
Approximating the Stability Region for

Binary Mixed-Integer Programs

Fatma Kılınç-Karzan, Alejandro Toriello, Shabbir Ahmed,
George Nemhauser, Martin Savelsbergh

School of Industrial and Systems Engineering, Georgia Institute of Technology,
765 Ferst Drive NW, Atlanta, GA, 30032

Abstract

We consider optimization problems with some binary variables, where the objective
function is linear in these variables. The stability region of a given solution of such
a problem is the polyhedral set of objective coefficients for which the solution is
optimal. A priori knowledge of this set provides valuable information for sensitiv-
ity analysis and re-optimization when there is objective coefficient uncertainty. An
exact description of the stability region typically requires an exponential number
of inequalities. We develop useful polyhedral inner and outer approximations of the
stability region using only a linear number of inequalities. Furthermore, when a new
objective function is not in the stability region, we produce a list of good solutions
that can be used as a quick heuristic or as a warm start for future solves.

Key words: Real-time optimization, stability analysis, binary integer
programming.

1 Introduction

As computational and theoretical advances continue, it has become increas-
ingly possible and desirable to perform sensitivity and stability analysis on
NP-hard optimization problems in a manner that would have been imprac-
tical even a few years ago. In this context, our investigation is motivated by
the following scenario. Suppose we have an optimization problem with some

Email addresses: fkilinc@isye.gatech.edu (Fatma Kılınç-Karzan),
atoriell@isye.gatech.edu (Alejandro Toriello), sahmed@isye.gatech.edu
(Shabbir Ahmed), gnemhaus@isye.gatech.edu (George Nemhauser),
mwps@isye.gatech.edu (Martin Savelsbergh).

Preprint submitted to Discrete Optimization 13 November 2007

binary variables, say x ∈ {0, 1}n, that contribute linearly to the problem’s ob-
jective. We are given an initial cost vector c∗, which estimates the x variables’
contribution to the objective. However, the x variables’ true cost deviates
within some predetermined ball around c∗. Furthermore, we suppose that we
have ample time in which to solve the problem with estimated cost vector c∗

and extract any other information deemed useful or desirable. However, once
the true cost vector c becomes known, we must quickly, possibly in real time,
verify if the solution to the problem with estimated cost c∗ is still optimal,
and, if not, produce a solution to the problem with true cost c. In the latter
situation, we can make use of any information extracted during the initial
optimization to expedite re-optimization. Note that our situation varies from
other existing frameworks developed to deal with uncertainty, such as robust
or stochastic optimization. Robust and stochastic optimization seek solutions
with good objective values for a large family of problem instances, while we
want to optimize a specific problem instance, in real time.

In our model, where only the objective coefficients of the x variables are un-
certain, the stability region of a solution is the set of objective coefficients in
n-space for which the solution is optimal. It is easy to see that the stability
region is a polyhedron. However, this polyhedron may be defined by a number
of inequalities that is proportional to the number of feasible solutions (with
respect to the x variables) and therefore may be exponential in n.

Our main contribution is an approximation of the stability region by inner and
outer polyhedra each described by a number of inequalities proportional to n,
so that it is easy to test whether cost vectors are in these polyhedra. Points in
the inner polyhedron correspond to objectives for which the current solution
is optimal and points not in the outer polyhedron correspond to objectives
for which the current solution is not optimal. However, the approximations
give no information on points between the two polyhedra, which we call the
uncertainty region. We give computational results on MIPLIB problems that
demonstrate the effectiveness of the approximations. As an additional contri-
bution, if the original solution is not optimal, the algorithm that produces
the approximation also yields feasible solutions that can be used as a quick
heuristic or as a warm start for future solves.

Our analysis can accommodate a very general optimization problem, only
requiring that the variables under scrutiny be binary and that their contribu-
tion to the problem’s objective be linear. Other researchers have, on the other
hand, studied specific combinatorial optimization problems. Shortest paths
and maximum capacity paths are studied in [14], assignment problems in [12],
minimum spanning trees and shortest path trees in [17], and knapsacks in [9].
In addition, right-hand side vector sensitivity in integer and mixed-integer lin-
ear programs is studied in [5,10,15]. Related complexity issues are studied in
[6,8,13,18]. A survey of results in stability analysis of combinatorial optimiza-

2

tion problems appears in [16]. An algorithm for parametric objective function
analysis of binary integer linear programs is given in [7]. Finally, [11] considers
a problem setting similar to ours, but the results do not focus on the stability
region and relate to our results only in the production of good solutions for
the new objective.

The rest of the paper is organized as follows. Section 2 introduces the concepts
and terminology we use along with basic results. Section 3 presents our ap-
proximations of the stability region. Section 4 places the approximation results
in an algorithmic framework. Section 5 gives computational results. Section 6
has closing remarks and some ideas for future research.

2 The Stability Region

Consider the optimization problem

max c∗x+ h(y)

s.t. (x, y) ∈ X (P (c∗))

x ∈ {0, 1}n,

where c∗x =
∑
i∈N c

∗
ixi and N = {1, . . . , n}. By possibly complementing the

x variables, we assume without loss of generality that (x∗, y∗) is an optimal
solution with x∗ = 0 and objective value z∗ = c∗x∗ + h(y∗) = h(y∗). We are
interested in the stability of (x∗, y∗) with respect to perturbations of c∗.

Throughout this paper, when we refer to problem P (c∗), we mean the opti-
mization problem with cost vector c∗ for the x variables. When we refer to
problem P (c), for some c ∈ Rn, we mean the optimization problem with the
same feasible region, same objective function h(y) for the y variables, but cost
vector c for the x variables.

The following observation will be useful in subsequent analysis.

Lemma 2.1 Let (x̂, ŷ) be feasible for P (c∗), with objective value ẑ = c∗x̂ +
h(ŷ) ≤ z∗. Suppose ĉ ∈ Rn satisfies

ĉx̂ > z∗ − ẑ + c∗x̂.

Then (x∗, y∗) is not optimal for P (ĉ).

Proof. For P (ĉ), the objective function value of (x̂, ŷ) is ĉx̂+ h(ŷ) = ẑ + (ĉ−
c∗)x̂ > z∗ = ĉx∗ + h(y∗).

Definition 2.1 Consider the optimization problem P (c∗) with optimal solu-

3

tion (x∗, y∗). The stability region of (x∗, y∗) is the region C ⊆ Rn s.t. c ∈ C
iff (x∗, y∗) is optimal for P (c). That is,

C = {c ∈ Rn : cx ≤ h(y∗)− h(y),∀ (x, y) ∈ X}.

Lemma 2.2 Let x̂ ∈ {0, 1}n, and define the optimization problem

υ(x̂) = max h(y)

s.t. (x̂, y) ∈ X.

If x̂ 6∈ projx(X) = {x ∈ {0, 1}n : ∃ y s.t. (x, y) ∈ X}, define υ(x̂) = −∞.
Then

C = {c ∈ Rn : cx ≤ h(y∗)− υ(x),∀ x ∈ {0, 1}n}.

Proof. Let (x̂, ŷ) ∈ X. The proof follows directly from the fact that υ(x̂) ≥
h(ŷ).

Example 1 Consider the binary IP

max 4y1 + 2y2 + y3

s.t. x1 + y1 ≤ 1

x2 + y2 ≤ 1 (1)

− x1 + y3 ≤ 0

− x2 + y3 ≤ 0

x1, x2, y1, y2, y3 ∈ {0, 1}.

The optimal solution is (x∗, y∗) = (0, 0, 1, 1, 0) with z∗ = 6. Similarly,

υ((1, 0)) = 2, υ((0, 1)) = 4, υ((1, 1)) = 1.

The stability region C is defined by the three inequalities

c1 ≤ 6− 2 = 4, c2 ≤ 6− 4 = 2, c1 + c2 ≤ 6− 1 = 5.

Figure 1 illustrates C.

Lemma 2.2 implies that C is a polyhedron possibly defined by an exponential
number of inequalities. Perhaps because of the relative difficulty involved in
working with exponentially many inequalities, stability regions do not appear
in the literature (to our knowledge) as often as an associated concept, the
stability radius. The stability radius of (x∗, y∗) with respect to P (c∗) is defined
as

ρ∗ = sup{ρ : (x∗, y∗) is optimal for P (c),∀ c : ‖c− c∗‖∞ ≤ ρ},

4

c2

c1

C

0 2 4

0

2

Fig. 1. Stability region for (x∗, y∗) in problem (1).

where ‖d‖∞ = maxi∈N{|di|}. Within stability analysis, much attention has
been devoted to computing or approximating ρ, and to the complexity of
such a task [6,16]. However, the ‖·‖∞-ball associated with ρ may drastically
underapproximate C. (Consider, for example, the case when P (c∗) has an
alternative optimal solution that differs from (x∗, y∗) in one binary variable.)

We choose instead to approximate C using polyhedra defined by polynomially
many inequalities. The next two definitions further explain this approximation.

Definition 2.2 An outer optimality approximation neighborhood of (x∗, y∗)
is a region C+ ⊆ Rn satisfying C+ ⊇ C, where C is the stability region of
(x∗, y∗). For simplicity, we refer to C+ as an outer neighborhood.

For any outer neighborhood C+, if c 6∈ C+, then (x∗, y∗) is not optimal for
P (c). From Lemma 2.1, the region {c ∈ Rn : cx̂ ≤ z∗ − ẑ + c∗x̂} is an outer
neighborhood of (x∗, y∗).

Definition 2.3 An inner optimality approximation neighborhood of (x∗, y∗)
is a region C− ⊆ Rn satisfying C− ⊆ C. We refer to C− as an inner neigh-
borhood.

For any inner neighborhood C−, if c ∈ C−, then (x∗, y∗) is optimal for P (c).
Trivially, the region {c ∈ Rn : c ≤ c∗} is an inner neighborhood of (x∗, y∗),
once again assuming x∗ = 0.

The following are two simple but important consequences of Definitions 2.2
and 2.3 that help us obtain small outer neighborhoods and large inner neigh-
borhoods.

Proposition 2.3

i) If C+
1 , C

+
2 are outer neighborhoods, C+

1 ∩ C+
2 is an outer neighborhood.

ii) If C−1 , C
−
2 are inner neighborhoods, conv(C−1 ∪C−2) is an inner neighbor-

hood.

5

Proof. Part (i) is an immediate consequence of our definitions. For (ii), let
(x̂, ŷ) ∈ X, c1 ∈ C−1 , c2 ∈ C−2 , and λ ∈ [0, 1]. By definition we have

cjx∗ + h(y∗) ≥ cjx̂+ h(ŷ), j = 1, 2.

Multiplying the first inequality by λ, the second by (1− λ), and adding them
yields λc1 + (1− λ)c2 ∈ C.

3 Approximating the Stability Region

In this section, we will show how to obtain inner and outer neighborhoods of
(x∗, y∗) by solving the n problems {Pj : j ∈ N}, where each Pj is given by

zj = max c∗x+ h(y)

s.t. (x, y) ∈ X (Pj)

x ∈ {0, 1}n

xj = 1.

Throughout this section, we assume without loss of generality that all prob-
lems Pj are feasible. If Pj is infeasible for some j ∈ N , then every feasible
solution to P (c∗) has xj = 0. Thus, cj cannot in any way affect optimality,
and we can ignore it. Accordingly, we assume that we have solved the prob-
lems Pj, ∀ j ∈ N and determined optimal solutions (xj, yj) with corresponding
objective values zj.

The following observation follows directly from Lemma 2.1 and Proposition
2.3.

Proposition 3.1 The set

C+ =
{
c ∈ Rn : cxj ≤ z∗ − zj + c∗xj, ∀ j ∈ N

}
is an outer neighborhood of P (c∗).

Let γj = z∗ − zj + c∗j . Observe that the outer neighborhood C+ satisfies

{c ∈ C+ : c ≥ c∗} ⊆ {c ∈ Rn : c∗j ≤ cj ≤ γj, ∀ j ∈ N}.

In other words, in the most pertinent direction (c ≥ c∗,) the stability region
C of (x∗, y∗) is contained in a box defined by the values γj.

To determine an inner neighborhood, we make use of the next result.

6

Proposition 3.2 Let

c̃j = (c∗1, . . . , c
∗
j−1, γj, c

∗
j+1, . . . , c

∗
n).

The solution (x∗, y∗) is optimal for P (c̃j), ∀ j ∈ N .

Proof. To begin, observe that the objective value of (x∗, y∗) in P (c̃j) is c̃jx∗ +
h(y∗) = z∗. Let (x̂, ŷ) be feasible for P (c̃j). If x̂j = 0, then

c̃jx̂+ h(ŷ) = c∗x̂+ h(ŷ) = ẑ ≤ z∗,

by assumption. If x̂j = 1, then

c̃jx̂+ h(ŷ) = c∗x̂+ h(ŷ)− zj + z∗ = ẑ − zj︸ ︷︷ ︸
≤0

+z∗ ≤ z∗,

where the last inequality follows because (x̂, ŷ) is feasible for Pj.

We now have a list of cost vectors {c̃j}j∈N for which we have proved the
optimality of (x∗, y∗). These points together with c∗ form the vertices of a
simplex, which by Proposition 2.3 is an inner neighborhood of (x∗, y∗) (see
Figure 2a.) However, from Lemma 2.2, we also know that every inequality in
the description of the stability region is of the form cx ≤ h(y∗) − υ(x), for
some x ∈ projx(X). We can therefore exploit the known structure of these
inequalities to increase the inner neighborhood, as in Figure 2b. The following
theorem formalizes this notion.

c2

c1

c∗

c̃2

c̃1

(a)

c2

c1

c∗

c̃2

c̃1

(b)

Fig. 2. The convex hull of c∗ and {c̃j}j∈N yields an inner neighborhood, as in diagram
(a). We can use the known structure of the stability region’s cuts to expand the
neighborhood, as seen in (b). Both regions can be expanded by adding the negative
orthant to every point, as explained in Corollary 3.4.

Theorem 3.3 Suppose we order the x variables so that

z∗ ≥ z1 ≥ z2 ≥ · · · ≥ zn

7

holds. Then

C− =

c ≥ c∗ :
j∑
i=1

ci ≤ γj +
j−1∑
i=1

c∗i ,∀ j ∈ N

is an inner neighborhood of (x∗, y∗).

Proof. For any x ∈ {0, 1}n, we do not know the exact value of the right-hand
side in the inequality cx ≤ h(y∗)− υ(x). However, Proposition 3.2 states that
the points {c̃j}j∈N lie in the stability region of (x∗, y∗). Therefore, the halfspace
defined by each inequality should contain these n points. Thus, the set

C̃− =

{
c ∈ Rn :

∑
i∈I

ci ≤ max

{∑
i∈I

c̃ji : j ∈ N
}
, ∀ ∅ 6= I ⊆ N

}

is an inner neighborhood of P (c∗). Now let ∅ 6= I ⊆ N . We must prove that the
inequality corresponding to I in C̃− is dominated by the inequalities defining
C−, ∀ c ≥ c∗.

Claim 1 Let t ∈ N be the smallest index satisfying I ⊆ {1, . . . , t}. Then t
satisfies

max

{∑
i∈I

c̃ji : j ∈ N
}

=
∑
i∈I

c̃ti.

Proof of claim. Let s ∈ N . If s > t, we have

∑
i∈I

c̃si =
∑
i∈I

c∗i ≤ z∗ − zt︸ ︷︷ ︸
≥0

+
∑
i∈I

c∗i =
∑
i∈I

c̃ti.

Similarly, if s ≤ t, we get

∑
i∈I

c̃si ≤ z∗ − zs︸︷︷︸
≥zt

+
∑
i∈I

c∗i ≤ z∗ − zt +
∑
i∈I

c∗i =
∑
i∈I

c̃ti.

We now apply the claim to the following inequality, which is included in the
definition of C−:

t∑
i=1

ci ≤ γt +
t−1∑
i=1

c∗i = z∗ − zt +
t∑
i=1

c∗i .

8

Rearranging terms yields∑
i∈I

ci ≤ z∗ − zt +
∑
i∈I

c∗i +
∑

i∈{1,...,t}\I
(c∗i − ci)︸ ︷︷ ︸
≤0

≤ z∗ − zt +
∑
i∈I

c∗i = max

{∑
i∈I

c̃ji : j ∈ N
}

.

Corollary 3.4 The set {c + d : c ∈ C−, d ≤ 0} is an inner neighborhood of
P (c∗).

Proof. After Definition 2.3, we noted that if (x∗, y∗) (with x∗ = 0) is optimal
for P (c∗), then the set {c ∈ Rn : c ≤ c∗} is a trivial inner neighborhood of
P (c∗). Using Proposition 2.3, we apply this observation to C−.

To test membership of any vector c ∈ Rn in this extended set, it suffices to
replace ci with max{ci, c∗i },∀ i ∈ N and test the membership of the resulting
vector in C−.

These last two results motivate a natural algorithm for determining an inner
neighborhood. Solve each of the problems Pj in turn, sort them by objective
value, and compute the inner neighborhood as indicated in Theorem 3.3. As
we shall see in the next section, this procedure can be modified slightly to
potentially reduce the number of solves while still yielding the same region.

4 The Algorithm

Algorithm 1 begins with a problem of the form P (c∗) and an optimal solution
(x∗, y∗) with x∗ = 0. It then adds a cut

∑
i∈N xi ≥ 1, forcing at least one of

the x variables to one. After resolving, it determines which of the x variables
switched, removes their coefficients from the cut, and repeats. The end result
is a list of solutions, ordered by objective value, which covers all possible x
variables. (Variables not covered by any solution on the list are those fixed to
zero in any feasible solution.) For future reference, we formally define the rel-
evant information gathered during the execution of Algorithm 1. The solution
in the k-th iteration is denoted by (xk, yk) and has objective function value
zk. The set I+

k indicates which binary variables have value one in (xk, yk). The
set I−k indicates which of these variables have value one for the first time.

An outer neighborhood is easily obtained applying Lemma 2.1 to each solu-
tion (xk, yk). To determine an inner neighborhood, we must first establish a
preliminary fact.

9

Algorithm 1 Binary Solution Cover

Require: An optimization problem P (c∗) with optimal solution (x∗, y∗) sat-
isfying x∗ = 0.

Set (x0, y0)← (x∗, y∗), z0 ← z∗, I ← N .
Add cut D ≡ (

∑
i∈I xi ≥ 1) to P (c∗).

for k = 1, . . . , n do
Resolve the modified P (c∗); get new optimal solution (xk, yk) and objec-
tive value c∗xk + h(yk) = zk.
if P (c∗) is infeasible then

Set I∞ ← I.
Return k and exit.

end if
Set I+

k ← {i ∈ N : xki = 1}, I−k ← I ∩ I+
k .

Set I ← I \ I−k ; modify cut D accordingly.
end for

Proposition 4.1 Let i ∈ I−k , for some k. Then (xk, yk) is optimal for Pi.

Proof. Suppose not, and let (x̂, ŷ) be optimal for Pi with ẑ > zk. At the
beginning of iteration k, we have i ∈ I, implying that no solution so far has
covered i. But then, since (x̂, ŷ) is feasible for Pi, we have x̂i = 1. Furthermore,
since i ∈ I, we also have

∑
i∈I x̂i ≥ 1. This means (x̂, ŷ) is feasible for the

modified P (c∗) in the current iteration, contradicting the optimality of (xk, yk).

Note that (xk, yk) is not necessarily optimal for Pj, for j ∈ I+
k \ I−k . We now

combine Proposition 4.1 with Theorem 3.3 to construct our inner neighbor-
hood.

Theorem 4.2 Suppose Algorithm 1 is run on problem P (c∗), terminating af-
ter ` ≤ n steps. Let (xk, yk), zk, I

+
k , I

−
k ,∀ k = 1, . . . , ` and I∞ be obtained from

the algorithm. Then

C− =

c ≥ c∗ :
∑

i∈I−1 ∪···∪I
−
k

ci ≤ z∗ − zk +
∑

i∈I−1 ∪···∪I
−
k

c∗i ,∀ k = 1, . . . , `

is an inner neighborhood of P (c∗).

Proof. As in Section 3, we assume without loss of generality that I∞ = ∅.
(That is, we assume ∃ a feasible solution to P (c∗) with xj = 1,∀ j ∈ N .) To
begin, notice that the sets I−k , ∀ k = 1, . . . , ` are pairwise disjoint and form a

10

partition of N . By possibly rearranging indices, we may also assume that

I−1 = {1, . . . , t1}
I−1 ∪ I−2 = {1, . . . , t2}

...

I−1 ∪ · · · ∪ I−` = {1, . . . , n} = N ,

for properly chosen indices t1 < · · · < t` = n.

The proof now follows directly from Theorem 3.3. Let I ⊆ N and let k ∈
{1, . . . , `} be the smallest iteration index satisfying I ⊆ I−1 ∪· · ·∪ I−k . We only
need to prove that

max

{∑
i∈I

c̃ji : j ∈ N
}

=
∑
i∈I

c̃tki .

So let s ∈ N . If s ≤ tk−1 or s > tk, the proof is exactly as before. The only
new case is when tk−1 < s ≤ tk. In other words, this means s ∈ I−k ; but then
(xs, ys) = (xtk , ytk) = (xk, yk), yielding

∑
i∈I

c̃si =
∑
i∈I

c̃tki ,

which finishes the proof.

We can also apply Corollary 3.4 to get an inner neighborhood that is not
restricted to values greater than or equal to c∗.

It is important to note that the stability region C depends only on (x∗, y∗)
and h(y), and not on c∗. However, the inner neighborhood we calculate using
Algorithm 1 does depend on c∗, since different starting costs may determine
different solutions in the algorithm when we add the inequality

∑
i∈I xi ≥ 1.

So any c vector for which (x∗, y∗) is optimal can be used in the algorithm to
obtain a possibly different inner neighborhood. Moreover, even if the solutions
and their respective orders in the algorithm remain the same, the right hand
side of the inequalities can be different for different c vectors. In other words,
for any k = 1, . . . , `,

∑
i∈I−1 ∪···∪I

−
k

ci ≤ z∗ − zk +
∑

i∈I−1 ∪···∪I
−
k

c∗i

= h(y∗)− [c∗xk + h(yk)] +
∑

i∈I−1 ∪···∪I
−
k

c∗i

= h(y∗)− h(yk)−
∑
i∈I+

k

c∗i +
∑

i∈I−1 ∪···∪I
−
k

c∗i .

11

By the construction of I−k and I+
k , we have I+

k ⊆
(
I−1 ∪ · · · ∪ I−k

)
, so we obtain

∑
i∈I−1 ∪···∪I

−
k

ci ≤ h(y∗)− h(yk) +
∑

i∈(I−1 ∪···∪I
−
k)\I+k

c∗i .

Clearly
(
I−1 ∪ · · · ∪ I−k

)
\ I+

k can be nonempty depending on the solutions ob-
tained and their order. This establishes that two inner neighborhoods obtained
with different cost vectors may be different even when the algorithm returns
the same solutions in the same order for both vectors.

Example 2 Consider the (unconstrained) binary linear program

max c1x1 + c2x2 (2a)

s.t. x1, x2 ∈ {0, 1}.

Clearly, x∗ = (0, 0) is optimal iff c ≤ 0. If we use c∗ = (0, 0) as the starting cost
in Algorithm 1 and apply Corollary 3.4, we will obtain precisely the negative
quadrant. However, if the starting cost is c∗ = (−1,−1), Algorithm 1 and
Corollary 3.4 yield the truncated region C− = {c ≤ 0 : c1 + c2 ≤ −1} (see
Figure 3a.)

Now consider another binary linear program

max c1x1 + c2x2

s.t. x1 = x2 (2b)

x1, x2 ∈ {0, 1}.

This time, x∗ is optimal iff c1 + c2 ≤ 0. If c∗ = (0, 0) is the starting cost,
we will once again obtain only the negative quadrant. On the other hand, the
starting cost c∗ = (−1,−1) returns the region C− = {c ∈ R2 : c1 +c2 ≤ 0, c1 ≤
1, c2 ≤ 1}, which contains the negative quadrant (see Figure 3b.)

An interesting question is whether we can obtain additional information by
running the algorithm on a bigger variable set. Specifically, let M ⊆ N and
suppose we are interested in the stability region with respect to the binary
variables only in the index set M . Proposition 4.3 essentially states that ap-
plying the algorithm to the larger set N does not yield better results.

Proposition 4.3 Suppose a run of Algorithm 1 on N produces the solution
list {(xk, yk)}`k=1 and the inner approximation C−N . Let J−k = I−k ∩M,∀ k =
1, . . . , `. Then the list {xk, yk}k:J−

k
6=∅ is a list of solutions satisfying the con-

ditions of Algorithm 1 for M , and the corresponding inner neighborhood C−M
satisfies

C−M × {ci = c∗i ,∀ i ∈ N \M} = C−N ∩ {c ∈ Rn : ci = c∗i ,∀ i ∈ N \M}.

12

c2

c1

(0, 0)

(−1,−1)

(a)

c2

c1

(0, 0)

(−1,−1)

(b)

Fig. 3. The inner neighborhood returned by Algorithm 1 and Corollary 3.4 varies
depending on starting cost.

Proof. For the first part, note that the list {xk, yk}k:J−
k
6=∅ is simply a restriction

of the original list to the variables indexed by M . Since it was generated by
Algorithm 1, the list is ordered by objective function value, and each solution
(xk, yk) is optimal for Pj, ∀ j ∈ J−k .

For the second part, we have

C−N ∩ {c : ci = c∗i ,∀ i ∈ N \M} =c ≥ c∗ :
∑

i∈
⋃k

j=1
Jj

ci ≤ z∗ − zk +
∑

i∈
⋃k

j=1
Jj

c∗i ,∀ k; ci = c∗i ,∀ i ∈ N \M

 =

c ≥ c∗ :
∑

i∈
⋃k

j=1
Jj

ci ≤ z∗ − zk +
∑

i∈
⋃k

j=1
Jj

c∗i ,∀ J−k 6= ∅; ci = c∗i ,∀ i ∈ N \M

 ,

where the last set equality follows because the inequalities defined for k with
J−k = ∅ are dominated by previous inequalities, since the zi values are non-
decreasing. Restricting this last set to the cost coefficients indexed by M yields
C−M .

Proposition 4.3 does not guarantee that running Algorithm 1 on N and then
restricting C−N to obtain an inner approximation for M would yield the same
approximation as running the algorithm directly on M . The result assumes a
particular list of solutions is used to construct both approximations, but it is
possible to obtain a different list for each approximation.

13

5 Computational Results

In this section, we provide and interpret the results of a set of experiments
designed to evaluate Algorithm 1. The goal is to study the quality of the inner
and outer approximations of the stability region, and to test the value of the
solutions obtained during the execution of the algorithm when re-optimization
is necessary.

The set of instances used in our computational experiments contains pure
and mixed-integer linear programs from MIBLIB 3.0 [4]. All computational
experiments were carried out on a system with two 2.4 GHz Xeon processors
and 2 GB RAM, and using CPLEX 9.0 as the optimization engine.

For each instance, we take all binaries as x variables, i.e., variables under
scrutiny, and all others as y variables. We first solve the original instance to
find an optimal solution, (x∗, y∗), and then we use Algorithm 1 to compute
(xk, yk), zk, I

+
k , and I−k , which in turn can be used to derive an inner (C−) and

outer (C+) approximation of C. The instance characteristics and a summary
of computations can be found in Table 1, where we report the number of
variables (binary, general integer, continuous) in each instance, the number of
solutions generated during the execution of Algorithm 1, and the number of
variables which are fixed to their original value (|I∞|).

Recall that for i ∈ I∞, the corresponding objective function coefficient ci can
vary arbitrarily in either direction without changing the optimality of (x∗, y∗).
Therefore, in our analysis of the quality of the inner and outer approximation
of C, we restrict cost vector perturbations to binary variables xi with i 6∈ I∞
(i.e., we fix the costs of variables in I∞ to c∗i). We also know that if x∗i = 0
and we decrease c∗i , then (x∗, y∗) will remain optimal. Therefore, we randomly
perturb each ci within p% of its original value c∗i in the direction of interest,
using independent uniform random variables. That is, since x∗i = 0, we set
ĉi = c∗i (1 + sign(c∗i)0.01pUi), where Ui v U(0, 1). For each instance and for
p = 1, 2, 5, 10, 20, we examine 1000 perturbed cost vectors.

The experimental design influences problem selection in various ways. To be-
gin, we obviously need N \I∞ 6= ∅; that is, we need at least one binary variable
that is not fixed to its initial value. Furthermore, of the variables in the set
N \ I∞, at least one must have a non-zero cost, since our perturbations are
proportional to initial costs. In fact, we ensure that at least one variable from
N \ I∞ has positive cost, because if all costs are negative, our perturbations
will never leave the negative orthant, which would bias the results for this
instance.

Note that the perturbed cost vector ĉ can be in C−, C+ \ C−, or Rn \ C+.
If ĉ ∈ C−, then (x∗, y∗) remains optimal for the new objective function. If

14

Problem Binary General Integer Continuous Solutions |I∞|

dcmulti 75 0 473 60 3

egout 55 0 86 13 27

gen 144 6 720 83 36

khb05250 24 0 1326 18 0

lseu 89 0 0 65 0

mod008 319 0 0 309 0

modglob 98 0 324 81 0

p0033 33 0 0 12 4

p0201 201 0 0 73 6

p0282 282 0 0 246 0

pp08a 64 0 176 40 0

qiu 48 0 792 10 0

stein27 27 0 0 7 0

vpm2 168 0 210 139 2
Table 1
Problem set information.

ĉ ∈ Rn \ C+, then the optimal solution will change. Finally, in the region
C+ \ C−, the optimality of (x∗, y∗) is undetermined. Whenever ĉ ∈ Rn \
C−, we need to reoptimize. We investigate what happens when instead of
actually reoptimizing, we simply settle for the best solution (with respect to
the perturbed cost vector) among the solutions generated during the execution
of Algorithm 1.

Tables 2 through 11 provide the results of our computational experiments. We
report the following statistics:

• The number of times a perturbed cost vector ĉ falls into the regions C−,
C+ \ C− or Rn \ C+.
• The number of times the best solution among {(x0, y0), . . . , (x`, y`)}, i.e.,

the solutions generated by Algorithm 1, is optimal for the perturbed cost
vector ĉ.

If for at least one perturbed cost vector ĉ neither the original solution nor the
solutions produced by Algorithm 1 are optimal, we also report the following
statistics:

• The mean and standard deviation of (optimal−best)
|optimal| , the relative error in ob-

jective value, calculated over instances where ĉ ∈ Rn \ C−.

15

Region Counts Times Best is Optimal

Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total

dcmulti 1000 0 0 - - 1000

egout 1000 0 0 - - 1000

gen 0 0 1000 - 993 993

khb05250 1000 0 0 - - 1000

lseu 0 0 1000 - 855 855

mod008 0 0 1000 - 485 485

modglob 1000 0 0 - - 1000

p0033 0 0 1000 - 278 278

p0201 0 0 1000 - 1000 1000

p0282 1000 0 0 - - 1000

pp08a 281 669 50 634 25 940

qiu 0 0 1000 - 39 39

stein27 0 0 1000 - 0 0

vpm2 0 0 1000 - 315 315
Table 2
Region and optimality counts for 1% perturbations.

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB

gen 3.29E-08 5.03E-07 3.19E-08 3.39E-08

lseu 3.99E-05 1.28E-04 3.96E-05 4.01E-05

mod008 5.85E-04 8.18E-04 5.83E-04 5.86E-04

p0033 3.97E-04 4.01E-04 3.96E-04 3.98E-04

pp08a 9.84E-06 4.28E-05 9.76E-06 9.93E-06

qiu 8.02E-03 4.50E-03 8.01E-03 8.03E-03

stein27 1.33E-03 3.76E-04 1.33E-03 1.34E-03

vpm2 2.75E-04 3.23E-04 2.74E-04 2.75E-04
Table 3
Relative difference results for 1% perturbations, where relevant.

• The 95% confidence interval on the relative error in objective value over
instances where ĉ ∈ Rn \ C−.

16

Region Counts Times Best is Optimal

Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total

dcmulti 1000 0 0 - - 1000

egout 1000 0 0 - - 1000

gen 0 0 1000 - 993 993

khb05250 1000 0 0 - - 1000

lseu 0 0 1000 - 764 764

mod008 0 0 1000 - 485 485

modglob 1000 0 0 - - 1000

p0033 0 0 1000 - 49 49

p0201 0 0 1000 - 1000 1000

p0282 1000 0 0 - - 1000

pp08a 0 4 996 2 356 358

qiu 0 0 1000 - 39 39

stein27 0 0 1000 - 0 0

vpm2 0 0 1000 - 315 315
Table 4
Region and optimality counts for 2% perturbations.

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB

gen 3.29E-08 5.03E-07 3.19E-08 3.39E-08

lseu 1.26E-04 3.13E-04 1.25E-04 1.27E-04

mod008 5.85E-04 8.18E-04 5.83E-04 5.86E-04

p0033 1.67E-03 8.73E-04 1.66E-03 1.67E-03

pp08a 2.11E-04 2.46E-04 2.11E-04 2.12E-04

qiu 1.55E-02 8.65E-03 1.54E-02 1.55E-02

stein27 2.67E-03 7.51E-04 2.67E-03 2.67E-03

vpm2 2.75E-04 3.23E-04 2.74E-04 2.75E-04
Table 5
Relative difference results for 2% perturbations, where relevant.

17

Region Counts Times Best is Optimal

Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total

dcmulti 1000 0 0 - - 1000

egout 783 217 0 217 - 1000

gen 0 0 1000 - 631 631

khb05250 360 640 0 627 - 987

lseu 0 0 1000 - 760 760

mod008 0 0 1000 - 80 80

modglob 0 1000 0 1000 - 1000

p0033 0 0 1000 - 8 8

p0201 0 0 1000 - 1000 1000

p0282 50 950 0 950 - 1000

pp08a 0 0 1000 - 393 393

qiu 0 0 1000 - 37 37

stein27 0 0 1000 - 0 0

vpm2 0 0 1000 - 315 315
Table 6
Region and optimality counts for 5% perturbations.

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB

gen 1.06E-05 1.78E-05 1.05E-05 1.06E-05

khb05250 4.46E-06 3.81E-05 4.38E-06 4.53E-06

lseu 3.25E-04 8.06E-04 3.23E-04 3.26E-04

mod008 5.91E-03 3.89E-03 5.90E-03 5.91E-03

p0033 5.12E-03 1.96E-03 5.12E-03 5.12E-03

pp08a 3.03E-04 3.96E-04 3.02E-04 3.04E-04

qiu 3.49E-02 1.94E-02 3.49E-02 3.50E-02

stein27 6.68E-03 1.88E-03 6.67E-03 6.68E-03

vpm2 6.87E-04 8.07E-04 6.85E-04 6.89E-04
Table 7
Relative difference results for 5% perturbations, where relevant.

18

Region Counts Times Best is Optimal

Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total

dcmulti 509 313 178 309 71 889

egout 0 814 186 814 186 1000

gen 0 0 1000 - 432 432

khb05250 0 344 656 227 165 392

lseu 0 0 1000 - 712 712

mod008 0 0 1000 - 26 26

modglob 0 1000 0 1000 - 1000

p0033 0 0 1000 - 4 4

p0201 0 0 1000 - 973 973

p0282 0 509 491 509 491 1000

pp08a 0 0 1000 - 474 474

qiu 0 0 1000 - 32 32

stein27 0 0 1000 - 0 0

vpm2 0 0 1000 - 269 269
Table 8
Region and optimality counts for 10% perturbations.

Note that for 1% and 2% perturbations, in every instance except pp08a we
encounter no uncertainty. For various instances, such as dcmulti, egout and
p0201, the solution list provided by Algorithm 1 contains an optimal solution
for every single random cost vector. Moreover, for these two perturbation
levels, our relative difference averages are all under 1%, except for qiu at the
2% perturbation level, which has a 1.55% relative difference average.

For higher perturbation levels (5%, 10% and 20%) uncertainty counts increase
and optimality counts decrease, but the solution list consistently contains solu-
tions with a value that is close to the optimal value. For example, at perturba-
tion levels 10% and 20%, only problem dcmulti still has random cost vectors
in the inner approximation C−, but the solution list provides an optimal so-
lution for at least 500 of the 1000 random cost vectors in several instances,
such as lseu, modglob and p0282. Also, even at the 20% perturbation level,
all instances but one (qiu) have average relative difference below 10%, and
many (gen, modglob, p0201, etc.) have this average still below 0.1%.

The experimental results show that, for smaller perturbations, the probability
that ĉ ∈ C+\C− is relatively low for most instances. Furthermore, the average
and standard deviations of the relative error between the optimal solution and

19

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB

dcmulti 1.76E-06 3.29E-06 1.75E-06 1.76E-06

gen 4.98E-05 6.07E-05 4.97E-05 4.99E-05

khb05250 5.35E-04 6.58E-04 5.34E-04 5.37E-04

lseu 8.00E-04 1.76E-03 7.97E-04 8.04E-04

mod008 1.85E-02 9.76E-03 1.85E-02 1.85E-02

p0033 1.07E-02 3.81E-03 1.07E-02 1.07E-02

p0201 3.89E-05 3.17E-04 3.83E-05 3.95E-05

pp08a 4.11E-04 6.07E-04 4.10E-04 4.12E-04

qiu 6.12E-02 3.30E-02 6.11E-02 6.12E-02

stein27 1.34E-02 3.76E-03 1.33E-02 1.34E-02

vpm2 1.61E-03 1.75E-03 1.61E-03 1.62E-03
Table 9
Relative difference results for 10% perturbations, where relevant.

the best generated solution is small for most instances, and for many the best
solution is in fact optimal. This suggests that simply using the best solution
among the solutions generated during the execution of Algorithm 1 provides
an excellent alternative to actual re-optimization when it is too costly or too
time consuming to do so.

5.1 Comparing the Approximations to the Stability Region

In this subsection, we further test the quality of the approximations generated
by Algorithm 1 by comparing C− and C+ to the exact stability region C.
Although we cannot efficiently compute the exact stability region of (x∗, y∗)
when P (c∗) is NP-hard, if the convex hull of the feasible region is given by
polynomially many inequalities, as is the case when the constraint matrix is
totally unimodular and the formulation has polynomial size, we can use well-
known linear programming theory to generate the region. Specifically, suppose

x∗ ∈ S = {x ∈ Rn : aix ≤ bi,∀ i = 1, . . . ,m},

where ai ∈ Rn and bi ∈ R. Then by complementary slackness and LP duality,
x∗ is optimal for max{cx : x ∈ S} iff c ∈ C = cone{ai : i ∈ I∗}, where
I∗ = {i : aix∗ = bi}. For more detail on LP duality and sensitivity, refer to
any standard linear optimization text, such as [3, Chapters 4 and 5].

20

Region Counts Times Best is Optimal

Problem C− C+ \ C− Rn \ C+ C+ \ C− Rn \ C+ Total

dcmulti 9 43 948 43 278 330

egout 0 15 985 8 271 279

gen 0 0 1000 - 0 0

khb05250 0 5 995 3 55 58

lseu 0 0 1000 - 608 608

mod008 0 0 1000 - 4 4

modglob 0 401 599 393 438 831

p0033 0 0 1000 - 3 3

p0201 0 0 1000 - 699 699

p0282 0 1 999 0 664 664

pp08a 0 0 1000 - 41 41

qiu 0 0 1000 - 23 23

stein27 0 0 1000 - 0 0

vpm2 0 0 1000 - 23 23
Table 10
Region and optimality counts for 20% perturbations.

For our next set of experiments, we have chosen instances of the assignment
problem, which can be formulated as a binary integer program with a totally
unimodular constraint matrix. We generate four 20 × 20 specific problem in-
stances using costs from problem assign100, originally from [1]. This problem
can be found as part of the OR library [2].

For each instance, we examine three separate cases for the set of variables
under scrutiny:

i) The variables in the top left 5× 5 sub-matrix are under scrutiny.
ii) The variables in the top left 10× 10 sub-matrix are under scrutiny.

iii) The variables in the entire 20× 20 matrix are under scrutiny.

We chose instances of these sizes because, for the MIPLIB instances used in
our earlier experiments, the average number of variables is about 400 and the
average number of binaries is about 100. Thus the instances in (ii) are of
comparable size. The instances in (i) and (iii) allow us to see how the results
change as a function of the number of binaries under scrutiny.

As in the previous section, for each experiment we first solve the original

21

(optimal−best)
|optimal| 95% CI on Relative Diff.

Problem Average St. Dev. LB UB

dcmulti 5.36E-06 3.71E-06 5.36E-06 5.37E-06

egout 2.37E-03 2.75E-03 2.36E-03 2.37E-03

gen 7.78E-04 2.56E-04 7.78E-04 7.79E-04

khb05250 2.60E-03 1.67E-03 2.59E-03 2.60E-03

lseu 2.53E-03 4.40E-03 2.52E-03 2.53E-03

mod008 4.91E-02 1.93E-02 4.91E-02 4.92E-02

modglob 3.18E-06 9.95E-06 3.16E-06 3.20E-06

p0033 2.19E-02 7.63E-03 2.19E-02 2.19E-02

p0201 9.72E-04 2.13E-03 9.68E-04 9.76E-04

p0282 4.97E-04 1.26E-03 4.94E-04 4.99E-04

pp08a 6.90E-03 4.95E-03 6.89E-03 6.91E-03

qiu 1.02E-01 5.19E-02 1.02E-01 1.02E-01

stein27 2.67E-02 7.51E-03 2.67E-02 2.67E-02

vpm2 1.28E-02 7.20E-03 1.27E-02 1.28E-02
Table 11
Relative difference results for 20% perturbations.

instance and complement variables to get x∗ = 0 as an optimal solution,
generate C as the cone of active constraints, and use Algorithm 1 to compute
an inner (C−) and outer (C+) approximation of C. We then generate a random
direction vector d, where each component di v U(0, 1) is an i.i.d. random
variable. We calculate the value

λ− = max{λ : c∗ + λd ∈ C−},

and similarly define and calculate λ∗ and λ+ for C and C+, respectively. Note
that we always have the relation λ− ≤ λ∗ ≤ λ+, because C− ⊆ C ⊆ C+. In
addition, we compute the following statistics:

• The ratio λ∗−λ−
λ+−λ− as an indicator of how much of the uncertainty is caused

by underapproximation of C−.
• The number of times λ∗ − λ− > λ+ − λ∗; that is, the number of times the

majority of the uncertainty encountered in the direction d is caused by an
under-approximation of C−.
• The number of times λ− = λ+; that is, the number of times C− and C+

predict C exactly along the direction d.

For each assignment instance, we examine 100,000 randomly generated d vec-

22

tors. Table 12 provides the averages of λ−, λ∗, λ+, λ∗−λ−
λ+−λ− , while Table 13 has

the number of times λ∗−λ− > λ+−λ∗ and λ− = λ+, both obtained from the
100,000 generated vectors for each instance.

Problem λ− (avg.) λ∗ (avg.) λ+ (avg.) λ∗−λ−
λ+−λ− (avg.)

5× 5

assign20 1 6.0086 12.1997 12.2018 0.9999

assign20 2 4.2159 7.3348 7.3355 0.9999

assign20 3 5.2905 6.3897 6.4002 0.9975

assign20 4 3.8208 4.0776 4.0780 0.9997

10× 10

assign20 1 1.2708 2.3431 2.3477 0.9982

assign20 2 1.5802 2.8811 2.8811 1.0000

assign20 3 1.5977 1.8501 1.8501 1.0000

assign20 4 1.4261 3.2234 3.2802 0.9789

20× 20

assign20 1 0.3669 0.9154 0.9246 0.9858

assign20 2 0.4758 0.7647 0.7647 1.0000

assign20 3 0.2593 0.2613 0.2613 1.0000

assign20 4 0.2397 0.3493 0.3494 0.9999
Table 12
Averages for the assignment instances.

In almost every single case where C− and C+ differ in the random direction d,
we have λ∗−λ− > λ+−λ∗, which indicates that more of the uncertainty region
is caused by under-approximation of C−. In fact, the average data for the ratio
λ∗−λ−
λ+−λ− suggests that this under-approximation is almost solely responsible for
the uncertainty. Together, both facts indicate that the region C− defined by
Theorem 3.3 may be too conservative when C− and C+ differ significantly.

Nevertheless, not all the results point to under-approximation. For example,
with problem assign20 3 we find that in any of the three scenarios the two
approximations C− and C+ match exactly in over half of the random direc-
tions. In fact, this number jumps to over 92% in the experiment in which all
400 variables are under scrutiny. This implies that the approximations match
the stability region C exactly in these directions.

We note that the results for the instances in which the costs change for 25
variables are significantly better than those for which the costs change for
100 and 400 variables. However, there is not much difference between the

23

Problem λ∗ − λ− > λ+ − λ∗ (ct.) λ− = λ+ (ct.)

5× 5

assign20 1 62,835 37,164

assign20 2 98,325 1,674

assign20 3 23,673 76,326

assign20 4 16,899 83,100

10× 10

assign20 1 99,995 4

assign20 2 99,999 0

assign20 3 45,613 54,386

assign20 4 99,996 2

20× 20

assign20 1 100,000 0

assign20 2 100,000 0

assign20 3 7,614 92,386

assign20 4 98,298 1,702
Table 13
Counts for the assignment instances.

results with cost changes for 100 and 400 variables, so it is hard to draw
conclusions about the quality of results with respect to the percentage of
variables whose costs change. Finally, although we have not shown the details,
as in the MIPLIB experiments, the set of solutions produced by Algorithm 1
almost always contains an optimal solution for the new costs.

6 Conclusions and Further Research

We have outlined a procedure that gives polyhedral approximations, with few
inequalities, of the stability region of a solution with respect to a set of bi-
nary variables with linear objectives. The approximation requires at most a
linear number of solves of problems closely related to the original problem
P (c∗). Computational experiments with several types of pure and mixed bi-
nary programs show that the inner and outer neighborhoods we obtain closely
approximate the true stability region. In addition, the list of solutions gen-
erated as a byproduct of our algorithm can be used effectively to produce a
high-quality solution for a true cost vector that is close to our estimate c∗.

24

Although the algorithm we have developed is flexible and accommodates a very
general optimization problem, this same versatility implies that we sacrifice
information when dealing with some types of problems. Specifically, consider
the pure binary linear case, where X ⊆ {0, 1}n and P (c∗) becomes

max c∗x

s.t. x ∈ X.

The stability region of x∗ = 0 is given by

C = {c ∈ Rn : cx ≤ 0,∀ x ∈ X}.

That is, C is a cone defined by at most |X| inequalities with 0-1 coefficients.
If we run Algorithm 1 on a pure binary problem, the inner neighborhood may
cut off the origin (as in Example 2a,) even though the origin belongs to any
pure binary stability region. A specialized approach may be able to exploit
the additional conic structure to construct a larger inner neighborhood. As
the pure binary program is an important special case, we plan to investigate
it further.

An unexpected issue arose in solving the constrained instances P (c∗). For cer-
tain instances, the solve time increased dramatically, peaking at times several
orders of magnitude greater than for the original instance. Adding the cut∑
i∈I xi ≥ 1 to all leaf nodes of the branch-and-bound tree and continuing

from there might be more efficient than adding the cut and then resolving
from scratch.

Acknowledgement

This research has been supported in part by the National Science Foundation
with grant CMMI-0522485.

References

[1] J. E. Beasley, Linear programming on Cray supercomputers, Journal of the
Operational Research Society 41 (1990) 133–139.

[2] J. E. Beasley, OR-Library: distributing test problems by electronic mail, Journal
of the Operational Research Society 41 (11) (1990) 1069–1072, library available
on-line at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.

[3] D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, 1st ed.,
Athena Scientific, Belmont, Massachusetts, 1997.

25

[4] R. E. Bixby, S. Ceria, C. M. McZeal, M. W. P. Savelsbergh, An Updated Mixed
Integer Programming Library: MIPLIB 3.0, Research Report TR98-03, library
available on-line at http://miplib.zib.de/miplib3/miplib.html (February
1998).

[5] C. E. Blair, R. G. Jeroslow, The value function of an integer program,
Mathematical Programming 23 (1) (1982) 237–273.

[6] N. Chakravarti, A. Wagelmans, Calculation of stability radii for combinatorial
optimization problems, Operations Research Letters 23 (1) (1998) 1–7.

[7] A. Crema, An algorithm for the multiparametric 0-1-integer linear programming
problem relative to the objective function, European Journal of Operational
Research 125 (1) (2000) 18–24.

[8] D. Ghosh, G. Sierksma, On the complexity of determining tolerances
for ε-optimal solutions to min-max combinatorial optimization problems,
Research Report 00A35, University of Groningen, Research Institute
SOM (Systems, Organisations and Management), available on-line at
http://ideas.repec.org/p/dgr/rugsom/00a35.html (2000).

[9] M. Hifi, H. Mhalla, S. Sadfi, Sensitivity of the Optimum to Perturbations of
the Profit or Weight of an Item in the Binary Knapsack Problem, Journal of
Combinatorial Optimization 10 (3) (2005) 239–260.

[10] S. Holm, D. Klein, Three methods for postoptimal analysis in integer linear
programming, Mathematical Programming Study 21 (1984) 97–109.

[11] C. Kenyon, M. Sellmann, Plan B: Uncertainty/Time Trade-Offs for Linear and
Integer Programming, working paper.

[12] C.-J. Lin, U.-P. Wen, Sensitivity Analysis of Objective Function Coefficients of
the Assignment Problem, Asia-Pacific Journal of Operations Research 24 (2)
(2007) 203–221.

[13] R. Ramaswamy, N. Chakravarti, D. Ghosh, Complexity of determining exact
tolerances for min-max combinatorial optimization problems, Research Report
00A22, University of Groningen, Research
Institute SOM (Systems, Organisations and Management), available on-line at
http://ideas.repec.org/p/dgr/rugsom/00a22.html (2000).

[14] R. Ramaswamy, J. B. Orlin, N. Chakravarti, Sensitivity analysis for shortest
path problems and maximum capacity path problems in undirected graphs,
Mathematical Programming 102 (2) (2005) 355–369.

[15] L. Schrage, L. Wolsey, Sensitivity Analysis for Branch and Bound Integer
Programming, Operations Research 33 (5) (1985) 1008–1023.

[16] Y. N. Sotskov, V. Leontev, E. N. Gordeev, Some concepts of stability analysis in
combinatorial optimization, Discrete Applied Mathematics 58 (2) (1995) 169–
190.

26

[17] R. E. Tarjan, Sensitivity Analysis of Minimum Spanning Trees and Shortest
Path Trees, Information Processing Letters 14 (1) (1982) 30–33.

[18] S. Van Hoesel, A. Wagelmans, On the complexity of postoptimality analysis of
0/1 programs, Discrete Applied Mathematics 91 (1-3) (1999) 251–263.

27

	1:

