
On Complexity of Matrix Scaling
Arkadi Nemirovski and Uriel Rothblum

nemirovs@ie.technion.ac.il rothblum@ie.technion.ac.il
Faculty of Industrial Engineering and Management at Technion – Israel Institute of

Technology

Abstract

The Line Sum Scaling problem for a nonnegative matrix A is to find
positive definite diagonal matrices Y , Z which result in prescribed row and
column sums of the scaled matrix Y AZ. The Matrix Balancing problem
for a nonnegative square matrix A is to find a positive definite diagonal ma-
trix X such that the row sums in the scaled matrix XAX are equal to the
corresponding column sums. We demonstrate that ε-versions of both these
problems, same as those of other scaling problems for nonnegative multiin-
dex arrays, can be reduced to a specific Geometric Programming problem.
For the latter problem, we develop a polynomial-time algorithm, thus deriv-
ing polynomial time solvability of a number of generic scaling problems for
nonnegative multiindex arrays. Our results extend those previously known
for the problems of matrix balancing [3] and of double-stochastic scaling of
a square nonnegative matrix [2].
Key words: matrix scaling, matrix balancing, polynomial-time complex-
ity.

1 Introduction

The Line Sum Scaling problem is as follows:

(LSS): Given two positive vectors r ∈ Rm, c ∈ Rn and an m×n matrix
A = [Aij] with nonnegative entries and without zero rows and columns,
find positive m×m diagonal matrix Y and positive n× n diagonal matrix
Z such that the row sums in the matrix Y AZ form the vector r, and the
column sums form the vector c:

Y AZ1n = r, (Y AZ)T1m = c,

where 1k = (1, ..., 1︸ ︷︷ ︸
k

)T .

It is convenient (and, of course, does not restrict generality) to assume
once for ever that the data r, c of the problem are normalized by

m∑

i=1

ri +
n∑

j=1

cj = 2. (1)
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The “ε-relaxation” of (LSS) is the problem

(LSSε): Given the same data as in (LSS) and a positive ε, find positive
m×m diagonal matrix Y and positive n× n diagonal matrix Z such that
the row sums in the matrix Y AZ are ε-close to r, and the column sums are
ε-close to c:

‖Y AZ1n − r‖1 + ‖(Y AZ)T1m − c‖1 ≤ ε;

from now on, for a vector x ∈ RN ‖x‖1 =
∑N
i=1 |xi|.

The data (A, r, c) of (LSS) are called proper, if (LSS) is solvable, and are called
semi-proper, if all problems (LSSε), ε > 0, are solvable. The goal of this paper is to
prove polynomial time complexity bound for the following problem:

(LSS∗+): Given the same data as in (LSS) and a positive ε, find positive
m×m diagonal matrix Y and positive n× n diagonal matrix Z such that
the row sums in the matrix Y AZ are ε-close to r, and the column sums are
ε-close to c:

‖Y AZ1n − r‖1 + ‖(Y AZ)T1m − c‖1 ≤ ε,

or detect correctly that the data (A, r, c) are not semi-proper.

The main result of our paper is that if ε ∈ (0, 1) and the data r, c of (LSS) are
normalized to have ‖r‖1 + ‖c‖1 = 2, then problem (LSS∗+) can be solved in no more
than

O(1)(m+ n)4 ln

(
2 +

mn
√
m3 + n3 ln(mnβ)

ε3

)
(2)

real arithmetic operations, where β is the ratio of the largest and the smallest positive
entries of A.

There is a significant literature devoted to LSS; see [7, 2] and references therein.
Most of this literature concerns existence, characterization and reductions; in par-
ticular, semi-properness is characterized in [7]. Here our goal is to obtain complex-
ity bounds on solving (LSS∗+), that is, on computing approximate scalings to pre-
scribed accuracy. Our approach follows [2] which considered the important special
case when A is square and r = c = 1n (the “double-stochastic scaling”). It is shown in
this reference that “ε-double-stochastic” scaling of a nonnegative matrix A for which
a double-stochastic scaling exists can be found in polynomial time, specifically, in
O
(
n4 ln

(
n lnβ
ε

))
operations (essentially same as implied by (2) for the case of m = n).1)

1) After the work on this paper was finished, we became aware of the “in process” paper [5] where
the authors announce strongly polynomial algorithm for LSS with complexity bound O(n7 lnn ln(1/ε))
(in [5], n = m). The advantage of the latter bound is that it is free of the “number-dependent” quantity
β; note, however, that (2) is proportional to ln lnβ and that the dependence on the sizes n,m in our
bound is much better than the one in [5].
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The paper is organized as follows: in Section 2 we start with formulating a specific
geometric programming problem (problem (GS) – (GS∗+) below) which covers LSS
as a special case and study (GS) – (GS∗+) in the case of “standard data” – those
satisfying a “standard” side condition (which is automatically satisfied for the LSS
problem). We identify necessary and sufficient conditions for solvability of (GS) with
standard data and obtain an explicit upper bound on the norm of a solution to a
solvable (GS). Equipped with this result, we present in Section 3 a simple polynomial
time algorithm for (GS) with standard data. Section 4 contains applications of the
results to the LSS problem; in particular, the application of our algorithm to the (GS)-
reformulation of the LSS problem implies the complexity bound of (2). In concluding
Section 5 we illustrate our results on polynomial time solvability of (GS) by a pair
of other applications. The first is the balancing problem for a nonnegative matrix;
here we demonstrate that the best known so far polynomial time complexity bound
for the matrix balancing problem from [3] can be straightforwardly derived from our
results on (GS). The second application is a “multi-index sum scaling problem”. In
this problem, one is given a p-dimensional nonnegative array A (say, 3D array {Aijk})
and is allowed to multiply the entries by q positive “scaling arrays”, the entries of each
array depending on a given part of the indices (in our 3D example this could be the
transformations Aijk 7→ Bijk = XiYjZkAijk with positive Xi, Yj, Zk). The goal is to
find a scaling of this type which results in prescribed partial sums of the entries of
the scaled array (in the example we have specified, these are the planar sums

∑
j,k
Bijk,

∑
i,k
Bijk,

∑
ij
Bijk). It turns out that a problem of this type can be easily converted to

the form of (GS), so that our results on the latter problem imply straightforwardly
polynomial time solvability of the multi-index sum scaling problem.

2 Convex Programming reformulation of (LSS)

2.1 Reformulation and solvability issues

Let A be a nonnegative matrix, K be the total number of nonzero entries in A, and
let (i(k), j(k)), k = 1, ..., K, be an enumeration of the corresponding cells. Let us set

• a = (a1, ..., aK)T , ak = Ai(k)j(k),

• σk = ei(k) + fj(k) ∈ RN ≡ Rm × Rn, k = 1, ..., K, where ei and fj are the
natural extensions (by adding zeros) to RN of the basic unit vectors in Rm, Rn,
respectively;

• σ =
(
r
c

)
∈ RN

• e = 1
2
1N .
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Passing in (LSS) from the unknowns Y, Z to unknowns x ∈ Rm+n according to

Yii = exp{xi}, i = 1, ...,m; Zjj = exp{xm+j}, j = 1, ..., n,

we reformulate (LSS) equivalently as the problem

Find x:
K∑

k=1

ak exp{σTk x}σk = σ, (GS)

while (LSS∗+) becomes the problem

Given ε > 0, find x such that
∣∣∣
∣∣∣∑K

k=1 ak exp{σTk x}σk − σ
∣∣∣
∣∣∣
1
≤ ε

or detect correctly that infx
∣∣∣
∣∣∣∑K

k=1 ak exp{σTk x}σk − σ
∣∣∣
∣∣∣
1
> 0.

(GS∗+)

Note also that
eTσk = 1, k = 1, ..., K; eTσ = 1 (3)

(the latter equation is given by the normalization (1)).

2.1.1 Generalization

Problems (GS) and (GS∗+) with data a > 0, {σk ∈ RN}Kk=1 and σ ∈ RN not necessarily
derived from (LSS) were introduced and studied in [8]. In particular, for applications
of these problems beyond (LSS) see [8] and Section 5. In the remainder of the Section
and in the following Section we deal with problems (GS) and (GS∗+) independently of
the origin of the data, but with the assumption that the data admits a vector e such
that the relation (3) is satisfied; in such cases we call the data of (GS) standard. Of
course, testing whether or not a particular data of (GS) is standard and computing a
vector e satisfying (3) if the answer is affirmative is a simple Linear Algebra problem.

Note that for solvable (GS) the assumption that the data of (GS) is standard is
“basically equivalent” to the assumption that

(a) The affine hull of σ1, ..., σK does not contain the origin.

Indeed, if the data of (GS) is standard, then (a) of course is satisfied. Now let (a) be
satisfied. An elementary result in Linear Algebra then assures the existence of a vector
e with eTσk = 1, k = 1, ..., K; further, in this case, solving a simple Linear Algebra
problem, we may find such a vector e. After e is identified, we may check whether
eTσ > 0. If it is not the case, (GS) clearly is unsolvable, otherwise we may multiply
σ by a positive constant λ to get eT (λσ) = 1. It remains to note that in the case
of (a) the problems (GS) with proportional to each other, with positive coefficients,
vectors σ are equivalent to each other: if

∑
k ak exp{σTk x}σk is equal/close to σ, then∑

k ak exp{σk(x+ (lnλ)e)}σk is equal, respectively, close to λσ. Thus, in the case of a
we either can detect that (GS) is unsolvable, or pass to equivalent “normalized data”
satisfying (3) (this is what we are doing when imposing normalization condition (1) on
the LSS data).

From now on, speaking about (GS) – (GS∗+), we exclude the trivial case when all
σk, k = 1, ..., K, are equal to each other; for the LSS problem, it means that we assume
that min[m,n] > 1.
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2.1.2 Solvability conditions

The data (a > 0, {σk}Kk=1, σ) of (GS) are called proper, if (GS) is solvable, and are
called semi-proper, if

inf
x

∣∣∣∣∣

∣∣∣∣∣
K∑

k=1

ak exp{σTk x}σk − σ
∣∣∣∣∣

∣∣∣∣∣
1

= 0. (4)

Note that when the data (a > 0, {σk}Kk=1, σ) of (GS) are proper, with solution x, then
(multiplying both sides of

K∑

k=1

ak exp{σTk x}σk = σ

by eT and using (3))
∑K
k=1 ak exp{σTk x} = 1, thus, σ is a convex combination, with

positive weights, of σ1, ..., σK . Similarly, assuming that the data of (GS) are semi-
proper we conclude, by using a limiting argument, that σ belongs to the convex hull
of σ1, ..., σK . Thus, we see that the necessary condition for properness of the data of
(GS) is

C. σ is a convex combination, with positive weights, of σ1, ..., σK

while the necessary condition for the data of (GS) to be semi-proper is

C′. σ is a convex combination of σ1, ..., σK .

Variants of C and C′ which consider positive and nonnegative linear combinations
(without asserting that the corresponding coefficients sum to 1) were considered in
[8]; specifically these variants were shown to be equivalent, respectively, to properness
and semi-properness of the data of (GS) without the assumption that there exists e
satisfying (3). In the same spirit, we will show below that C and C′ themselves are
sufficient, and not just necessary, for properness and semi-properness of the standard
data of (GS). Our proof is a byproduct of results we develop in the next subsection.

2.1.3 Convex Programming reformulation and bounds on the norm of a
solution

Let E be the linear span of the vectors σk−σ`, k, ` = 1, ..., K, and F be the orthogonal
complement to E in RN . Consider the convex function

f(x) = φ(x)− σTx, φ(x) = ln(
K∑

k=1

ak exp{σTk x})

(to check that f is convex, see, e.g., [1], Lemma 7.12, p. 197). We start with the
following simple observation:
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Lemma 2.1 Let σ be an affine combination of σ1, ..., σK (as it is the case under as-
sumption C′). Then f is constant along F :

f(x+ v) = f(x) ∀x ∈ RN ∀v ∈ F.

Proof. If x ∈ RN and v ∈ F , then

σT1 v = σT2 v = ... = σTKv = σTv

(the first K − 1 equalities are readily given by the fact that v is orthogonal to all
differences σk − σ`, k, ` = 1, ..., K, and the last equality follows from the first K − 1 of
them since σ is an affine combination of σ1, ..., σK). Consequently,

f(x+ v) = ln
(∑K

k=1 ak exp{σTk (x+ v)}
)
− σT (x+ v)

=
[
ln
(∑K

k=1 ak exp{σTk x}
)]
− σTx+

[
σT1 v − σTv

]

= f(x).

Our next observation is as follows:

Lemma 2.2 Assume that there exists e satisfying (3). Then the set of solutions to
(GS) is exactly the set of minimizers x of f satisfying the condition φ(x) = 0. Further,
if σ is an affine combination of σ1, ..., σK, as is the case under assumption C′, f attains
a minimum over RN if and only if (GS) is solvable.

Proof. We first observe that

∇f(x) =

∑
k ak exp{σTk x}σk∑
k ak exp{σTk x}

− σ. (5)

Now, if x is a solution to (GS), then

∑

k

ak exp{σTk x}σk − σ = 0 (6)

and, as we have seen in the previous subsection,

∑

k

ak exp{σTk x} = 1, or, equivalently, φ(x) = 0, (7)

These two conditions combine with (5) to show that ∇f(x) = 0, thus, every solution
x to (GS) is a global minimizer of f satisfying φ(x) = 0. Alternatively, if x is a global
minimizer of f , then ∇f(x) = 0; hence, if in addition φ(x) = 0, the equivalence in
(7) combines with (5) to show that x is a solution to (GS). To complete the proof, we
should demonstrate that if σ is an affine combination of σ1, ..., σK and f attains its
minimum, then among minimizers of f there are points with φ = 0, which is immediate:
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indeed, if f attains its minimum at a point x, then, by Lemma 2.1, all points from the
affine plane x+ F also are minimizers of f . By (3), e ∈ F , so that the point

x̄ = x− φ(x)e

is a global minimizer of f . It remains to note that

φ(x̄) = ln
(∑

k ak exp{σTk (x− φ(x)e)}
)

= φ(x)− φ(x) [by (3)]
= 0.

We are about to demonstrate that under assumption C f attains its minimum
on RN (so that, by Lemma 2.2, (GS) is solvable) and to get an upper bound on the
distance from the origin to the set of minima of f . This bound will be expressed in
terms of four data-dependent quantities we are about to introduce.

Observe that x ∈ RN satisfies

max
k
σTk x = min

k
σTk x

if and only if σTk x is a constant over k, that is if and only if x ∈ F ; hence such x is in
E if and only if x = 0. Consequently, the following quantity is well-defined:

α ≡ α(σ1, ..., σK) = max
x∈E,‖x‖2=1

1

maxk σTk x−mink σTk x
(8)

with ‖ · ‖2 being the standard Euclidean norm of a vector. Note that by homogeneity
reasons one has

x ∈ E ⇒ max
k
σTk x−min

k
σTk x ≥ α−1‖x‖2. (9)

Assuming that the data of (GS) satisfy C, let us set

γ ≡ γ(σ1, ..., σK , σ) = min
λ∈Λ

max
k≤K

λ−1
k ,

Λ ≡ Λ(σ1, ..., σK , σ) =
{
λ ∈ RK | λ > 0,

∑
k λk = 1,

∑
k λkσk = σ

}
.

(10)

(It is straightforward to check that when C is satisfied, the minimum in (10) is at-
tained.) If C is not satisfied, we set γ(σ1, ..., σK , σ) = +∞.
Finally, let

β ≡ β(a) =
maxk ak
mink ak

, (11)

and
δ ≡ δ(σ1, ..., σK) = max

k≤K
‖σk‖1. (12)

We are ready to formulate one of our main results:
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Proposition 2.1 Let the data a > 0, {σk ∈ RN}Kk=1, σ ∈ RN of (GS) satisfy C, and
let there exist e ∈ RN satisfying (3). Then problem (GS) is solvable, and there exists a
solution x∗ to this problem such that

‖x‖2 ≤ R ≡ R(a, σ1, ..., σK , σ) = αγ ln(Kβ), (13)

with α, β, γ given by (8), (10), (11), respectively.

In particular, C is a necessary and sufficient condition for the solvability of problem
(GS).

Proof. We have already seen that C is necessary for solvability of (GS). Now assume
that C is satisfied. As we have seen in Lemma 2.2, solvability of (GS) is equivalent to
the fact that f attains its minimum on RN ; thus, all we need to prove is that f attains
its minimum on RN , and that at least one of the minimizers of f satisfies (13). Since
C clearly implies the premise of Lemma 2.1, f is constant along F , so that it suffices
to verify that f attains its minimum on E at a point satisfying (13). To this end, in
turn, it suffices to demonstrate that

x ∈ E, ‖x‖2 > R⇒ f(x) > f(0). (14)

To establish (14), observe first that

f(0) = ln

(∑

k

ak

)
≤ ln(K max

k
ak). (15)

On the other hand, by definition of γ in (10) there exists representation

σ =
K∑

k=1

λkσk

with
∑
k λk = 1 and mink λk = γ−1. Let x ∈ E. We clearly have, with c ≡ mink ln ak

and k∗, k∗ as the maximizer and minimizer of σTk x over k, respectively,

φ(x) ≥ ln(ak∗ exp{σTk∗x}) ≥ c+ max
k
σTk x,

whence
f(x) ≥ c+ maxk σ

T
k x− σTx

= c+ maxk σ
T
k x−

∑
k λkσ

T
k x

= c+
∑
` λ`[maxk σ

T
k x− σT` x]

≥ c+ λk∗ [maxk σ
T
k x− σTk∗x]

≥ c+ (mink λk)[maxk σ
T
k x−mink σ

T
k x]

≥ c+ (mink λk)α
−1‖x‖2 [by (9)]

= c+ γ−1α−1‖x‖2.

Combining the resulting inequality with (15), we get

x ∈ E ⇒ f(x)− f(0) ≥ c− ln(K maxk ak) + α−1γ−1‖x‖2

= mink ln ak − ln(K maxk ak) + α−1γ−1‖x‖2

= ln(mink ak)− ln(Kβmink ak) + α−1γ−1‖x‖2

= α−1γ−1 [‖x‖2 − αγ ln(Kβ)] ,

and the concluding quantity is positive when ‖x‖2 > R.
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Corollary 2.1 Let the data a > 0, {σk ∈ RN}Kk=1, σ ∈ RN of (GS) satisfy C′, and let
there exist e ∈ RN satisfying (3). Then the data are semi-proper, i.e., (4) is satisfied.
Thus, C′ is a necessary and sufficient condition for semi-properness of the data of
(GS).

Proof. C′ implies that ‖σ‖1 ≤ maxk ‖σk‖1 = δ(σ1, ..., σk). Now, given ε > 0, let us set

θε = ε
ε+2δ

,

σε = (1− θε)σ + θε
K

∑K
k=1 σk.

(16)

Under assumption C′ the data a, {σk}Kk=1, σε clearly satisfy C, so that by Proposition
2.1 there exists xε ∈ RN such that

K∑

k=1

ak exp{σTk xε}σk = σε

and consequently

∣∣∣
∣∣∣σ −∑K

k=1 ak exp{σTk x}σk
∣∣∣
∣∣∣
1

= ||σ − σε||1
= θε

∣∣∣
∣∣∣σ − 1

K

∑
k σk

∣∣∣
∣∣∣
1≤ θε (‖σ‖1 + maxk≤K ‖σk‖1)

≤ 2θεδ [by C′]
≤ ε.

3 Polynomial complexity of (GS∗+)

We are about to demonstrate that problem (GS∗+) can be solved in polynomial time.
Given ε > 0, let us choose somehow an a priori upper bound α̂ on α(σ1, ..., σK) and set
(cf. the proof of Corollary 2.1)

β = β(a) [see (11)]
δ = δ(σ1, ..., σK) [see (12)]
θε = ε

ε+4δ

ψ = θ2
ε

γ̂ = K
θε

σε = (1− θε)σ + θε
K

∑K
k=1 σk

R̂ = α̂γ̂ ln(Kβ(a))

fε(x) = φ(x)− σTε x = ln
(∑K

k=1 ak exp{σTk x}
)
− σTε x,

(17)

Our key observation is given by
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Proposition 3.1 Assume that the data a > 0, {σk}Kk=1, σ of problem (GS) satisfy C′

and that there exists e satisfying (3). Given ε > 0, define the quantities (17), and let
xψ be a ψ-minimizer of fε in the ball V = {x ∈ RN | ‖x‖2 ≤ R̂}:

xψ ∈ V, fε(xψ)−min
V
fε ≤ ψ. (18)

Then the point
x̄ε = xψ − φ(xψ)e (19)

satisfies: ∣∣∣∣∣

∣∣∣∣∣
K∑

k=1

ak exp{σTk xψ}σk − σ
∣∣∣∣∣

∣∣∣∣∣
1

≤ ε. (20)

Proof. Observe, first, that independently of any assumptions on the data (except
a > 0) for all x ∈ RN one has

∇φ(x) = (
∑
k ak exp{σTk x})−1∑

k ak exp{σTk x}σk,
∇2fε(x) = ∇2φ(x)

= (
∑
k ak exp{σTk x})−1∑

k ak exp{σTk x}σkσTk − [∇φ(x)][∇φ(x)]T .

Thus, with δ given by (12) we immediately conclude that

‖∇φ(x)‖1 ≤ δ (21)

and

‖∇2fε(x)‖1 ≡
K∑

k,`=1

∣∣∣∣∣
∂2fε(x)

∂xk∂x`

∣∣∣∣∣ ≤ 2δ2. (22)

Now let the data a, {σk}Kk=1, σ of (GS) satisfy C′. The function fε is exactly the
function f from the previous Section associated with the perturbed data a, {σk}Kk=1, σε.
Same as in the proof of Corollary 2.1, these data satisfy C. Moreover, if σ =

∑K
k=1 λkσk

is a representation of σ as a convex combination of σ1, ..., σK (such a representation
exists in view of C′), then σε can be represented as the convex combination

σε =
K∑

k=1

λεkσk

of σk with the weights

λεk = (1− θε)λk +
θε
K
≥ θε
K
,

whence (see (10))
γ(σ1, ..., σK , σε) ≤ γ̂.

Applying Proposition 2.1 to the data a, {σk}Kk=1, σε and taking into account that the
corresponding parameters α, β are exactly the same as those for the original data, we
conclude that fε attains its global minimum at a point x∗ ∈ V .
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Now let xψ be a ψ-minimizer of fε in V . Since V contains a global minimizer of fε,
we have

fε(xψ)−min fε ≤ ψ,

and since x̄ε = xψ − φ(xψ)e differs from xψ by a vector proportional to the vector e
which is in F (see (3)) and fε is constant along F by Lemma 2.1, we have

fε(x̄ε)−min fε ≤ ψ (23)

as well. Also, as in the proof of Lemma 2.2, we have φ(x̄ε) = 0, whence

∑

k

ak exp{σTk x̄ε} = 1

and
g ≡ ∇fε(x̄ε) = ∇f(x̄ε)− σε =

∑

k

ak exp{σTk x̄ε}σk − σε, (24)

By (22) and the standard approximation bound, for each h ∈ RN we have

fε(x̄ε + h) ≤ fε(x̄ε) + gTh+ δ2‖h‖2
∞ [‖h‖∞ = maxi |hi|].

Let d ∈ RN be given by di = −sign
(
∂f(x̄ε)
xi

)
, so that gTd = −‖g‖1 and ‖d‖∞ ≤ 1, and

let h = ‖g‖1
2δ2 d. From the above bound,

fε(x̄ε + h) ≤ fε(x̄ε)− ‖g‖
2
1

4δ2
,

whence

min fε ≤ fε(x̄ε + h) ≤ fε(x̄ε)− ‖g‖
2
1

4δ2
.

Combining the latter inequality with (23), we get

‖g‖1 ≤ 2δ
√
ψ = 2δθε ≤ ε

2
(25)

(see (17)). Combining this result with (24), we get

∣∣∣∣∣

∣∣∣∣∣
∑

k

ak exp{σTk x̄ε} − σε
∣∣∣∣∣

∣∣∣∣∣
1

≤ ε

2
. (26)

On the other hand, as in the last string of inequalities in the proof of Corollary 2.1 it
holds

‖σ − σε‖1 ≤ 2θεδ ≤ ε

2
,

the last inequality following from the definition of θε in (17). Combining the latter
inequality with (26), we come to (20).

Now we are ready to present a polynomial time algorithm for solving (GS∗+) and
to evaluate its complexity. For the sake of simplicity, we restrict ourselves with an
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algorithm based on the Ellipsoid method2). For our purposes it suffices to outline the
following properties of the Ellipsoid method (for a detailed description and proofs, see,
e.g., [6]): as applied to an optimization program

g(x)→ min | x ∈ V = {x ∈ RN | ‖x‖2 ≤ R̂} (P)

with a convex continuous objective g on V , the method generates a ψ-solution with
ψ > 0 being a prescribed accuracy, that is, a point xψ ∈ V , g(xψ) ≤ minV g + ψ, in no
more than

IEll(P, ε) = O(1)N2 ln

(
2ψ + VarV (g)

ψ

)
, VarV (g) = max

V
g −min

V
g (27)

iterations. An iteration requires a single computation of the value and a subgradient
of g at a given point plus O(N2) operations of exact real arithmetic to run the method
itself.

In order to find a solution to (GS∗+), we first check whether

‖σ‖1 ≤ δ(σ1, ..., σK) ≡ max
k
‖σk‖1. (28)

If it is not the case, then C′ definitely is not satisfied, and we terminate reporting that
the data are not semi-proper. Otherwise we define ψ, R̂ and fε according to (17) and
apply the Ellipsoid method to problem (P), the objective being fε. After a ψ-solution
xψ to (P) is found, we convert it into x̄ε according to (19) and check whether x̄ε indeed
solves (20). If it is not the case, we announce that the data a, {σk}Kk=1, σ are not
semi-proper for (GS).

The correctness and the complexity of the outlined algorithm are given by the
following

Theorem 3.1 Let ε > 0, a > 0, {σk}Kk=1, σ, e and an a priori upper bound α̂ on the
quantity α(σ1, ..., σK) defined in (8) be given and let (3) be satisfied. Then the outlined
algorithm is correct, i.e., it either produces a solution to (GS∗+), or recognizes correctly
that C′ is not satisfied. The result is obtained in no more than

I = O(1)N2 ln
(
2 + 4K(ε+4δ)3δα̂ ln(Kβ)

ε3

)
[
β = β(a) = maxk ak

mink ak
,

δ = δ(σ1, ..., σK) = maxk ‖σk‖1

]
(29)

iterations with no more than
O(1)(N2 + L)

operations of real arithmetic (including taking exp and log) per iteration, where L is
the total number of nonzero entries in σ1, ..., σK.

2)An alternative would be exploiting interior-point techniques; however, for the LSS problem with
m = O(n) these techniques have no advantages as compared to the Ellipsoid method, see [2].
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Proof. By construction of the algorithm, its output either is a solution to (20), or is
a claim that the data is not semi-proper. Proposition 3.1 shows that if C′ is satisfied,
then the second of these alternatives cannot take place, so that the algorithm indeed
solves (GS∗+). To evaluate the complexity of the algorithm, note that by (21) (this
bound is valid independently of any assumptions on the data except a > 0) and (28)
(recall that the Ellipsoid method is run only when this inequality is satisfied) we have
‖∇fε(x)‖1 ≤ ‖∇φ(x)‖1 + ‖σε‖1 ≤ 2δ, whence

VarV (fε) ≤ 4δR̂.

Combining the latter bound, (17) and (27), we come to (29). The upper bound on the
arithmetic cost of an iteration is readily given by the above remark on the complexity
of an iteration in the Ellipsoid method.

Remark 3.1 The complexity bounds in Theorem 3.1 deal with idealized precise real
arithmetic implementation of the algorithm. They, however, remain valid for finite-
precision computations as well. Namely, assume that all ak are nonnegative integers,
and let, with ln+(s) = max{ln s, 0},

L(ε) = 1 + ln(max
k
ak) + ln+

(
1

ε

)
+ max

k
ln+(‖σk‖1) + lnK + ln+(α̂),

It can be seen that the algorithm underlying Theorem 3.1 admits an implementation
in which the number of bit-wise operations sufficient to produce a solution to (GS∗+),
or to detect correctly that C′ is not satisfied is polynomial in NL(ε).

An upper bound on α(σ1, ..., σk). The only quantity appearing in our construction
and complexity bound (see (17), (29)) which is not readily given by the data is an
a priori upper bound α̂ on the quantity α(σ1, ..., σK). Our current goal is to build a
“universal” bound of this type.

We start with the simple and, essentially, well-known fact as follows:

Lemma 3.1 Let µ1, ..., µq be integer linearly independent vectors in RN , N > q, with
‖µi‖∞ ≤ L, i = 1, ..., q, and let E be the linear span of these vectors. Then

min
‖x‖∞ ≥ 1
x ∈ E

max
i
|µTi x| ≥

1

(L2N3/2)
N . (30)

Proof. The proof to follow originates from [4]. Consider 2N Linear Programming
programs

t→ min

−t ≤ µT`
q∑
i=1

ξiµi ≤ t, ` = 1, ..., q,

η
( q∑
i=1

ξiµi

)

j

≥ 1

(P [η, j])

13



in design variables t, ξ1, ..., ξq, the parameters of a problem being η = ±1 and j, 1 ≤
j ≤ N . Let us fix a problem (P[η, j]), and assume that it is feasible. The optimal
value t∗ of the problem clearly is nonnegative, and in fact it is positive, since from

µT`
q∑
i=1

ξiµi = 0, ` = 1, ..., q, it would follow that
q∑
i=1

ξiµi = 0, which is forbidden by

the last constraint of the problem. From the below boundedness of the problem and
the fact that {µi} are linearly independent it follows immediately that the feasible set
does not contain lines; thus, there exists an optimal solution (ξ∗, t∗) to the problem
which is an extreme point of the feasible set. By the standard characterization of the
extreme points of a polyhedral set, it means that q+1 linearly independent inequalities
from those defining (P[η, j]) at the point (ξ∗, t∗) become equalities, so that (ξ∗, t∗) is
a solution of a nonsingular system of linear equations with integral coefficients of the
matrix and of the right hand side, modulae of the coefficients not exceeding NL2.
By Cramer’s rule combined with the Hadamard upper bound on a determinant, it
follows that every coordinate of (ξ∗, t∗), in particular, t∗, is the ratio of two integers
not exceeding in absolute value the quantity (NL2

√
q + 1)q+1 ≤ (L2N3/2)N . Since t∗

is positive, we have t∗ ≥ (L2N3/2)−N . Thus, whenever (P [η, j]) is feasible, the optimal
value in the problem is ≥ (L2N3/2)−N .

Now consider a point x =
q∑
i=1

ξiµi ∈ E such that ‖x‖∞ ≥ 1, and let µ(x) =

max
i≤q
|µTi x|. There exists j ≤ N such that |xj| ≥ 1; specifying η as the sign of xj,

we see that the collection ξ1, ..., ξq, µ(x) is a feasible solution of the problem (P [η, j]);
since the optimal value in this problem, as we just have seen, is ≥ (L2N3/2)−N , we get
µ(x) ≥ (L2N3/2)−N .

Proposition 3.2 Let the vectors σ1, ..., σK be integral, and let the absolute values of
the coordinates of these vectors be ≤ L. Then

α(σ1, ..., σK) ≤ α̂ = (2L)2NN
3N+1

2 . (31)

Proof. Let µ1, ..., µq be a maximal linearly independent subset of the set of differences
σk − σ`, 1 ≤ k, ` ≤ K; then µ1, ..., µq are integral vectors with ‖µi‖∞ ≤ 2L, i = 1, ..., q,
which form a basis in E. By Lemma 3.1, it follows that for every x ∈ E such that
‖x‖∞ ≥ 1 there exists i ≤ q such that |µTi x| ≥ θ ≡ (2L2N3/2)−N . It follows that
whenever x ∈ E satisfies ‖x‖∞ ≥ 1, one has

max
k≤K

σTk x−min
k≤K

σkx ≥ max
i≤q
|µTi x| ≥ θ,

whence, by homogeneity reasons, for every x ∈ E it holds

max
k≤K

σTk x−min
k≤K

σkx ≥ θ‖x‖∞ ≥ θN−1/2‖x‖2, θ = (2L2N3/2)−N .

The resulting inequality, in view of the definition of α(σ1, ..., σK) (see (8)), implies (31).
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4 The LSS case

We are about to specify our results for the case when (GS) comes form (LSS). Basically
all we need is to bound from above the quantity α(σ1, ..., σK). A bound of this type is
readily given by Proposition 3.2 (note that in the case in question the vectors σk are
integral with 0-1 entries), and already this bound implies polynomial time solvability
of (LSS∗+). However, in the LSS case α admits an incomparably better bound:

Proposition 4.1 In the LSS problem

α ≤ 4mn
√
m+ n. (32)

Proof. It is well-known that a nonnegative m × n matrix A without zero rows and
columns by permutations of rows and columns can be converted to the form




I1{
J̄1︷︸︸︷
A1

I2{
J̄2︷︸︸︷
A2

. . .

Iq{
J̄q︷︸︸︷
Aq




, (33)

where every block A` is chainable. The latter property is defined as follows. Let B be
a nonnegative p × q matrix without zero rows and columns; we say that a row i of B
intersects a column j of the matrix, if Bij > 0. We can associate with B two graphs
Grow = ({1, ...., p}, Erow) and Gcol = ({1, ..., q}, Ecol) as follows: a pair (i, i′), i 6= i′ of
nodes of Grow is adjacent if and only if the ith and the i′th rows in B are intersected by
a common column (i.e., Bij > 0, Bi′j > 0 for some j). Similarly, a pair (j, j′), j 6= j′,
of nodes of Gcol is adjacent if and only if the columns j, j′ in B are intersected by a
common row, i.e., Bij > 0, Bij′ > 0 for some i. B is called chainable, if both the graphs
Grow and Gcol are connected. It is immediately seen that an equivalent definition of
chainability of B is as follows:

For every i, i′ ∈ {1, ..., p} there exists a “chain”

(i1 = i, j1), (i2, j1), (i2, j2), (i3, j2), ..., (ir−1, jr−1), (ir = i′, jr−1)

of pairs of indices (µ, ν) with r ≤ p such that Bµν > 0 for every pair from
the chain. Similarly, for every j, j′ ∈ {1, ..., q} there exists a chain

(i1, j1 = j), (i1, j2), (i2, j2), (i2, j3), ..., (is−1, js−1), (is−1, js = j′)

of pairs of indices (µ, ν) with s ≤ q such that Bµν > 0 for every pair from
the chain.
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It is immediately seen that in the LSS case the quantity α(σ1, ..., σK) we are inter-
ested in remains unchanged under permutations of rows and columns of the underlying
matrix; thus, we may assume w.l.o.g. that the matrix A in question is in the form of
(33) with chainable blocks A1, ..., Aq.

Let a, σ1, ..., σK , σ be the data of the (GS)-reformulation of the LSS problem with
matrix (33) (see the beginning of Section 2.1). Recall that in the case in question
N = m + n. The index sets I`, J̄` appearing in (33) induce a partition of the set
{1, ..., N} of entry indices of a vector from RN into 2q sets Iν , Jν , ν = 1, ..., q, where

Jν = m+ J̄ν = {m+ j | j ∈ J̄ν}.

We denote the cardinalities of Iν , Jν by mν , nν , respectively.

Let x ∈ E, and let
r = max

k≤K
σTk x−min

k≤K
σTk x.

10. Let us fix ν, 1 ≤ ν ≤ q. We claim that

(a) Sν ≡ ∑
i∈Iν

xi =
∑
j∈Jν

xj;

(b) ∀i ∈ I` : |xi −m−1
ν Sν | ≤ mνr;

(c) ∀j ∈ J` : |xj − n−1
ν Sν | ≤ nνr.

(34)

Indeed, (34.a) is evident when x is of the form σk−σ`, 1 ≤ k, ` ≤ K; since the relation
is linear in x, it holds true on the linear span E of the vectors σk − σ`.

To prove (34.b), let i+, i− ∈ Iν be the indices of (one of) the largest, respectively,
the smallest of the entries of x with indices from Iν . Since Aν is chainable, there exists
a chain

(i1 = i+, j1), (i2, j1), (i2, j2), ..., (ip−1, jp−1), (ip = i−, jp−1)

of pairs of indices with p ≤ mν such that for every pair (α, β) from the chain one has
Aαβ > 0. For each such pair, xα + xm+β = σTk x for certain k, consequently,

xi+ − xi− = [(xi1 + xm+j1)− (xi2 + xm+j1)]
+[(xi2 + xm+j2)− (xi3 + xm+j2)] + ...
+[(xip−1 + xm+jp−1)− (xip + xm+jp−1)]

≤ mνr.

Thus, max
i∈Iν

xi − min
i∈Iν

xi ≤ mνr, and therefore the distance of every one of xi’s, i ∈ Iν ,
from their mean m−1

ν Sν does not exceed mνr, as required in (34.b). Relation (34.c) is
proved by the “symmetric” reasoning (taking into account (34.a) as well).

20. Let ν, ν ′ ≤ q. There exists k such that σk = ei + fj with i ∈ Iν , j ∈ J̄ν , same
as there exists k′ such that σk′ = ei′ + fj′ with i′ ∈ Iν′ , j′ ∈ J̄ν′ . By definition of r we
have

|(xi + xm+j)− (xi′ + xm+j′)| = |σTk x− σTk′x| ≤ r,
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whence, in view of (34),

|Sν(m−1
ν + n−1

ν )− Sν′(m−1
ν′ + n−1

ν′ )| ≤ r(1 +mν + rν +mν′ + nν′). (35)

At the same time,
q∑

ν=1

Sν =
m∑

i=1

xi = 0, (36)

the concluding relation being readily given by the fact that it is valid when x is of the
form σk − σ` and thus, by linearity – for all x ∈ E. It follows that

∀ν : |Sν | ≤ 3mnr

(choose as ν, ν ′ in (35) the indices of the largest, respectively, the smallest of S`’s
and take into account that in view of (36) the resulting Sν , Sν′ are of opposite signs).
Combining the latter inequality and (34), we come to

‖x‖∞ ≤ 4mnr,

whence
‖x‖2 ≤ 4mn

√
m+ nr.

Thus, whenever x ∈ E is such that ‖x‖2 = 1, we have

r ≡ max
k
σTk x−min

k
mσTk x ≥

1

4mn
√
m+ n

,

and (32) follows (cf. (8)).

Remark 4.1 It is easily seen that in the case when A has at least one positive row
and at least one positive column, the bound (32) can be replaced with

α(σ1, ..., σK) ≤ √m+ n.

Combining Theorem 3.1 and Proposition 4.1, we reach the following conclusion:

Corollary 4.1 In the case of the LSS problem with chainable matrix A and r, c nor-
malized according to (1) for every ε > 0 the algorithm from Section 3 with the setup

α̂ = 4mn
√
m+ n

solves problem (LSS∗+) in no more than

I = O(1)(m+ n)2 ln
(
2 + 32K(ε+8)3mn

√
m+n ln(Kβ)

ε3

)

with

β = maxi,j Aij
min{Aij | i,j:Aij>0}

(37)

iterations with no more than
O(1)(m+ n)2

operations of real arithmetic per iteration, where K is the total number of nonzero
entries in A.

Proof. To get the result from the one of Theorem 3.1, note that for the LSS problem
one has δ(σ1, ..., σK) = 2.
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5 Extensions

We have demonstrated that the Line Sum Scaling problem for a nonnegative chainable
matrix A that can be scaled to arbitrary prescribed accuracy can be solved, within
prescribed accuracy ε ∈ (0, 1), in no more than

O(1)(m+ n)4 ln


2 +

32m2n2
√
m+ n ln

(
mnmaxi,j Aij

min{Aij | i,j:Aij>0}
)

ε3




real arithmetic operations.

Note that the LSS problem is not the only interesting case of general setting (GS),
(GS∗+); see the examples in [8]. In particular, our analysis can be applied to some other
incidents of (GS) as long as they admit a vector e satisfying (3). Let us consider two
examples – matrix balancing and multi-index sum scaling.

5.1 Matrix balancing

The matrix balancing problem as follows:

(MB) Given an n×n matrix A with nonnegative entries, find a diagonal
matrix X with positive diagonal entries such that the row sums in the scaled
matrix XAX−1 are equal to the respective column sums:

XAX−11n = X−1ATX1n

along with the following approximate version of this problem:

(MB∗+) Given an n × n matrix A with nonnegative entries and ε > 0,
find a diagonal matrix X with positive diagonal entries such that

‖XAX−11n −X−1ATX1n‖1

1TnXAX
−11n

≤ ε

or detect correctly that

inf
{
‖XAX−11n −X−1ATX1n‖1 | X = Diag(x), x > 0

}
> 0.

It is well-known (for details, see [3] and references therein) that (MB∗+) can be easily
reduced to the case when the matrix A+AT is chainable, which is assumed from now
on. To represent (MB), (MB∗+) in the form of (GS), (GS∗+), it suffices to enumerate
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the pairs of indices (i, j) of the nonzero entries of A as (i(1), j(1)), ..., (i(K), j(K)) and
to set

a = (Ai(1)j(1), ..., Ai(K)j(K))
T ,

N = n+ 1,

σk =
(

1
ei(k) − ej(k)

)
∈ RN , k = 1, ..., K,

σ =
(

1
0n

)
∈ RN ,

where the vectors e1, ..., en form the standard basis of Rn. With this setup, problem
(GS) becomes

Find x such that
K∑

k=1

Ai(k)j(k) exp{x0+xi(k)−xj(k)}
(

1
ei(k) − ej(k)

)
= σ ≡

(
1
0n

)
, (38)

which is nothing but problem (MB), the correspondence between X and x being given
by Xii = exp{xi}, i = 1, ..., n.

The associated problem (GS∗+) is

Given ε > 0, find x such that∣∣∣∣
∣∣∣∣
∑K
k=1Ai(k)j(k) exp{x0 + xi(k) − xj(k)}

(
1

ei(k) − ej(k)

)
−
(

1
0n

)∣∣∣∣
∣∣∣∣
1

≤ ε
or detect correctly that

infx
∣∣∣∣
∣∣∣∣Ai(k)j(k) exp{x0 + xi(k) − xj(k)}

(
1

ei(k) − ej(k)

)
−
(

1
0n

)∣∣∣∣
∣∣∣∣
1

> 0

(39)

Note that if x is such that
∣∣∣∣∣

∣∣∣∣∣
K∑

k=1

Ai(k)j(k) exp{x0 + xi(k) − xj(k)}
(

1
ei(k) − ej(k)

)
−
(

1
0n

)∣∣∣∣∣

∣∣∣∣∣
1

≤ ε < 1,

and X = Diag{exp{x1}, ..., exp{xn}), then
∣∣∣∣
∣∣∣∣
∑K
k=1Ai(k)j(k) exp{x0 + xi(k) − xj(k)}

(
1

ei(k) − ej(k)

)
−
(

1
0n

)∣∣∣∣
∣∣∣∣
1

=

∣∣∣∣∣

∣∣∣∣∣

(
exp{x0}1TnXAX−11n − 1

exp{x0}
[
XAX−11n −X−1ATX1n

]
)∣∣∣∣∣

∣∣∣∣∣
1≤ ε,

whence ∣∣∣
∣∣∣XAX−11n −X−1ATX1n

∣∣∣
∣∣∣
1

1TnXAX
−11n

≤ ε

1− ε,

so that (39) is, basically, (MB∗+).

Note that the data of (38) clearly satisfy (3) (one should take e = σ). Thus, we
can apply the results of the previous sections to get a solution to (39), or, which is
the same, to (MB∗+). The only element of the construction which is missing for the
moment is an upper bound α̂ on the quantity α(σ1, ..., σK) for our new situation. To
get polynomial time results, it would be sufficient for us to use the universal bound
from Proposition 3.2 (our vectors σk are integral with entries 0,1,-1). However, we,
same as in the LSS case, can bet a much better upper bound on α:
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Proposition 5.1 Let A+AT be chainable, and let the data of problem (38) satisfy C′.
Then for σ1, ..., σK associated with (38) one has

α(σ1, ..., σK) ≤ 2n3/2. (40)

Proof. The linear span E of the vectors σk− σ`, k, ` = 1, ..., K, clearly is contained in
the space E+ = {x ∈ Rn+1 | x0 = 0,

∑n
i=1 xi = 0}. Let x ∈ E. Since C′ is satisfied,

the vector σ =
(

1
0n

)
belongs to the convex hull of σ1, ..., σK , so that the segment

∆ = [mink σ
T
k x,maxk σ

T
k x] contains 0 = σTx. It follows that if

θ = max
k
σTk x−min

k
σTk x

is the length of ∆, then
|σTk x| ≤ θ ∀k. (41)

Now let i+ be the index of (one of) the largest, and i− be the index of (one of) the
smallest of the reals x1, ..., xn. Since A+ AT is chainable, there exists a chain

(i1 = i+, j1), (i2, j1), (i2, j2), ..., (ip−1, jp−1), (ip = i−, jp−1)

with p ≤ n such that for every pair (µ, ν) from the chain either Aµν > 0, or Aνµ > 0,
or both. Denoting y = (x1, ..., xn)T ∈ Rn, we have

xi+ − xi− =


ei1 − ej1︸ ︷︷ ︸

d1



T

y −

ei2 − ej1︸ ︷︷ ︸

d2



T

y

+


ei2 − ej2︸ ︷︷ ︸

d3



T

y −

ei3 − ej2︸ ︷︷ ︸

d4



T

y + ...

+


eip−1 − ejp−1︸ ︷︷ ︸

d2p−3




T

y −


eip − ejp−1︸ ︷︷ ︸

d2p−2




T

y

(42)

Now, for every ` dT` y is either σTk x or −σTk x for some k = k(`), so that (42), (41) imply
that

xi+ − xi− ≤ (2p− 2)θ ≤ 2(n− 1)θ. (43)

Since
∑n
i=1 xi = 0 and x0 = 0, we have

‖x‖2 ≤
√
n(xi+ − xi−) ≤ 2n3/2θ,

whence

x ∈ E, x 6= 0⇒ ‖x‖2

maxk σTk x−mink σTk x
≤ 2n3/2

According to Proposition 5.1, when solving (39) via the scheme of Section 3, we can
use, as an upper bound α̂ on α(σ1, ..., σK), the quantity 2n3/2. Indeed, if the data of
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the problem satisfy C′, then this is a valid bound on the true value of α, otherwise we
should not bother at all whether this bound is valid or not, since the result generated
by the algorithm, independently of its setup, is either an ε-balancing of A, or the
conclusion that the data of A are not semi-proper, and in the case when C′ is not
satisfied (i.e., when the data are not semi-proper) both possibilities are acceptable.
With α̂ = 2n3/2, Theorem 3.1 states that for every ε ∈ (0, 1) a solution to (BM∗ε) can
be obtained by the algorithm from Section 3 in no more than

O(1)n2 ln

(
2 +

n7/2 ln(n2β)

ε3

)

iterations with no more than O(1)n2 real arithmetic operations per iteration, where β
is the ratio of the largest and the smallest positive entries of A. This is exactly the
result established for the matrix balancing problem in [3]. As we see, one can obtain
this result quite straightforwardly from Theorem 3.1.

5.2 Multi-index sum scaling

The problem we intend to address is as follows. Assume we are given a n[1] × n[2] ×
...× n[p] nonnegative array

A = {Aι}ι∈I , I = {ι = (ι[1], ..., ι[p]), 1 ≤ ι[i] ≤ ni, i = 1, ..., p},

along with q distinct nonempty subsets I`, ` = 1, ..., q, of the set I = {1, ..., p}:

I` = {i[1, `]; i[2, `]; ...; i[p`, `]}, 1 ≤ i[1, `] < i[2, `] < ... < i[p`, `] ≤ p.

For a p-dimensional multiindex ι = (ι[1], ..., ι[p]), let its projection ι(`) on I` be defined
as the p`-dimensional multiindex (ι[i[1, `]], ι[i[2, `]], ..., ι[i[p`, `]]). Finally, let for each
` ≤ q an array

R` = {Rω}ω∈I` , I` = ell = {ω = (ω[1], ..., ω[p`]), 1 ≤ ω[j] ≤ n[i[j, `]], j = 1, ..., p`}

be given. The data (A, I1, R
1, I2, R

2, ..., Iq, R
q) define a scaling problem as follows:

(MIS) Find positive arrays X1, ..., Xq of the same structure as R1, ..., Rq

in such a way that for the “X-scaling of A” – the p-dimensional array

B = B(X1, ..., Xq, A) ≡ {Bι = X1
ι(1)X

2
ι(2) ...X

q

ι(q)
Aι}ι∈I

for every ` ≤ q and every ω ∈ I` it holds

R`
ω =

∑

ι∈I:ι(`)=ω

Bι.
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Note that (MIS) covers a lot of different scaling problems with nonnegative arrays.
E.g.,

• when p = q and I` = {`}, ` = 1, 2, ..., p, (MIS) becomes the problem of a diagonal
scaling of a nonnegative p-dimensional array to prescribed “hyperplane” sums:

Given a nonnegative n[1] × ... × n[p] array A = {Ai1,...,ip} and vectors
R` ∈ R[n[`], ` = 1, ..., p, find positive vectors of scales X` ∈ Rn[`], ` = 1, ..., p,
such that

R`
i`

=
∑

i1,...,i`−1,i`+1,...,ip

X1
i1
X2
i2
...Xp

ipAi1,...,ip

for all ` and all i`, 1 ≤ i` ≤ n[`].

Note that when p = 2, we get the usual LSS problem.

• when p = q and I` = {1, ..., p}\{`}, ` = 1, ..., p, (MIS) becomes the problem of
“codiagonal” scaling of a nonnegative p-dimensional array to prescribed line sums:

Given a nonnegative n[1]× ...×n[p] array A = {Ai1,...,ip} and n[1]× ...×
n[`−1]×n[`+1]×...×n[p] arrays R`, ` = 1, ..., p, find positive n[1]×...×n[p]
arrays X` = {X`

i1,...,ip
} with X`

i1,...,ip
independent of i`, ` = 1, ..., p, such that

R`
i1,...,i`−1,i`+1,...,ip

=
∑

i`

X1
i1,...,ip

X2
i1,...,ip

...Xp
i1,...,ipAi1,...,ip

for all ` and all i1, ..., i`−1, i`+1, ..., ip.

Observe that an evident necessary condition for (MIS) to be solvable is

R` ≥ 0, ` = 1, ..., q;
∑

ω∈I`
R`
ω =

∑

ω′∈I`′
R`′
ω′ , `, `

′ = 1, ..., q.

Besides this, a normalization R` 7→ tR`, t > 0, converts an instance of (MIS) into an
equivalent instance. Thus, when speaking about (MIS), we without loss of generality
may normalize the data to satisfy the condition

R` ≥ 0 &
∑

ω∈I`
R`
ω = 1, ` = 1, ..., q. (44)

In the discussion to follow, we assume that this condition holds true.

Note that (MIS) can be easily reformulated in the form of (GS). Indeed, let

E` = Rn[i[1,`]] ⊗Rn[i[2,`]] ⊗ ...⊗Rn[i[p`,`]],
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(⊗ stands for the tensor product), so that the vectors from the natural basis of E` are
indexed by multiindices ω ∈ I`. Let us set

RN = E1 × ...× Eq,

and let e`ω, 1 ≤ ` ≤ q, ω ∈ I`, be the elements of the natural basis in the direct product
(so that the only nonzero component of e`ω is the basis vector, indexed by ω, of the
direct factor E`). Now, let J ⊂ I be the set of indices of nonzero elements of the array
A, and let ι[k] = (ι[1, k], ..., ι[p, k]), k = 1, 2, ..., K = CardJ , be a enumeration of J .
For 1 ≤ k ≤ K, let us set

σk =
q∑

`=1

e`(ι[k])(`) ∈ RN ,

and let

σ =
q∑

`=1

∑

ω∈I`
R`
ωe

`
ω ∈ RN .

It is immediately seen that (MIS) is equivalent to the problem

Find x ∈ RN :
K∑

k=1

Aι[k] exp{σTk x}σk = σ, (45)

which is an instance of (GS). Moreover, (45) is a standard instance of (GS), since with
e = 1

q
1N we clearly have

eTσ1 = eTσ2 = ... = eTσK = eTσ = 1.

Thus, we can apply the machinery from Section 3 to solve ε-version of (45) and thus
– ε-version of (MIS). Note that the vectors σk arising in (45) are integral with mod-
ulae of entries not exceeding 1, so that by Proposition 3.2 we have α(σ1, ..., σK) ≤
22NN (3N+1)/2. Applying Theorem 3.1, we get the following result:

Proposition 5.2 Let the data (p, q, n[1], ..., n[p], A, I1, R
1, I2, R

2, ..., Iq, R
q), A ≥ 0, of

an instance of (MIS) satisfy (44), and let ε > 0 be given. Then in no more than

N2 ln
(
2 + 22N+2N(3N+1)/2K(ε+4q)q ln(Kβ)

ε3

)



N =
q∑
`=1

p∏̀
j=1

n[i[j, `]],

K = Card{ι : Aι 6= 0}, β = maxι Aι
minι:Aι>0 Aι




(46)

iterations of certain algorithm, with no more than O(1)(N2 + qK) operations of real
arithmetic per iteration, one can either find positive “scalings” {X`

ω}ω∈I`, ` = 1, ..., q,
forming an ε-solution to (MIS):

∑

ω∈I`

∣∣∣∣∣∣
R`
ω −

∑

ι:ι(`)=ω

X1
ι(1) ...X

q

ι(q)
Aι

∣∣∣∣∣∣
≤ ε, ` = 1, ..., q,

or detect correctly that (MIS) has no solutions.

Note that for a once for ever fixed “dimensionality” p of (MIS), the operations count
given by Proposition 5.2 is polynomial in ln 1

ε
, ln ln β and the sizes n[1], ..., n[p] of the

problem.
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