Recap

- Last class (January 15, 2004)
 - Examples of games with continuous action sets
 - Tragedy of the commons
 - Duopoly models: Cournot and Bertrand
 - Comparison of duopoly models with Monopoly
- Today (January 20, 2004)
 - Duopoly models
 - Stackelberg - Comparison with Cournot, Bertrand, and Monopoly
 - Multistage games with observed actions
 - Subgame perfect equilibrium
 - Extensive form of a game

Stackelberg Model

- Two competing firms, selling a homogeneous good
- The *marginal cost* of producing each unit of the good: c_1 and c_2
- Firm 1 moves first and decides on the quantity to sell: q_1
- Firm 2 moves next and after seeing q_1, decides on the quantity to sell: q_2
- $Q = q_1 + q_2$ total market demand
- The market price, P is determined by (inverse) market demand:
 - $P = a - bQ$ if $a > bQ$, $P = 0$ otherwise.
- Both firms seek to maximize profits
Stackelberg Model

- Q_j: the space of feasible q_j’s, j=1,2
- Strategies of firm 2:
 \(s^2: Q_1 \rightarrow Q_2 \)
- Strategies of firm 1: \(q_1 \in Q_1 \)
- Outcomes and payoffs in pure strategies
 \((q_1, q_2) = (q_1, s^2(q_1))\)
 \(\pi^j(q_1, q_2) = [a-b(q_1+q_2)-c_j] q_j\)

Stackelberg Model: Strategy of Firm 2

- Suppose firm 1 produces \(q_1\)
- Firm 2’s profits, if it produces \(q_2\) are:
 \(\pi_2 = (P-c)q_2 = [a-b(q_1+q_2)]q_2 - c_2q_2\)
 = (Residual) revenue – Cost
- First order conditions:
 \(d \pi_2/dq_2 = a - 2bq_2 - bq_1 - c_2 = RMR - MC = 0 \rightarrow\)
 \(q_2 = (a-c_2)/2b - q_1/2 = R^2(q_1)\)

\[s^2 = R^2(q_1) \] Strategy of firm 2
Stackelberg Model: Firm 1’s decision

- Firm 1’s profits, if it produces q_1 are:
 \[\pi_1 = (P-c)q_1 = [a-b(q_1 + q_2)]q_1 - c_1 q_1 \]
- We know that from the best response of Firm 2:
 \[q_2 = (a-c_2)/2b - q_1/2 \]
- Substitute q_2 into π_1:
 \[\pi_1 = [a-b(q_1 + (a-c_2)/2b - q_1/2)]q_1 - c_1 q_1 \]
 \[\quad = [(a+c_2)/2-(b/2)q_1-c_1]q_1 \]
- From FOC:
 \[d\pi_1/dq_1 = (a+c_2)/2-bq_1-c_1 = 0 \rightarrow q_1 = (a-2c_1+c_2)/2b \]

Stackelberg Equilibrium

- We have Firm 1’s profits, if it produces q_1:
 \[q_1 = (a-2c_1+c_2)/2b \]
 And firm 2’s best response
 \[q_2 = (a-c_2)/2b - q_1/2 \]
- Therefore:
 \[q_2 = (a+2c_1-3c_2)/4b \]
- If $c_1 = c_2 = c$
 \[q_1 = (a-c)/2b \]
 \[q_2 = (a-c)/4b \]
 \[Q = 3(a-c)/4b \]
Cournot vs. Stackelberg vs. Bertrand

<table>
<thead>
<tr>
<th></th>
<th>Bertrand</th>
<th>Stackelberg</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>c</td>
<td>(a+3c)/4</td>
<td>(a+2c)/3</td>
<td>(a+c)/2</td>
</tr>
<tr>
<td>Quantity</td>
<td>(a-c)/b</td>
<td>3(a-c)/4b</td>
<td>(a-c)/3b</td>
<td>(a-c)/2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((a-c)/2b+(a-c)/4b)</td>
<td>2(a-c)/3b</td>
<td></td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>3(a-c)^2/16b</td>
<td>2(a-c)^2/9b</td>
<td>(a-c)^2/4b</td>
</tr>
</tbody>
</table>

Example: Stackelberg Competition

- \(P = 130-(q_1+q_2) \), so \(a=130, \ b=1 \)
- \(c_1 = c_2 = c = 10 \)
- Firm 2: \(q_2=(a-c_2)/2b - q_1/2 = 60 - q_1/2 \)
- Firm 1:
 - Residual demand: \(a-b(q_1+q_2) = 70-q_1/2 \)
 - \(\text{RMR} = (a+ c_2)/2-bq_1 = 70-q_1 \)
 - Set \(\text{RMR}=\text{MC} \)
 - \(70-q_1 = 10 \rightarrow q_1 = 60 \)
- Market price and demand
 - \(Q=90 \quad P=40 \)
Stackelberg Competition: Firm 1 strategy

\[P = 130 - Q \]

Residual demand: \[P = 70 - \frac{q}{2} \]

\[RMR = 70 - q \]

\[MC = 10 \]

Consumer surplus = 4050

Firm profits = 2700

Deadweight loss = 450
Monopoly vs. Cournot vs. Bertrand vs. Stackelberg

<table>
<thead>
<tr>
<th></th>
<th>Bertrand</th>
<th>Stackelberg</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>10</td>
<td>40</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Quantity</td>
<td>120</td>
<td>90 (60+30)</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>2700 (1800+900)</td>
<td>3200</td>
<td>3600</td>
</tr>
</tbody>
</table>

- Firm profits and prices:
 Bertrand ≤ Stackelberg ≤ Cournot ≤ Monopoly

Monopoly vs. Cournot vs. Bertrand vs. Stackelberg

<table>
<thead>
<tr>
<th></th>
<th>Bertrand</th>
<th>Stackelberg</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer surplus</td>
<td>7200</td>
<td>4050</td>
<td>3200</td>
<td>1800</td>
</tr>
<tr>
<td>Deadweight loss</td>
<td>0</td>
<td>450</td>
<td>800</td>
<td>1800</td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>2700 (1800+900)</td>
<td>3200</td>
<td>3600</td>
</tr>
</tbody>
</table>
Multi-Stage Games with Observed Actions

These games have “stages” such that
- In each stage k, every player knows all the actions (including those by Nature) that were taken at any previous stage
- Players move simultaneously in each stage k
 - Some players may be limited to action set “do nothing” in some stages
 - Each player moves at most once within a given stage
- No information set contained in stage k provides any knowledge of play in that stage

Stackelberg game

- Stage 1
 - Firm 1 chooses its quantity q_1; Firm 2 does nothing
- Stage 2
 - Firm 2, knowing q_1, chooses its own quantity q_2;
 Firm 1 does nothing
Multi-Stage Games with Observed Actions

h^k : History at the start of stage k

$$h^k = (a^0, a^1, ..., a^{k-1}), \ k = 1, ..., K$$

$A^i(h^k)$: Set of actions available to player i in stage k given history h^k

s^i : Pure strategy for player i that specifies an action $a \in A^i(h^k)$ for each k and each history h^k

Finite games of perfect information

- A multistage game has *perfect information* if
 - for every stage k and history h^k, exactly one player has a nontrivial action set, and all other players have one-element action set “do nothing”
 - each player knows all previous moves when making a decision
- In a *finite game of perfect information*, the number of stages and the number of actions at any stage are finite.
- **Theorem (Zemelo 1913; Kuhn 1953)**: A finite game of perfect information has a pure-strategy Nash equilibrium
Backward induction

Determine the optimal action(s) in the final stage K for each history h^K

For each stage $j=K-1,...,1$
- Determine the optimal action(s) in stage j for each possible h^j given the optimal actions determined for stages $j+1,...,K$.

The strategy profile constructed by backward induction is a Nash Equilibrium. Each player’s actions are optimal at every possible history.

Example: Stackelberg competition

- $P = 130 - (q_1 + q_2), \quad c_1 = c_2 = c = 10$

Backward induction
- Firm 2 strategy: $s^2(q_1) = q_2 = 60 - q_1/2$
- Firm 1 strategy: $q_1 = 60$
- The outcome (60,30) is a Nash equilibrium (Stackelberg outcome)

Is (60,30) the unique equilibrium in this game?

Cournot equilibrium (40,40) is also an equilibrium for the Stackelberg game! $s^2(q_1) = 40 \quad q_1 = 40$
Classroom exercise: Strategic investment

- Duopoly: Firm 1 and Firm 2
- Each firm has unit cost 2
- By paying \(f \), Firm 1 can install new technology and reduce its unit cost to zero
- Once Firm 1’s investment decision is observed, both firms simultaneously choose output levels \(q_1 \) and \(q_2 \) as in Cournot competition
- \(P = 14 - Q \)

Recall: Cournot best response

\[
q_1 = \frac{(a - c_1)}{2b} - \frac{q_2}{2} \\
q_2 = \frac{(a - c_2)}{2b} - \frac{q_1}{2}
\]

Subgame-perfect equilibrium

- A strategy profile \(s \) of a multistage game with observed actions is a subgame-perfect equilibrium if, for every \(h^k \), the restriction \(s| h^k \) is a Nash equilibrium of subgame \(G(h^k) \).

- \(G(h^k) \): game from stage \(k \) on with history \(h^k \)
- For each player \(j \), \(s'| h^k \) is the restriction of \(s' \) to the histories consistent with \(h^k \)
Classroom exercise: Strategic investment

- Firm 1 does not invest
 \[q_1 = \frac{(a-c_1)}{2b} - \frac{q_2}{2} = 6 - \frac{q_2}{2} \]
 \[q_2 = \frac{(a-c_2)}{2b} - \frac{q_1}{2} = 6 - \frac{q_1}{2} \rightarrow (q_1, q_2) = (4,4) \]
 Payoffs: (16,16)

- Firm 1 does invest
 \[q_1 = \frac{(a-c_1)}{2b} - \frac{q_2}{2} = 7 - \frac{q_2}{2} \]
 \[q_2 = \frac{(a-c_2)}{2b} - \frac{q_1}{2} = 6 - \frac{q_1}{2} \rightarrow (q_1, q_2) = (16/3, 10/3) \]
 Payoffs: (256/9-f, 100/9)

- Firm 1 choice:
 Invest if \(\frac{256}{9} - f > 16 \), i.e., if \(f < \frac{112}{9} \)

Example: Stackelberg competition

- \(P = 130 - (q_1 + q_2) \), \(c_1 = c_2 = c = 10 \)

 By backward induction the outcome (60,30) is a subgame-perfect equilibrium.

 The outcome (40,40) is NOT subgame perfect, because the strategy \(s^2(q_1) = 40 \) does not induce a Nash equilibrium in stage 2 for player 2, for histories other than \(q_1 = 40 \).