Recap

- Last class (January 27, 2004)
 - Proof of Friedman’s theorem
 - Repeated Cournot game
 - Wage setting
- Today (January 29, 2004)
 - Repeated game example: Wage setting
 - Extensive form of a game
 - Information sets

Example: Wage setting

- Stage game
 - One firm, one worker
 - The firm offers the worker a wage, w
 - The worker accepts or rejects the firm’s offer
 - Reject: the worker becomes self-employed at wage \(w_0 \)
 - Accept: Work (disutility \(e \)), or Shirk (disutility 0)
 - If the worker works (supplies effort): Output is high=\(y \)
 - If the worker shirks: Output is high with probability \(p \), and low=0 with probability \(1-p \)
 - The firm does not observe the worker’s effort decision
 - The output of the worker is observed by both parties
Example: Wage setting (cont.)

- Payoffs (Firm, Worker)
 - Work (Supply effort)
 - High output: \((y - w, w - e)\)
 - Shirk
 - High output: \((y - w, w)\)
 - Low output: \((-w, w)\)

- What is the subgame-perfect equilibrium in this stage game?
 - For any \(w \geq w_0\), worker accepts employment and shirks
 - Firm offers \(w = 0\) (or any other \(w < w_0\))

Example: Wage setting (cont.)

- Strategies
 - Firm: Offer \(w = w^*\) in the first stage.
 In stage \(t\),
 - offer \(w = w^*\) if the history of play is high-wage, high-output (all previous offers have been \(w^*\), all previous offers have been accepted, and all previous outputs have been high)
 - otherwise, offer \(w = 0\)
 - Worker:
 - If \(w > w_0\), accept the firm’s offer and supply effort if the history of play, including the current offer, is high-wage, high-output (shirk otherwise)
 - If \(w < w_0\), choose self-employment
Example: Wage setting (cont.)

- Suppose firm offers \(w^* \geq w_0 \)
 - Worker accepts
 - Work (Supply effort)
 \[V_e = (w^*-e) + \delta V_e \rightarrow V_e = (w^*-e)/(1-\delta) \]
 - Shirk
 \[V_s = w^* + \delta(pV_s + (1-p) w_0/(1-\delta)) \rightarrow V_s = [(1-\delta)w^*+ \delta(1-p) w_0]/(1- \delta p)(1- \delta) \]
 - Worker should supply effort if \(V_e \geq V_s \)
 \[w^* \geq w_0 + e + e(1-\delta)/\delta(1-p) \]

If \(p=0 \): \((w^*-e)/(1- \delta) \geq w^* + w_0 \delta/(1- \delta) \)

Example: Wage setting (cont.)

- When is it the best response for the firm to offer \(w^* \)?
 - From worker’s best response
 \[w^* \geq w_0 + e + e(1-\delta)/\delta(1-p) \] \hspace{1cm} (1)
 - \(y \geq w^* \)
 \[y \geq w_0 + e + e(1-\delta)/\delta(1-p) \] \hspace{1cm} (2)

The strategies induce a NE if (1) and (2) hold.

Is this a SPNE?
Example: Wage setting (cont.)

- What are the subgames?
 - Subgames beginning after a high-wage, high-output history
 - Subgames beginning after all other histories

Extensive form of a game

- The set of players
- The order of moves
- The players’ payoffs as a function of the moves that were made
- The set of actions available to the players when they move
- Each player’s information when he makes his move
- The probability distributions over any exogenous events (Nature)
Example 1

Player 1 moves first. After observing player 1’s action, player 2 moves.

Player 1 action set: \{U,D\} Player 2 action set: \{L,R\}
Player 1 strategies: \{U,D\}
Player 2 strategies: \{(L,L), (L,R), (R,L), (R,R)\}

Normal form representation of extensive-form games

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L,L)</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>2,1</td>
</tr>
<tr>
<td>D</td>
<td>-1,1</td>
</tr>
</tbody>
</table>

- Player 2’s strategies correspond to a contingent plan made in advance.
Example 2

Player 1 moves first, player 2 moves next. Player 2 does not know player 1’s action when he chooses his action.

Player 2 moves first, player 1 moves next. Player 1 does not know player 2’s action when he chooses his action.

Example

- Player 1 chooses an action from the feasible set \{L,R\}
- Player 2 observes player 1’s action and then chooses an action from the feasible set \{L',R'\}
- Player 3 observes whether or not the history of actions is \(R,R'\) and then chooses an action from the feasible set \{L'',R''\}
Information set

- An information set for a player is a collection of decision nodes satisfying:
 - The player has the move at every node in the information set
 - When the play of the game reaches a node in the information set, the player with the move does not know which node in the information set has (or has not) been reached
Example (cont.)

Player 2 has two information sets, both singletons. Player 3 has two information sets, one of them is singleton.

Subgame in an extensive form game

- A **subgame** in an extensive form game
 - begins at a decision node n that is a singleton information set (but is not the game’s first decision node)
 - includes all the decision and terminal nodes following n in the game tree (but no nodes that do not follow n), and
 - does not cut any information sets (i.e., if a decision node n' follows n in the game tree, then all other nodes in the information set containing n' must also follow n, and so must be included in the subgame).
Example

Two subgames, one beginning at each of player 2’s decision nodes

No subgames

Example (cont.)