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Abstract
In this paper, we consider semidefinite programs where the data is only known to belong

to some uncertainty set U . Following recent work by the authors, we develop the notion of
robust solution to such problems, which are required to satisfy the (uncertain) constraints
whatever the value of the data in U . Even when the decision variable is fixed, checking
robust feasibility is in general NP-hard. For a number of uncertainty sets U , we show
how to compute robust solutions, based on a sufficient condition for robust feasibility, via
SDP. We detail some cases when the sufficient condition is also necessary, such as linear
programming or convex quadratic programming with ellipsoidal uncertainty. Finally, we
provide examples, taken from interval computations and truss topology design.

1 Introduction

1.1 SDPs with uncertain data

We consider a semidefinite programming problem (SDP) of the form

max bT y subject to F (y) = F0 +
m∑

i=1

yiFi º 0, (1)

where b ∈ Rm is given, and F is an affine map from y ∈ Rm to Sn.
In many practical applications, the “data” of the problem (the vector b and the coefficients matrices

F0, . . . , Fm) is subject to possibly large uncertainties. Reasons for this include the following.

• Uncertainty about the future. The exact value of the data is unknown at the time the values of y
should be determined and will be known only in the future. (In a risk management problem for
example, the data may depend on future demands, market prices, etc, that are unknown when
the decision has to be taken.)
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• Errors in the data. The data originates from a process (measurements, computational process)
that is very hard to perform error-free (errors in the measurement of material properties in a
truss optimization problem, sensor errors in a control system, floating-point errors made during
computation, etc).

• Implementation errors. The computed optimal solution y∗ cannot be implemented exactly,
which results in uncertainty about the feasibility of the implemented solution. For example, the
coefficients of an optimal finite-impulse response (FIR) filter can often be implemented in 8 bits
only. As it turns out, this can be modeled as uncertainties in the coefficients matrices Fi.

• Approximating nonlinearity by uncertainty. The mapping F (y) is completely known, but (slightly)
non linear. The optimizer chooses to approximate the nonlinearity by uncertainty in the data.

• Infinite number of constraints. The problem is posed with an infinite number of constraints,
indexed on a scalar parameter ω (for example, the constraints express a property of a FIR filter
at each frequency ω). It may be convenient to view this parameter as a perturbation, and regard
the semi-infinite problem as a robustness problem.

Depending on the assumptions on the nature of uncertainty, several methods have been proposed
in the Operations Research/Engineering literature. Stochastic programming works with random per-
turbations and probabilities of satisfaction of constraints, and thus requires correct estimates of the
distribution of uncertainties; sensitivity analysis assumes the perturbations is infinitesimal, and can
be used only as a “post-optimization” tool; the “Robust Mathematical Programming” approach re-
cently proposed by Mulvey, Vanderbei and Zenios [13] is based on the (sometimes very restrictive)
assumption that the uncertainty takes a finite number of values (corresponding to “worst-case scenar-
ios”). Interval arithmetic is one of the methods that have been proposed to deal with uncertainty in
numerical computations; references to this large field of study include the book by one of its founders,
Moore [12], the more recent book by Hansen [9], and also the very extensive web site developed by
Kosheler and Kreinovich [11].

The approach proposed here assumes (following the philosophy of interval calculus) that the data
of the problem is only known to belong to some “uncertainty set” U ; in this sense, the perturbation
to the nominal problem is deterministic, unknown-but-bounded. A robust solution of the problem is
one which satisfies the perturbed constraints for every value of the data within the admissible region
U . The robust counterpart of the SDP is to minimize the worst-case value of the objective, among all
robust solutions. This approach was introduced by the authors independently in [1, 2, 3] and [15, 5];
although apparently new in mathematical programming, the notion of robustness is quite classical in
control theory (and practice).

Even for simple uncertainty sets U , the resulting robust SDP is NP-hard. Our main result is to show
how to compute, via SDP, upper bounds for the robust counterpart. Contrarily to the other approaches
to uncertainty, the robust method provides (in polynomial time) guarantees (of,e.g., feasibility), at
the expense of possible conservatism. Note that there is no real conflict between other approaches to
uncertainty and ours; for example, it is possible to solve via robust SDP a stochastic programming
problem with unknown-but-bounded distribution of the random parameters.

1.2 Problem definition

To make our problem mathematically precise, we assume that the perturbed constraint is of the form

F(y, δ) º 0,
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where y ∈ Rm is the decision vector, δ is a “perturbation vector” that is only known to belong to
some “perturbation set” D ⊆ Rl, and F is a mapping from Rm × D to Sn. We assume that F(y, δ)
is affine in y for each δ, and rational in δ for each y; also we assume that D contains 0, and that
F(y, 0) = F (y) for every y. Without loss of generality, we assume that the objective vector b is
independent of perturbation.

We consider the following problem, referred to as the robust counterpart to the “nominal” prob-
lem (1):

max bT y subject to y ∈ XD (2)

where XD is the set of robust feasible solutions, that is,

XD =
{
y ∈ Rm

∣∣∣ for every δ ∈ D, F(y, δ) is well-defined and F(y, δ) º 0
}

.

In this paper, we only consider ellipsoidal uncertainty. This means that the perturbation set D
consists of block vectors, each block being subject to an Euclidean-norm bound. Precisely,

D =





δ ∈ Rl

∣∣∣∣∣∣∣
δ =




δ1

...
δN


 , where δk ∈ Rnk , ‖δk‖2 ≤ ρ, k = 1, . . . , N





, (3)

where ρ ≥ 0 is a given parameter that determines the “size” of the uncertainty, and the integers nk

denote the lengths of each block vector δk (we have of course n1 + . . . + nN = L).
There are many motivations for considering the above framework. It can be used when the per-

turbation is a vector with each component bounded in magnitude, in which case each block vector δk

is actually a scalar (n1 = . . . = nN = 1). It also can be used when the perturbation is bounded in Eu-
clidean norm (which is often the case when the bounds on the parameters are obtained from statistics,
and a Gaussian distribution is assumed). In some applications, there is a mixture of Euclidean-norm
and maximum-norm bounds. (For example, we might have some parameters of the form δ1 = ρ cos θ,
δ2 = ρ sin θ, where both ρ and θ are uncertain.)

It turns out that already in the case of affine perturbations (F(·, δ) is affine in δ) the robust
counterpart (2), generally speaking, is NP-hard. This is why we are interested not only in the robust
counterpart itself, but also in its approximations – “computationally tractable” problems with the
same objective as in (2) and feasible sets contained in the set XD of robust solutions. We will obtain
an upper bound (approximation) on the robust counterpart in the form of an SDP. The size of this
SDP is linear in both the length nk of each block and the number N of blocks.

The paper is organized as follows. In section 2, we consider the case when the perturbation vector
affects the semidefinite constraint affinely, that is, the matrix F(y, δ) is affine in δ; we provide not only
an approximation of the robust counterpart, but also a result on the quality of the approximation,
in an appropriately defined sense. Section 3 is devoted to the general case (the perturbation δ enters
rationally in F(y, δ)). We provide interesting special cases (when the approximation is exact) in
section 4, while section 5 describes several examples of application.

2 Affine perturbations

In this section, we assume that the matrix function F(y, δ) is given by

F(y, δ) = F 0(y) +
l∑

i=1

δiF
i(y) (4)
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where each F i(y) is a symmetric matrix, affine in y.
We have the following result.

Theorem 2.1 Consider uncertain semidefinite program with affine perturbation (4) and ellipsoidal
uncertainty (3), and let ν0 = 0, νk =

∑k
s=1 ns. Then the semidefinite program

max bT y
s.t.

(a)




Sk ρFνk−1+1(y) ρFνk−1+2(y) · · · ρFνk
(y)

ρFνk−1+1(y) Qk

ρFνk−1+2(y) Qk
...

. . .
...

ρFνk
(y) Qk




º 0, k = 1, 2, . . . , N ;

(b)
∑N

k=1(Sk + Qk) ¹ 2F0(y);

(5)

in variables y, S1, . . . , SN , Q1, . . . , QN is an approximation of the robust counterpart (2), i.e., the
projection of the feasible set of (5) on the space of y-variables is contained in the set of robust feasible
solutions.

Proof. Let us fix a feasible solution Y = (y, {Sk}, {Qk}) to (5), and let us set Fi = Fi(y). We should prove
that

(*) For every δ = {δi}l
i=1 such that

νk∑

i=νk−1+1

δ2
i ≤ ρ2, k = 1, . . . , N, (6)

one has
F0 +

∑

i

δiFi º 0.

Since Y is feasible for (5), it follows that the matrices F0, S1, . . . , SN , Q1, . . . , QN are positive semidefinite.
By obvious regularization arguments, we may further assume these matrices to be positive definite. Finally,
performing “scaling”

Sk 7→ F
−1/2
0 SkF

−1/2
0 ,

Qk 7→ F
−1/2
0 QkF

−1/2
0 ,

Fi 7→ F
−1/2
0 FiF

−1/2
0 ,

Φ0 7→ I,

we reduce the situation to the one where F0 = I, which we assume till the end of the proof.
Let Ik be the set of indices νk−1 + 1, . . . , νk. Whenever δ satisfies (6) and ξ ∈ Rn, n being the row size of
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Fi’s, we have

ξT (I +
∑

i δiFi) ξ = ξT ξ +
∑

k

[
Q

1/2
k ξ

]T [∑
i∈Ik

δiQ
−1/2
k FiS

−1/2
k ξk

]

[ξk = S
1/2
k ξ, k = 1, . . . , N ]

≥ ξT ξ −∑
k ‖Q1/2

k ξ‖2
[∑

i∈Ik
|δi|‖Q−1/2

k FiS
−1/2
k ξk‖2

]

≥ ξT ξ −∑
k ‖Q1/2

k ξ‖2
√∑

i∈Ik
ρ2‖Q−1/2

k FiS
−1/2
k ξk‖22

[we have used (6)]

= ξT ξ −∑
k ‖Q1/2

k ξ‖2
√

ρ2ξT
k

[∑
i∈Ik

S
−1/2
k FiQ

−1
k FiS

−1/2
k

]
ξk

≥ ξT ξ −∑
k ‖Q1/2

k ξ‖2
√

ξT
k ξk

[we have used (5.a)]

≥ ξT ξ −
√∑

k ‖Q1/2
k ξ‖22

√∑
k ξT

k ξk

= ξT ξ −√
ξT [

∑
k Qk] ξ

√
ξT [

∑
k Sk] ξ

(7)

It remains to note that if a = ξT [
∑

k Qk] ξ, b = ξT [
∑

k Sk] ξ, then a + b ≤ 2ξT ξ by (5.b) (recall that we are in
the situation F0(y) = I), so that

√
ab ≤ ξT ξ. Thus, the concluding expression in (7) is nonnegative.

2.1 Quality of approximation

A general-type approximation of the robust counterpart (2) is an optimization problem

max bT y subject to (y, z) ∈ Y (A)

(with variables y, z) such that the projection X (A) of its feasible set Y on the space of y-variables
is contained in XD, so that (A)-feasibility of (y, z) implies robust feasibility of y. For a particular
approximation, a question of primary interest is how conservative the approximation is. A natural
way to measure the “level of conservativeness” of an approximation (A) is as follows. Since (A) is an
approximation of (2), we have X (A) ⊂ XD. Now let us increase the level of perturbations, i.e., let us
replace the original set of perturbations D by its κ-enlargement κD, κ ≥ 1. The set XκD of robust
feasible solutions associated with the enlarged set of perturbations shrinks as κ grows, and for large
enough values of κ it may become a part of X (A). The lower bound of these “large enough” values of
κ can be treated as the level of conservativeness λ(A) of the approximation (A):

λ(A) = inf{κ ≥ 1 : XκD ⊂ X (A)}.
Thus, we say that the level of conservativeness of an approximation (A) is < λ, if every y which is
“rejected” by (A) (i.e., y 6∈ X (A)) looses robust feasibility after the level ρ of perturbations in (3) is
increased by factor λ.

The following theorem bounds the level of conservativeness of approximations we have derived so
far:

Theorem 2.2 Consider semidefinite program with affine perturbations (4) and ellipsoidal uncertainty
(3), the blocks δk of the perturbation vector being of dimensions nk, k = 1, . . . , N , and let l =

∑
k nk

and n be the row size of F (·, ·). The level of conservativeness of the approximation (5) does not exceed
min

[√
nN ;

√
l
]
.

Proof. Of course, it suffices to consider the case of ρ = 1, which is assumed till the end of the proof.
Let X be the projection of the feasible set of (5) to the space of y-variables, and let y 6∈ X . We should prove

that y 6∈ XλD at least in the following two cases:
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(i.1): λ >
√

l; (i.2): λ >
√

nN .
To save notation, let us write Fi instead of Fi(y). Note that we may assume that F0 º 0 – otherwise y is not
robust feasible and there is nothing to prove. In fact we may assume even F0 Â 0, since from the structure of
(5) it is clear that the relation y 6∈ X , being valid for the original data F0, . . . , Fl, remains valid when we replace
a positive semidefinite matrix F0 with a close positive definite matrix. Note that this regularization may only
increase the robust feasible set, so that it suffices to prove the statement in question in the case of F0 Â 0.
Finally, the same scaling as in the proof of Theorem 2.1 allows to assume that F0 = I. Let also Ik be the same
index sets as in the proof of Theorem 2.1.

10. Consider the case of (i.1). Let us set

Qk = nk

l I,

Sk = l
nk

∑
i∈Ik

F 2
i .

The collection (y, {Sk, Qk}) clearly satisfies (5.a, c), and therefore it must violate (5.b), since otherwise we would
have y ∈ X . Thus, there exists an n-dimensional vector ξ such that

N∑

k=1

l

nk

∑

i∈Ik

‖Fiξ‖22 > ξT ξ. (8)

Setting
pk = max

i∈Ik

‖Fiξ‖2 = ‖Fik
ξ‖2, ik ∈ Ik,

we come to
N∑

k=1

lp2
k > ξT ξ. (9)

Now let δ ∈ λD be a random vector with independent coordinates distributed as follows: a coordinate δi with
index i ∈ Ik is zero, except the case of i = ik, and the coordinate δik

takes values ±λ with probabilities 1/2.
The expected squared Euclidean norm of the random vector

∑
i δiFiξ clearly is equal to λ2

∑
k p2

k; thus, λD
contains a perturbation δ such that

‖
[

l∑

i=1

δiFi

]
ξ‖22 ≥ λ2

∑

k

p2
k > λ2l−1ξT ξ;

since λ2l−1 > 1 by (i.1), we conclude that the spectral norm of the matrix
∑

i δiFi is > 1, whence either this
matrix, or its negation is not ¹ F0 = I. Thus, y 6∈ XλD, as claimed.

20. Now let (i.2) be the case. Let us set

Qk = N−1I,
Sk = N

∑
i∈Ik

F 2
i .

By the same reasons as in 10, there exists an n-dimensional vector ξ such that

N∑

k=1

N
∑

i∈Ik

‖Fiξ‖22 > ξT ξ. (10)

Denoting e1, . . . , en the standard basic orths in Rn, we conclude that there exists p ∈ {1, . . . n} such that

N∑

k=1

N
∑

i∈Ik

|eT
p Fiξ|2 >

1
n

ξT ξ. (11)

We clearly can choose δ ∈ λD in such a way that

∑

i∈Ik

δie
T
p Fiξ = λ

√∑

i∈Ik

|eT
p Fiξ|2.
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Setting
F =

∑

i

δiFi,

we get
eT
p Fξ =

∑
k

∑
i∈Ik

eT
p δiFiξ

≥ λ
∑N

k=1

√∑
i∈Ik

|eT
p Fiξ|2

≥ λ
√∑N

k=1

∑
i∈Ik

|eT
p Fiξ|2

> λ√
mN

‖ξ‖2 [see (11)]
> ‖ξ‖2 [by (i.2)]

We conclude that the spectral norm of F is > 1, so that either F or −F is not º F0 = I. Thus, y 6∈ XλD, as
claimed.

3 Rational Dependence

In this section, we seek to handle cases when the matrix-valued function F(y, δ) is rational in δ for
every y. There are many practical situations when the perturbation parameters enter rationally, and
not affinely, in a perturbed SDP. One important example arises with the problem of checking robust
singularity of a square (non symmetric) matrix A, which depends affinely on parameters. One has to
check if ATA Â 0 for every A in the affine uncertainty set; this is a matrix inequality condition in
which the parameters enter quadratically.

We will introduce a versatile framework, called linear-fractional representations, for describing ra-
tional dependence, and devise approximate robust counterparts that are based on this linear-fractional
representation. Our framework will of course cover the cases when the perturbation enters affinely
in the matrix F(y, δ), which is a case already covered by theorem 2.1. At present we do not know if
theorem 2.1 always yields more accurate results than those described next, except in the case N = 1
(Euclidean-norm bounds), where both results are actually equivalent.

In this section, we take ρ = 1.

3.1 Linear-fractional representations

We assume that the function F is given by a “linear-fractional representation” (LFR):

F(y, ∆) = F (y) + L(y)∆(I −D∆)−1R + RT (I −∆T DT )−1∆T L(y)T , (a)
∆ = diag (δ1Ir1 , . . . , δlIrl

) ,

where F (y) is defined in (1), L(·) is an affine mapping taking values in Rn×p, R ∈ Rq×n and D ∈ Rq×p

are given matrices, and r1, . . . , rl are given integers. We assume that the above LFR is well-posed
over D, meaning that det(I −D∆) for every ∆ of the form above, with δ ∈ D; we return to the issue
of well-posedness later.

The above class of models seem quite specialized. In fact, these models can be used in a wide
variety of situations. For example, in the case of affine dependence:

F(δ) = F 0(y) +
l∑

i=1

δiF
i(y),
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we can construct a linear-fractional representation, for example

L(y) =
1√
2




F 1(y)
...

F l(y)




T

, R =
1√
2




I
...
I


 , D = 0, r1 = . . . = rl = n. (12)

Our framework also covers the case when the matrix F is rational in δ. The representation
lemma [5], given below, illustrates this point.

Lemma 3.1 For any rational matrix function M : Rl → Rn×c, with no singularities at the origin,
there exist nonnegative integers r1, . . . , rl, and matrices M ∈ Rn×c, L ∈ Rn×N , R ∈ RN×c, D ∈
RN×N , with N = r1 + . . . + rl, such that M has the following Linear-Fractional Representation
(LFR): For all δ where M is defined,

M(δ) = M + L∆(I −D∆)−1 R, where ∆ = diag (δ1Ir1 , . . . , δlIrl
) . (13)

In the above construction, the sizes of the matrices involved are polynomial in the number l of param-
eters.

In the sequel, we denote by ∆ the set of matrices defined by

∆ = {∆ = diag (δ1Ir1 , . . . , δlIrl
) | δ ∈ D} . (14)

The following developments are valid for a large class of matrix sets ∆.

3.2 Robustness analysis via Lagrange relaxations

The basic idea behind linear-fractional representation is to convert a a robustness condition such as

ξTF(∆)ξ ≥ 0 for every ξ, ∆ ∈ ∆ (15)

into a quadratic condition involving ξ and some additional variables p, q. Then, using Lagrange
relaxation, we can obtain an SDP that yields a sufficient condition for robustness.

Using the LFR of F(∆), and assuming the latter is well-posed, we rewrite (15) as

ξT (Fξ + 2Lp) ≥ 0, for every ξ, p, q, ∆ such that q = Rξ + Dp, p = ∆q, ∆ ∈ ∆. (16)

where p, q are additional variables. In the above, the only non convex condition is p = ∆q, ∆ ∈ ∆. It
turns out that for the set D defined in (3) (as well as for many other sets), we can obtain a necessary
and sufficient condition for p = ∆q for some ∆ ∈ ∆, in the form of a linear matrix inequality on the
rank-one matrix zzT , where

z =

[
q
p

]
=

[
R D
0 I

] [
ξ
p

]
.

Let us characterize this linear matrix inequality as

Φ∆(zzT ) º 0,

where Φ∆ is a linear map from S2N to SN (recall N denotes the row size of matrix ∆, and is the size
of vectors p, q). In table 1, we show the mappings Φ∆ associated with various sets ∆.
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set ∆
condition on p, q

equivalent to
p = ∆q, ∆ ∈ ∆

Φ∆(Z), for Z ∈ S2N

{∆ | ‖∆‖ ≤ 1} qT q − pT p ≥ 0 Tr(Z22 − Z11)
{sI | s ∈ C, <(s) ≥ 0} pqH + qpH º 0 Z12 + ZH

21

{δI | δ ∈ R, |δ| ≤ 1} qqT − ppT º 0 Z22 − Z11

{diag(δiIri)
l
i=1 | δ ∈ Rl, ‖δ‖∞ ≤ 1} diag(qT

i qi − pT
i pi)l

i=1 º 0 diag(Z22(i)− Z11(i))l
i=1

{diag(δiIri)
l
i=1 | δ ∈ Rl, ‖δ‖2 ≤ 1} diag(qT

i qi)l
i=1 − ppT º 0 diag(Z22(i))l

i=1 − Z11

Table 1: Linear mappings Φ∆ associated with various sets ∆ ⊆ RN×N . The notation Zkj , k, j ∈ {1, 2},
refers to corresponding N ×N blocks in matrix Z ∈ S2N , and Zjj(i) denotes the i-the diagonal block
of Zjj , of size ri × ri.

Using this equivalent condition, we rewrite (16) as

Tr

[
F L
LT 0

] [
ξ
p

] [
ξ
p

]T

≥ 0, for every ξ, p such that

Φ∆




[
R D
0 I

] [
ξ
p

] [
ξ
p

]T [
R D
0 I

]
 º 0.

(17)

The next step is to relax the non convex condition on p, ξ using Lagrange relaxation. Previous
condition is true if there exist a positive semidefinite matrix S such that for every ξ, p, we have

[
ξ
p

]T [
F L
LT 0

] [
ξ
p

]
≥ TrSΦ∆




[
R D
0 I

] [
ξ
p

] [
ξ
p

]T [
R D
0 I

]
 ,

or, equivalently,

S º 0,

[
F L
LT 0

]
º

[
R D
0 I

]T

Φ∗∆(S)

[
R D
0 I

]
, (18)

where Φ∗∆ is the dual of Φ∆.
Note that the dual of the above LMI condition amounts to enforce condition (17) not only on

rank-one matrices, but for every positive semidefinite matrix.

Theorem 3.1 Consider the uncertain semidefinite program with rational perturbation, described by
the LFR (3.1), where the perturbation vector lies in an arbitrary set D ⊆ Rl. Let ∆ be defined by (14),
and assume the LFR is well-posed over ∆. Assume that we can associate to this set a linear mapping
Φ∆ such that

p = ∆q for some ∆ ∈ ∆ if and only if Φ∆




[
q
p

] [
q
p

]T

 º 0,

and denote by Φ∗∆ the dual of this map.
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Then the semidefinite program

max bT y subject to

S º 0,

[
F (y) L(y)
L(y)T 0

]
º

[
R D
0 I

]T

Φ∗∆(S)

[
R D
0 I

]

in variables y, S, is an approximation of the robust counterpart (2), i.e., the projection of the feasible
set of (2) on the space of y-variables is contained in the set of robust feasible solutions.

It is now a simple matter to specialize the above result for the set D defined in (3). The condition
on p, q that is equivalent to p = ∆q, ∆ ∈ ∆ writes

diag(qiq
T
i )i∈Ik

− pk(pk)T º 0 k = 1, . . . , N, (19)

where Ik be the set of indices νk−1 + 1, . . . , νk, with ν0 = 0, νk =
∑k

s=1 ns, and pk is the vector with
elements (pi)i∈Ik

.
The following result is then a corollary of theorem 3.1.

Corollary 3.1 Consider the uncertain semidefinite program with rational perturbation, described by
the LFR (3.1), where the perturbation vector lies in the set D defined in (3). Let ∆ be defined by (14),
and assume the LFR is well-posed over ∆.

Consider the semidefinite program

max bT y subject to S º 0,[
F (y) L(y)
L(y)T 0

]
º

[
R D
0 I

]T [
T 0
0 −S

] [
R D
0 I

]
(20)

where S = diag(S1, . . . , SN ), with each Si of size
∑

i∈Ik
ri, and T is the block-diagonal matrix formed

with the block-diagonal ri × ri blocks of S.
Then the above semidefinite program in variables y, S, is an approximation of the robust counterpart

(2), i.e., the projection of the feasible set of (2) on the space of y-variables is contained in the set of
robust feasible solutions.

Remark 3.1 We note that the above condition, if it is strictly enforced, ensures well-posedness, mean-
ing that det(I−D∆) 6= 0 for every ∆ ∈ ∆. (To prove this, it suffices to apply the previous methodology
to the matrix function F(∆) = (I −D∆)T (I −D∆).)

3.3 Comparison with earlier results

We do not have a general comparison theorem with the results of section 2, in the case of affine
dependence. However, we can prove that, when D represents Euclidean-norm bounds (that is, there
is only one block: N = 1), then both results are equivalent.

Indeed, assume that F(δ, y) has the form (4); a linear-fractional representation of this dependence
is (3.1), with F = F0, D = 0, and L,R given by (12). The linear matrix inequality (20) then involves
a full matrix S of row size n2, and writes (dropping the dependence on y, and exchanging LT and R
without loss of generality)




F0 − 1
2

∑l
i=1 FiSiFi

1√
2
I . . . 1√

2
I

1√
2
I S1 ∗ ∗

... ∗ . . . ∗
1√
2
I ∗ ∗ Sl



º 0,

10



where Si are the n× n diagonal blocks of S, and the symbols ∗ refer to the other blocks of S. Using
the elimination lemma [4], it is possible to get rid of these elements and rewrite the above as

[
F0 − 1

2

∑
i=1 FiSiFi

1√
2
I

1√
2
I Sk

]
º 0, k = 1, . . . , l.

Assuming (without loss of generality) that each Sk is positive definite, and setting

Q = 2F0 −
l∑

i=1

FiSiFi,

we get Q º S−1
k for every k, and hence

2F0 º Q +
l∑

i=1

FiQ
−1Fi,

which is precisely the result obtained from theorem 2.1 , in the case N = 1.

4 Special cases

In this section, we focus on several special cases when the above results yield “computationally
tractable” equivalent forms of the robust counterpart rather than merely “tractable approximations”
of it.

4.1 Linear programming with affine uncertainty

Linear programming can be treated as a very special case of Semidefinite Programming; here all
considerations related to robust counterpart become especially simple. For self-contained derivation
of the below results, see [2].

Consider an LP program in the form

min cT x subject to Ax + b ≥ 0 (21)

“Simple” ellipsoidal uncertainty. Let us start with the case when the data [A, b] ∈ Rm×(n+1) in
(21) are affinely parameterized by perturbation vector varying in an “elliptic cylinder” – the direct
sum of an ellipsoid and a linear space:

[A; b] ∈ U =



[A0; b0] +

k∑

j=1

ξj [Aj ; bj ] +
q∑

p=1

ζp[Cp; dp] : (ξ, ζ) ∈ D = {ξT ξ ≤ 1}


 . (22)

For this case the robust counterpart

min cT x subject to Ax + b ≥ 0 for all [A; b] ∈ U (23)

of (21) is the program
min cT x

s.t.
Cp

i x + dp
i = 0, p = 1, . . . , q,

i = 1, . . . , m;

A0
i x + b0

i ≥
√∑k

j=1(A
j
ix + bj

i )2,
i = 1, 2, . . . , m;

(24)

here Bi denotes i-th row (treated as a row vector) of a matrix B.
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Case of
⋂
-ellipsoidal uncertainty. Now assume that the set U possible values of the data [A; b]

of uncertain LP problem (21) is intersection of finitely many sets of the form (22):

[A; b] ∈ U =
t⋂

s=0

Us,

Us = {[As0; bs0] +
∑ks

j=1 ξj [Asj ; bsj ] +
∑qs

p=1 ζp[Csp; dsp] |
ξT ξ ≤ 1},
s = 0, 1, . . . , t.

(25)

Assume also that the set U is bounded and the ellipsoids Us satisfy the following “Slater condition”:

(*) There exists [A′; b′] ∈ U which, for every s ≤ t, can be represented as

[A; b] = [As0; bs0] +
ks∑

j=1

ξs
j [A

sj ; bsj ] +
qs∑

p=1

ζj
p [C

sp; dsp]

with [ξs]T ξs < 1.

For this case the robust counterpart (23) of the uncertain LP program (21) is the program

min cT x

w.r.t. vectors x ∈ Rn, µis ∈ Rm and matrices λis ∈ Rm×n, i = 1, ...,m, s = 1, ..., t subject to

(a) : Tr([Csp]T λis) + [dsp]T µis = 0, 1 ≤ i ≤ m, 1 ≤ s ≤ t, 1 ≤ p ≤ qs;

(b) :
t∑

s=1

(
Tr([C0p]T λis) + [d0p]T µis

)
= C0p

i x + d0p
i , 1 ≤ i ≤ m, 1 ≤ p ≤ q0;

(c) :
t∑

s=1

{
Tr([As0 −A00]T )λis + [bs0 − b00]T µis

}
+ A00

i x + b00
i

≥

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣




A01
i x + b01

i −
t∑

s=1

{
Tr([A01]T λis) + [b01]T µis

}

A02
i x + b02

i −
t∑

s=1

{
Tr([A02]T λis) + [b02]T µis

}

· · ·
A0k0

i x + b0k0
i −

t∑
s=1

{
Tr([A0k0 ]T λis) + [b0k0 ]T µis

}




∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

+
t∑

s=1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣




Tr([As1]T λis) + [b01]T µis

Tr([As2]T λis) + [b02]T µis

· · ·
Tr([Asks ]T λis) + [b0ks ]T µis




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

, i = 1, ..., m.

It is worthy of mentioning that the case of
⋂

-ellipsoidal uncertainty basically covers the case of
affine perturbations with ellipsoidal uncertainty (4) – (3). Indeed, assume that the affine mapping (4)
from the space of perturbation vectors to the space of data is an embedding. Since the set D given by
(3) clearly is an intersection of elliptic cylinders, its image under the above embedding – i.e., the set
of possible values of the perturbed data – is a

⋂
-ellipsoidal set. Note that this set clearly satisfies the

“Slater condition” (*).
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4.2 Robust quadratic programming with affine uncertainty

A (convex) quadratic problem is an optimization program of the form

min cT x subject to − xT [Ai]T [Ai]x + 2[bi]T x + γi ≥ 0, i = 1, . . . ,m; (26)

such a problem can be easily reformulated as an SDP program with the data affinely depending on
the data {Ai, bi, γi}m

i=1 of the original problem. Assume that the data (Ai, bi, γi) of every quadratic
constraint are uncertain and vary in respective ellipsoids:

(Ai, bi, γi) ∈ Ui =



(Ai, bi, γi) = (Ai0, bi0, γi0) +

k∑

j=1

δj(Aij , bij , γij) | δT δ ≤ 1



 . (27)

It turns out that the robust counterpart of uncertain conic quadratic program (26) – (27) is equivalent
to the explicit semidefinite program as follows:

min cT x
s.t. 



γi0 + 2xT bi0 − λi γi1

2 + xT bi1 γi2

2 + xT bi2 · · · γik

2 + xT bik [Ai0x]T
γi1

2 + xT bi1 λi [Ai1x]T
γi2

2 + xT bi2 λi [Ai2x]T
...

. . . · · ·
γik

2 + xT bik λi [Aikx]T

Ai0x Ai1x Ai2x · · · Aikx Ili




º 0,

i = 1, 2, . . . ,m

(28)

with variables x and additional scalar variables λ1, . . . , λm, Il being the unit l × l matrix. The result
may be derived from Theorem 4.1 (for independent proof, see [3]).

4.3 Robust conic quadratic programming

A conic quadratic program is an optimization program of the form

min cT x subject to
∣∣∣
∣∣∣Aix + bi

∣∣∣
∣∣∣
2
≤ [di]T x + γi, i = 1, 2, . . . ,m}. (29)

such a problem can be easily reformulated as a semidefinite program with the data affinely depending
on the data {Ai, bi, di, γi}m

i=1 of the original problem. Assume that the data of (29) are uncertain and
that the uncertainty is of the following specific type:

• (I) The uncertainty is “constraint-wise”: the data (Ai, bi, di, γi) of different conic quadratic
constraint independently of each other run through respective uncertainty sets Ui;

• (II) For every i, Ui is the direct product of two elliptic cylinders in the spaces of (Ai, bi)- and
(di, γi)-components of the data:

Ui = Vi ×Wi,

Vi = {[Ai; bi] = [Ai0; bi0] +
∑ki

j=1 ξj [Aij ; bij ]
+

∑qi
p=1 ζp[Eip; f ip] | ξT ξ ≤ 1},

Wi = {(di, γi) = (di0, γi0) +
∑k′i

j=1 ξj(dij , γij)

+
∑q′i

p=1 ζp(gip, hip) | ξT ξ ≤ 1}.

(30)
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It turns out that the robust counterpart of uncertain conic quadratic program (29) – (30) is equivalent
to the explicit semidefinite program as follows:

min cT x
s.t.

Eipx + f ip = 0, i = 1, . . . , m, p = 1, . . . , qi;
[gip]T x + hip = 0, i = 1, . . . ,m, p = 1, . . . , q′i;


[di0]T x + γi0 − λi [di1]T x + γi1 [di2]T x + γi2 · · · [dik′i ]T x + γik′i

[di1]T x + γi1 [di0]T x + γi0 − λi

[di2]T x + γi2 [di0]T x + γi0 − λi

...
. . . · · ·

[dik′i ]T x + γik′i · · · [di0]T x + γi0 − λi



º 0,

i = 1, . . . , m;


λi − µi · · · [Ai0x + bi0]T

µi [Ai1x + bi1]T

µi [Ai2x + bi2]T
...

. . . · · ·
µi [Aikix + biki ]T

Ai0x + bi0 Ai1x + bi1 Ai2x + bi2 · · · Aikix + biki λiIli




º 0,

i = 1, . . . , m
(31)

with variables x and additional scalar variables λi, µi, i = 1, . . . ,m.
The result again can be derived from Theorem 4.1 (for independent derivation, see [3]).

4.4 Operator-norm bounds

In several problems, the perturbed constraint writes as F(y, ∆) º 0, where F(y, ∆) is given in the
linear-fractional form (3.1.a), and ∆ is a matrix bounded in norm but otherwise arbitrary. We can
handle this case with the Lagrange relaxation technique described in section 3.2; the set ∆ has the
form

∆ =
{
∆ ∈ Rnp×nq

∣∣ ‖∆‖ ≤ 1
}

, (32)

and the corresponding linear map Φ∆ is given in table 1. It turns out that the resulting SDP approx-
imation is exact in this case (this result is proved in [15]).

Theorem 4.1 Consider the uncertain semidefinite program with rational perturbation, described by
the LFR (3.1), where the perturbation matrix is bounded but otherwise arbitrary: ∆ ∈ ∆, where ∆ is
defined in (32).

Then the semidefinite program

max bT y subject to

τ ≥ 0,

[
F (y) L(y)
L(y)T 0

]
º

[
R D
0 I

]T [
τInq 0

0 −τInp

] [
R D
0 I

]

in variables y, τ , is equivalent to the robust counterpart (2).

Remark 4.1 We note again that the above condition is strictly feasible if and only if the LFR is
well-posed, meaning that det(I −D∆) 6= 0 for every ∆ ∈ Rnp×nq , ‖∆‖ ≤ 1.
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5 Examples

5.1 A link with combinatorial optimization

The method we have outlined is a way to solve a non convex optimization problem. It turns out that
this method is similar in spirit to the one used in SDP relaxations for combinatorial optimization.

Consider the problem

max
δ∈Rl

δT Wδ subject to δ2
i = 1, i = 1, . . . , l, (33)

where W is a given symmetric matrix (of special structure, irrelevant here). The above problem is
known in the combinatorial optimization literature as “the maximum cut” (MAX-CUT) problem [7],
and is proven to be NP-hard.

This problem is a robust SDP problem. First we note that, without loss of generality, we may
assume W Â 0, and rewrite the problem as

minimize x subject to δT Wcδ ≤ x for every δ, ‖δ‖∞ ≤ 1.

Let us now apply theorem 3.1, with

F(y, ∆) =

[
x δT

δ W−1

]
, ∆ = diag(δ1, . . . , δl).

The matrix F(y, ∆) can be written in the LFR format as (3.1), with

F (y) =

[
x 0
0 W−1

]
, R =




1
...
1

0


 , L =

[
0
I

]
, D = 0.

The perturbation set ∆ here is the set of diagonal p× p matrices. Theorem 3.1 shows that an upper
bound on the MAX-CUT problem is given by the optimal value of the SDP

minTrS subject to W ¹ S, S diagonal.

This upper bound is exactly the one obtained by Lovasz [10], and is dual (in the SDP sense) to the one
obtained by Goemans and Williamson [7]. As shown in [7], the above relaxation is the most efficient
currently available (in terms of closeness to the actual optimum, in a certain stochastic sense).

5.2 A link with Lyapunov theory in control

Semidefinite programming has many applications in control theory [4]. The basic idea is that using
so-called quadratic Lyapunov functions, we may prove a number of interesting properties for uncertain
dynamical systems; the search for quadratic Lyapunov functions V (ξ) = ξT Sξ can be often written as
an SDP in the matrix S.

Here we would like to show the link between classical Lyapunov theory and the Lagrange relaxations
we used in section 3.2. To illustrate this link, consider the problem of checking stability (convergence
to zero of every trajectory) of the dynamical system

q̇ = Aq,

15



where q ∈ Rn is the state, and A is a (constant) square matrix. Taking the Laplace transform, we
obtain that stability is equivalent to matrix A having no eigenvalues with positive real part:

(sI −A)H(sI −A) Â 0 for every s, s + s∗ ≥ 0.

The above is a robustness analysis problem (the Laplace variable s is the uncertainty). Introduce
p = sq, we have

p = sq for some s, s + s∗ ≥ 0

if and only if pqH + qpH º 0. Our problem is thus to check if

‖p−Aq‖2 > 0 for every (p, q) 6= (0, 0), pqH + qpH º 0.

Using Lagrange relaxation of the last matrix inequality constraint, we obtain a sufficient condition for
stability: There exists a real matrix S such that

AT S + SA ≺ 0, S Â 0.

The above condition is the Lyapunov condition for stability that is well known in control (it turns out
that this condition is necessary and sufficient if A is known and constant). If S satisfies this inequality,
the quadratic function V (ξ) = ξT Sξ can be interpreted as a Lypaunov function proving stability (that
is, V decreases along every trajectory). The above is easily extended to the case when the matrix A
is uncertain (see [4]).

5.3 Interval computations

A basic problem in interval computations is the following. We are given a function f from Rl to Rm,
and a set confidence D for δ ∈ Rl, in the form of a product of intervals. We seek to estimate intervals
of confidence for the components of x = f(δ) when δ ranges D. Sometimes, f is given in implicit
form, as in the interval linear algebra problem: here, we are given matrices A ∈ Rn×n, b ∈ Rn the
elements of which are only known within intervals; in other words, [A b] is only known to belong to
an “interval matrix set” U . we seek to compute intervals of confidence for the set of solutions, if any,
to the equation Ax = b.

Obtaining exact estimates for intervals of confidence for the elements of solutions x, even for the
“linear interval algebra” problem, is already NP-hard [17, 18].

One classical approach to this problem resorts to interval calculus, where each one of the basic
operations (+,−, x, /) is replaced by an “interval counterpart”, and standard (eg LU) linear algebra
algorithms are adapted to this new “algebra”. Many refinements of this basic idea have been proposed,
but the algorithms based on this idea have in general exponential complexity.

Robust semidefinite programming can be used (at least as a subproblem in a global branch and
bound method) for this problem, as follows. Assume we can describe f explicitely as a rational
function of its arguments; from lemma 3.1, we can construct (in polynomial time) a linear-fractional
representation of f , in the form

f(δ) = f + L∆ (I −D∆)−1 r, where ∆ = diag (δ1Ir1 , . . . , δlIrl
) .

Assume first that we seek an ellipsoid of confidence for the solution, in the form E = {x | (x −
x0)(x − x0)T ¹ P}, where x0 ∈ Rn and P º 0 (our parametrization allows for degenerate, “flat”,
ellipsoids, to handle cases when some components of the solution are certain). We seek to minimize
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the “size” of E subject to f(δ) ∈ E for every δ ∈ D. Measuring the size of E by TrP (other measures
are possible, as seen below), we obtain the following equivalent formulation of the problem.

min
x0,P

TrP subject to

[
P (f(δ)− x0)

(f(δ)− x0)T 1

]
º 0 for every δ ∈ D. (34)

The above is obviously a robust semidefinite programming problem, for which an explicit SDP coun-
terpart (approximation) can be devised, provided D takes the form of a (general) ellipsoidal set. (A
typical set arising in interval calculus is a product of intervals Π[δi δi], where δi, δi are given.)

The above method finds ellipsoids of confidence, but it is also possible to find intervals of confidence
for the components of f(δ), by modifying the objective of the above robust SDP suitably (for example,
if we minimize the (1, 1) component of the matrix variable P instead of its trace, we will obtain an
interval of confidence for the first component of f(δ), when δ ranges D).

The resulting approximations have an interesting interpretation in the context of the “linear in-
terval algebra problem” Ax = b, where [A b] is an uncertain matrix, subject to “unstructured
perturbations”. Assume

[A b] ∈ U = {[A + ∆A b + ∆b] | ‖[∆A ∆b]‖ ≤ ρ} ,

where [A b] ∈ Rn×(m+1) and ρ ≥ 0 are given. In this case, our results are exact, and yield a solution
related to the notion of total least squares developed by Golub and Van Loan [8, 21]. Precisely, it can be
shown that the center of the ellipsoid of confidence (corresponding to the variable x0 in problem (34))
is of the form

x0 = (AT A− ρ2I)−1AT b

(We assume that σmin([A b]) ≥ ρ, otherwise the ellipsoid of confidence is unbounded. Except in degen-
erate cases, this guarantees the existence of the inverse in the above.) When we let ρ = σmin([A b]),
the ellipsoid of confidence can be shown to be reduced to the singleton E = {x0}, and x0 is the “total
least squares” solution to the problem Ax = b.

As an example, consider the Vandermonde system



1 a1 a2
1

1 a1 a2
1

1 a1 a2
1







x1

x2

x3


 =




b1

b2

b3


 ,

where a b are interval vectors of R3.

4
6

8 −7 −6 −5 −4 −3

0.6
0.8

1
1.2
1.4
1.6

x2x1

x3

−4.5 −4
0.8

0.9

1

x2

x3

interval calculus ellipsoid calculus

Figure 1: Sets of confidence for an uncertain Vandermonde system.

In Figure 5.3, we show the box of confidence for the solution, computed by direct application
of interval algebra; the right-hand side plots shows the ellipsoid of confidence obtained by robust
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semidefinite programming. We did not use elaborate algorithms to solve the problem via interval
algebra, so the reader should not draw negative conclusions about it; rather, the instructive part is
that the robust SDP method seems to behave well in this example.

5.4 Robust structural design

A typical problem of (static) structural design is to specify a mechanical construction capable best of
all withstand a given external load. As a concrete example of this type, consider the Truss Topology
Design (TTD) problem (for more details, see [1]).

A truss is a construction comprised of thin elastic bars linked with each other at nodes – points
from a given finite (planar or spatial) set. When subjected to a given load – a collection of external
forces acting at some specific nodes – the construction deformates, until the tensions caused by the
deformation compensate the external load. The deformated truss capacitates certain potential energy,
and this energy – the compliance – measures stiffness of the truss (its ability to withstand the load);
the less is compliance, the more rigid is the truss.

In the usual TTD problem we are given the initial nodal set, the external “nominal” load and the
total volume of the bars. The goal is to allocate this resource to the bars in order to minimize the
compliance of the resulting truss. Mathematically the TTD problem can be modeled by the following
semidefinite program:

min τ
s.t.

(a)

[
τ fT

f
∑n

i=1 tibib
T
i

]
º 0,

(b) t ∈ P ⊂ Rn
+,

(35)

with design variables τ ∈ R and t = (t1, . . . , tn) ∈ Rn; ti’s are volumes of tentative bars. The data of
the problem are

• vectors bi ∈ Rm; they are readily given by the geometry of the nodal set;
• vector f ∈ Rm representing the external load;
• a polytope P representing design restrictions like upper bound on the total bar volume, bounds

on volumes of particular bars, etc.
In reality, the external load f should be treated as uncertain element of the data; the traditional

approach to treat this uncertainty is to consider a number of “loads of interest” f1, . . . , fk and to
optimize the worst-case, over this set of scenarios, compliance. Mathematically this approach is
equivalent to replacing the LMI (35.a) (expressing the fact that τ is an upper bound on the compliance
with respect to f) by k similar constraints corresponding to f = f1, f = f2, . . . , f = fk. A disadvantage
of the “scenario approach” is that it takes care just of a restricted number of “loads of interest” and
ignores “occasional” loads, even small ones; as a result, there is a risk that the resulting construction
will be crushed by a small “bad” load. An example of this type is depicted on Fig. 1. Fig. 1.a) shows
a cantilever arm which withstands optimally the nominal load – the unit force f∗ acting down at the
most right node. The corresponding “nominal” optimal compliance is 1. It turns out, however, that
the construction in question is highly instable: a small force f (10 times smaller than f∗) depicted
by small arrow on Fig. 1.a) results in a compliance which is more than 3,000 times larger than the
nominal one.

In order to improve design’s stability, it makes sense to treat the load as uncertain element of the
data varying through a “massive” uncertainty set rather than taking just a small number of “values
of interest”. From the mathematical viewpoint, it is convenient to deal with uncertainty set in the
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form of an ellipsoid centered at the origin:

f ∈ F =
{
f = Lδ | δ ∈ D = {δ ∈ Rk : δT δ ≤ 1}

}
. (36)

Problem (35) with perturbation set given by (36) is a particular case of full matrix uncertainty (32);
according to Theorem 4.1, the robust counterpart of (35) – (36) is equivalent to an explicit semidefinite
program; this program can be finally converted to the form

min τ
s.t. [

τI QT

Q
∑n

i=1 tibib
T
i

]
º 0,

t ∈ P.

(37)

(for details, see [1]).
To illustrate the potential of the outlined approach, let us come back to the above “cantilever

arm” example. In this example a load is, mathematically, a collection of ten 2D vectors representing
(planar) external forces acting at the ten non-fixed nodes of the cantilever arm; in other words, the
data in our problem is a 20-dimensional vector. Let us pass from the nominal problem (“a singleton
uncertainty set F = {f}”) to the problem with F being a “massive” ellipsoid, namely, the ellipsoid
of the smallest volume containing the nominal load f and a 20-dimensional ball B0.1 comprised of all
20-dimensional vectors (“occasional loads”) of the Euclidean norm ≤ 0.1‖f‖2.

Solving the robust counterpart (37) of the resulting uncertain SDP, we get the cantilever arm
shown on Fig. 1.b).
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a) b)

Figure 1. Cantilever arm: nominal design (left) and robust design (right)

The compliances of the original and the new constructions with respect to the nominal load and their
worst-case compliances with respect to the “occasional loads” from B0.1 are as follows:
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Design Compliance w.r.t. f∗ Compliance w.r.t. B0.1

nominal 1 > 3360
robust 1.0024 1.003

We see that in this example the robust counterpart approach improves dramatically the stability of
the resulting construction, and that the improvement is in fact “costless” – the robust optimal solution
is nearly optimal for the nominal problem as well.

6 Concluding Remarks

We have described a general methodology to handle deterministic uncertainty in semidefinite pro-
gramming, which computes robust solutions via semidefinite programming. The method handles very
general (nonlinear) uncertainty structures, and uses a special Lagrange relaxation (or, in a dual form,
a “rank relaxation”) to obtain the approximate robust counterpart in the form of an SDP. The method
is actually an extension of techniques that are well-known in several (apparently unrelated) areas, such
as rank relaxations in combinatorial optimization, or Lyapunov functions in control.

In the case of affine dependence, we can estimate the quality of the resulting approximation; in
some other cases, the approximation is exact.

Further work should probably concentrate on reducing the level of conservativeness as much as
possible, while keeping the size of the approximate robust counterpart reasonable.
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