Example

- Cost of effort to the agent 10,000a
- Agent’s reservation utility $U=0$
- Agent’s expected payoff: $E[wage – cost of effort]$
- Principal’s expected payoff: $E[output – wage]$

Example (cont)

- Under low effort
 - Agent’s cost=0 → Offer $w=U=0$ to the agent
 - Principal’s expected payoff = $0.5(10,000)+0.5(20,000)-0=15,000$
- Under high effort
 - Principal’s expected revenue = $0.5(20,000)+0.5(40,000)=30,000$
 - Principal’s expected payoff = $E[revenue – wage]$
 - For participation: $E[wage] \geq U+cost\ of\ effort=10,000$
- For the principal to prefer high effort over low $E[wage]\leq 15,000$
Example: Bonus payment

- Principal’s proposed contract
 - If the output is low or medium, \(w=0 \)
 - If the output is high, \(w=24,000 \)
- Participation constraint for high effort

 \[
 0.5(0)+0.5(24,000)-10,000=2,000>0
 \]

- Incentive constraint

 \[
 0.5(0)+0.5(24,000)-10,000=2,000>0.5(0)+0.5(0)=0
 \]

- Principal’s payoff: 18,000 Agent’s payoff: 2,000

- What is the best \(w \) that maximizes the principal’s payoff?

\[
0.5(0)+0.5w-10,000 \geq 0
\]

\(w=20,000 \)

Principal’s payoff: 20,000 Agent’s payoff: 0

Example: Revenue sharing

- Principal’s proposed contract
 - If the output is less than \(x=18,000 \), \(w=0 \)
 - If the output \(R \geq x \), \(w=R-x \)
- Participation constraint

 \[
 0.5(20,000-18,000)+0.5(40,000-18,000)-10,000=2,000>0
 \]

- Incentive constraint

 \[
 0.5(20,000-18,000)+0.5(40,000-18,000)-10,000=2,000>0.5(0)+0.5(20,000-18,000)=1,000
 \]

- Principal’s payoff: 18,000 Agent’s payoff: 2,000

- What is the best \(x \) that maximizes the principal’s payoff?
Example: Revenue sharing (cont.)

- $x > 20,000$: Participation constraint is not satisfied
 - $0.5(0) + 0.5(40,000-x) - 10,000 = 10,000 - 0.5x < 0$ if $x > 20,000$
- $10,000 < x \leq 20,000$
 - Participation: $0.5(20,000-x) + 0.5(40,000-x) - 10,000 = 20,000 - x \geq 0$
 - Incentive: $0.5(20,000-x) + 0.5(40,000-x) - 10,000 \geq 0.5(0) + 0.5(20,000-x)$
 - $x \leq 20,000 \rightarrow$ To maximize principal’s payoff $x = 20,000$
 - Principal’s payoff: 20,000 Agent’s payoff: 0
- $x \leq 10,000$:
 - Participation: $0.5(20,000-x) + 0.5(40,000-x) - 10,000 = 20,000 - x \geq 0$
 - Incentive: $0.5(20,000-x) + 0.5(40,000-x) - 10,000 \geq 0.5(10,000-x) + 0.5(20,000-x)$
 - To maximize principal’s payoff $x = 10,000$
 - Principal’s payoff: 10,000 Agent’s payoff: 10,000
- Optimal $x = 20,000$

Piece-rate system

- Principal’s proposed contract: $w = \alpha R$ if the output is R
- Participation constraint for high effort
 - $0.5(\alpha 20,000) + 0.5(\alpha 40,000) - 10,000 = 30,000\alpha - 10,000 \geq 0 \rightarrow \alpha \geq 1/3$
- Incentive constraint
 - $0.5(\alpha 20,000) + 0.5(\alpha 40,000) - 10,000 = 30,000\alpha - 10,000 \geq 0.5(\alpha 10,000) + 0.5(\alpha 20,000) \rightarrow \alpha \geq 2/3$
- To maximize the principal’s payoff: $\alpha = 2/3$
- Principal’s payoff: 10,000 Agent’s payoff: 10,000
- Is it optimal for the principal to induce high effort under this contract?
Managerial compensation under Cournot competition

- Cournot competition
 - The market price, P is determined by (inverse) market demand:
 - $P = a - Q$ if $a > bQ$, $P = 0$ otherwise.
 - The marginal cost of producing each unit of the good is c
 - Each firm decides on the quantity to sell (market share): q_1 and q_2
 - $Q = q_1 + q_2$ total market demand
 - Both firms seek to maximize profits

Revenue of firm i: $R_i = pq_i = (a - Q)q_i$
Profit of firm i: $\pi_i = R_i - cq_i$

The owner of firm i offers the following compensation to her manager: $M_i = \mu_i[\alpha_i\pi_i + (1 - \alpha_i)R_i]$

Managerial compensation under Cournot competition (cont.)

1. The owner of firm i needs to choose μ_i and α_i to maximize firm profits net of managerial compensation: $\pi^{Owner} = \max \pi_i - M_i$
2. For given q_j and α_j, the manager of firm i chooses q_i to maximize $M_i = \mu_i[\alpha_i(R_i - cq_i) + (1 - \alpha_i)R_j] = \mu_i[R_i - \alpha_i cq_i]$
 $M_i = \mu_i[(a - q_i - q_j)q_i - \alpha_i cq_i]$

F.O.C.: $a - 2q_i - q_j - \alpha_i c = 0 \rightarrow q_i = \frac{a - q_j - \alpha_i c}{2}$, $i = 1, 2$
Managerial compensation under Cournot competition (cont.)

In equilibrium:

\[q_i(\alpha_1, \alpha_2) = \frac{a + \alpha_i c - 2\alpha_i c}{3}, \quad i = 1, 2 \]

\[Q(\alpha_1, \alpha_2) = \frac{a + \alpha_2 c - 2\alpha_1 c}{3} + \frac{a + \alpha_1 c - 2\alpha_2 c}{3} = \frac{2a - \alpha_1 c - \alpha_2 c}{3} \]

\[P(\alpha_1, \alpha_2) = \frac{a + \alpha_1 c + \alpha_2 c}{3} \]

Managerial compensation under Cournot competition (cont.)

Stage 1: Owners choose \(\mu_i \) and \(\alpha_i \)

How to choose \(\mu_i \)?

To simplify, assume \(\mu_i = M_i = 0 \)

Owner's objective:

\[\pi^{\text{Owner}} = [p(\alpha_1, \alpha_2) - c]q_i \]

\[= \frac{[a + c(\alpha_i + \alpha_j - 3)]}{3} \frac{[a + c(\alpha_j - 2\alpha_i)]}{3} \]

From F.O.C.:

\[\alpha_i = \frac{6c - a - c\alpha_j}{4c} \]
Managerial compensation under Cournot competition (cont.)

In equilibrium:

\[\alpha = \alpha_1 = \alpha_2 = \frac{6c - a}{5c} \]

\(\alpha \) increases in \(c \), i.e., owners will compensate managers to place more weight on maximizing profits when costs are high.

\[q_1 = q_2 = \frac{a - \alpha c}{3} = \frac{2(a - c)}{5} > \frac{a - c}{3} = q_i^c \]

When owners are different than managers, output exceeds the Cournot equilibrium output.

Managerial compensation under Cournot competition (cont.)

Suppose the owner of Firm 2 is also the manager. What is \(\alpha_2 \)?

\[\alpha_2 = 1. \]

\[\alpha_1 = \frac{6c - a - c\alpha_2}{4c} = \frac{5c - a}{4c} \]

\[q_1 = \frac{a + \alpha_2 c - 2\alpha_1 c}{3} = \frac{a - c}{2} \]