Recap

- Last class (January 13, 2004)
 - Dominant and dominated actions
 - Best response
 - Nash equilibrium
 - Mixed strategies
 - Pareto dominance
- Today (January 15, 2004)
 - Examples of games with continuous action sets
 - Duopoly models: Cournot and Bertrand

Duopoly models

- Two competing firms, selling a homogeneous good
- The marginal cost of producing each unit of the good: c_1 and c_2
- The market price, P is determined by (inverse) market demand:
 - $P=a-bQ$ if $a>bQ$, $P=0$ otherwise.
- Both firms seek to maximize profits
- Cournot: Firms set quantities simultaneously
- Bertrand: Firm set prices simultaneously
- Stackelberg: Firms set quantities, firm 1 followed by firm 2
Cournot Competition

- The market price, P is determined by (inverse) market demand:
 - $P=a-bQ$ if $a>bQ$, $P=0$ otherwise.
- Each firm decides on the quantity to sell (market share): q_1 and q_2
- $Q=q_1+q_2$ total market demand
- Both firms seek to maximize profits

Cournot Competition: Best response of Firm 1

- Suppose firm 2 produces q_2
- Firm 1’s profits, if it produces q_1 are:
 \[\pi_1 = (P-c_1)q_1 = [a-b(q_1+q_2)]q_1 - c_1q_1 = (\text{Residual revenue} - \text{Cost}) \]
- How to choose q_1 to maximize π_1?
- First note that π_1 is concave: $\frac{d^2\pi_1}{dq_1^2} = -2b < 0$
- First order conditions (FOC):
 \[\frac{d\pi_1}{dq_1} = a - 2bq_1 - bq_2 - c_1 = 0 \rightarrow q_1 = \frac{(a-c_1)}{2b} - \frac{q_2}{2} = R_1(q_2) \]
Cournot Competition: Best response of Firm 2

1. Suppose firm 1 produces q_1
2. Firm 2’s profits, if it produces q_2 are:
 \[\pi_2 = (P-c_2)q_2 = [a-b(q_1+q_2)]q_2 - c_2q_2 \]
 \[= \text{(Residual) revenue – Cost} \]

3. First order conditions:
 \[\frac{d\pi_2}{dq_2} = a - 2bq_2 - bq_1 - c_2 = \]
 \[= \text{RMR} - \text{MC} = 0 \rightarrow \]
 \[q_2 = \frac{(a-c_2)}{2b} - \frac{q_1}{2} = R_2(q_1) \]

Example: Cournot Competition

1. $P = 130-(q_1+q_2)$, so $a=130$, $b=1$
2. $c_1 = c_2 = c = 10$
3. Suppose Firm 2 thinks that Firm 1 will set $q_1=40$
 - Residual demand of Firm 2: $P = 90-q_2$
 - Residual revenue of Firm 2: $RR = [90-q_2]q_2$
4. Residual marginal revenue:
 \[\text{RMR} = 90-2q_2 \]
5. Setting $\text{RMR} = \text{MC} = 10$
 \[90-2q_2 = 10 \rightarrow q_2 = 40 \]
Cournot Competition: Graphical solution

\[P = 130 - Q \]

Residual demand: \[P = 90 - q \]

\[RMR = 90 - 2q \]

MC = 10

Cournot Equilibrium

\[q_1 = (a-c_1)/2b - q_2/2 \]
\[q_2 = (a-c_2)/2b - q_1/2 \]

Solving together for \(q_1 \) and \(q_2 \):

\[q^C_1 = (a-2c_1+c_2)/3b \quad q^C_2 = (a-2c_2+c_1)/3b \]

Market demand and price:

\[Q^C = q^C_1 + q^C_2 = (2a- c_1 - c_2)/3b \]
\[P = a - bQ^C = (a+c_1+c_2)/3 \]
Example: Cournot Competition

- $P = 130 - (q_1 + q_2)$, so $a=130$, $b=1$
- $c_1 = c_2 = c = 10$
- The firms’ best response functions:

 $q_1 = \frac{(a - bq_2 - c)}{2b} = \frac{(130 - q_2 - 10)}{2} = 60 - \frac{q_2}{2}$

 $q_2 = \frac{(a - bq_1 - c)}{2b} = \frac{(130 - q_1 - 10)}{2} = 60 - \frac{q_1}{2}$

- Solving for q_1 and q_2:

 $q_1 = q_2 = 40 \quad Q=80 \quad P = 50$

- Firms’ profits:

 $\pi_1 = \pi_2 = (50 - 10) \times 40 = 1600$

Cournot Competition: Graphical solution

- $q_1 = R_1(q_2) = 60 - \frac{q_2}{2}$
- $q_2 = R_2(q_1) = 60 - \frac{q_1}{2}$

Diagram of Cournot equilibrium with $R_1(q_2)$ and $R_2(q_1)$ lines intersecting at $(q_1, q_2) = (40, 40)$. The equilibrium price $P = 50$ and quantity $Q = 80$. Firms' profits $\pi_1 = \pi_2 = 1600$.
Cournot Equilibrium with N firms

\[\max_{q_i} \pi_i(q_i, q_{-i}) = [a - bq_i - b \sum_{j \neq i} q_j]q_i - c_i q_i \]

First order conditions:
\[a - 2bq_i - b \sum_{j \neq i} q_j - c_i = 0 \quad \forall i = 1, \ldots, N \]

Substitute \(Q = \sum q_i; \)
\[a - bq_i - bQ - c_i = 0 \quad \forall i = 1, \ldots, N \]

Sum over N:
\[Na - bQ - bNQ - \sum c_i = 0 \]

\[
Q^C = \frac{Na}{(N+1)b} - \frac{\sum c_i}{(N+1)b} \\
p^C = \frac{a}{N+1} + \frac{\sum c_i}{N+1}
\]

If each firm has the same cost \(c_i = c \):
\[q_i^C = \frac{Q^C}{N} = \frac{a - c}{(N+1)b} \quad p^C = \frac{a + Nc}{N+1} \]
Bertrand Equilibrium Model

- Firms set prices rather than quantities
 - \(P = a - bQ \)
- Customers buy from the firm with the cheapest price
- The market is split evenly if firms offer the same price

Best response

- Firm 1’s profit function:
 \[\pi(P_1) = (P_1 - c_1) q_1 \]
- To ensure \(q_1 > 0 \) (recall: \(P = a - bQ \) and \(Q = (a - P)/b \))
 \(P_1 \leq a \)
- To ensure nonnegative profits
 \(P_1 \geq c_1 \)
- Firm 1 should choose
 \(c_1 \leq P_1 \leq a \)
- Similarly, firm 2 should choose
 \(c_2 \leq P_2 \leq a \)
Best response (cont.)

- Firm i’s demand depends on the relationship between P_1 and P_2
 \[q_i = \begin{cases}
 0, & \text{if } P_i > P_j \\
 \frac{a - P_i}{b}, & \text{if } P_i < P_j \\
 \frac{a - P}{2b}, & \text{if } P_i = P_j = P
 \end{cases} \]
 \(i = 1, 2 \)

- Firm 1 should choose $c_1 \leq P_1 \leq P_2$ (if possible)
- Firm 2 should choose $c_2 \leq P_2 \leq P_1$ (if possible)

Bertrand equilibrium

- For both firms to sell positive quantities profitably
 \(c_1 \leq P_1 \leq P_2 \) and \(c_2 \leq P_2 \leq P_1 \)

- Suppose $c = c_1 = c_2$
 \[P = c \qquad q_1 = q_2 = \frac{(a-c)}{2b} \]

- Suppose $c_1 < c_2$
 \[P_1 = c_2 - \varepsilon \quad P_2 \geq c_2 \]
 \[q_1 = \frac{(a - c_2 + \varepsilon)}{b} \quad q_2 = 0 \]
Example

- \(P = 130-(q_1+q_2) \) (a=130, b=1)
- \(c_1 = c_2 = c = 10 \)
- \(P=10 \)
- \(q_1= q_2= (a-P)/2b = 60 \) \(Q=120 \)
- Firms’ profits:
 \[\pi_1 = \pi_2 = 0 \]

Quantity-setting monopolist

- Single firm (monopolist), selling a single good
- The *marginal cost* of producing each unit of the good: \(c \)
- The firm decides on the quantity to sell: \(Q \) (market demand)
- The market price, \(P \) is determined by (inverse) market demand:
 - \(P=a-bQ \) if \(a>bQ \), \(P=0 \) otherwise.
- The firm seeks to maximize profits
Quantity-setting monopolist

- The firm’s profits, if it produces Q are:
 \[\pi = (P-c)Q = (a-bQ)Q - cQ \]
 \[= \text{Revenue} - \text{Cost} \]
- How to choose Q to maximize \(\pi \)?
- First note that \(\pi \) is concave: \(d^2\pi/dQ^2 = -2b < 0 \)
- First order conditions (FOC):
 \[d\pi/dQ = a - 2bQ - c \]
 \[= \text{Marginal revenue} - \text{Marginal cost} \]
 \[= 0 \rightarrow Q = (a-c)/2b \]
 \[P = (a+c)/2 \]

Example

- \(P = 130-Q \) (a=130, b=1)
- \(c = 10 \)
- \(Q = (a-c)/2b = 60 \)
 \[P = (a+c)/2 = 70 \]
- Monopolist’s profits:
 \[\pi = (70-10)60 = 3600 \]
Monopoly vs. Cournot vs. Bertrand

<table>
<thead>
<tr>
<th></th>
<th>Competitive</th>
<th>Bertrand</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Quantity</td>
<td>120</td>
<td>120</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>0</td>
<td>3200</td>
<td>3600</td>
</tr>
</tbody>
</table>

- Firm profits and prices:
 Competitive ≤ Bertrand ≤ Cournot ≤ Monopoly

Monopoly vs. Cournot vs. Bertrand

<table>
<thead>
<tr>
<th></th>
<th>Competitive</th>
<th>Bertrand</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>c</td>
<td>c</td>
<td>(\frac{a+2c}{3})</td>
<td>(\frac{a+c}{2})</td>
</tr>
<tr>
<td>Quantity</td>
<td>(\frac{a-c}{b})</td>
<td>(\frac{a-c}{b})</td>
<td>(\frac{2(a-c)}{3b})</td>
<td>(\frac{a-c}{2b})</td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>0</td>
<td>(\frac{2(a-c)}{9b})</td>
<td>(\frac{(a-c)^2}{4b})</td>
</tr>
</tbody>
</table>

- Firm profits and prices:
 Competitive ≤ Bertrand ≤ Cournot ≤ Monopoly
Cournot competition

\[P = 130 - Q \]

\[MC = 10 \]

Consumer surplus = 3200
Firm profits = 3200
Deadweight loss = 800

Bertrand competition

\[P = 130 - Q \]

\[MC = 10 \]

Consumer surplus = 7200
Monopoly

\[P = 130 - Q \]

\[MC = 10 \]

Consumer surplus = 1800

Deadweight loss = 1800

Firm profits = 3600

Monopoly vs. Cournot vs. Bertrand

<table>
<thead>
<tr>
<th></th>
<th>Competitive</th>
<th>Bertrand</th>
<th>Cournot</th>
<th>Monopoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer surplus</td>
<td>7200</td>
<td>7200</td>
<td>3200</td>
<td>1800</td>
</tr>
<tr>
<td>Deadweight loss</td>
<td>0</td>
<td>0</td>
<td>800</td>
<td>1800</td>
</tr>
<tr>
<td>Total Firm Profits</td>
<td>0</td>
<td>0</td>
<td>3200</td>
<td>3600</td>
</tr>
</tbody>
</table>