations for facilities, and the tasks can be interpreted as
customers that need to be assigned to facilities. The integrated facility location
and capacity planning problem then consists of determining where to locate fa-
cilities, how much capacity to install in the various locations, and how to assign
customers to facilities over a multi-period planning horizon. Fong and Srini-
vasan [9, 10] considered a multi-period location and capacity planning model,
and proposed a heuristic solution strategy. Their model assumed that a fraction
of a customers demand could be satisfied from a facility rather than assigning
all of a customer’s demand to a facility as in our problem (1). Klincewicz et
al. [14] proposed an iterative heuristic procedure for solving the dynamic loca-
tion and capacity planning problem in the case where fractional assignment of
customer demands are not allowed. More recently, Lim and Kim [16] proposed
a Lagrangian relaxation based branch and bound strategy for the exact solution
of this problem.

3

2.2 The Stochastic Problem

In practice, the problem parameters associated with the dynamic capacity ac-
quisition and assignment problem (1) are rarely known with complete certainty.
To incorporate uncertainty in the decision making process, we adopt a two-stage
stochastic programming approach [3]. We assume that the capacity planning
decisions (for the entire planning horizon) have to made here and now, with
only some knowledge of future scenarios of task processing requirements and
the processing costs. Once the capacities are decided, time unfolds and a cer-
tain scenario of the problem parameters realizes, and then the optimal decision
regarding the task-resource assignment is made. The overall objective is to de-
termine a capacity acquisition plan, such that the sum of acquisition cost and
the expected assignment costs is minimized. Note that although the problem
is a multi-period one, since the capacity planning decisions for all periods are
made in period one, the problem is essentially a two-stage one. This is often
justified, since the capacity planning decisions are strategic in nature and need
to be decided over longer planning periods, while the assignment decisions are
more at the operational level and can be decided when more information be-
comes available. In principle, the model can be improved by considering the
capacity decisions to be revised as time progresses and more information be-
comes available. However, such a model would result in a multi-stage stochastic
integer program which is almost impossible to solve with current computational
technology. Furthermore, the two-stage model often can serve as a good enough
approximation to the multi-stage problem.

To incorporate the uncertainty in the processing requirements and costs, let
us assume that these parameters can be realized (jointly) as one of S scenarios.
We denote the processing requirement for task j in period t under scenario s
by ds

jt, and the cost of processing task j using resource i in period t, under
scenario s by cs

ijt. The probability of scenario will be denoted by ps. Using
these notation, we can extend the deterministic problem (1) to the following
two-stage stochastic program.

min
∑T

t=1

∑m
i=1 fit(xit) +

∑S
s=1 ps

∑T
t=1 Qs

t (x)
s.t. x ∈ X ⊆ R

mT
+

(2)

where for all t and s,

Qs
t (x) := min

∑m
i=0

∑n
j=1 cs

ijtyij

s.t.
∑n

j=1 ds
jtyij ≤

∑t
τ=1 xiτ ∀i∑m

i=0 yij = 1 ∀j
yij ∈ {0, 1} ∀i, j

(3)

Problem (2) represents the first-stage capacity planning problem where the ob-
jective is to minimize the sum of acquisition costs and expected assignment
costs. The function Qs

t (x) given by (3) represents the optimal assignment cost
in period t under scenario s for a given capacity expansion schedule x. Note
that we have included a dummy resource i = 0 with infinite capacity, so that

4

the function Qs
t is well-defined for any x. The cost cs

0jt denotes the penalty of
failing to assign a resource to task j. The dummy resource enforces the com-
plete recourse property [3], which guarantees that there is a feasible second-stage
assignment in all periods and all scenarios for any capacity acquisition schedule.

Several authors have addressed the stochastic dynamic capacity acquisition
and allocation problem which allows fractions of the processing requirement
of a task to be assigned to a resource. In this case the capacity allocation
problem (3) in the second stage is a linear program. Such problems have been
considered in the context of service industries [2], process industries [17], and
the semiconductor industries [24], only to name a few. The fact that fractional
allocations are not allowed makes our problem (2) exceedingly difficult. To our
knowledge, the stochastic dynamic capacity acquisition and assignment problem
(2) has not been previously addressed in the literature.

3 Computational Challenges

By introducing the assignment variables yij for each period and scenario, the
stochastic dynamic capacity acquisition and assignment problem can be re-
written as the following deterministic equivalent problem.

min
∑T

t=1

∑m
i=1 fit(xit) +

∑S
s=1

∑T
t=1

∑m
i=0

∑n
j=1 pscs

ijty
s
ijt

s.t. x ∈ X ⊆ R
mT
+∑n

j=1 ds
jty

s
ijt ≤

∑t
τ=1 xiτ ∀i, t, s∑m

i=0 ys
ijt = 1 ∀j, t, s

ys
ijt ∈ {0, 1} ∀i, j, t, s

(4)

For fixed charge cost functions fit, problem (4) is a large-scale mixed-integer
linear program which can, in principle, be solved using standard integer pro-
gramming methodology. However, for problems when the number of scenarios
S is large, such an approach is doomed to failure since no advantage of the
special problem structure is exploited. We demonstrate this computationally in
Section 5.

Note that the stochastic dynamic capacity acquisition and assignment prob-
lem (2) has a nice decomposable structure, wherein if the first-stage capacity
decisions are fixed, the second-stage assignment decisions can be determined
independently for each scenario. This is a general property for stochastic pro-
gramming problems. For stochastic linear programs, i.e. when the second-
stage problem is linear, the convexity of the second-stage value function along
with this decomposability property has been exploited to develop a number
of decomposition-based algorithms [4, 11, 13, 19, 25] as well as gradient-based
algorithms [8, 23].

Unfortunately, our problem involves integer decisions in the second-stage
and is a stochastic integer program. The main difficulty in solving stochastic
integer programs is that the second-stage value function is not necessarily con-
vex but only lower semicontinuous (l.s.c.). Thus, the standard decomposition

5

approaches that work nicely for stochastic linear programs, break down when
second stage integer variables are present. Laporte and Louveaux [15] devel-
oped a branch and bound scheme for stochastic integer programs with binary
first stage variables. This restriction allows for the construction of optimality
cuts that approximate the non-convex objective function at all binary solutions.
Caroe and Tind [7] proposed to use non-linear dual functions within a Ben-
ders decomposition based branch and bound framework. Branch and bound
schemes are suggested for solving the resulting non-convex master problem. For
continuous distribution of the problem parameters, Norkin et al. [18] developed
a branch and bound algorithm that makes use of stochastic upper and lower
bounds and proved almost sure convergence. Caroe [6] developed a branch and
bound scheme where a Lagrangian relaxation is used as the lower bounding
problem. In all of these branch and bound approaches, finite termination of
the algorithm is not guaranteed unless the first stage variables, i.e., the search
space, is purely discrete. As such these methods are not applicable to the
stochastic dynamic capacity acquisition and assignment problem 2, since our
first-stage variables are mixed-integer. Recently, Schultz et al. [22] proposed
a finite algorithm for problems when the second stage is purely integer. The
authors observe that, in this case, only integer values of the right hand side pa-
rameters of the second stage problem are relevant. This fact is used to identify
a countable set in the space of the first stage variables containing the optimal
solution. Schultz et al. propose complete enumeration of this countable lat-
tice to search for the optimal solution. This scheme only allows for the right
hand side parameters to be uncertain. Furthermore, enumeration of a lattice
point requires the solution of many small integer programming problems. Thus,
explicit enumeration of all lattice points is, in general, computationally pro-
hibitive. Recently, Ahmed et al. [1] developed an efficient decomposition based
branch and bound algorithm for general two-stage stochastic integer programs
with mixed-integer first-stage variables and pure integer second-stage variables.
Unlike existing algorithms, this method avoids complete enumeration and is
guaranteed to terminate finitely.

In the next section, we describe a decomposition based branch and bound al-
gorithm for the stochastic dynamic capacity acquisition and assignment problem
based upon the scheme of [1].

4 A Decomposition based Branch & Bound Al-

gorithm

Problem (2) is a two-stage stochastic integer program with mixed-integer first-
stage variables, and pure integer second-stage variables. Since we have assumed
that dummy resources y0j have been introduced for each j, the problem obvi-
ously possesses the complete recourse property, i.e., Qs

t (x) < ∞ for all x ∈ X
and for all t and s. We also assume that the set X is a non-empty subset of a
compact set, and we make the standard assumptions [20, 21] for problem (2) to

6

be well defined.
Note that, for each t and s, Qs

t (x) is the value function of an integer program
and is known to be piece-wise constant over certain cones in the space of x with
discontinuities along the boundaries of these cones [5]. Existing branch and
bound methods for stochastic integer programs attempt to partition the space
of first stage variables into (hyper)rectangular cells. Since the discontinuities
are, in general, not orthogonal to the variable axes, there could always be some
rectangular partition that contains a discontinuity in the interior. Thus, in
the case of continuous first stage variables, it might not be possible for the
lower and upper bounds to converge for such a partition, unless the partition
is arbitrarily small. This would require infinite partitioning of the first stage
variables and only a convergent (i.e., possibly infinite) scheme. In general, it
is not obvious how one can partition the search space by subdividing along
the discontinuities within a branch and bound framework. Ahmed et al. [1]
proposed a transformation of the general two-stage stochastic integer program
with mixed-integer first-stage variables, and pure integer second-stage variables
that causes the discontinuities to be orthogonal to the variable axes. Thus, a
rectangular partitioning strategy can potentially isolate the discontinuous pieces
of the value function, thereby allowing upper and lower bounds to collapse
finitely. This is the key to the subsequent development of a finite branch and
bound algorithm.

Problem Transformation

Let us define the linear transformation Tx = χ to be
∑t

τ=1 xiτ = χit for all i
and t. Instead of (2), let us consider the following transformed problem:

min{g(χ) | χ ∈ X} (5)

where g(χ) = Φ(χ) + Ψ(χ),

Φ(χ) = min
∑T

t=1

∑m
i=1 fit(xit)

s.t. x ∈ X ⊆ R
mT
+∑t

τ=1 xiτ = χit ∀i, t,

Ψ(χ) =
∑S

s=1

∑T
t=1 psΨs

t (χ),

Ψs
t (χ) = min

∑m
i=0

∑n
j=1 cs

ijtyij

s.t.
∑n

j=1 ds
jtyij ≤ χit ∀i∑m

i=0 yij = 1 ∀j
yij ∈ {0, 1} ∀i, j

for all t and s, and X = {χ ∈ R
mT | χ = Tx, x ∈ X}. The variables χ are

known as the “tender variables” in the stochastic programming literature. In
this problem, the tender variables correspond to the capacity installed up to

7

period t for resource i. Note that if χ∗ is an optimal solution of (5) and if

x∗ ∈ argmin
∑T

t=1

∑m
i=1 fit(xit)

s.t. x ∈ X ⊆ R
mT
+∑t

τ=1 xiτ = χ∗
it ∀i, t,

then x∗ is an optimal solution of (2). Furthermore, the optimal objective values
of the two problems are equal. Thus we can solve (2) by solving (5) with respect
to the tender variables χ ∈ X . This transformation induces a special structure
to the discontinuities in the problem which we exploit within our branch and
bound scheme. These structural results are discussed next.

For a fixed t and s, consider the function Ψs
t (χt), where Ψs

t : R
m → R and

χt ∈ R
m. Let Ψs

it(χit) denote Ψs
t (χt) as a function of the i-th component of χt,

or Ψs
it(χit) = Ψs

t (. . . , χit, . . .), where Ψs
it : R → R. Without loss of generality,

we assume that ds
jt is integral for all j, t and s. Then by the integrality of

y we have that for each i, t and s, the constraint
∑n

j=1 ds
jtyij ≤ χit implies∑n

j=1 ds
jtyij ≤ χit�. Thus, for any ks

it ∈ Z, Ψs
it(χit) is constant over regions

{χit|χit� = ks
it} = {χit|ks

it ≤ χit < ks
it + 1}. Equivalently, Ψs

it(χit) is constant
over intervals χit ∈ [ks

it, k
s
it + 1) with ks

it ∈ Z. Using this observation, we have
the following result.

Theorem 4.1 Let k = (k1
11, . . . , k

s
it, . . . , kS

mT)
T ∈ Z

mTS be a vector of integers.
For a given k, let C(k) := {χ ∈ R

mT |χ ∈ ∩S
s=1Π

T
t=1Π

m
i=1[k

s
it, k

s
it + 1)}. Then

if C(k) �= ∅, then Ψ(χ) is constant over C(k). Furthermore, let X ∈ R
mT and

K := {k ∈ ZmTS |C(k) ∩ X �= ∅}. Then, if X is compact, |K| <∞.

A proof of the above result in the context of general two-stage stochastic pro-
grams with pure integer recourse can be found in [1]. Note that the set C(k) in
Theorem 4.1 is a hyper-rectangle since it is the Cartesian product of intervals.
The above result then implies that the second stage expected value function is
piece wise constant over rectangular regions in the space of the tender variables
χ. Thus, the discontinuities can only lie at the boundaries of these regions and,
therefore, are all orthogonal to the variable axes. Furthermore, the number of
such regions within the feasible set of the problem is finite. Next, we exploit
this property to develop a finite decomposition based branch and bound (DBB)
algorithm for (5).

The DBB Algorithm

The DBB algorithm exploits the structural results of Theorem 4.1 by parti-
tioning the space of χ into regions of the form ΠT

t=1Π
m
i=1[lit, uit), where uit is

a point at which the second stage value function Ψ(χ) may be discontinuous.
Note that Ψ(χ) can only be discontinuous at points where χit is integral. Thus,
we partition our search space along such values of χ. Branching in this manner,
we can isolate regions over which the second stage value function is constant,
and hence solve the problem exactly. A formal statement of the DBB algorithm

8

follows.

Initialization:

Preprocess the problem by constructing a hyper-rectangleP0 := ΠT
t=1Π

m
i=1[l

0
it,

u0
it) ⊇ X . Add the problem min{g(χ)|χ ∈ X ∩ P0} to a list L of open
subproblems. Set U ← +∞ and k ← 0.

Iteration k:

Step k.1: If L = ∅, terminate with solution χ∗, otherwise select a sub-
problem k, defined as inf{g(χ)|χ ∈ X ∩ Pk}, from the list L of currently
open subproblems. Set L ← L\{k}. Note, that the min has been replaced
by inf since the feasible region of the problem is not necessarily closed.

Step k.2: Obtain a lower bound βk satisfying βk ≤ inf{g(χ)|χ ∈ X ∩Pk}.
If X ∩ Pk = ∅, βk = +∞ by convention. Determine a feasible solution
χk ∈ X and compute an upper bound αk ≥ min{g(χ)|χ ∈ X} by setting
αk = g(χk).

Step k.2.a: Set L← mini∈L∪{k} βi.

Step k.2.b: If αk < U , then χ∗ ← χk and U ← αk.

Step k.2.c: Fathom the subproblem list, i.e., L ← L \ {i|βi ≥ U}.
If βk ≥ U , then goto Step k.1 and select another subproblem.

Step k.3: Partition Pk into Pk1 and Pk2 . Set L ← L ∪ {k1, k2}, i.e.,
append the two subproblems inf{g(χ)|χ ∈ X ∩ Pk1} and inf{g(χ)|χ ∈
X ∩ Pk2} to the list of open subproblems. For selection purposes, set
βk1 , βk2 ← βk. Set k ← k + 1 and go to Step k.1.

Details of each of the steps of the above algorithm are discussed in [1]. Here,
we briefly describe some of the key features.

Lower Bounding: As mentioned earlier, we shall only consider partitions of the
form Pk := ΠT

t=1Π
m
i=1[lit, uit), where uk

it is integral. Consider the problem:

(LB) : gL(Pk) = min
T∑

t=1

m∑
i=1

fit(xit) + θ (6)

s.t. x ∈ X ⊆ R
mT
+

t∑
τ=1

xiτ = χit ∀i, t

lk ≤ χ ≤ uk

θ ≥
S∑

s=1

ps
T∑

t=1

Ψs
t (u

k
t − ε), (7)

9

where ε is sufficiently small such that Ψs
t (·) is constant over [uk

t − ε, uk
t) for all

s. This ε guarantees that the second stage value function for values of χ within
the interior of the partition ΠT

t=1Π
m
i=1[l

k
it, u

k
it) is approximated. Since we have

exactly characterized the regions over which the Ψs
t (·) is constant, we can cal-

culate ε a priori (see [1] for details). It can be easily shown that (LB) is a valid
lower bounding problem. To solve (LB), we first need to solve ST second-stage
assignment subproblems Ψs

t (χ) to construct the cut (7). The master problem
(6) can then be solved with respect to the variables (x, χ, θ). Each of the sub-
problems and the master problem can be solved completely independently, so
complete stage, scenario and period decomposition is achieved.

Upper Bounding: Let χk be an optimal solution of problem (LB). Note that
χk ∈ X , and is therefore a feasible solution. We can then compute an upper
bound αk := g(χk) ≥ min{g(χ)|χ ∈ X}.

Fathoming: Once we have isolated a region over which the second stage value
function is constant, the lower and upper bounds over this region become equal.
Subsequently such a region is fathomed in Step k.2.c of the algorithm.

Branching: To isolate the discontinuous pieces of the second stage value func-
tion, we are required to partition an axis i′t′ at a point χi′t′ such that Ψs

it(·) is
possibly discontinuous at χi′t′ for some s. We can do this by selecting χi′t′ such
that χi′t′ is integral.

Finiteness of the algorithm

Note that the branch and bound algorithm described above searches for the
global solution by successively partitioning the space of χ in the form of a
binary tree. Since the search space is continuous, it is not immediately obvious
that the branch and bound search is finite. Fortunately our branching scheme
guarantees that it is. We discuss this issue next.

Consider a partition Pk that is unfathomed. The our fathoming rule implies
that the second stage value function is discontinuous over this partition. Thus,
the branching step can further refine it by branching along the discontinuity
resulting in two strictly smaller partitions. By Theorem 4.1, the number of dis-
continuities in Pk is finite. Therefore, any nested sequence {Pkq} generated by
branching along the discontinuities of Pk will be finite. It then follows that the
branch and bound algorithm terminates after finitely many steps. Furthermore,
since the lower and upper bounding procedures are valid, the solution obtained
by the algorithm is globally optimal.Thus,

Theorem 4.2 The DBB algorithm terminates with a global minimum after
finitely many steps.

A formal proof of the above result in a more general setting can be found in [1].

10

5 Preliminary Computational Experience

In this section, we describe our preliminary computational experience in us-
ing the DBB algorithm to solve randomly generated instances of the stochastic
dynamic capacity acquisition and assignment problem. We compare this decom-
position method to solving the full deterministic equivalent of the problem by
commercial integer programming software. The specific performance measures
considered include solution times, the number of branch-and-bound nodes, and
iterations.

5.1 Experimental Design

To provide the basis for the experiments, several test problems were created.
When designing the numerical experiment, it was crucial to test the algorithm
over a relatively wide range of problem parameters. Particular attention was
paid to problems with a greater number of scenarios which is more reminiscent
to what is typically found in practical applications. There were four factors
(or parameters) considered with respective ranges as follows: resources - m =
{2, 3}, jobs - n = {2, 3, 4}, time periods - T = {2, 3}, and scenarios - S =
{100, 200, 300, 400, 500}. Each combination of these factors was then tested with
5 different replications. In total, there were 300 individual problem instances
constructed numerically, with the problem parameters randomly sampled from
uniform distributions. Different random seeds were used for each of the 300
problems, hence each problem is independent of any other. Instances were also
solved in random order to preserve the integrity of the results.

The DBB Algorithm was implemented in ANSI C and run on a Sun Sparc
Ultra60 workstation. The relaxation problems at each node of the DBB algo-
rithm were solved using subroutine calls to CPLEX 7.0. The second-stage as-
signment subproblems were solved using a purely enumerative procedure with
all possible solutions being considered. It is important to note that the code
contained no preprocessing or other sophisticated enhancements as typically
found in commercial software. For comparison, the larger scale deterministic
equivalent problem was solved using CPLEX’s generic MIP solver with all of
preprocessing options enabled. To evaluate the two alternatives on the same
basis, 30 minutes was set as an upper bound for running time and a tolerance
of 0.01% was used for algorithm termination. Node limits of 20,000 and 250,000
were also set for each respective algorithm.

5.2 Growth in Problem Size

Before the results are presented, it is appropriate to discuss the size of the
deterministic equivalent of the problems considered, and understand why solving
the problem with straightforward MIP methodology may have set backs. The
deterministic equivalent problem contains [3m + (m + 1)nS]T variables, with
[m+(m+1)nS]T of these binary integer variables. The number of constraints is

11

[m(S+2)+nS]T , and [m(T+1
2 +3)+mS+nS+2mnS]T is the number of non-

zeros in the coefficient matrix. These formulas clearly indicate the critical effect
that the number of scenarios (S) and time periods (T) have on the problem’s
growth. The number of scenarios is present in the largest terms of all four of the
problem size parameters. Its increase dramatically affects the number of binary
variables and the size of the constraint matrix since it increases at such a rapid
pace with a reasonable scenario tree. To get a sense of the size numerically,
the smallest instance that was considered in the experiment has 1212 variables
(1204 binary) with 808 constraints and 2418 non-zeros. On the other side of the
spectrum, the largest of the experimental problems is substantially greater in
size with 24027 variables (24009 binary), 10518 constraints and 46545 non-zeros.
This is obviously a very large integer program and is therefore difficult to solve
with a straightforward MIP approach.

5.3 Numerical Results

The results of the experiments appear in full in Table 1. Statistics on the num-
ber of instances solved and premature terminating conditions can be found in
Table 2. As evident from the tables, the numerical results for the DBB Al-
gorithm are quite positive. The algorithm performed significantly better than
CPLEX in its efforts to solve the deterministic equivalent in all three of the per-
formance measures. Nearly 85% of the instances were solved within the desired
tolerance by the algorithm within the time, iteration and node constraints that
were set a priori. Of those that did not fully solve, only 38% were terminated
prematurely due to time. The average gap between the bounds after stopping
due to the time constraint was a reasonable 2.05%. When the termination was
due to a memory problem or node limitation the average stopping time was
882.3 seconds and the average gap was 1.10%.

CPLEX MIP statistics are extremely unfavorable. The problem becomes
unsolvable for CPLEX rather quickly, evident by the lack of numbers in Table
DBB. Its success rate was a mere 27%, and over 90% of its premature termi-
nations were due to time with an average stopping gap of 0.848%. As one can
see from Table 1, the number of scenarios in general has a much greater impact
on the CPLEX MIP, where the effect on the DBB Algorithm is not as drastic.
In order to illustrate the differences in the two, the set of instances in which
CPLEX could be most closely compared to the algorithm were examined. The
case of 2 resources, 3 tasks, and 2 time periods is the one in which CPLEX
solved the most instances of any set of problem parameters. Figures 1 through
3 compare the performance of both algorithms in terms of three performance
measures. The rapid growth of nodes, iterations and solution time evident in
the CPLEX runs is more severe than the that of the DBB algorithm values.
In total, of the 253 instances solved by the DBB Algorithm, the solution time
surpassed the CPLEX MIP time on only 4 occasions, and was beaten 9 times
in all 300 runs. The average time savings in those 9 instances for CPLEX was
191.2 seconds.

12

DBB CPLEX
m n T S # Solved Nodes Iterations Time # Solved Nodes Iterations Time

2 2 2 100 5 292.6 145.8 1.7 3 1138.3 3088.0 6.2
200 5 240.2 119.6 2.1 3 80.7 2563.7 5.8
300 5 293.0 146.0 3.6 5 9860.6 19287.2 97.0
400 5 207.8 103.4 3.2 * * * *
500 5 269.8 134.4 5.0 3 5422.7 39299.3 137.6

2 2 3 100 4 5064.5 2531.8 66.9 2 103.5 1790.0 3.4
200 3 4379.0 2189.0 68.1 2 1457.0 8186.5 32.3
300 5 391.8 195.4 7.1 1 843.0 10550.0 46.1
400 5 2150.6 1074.8 53.8 1 750.0 9310.0 54.7
500 4 1192.0 595.5 33.3 1 107.0 13075.0 64.1

2 3 2 100 5 192.6 95.8 2.2 3 249.3 2721.3 4.8
200 5 243.4 121.2 4.7 4 655.3 6552.5 20.1
300 5 243.8 121.4 7.0 4 432.3 8874.3 32.2
400 5 185.4 92.2 6.8 4 533.8 20990.3 58.3
500 5 213.4 106.2 9.8 3 2300.0 57373.3 172.8

2 3 3 100 5 268.2 133.6 4.6 2 7910.0 19271.5 66.3
200 5 3023.8 1511.4 96.0 * * * *
300 5 381.4 190.2 17.2 * * * *
400 5 1606.6 802.8 92.5 * * * *
500 5 1465.0 732.0 103.1 * * * *

2 4 2 100 5 183.8 91.4 4.7 5 315.8 4271.4 6.7
200 5 149.4 74.2 7.9 5 3020.6 13946.4 59.5
300 5 137.0 68.0 10.3 4 2357.3 45490.0 99.9
400 5 135.0 67.0 12.7 1 13500.0 633953.0 805.5
500 5 128.6 63.8 15.5 * * * *

2 4 3 100 5 691.8 345.4 31.2 2 51607.5 99959.5 573.8
200 5 659.8 329.4 57.8 * * * *
300 5 493.8 246.4 64.7 * * * *
400 5 345.4 172.2 61.2 * * * *
500 5 544.2 271.6 118.6 * * * *

3 2 2 100 5 735.0 367.0 5.4 4 191.0 4653.3 8.0
200 5 900.6 449.8 10.6 3 434.3 8111.0 28.7
300 3 857.7 428.3 14.2 4 5171.3 61312.8 147.9
400 5 747.0 373.0 15.8 3 1831.7 22461.0 140.5
500 4 687.5 343.3 17.6 1 1090.0 30988.0 133.2

3 2 3 100 4 2248.0 1123.5 25.7 3 14277.7 34756.7 127.0
200 4 1741.0 870.0 31.7 1 1960.0 22380.0 145.0
300 5 1723.0 861.0 45.8 1 2144.0 192505.0 333.1
400 2 5571.0 2785.0 198.1 1 15192.0 103948.0 806.5
500 5 1573.8 786.4 61.3 * * * *

3 3 2 100 5 5772.6 2885.6 138.0 * * * *
200 5 6684.6 3341.8 300.7 * * * *
300 4 6246.0 3122.5 418.1 * * * *
400 4 7141.0 3570.0 603.0 * * * *
500 3 5375.7 2687.3 545.5 * * * *

3 3 3 100 4 10676.0 5337.5 422.3 * * * *
200 5 6795.4 3397.2 475.5 * * * *
300 1 8703.0 4351.0 954.4 * * * *
400 1 2215.0 1107.0 288.0 * * * *
500 1 4125.0 2062.0 684.3 * * * *

3 4 2 100 5 2009.0 1004.0 169.3 2 33254.5 122698.0 295.9
200 5 1588.2 793.6 257.4 * * * *
300 5 3080.2 1539.6 781.0 * * * *
400 5 2165.8 1082.4 710.5 * * * *
500 5 2326.2 1162.6 958.0 * * * *

3 4 3 100 3 8713.7 4356.3 1256.2 * * * *
200 2 5485.0 2742.0 1552.7 * * * *
300 2 3219.0 1609.0 1382.4 * * * *
400 * * * * * * * *
500 * * * * * * * *

*Computation limits exceeded for all 5 replications.

Table 1: Numerical results

DBB CPLEX
Reason for Termination Instances % Avg Gap Avg Time Instances % Avg Gap Avg Time

Solved 253 84.3 0.005 173.9 81 27.0 0.008 105.3
Time 18 6.0 2.046 1800.0 198 66.0 0.848 1800.0

Nodes or Iterations 8 2.7 0.662 452.5 21 7.0 0.065 1256.0
Memory 21 7.0 1.264 1046.0 0 0.0 * *

*Not Applicable.

Table 2: Termination Statistics

13

Figure 1: Number of Nodes.

Figure 2: Number of Iterations.

14

Figure 3: CPU time.

5.4 Interpretation

In problems of this size and parameter range, it is favorable to use the DBB
Algorithm rather than conventional MIP solution strategies. The DBB algo-
rithm’s performance was superior in virtually every problem instance without
the assistance of any preprocessing or advanced memory management. The
number of scenarios seems to be the greatest stumbling block for CPLEX. This
is the parameter that grows most rapidly in common applications of this type,
hence, it is crucial to establish an algorithm that is less sensitive to scenario
growth. The DBB Algorithm’s major factor is actually the interaction between
a combination of 2 problem parameters. The number of variables to be branched
upon in the first stage MIP is determined by the number of resources and the
number of time periods.

The other significant parameter combination is that of resources and tasks,
which drastically changes the size of the solution search space in the enumeration
scheme used to solve the general assignment subproblems in the second stage.
One immediate improvement to the algorithm is to generate a more efficient
solution strategy to these subproblems; if the time needed to solve them is
improved, a considerable reduction in overall solution time might be achieved.
Growth in the algorithms branch-and-bound iterations was not that significant
when compared to the solution time as problem sizes increased. This is due
in large part to the solution time required of the subproblems, which must be
solved for each scenario at every iteration. Some alternate approaches might be

15

to use dynamic programming methods, or solve these problems using a heuristic
and possibly obtain an approximate solution to the entire problem.

CPLEX MIP, while only solving 27% of the problems, seemed to tighten the
bounds rather quickly even when the problems were not solved within the allot-
ted time. The natural tendency was to make great improvements rather quickly
and then slowing to almost a halt, with the gap remaining almost constant. The
DBB Algorithm, on the other hand, seemed to keep a steady pace while converg-
ing. A possibility for improvement may be to use a generic branch-and-bound
approach such as CPLEX MIP in conjunction with the DBB algorithm. The
generic approach could be used to find an initial feasible solution for the DBB
algorithm with tight bounds, and then a hot start would place the algorithm in
a much more advantageous position.

The number of scenarios becomes the crucial parameter in deciding which
modeling approach and solution strategy to pursue. Several trial runs were con-
ducted on smaller instances where this parameter was in the ranges of 20 to
50 scenarios. Although, the DBB Algorithm also solved these problems rather
quickly, CPLEX seemed to outperform the algorithm on average. As this param-
eter increases, the problem becomes unsolvable for a general branch-and-bound
approach and use of the algorithm becomes the appropriate scheme.

6 Concluding Remarks

In this paper we have developed a model for dynamic capacity acquisition and
allocation under uncertainty. The resulting problem is a two-stage stochastic
integer program, which is extremely difficult to solve. We used a recently de-
veloped decomposition based branch and bound algorithm to solve this class of
problems to global optimality. Our preliminary numerical experiments suggest
significant saving in computational effort when using the proposed decomposi-
tion strategy over straight-forward use of commercial solvers.

16

References

[1] S. Ahmed, M. Tawarmalani, and N.V. Sahindis. A finite branch and bound
algorithm for two-stage stochastic integer programs. Stochastic Program-
ming E-Print Series http://dochost.rz.hu-berlin.de/speps/, 2000.

[2] O. Berman, Z. Ganz, and J. M. Wagner. A stochastic optimization model
for planning capacity expansion in a service industry under uncertian de-
mand. Naval Research Logistics, 41:545–564, 1994.

[3] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer, New York, NY, 1997.

[4] J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochas-
tic linear programs. European Journal of Operational Research, 34(3):384–
392, 1988.

[5] C. E. Blair and R. G. Jeroslow. On the value function of an integer program.
Mathematical Programming, 23, 1979.

[6] C. C. Caroe. Decomposition in stochastic integer programming. PhD thesis,
University of Copenhagen, 1998.

[7] C. C. Caroe and J. Tind. L-shaped decomposition of two-stage stochastic
programs with integer recourse. Mathematical Programming, 83:451–464,
1998.

[8] Y. Ermoliev. Stochastic quasigradient methods and their application to
systems optimization. Stochastics, 9:1–36, 1983.

[9] C. O. Fong and V. Srinavasan. The multiregion dynamic capacity expansion
problem: Part I. Operations Research, 29:787–799, 1981.

[10] C. O. Fong and V. Srinavasan. The multiregion dynamic capacity expansion
problem: Part II. Operations Research, 29:800–816, 1981.

[11] J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two
stage stochastic linear programs with recourse. Mathematics of Operations
Research, 16:650–669, 1991.

[12] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches.
Springer-Verlag, Berlin, 3rd edition, 1996.

[13] Gerd Infanger. Monte Carlo (importance) sampling within a Benders de-
composition algorithm for stochastic linear programs. Annals of Operations
Research, 39(1-4):69–95, 1993.

[14] J. G. Klincewicz, H. Luss, and C.-S. Yu. A large-scale multilocation capac-
ity planning model. European Journal of Operational Research, 34:178–190,
1988.

17

[15] G. Laporte and F. V. Louveaux. The integer L-shaped method for stochas-
tic integer programs with complete recourse. Operations Research Letters,
13:133–142, 1993.

[16] S.-K. Lim and Y.-D. Kim. An integrated approach to dynamic plant lo-
cation and capacity planning. Journal of Operational Research Society,
50:1205–1216, 1999.

[17] M. L. Liu and N. V. Sahinidis. Optimization in process planning under
uncertainty. Industrial & Engineering Chemistry Research, 35:4154–4165,
1996.

[18] V. I. Norkin, G. C. Pflug, and A. Ruszczynski. A branch and bound method
for stochastic global optimization. Mathematical Programming, 83:425–450,
1998.

[19] A. Ruszczynski. A regularized decomposition method for minimizing a sum
of polyhedral functions. Mathematical Programming, 35:309–333, 1986.

[20] R. Schultz. Continuity properties of expectation functions in stochastic
integer programming. Mathematics of Operations Research, 18(3):578–589,
1993.

[21] R. Schultz. On structure and stability in stochastic programs with random
technology matrix and complete integer recourse. Mathematical Program-
ming, 70(1):73–89, 1995.

[22] R. Schultz, L. Stougie, and M. H. van der Vlerk. Solving stochastic pro-
grams with integer recourse by enumeration: A framework using Gröbner
basis reductions. Mathematical Programming, 83:229–252, 1998.

[23] A. Shapiro and Y. Wardi. Convergence analysis of gradient descent stochas-
tic algorithms. Journal of Optimization Theory and Applications, 91:439–
454, 1996.

[24] J. M. Swaminathan. Tool capacity planning for semiconductor fabrica-
tion facilities under demand uncertainty. European Journal of Operational
Research, 120:545–558, 2000.

[25] R. Van Slyke and R. J.-B. Wets. L-Shaped linear programs with applica-
tions to optimal control and stochastic programming. SIAM Journal on
Applied Mathematics, 17:638–663, 1969.

18

