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Abstract: In the paper, we develop, discuss and illustrate by simulated nu-
merical results a new model of multi-stage asset allocation problem. The model
is given by a new methodology for optimization under uncertainty – the Robust
Counterpart approach.

INTRODUCTION

The goal of this paper is to apply a novel modeling methodology aimed at
treating data uncertainty in optimization problems – the Robust Counterpart
approach [1, 2] – to the multi-period asset allocation problem. We start with
the original model of Dantzig and Infanger [3] (Section 1) and apply to this
model the Robust Counterpart approach [1, 2], thus coming to a new model of
the problem (Section 1). The advantages/disadvantages of the resulting model
as compared to the standard Multistage Stochastic Programming model of the
Portfolio problem are discussed in Section 1. The concluding Section 1 presents
some simulated numerical results.

The Original Problem

The multi-period asset allocation problem (“Portfolio problem” for short) as
stated by Dantzig and Infanger [3] is as follows.
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There are n types of assets i = 1, ..., n plus cash (“asset n+ 1”) and L time
investment periods, and the problem is to control a portfolio of these assets.
Let xli be the amount (“dollar value”) of asset i in the portfolio at the beginning
of the investment period l, l = 1, ..., L.

The dynamics of the quantities xli is given by the equations
A. i ≤ n (“non-cash assets”):

xli = rl−1
i xl−1

i − yli + zli, (1.1)

where
• rl−1

i xl−1
i is the amount coming from the preceding period (the coefficient

rl−1
i > 0 is the asset return)
• zli is the amount of the asset we buy at the beginning of the period l
• yli is the amount of the asset we sell at the beginning of the period l
B. i = n+ 1 (“cash”):

xln+1 = rl−1
n+1x

l−1
n+1 +

n∑

i=1

(1− µli)yli −
n∑

i=1

(1 + νli)z
l
i (1.2)

where
• rl−1

n+1x
l−1
n−1 is the cash coming from the previous period (rl−1

n+1 > 0 is the
cash return)
• (1 − µli)yli is the cash we get from selling amount yli of the asset i at the

beginning of the period l. Recall that the assets are measured by their “dollar
value”, so that in the case of costless transactions selling amount yli of asset i we
would get cash yli; in fact the transactions are not costless, and the transaction
cost µli ≥ 0 is the percent we pay for the transaction
• (1 + νli)z

l
i is the cash we pay to buy amount zli of asset i (νli ≥ 0 is the

corresponding transaction cost)
When making decision at instant l, we know all xl−1

i , rl−1
i , i = 1, ..., n + 1.

The decision is comprised of the quantities yli, z
l
i, i = 1, ..., n which should

satisfy the restrictions

yl
i
≤ yli ≤ yli, i = 1, ..., n,

zli ≤ zli ≤ zli, i = 1, ..., n,
xli ≤ xli ≤ xli, i = 1, ..., n+ 1,

(1.3)

where yl, yl, zl, zl, xl, xl are given vectors of bounds and xli are defined according
to (1.1) - (1.2).

From now on let us focus on the case of simple bounds – the lower ones are
zero, the upper ones are +∞.

The goal is to maximize the final total value of the assets

v =
n+1∑

i=1

rLi x
L
i (1.4)
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The case of complete information

Assume for a moment that the asset returns and transaction costs are known
in advance. Then the situation in question can be modeled by the following
Linear Programming problem:

(P∗)

max
n+1∑
i=1

rLi x
L
i

s.t.
xli = rl−1

i xl−1
i − yli + zli, i = 1, ..., n, l = 1, ..., L;

xln+1 = rl−1
n+1x

l−1
n+1 +

n∑
i=1

(1− µli)yli −
n∑
i=1

(1 + νli)z
l
i

yli ≥ 0, i = 1, ..., n, l = 1, ..., L;
zli ≥ 0, i = 1, ..., n, l = 1, ..., L;
xli ≥ 0, i = 1, ..., n+ 1, l = 1, ..., L.

(1.5)

In this problem,
• xl, yl, zl, l = 1, ..., L, are decision vectors
• rli, l = 0, ..., L, same as µli, ν

l
i , l = 1, ..., L, are data coefficients

• x0 is a given initial state of the portfolio.
For our future purposes it makes sense to pass from the LP program (P∗) to

an equivalent one, namely, to pass from the original design variables xli, y
l
i, z

l
i

to the new ones
ξli = (Rli)

−1xli,
ηli = (Rli)

−1yli,
ζli = (Rli)

−1zli,

where
Rli = r0

i r
1
i ...r

l−1
i . (1.6)

In the new variables (P∗) becomes the program

(P ∗)

max
n+1∑
i=1

RL+1
i ξLi

s.t.
ξli = ξl−1

i − ηli + ζli , i = 1, ..., n, l = 1, ..., L;

ξln+1 = ξl−1
n+1 +

n∑
i=1

Aliη
l
i −

n∑
i=1

Bliζ
l
i , l = 1, ..., L;

ηli ≥ 0, i = 1, ..., n, l = 1, ..., L;
ζli ≥ 0, i = 1, ..., n, l = 1, ..., L;
ξli ≥ 0, i = 1, ..., n+ 1, l = 1, ..., L,

(1.7)

where
Ali = (1− µli)Rli/Rln+1,
Bli = (1 + νli)R

l
i/R

l
n+1.

(1.8)
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Now let us switch from (P ∗) to its inequality constrained version, where the
“cash flow equations” are replaced with “cash flow inequalities”:

(P )
max w

s.t.

(IL+1) : w ≤
n+1∑
i=1

RL+1
i ξLi

ξli = ξl−1
i − ηli + ζli , i = 1, ..., n, l = 1, ..., L

(Il) : ξln+1 ≤ ξl−1
n+1 +

n∑
i=1

Aliη
l
i −

n∑
i=1

Bliζ
l
i , l = 1, ..., L

ηli ≥ 0, i = 1, ..., n, l = 1, ..., L
ζli ≥ 0, i = 1, ..., n, l = 1, ..., L
ξli ≥ 0, i = 1, ..., n+ 1, l = 1, ..., L

(1.9)

Of course, all three problems (P∗), (P ∗) and (P ) are equivalent to each other.

Data uncertainty

The above models relate to the case of complete a priori information on the
future values of the asset returns and transaction costs; in reality, of course,
these quantities are not known exactly. The natural assumption is that

A. the data which is known exactly at time instant l (i.e., at the beginning
of time period l) are the past values of the asset returns r0

i , r
1
i , ..., r

l−1
i ,

i = 1, ..., n+ 1, as well as the past and present values of the transaction
costs µ1

i , µ
2
i , ..., µ

l
i, ν

1
i , ..., ν

l
i , i = 1, ..., n.

Let us denote the collection of data known at time instant l by ωl, and let ωLl
be the collection

{rti | 1 ≤ i ≤ n+ 1, l ≤ t ≤ L} ∪ {µtl , νtl | 1 ≤ i ≤ n, l < t ≤ L}
of the future, w.r.t. time instant l, values of the asset returns and the trans-
action costs. At time instant l, the data ωLl are uncertain; following Dantzig
and Infanger [3], we assume that ωLl is random, with known at time instant l
probability distribution.

An immediate consequence of the fact that the data in (P ) are uncertain is
that the Linear Programming problem (P ) is not anymore a valid model of the
problem in question. The standard way to pass from (P ) to a “usable” model
is given by the Multistage Stochastic Programming approach. According to it,
we should treat the decision variables ξli, η

l
i, ζ

l
i not as reals, but as measurable

functions of ωl – of the data known at the instant when the corresponding deci-
sions should be implemented. These functions should almost surely satisfy the
constraints of (P ) (which now become inequalities between random variables),
and the objective to be maximized is, e.g., the expectation, over ωL+1, of the
value of the original objective (for more details on the Multistage Stochastic
Programming model of the Portfolio problem, see [3]).

If we believe that the uncertainty in the portfolio problem is of stochastic
nature, then the Multistage Stochastic Programming model of the problem is
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completely adequate. This model, however, has a severe intrinsic drawback:
it is “computationally intractable”, provided that the number L of stages is
> 2. Indeed, in the typical case of continuously distributed random data it is
computationally intractable even to write down a candidate solution – a collec-
tion of functions of continuous argument without any analytical structure clear
in advance. Multistage Stochastic Programming offers a number of techniques
aimed at overcoming this intrinsic drawback of the approach – approximating
continuous distributions of the data by discrete ones (“scenario approach”),
importance sampling, etc., but even with all these techniques the Stochastic
Programming approach in its computational aspects seems to be an “ad hoc
skill” rather than a “ready-to-use” technique.

ROBUST COUNTERPART APPROACH TO THE PORTFOLIO

PROBLEM

The goal of this paper is to develop an alternative model of the uncertain
Portfolio problem, a model based on the methodology of Robust Mathematical
Programming as developed in [1, 2]. In contrast to the Multistage Stochastic
Programming approach, our primary goal is to end up with computationally
efficiently tractable model, and to this end we are ready to be a bit conservative
just from the beginning. Namely, let us look at (P ) as at a program where we
should choose all decisions {ξli, ηli, ζli | 1 ≤ l ≤ L, 1 ≤ i ≤ n + 1} at the very
first time instant l = 1 (and, consequently, these decisions are just reals, not
functions of ωl); the reader is kindly asked to suppress his natural reaction to
this disastrous assumption and not to throw the paper away at least till the
discussion in Section 1 is read.

After we have agreed to treat the decision variables in (P ) as reals and
not functions of ωl, we can treat (P ) as a usual Linear Programming with
uncertain data and to apply to this uncertain optimization program the Robust
Counterpart approach as presented in [1, 2].

The Robust Counterpart approach to uncertain Linear Pro-
gramming problems. The approach is as follows. Consider an un-
certain Linear Programming problem

(P) max
X
{cTX | AX + b ≥ 0},

X being N -dimensional decision vector, c being an exactly known (“cer-

tain”) objective and [A; b] =




aT1 , b1
· · ·

aTm, bm


 being “uncertain” m× (N + 1)

constraint matrix; all known about this matrix is that it belongs to a
given uncertainty set U ⊂ Rm×(N+1). With the Robust Counterpart
approach, we treat as “robust feasible” solutions to the problem those
X which satisfy the constraints whatever is the realization of “instance
data” [A; b] from the uncertainty set; in other words, a robust feasible
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solution to uncertain problem in question should satisfy the system of
inequalities

AX + b ≥ 0 ∀([A; b] ∈ U)

with this approach, it is natural to define the robust optimal solution to
(P) as the robust feasible solution with the smallest possible value of the
objective, i.e., the optimal solution of the Robust Counterpart

(P∗) max
X
{cTX | AX + b ≥ 0 ∀[A; b] ∈ U}.

of the uncertain problem (P).

For typical uncertainty sets, (P∗) is a semi-infinite optimization problem.
There are, however, cases when (P∗) turns out to be an “explicit” convex
optimization program. One of these cases which is of especial interest for
us is when the projections Ui of the uncertainty set U on the subspaces
of data (aTi , bi) of i-th linear constraint of (P) for all i are ellipsoids:

Ui = {(aTi , bi) = ([a0
i ]
T , b0i ) +

ki∑
j=1

uj([a
j
i ]
T , bji ) | uTu ≤ 1}.

In this case (P∗) clearly is the conic quadratic problem

maxX{cTX | [a0
i ]
TX + b0i − ‖βi + αiX‖2 ≥ 0, i = 1, ...,m},

βi =



b1i
b2i
· · ·
bkii


 , αi =




[a1
i ]
T

[a2
i ]
T

· · ·
[akii ]T


 .

(1.10)

Now, the problem (P ) we are interested in is a Linear Programming problem
of the form (P), and we may apply to it the outlined approach, and all we need
is to specify somehow the uncertainty set U in the space of data [A, b]. To this
end, consider the following reasoning. Let us denote by πl, l = 2, 3, ..., L + 1,
the vector of design variables affected by uncertainty in the inequality (Il):

πl =
(
ηl

ζl

)
, l = 2, ..., L,

πL+1 = ξL,
(1.11)

and let Pl be the corresponding vectors of uncertain coefficients:

Pl =
(

Al

−Bl
)
, l = 2, ..., L,

PL+1 = RL+1.
(1.12)

According to our initial assumption on the stochastic nature of the uncertain
data, we know the distribution of the uncertain parameter vectors P2, ..., PL+1,
in particular, their expectations pl and their covariance matrices V l. Now, the
l-th uncertain inequality in (P ) is of the form

aTl X + bl ≤ PTl πl, (1.13)
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where X is the vector comprised of all design variables, al is certain coefficient
vector and bl is a certain constant; note that πl is a known linear function of
X. When X is fixed, the right hand side in (1.13) is a random variable with
expectation pTl πl and variance vl(X) = πTl V

lπl. Now let us act as an engineer
who assumes that a random real is “never” less than its mean minus θ times
its standard deviation (an engineer would set θ = 3, but we should not be that
specific). With this “engineering” approach, a “safe” deterministic version of
the constraint (1.13) is the usual (“certain”) constraint

aTl X + bl ≤ pTl πl − θl
√
πTl V

lπl, (1.14)

where θl > 0 is a “safety parameter” we choose for the l-th of our original
uncertain constraints.

Replacing all uncertain inequalities in (P ) by their “safe versions”, we end
up with the following “safe version” of (P ):

(P+)
max w

s.t.

w + θL+1

√
[ξL]TV L+1[ξL] ≤

n+1∑
i=1

ρL+1
i ξLi

ξli = ξl−1
i − ηli + ζli ,

i = 1, ..., n, l = 1, ..., L;

ξln+1 + θl

√(
ηl

ζl

)T
V l
(
ηl

ζl

)
≤ ξl−1

n+1 +
n∑
i=1

αliη
l
i +

n∑
i=1

βliζ
l
i ,

l = 1, ..., L;
ηli ≥ 0, i = 1, ..., n, l = 1, ..., L;
ζli ≥ 0, i = 1, ..., n, l = 1, ..., L;
ξli ≥ 0, i = 1, ..., n+ 1, l = 1, ..., L.

(1.15)
Here:
• ρL+1

i are the expectations of RL+1
i , and V L+1 is the covariance matrix of

the random variables RL+1
i

• for l = 1, ..., L, the vector
(
αli
βli

)
is the expectation of the random vector




(1− µl1)Rl1/R
l
n+1

...
(1− µln)Rln/R

l
n+1

−(1 + νl1)Rl1/R
l
n+1

...
−(1 + νln)Rln/R

l
n+1




, and the matrix V l is the covariance matrix of this

random vector (in fact this vector indeed is random only for l > 1) It can
be easily demonstrated that (P+) is nothing but the Robust Counterpart of
(S) associated with the uncertainty set U which is the direct product of the
ellipsoids

{(Pl − pl)T (V l)−1(Pl − pl) ≤ θ2
l }, l = 1, ..., L.
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The optimization program (P+) is a (“certain”) convex optimization pro-
gram with nice analytical structure, and this is exactly the model of the uncer-
tain Portfolio problem we propose.

Simplification of the Robust Portfolio model

In the “certain” problem (P ∗) the variables ηli, ζ
l
i are, in a sense, redundant

and can be eliminated. Indeed, we can write

ηli − ζli = ξl−1
i − ξli;

for a given value of the right hand side in this equality, maximum contribution
of ηli ≥ 0, ζli ≥ 0 to the right hand side of the corresponding cash flow inequality

ξln+1 = ξl−1
n−1 +

n∑

i=1

Aliη
l
i −

n∑

i=1

Bliζ
l
i

is attained when

ηli = (ξl−1
i − ξli)+ ≡ max{ξl−1

i − ξli, 0}
ζli = (ξli − ξl−1

i )+ ≡ max{ξli − ξl−1
i , 0} (1.16)

(note that by their origin Ai < Bi), and of course it is profitable to choose ηli
and ζli accordingly. This observation reflects a completely evident fact: at every
time instant, it never makes sense both to buy and to sell positive amounts of
an asset – because of the transaction costs, we should either buy, or sell the
asset, but not both simultaneously.

Relation (1.16) allows to eliminate from (P ∗) all η- and ζ- variables, along
with balance equations for non-cash assets. Of course, this elimination destroys
the linear structure of the cash flow inequalities – they became convex nonlinear
constraints.

Since the Robust Counterpart (P+) of (P ∗) from the very beginning is a
nonlinear convex program, it might make sense to ask whether the possibility
to eliminate η- and ζ-variables is inherited by (P+). We were able to prove the
corresponding statement only under additional, although not very restrictive,
assumptions. Here is the result.

Lemma 1.0.1 Let ψli = Bli−Ali [= (µli+ν
l
i)R

l
i/R

l
n+1]. Assume that for some

set I of pairs (i, l) (i ∈ {1, ..., n}, l ∈ {1, ..., L}) one has

E{(ψli)2} ≤ (θ−2
l + 1)[E{ψli}]2 (1.17)

(E stands for expectation). Then there exists optimal solution to (P+) for
which relations (1.16) are satisfied for all (i, l) ∈ I.

Proof. (P+) clearly is feasible (a feasible solution is given by ξli = ξ0
i , ηli = ζli =

0 for all i and l), and the feasible domain of the problem clearly is bounded.
It follows that the problem is solvable. Let {ξli, ηli, ζli} be an optimal solution
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in this problem, and let (i, l) ∈ I. It suffices to verify that if we modify this
solution, varying only the quantities ηli and ζli according to (cf. (1.16))

(ηli, ζ
l
i) 7→ ((ξl−1

i − ξli)+, (ξli − ξl−1
i )+),

then the updated solution remains feasible (and then - optimal, since this up-
dating clearly does not vary the value of the objective). Given the announced
fact and applying sequentially to the initial optimal solution the indicated mod-
ifications for all (i, l) ∈ I, we will end up with the optimal solution required in
Lemma.

The modification in question affects only the balance equation for asset i at
the time instant l and the cash flow inequality at this instant. The first of these
equations clearly remains valid, so that all we need is to demonstrate that our
modification does not decrease the right hand side of l-th cash flow inequality.
This is exactly the same as to verify that the function

gli(t) = E{Ali}(t+ δli)− E{Bli}t− θl
√
E{h2(t)},

δli = ηli − ζli = ξl−1
i − ξli,

h(t) =
n∑
j=1

hj(t),

hj(t) =
{

[Ali − E{Ali}](t+ δli)− [Bli − E{Bli}]t, j = i
[Alj − E{Alj}]ηlj − [Blj − E{Blj}]ζli , j 6= i

is nonincreasing in t. Indeed, when we vary only ηli and ζli , preserving the bal-
ance equalities (i.e., replace ηli by δli+t and ζli by t, t ∈ ∆l

i = [max{−δli, 0},∞))
gli(t), up to independent of t additive term, is exactly the difference between
the right and the left hand sides of the l-th cash flow inequality; this difference
is nonnegative when t = ζli ∈ ∆l

i, and given that it is nonincreasing in t, we
could conclude it is also nonnegative when t is the left endpoint of ∆l

i, and
it would mean that the the modification of the solution we are interested in
indeed is feasible).

To prove that gli(t) is nonincreasing in t, let us compute the derivative of the
function:

(gli)
′(t) = E{Ali −Bli} − θl E{h(t)h′(t)}√

E{h2(t)}
≤ E{Ali −Bli}+ θl

√
E{[h′(t)]2}

[we have used the Cauchy inequality]
= −E{ψli}+ θl

√
E{[−ψli + E{ψli}]2}

[since h′(t) = −ψli + E{ψli}]
= −E{ψli}+ θl

√
E{[ψli]2} − [E{ψli}]2

≤ 0 [see (1.17)]

Remark 1.0.1 Note that (1.16) for sure is satisfied when l = 1, since then ψli
are not random. It follows that when we use the robust counterpart approach
in the rolling horizon mode (see below), our actual decisions never are both to
buy and to sell a given asset at a given time instant.
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Let us look whether (1.16) is satisfied for the case when µli and νli are certain
positive constants and the vector comprised of ln rli for all i, l has joint normal
distribution. In this case the quantity lnψli also has normal distribution, say,
N(µ = µ(i, l), σ2 = σ2(i, l)). It follows that

E{[ψli]p} = (2π)−1/2σ−1
∫

exp{px− (x−µ)2

2σ2 }dx
= (2π)−1/2σ−1

∫ {exp{ (x−µ−σ2p)2

2σ2 } exp{pµ+ p2σ2

2 }dx
= exp{(pµ+ p2σ2

2 },
(1.18)

whence
E{[ψli]2}
[E{ψli}]2

= exp{σ2}.

Thus, in the case in question (1.17) is satisfied if

θl ≤ 1√
exp{σ2(i, l)} − 1

∀i, l. (1.19)

Note also that whether it indeed makes sense to eliminate the η- and ζ-
variables when possible, it depends on the numerical technique used to solve
(P+). With the interior point methods, this elimination hardly makes sense,
since it complicates the analytical structure of the problem, and when solving
the problem by interior point methods, we basically should reintroduce the
eliminated variables. In contrast to this, it definitely makes sense to elimi-
nate the variables in question when (P+) is solved by nonsmooth optimization
technique (the bundle methods).

Discussion

The reasoning which led us from (P ) to (P+) is, of course, a “common sense”
reasoning, not a rigorous mathematical deduction; however, this is not a severe
sin – we were building a mathematical model, and modeling of a real-world
problem always lies beyond the bounds of mathematics. A sin, if any, is in
treating (P ) as a problem where all decisions should be made at the very first
time instant, while in the actual portfolio management the decisions which
should be implemented at time instant l = 1, 2, ..., L may depend on the data
which are unknown at the very first time instant, but become known at the
time instant l. Whether the latter “sin of conservativeness” is sufficient to dis-
card the model (P+) in advance or not, it depends on whether we have in our
disposal something better. An evident answer would be: “of course, we have
something much better – the Multistage Stochastic Programming”. We, how-
ever, would argue that the advantages of Stochastic Programming are not that
evident at all. Indeed, it is true that in the Multistage Stochastic Programming
approach we start with an adequate model of the actual process; but then we
are supposed to carry out huge specific effort in order to approximate the ini-
tial computationally intractable model by a computationally tractable one. At
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this approximation stage, we have no a priori guarantees that the “tractable
approximation” we end up with still will be relevant to the actual process, that
we do not buy computational tractability at the price of lack of relevance. In
a sense, the latter always is the case: the Multistage Stochastic Programming
at best can provide us with good first stage (“here and now”) components
of the decisions, while the decisions of the subsequent stages – which, in the
Stochastic Programming model of the Portfolio problem, are functions of con-
tinuous multidimensional arguments, cannot even be fully stored. As a result,
the only possible way to apply Multistage Stochastic Programming in practice
is to use it in the rolling horizon mode – at the first time instant, to approxi-
mate the multistage stochastic model by something computationally tractable
and to implement the “here and now” part of the decisions, at the second time
instant, to solve a new problem with reduced by 1 time horizon and to im-
plement the “here and now” part of the decisions yielded by the solution, etc.
There would be nothing bad in the “rolling horizon” scheme, if we were sure
that the “here and now” part of the decisions given by the Stochastic Program-
ming approach indeed comes from a nearly optimal solution to the Multistage
Stochastic Programming model, but in fact these decisions come from compu-
tationally tractable approximation of the latter model, and we already have
mentioned that there are no “ready-to-use” techniques capable to guarantee
high-quality computationally efficient approximation of the optimal solution to
the Multistage Stochastic Programming model.

In contrast to the Multistage Stochastic Programming model, the “Robust
Counterpart” model (P+) does not pretend to be completely adequate to the
actual process; as a compensation, (P+) is an explicit Convex Programming
program with nice analytic structure, a program perfectly well suited for mod-
ern interior point methods, and therefore (P+) can be routinely and efficiently
built and processed computationally. Exploiting this model in the rolling hori-
zon model, we may hope to eliminate to some extent the influence of the afore-
mentioned “sin of conservativeness”.

What is better for real world applications – to start with an adequate model
which should be unavoidably “spoiled” in course of “ad hoc” numerical pro-
cessing or to start with a rough model which for sure can be routinely and
efficiently processed – this question can be resolved only in practice. Not try-
ing to predict the answer, we, however, strongly believe that the approach we
have presented is worthy of testing. In the remaining part of this paper, we
present the results of a preliminary simulation-based testing of this type.

Before passing to numerical results, it makes sense to discuss an additional
modeling issue – why the Robust Counterpart approach was applied to problem
(P ) rather than to the original problem (P∗). Of course, (P∗) itself cannot be
treated via the Robust Counterpart approach, since this is a problem with
uncertain equality constraints, and the straightforward Robust Counterpart to
such a problem is normally infeasible. However, in the case of certain data (P∗)
clearly is equivalent to its inequality constrained version (P ∗) (all equalities are
replaced with the inequalities ≤); why not to apply the Robust Counterpart
approach to (P ∗)? The answer is as follows: the problems (P ∗) and (P ) are
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equivalent as problems with certain data, and are not equivalent as uncertain
problems to be processed by the Robust Counterpart approach. Indeed, a
robust feasible solution to (P ∗) is a once for ever prescribed sequence of concrete
actions: at the first time instant, sell and buy these and these amounts of every
asset, at the second time instant sell and by these and these amounts, and so
on; the actions related to time instant l are completely independent of what
happened with the market before this instant. In contrast to this, a robust
feasible solution to (P ) prescribes a behaviour which does depend, although
in a simple way, on what goes on with the market: the amounts of assets
to be bought and sold at time instant l are proportional to the quantities
Rli, the proportionality coefficients being given by the solution in question.
Although these coefficients are independent of what happens with the market,
the quantities Rli do depend on market’s behaviour, and so are the actions
prescribed by a solution to (P ). Now, since (P ∗) and (P ), treated as uncertain
problems which we are going to process with the Robust Counterpart approach,
are not equivalent to each other, the natural question is which one is better
suited for this approach. The “common sense” answer is definitely in favour of
(P ) by the following reasons. Basically all constraints in (P ∗) are uncertain,
and most of them involve a single uncertain coefficient each. Applying the
above reasoning to get a “safe” version of the constraints of this latter type,
we end up with the original constraint with the uncertain coefficient being
replaced with its nearly worst possible value, which is extremely conservative.
In contrast to this, (P ) involves just L uncertain constraints, and every one of
them is affected by large number n of uncertain coefficients. If the dependencies
between these coefficients are not too strong, we may hope that “bad” values of
some of them will be to some extent compensated by “good” values of others,
so that the robust version of the constraint will be not that conservative.

To illustrate this important point, consider the following “extreme” ex-
ample: there is just one time slot, at the beginning of it we have $ 1 in
cash and no other assets; the problem is to distribute part of this cash
between n assets in order to maximize the value of the resulting portfolio
at the end of the time slot. In other words, we should solve the problem

max
x
{y

n∑
i=1

| y ≤
n∑
i=1

rixi, x ≥ 0,

n∑
i=1

xi ≤ 1} (1.20)

As stated, the problem is of the type (P ); the analogy of (P∗) in this case
is the problem

max
x,y
{
n∑
i=1

yi | 0 ≤ yi ≤ rixi, x ≥ 0,
∑
i

xi ≤ 1}. (1.21)

Now assume that ri are, say, log-normal independent random variables
with expectations ρi and standard deviations σi, all these quantities being
of the same order of magnitude:

ρi, σi ∈ [1/κ, κ]
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for a once for ever fixed κ > 1. As applied to (1.20), the Robust Coun-
terpart approach yields the problem

max
x
{
n∑
i=1

ρixi − θ

√√√√
n∑
i=1

σ2
i x

2
i | x ≥ 0,

∑
i

xi ≤ 1} (1.22)

(note that this is, basically, the Markovitz model of the problem). For
once for ever fixed small α > 0, one can choose θ = θ(α) in such a way

that, uniformly in n and in x ∈ Rn, x ≥ 0,
n∑
i=1

xi ≤ 1, the probability of

the event

{
n∑
i=1

rixi <

n∑
i=1

ρixi − θ
√∑

i

σ2
i x

2
i }

will be less than α; thus, the actual portfolio value yielded by the optimal
solution to (1.22) will be less than the optimal value of the latter problem
with small (≤ α) probability. On the other hand, for large n the optimal
value in (1.22) clearly is at least

γn =
1

n

n∑
i=1

ρi − θn−1

√√√√
n∑
i=1

σ2
i ≥ (1− o(1))

1

n

n∑
i=1

ρi

and corresponds to the optimal solution with
∑
i

xi = 1. Thus, at least

for large n the Robust Counterpart approach with properly chosen safety
parameter θ enforces us to invest all our resources in the assets and
guarantees, with probability ≥ 1 − α, yield at least O(1). On the other
hand, the same Robust Counterpart approach as applied to (1.21) results
in the problem

max{
n∑
i=1

yi | 0 ≤ yi ≤ (ρi − θσi)xi, xi ≥ 0,

n∑
i=1

xi ≤ 1}.

Whenever θ ≥ κ2, this approach yields the policy xi = 0,, i = 1, ..., n,
and results in the zero yield. Thus, (1.20) is incomparably better suited
for the Robust Counterpart approach than (1.21).

SIMULATED NUMERICAL RESULTS

Since the approach in question deals with modeling issues, the only way to
evaluate its actual potential is to look how it works in practice. To the moment
we are able to report results coming from experiments with simulated market,
and below we present in full details all issues related to our simulations.
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Stochastic model of the market

The stochastic model of the data we use in our simulations is a simple factor
model (cf. [3]) as follows:

ln rli = ΩTi [κe+ σvl],
l = 0, 1, ..., L, i = 1, ..., n;

ln rln+1 = κ,
l = 0, 1, ..., L.

(1.23)

where
• {v0, v1, ..., vL} are independent k-dimensional Gaussian random vectors

with zero mean and the unit covariance matrix,
• e = (1, ..., 1)T ∈ Rk,
• Ωi ∈ Rk

+ are fixed vectors,
and
• κ, σ > 0 are fixed reals.
Note that the random vectors rl = {rli}ni=1, l = 0, 1, ..., L, are i.i.d., while

the coordinates of every vector are dependent on each other. Note also that
according to (1.23), the cash returns rln+1 = exp{κ} are deterministic and
independent of time; this assumption is made with the only purpose to simplify
the simulation. By the same reasons, the transaction costs also are assumed to
be deterministic and independent of time and of asset’s type:

µli = µ, νli = ν ∀i = 1, ..., n, l = 1, ..., L. (1.24)

Final form of the Robust Portfolio model

Given the stochastic data model (1.23), we can compute the expectations and
covariance matrices involved into model (P+). Note that according to Assump-
tion A, when building and solving the latter model, we already know the returns
r0
i , i = 1, ..., n, so that the expectations and covariance matrices in question

should be taken w.r.t. the corresponding conditional distribution of the data.

Assuming that the matrix n× k matrix Ω =




ΩT1
...
ΩTn


 is of rank k, we conclude

that the conditional expectations/covariances in question are in fact expecta-
tions/covariances taken over the distribution of v1, v2, ..., vL. A straightforward



ROBUST MODELING OF MULTI-STAGE PORTFOLIO PROBLEMS 15

computation demonstrate that (P+) is nothing but the program

(P ∗)
max w

s.t.

w + θL
√

[ξL]TV L+1[ξL] ≤
n+1∑
i=1

ρL+1
i ξLi

ξln+1 + θl

√(
ηl(ξ)
ζl(ξ)

)T
V l
(
ηl(ξ)
ζl(ξ)

)
≤ ξl−1

n+1 +
n∑
i=1

αliη
l
i(ξ)

+
n∑
i=1

βliζ
l
i(ξ),

l = 1, ..., L;
ηli(ξ) = max[ξl−1

i − ξli, 0],
i = 1, ..., n, l = 1, ..., L;

ζli(ξ) = max[ξli − ξl−1
i , 0],

i = 1, ..., n, l = 1, ..., L;
ξli ≥ 0,
i = 1, ..., n+ 1, l = 1, ..., L.

(1.25)

In this problem,
• the design variables are w, {ξli | l = 1, ..., L, i = 1, ..., n+ 1};
• the data are
– the quantities {ξ0

i ≥ 0}n+1
i=1 representing the initial state of the portfolio;

– the positive safety parameters θ1, ..., θL;
– the reals αli, β

l
i and the symmetric matrices V l given by the parameters of

the stochastic model (1.23) according to the relations

ρL+1
i = exp

{
ΩTi t

1 + (L+ 1)ωiκ+ λ2
iLσ

2

2

}

1 ≤ i ≤ n,
ρL+1
n+1 = exp{(L+ 1)κ};
αi = (1− µi) exp

{
ΩTi t

1 + l(ωi − 1)κ+ λ2
i (l−1)σ2

2

}
,

βi = −(1 + νi) exp
{

ΩTi t
1 + l(ωi − 1)κ+ λ2

i (l−1)σ2

2

}
,

1 ≤ i ≤ n, 1 ≤ l ≤ L;

(1.26)

V lij =





(1− µi)(1− µj)Σli,j , 1 ≤ i, j ≤ n
−(1− µi)(1 + νj−n)Σli,j−n, 1 ≤ i ≤ n, n < j ≤ 2n
(1 + νi−n)(1 + νj−n)Σli−n,j−n, n < i, j ≤ 2n

,

1 ≤ i ≤ j ≤ 2n, 1 ≤ l ≤ L,
(1.27)

where for 1 ≤ i, j ≤ n

Σli,j = exp
{
lκ(ωi + ωj − 2) + (Ωi + Ωj)T t1 + (λ2

i+λ
2
j )(l−1)σ2

2

}

× [exp{ΩTi Ωj(l − 1)σ2} − 1
]
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(note that V 1 = 0);

V L+1
ij = exp

{
(Ωi + Ωj)T t1 + (L+ 1)κ(ωi + ωj) + (λ2

i+λ
2
j )Lσ

2

2

}

× [exp{ΩTi ΩjLσ2} − 1
]
,

i ≤ i ≤ j ≤ n,
V L+1
i,n+1 = 0.

(1.28)

Here for 1 ≤ i ≤ n
ωi = ΩTi e,
λi =

√
ΩTi Ωi,

Note that in (1.25) we have already eliminated the η- and the ζ-variables;
according to Lemma 1.0.1 and (1.19), it for sure is possible if

θl ≤ 1√
max1≤i≤n exp{λ2

i (l − 1)σ2} − 1
, 2 ≤ l ≤ L (1.29)

(the value of θ1 is unimportant, since V 1 = 0); from now on, we assume that
(1.29) indeed takes place. In fact, in our simulations we were choosing θl,
2 ≤ l ≤ L, according to

θl = min

[
θ∗,

min(1, θ∗)√
maxi exp{λ2

i (l − 1)σ2} − 1

]
, (1.30)

θ∗ being a setup parameter of the experiments.

Setup for market’s model. In our simulations, the parameters of the stochas-
tic data model (1.23) were specified according to a number of natural require-
ments as follows.
• Since the cash asset is risk-free, it is natural to ensure the (risky) non-cash

assets to be more attractive than the cash, i.e., to ensure the expected returns
E{rli}, i ≤ n, to be > exp{κ}.

Direct computation implies that (Mean denotes the expectation, and Std -
the standard deviation of a random variable)

Mean(rli) = exp{ωiκ+ λ2
iσ

2/2},
Std(rli) = Mean(rli)

√
exp{λ2

iσ
2} − 1.

(1.31)

Assuming in accordance with reality that σ is of order of κ and both quantities
are significantly less than 1 (i.e., that our time period is not that long; note
that for the real economy rate of growth per year is few percents), we see that
if ωi is “significantly less” than 1, then Mean(rli) < exp{κ}. Consequently, it
makes sense to choose Ωi in such a way that ωi ≥ 1.
• The more attractive is a non-cash asset, the more “ risky” it should be.

From (1.31) we see that

Std(rli)/Mean(rli) = exp{λ2
iσ

2} − 1,
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so that the “risk” – the left hand side ratio – grows with λi; this is close to
what we need (in fact we are interested to have risk which grows with ωi rather
than with λi)
• In order to make the experiments more interesting, we should ensure that

at least the most attractive assets – those with the largest ωi – should be risky as
compared to the cash, i.e., the corresponding returns should, with “significant”
probability, be worse than exp{κ}.

The random variable ln rli (i ≤ n) in our data model is Gaussian random
variable with the mean ωiκ and the standard deviation λiσ. In order for the
probability of the event ln rli < κ to be “significant”, the ratio (ωi−1)κ

λiσ
should

be at most a moderate constant γ, something like 0.5 – 1 – 1.5 – 2. Now,
by Cauchy’s inequality ωi ≤ λi

√
k, so that the ratio in question is at most

(ωi−1)κ
ωiσ

√
k. In order for this ratio to be ≤ γ, it suffices to have

k ≤ γ2

(
ωi

ωi − 1

)2
σ2

κ2
. (1.32)

In our experiments, we met the outlined requirements via parameterizing
the model (1.23) by three “free parameters”

κ > 0, γ ∈ [0.5, 1.5], ωmax ∈ [1.5, 2]

in the following manner. First, we set

σ = κ/γ;

k = b
(

ωmax
ωmax−1

)2

c;
ki = imin

[bn−in k + i
n + 1c, k]

ωi = n−i
n + i

nωmax,
i = 1, ..., n.

(1.33)

Second, for 1 ≤ i ≤ n we choose k-dimensional nonnegative vector Ωi as follows:
– the number of nonzero entries in Ωi is ki, and the indices of these entries

are chosen at random in {1, 2, ..., k};
– the ki-dimensional vector wi comprised of nonzero entries of Ωi is chosen

at random in the simplex {w ∈ Rki
+ |

∑
j

wj = ωi}.
With this setup, the quantities ωi = ΩTi e form a regular grid on [1, ωmax], and
the inequalities (1.32) indeed take place.

It is convenient to characterize the assets by their risk indices – probabilities

Ri = Prob{rli < 1}

to loose in dollar value of the asset in course of a single time period. Note that
since in the model (1.23) the distribution of rli is independent of l, the quantity
Ri indeed depends solely on i. Note that with the outlined setup for the data
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model risk indices Ri typically grow with the “promise” ωi of an asset. The
maximum of risk indices of the assets

R = max
1≤i≤n

Ri

is called risk index of the market; this indeed is a rough measure of how risky
the market is.

Simulated policies and simulation scheme

In our experiments, we used the data model (1.23) with setup described in
Section 1 in order to compare four portfolio management policies: the Robust
(Rob), the Stochastic Programming (StP), the Nominal (Nom) and the Con-
servative (Cns) ones.

Robust policy. This policy is the one given by the Robust Portfolio model
(P ∗).

Stochastic Programmingi policy. This policy is given by a straightforward
implementation of the Multistage Stochastic Programming approach. Namely,
we

A. Fix positive integers m1, ...,mL−1 – numbers of scenarios for the periods
starting at time instances 1, ..., L− 1. In order to save notation, we add to this
collection also m0 = 1.

B. For l = 0, 2, ..., L− 1, we generate independently samples Tl comprised of
ml scenarios each; a scenario is a realization of random Gaussian k-dimensional
vector with zero mean and unit covariance matrix. Let j-th scenario of l-th
sample be denoted by τ l[j], and let the vectors rl[j] be given by the relation
(cf. (1.23))

rli[j] =
{

exp{ωiκ+ σΩTi τ
l[j]}, i = 1, ..., n

exp{κ}, i = n+ 1

C. We replace the original continuous distribution (1.23) of random vectors
of returns rl by the distribution given by the same formula, but now the random
vector vl, instead of being Gaussian, takes values in the sample Tl with equal
probabilities 1/ml, and the vectors τ l for different l are independent of each
other.

After replacing the true – continuous – distribution of the data with the indi-
cated discrete distribution, we straightforwardly use the Multistage Stochastic
Programming approach as outlined in Section 1. It is easily seen that in the case
in question this approach results in a usual Linear Programming program (“the
deterministic equivalent of the discretized multi-stage Stochastic Programming
problem”) with

N = (3n+ 1)
L−1∑

l=0

m0m1...ml
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nonnegative design variables and

M = (n+ 1)
L−1∑

l=0

m0m1...ml

linear equality constraints.
With the outlined implementation of the Multistage Stochastic Program-

ming approach, the main question which should be resolved is how to choose
the numbers of scenarios m1, ...,mL−1. The limiting factor is, of course, the
size of the resulting LP program. As it will become clear in a while, in our
experiments we were supposed to solve hundreds of these LP’s; in order to
make experimentation not too time-consuming (days, not weeks), we have re-
stricted the design dimension N of the LP’s not to exceed 10,000. For 3-stage
problem (L = 3) with n = 30 assets – these were the sizes we used in most of
experiments – this convention implies the bound

m1 +m1m2 ≤ 109,

which is very restrictive; e.g., in the “equi-discretized” case m1 = m2 we have to
use not more than 9 scenarios per stage (and this should represent distribution
of 30-dimensional random vector!). Note that even if we were ready to increase
the design dimension of the resulting LP to 100,000, the upper bound on m1 =
m2 would become 32. By the indicated reasons, in our experiments we use 2-
stage approximation of the 3-stage program, i.e., set m2 = 1, which under the
restriction N ≤ 10, 000 yields m1 = 54. The resulting LP program has 9,919
design variables and 3,379 constraints. For comparison: the Robust Portfolio
model (P ∗) in the case in question is a convex optimization program with 94
nonnegative design variables, linear objective and 3 nonlinear constraints.

Nominal policy. This policy is very simple and rough: here we model the
situation by the usual LP program (P ), where all uncertain data are replaced
with their expected values.

Conservative policy. This policy is motivated by the fact that in our stochas-
tic data model (1.23) there is a risk-free asset – the cash; the policy in question
is just to sell all other assets at the very first time instant and never buy them
again.

Rolling horizon simulation. All outlined policies were tested in the Rolling
horizon mode. In other words, to test, say, the Robust policy as applied to a
3-stage problem, we start with building and solving the 3-stage Robust Portfo-
lio model (P ∗) and update the initial portfolio according to the optimal, from
the viewpoint of (P ∗), decisions related to the very first time instant (here and
below all time instants/periods relate to “absolute” time scale). Then we simu-
late the returns r1

i according to (1.23), thus imitating the the behaviour of the
market during the first time period. After this period is passed, we build and
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solve the 2-stage Robust Portfolio model corresponding to the current (corre-
sponding to time instant 2 on the absolute time scale) state of portfolio/market
and the remaining two time periods. The optimal decisions related to the first
stage of this 2-stage problem define the updating of the portfolio at time in-
stant 2. This updating, along with simulated behaviour of the market during
the second time period, define the state of portfolio/market at the third time
instant, where we should for the last time update the portfolio. This updating
is given by the 1-stage Robust Portfolio problem associated with the state of
the portfolio/market at the third time instant. Simulating the behaviour of
the market at the third time period, we can compute the value of the resulting
portfolio at the fourth time instant, thus getting a realization of the yield of
the Robust policy as applied to the 3-stage Portfolio Management problem.

In our experiments, all four policies were tested in the rolling horizon mode
(in fact, of course, there is no actual necessity to test in this mode the Conser-
vative policy – the result can be predicted at the very first time instant).

Running the experiments. In our experimentation, we dealt with 3-stage
problems (L = 3) and n = 30 assets. A single experiment starts with setting up
the “free” parameters θ∗, κ, γ, ωmax and generating the “number of independent
factors” k and vectors Ωi, i = 1, ..., n, as explained in Section 1. Then 50 major
simulations are run. At a single simulation, we first generate (at random)
the initial state of the portfolio {x0

i }n+1
i=0 and the “trajectory” of the market –

a sample v0, v1, v2 of independent Gaussian k-dimensional vectors which, via
(1.23), determines the asset returns rli.

A major simulation itself consists of rolling horizon testing of all our four
policies, for the chosen initial state of the portfolio and the trajectory of the
market. Note that the final value of the portfolio, for given management policy
and market trajectory, still is a random variable: its value depend on random
asset returns r4 = {r4

i }ni=1. Thus, a single major simulation gives rise to 4
random final values of the portfolio, one per policy (in fact, of course, the
value of the portfolio for the Conservative policy is not random). “Within”
every major simulation, we generate 100 realizations of random vector r4 and
compare to each other the corresponding 4 final values of the portfolio.

Robust Portfolio models (P ∗) were processed by the Bundle-Level method for
nonsmooth constrained convex optimization [4]; the LP problems responsible
for the Stochastic Programming and Nominal policies were solved by CPLEX.

Computational results

We are about to present the results of four typical experiments. In all these
experiments, the transaction costs were set to 0.1; the parameter θ∗ used to
specify the safety parameters in the Robust Portfolio model (see (1.30) was set
to 1.

The setups for the stochastic data model (1.23) are given in Table 1, and
the results are represented by Tables 1.1 – 1.2.
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Table 1.1 Setup of the stochastic data model (1.23).

Exp # κ γ ωmax Risk index

1 0.1 0.330 1.2 0.339
2 0.1 0.250 1.2 0.377
3 0.1 0.216 1.2 0.393
4 0.1 0.200 1.2 0.401

Table 1.1 represents the gain in the portfolio value, i.e., the ratio of the
final (at time instant 4) dollar value of the portfolio to its initial dollar value
n+1∑
i=1

x0
i . The gain is, of course, a random variable, and we give, for each exper-

iment/policy, the empirical maximum, minimum, average and standard devia-
tion of the gain, along with empirical probabilities of “loss” (the gain is < 1)
and “big loss” (the gain is < 0.8).

Table 1.2 represents “pair dominance” of the four policies in question. i.e.,
empirical probabilities (in percents) for the “row” policy to yield better gain
than the “column” policy.

Conclusions. The conclusions of the outlined experiments can be formulated
as follows.

1. The policy based on Robust Portfolio model indeed is robust – for risky
market, the corresponding standard deviation of the gain in the portfolio
value is by factor 5 - 8 less than for the Nominal policy and by factor 4.7
- 5 less than for the SP (Stochastic Programming) policy. The Robust
policy in the reported experiments never results in losses, while for the
Nominal and the SP policies the probabilities of losses (big losses), for
the most risky market, are quite significant (15 - 20 %).

2. From the viewpoint of average gain, the Robust policy is nearly optimal,
except the case of the most risky market, where the Robust policy is
slightly dominated by the SP and significantly – by the Nominal ones.
Note, however, that the distributions in question are asymmetric, so that
dominance in the mean is not that informative. E.g., from Table 3 it is
seen that the probability to get better results than with every one of the
competitors, is > 1/2 (except the least risky market, where the Robust
policy is slightly dominated in this sense by the Nominal one).

3. Surprisingly enough, the SP policy, which traditionally is supposed to be
the most adequate one, seems to have no advantages at all: as far as the
expected gain is concerned, the SP policy is not better than the Nominal
policy (and in 3 of our four experiments – by the Robust policy as well).
As about risk, here the SP policy clearly looses to the Robust one.
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Table 1.2 Gain in the portfolio value.

Quantity Policy Exp. # 1 Exp # 2 Exp. # 3 Exp. # 4

Market Risk Index 0.339 0.377 0.393 0.401

Gain in the value, Max

Cns
Rob
Nom
StP

1.576

2.346

2.405

4.912

1.851

3.122

12.447

15.254

1.667

2.514

14.332

9.150

1.749

2.530

22.927

15.423

Gain in the value, Min

Cns
Rob
Nom
StP

1.173

1.159

1.109

0.491

1.197

1.078

0.175

0.269

1.118

1.036

0.218

0.110

1.076

1.096

0.163

0.100

Gain in the value, Mean

Cns
Rob
Nom
StP

1.384

1.659

1.664

1.571

1.393

1.652

1.823

1.845

1.360

1.553

1.652

1.537

1.413

1.651

2.118

1.863

Gain in the value, StD

Cns
Rob
Nom
StP

0.077

0.193

0.205

0.498

0.116

0.259

1.418

1.235

0.139

0.231

1.130

0.951

0.129

0.233

1.949

1.245

Loss probability, %

Cns
Rob
Nom
StP

0.00

0.00

0.00

9.84

0.00

0.00

31.62

21.48

0.00

0.00

32.00

31.44

0.00

0.00

27.02

21.36

Big loss probability, %

Cns
Rob
Nom
StP

0.00

0.00

0.00

4.12

0.00

0.00

20.70

11.26

0.00

0.00

20.70

20.16

0.00

0.00

17.90

13.34

We would conclude that the outlined experiments demonstrate high potential
of the Robust Counterpart approach to the Portfolio problem, especially tak-
ing into account that the computational effort required to implement the policy
is incomparably less than the one for Multistage Stochastic Programming ap-
proach.
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Table 1.3 Pair dominance of the policies
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