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Preface

♣ Fact: Many inference procedures in Statistics reduce to optimization
♠ Example: MLE – Maximum Likelihood Estimation

Problem: Given a parametric family {pθ(·) : θ ∈ Θ} of probability densities
on Rd and a random observation ω drawn from some density pθ⋆(·) from the
family, estimate the parameter θ⋆.
Maximum Likelihood Estimate: Given ω, maximize pθ(ω) over θ ∈ Θ and
use the maximizer θ̂ = θ̂(ω) as an estimate of θ⋆.

Note: In MLE, optimization is used for number crunching only and has nothing to do
with motivation and performance analysis of MLE.
Fact: Most of traditional applications of Optimization in Statistics are of “number
crunching” nature. While often vitally important, “number crunching” applications are
beyond our scope.



♣What is in our scope, are inference routines motivated and justified by Optimiza-
tion Theory – Convex Analysis, Optimality Conditions, Duality...
As a matter of fact, our ”working horse” will be Convex Optimization. This choice is
motivated by

• nice geometry of convex sets, functions, and optimization problems

• computational tractability of convex optimization implying computational efficiency
of statistical inferences stemming from Convex Optimization.
Major topics to be covered:
• Sparsity-Oriented Signal Processing
• Hypothesis Testing
• Signal Recovery from Indirect Observations in Linear and Generalized Linear
Models
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SPARSITY-ORIENTED SIGNAL PROCESSING

• Signal Recovery from Indirect Observations
• Sparse ℓ1 Recovery: Motivation
• Validating ℓ1 Recovery

• s-Goodness and Nullspace Property
• Quantifying Nullspace Property
• Regular and Penalized ℓ1 Recoveries
• Restricted Isometry Property
• Tractability Issues



Sparsity-oriented Signal Processing:
Problem’s Setting

♠ Basic Signal Processing problem is to recover unknown signal x∗ ∈ Rn from its
observation

y = A(x∗) + ξ

• x 7→ A(x) : Rn → Rm: known “signal-to-observation” transformation
• ξ: observation noise.
♣ In many applications, the signal-to-observation transformation is just linear:

A(x) = Ax for some known m× n matrix A.
♠ Assume from now on that A(·) is linear
⇒ the recovery problem is just to solve a system of linear equations

Ax = b := Ax∗
given m× n matrix A and a noisy observation y of the “true” right hand side b.
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♣ Problem of interest: to solve a linear system
Ax = b := Ax∗

given m× n matrix A and a noisy observation y of the “true” right hand side b.
♠ As of now, there are two typical settings of the problem:
• m ≥ n (typically, m ≫ n) — we have (much) more observations than unknowns.
This is the classical case studied in numerical Linear Algebra (where noise is non-
random) and Statistics (where noise is random).
Unless A is “pathological,” the only difficulty here is the presence of noise. The chal-
lenge is to reproduce well the true signal while suppressing as much as possible the
influence of noise.
•m < n (and even m≪ n) – we have (much) less observations than unknowns.
Till early 2000’s, this case was thought of as completely meaningless. Indeed, as Lin-
ear Algebra says, an under-determined (with more unknowns than equations) system
of linear equations either has no solutions at all, or has infinitely many solutions which
can be arbitrarily far away from each other.
⇒ When m < n, the true signal cannot be recovered from observations even in the
noiseless case!
♠ Remedy: Add some information on the true signal.
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♣ Problem of interest: to solve a linear system
Ax = b := Ax∗

given m× n matrix A and a noisy observation y of the “true” right hand side b in the
case of m≪ n

♠ Sparsity-oriented remedy [a.k.a. Compressed Sensing]: Reduce the problem to
the one where the signal is sparse – has s≪ n nonzero entries, and utilize sparsity
in your recovery routine.
♠ Fact: Many real-life signals x when presented by their coefficients in properly
selected basis (“dictionary”) B:

x = Bu
• columns of B: vectors of basis B
• u: coefficients of x in basis B

become sparse (or nearly so): u has just s≪ n nonzero entries (or can be well
approximated by vector with s≪ n nonzero entries).
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Illustration: 25 sec fragment of audio signal “Mail must go through” (dimension
1,058,400) and its Discrete Fourier Transform:
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Illustration: The 256× 256 image
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by column). “As is,” this vector is not sparse and cannot be approximated well by highly sparse vectors.
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However, the image (same as other “non-pathological” images) is nearly sparse
when represented in wavelet basis:
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♠ Similar, albeit less intense, phenomenon takes place when representing typical images in frequency

domain:
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♠When recovering a signal x∗ admitting a sparse (or nearly so) representation Bu∗
in a known basis B from observations

y = Ax∗+ ξ,
the situation reduces to the one when the signal to be recovered is just sparse.
Indeed, we can first recover sparse u∗ from observations

y = Ax∗+ ξ = [AB]u∗+ ξ.

After an estimate û of u∗ is built, we can estimate x∗ by Bû.

⇒ In fact, sparse recovery is about how to recover a sparse n-dimensional signal x
from m≪ n observations

y = Ax∗+ ξ.
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(?) How to recover a sparse (or nearly so) n-dimensional signal x from m≪ n ob-
servations

y = Ax∗+ ξ ?
♠ To get an idea, consider the case when x∗ is exactly sparse – has s≪ n nonzero
entries – and there is no observation noise:

y = Ax∗
• If we knew the positions i1, ..., is of the nonzero entries in x∗, we could recover x∗
by solving the system with just s unknowns:

y =
[
Ai1, ..., Ais

]
·
[
xi1; ...;xis

]
. (!)

When s ≤ m (which, with s ≪ n, still allows for m ≪ n), we would get over-
determined system of linear equations on the nonzero entries in x. Assuming A

“non-pathologic,” so that every s ≤ m columns of A are linearly independent, (!) has
a unique solution which can be easily found.
But: We never know in advance where the nonzeros in x are located!
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(?) How to recover a sparse n-dimensional signal x∗ from m≪ n observations
y = Ax∗ ?

♠ A straightforward way to account for the fact that we never know where the nonze-
ros in x∗ stand, is to look for the sparsest solution to the system y = Ax. This
amounts to solving the optimization problem

minx nnz(x) s.t. y = Ax (!)
• nnz(x): # of nonzero entries in x.

• It is easily seen that if x∗ is s-sparse and every 2s columns in A are linearly inde-
pendent (which is so when 2s ≤ m, unless A is pathological), then x∗ is the unique
optimal solution to (!), and thus our procedure recovers x∗ exactly.
But: nnz(z) is a bad (nonconvex and discontinuous) function, so that (!) is a disas-
trously complicated combinatorial problem. Seemingly, the only “theoretically solid”
way to solve (!) is to use brute force search where we test one by one all collections
of potential locations of nonzero entries in a solution. Brute force is completely unre-
alistic: to recover s-sparse signal, it would require looking through at least

N =
(
n
s−1

)
= n!

(s−1)!(n−s+1)!
candidate solutions.
• with s = 17, n = 128, N is as large as 1.49 · 1021
• with s = 49, n = 1024, N is as large as 3.94 · 1084
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(?) How to recover a sparse n-dimensional signal x∗ from m≪ n observations
y = Ax∗ ?

• Solving problem
minx nnz(x) s.t. y = Ax (!)

would yield the desired recovery, but (!) is heavily computationally intractable...
♠ Partial remedy: Replace the difficult to minimize objective nnz(θ) with an “easy-
to-minimize” objective, specifically, with ∥θ∥1 =

∑
i |θi|, thus arriving at ℓ1-recovery

x̂ = argminx {
∑
i |xi| : Ax = y := Ax∗} (!!)

♠ Observation: (!!) is just an LO program!
Indeed,
• the constraints in (!!) are linear equalities.
• |xi| = max[xi,−xi], so that the terms in the objective can be “linearized.”
♠ The LO reformulation of (!!) is

min
x,z

{∑
j zj : Ax = y, zj ≥ xj, zj ≥ −xj ∀j ≤ n

}
.
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• In the noiseless case, ℓ1 recovery is given by
x̂ = argminx {

∑
i |xi| : Ax = y := Ax∗}

♠When the observation y is noisy:
y = Ax∗+ ξ

the constraint Ax = y on a candidate recovery should be relaxed.
• When we know an upper bound δ on some norm ∥ξ∥ of the noise ξ, a natural
version of ℓ1 recovery is

x̂ ∈ Argminx {
∑
i |xi| : ∥Ax− y∥ ≤ δ} (∗)

Note: When ∥ξ∥ = ∥ξ∥∞ := maxi |ξi| (“uniform norm”), (∗) reduces to the LO
program

minx,z

{∑
j zj :

−zj ≤ xj ≤ zj, 1 ≤ j ≤ n
yi − δ ≤ [Ax]i ≤ yi+ δ,1 ≤ i ≤ m

}
•When the noise ξ is random with zero mean, there are reasons to define ℓ1 recovery
by Dantzig Selector:

x̂ ∈ Argminx {
∑
i |xi| : ∥Q(Ax− y)∥∞ ≤ δ}

with M ×m contrast matrix Q and δ > 0 chosen according to noise’s structure and
intensity. This again is reducible to LO program, specifically,

minx,z

{∑
j zj :

−zj ≤ xj ≤ zj, 1 ≤ j ≤ n
−δ ≤ [QAx−Qy]i ≤ δ,1 ≤ i ≤M

}
• Note: In Dantzig Selector proper, Q = AT .
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(?) How to recover a sparse (or nearly so) n-dimensional signal x∗ from m≪ n ob-
servations

y = Ax∗+ ξ ?
(!) Use ℓ1 minimization

x̂ ∈ Argminx {
∑
i |xi| : ∥Ax− y∥ ≤ δ}

♣ Compressed Sensing theory shows that under appropriate assumptions on A, in
a meaningful range of sizes m, n and sparsities s, ℓ1-minimization recovers the un-
known signal x∗
— exactly, when x∗ is s-sparse and there is no observation noise,
— within inaccuracy ≤ C(A)[δn+ δs] in the general case

• δn: magnitude of noise
• δs: deviation of x∗ from its best s-sparse approximation
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♠ Bad news: “Appropriate assumptions on A” are difficult to verify
Partial remedy: there are conservative verifiable sufficient conditions for “appropriate
assumptions.”
♠ Good news: For A drawn at random from natural distributions, “appropriate as-
sumptions” are satisfied with overwhelming probability.
• E.g., when entries in m × n matrix A are, independently of each other, sampled
from Gaussian distribution, the resulting matrix, with probability approaching 1 as
m,n grow, ensures the validity of ℓ1 recovery of sparse signals with as many as

s = O(1)
m

ln(n/m)

nonzero entries.
♠ More good news: In many applications (Imaging, Radars, Magnetic Resonance
Tomography,...), signal acquisition via randomly generated matrices A makes perfect
sense and results in significant acceleration of the acquisition process; see
David Donoho, Gauss Prize Lecture “Compressed sensing – from blackboard to bed-
side” (ICM2018), https://www.youtube.com/watch?v=mr-oT5gMboM
In these applications, signals of interest are sparse in properly selected bases
⇒With accelerated acquisition, no information is lost!
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♠ Example: Single-Pixel Camera:
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How it works:
Sparse recovery via Dantzig Selector
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Validity of sparse signal recovery via ℓ1 minimization

♠ Notational convention: From now on, for a vector x ∈ Rn

• Ix = {j : xj ̸= 0} is the support of x.
• for a subset I of the index set {1, ..., n}, xI is the vector obtained from x by zeroing
out entries with indexes not in I, and Io is the complement of I:

Io = {i ∈ {1, ..., n} : i ̸∈ I}.

• for s ≤ n, xs is the vector obtained from x by zeroing our all but the s largest in
magnitude entries.
xs is the best s-sparse approximation of x in any one of the ℓp norms, 1 ≤ p ≤ ∞.
• for s ≤ n and p ∈ [1,∞], we set

∥x∥s,p = ∥xs∥p.
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Validity of ℓ1 minimization in the noiseless case

♣ The minimal requirement on sensing matrix A which makes ℓ1-minimization valid
is to guarantee the correct recovery of exactly s-sparse signals in the noiseless case,
and we start with investigating this property.
♠ s-Goodness: An m × n sensing matrix A is called s-good, if whenever the true
signal x underlying noiseless observations is s-sparse, this signal will be recovered
exactly by ℓ1-minimization.
Equivalently: A is s-good, if

nnz(x∗) ≤ s
⇒ x∗ is the unique optimal solution to

minx{∥x∥1 : Ax = Ax∗}
♠ Necessary and sufficient condition for s-goodness is Nullspace Property:

For every 0 ̸= z ∈ KerA := {z : Az = 0} it holds
∥z∥s,1 < 1

2∥z∥1.

• Nullspace Property can be derived from LO Optimality Conditions, same as can be
verified directly.
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• s-goodness⇒ Nullspace Property:
Nullspace Property does not take place
⇒ ∃0 ̸= z ∈ KerA : ∥zs∥1 ≥ 1

2∥z∥1
⇒ Azs = A[zs − z], ∥zs∥1 ≥ ∥zs − z∥1
⇒ s-sparse signal x∗ = zs is not the unique optimal solution to minx{∥x∥1 : Ax =

Ax∗} – contradiction
• Nullspace Property⇒ s-goodness: Let Nullspace Property take place and x∗ be
s-sparse, and let u be an optimal solution to minx{∥x∥1 : Ax = Ax∗}.
Denoting by I the support of x∗, for z = u− x∗ we have z ∈ KerA and

zI = uI − [x∗]I = uI − x∗ & zIo = uIo
⇒ ∥zI∥1 ≥ ∥x∗∥1 − ∥uI∥1 & ∥zIo∥1 = ∥uIo∥1
⇒ ∥zI∥1 − ∥zIo∥1 ≥ ∥x∗∥1 − ∥uI∥1 − ∥uIo∥1

= ∥x∗∥1 − ∥u∥1 ≥ 0
⇒ ∥zI∥1 − ∥zIo∥1 ≥ 0
⇒ ∥z∥s,1 ≥ ∥zI∥1 ≥ 1

2[∥zI∥1 + ∥zIo∥1] = 1
2∥z∥1

⇒ z = 0
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♣ Questions to be addressed:
♠What happens when A is s-good, but ℓ1 recovery is “imperfect,” e.g.

• x is not exactly s-sparse, and/or

• there is observation noise

♠ How to verify, given A and s, that A is s-good
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Quantifying Nullspace Property and Imperfect ℓ1 Recovery

♣ In order to address the above questions, we need to “quantify” Nullspace Property.
♠ Nullspace Property states that

{z ∈ KerA& ∥z∥1 = 1} ⇒ ∥z∥s,1 < 1/2},
or, which is the same,

∃κ < 1/2 : ∥z∥s,1 ≤ κ∥z∥1 ∀z ∈ KerA (!)

♠ Equivalent form of necessary and sufficient condition (!) for s-goodness of m×n
sensing matrix A reads:
A ∈ Rm×n is s-good if and only if for some constant κ < 1/2 and some (and then
any) norm ∥ · ∥ on Rm one has

∃C <∞ : ∥x∥s,1 ≤ C∥Ax∥+ κ∥x∥1 ∀x ∈ Rn (!!)

Indeed, (!!) clearly implies (!). Assume (!), and let x̄ be ∥ · ∥1-closest to x element of
KerA, so that ∥x− x̄∥1 ≤ c∥Ax∥ with c independent of x. We have

∥x∥s,1 ≤∥x̄∥s,1 + ∥x− x̄∥1 ≤ κ∥x̄∥1 + ∥x− x̄∥1
≤ κ∥x∥1 + [1+ κ]∥x− x̄∥1≤ [1 + κ]c∥Ax∥+ κ∥x∥1
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∃C : ∥x∥s,1 ≤ C∥Ax∥+ κ∥x∥1 ∀x ∈ Rn (!!)

♠ It makes sense to rewrite the latter condition in a more flexible form linking
•m× n sensing matrix A,
• sparsity level s,
•m×N contrast matrix H,
• norm ∥ · ∥ on RN ,
• condition’s parameter q ∈ [1,∞], and
• parameter κ ∈ (0,1/2)

Condition Qq(s, κ):

∥x∥s,q := ∥xs∥q ≤ s
1
q∥HTAx∥+ κs

1
q−1∥x∥1 ∀x ∈ Rn

♠We treat condition Qq(s, κ) as a condition on contrast matrix H and norm ∥ · ∥.
♠ Note: A is s-good if and only if the Nullspace Property holds, or, which is the
same, if and only if the condition Q1(s, κ) with some κ < 1/2 is satisfiable (e.g.,
with N = n, H = CAT with properly selected C, and ∥ · ∥ = ∥ · ∥∞).
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Condition Qq(s, κ):

∥x∥s,q := ∥xs∥q ≤ s
1
q∥HTAx∥+ κs

1
q−1∥x∥1 ∀x ∈ Rn

♠ Immediate observations:

• The larger is q, the stronger is Qq(s, κ): If H, ∥ · ∥ satisfy Qq(s, κ) and p ∈ [1, q],
then H, ∥ · ∥ satisfy Qp(s, κ).

Indeed, if H, ∥ · ∥ satisfy Qq(s, κ) and 1 ≤ p ≤ q, then

∥x∥s,p ≤ ∥x∥s,qs
1
p−

1
q ≤ s

1
p−

1
q

[
s
1
q∥HTAx∥+ κs

1
q−1∥x∥1

]
= s

1
p∥HTAx∥+ κs

1
p−1∥x∥1.

• Satisfiability of the weakest condition Q1(s, κ) for some κ < 1/2 is necessary and
sufficient for s-goodness of A.

♠ Fact: Conditions Qq(s, κ) underly instructive bounds on recovery error for imper-
fect ℓ1 recovery.
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Example A: Regular ℓ1-Recovery

♣ Regular ℓ1 recovery of signal x from observations

y = Ax+ η

is given by

x̂reg(y) ∈ Argmin
u

{
∥u∥1 : ∥HT (Au− y)∥ ≤ ρ

}
where H, ∥ · ∥, ρ ≥ 0 are construction’s parameters.

♠ Theorem. Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0,1/2). Assume that
H, ∥ · ∥ satisfy Qq(s, κ), and let

Ξρ = {η : ∥HTη∥ ≤ ρ}.

Then for all x ∈ Rn and η ∈ Ξρ one has

∥x̂reg(Ax+ η)− x∥p ≤
4(2s)

1
p

1− 2κ

[
ρ+
∥x− xs∥1

2s

]
, 1 ≤ p ≤ q.

Note: Regular ℓ1 recovery requires a priori information on noise needed to select ρ
with “meaningful” Ξρ and does not require a priori information on sparsity s.
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∀η ∈ Ξρ = {η : ∥HTη∥ ≤ ρ} ∀x :

∥x̂reg(Ax+ η)− x∥p ≤ 4(2s)
1
p

1−2κ

[
ρ+ ∥x−xs∥1

2s

]
, 1 ≤ p ≤ q.

♠ Comments:
A. ρ stems from observation errors:
• η ≡ 0⇒ we can set ρ = 0, resulting in zero recovering error for exactly s-sparse signals
• η is “uncertain but bounded” : η ∈ U for some known and bounded U
⇒ we can set ρ = maxu∈U ∥HTu∥
• η ∼ N (0, σ2Im)⇒ given tolerance β and setting

ρ = σ
√

2 ln(N/β)max
i
∥Coli[H]∥2

we get
Prob{η : ∥HTη∥∞ ≤ ρ} ≥ 1− β

When ∥ · ∥ = ∥ · ∥∞, this allows to build explicitly “confidence domains” for regular ℓ1 recovery.

B. Pay attention to the factor s−1 at the “near-sparsity” term ∥x− xs∥1.

C. Adjusting H and ∥ · ∥, we can, to some extent, account for the nature of observation errors.
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Example B: Penalized ℓ1 Recovery

Penalized ℓ1 recovery of signal x from observations

y = Ax+ η

is given by
x̂pen(y) ∈ Argmin

u

{
∥u∥1 + λ∥HT(Au− y)∥

}
where H, ∥ · ∥, λ > 0 are construction’s parameters.
♠ Theorem. Given A, positive integer s, and q ∈ [1,∞], assume that H, ∥ · ∥ satisfy Qq(s, κ) with
κ < 1/2, and let λ ≥ 2s. Then for all η ∈ Rm and x ∈ Rn, for 1 ≤ p ≤ q it holds

∥x̂pen(Ax+ η)− x∥p ≤
4λ

1

p

[
1
2
+ λ

4s

]
1− 2κ

[
∥HTη∥+

∥x− xs∥1
2s

]
.

In particular, with λ = 2s, for 1 ≤ p ≤ q it holds

∥x̂pen(Ax+ η)− x∥p ≤
4(2s)

1

p

1− 2κ

[
∥HTη∥+

∥x− xs∥1
2s

]
.

Note: Penalized ℓ1 recovery requires a priori knowledge of sparsity level s and does not require any
information on noise.
Note: When λ = 2s, for all x it holds

∀(ρ ≥ 0, η ∈ Ξρ := {η : ∥HTη∥ ≤ ρ}) :

∥x̂pen(Ax+ η)− x∥p ≤ 4(2s)
1
p

1−2κ

[
ρ+ ∥x−xs∥1

2s

]
, 1 ≤ p ≤ q.
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H, ∥ · ∥ satisfy Qq(s, κ)
y = Ax+ η, η ∼ N (0, σ2IN)

x ∈ Rn is s-sparse
⇓

Prob
{
∥x̂reg(Ax+ η)− x∥p ≤ C(H,κ, ln(1/ϵ))σs

1
p

}
≥ 1− ϵ

Prob
{
∥x̂pen(Ax+ η)− x∥p ≤ C(H,κ, ln(1/ϵ))σs

1
p

}
≥ 1− ϵ

1 ≤ p ≤ q

Note: Given direct observations y = x + η of s-dimensional signal x with
η ∼ N (0, σ2Is), the expected ∥ · ∥p-norm of recovery error in optimal recovery is

O(1)σs
1
p .
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How it works:
Regular vs. Penalized ℓ1 Recovery

Problem: Given noisy observations of m = n/2 of randomly selected entries in time
series z = (z1, ..., zn) with nearly s-sparse Discrete Cosine Transform (DCT), we
want to recover the time series.
Model: Treating as the signal x underlying observations the DCT of z and assuming
for the sake of definiteness the observation noise to be white Gaussian, our obser-
vation becomes

y = Ax+ σξ, [ξ ∼ N (0, Im)]

where A is the m × n submatrix of the matrix F of Inverse DCT with rows indexed
by the observed entries in z. Applying ℓ1 minimization, we convert y into an estimate
x̂ of x, and take F x̂ as the estimate of time series z.
Experiment: •m = 256, n = 2m = 512;
• σ = 0.01;
• near s-sparsity: ∥x− xs∥1 ≤ 1;
• contrast pair is (H =

√
n/mA, ∥ · ∥∞);

• parameter ρ of regular recovery ensures Probζ∼N (0,σ2){|ζ| > ρ} = 0.01/n;
• in penalized recovery, λ = 2s.
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∥z − ẑ∥2 0.2417 0.3871 0.8178 4.8256
∥z − ẑ∥∞ 0.0343 0.0514 0.1744 0.8272

s = 16 s = 32 s = 64 s = 128
∥z − ẑ∥2 0.1399 0.2385 0.4216 5.3431
∥z − ẑ∥∞ 0.0177 0.0362 0.1023 0.9141

recovery errors, regular recovery recovery errors, penalized recovery

Top plots: regular ℓ1 recovery, bottom plots: penalized ℓ1 recovery
o: true signal +: recovery

[to make plots readable, every 8-th entry in time series is displayed]
Note: the actual level of s-goodness of A is at most 24!
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How to Verify Validity Conditions for ℓ1-Recovery ?

♣ Bad news: Given A and s, the Nullspace Property is difficult to verify. Similarly,
when q < ∞ and κ < 1/2, it is difficult to verify whether the condition Qq(s, κ)

is satisfied by given H, ∥ · ∥, same as it is difficult to verify whether the condition is
satisfiable at all.
♠ Relatively good news: There are natural ensembles of random sensing matrices
for which properly selected H, ∥ · ∥ with overwhelming probability satisfy Q2(s, κ)

and thus are s-good.
♣ Definition. An m × n sensing matrix A satisfies Restricted Isometry Property
RIP(δ, k), if

(1− δ)∥x∥22 ≤ ∥Ax∥
2
2 ≤ (1 + δ)∥x∥22 ∀(x : nnz(x) ≤ k).

♠ Theorem Let m × n sensing matrix A satisfy RIP(δ,2s) for some δ < 1/3 and
positive integer s. Then

• The pair
(
H = s−1/2√

1−δIm, ∥ · ∥2
)

satisfies the condition Q2

(
s, δ

1−δ
)
;

• The pair (H = 1
1−δA, ∥ · ∥∞) satisfies the condition Q2

(
s, δ

1−δ
)
.
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♠ Theorem Given δ ∈ (0, 15], with properly selected positive c = c(δ), d = d(δ),
f = f(δ) for all m ≤ n and all positive integers k such that

k ≤
m

c ln(n/m) + d

the probability for a random m × n matrix A with independent N (0, 1m) entries to
satisfy RIP(δ, k) is at least

1− exp{−fm}.

Similar result holds true for Rademacher matrices – those with i.i.d. entries taking
values ±1/

√
m with probabilities 0.5.

Note: k can be “nearly” as large as m !
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Sketch of the proof

♠ Let A be Gaussian random m × n matrix from Theorem, I ⊂ {1, ..., n} be fixed k-element index
set, and AI = [Aij : i ≤ m, j ∈ I]. Let us fix α ∈ (0,0.1].
Fact: For fixed u ∈ Rk with ∥u∥2 = 1 one has

Prob{A : ∥AIu∥22 ̸∈ [1− α,1+ α]} ≤ 2e−
m

5
α2

.
[observe that AIu ∼ N (0, 1

m
Im) and use standard bounds on the tails of χ2-distribution]

⇒ Let Γ be α-net on the unit sphere Sk in Rk. Then
Prob{A : ∃u ∈ Sk : ∥AIu∥22 ̸∈ [1− 4α,1+ 4α]} ≤ π := 2|Γ|e−

m

5
α2

[By Fact, Prob {A : ∥AIu∥22 ∈ [1− α,1+ α] ∀u ∈ Γ}︸ ︷︷ ︸
E

≥ 1 − π. Since the quadratic form f(u) :=

uTATI AIu is Lipschitz continuous on Sk with constant 2M := 2maxu∈Sk ∥AIu∥22︸ ︷︷ ︸
f(u)

, we have

A ∈ E ⇒
{

minu∈Sk f(u) ≥ minu∈Γ f(u)− 2αM ≥ 1− α− 2αM
M = maxu∈Sk f(u) ≤ maxu∈Γ f(u) + 2αM ≤ 1+ α+2αM

,

and the conclusion follows.]

⇒ ∀(I, |I| = k) :

Prob{A : (1− 4α)Ik ⪯ ATI AI ⪯ (1 + 4α)Ik} ≥ 1− 2 [1 + 2/α]k︸ ︷︷ ︸
F

e−
m

5
α2

[Comparing volumes, the cardinality of a minimal α-net on Sk is ≤ F ]
⇒ Prob{A : A is not RIP(4α, k)} ≤

(
n
k

)
[1 + 2/α]k e−

m

5
α2

⇒ Theorem.
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♠ Bad news: No (series of) explicitly computable (even by a randomized computa-
tion) RIP(0.1, k) “low” (2m ≤ n) m × n matrices with “large” k (namely, k ≫

√
m)

are known.

♡ The natural idea – “generate at random a low m × n matrix and check whether
it satisfies RIP(0.1, k)” with “large” k; if yes, output the matrix” – fails: while typi-
cal random matrices do possess RIP(0.1, k) with “large” k, we do not know how to
verify this property in a computationally efficient fashion.
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♥ Designing/checking RIP matrices is similar to other situations where we do know
that a typical randomly selected object possesses some property, but we neither can
point out an individual object with this property, nor can check efficiently whether a
given object possesses it. Some examples:
• Complexity of Boolean functions [Shannon, 1939]: For a Boolean function f

of n Boolean variables, the minimal number of AND, OR, NOT switches in a circuit
computing the function is upper-bounded by O(1)2n

n , and as n grows, this bound
becomes sharp with overwhelming probability.
However: No individual functions with nonlinear “Boolean complexity” are known...
• Lindenstrauss-Johnson Theorem For a Gaussian “low” m× n matrix A, the im-
age {Ax : x ∈ Bn} of the unit n-dimensional box Bn = {x ∈ Rn : ‖x‖∞ ≤ 1}
under the mapping x 7→ Ax with overwhelming, as n→∞, probability is in-between
two similar ellipsoids with the ratio of linear sizes not exceeding 1 +O(1)

√
m/n.

However: No individual matrices A with ABn reasonably close to an ellipsoid are
known...
Note: For every ε ∈ (0,1) and every n, one can explicitly point out a polytope P given by
O(1)n ln(1/ε) linear inequalities on O(1)n ln(1/ε) variables such that the projection of P onto the
plane of the first n variables is in-between {x ∈ Rn : ‖x‖2 ≤ 1} and {x ∈ Rn : ‖x‖2 ≤ 1 + ε}. How-
ever, this “fast polyhedral approximation” of Euclidean ball deals with polytopes P quite different from
boxes...
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♠We have seen that RIP-matrices A yield easy-to-satisfy condition Q2(s, κ).
Unfortunately, RIP is difficult to verify...

♠ Good news: Condition Q∞(s, κ) is fully computationally tractable.
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♠ Theorem Let A be an m × n sensing matrix, s be a sparsity level, and κ ≥ 0.
Whenever H̄, ∥ · ∥ satisfy Q∞(s, κ), there exists an m× n matrix H such that

∥Colj[In −HTA]∥∞ ≤ s−1κ, 1 ≤ j ≤ n.
As a result, H, ∥ · ∥∞ satisfy Q∞(s, κ). Besides this,

∥HTη∥∞ ≤ ∥H̄Tη∥ ∀η ∈ Rm.
In addition, m × n contrast matrix H such that H, ∥ · ∥∞ satisfy Q∞(s, κ) with as
small κ as possible can be found as follows: we consider n LP programs

Opti = min
ν,h

{
ν : ∥ATh− ei∥∞ ≤ ν

}
, (#i)

where ei is i-th basic orth in Rn, find optimal solutions Opti, hi to these problems,
and make hi, i = 1, ..., n, the columns of H; the corresponding value of κ is

κ∗ = smax
i

Opti.

Finally, there exists a transparent alternative description of the quantities Opti (and
thus – of κ∗):

Opti = max
x
{xi : ∥x∥1 ≤ 1, Ax = 0} .
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Let A be anm×n sensing matrix, s be a sparsity level, and κ ≥ 0. Whenever H̄, ∥·∥
satisfy Q∞(s, κ), there exists an m× n matrix H such that

∥Colj[In −HTA]∥∞ ≤ s−1κ, 1 ≤ j ≤ n,

As a result, H, ∥ · ∥∞ satisfy Q∞(s, κ). Besides this,

∥HTη∥∞ ≤ ∥H̄Tη∥ ∀η ∈ Rm.
Proof uses Basic fact of Convex Geometry: A norm ∥ · ∥ on RN induces the conjugate norm

∥f∥∗ = max
h:∥h∥≤1

fTh.

One always has |fTh| ≤ ∥f∥∗∥h∥& ∥h∥ = max
f :∥f∥∗≤1

fTh

Now,

i ≤ n
⇒ xi ≤ ∥x∥s,∞ ≤ ∥H̄TAx∥+ s−1κ∥x∥1 ∀x [by Q∞(s, κ)]
⇒ max

x

{
xi − ∥H̄TAx∥ : ∥x∥1 ≤ 1

}
≤ s−1κ

⇔ max
x:∥x∥1≤1

min
f∈RN ,∥f∥∗≤1

[
[ei]Tx− fT H̄TAx

]
≤ s−1κ [since ∥H̄TAx∥ = maxf :∥f∥∗≤1 f

T H̄TAx]

⇔ min
f :∥f∥∗≤1

max
x:∥x∥1≤1

[
[ei −AT H̄f ]Tx

]
︸ ︷︷ ︸

=∥ei−ATH̄f∥∞

≤ s−1κ

⇔ ∀i ≤ n∃fi ∈ RN : ∥ei −AT H̄fi∥∞ ≤ s−1κ& ∥fi∥∗ ≤ 1.
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∀i ≤ n∃fi ∈ RN : ∥ei −AT H̄fi∥∞ ≤ κ& ∥fi∥∗ ≤ 1.

Let hi = H̄fi and H = [h1, ..., hn]. Then

[In −HTA]ij = [In −ATH]ji = [ei −AThi]j = [ei −AT H̄fi]j
⇒ maxi,j |[In −HTA]ij| ≤ max

i
max
j
|[ei −AT H̄fi]j|

≤ max
i
∥ei −AT H̄fi∥∞ ≤ s−1κ

⇒ ∥Coli[In −HTA]∥∞ ≤ s−1κ∀i
Further,

∥Coli[In −HTA]∥∞ ≤ s−1κ∀i
⇒ ∥[In −HTA]x∥∞ ≤ s−1κ∥x∥1 ∀x ∈ Rn
⇒ ∥x∥∞ − ∥HTAx∥∞ ≤ s−1κ∥x∥1 ∀x ∈ Rn
⇒ H, ∥ · ∥∞ satisfy Q∞(s, κ)

In addition,

∥HTη∥∞ = maxi |hTi η| = maxi |fTi H̄η| ≤ maxi ∥fi∥∗∥H̄Tη∥
≤ ∥H̄Tη∥ ∀η.
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... In addition, m× n contrast matrix H such that H, ∥ · ∥∞ satisfy Q∞(s, κ) with as
small κ as possible can be found as follows: we consider n LP programs

Opti = min
ν,h

{
ν : ∥ATh− ei∥∞ ≤ ν

}
, (#i)

where ei is i-th basic orth in Rn, find optimal solutions Opti, hi to these problems,
and make hi, i = 1, ..., n, the columns of H; the corresponding value of κ is κ∗ =
smaxiOpti.
Proof: By the above reasoning, if H, ∥ · ∥ satisfy Q∞(s, κ), then ∀(i ≤ n)∃hi : ∥ei−AThi∥∞ ≤ s−1κ,
and if hi, i ≤ n, satisfy ∥ei − AThi∥∞ ≤ s−1κ for some κ, then H := [h1, ..., hn], ∥ · ∥∞ satisfy

Q∞(s, κ).

... Finally, there exists a transparent alternative description of the quantities Opti
(and thus – of κ∗);

Opti = max
x
{xi : ∥x∥1 ≤ 1, Ax = 0} .

Proof:
Opti = min

{
t : −t ≤ eij − [ATh]j ≤ t, ∀j

}
= maxλ,µ

[λ− µ]i :
AT [λ− µ] = 0∑

i λi +
∑

i µi = 1
λ ≥ 0, µ ≥ 0

 [LP duality]

= maxx
{
xi : ATx = 0, ∥x∥1 ≤ 1

}
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Illustration

♠ k-th Hadamard matrix Hk is nk × nk matrix, nk = 2k, with entries ±1 given by
the recurrence

H0 = [1];Hk+1 =

[
Hk Hk
Hk −Hk

]

Note: Hk is symmetric and is proportional to orthogonal matrix: HTkHk = nkInk
⇒ When k > 0, the only eigenvalues of Hk are √nk and −√nk with multiplicities
nk/2 each.
• Let k > 1, mk = nk/2 = 2k−1, and let a1, ..., amk be an orthonormal system of
eigenvectors ofHk with eigenvalue√nk. Let Ak be the mk×nk matrix with the rows
aT1 , ..., a

T
mk

.
Fact: Let s < 1

2
√
nk = 2k/2−1. Then the matrix Ak is s-good. Moreover, there

exists (and can be efficiently computed) contrast matrix Hk such that (Hk, ∥ · ∥∞)

satisfies the condition Q∞(s, κs = s/
√
nk), and ∥Coli[Hk]∥2 ≤

√
2+ 2/

√
nk for

all j.

1.40



♠ Verifiable Sufficient condition for satisfiability of Qq(s, κ): Let m × n matrix
H satisfy the condition

∥Colj[In −HTA]∥s,q ≤ s
1
q−1κ, 1 ≤ j ≤ n (!)

Then H, ∥ · ∥∞ satisfy Qq(s, κ).
Proof:

(!)⇒ ∥[In −HTA]x∥s,q ≤ s
1
q−1κ∥x∥1 ∀x

⇒ ∥x∥s,q − ∥HTAx∥s,q ≤ s
1
q−1κ∥x∥1 ∀x

⇒ ∥x∥s,q ≤ ∥HTAx∥s,q + s
1
q−1κ∥x∥1

⇒ ∥x∥s,q ≤ s
1
q∥HTAx∥∞+ s

1
q−1κ∥x∥1 ∀x

Note: (!) is an explicit system of convex constraints on H
⇒ The sufficient condition (!) for H, ∥ · ∥∞ to satisfy Qq(s, κ) is computationally
tractable.
Note: When q = ∞, feasibility of (!) is necessary and sufficient for satisfiability of
Q∞(s, κ): (H ∈ Rm×n, ∥ · ∥∞) satisfies Q∞(s, κ) if and only if

∥Colj[In −HTA]∥∞ ≤ s−1κ ∀j.
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♠ Let m× n matrix H satisfy the condition

∥Colj[In −HTA]∥s,q ≤ s
1
q−1κ, 1 ≤ j ≤ n (!)

Then H, ∥ · ∥ satisfy Qq(s, κ).
The above statement, whatever simple, has an instructive origin. Consider the fol-
lowing problem:

(?) Given a convex function ϕ(x) : Rn → R and a convex set

X = {x ∈ Conv{f1, ..., fN} : Ax = 0}
[A ∈ Rm×n]

we want to compute/upper-bound efficiently the quantity

ϕ∗ = max
x∈X

ϕ(x).

Example: Verifying the Nullspace Property of matrix A reduces to checking whether
the quantity

ϕ∗ := maxx∈X
[
ϕ(x) := ∥x∥s,1

]
,

X = {x ∈ Conv{±e1,±e2, ...,±en} : Ax = 0}
[ei : basic orths]

is or is not < 1/2.
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ϕ∗ = max
x∈X

ϕ(x), X = {x ∈ Conv{f1, ..., fN} : Ax = 0}

• ϕ∗ is the maximum of a convex function over a bounded polyhedral set and as such
is in general NP-hard to compute. However, we can point out a simple scheme for
efficient upper-bounding ϕ∗:

∀H ∈ Rm×n :
ϕ∗ = maxx{ϕ(x) : x ∈ Conv{f1, ..., fN}, Ax = 0}

= maxx{ϕ([I −HTA]x) : x ∈ Conv{f1, ..., fN}, Ax = 0}
≤ maxx{ϕ([I −HTA]x) : x ∈ Conv{f1, ..., fN}}
= maxj≤N ϕ([I −HTA]fj),

⇒ ϕ∗ ≤ ϕ := minH
[
maxj≤Nϕ([I −HTA]fj)

]
and ϕ is efficiently computable (as the optimal value in a convex problem).
• Note: As applied to

ϕ(x) = ∥x∥s,1, X = {x ∈ Conv{±e1, ...,±en} : Ax = 0},

the above bounding scheme results in the verifiable sufficient condition

∃(κ < 1/2, H) : ∥Colj[I −HTA]∥s,1 ≤ κ, 1 ≤ j ≤ n

for s-goodness ofA. This hint leads to the verifiable sufficient conditions for Qq(s, κ).
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♠ Bad news: When m × n sensing matrix A is “essentially non-square”, namely,
n ≥ 2m, the above verifiable sufficient conditions for the validity of Qq(s, κ) can be
satisfiable only in the range

s ≤
√
2m (!)

which is much less than the range
s ≤ O(1) m

ln(n/m)

where random Gaussian/Rademacher m × n sensing matrices satisfy RIP(14,2s)
with overwhelming probability, thus implying satisfiability of Q2(s,

1
3).

Note:
A. No series of individual essentially non-square m × n sensing matrices A with
m,n→∞ which are provably s-good for s ≥ O(1)

√
m are known

B. For k = 1,2, ... one can easily point out individual 2k−1 × 2k sensing matrices
for which condition Q∞(s, 13) is satisfiable whenever s ≤

√
2m
3 .

C. Whenever A satisfies RIP(δ,2k) and s ≤ 1−δ
3δ

√
k, the pair (H =

√
k

1−δA, ∥ · ∥∞)

satisfies Q∞(s, 13)
D. For properly selected C > 0 and every m,n, one can point out individual m × n
sensing matrix which is C

√
m-good.
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♣Mutual Incoherence. LetA bem×n sensing matrix without zero columns. Mutual
Incoherence of A is the quantity

µ(A) = max
i̸=j

|ColTi [A]Colj[A]|
ColTi [A]Coli[A]

Observation: The m × n matrix H with columns Colj[A]
ColTj [A]Colj[A]

, j = 1, ..., n,

satisfies

∀j : ∥Colj[In −HTA]∥∞ ≤
µ(A)

1 + µ(A)

⇒ H, ∥ · ∥∞ satisfy Q∞
(
s, sµ(A)

1+µ(A)

)
for every s. In particular, A is s-good, provided

that
2µ(A)

1 + µ(A)
<

1

s
.
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♣ Hypothesis Testing Problem: Given
• observation space Ω where our observations take values,
• L families P1, P2,...,PL of probability distributions on Ω, and
• an observation ω – a realization of random variable with unknown probability distri-

bution P known to belong to one of the families Pℓ: P ∈
L⋃
ℓ=1
Pℓ,

we want to decide to which one of the families Pℓ the distribution P belongs.

Equivalent wording: Given the outlined data, we want to decide on L hypotheses
H1, ..., HL, with ℓ-th hypothesis Hℓ stating that P ∈ Pℓ.

♣ A test is a function T (·) on Ω. The value T (ω) of this function at a point ω ∈ Ω

is a subset of the set {1, ..., L}.
• relation ℓ ∈ T (ω) is interpreted as “given observation ω, the test accepts the hy-
pothesis Hℓ”
• relation ℓ ̸∈ T (ω) is interpreted as “given observation ω, the test rejects the hy-
pothesis Hℓ”
♠ T is called simple, if T (ω) is a singleton for every ω ∈ Ω.
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♣ For a simple test T , its risks are defined as follows:
♠ ℓ-th partial risk of T is the (worst-case) probability to reject ℓ-th hypothesis when

it is true:

Riskℓ(T |H1, ..., HL) = sup
P∈Pℓ

Probω∼P {ℓ ̸∈ T (ω)}

♠ total risk of T is the sum of all partial risks:

Risktot(T |H1, ..., HL) =
∑

1≤ℓ≤L
Riskℓ(T |H1, ..., HL).

♠ risk of T is the maximum of all partial risks:

Risk(T |H1, ..., HL) = max
1≤ℓ≤L

Riskℓ(T |H1, ..., HL).
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♣ Note: What was called test is in fact a deterministic test.
A randomized test is a deterministic function T (ω, η) of observation ω and inde-
pendent of ω random variable η ∼ Pη with once for ever fixed distribution (say,
Pη = Uniform[0,1]). The values T (ω, η) of T are subsets of {1, ..., L} (single-
tons for a simple test).
• Given observation ω, we “flip a coin” (draw a realization of η), accept hypotheses

Hℓ, ℓ ∈ T (ω, η), and reject all other hypotheses.
• Partial risks of randomized test are

Riskℓ(T |H1, ..., HL) = sup
P∈Pℓ

Prob(ω,η)∼P×Pη{ℓ ̸∈ T (ω, η)}.

Exactly as above, these risks give rise to the total risk and risk of T .
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♣ Testing from repeated observations. There are situations where an inference
can be based on several observations ω1, ..., ωK rather than on a single observation.
Our related setup is as follows:
♠We are given L families Pℓ, ℓ = 1, ..., L, of probability distributions on observation
space Ω and a collection

ωK = (ω1, ..., ωK)

and want to make conclusions on how the distribution of ωK “is positioned” w.r.t. the
families Pℓ, 1 ≤ ℓ ≤ L. Specifically, we are interested in three situations of type:
♠ A. Stationary K-repeated observations: ω1, ..., ωK are independently of each
other drawn from a distribution P . Our goal is to decide, given ωK , on the hypotheses
P ∈ Pℓ, ℓ = 1, ..., L.
Equivalently: Families Pℓ give rise to the families

P⊙,Kℓ = {PK = P × ...× P︸ ︷︷ ︸
K

: P ∈ Pℓ}

of probability distributions on ΩK = Ω× ...×Ω︸ ︷︷ ︸
K

– direct powers of families Pℓ.

Given observation ωK ∈ ΩK , we want to decide on the hypotheses

H
⊙,K
ℓ : ωK ∼ PK ∈ P⊙,Kℓ , 1 ≤ ℓ ≤ L.
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♠ B. Semi-stationary K-repeated observations: “The nature” selects somehow a
sequence P1, ..., PK of distributions on Ω, and then draws, independently across k,
observations ωk from these distributions:

ωk ∼ Pk are independent across k ≤ K

Our goal is to decide, given ωK = (ω1, ..., ωK), on the hypotheses {Pk ∈ Pℓ,1 ≤
k ≤ K}, ℓ = 1, ..., L.
Equivalently: Families Pℓ give rise to the families

P⊕,Kℓ := {PK = P1 × ...× PK : Pk ∈ Pℓ, 1 ≤ k ≤ K}

of probability distributions on ΩK = Ω× ...×Ω︸ ︷︷ ︸
K

– semi-direct powers of K copies

of Pℓ. Given observation ωK ∈ ΩK , we want to decide on the hypotheses

H
⊕,K
ℓ : ωK ∼ PK ∈ P⊕,Kℓ , 1 ≤ ℓ ≤ L.
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♠ C. Quasi-stationary K-repeated observations: We observe random sequence
ωK = (ω1, ..., ωK) generated as follows:

There exists a random sequence ζ1, ..., ζK of driving factors such that for
1 ≤ k ≤ K
• ωk is a deterministic function of ζk = (ζ1, ..., ζk)

• conditional, ζk−1 given, distribution of ωk always belongs to Pℓ.

Our goal is to decide, given ωK , on the underlying ℓ.
Equivalently: Families Pℓ of probability distributions on Ω, 1 ≤ ℓ ≤ L, give rise to the quasi-

direct powers P⊗,Kℓ of families Pℓ. The family P⊗,Kℓ is comprised of all probability distributions on

ΩK = Ω× ...×Ω︸ ︷︷ ︸
K

which can be obtained from Pℓ via the above “driving factors” mechanism.

Given observation ωK ∈ ΩK , we want to decide on the hypotheses

H
⊗,K
ℓ : ωK ∼ PK ∈ P⊗,Kℓ , 1 ≤ ℓ ≤ L.
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♣ Important fact: 2-point lower risk bound. Consider simple pairwise test deciding
on two simple hypotheses on the distribution P of observation ω ∈ Ω:

H1 : P = P1, H2 : P = P2.

Let P1, P2 have densities p1, p2 w.r.t. some reference measure Π on Ω. Then the
total risk of every test T deciding on H1, H2 admits lower bound as follows:

Risktot(T |H1, H2) ≥
∫
Ω

min[p1(ω), p2(ω)]Π(dω).

As a result,

Risk(T |H1, H2) ≥
1

2

∫
Ω

min[p1(ω), p2(ω)]Π(dω). (∗)

Note: The bound does not depend on the choice of Π (for example, we can always
take Π = P1 + P2).
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Risk(T |H1, H2) ≥
1

2

∫
Ω

min[p1(ω), p2(ω)]Π(dω). (?)

Proof (for deterministic test). Simple test deciding on H1, H2 must accept H1

and reject H2 on some subset Ω1 of Ω and must reject H1 and accept H2 on the
complement Ω2 = Ω\Ω1 of this set. We have

Risk1(T |H1, H2) =
∫
Ω2

p1(ω)Π(dω) ≥
∫
Ω2

min[p1(ω), p2(ω)]Π(dω)

Risk2(T |H1, H2) =
∫
Ω1

p2(ω)Π(dω) ≥
∫
Ω1

min[p1(ω), p2(ω)]Π(dω)

⇒Risktot(T |H1, H2) ≥
∫
Ω2

min[p1(ω), p2(ω)]Π(dω) +
∫
Ω1

min[p1(ω), p2(ω)]Π(dω)

=
∫
Ω

min[p1(ω), p2(ω)]Π(dω) □
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♠ Corollary. Consider L hypotheses Hℓ : P ∈ Pℓ, ℓ = 1,2, ..., L, on the distribution
P of observation ω ∈ Ω, let ℓ ̸= ℓ′ and let Pℓ ∈ Pℓ, Pℓ′ ∈ Pℓ′. The risk of any simple
test T deciding on H1, ..., HL can be lower-bounded as

Risk(T |H1, ..., HL) ≥
1

2

∫
Ω

min [Pℓ(dω), Pℓ′(dω)],

where, by convention, the integral in the right hand side is∫
Ω

min[pℓ(ω), pℓ′(ω)]Π(dω),

with pℓ, pℓ′ being the densities of Pℓ, Pℓ′ w.r.t. Π = Pℓ+ Pℓ′.

Indeed, risk of T cannot be less than the risk of the naturally induced by T simple
test deciding on two simple hypotheses P = Pℓ, P = Pℓ′, specifically, the simple
test which, given observation ω accepts the hypothesis P = P1 whenever ℓ ∈ T (ω)
and accepts the hypothesis P = Pℓ′ otherwise.
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Pairwise Hypothesis Testing via Euclidean Separation

♣ Situation: Let Ω = Rd, and let our observation be

ω = x+ ξ (∗)
where the deterministic vector x is the signal of interest, and ξ is random observation
noise with probability density p(·) of the form

p(u) = f(∥u∥2)
where f(·) is a strictly monotonically decreasing function on the nonnegative ray.

Simple example: standard (zero mean, unit covariance) Gaussian noise:
p(u) = (2π)−d/2e−u

Tu/2.

Our goal is to decide on two simple hypotheses on the signal underlying observation,
the first stating that x = x1, and the second stating that x = x2, where x1, x2 are
two given points.
Equivalent wording: We are given two probability distributions, P1 and P2, on Rd,
with densities p1(u) = p(u− x1) and p2(u) = p(u− x2), and want to decide on
two simple hypotheses H1 : P = P1, H2 : P = P2 on the distribution P of our
observation.
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♠ Assuming x1 ̸= x2, let 2δ = ∥x1 − x2∥2, e = x1−x2

∥x1−x2∥2 ,

Π = {ω : ∥ω − x1∥2 = ∥ω − x2∥2} = {ω : ϕ(ω) = 0}, ϕ(ω) = eTω − 1
2
eT [x1 + x2]︸ ︷︷ ︸

c

x1
x2

p1(·)↘ ↙ p2(·)

ϕ(ω) = 0ϕ(ω) > 0 ϕ(ω) < 0

Consider test T which, given observation ω = x + ξ, accepts the hypothesis H1 : P = P1 (i.e.,

x = x1) when ϕ(ω)≥ 0, and accepts the hypothesis H2 : P = P2 (i.e., x = x2) otherwise. We have
Risk1(T |H1, H2) =

∫
ω:ϕ(ω)<0

p1(ω)dω =
∫

u:eTu≥δ
f(∥u∥2)du

=
∫

ω:ϕ(ω)≥0
p2(ω)dω = Risk2(T |H1, H2)

Since p(u) is strictly decreasing function of ∥u∥2, we have min[p1(u), p2(u)] =

{
p1(u), ϕ(u)≥0
p2(u), ϕ(u)≤0 ,

whence
Risk1(T |H1, H2) + Risk2(T |H1, H2)
=

∫
ω:ϕ(ω)<0

p1(ω)dω+
∫

ω:ϕ(ω)≥0
p2(ω)dω) =

∫
Rd

min[p1(u), p2(u)]du

⇒ Test T is the minimum risk simple test deciding on H1, H2.
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♣ Extension: Given observation ω = x+ ξ with observation noise ξ possessing
probability density

p(u) = f(∥u∥2),
where f(·) is a strictly decreasing function on the nonnegative ray, we want do decide
on two composite hypotheses H1, H2:

H1 : x ∈ X1, H2 : x ∈ X2,

where X1, X2 are nonempty nonintersecting, closed and convex sets, and one of
the sets is bounded.
♠ Elementary fact: With X1, X2 as above, consider the convex minimization problem

Opt = min
x1∈X1,x2∈X2

1
2
∥x1 − x2∥2.

The problem is solvable. Let (x1∗ , x2∗) be an optimal solution, and let

ϕ(ω) = eTω − c, e =
x1∗ − x2∗
∥x1∗ − x2∗∥2

, c =
1

2
eT [x1∗ + x2∗]

Then the stripe {ω : −Opt ≤ ϕ(ω) ≤ Opt} separates X1 and X2:
ϕ(x1) ≥ ϕ(x1∗) = Opt ∀x1 ∈ X1,

ϕ(x2) ≥ ϕ(x2∗) = −Opt ∀x2 ∈ X2
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X1

X2

x1∗

x2∗

ϕ(ω) = Opt

ϕ(ω) = −Opt

♠ We have associated with two non-intersecting closed convex X1, X2, one of the
sets being bounded,
— convex optimization problem

Opt = minx1∈X1,x2∈X2

1
2∥x

1 − x2∥2
— linear function

ϕ(ω) = eTω − 1
2e
T [x1∗ + x2∗], e =

1
2Opt[x

1
∗ − x2∗]

where [x1∗ , x
2
∗] is an optimal solution to the above problem. While this solution not

necessarily is uniquely defined by X1, X2, ϕ(·) is uniquely defined by X1, X2.
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X1

X2

x1∗δ1

x2∗
δ2

ϕ(ω) = Opt

ϕ(ω) = −Opt

↙ϕ(ω) = 1
2
[δ2 − δ1]

♠ Given δ1 ≥ 0, δ2 ≥ 0 with δ1 + δ2 = 2Opt, ϕ(·) specifies simple Euclidean Separation Test T
induced by X1, X2, δ1, δ2:

T (ω) =

{
{1}, ϕ(ω) ≥ 1

2
[δ2 − δ1]

{2}, otherwise

♠ Fact: Let ξ ∼ p(·), where p(u) = f(∥u∥2) with strictly decreasing f(t), t ≥ 0. Given observation

ω = x+ ξ the Euclidean Separation Test T decides on the hypotheses H1 : x ∈ X1, H2 : x ∈ X2

with risks satisfying

Risk1(T |H1, H2) ≤
∫∞
δ1
γ(s)ds, Risk2(T |H1, H2) ≤

∫∞
δ2
γ(s)ds

where γ(·) is the univariate marginal density of ξ, that is, probability density of the scalar random

variable hTξ, where ∥h∥2 = 1.

♡ In addition, when δ1 = δ2 = Opt, T is the minimum risk test deciding on H1, H2, and

Risk(T |H1, H2) =
∫∞
Opt γ(s)ds.
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X1

X2

x1∗δ1

x2∗
δ2

ϕ(ω) = Opt

ϕ(ω) = −Opt

↙ϕ(ω) = 1
2
[δ2 − δ1]

♣ Extension: Under the premise of Fact: the observation is ω = x+ ξ with ξ ∼ p(·) = f(∥ · ∥2),
where
• f : R+ → R+ is strictly decreasing, and
• the hypotheses to be decided upon are H1 : x ∈ X1, H2 : x ∈ X2 with closed convex

nonintersecting and nonempty X1, X2, one of the sets being bounded,

the risk bounds Riskℓ(T |H1, H2) ≤
∞∫
δℓ

γ(s)ds, ℓ = 1,2 for the Euclidean Separation Test stem from

the following observation:
Under the circumstances, for every half-space E = {u ∈ Rd : eTu ≥ δ}, where ∥e∥2 = 1 and
δ ≥ 0, one has

Probξ∼p(·){ξ ∈ E} ≤
∞∫
δ

γ(s)ds.
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♣ Given an even probability density γ(·) on the axis such that
∞∫
δ
γ(s)ds < 1

2
when-

ever δ > 0, let us associate with it the family Pdγ of all probability distributions P on
Rd such that

A: distribution P possesses even density, and
B: whenever e ∈ Rd, ∥e∥2 = 1, and δ ≥ 0, we have

Probξ∼P{ξ : eT ξ ≥ δ} ≤ Γ(δ) :=
∞∫
δ
γ(s)ds

By the same reasons as in Fact, we have the following

♠ Proposition. Whenever the distribution P of noise ξ in observation ω = x+ ξ

belongs to Pdγ and X1, X2 are non-intersecting closed convex sets, one of the sets
being bounded, the risks of the Euclidean Separation Test T induced by X1, X2 and
δ1, δ2 can be upper-bounded as

Riskℓ(T |H1, H2) ≤ Γ(δℓ) :=

∞∫
δℓ

γ(s)ds, ℓ = 1,2.
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♠ Example: Gaussian mixtures. Let η be an d-dimensional Gaussian random vec-
tor with zero mean and covariance matrix Θ (notation: η ∼ N (0,Θ)). Let, further,
Z be independent of η positive random variable. Gaussian mixture is the probability
distribution of the random vector ξ =

√
Zη. Examples of Gaussian mixtures are:

• Gaussian distribution N (0,Θ) (take Z identically equal to 1),
•multidimensional Student’s t-distribution with ν degrees of freedom (ν/Z has χ2-
distribution with ν degrees of freedom)

♠ Immediate Observations:
•Let Z be a random variable taking values in [0,1], let η ∼ N (0,Θ) with Θ ⪯ Id (i.e., the matrix
Id −Θ is positive semidefinite) be independent of Z, and let

γG(s) =
1√
2π

e−s
2/2

be the standard (zero mean, unit variance) Gaussian density on the axis. Then the distribution of the
Gaussian mixture ξ =

√
Zη belongs to the family PdγG .

•With γ given by the distribution PZ of Z according to

γZ(s) =

∫
z>0

1√
2πz

e−
s2

2zPZ(dz),

the distribution of random variable
√
Zη, with η ∼ N (0,Θ), (Θ ⪯ Id is independent of Z) belongs to

the family PdγZ .
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From Euclidean Separation to Majority Test

♣ Let γ(·), Pdγ , X1, X2 be as in Proposition, and assume we have access to semi-
stationary K-repeated observations

ωK = {ωk = xk + ξk : 1 ≤ k ≤ K}
where
• {xk : 1 ≤ k ≤ K} is a deterministic sequence of signals,
• ξk ∼ Pk,1 ≤ k ≤ K, are independent across k noises, and
• {Pk,1 ≤ k ≤ K} is a deterministic sequence of distributions from Pdγ .

Given ωk, we want to decide on the hypotheses
HK

1 : xk ∈ X1,1 ≤ k ≤ K and HK
2 : xk ∈ X2,1 ≤ k ≤ K.

Equivalently: The sets Xℓ, ℓ = 1,2, give rise to families Pℓ of probability distribu-
tions on Ω = Rd; Pℓ is comprised of distributions P of random vectors of the form
x+ ξ, with deterministic x ∈ Xℓ and with the distribution of noise ξ belonging to Pdγ .
The families Pℓ, in turn, give rise to hypotheses

HK
ℓ = H

⊕,K
ℓ : PK ∈ P⊕,Kℓ , ℓ = 1,2,

on the distribution PK of K-repeated observation ωK = (ω1, ..., ωK). Given ωK ,
we want to decide on the hypotheses HK

1 , HK
2 .
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ωK = {ωk = xk + ξk : 1 ≤ k ≤ K}
HK
ℓ : xk ∈ Xℓ, 1 ≤ k ≤ K, ξk ∼ Pk ∈ Pdγ : independent across k

♠ Let us use the majority test T maj
K defined as follows:

• we build the Euclidean separator of X1, X2, thus arriving at the affine function

ϕ(ω) = eTω − c [∥e∥2 = 1]

such that the stripe

{ω : −Opt ≤ ϕ(ω) ≤ Opt}

with

Opt = min
x1∈X1,x2∈X2

1
2
∥x1 − x2∥2,

separates X1, X2;
• given (ω1, ..., ωK), we compute reals vk = ϕ(ωk), 1 ≤ k ≤ K, and accept HK

1
and reject HK

2 when the number of nonnegative vk’s is at least K/2, otherwise we
reject HK

1 and accept HK
2 .
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♠ Risk analysis. Assume thatHK
1 takes place, so that {xk} form some deterministic

sequence of points from X1, and ξk are drawn, independently across k, from some
distributions Pk ∈ Pdγ . With {xk} and {Pk} fixed, vk are independent across k,
and probability for vk to be negative is, by our previous results, ≤ ϵ⋆ := Γ(Opt) :=∫∞
Opt γ(s)ds, where

Opt = min
x1∈X1,x2∈X2

1
2
∥x1 − x2∥2.

Consequently, the probability to reject HK
1 under the circumstances is

≤ ϵK :=
∑

K/2≤k≤K

(
K
k

)
ϵk⋆(1− ϵ⋆)K−k.

By “symmetric” reasoning, the probability to reject HK
2 when the hypothesis is true is

≤ ϵK as well. We arrive at
♠ Proposition. The risk of T maj

K can be upper-bounded as

Risk(T maj
K |HK

1 , H
K
2 ) ≤

∑
K/2≤k≤K

(
K
k

)
ϵk⋆(1− ϵ⋆)K−k[

ϵ⋆ =
∞∫

Opt
γ(s)ds,Opt = min

x1∈X1,x2∈X2

1
2
∥x1 − x2∥2

]
Fact: Conclusion remains true in the case of quasi-stationary observations.
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Risk(T maj
K |HK

1 , H
K
2 ) ≤

∑
K/2≤k≤K

(
K
k

)
ϵk⋆(1− ϵ⋆)K−k[

ϵ⋆ =
∞∫

Opt
γ(s)ds,Opt = min

x1∈X1,x2∈X2

1
2
∥x1 − x2∥2

]

♣ Quiz: We have used “evident” observation as follows:

Let w1,... wK be independent random variables taking values 0 and 1, and
let the probability for wi to take value 1 be some pi ∈ [0,1]. Then for every
fixed M the probability of the event “at least M of w1, ..., wK are equal to
1” as a function of p1, ..., pK is nondecreasing in every one of pi’s. (In our
context, wi were the signs of vi).

Why this observation is true?
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From Pairwise to Multiple Hypotheses Testing

♣ Situation: We are given L families of probability distributions Pℓ, 1 ≤ ℓ ≤ L, on
observation space Ω, and observe a realization of random variable ω ∼ P taking
values in Ω. Given ω, we want to decide on the L hypotheses

Hℓ : P ∈ Pℓ, 1 ≤ ℓ ≤ L.

Our ideal goal would be to find a low-risk simple test deciding on the hypotheses.
However: It may happen that the “ ideal goal” is not achievable, for example, when
some pairs of families Pℓ have nonempty intersections. When Pℓ∩Pℓ′ ̸= ∅ for some
ℓ ̸= ℓ′, there is no way to decide on the hypotheses with risk < 1/2.
But: Impossibility to decide reliably on all L hypotheses “individually” does not mean
that no meaningful inferences can be done.
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♠ Example: Consider the 3 colored rectangles on the plane:

and 3 hypotheses, with Hℓ, 1 ≤ ℓ ≤ 3, stating that our observation is ω = x+ ξ with
deterministic “signal” x belonging to ℓ-th rectangle and ξ ∼ N (0, σ2I2).
♡Whatever small σ be, no test can decide on the 3 hypotheses with risk< 1/2; e.g.,
there is no way to decide reliably on H1 vs. H2. However, we may hope that when
σ is small, an observation allows us to discard reliably some of the hypotheses. For
example, if H1 is true, we hopefully can discard H3.

♠ When handling multiple hypotheses which cannot be reliably decided upon “as
they are,” it makes sense to speak about testing the hypotheses “up to closeness.”
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ω ∼ P, Hℓ : P ∈ Pℓ, 1 ≤ ℓ ≤ L

♣ Closeness relation C on L hypotheses H1, ..., HL is defined as some set of pairs
(ℓ, ℓ′) with 1 ≤ ℓ, ℓ′ ≤ L; we interpret the relation (ℓ, ℓ′) ∈ C as the fact that the
hypotheses Hℓ and H ′ℓ are close to each other.
We always assume that
• C contains all “diagonal pairs” (ℓ, ℓ), 1 ≤ ℓ ≤ L (“every hypothesis is close to

itself”)
• (ℓ, ℓ′) ∈ C if and only if (ℓ′, ℓ) ∈ C (“closeness is symmetric relation”)

Note: By symmetry of C, the relation (ℓ, ℓ′) ∈ C is in fact a property of unordered pair
{ℓ, ℓ′}.
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♠ “Up to closeness” risks. Let T be a test deciding on H1, ..., HL; given obser-
vation ω, T accepts all hypotheses Hℓ with indexes ℓ ∈ T (ω) and rejects all other
hypotheses.
We say that ℓ-th partial C-risk of test T is ≤ ϵ, if whenever Hℓ is true: ω ∼ P ∈ Pℓ,
the P -probability of the event

T accepts Hℓ: ℓ ∈ T (ω)
and

all hypotheses Hℓ′ accepted by T are C-close to Hℓ: (ℓ, ℓ′) ∈ C ∀ℓ′ ∈ T (ω)

is at least 1− ϵ.

♠ ℓ-th partial C-risk of T is the smallest ϵ with the outlined property:

RiskCℓ (T |H1, ..., HL)
= sup

P∈Pℓ
Probω∼P

{
[ℓ ̸∈ T (ω)] or [∃ℓ′ ∈ T (ω) : (ℓ, ℓ′) ̸∈ C]

}
♠ C-risk of T is the largest of the partial C-risks of the test:

RiskC(T |H1, ..., HL) = max
1≤ℓ≤L

RiskCℓ (T |H1, ..., HL).
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ω ∼ P, Hℓ : P ∈ Pℓ, 1 ≤ ℓ ≤ L
C : closeness relation

♣ Multiple Hypothesis Testing via Pairwise Tests. Assume that for every
unordered pair {ℓ, ℓ′} with (ℓ, ℓ′)̸∈C we are given a simple test T{ℓ,ℓ′} deciding on
Hℓ vs. Hℓ′ via observation ω.
Our goal is to “assemble” the tests T{ℓ,ℓ′}, (ℓ, ℓ′)̸∈C, into a test T deciding on
H1..., HL up to closeness C.
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♠ The construction:
• For (ℓ, ℓ′) ̸∈ C, so that ℓ ̸= ℓ′, we define function Tℓℓ′(ω) as follows:

Tℓℓ′(ω) =

{
1, T{ℓ,ℓ′}(ω) = {ℓ}
−1, T{ℓ,ℓ′}(ω) = {ℓ′} .

Note: T{ℓ,ℓ′} is a simple test⇒ Tℓℓ′(·) is well defined and takes values ±1.

♡ For (ℓ, ℓ′) ∈ C, we set Tℓℓ′(·) ≡ 0.
Note: By construction, we have Tℓℓ′(ω) ≡ −Tℓ′ℓ(ω), 1 ≤ ℓ, ℓ′ ≤ L.

• The test T is as follows: given observation ω, we build the L × L matrix
T (ω) = [Tℓℓ′(ω)] and accept exactly those of the hypotheses Hℓ for which ℓ-th
row in T (ω) is nonnegative, that is, all tests T{ℓ,ℓ′} with (ℓ, ℓ′) ̸∈ C accept Hℓ, obser-
vation being ω.
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Example: • L = 4

• C = {(1,1), (2,2), (3,3), (4,4), {1,2}, {2,3}, {3,4}}
Given tests T{1,3}, T{1,4}, T{2,4} and observation ω
♠When T{1,3} accepts H1, T{1,4} accepts H1, T{2,4} accepts H4, we get

T (ω) =


0 0 +1 +1
0 0 0 −1
−1 0 0 0
−1 +1 0 0


⇒ Aggregated test T accepts H1
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♠When T{1,3} accepts H1, T{1,4} accepts H1, T{2,4} accepts H2, we get

T (ω) =


0 0 +1 +1
0 0 0 +1
−1 0 0 0
−1 −1 0 0


⇒ Aggregated test T accepts H1 and H2
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♠ Observation: When T accepts some hypothesis Hℓ, all hypotheses accepted by
T are C-close to Hℓ.
Indeed, if ℓ-th row in T (ω) is nonnegative and ℓ′ is not C-close to ℓ, we have Tℓℓ′(ω) ≥
0 and Tℓℓ′(ω) ∈ {−1,1}
⇒ Tℓℓ′(ω) = 1

⇒ Tℓ′ℓ(ω) = −Tℓℓ′(ω) = −1
⇒ ℓ′-th row in T (ω) is not nonnegative
⇒ ℓ′ is not accepted.
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♠ Risk analysis. For (ℓ, ℓ′) ̸∈ C, let

ϵℓℓ′ = Risk1(T{ℓ,ℓ′}|Hℓ, Hℓ′) = sup
P∈Pℓ

Probω∼P{ℓ ̸∈ T{ℓ,ℓ′}(ω)}

= sup
P∈Pℓ

Probω∼P{Tℓℓ′(ω) = −1} = sup
P∈Pℓ

Probω∼P{Tℓ′ℓ(ω) = 1}

= sup
P∈Pℓ

Probω∼P{ℓ′ ∈ T{ℓ,ℓ′}(ω)}

= Risk2(T{ℓ,ℓ′}|Hℓ′, Hℓ).

♠ Proposition. One has

RiskCℓ (T |H1, ..., HL) ≤ ϵℓ :=
∑

ℓ′:(ℓ,ℓ′)̸∈C
ϵℓℓ′.

Indeed, let us fix ℓ, and let Hℓ be true. Let P ∈ Pℓ be the distribution of observation ω, and let
I = {ℓ′ ≤ L : (ℓ, ℓ′) ̸∈ C}. For ℓ′ ∈ I, let Eℓ′ be the event {ω : Tℓℓ′(ω) = −1}. We have
Probω∼P(Eℓ′) ≤ ϵℓℓ′ (by definition of ϵℓℓ′)⇒ Probω∼P

(
∪ℓ′∈IEℓ′︸ ︷︷ ︸

E

)
≤ ϵℓ.

When the event E does not take place, we have Tℓℓ′(ω) = 1 for all ℓ′ ∈ I
⇒ Tℓℓ′(ω) ≥ 0 for all ℓ′, 1 ≤ ℓ′ ≤ L
⇒ ℓ ∈ T (ω)
⇒ (by Observation) {ℓ ∈ T (ω)}& {(ℓ, ℓ′) ∈ C ∀ℓ′ ∈ T (ω)}.
By definition of partial C-risk, we get

RiskCℓ (T |H1, ..., HL) ≤ Probω∼P(E) ≤ ϵℓ. □
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Testing Multiple Hypotheses via Euclidean Separation

♣ Situation: We are given L nonempty, closed and bounded convex sets Xℓ ⊂ Rd,
1 ≤ ℓ ≤ L, and a family Pdγ of noise distributions, a closeness C, and semi-stationary
K-repeated observation

ωK = {ωk = xk + ξk,1 ≤ k ≤ K},

so that
• {xk,1 ≤ k ≤ K}, is a deterministic sequence of signals,
• ξk ∼ Pk, 1 ≤ k ≤ K, are independent across k noises, and
• {Pk,1 ≤ k ≤ K}, is a deterministic sequence of distributions from Pdγ .

Given ωK , we want to decide up to closeness C on L hypotheses
Hℓ : {xk ∈ Xℓ,1 ≤ k ≤ K}.
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Given ωK, we want to decide up to closeness C on L hypotheses

Hℓ : {xk ∈ Xℓ,1 ≤ k ≤ K}.

Equivalently: The sets Xℓ ⊂ Rd along with Pdγ specify L families of distributions
Pℓ, 1 ≤ ℓ ≤ L; specifically, Pℓ is comprised of probability distributions of random
variables x+ ξ, where deterministic x belongs to Xℓ, and the distribution of random
noise ξ belongs to Pdγ . Given ωK , we want to decide, up to closeness C, on L

hypotheses

Hℓ : P
K ∈ P⊕,Kℓ , 1 ≤ ℓ ≤ L

on the distribution PK of observation ωK .

♠ Standing Assumption: Whenever ℓ, ℓ′ are not C-close: (ℓ, ℓ′)̸∈C, the sets Xℓ,
Xℓ′ do not intersect.

♠ Strategy: We intend to assemble pairwise Euclidean separation tests.
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♠ Building blocks. For (ℓ, ℓ′) ̸∈ C, we solve convex optimization problems

Optℓℓ′ = min
u∈Xℓ,v∈Xℓ′

1
2
∥u− v∥2. (Pℓℓ′)

Note: By Standing Assumption, Optℓℓ′ > 0. Optimal solution (u∗, v∗) to (Pℓℓ′)
defines affine functions

ϕℓℓ′(ω) = eTℓℓ′ω − cℓℓ′
eℓℓ′ =

u∗−v∗
∥u∗−v∗∥2

, cℓℓ′ =
1
2
eTℓℓ′[u∗+ v∗]

Note: We have ϕℓℓ′(·) ≡ −ϕℓ′ℓ(·) for all (ℓ, ℓ′) ̸∈ C.
♡ As we know, whenever δℓℓ′ ≥ 0, δℓ′ℓ ≥ 0 satisfy

2Optℓℓ′ = δℓℓ′+ δℓ′ℓ

it holds

∀(u ∈ Xℓ, P ∈ Pdγ) : Probξ∼P
{
ϕ(u+ ξ) < 1

2
[δℓ′ℓ − δℓℓ′]

}
≤ Γ(δℓℓ′) :=

∞∫
δℓℓ′

γ(s)ds

∀(v ∈ Xℓ′, P ∈ Pdγ) : Probξ∼P
{
ϕ(u+ ξ) ≥ 1

2
[δℓ′ℓ − δℓℓ′]

}
≤ Γ(δℓ′ℓ) :=

∞∫
δℓ′ℓ

γ(s)ds

2.34



ℓ, ℓ′ : (ℓ, ℓ′) ̸∈ C
⇒ Optℓℓ′ = min

u∈Xℓ,v∈Xℓ′

1
2
∥u− v∥2 > 0 = Optℓ′ℓ

⇒ u∗, v∗, ϕℓℓ′(ω) = eTℓℓ′ω − cℓℓ′≡ −ϕℓ′ℓ(ω)
[
eℓℓ′ =

u∗−v∗
∥u∗−v∗∥2 , cℓℓ

′ = 1
2
eTℓℓ′[u∗+ v∗]

]
δℓℓ′ ≥ 0, δℓ′ℓ ≥ 0,2Optℓℓ′ = δℓℓ′ + δℓ′ℓ (∗)

⇒
∀(u ∈ Xℓ, P ∈ Pdγ) : Probξ∼P

{
ϕ(u+ ξ) < 1

2
[δℓ′ℓ − δℓℓ′]

}
≤ Γ(δℓℓ′) :=

∞∫
δℓℓ′

γ(s)ds

∀(v ∈ Xℓ′, P ∈ Pdγ) : Probξ∼P
{
ϕ(v+ ξ) ≥ 1

2
[δℓ′ℓ − δℓℓ′]

}
≤ Γ(δℓ′ℓ) :=

∞∫
δℓ′ℓ

γ(s)ds

(!)

♠ Assembling building blocks, case of K = 1.
• For ℓ, ℓ′ with (ℓ, ℓ′) ̸∈ C we select δℓℓ′ satisfying (∗), thus arriving at pairwise

simple tests

T{ℓ,ℓ′}(ω) =

{
{ℓ}, ϕℓℓ′(ω) ≥

1
2[δℓ′ℓ − δℓℓ′]

{ℓ′}, ϕℓℓ′(ω) <
1
2[δℓ′ℓ − δℓℓ′]

• Further, we use out general construction to assemble pairwise tests {T{ℓ,ℓ′} :

(ℓ, ℓ′) ̸∈ C} into single-observation test T deciding on H1, ..., HL

Note: By (!), the associated with tests T{ℓ,ℓ′} quantities ϵℓℓ′ satisfy the relations

ϵℓℓ′ ≤ Γ(δℓℓ′) :=
∞∫
δℓℓ′

γ(s)ds, whence RiskCℓ (T |H1, ..., HL) ≤
∑

ℓ′:(ℓ,ℓ′)̸∈C
Γ(δℓℓ′).
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ℓ, ℓ′ : (ℓ, ℓ′) ̸∈ C⇒Optℓℓ′ = min
u∈Xℓ,v∈Xℓ′

1
2
∥u− v∥2

⇒ δℓℓ′ ≥ 0, δℓ′ℓ ≥ 0,2Optℓℓ′ = δℓℓ′+ δℓ′ℓ

⇒ T : RiskCℓ (T |H1, ..., HL) ≤
∑

ℓ′:(ℓ,ℓ′)̸∈C
Γ(δℓℓ′)

[
Γ(δ) =

∞∫
δ
γ(s)ds

]
♠ Single-observation case K = 1: optimizing the construction over the “free param-
eters” δℓℓ′, (ℓ, ℓ

′) ̸∈ C, of the construction.
♡ A natural model here is as follows: given nonnegative weight matrix W and non-
negative vectors α, β, we want to minimize “scale factor” t under the constraint

W · [RiskCℓ (T |H1, ..., HL)]
L
ℓ=1 ≤ α+ tβ

This problem can be safely approximated by the optimization problem

min
{δℓℓ′},t

{
t : W ·

[∑
ℓ′:(ℓ,ℓ′)̸∈C Γ(δℓℓ′)

]L
ℓ=1
≤ α+ tβ

δℓℓ′ ≥ 0, δℓℓ′ + δℓ′ℓ = 2Optℓℓ′, (ℓ, ℓ′) ̸∈ C

}
(#)

Note: Assuming γ(·) nonincreasing on R+ (as is the case, e.g., for Gaussian mix-

tures), function Γ(δ) =
∞∫
δ
γ(s)ds is convex on R+

⇒ (#) is an explicit Convex Programming problem!
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ℓ, ℓ′ : (ℓ, ℓ′) ̸∈ C
⇒ Optℓℓ′ = min

u∈Xℓ,v∈Xℓ′

1
2
∥u− v∥2 > 0 = Optℓ′ℓ

⇒ u∗, v∗, ϕℓℓ′(ω) = eTℓℓ′ω − cℓℓ′≡ −ϕℓ′ℓ(ω)[
eℓℓ′ =

u∗−v∗
∥u∗−v∗∥2 , cℓℓ

′ = 1
2
eTℓℓ′[u∗+ v∗]

]
⇒

∀(u ∈ Xℓ, P ∈ Pdγ) : Probξ∼P {ϕ(u+ ξ) < 0} ≤ Γ(Optℓℓ′)
∀(v ∈ Xℓ′, P ∈ Pdγ) : Probξ∼P {ϕ(v+ ξ) ≥ 0} ≤ Γ(Optℓℓ′)[

Γ(δ) :=
∞∫
δ

γ(s)ds

] (!)

♠ Case of K-repeated observations, K > 1. In the case of semi-stationary K-
repeated observations ωk = (ω1, ..., ωK), we act as follows:
• For (ℓ, ℓ′) ̸∈ C, we build majority tests

T{ℓ,ℓ′}(ω
K) =

{
{ℓ}, Card{k ≤ K : ϕℓℓ′(ωk) ≥ 0} ≥ K/2
{ℓ′}, otherwise

• Further, we use out general construction to assemble simple tests
{T{ℓ,ℓ′} : (ℓ, ℓ′) ̸∈ C}

into test TK deciding on HK
1 , ..., H

K
L via observation ωK
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Note: By our results on majority tests, the associated with tests T{ℓ,ℓ′} quantities ϵℓℓ′
satisfy the relations

ϵℓℓ′ ≤
∑

K/2≤k≤K

(K
k

)
[Γ(Optℓℓ′)]

k[1− Γ(Optℓℓ′)]
K−k

whence

RiskCℓ (TK|H1, ..., HL) ≤
∑

ℓ′:(ℓ,ℓ′)̸∈C

∑
K/2≤k≤K

(
K
k

)
[Γ(Optℓℓ′)]

k[1− Γ(Optℓℓ′)]
K−k.

Note: By Standing Assumption, Optℓℓ′ > 0 when (ℓ, ℓ′) ̸∈ C ⇒ Γ(Optℓℓ′) < 1/2

⇒ Risks RiskCℓ (TK|H1, ..., HL) go to 0 exponentially fast as K →∞.

2.38



How It Works: Testing Multiple Hypotheses by Euclidean Separation

♠ L = 5 hypotheses on distribution of individual observation ω ∈ R2:
2D Student distribution with parameter ν

Hℓ : ω = µ+ g
√
ν/χ, µ ∈ Eℓ, g ∼ N (0, I2), χ ∼ χ2[ν]

[χ2[ν] – distribution of ξTξ, ξ ∼ N (0, Iν)]

♠ Sets Eℓ: 5 ellipses

1

2

3

4

5

♠ Closeness C: Hℓ is close to Hℓ′ when the ellipses Eℓ, Eℓ′ intersect
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♠ Heavy tails: ν = 1, semi-stationary 127-repeated observations:

1

2
3

4
5

Sample recovery: true hypothesis 4, accepted: 4
• upper C-risk bound: 0.440 = max[0.242,0.306,0.306,0.069,0.440]

• empirical C-risk over 500 simulations: 0.206

♠ Light tails: ν = 1000, semi-stationary 127-repeated observations:

1

2

3

4
5

Sample recovery: true hypothesis 5, accepted 1 & 5
• upper C-risk bound: 0.320 = max[0.186,0.215,0.262,0.029,0.320]

• empirical C-risk over 500 simulations: 0.120
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HYPOTHESIS TESTING, II

• Detector-Based Tests
• Detectors & Detector-Based Pairwise Tests
• Testing “up to Closeness”
• Simple Observation Schemes

– Minimum Risk Detectors
– Near-Optimal Tests
– Sequential Hypothesis Testing
– Measurement Design

• Recovering linear forms in Simple o.s.



Detectors & Detector-Based Pairwise Tests

♣ Situation: Given two families P1, P2 of probability distributions on a given obser-
vation space Ω and an observation ω ∼ P with P known to belong to P1 ∪ P2, we
want to decide whether P ∈ P1 (hypothesis H1) or P ∈ P2 (hypothesis H2).

♣ Detectors. A detector is a function ϕ : Ω→ R. Risks of a detector ϕ w.r.t. P1,P2
are defined as

Risk1[ϕ|P1,P2] = sup
P∈P1

∫
Ω

e−ϕ(ω)P (dω), Risk2[ϕ|P1,P2] = sup
P∈P2

∫
Ω

eϕ(ω)P (dω)

Risk1[ϕ|P1,P2] = Risk2[−ϕ|P2,P1]
♠ Simple test Tϕ associated with detector ϕ, given observation ω,
• accepts H1 when ϕ(ω) ≥ 0,
• accepts H2 when ϕ(ω) < 0.

♣ Immediate observation:

Risk1(Tϕ|H1, H2) ≤ Risk1[ϕ|P1,P2]
Risk2(Tϕ|H1, H2) ≤ Risk2[ϕ|P1,P2]

Reason: Probω∼P {ω : ψ(ω) ≥ 0} ≤
∫
eψ(ω)P (dω).
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Elementary Calculus of Detectors

Risk1[ϕ|P1,P2] = sup
P∈P1

∫
Ω

e−ϕ(ω)P (dω), Risk2[ϕ|P1,P2] = sup
P∈P2

∫
Ω

eϕ(ω)P (dω)

♣ Detectors admit simple “calculus:”

♣ Renormalization: ϕ(·)⇒ ϕa(·) = ϕ(·)− a

⇒
{

Risk1[ϕa|P1,P2] = eaRisk1[ϕ|P1,P2]
Risk2[ϕa|P1,P2] = e−aRisk2[ϕ|P1,P2]

⇒What matters, is the product

[Risk[ϕ|P1,P2]]2 := Risk1[ϕ|P1,P2]Risk2[ϕ|P1,P2]

of partial risks of a detector. Shifting the detector by constant, we can distribute this
product between factors as we want, e.g., always can make the detector balanced:

Risk[ϕ|P1,P2] = Risk1[ϕ|P1,P2] = Risk2[ϕ|P1,P2].
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♣ Detectors are well-suited for passing to multiple observations. For 1 ≤ k ≤
K, let
• P1,k,P2,k be families of probability distributions on observation spaces Ωk,
• ϕk be detectors on Ωk.
♡ Families {P1,k,P2,k}Kk=1 give rise to families of product distributions on ΩK =
Ω1 × ...×ΩK :

PK1 = {PK = P1 × ...× PK : Pk ∈ P1,k, 1 ≤ k ≤ K},
PK2 = {PK = P1 × ...× PK : Pk ∈ P2,k, 1 ≤ k ≤ K},

and detectors ϕ1, .., ϕK give rise to detector ϕK on ΩK :

ϕK(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
K∑
k=1

ϕk(ωk).

♠ Observation: For χ = 1,2, we have

Riskχ[ϕ
K|PK1 ,P

K
2 ] =

K∏
k=1

Riskχ[ϕk|P1,k,P2,k]. (!)
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ϕK(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
∑K

k=1 ϕk(ωk).

♡ In the sequel, we refer to families PKχ as to direct products of families of distribu-
tions Pχ,k over 1 ≤ k ≤ K:

PKχ = P⊕,1:Kχ =
K⊕
k=1
Pχ,k := {PK = P1 × ...× PK : Pk ∈ Pχ.k,1 ≤ k ≤ K}.

We can define also quasi-direct products

P⊗,1:Kχ =
K⊗
k=1
Pχ,k

of the families Pχ,k over 1 ≤ k ≤ K. By definition, P⊗,1:Kχ is comprised of all distri-
butions PK of random sequences ωK = (ω,..., ωK), ωk ∈ Ωk, which can be gener-
ated as follows: in the nature there exists a random sequence ζK = (ζ1, ..., ζK)

of “driving factors” such that for every k ≤ K, ωk is a deterministic function of
ζk = (ζ1, ..., ζk), and the conditional, ζk−1 being fixed, distribution of ωk always
belongs to Pχ,k.

♠ It is immediately seen that for χ = 1,2 it holds

Riskχ[ϕK|P⊗,1:K1 ,P⊗,1:K2 ] =
K∏
k=1

Riskχ[ϕk|P1,k,P2,k].
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♣ From pairwise detectors to detectors for unions. Assume that we are given an
observation space Ω along with
• R families Rr, r = 1, ..., R of “red” probability distributions on Ω,
• B families Bb, b = 1, ..., B of “brown” probability distributions on Ω,
• detectors ϕrb(·), 1 ≤ r ≤ R, 1 ≤ b ≤ B.

Let us aggregate the red and the brown families as follows

R =
R⋃
r=1

Rr, B =
B⋃
b=1

Bb

and assemble detectors ϕrb into a single detector

ϕ(ω) = max
r≤R

min
b≤B

ϕrb(ω).

♠ Observation: We have

Risk1[ϕ|R,B] ≤ maxr≤R
∑
b≤BRisk1[ϕrb|Rr,Bb],

Risk2[ϕ|R,B] ≤ maxb≤B
∑
r≤RRisk2[ϕrb|Rr,Bb].
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♠ Observation: We have

Risk1[ϕ|R,B] ≤ maxr≤R
∑

b≤BRisk1[ϕrb|Rr,Bb],
Risk2[ϕ|R,B] ≤ maxb≤B

∑
r≤RRisk2[ϕrb|Rr,Bb].

Indeed,

P ∈ Rr∗ ⇒
∫
e−[maxrminb ϕrb(ω)]P (dω) =

∫
eminrmaxb[−ϕrb(ω)]P (dω)

≤
∫
e
maxb[−ϕr∗b(ω)]P (dω) ≤

∑
b

∫
e
−ϕr∗b(ω)P (dω) ≤

∑
bRisk1[ϕr∗b|Rr∗,Bb]

⇒ Risk1[ϕ|R,B] ≤ maxr≤R
∑

b≤BRisk1[ϕrb|Rr,Bb];
P ∈ Bb∗ ⇒

∫
emaxrminb ϕrb(ω)P (dω) ≤

∫
e
maxr ϕrb∗

(ω)
P (dω)

≤
∑
r

∫
e
ϕrb∗

(ω)
P (dω) ≤

∑
rRisk2[ϕrb∗|Rr,Bb∗]

⇒ Risk2[ϕ|R,B] ≤ maxb≤B
∑

r≤RRisk2[ϕrb|Rr,Bb].
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♠ Refinement: W.l.o.g. we can assume that the detectors ϕrb are balanced:

ϵrb := Risk[ϕrb|Rr,Bb] = Risk1[ϕrb|Rr,Bb] = Risk2[ϕrb|Rr,Bb].
Consider matrices

E =

 ϵ1,1 · · · ϵ1,B
... · · · ...

ϵR,1 · · · ϵR,B

 , F =

[
E

ET

]
♡ The maximal eigenvalue θ of F is the spectral norm ∥E∥2,2 ofE, and the leading

eigenvector [g; f ] of F can be selected to be positive (Perron-Frobenius Theorem).
Note: θg = Ef & θf = ETg

♡ Let us pass from the detectors ϕrb to shifted detectors ψrb = ϕrb − ln(fb/gr)

and assemble the shifted detectors into the detector

ψ(ω) = max
r≤R

min
b≤B

ψrb(ω)

By previous observation

Risk1(ψ|R,B) ≤ maxr
∑

bRisk1[ψrb|Rr,Bb] = maxr
∑

bϵrb(fb/gr)
= maxr[(Ef)r/gr] = θ = ∥E∥2,2

Risk2(ψ|R,B) ≤ maxb
∑

rRisk2[ψrb|Rr,Bb] = maxb
∑

rϵrb(gr/fb)
= maxb[(ETg)b/fb] = θ = ∥E∥2,2

⇒ Partial risks of detector ψ on aggregated families R, B are ≤ ∥E∥2,2.
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Detector-Based Tests ”Up to Closeness”

♠ Situation: We are given
• L families of probability distributions Pℓ, ℓ = 1, ..., L, on observation space Ω,

giving rise to L hypotheses Hℓ, on the distribution P of random observation ω ∈ Ω:

Hℓ : P ∈ Pℓ, 1 ≤ ℓ ≤ L;

• closeness relation C;
• system of balanced detectors{

ϕℓℓ′ : ℓ < ℓ′, (ℓ, ℓ′) ̸∈ C
}

along with upper bounds ϵℓℓ′ on detectors’ risks:

∀(ℓ, ℓ′ : ℓ < ℓ′, (ℓ, ℓ′) ̸∈ C) :

{ ∫
Ω e−ϕℓℓ′(ω)P (dω) ≤ ϵℓℓ′ ∀P ∈ Pℓ∫
Ω eϕℓℓ′(ω)P (dω) ≤ ϵℓℓ′ ∀P ∈ Pℓ′

• Our goal is to build single-observation test deciding on hypotheses H1, ..., HL up
to closeness C.
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♠ Construction: Let us set

ϕℓℓ′(ω) =

{
−ϕℓ′ℓ(ω), ℓ > ℓ′, (ℓ, ℓ′) ̸∈ C
0, (ℓ, ℓ′) ̸∈ C , ϵℓℓ′ =

{
ϵℓ′ℓ, ℓ > ℓ′, (ℓ, ℓ′) ̸∈ C
1, (ℓ, ℓ′) ̸∈ C ,

thus ensuring that

ϕℓℓ′(·) ≡ −ϕℓ′ℓ(·), ϵℓℓ′ = ϵℓ′ℓ, 1 ≤ ℓ, ℓ′ ≤ L∫
Ω e−ϕℓℓ′(ω)P (dω) ≤ ϵℓℓ′ ∀(P ∈ Pℓ, 1 ≤ ℓ, ℓ′ ≤ L)

• Given shifts aℓℓ′ = −aℓ′ℓ, we specify test T as follows: Given observation ω, T
accepts all hypotheses Hℓ such that

ϕℓℓ′(ω) > aℓℓ′ ∀(ℓ
′ : (ℓ, ℓ′) ̸∈ C)

and rejects all other hypotheses.
♠ Proposition. The C-risk of T can be upper-bounded as

RiskC(T |H1, ..., HL) ≤ max
ℓ≤L

∑
ℓ′:(ℓ,ℓ′)̸∈C

ϵℓℓ′e
aℓℓ′

3.10



♠ Optimal shifts: Consider the symmetric nonnegative matrix

E = [ϵℓℓ′χℓℓ′]
L
ℓ,ℓ′=1, χℓℓ′ =

{
1, (ℓ, ℓ′) ̸∈ C
0, (ℓ, ℓ′) ∈ C ,

and let θ = ∥E∥2,2 be the spectral norm of E, or, which is the same under the
circumstances, the largest eigenvalue of E. By Perron-Frobenius Theorem, for every
θ′ > θ there exists a positive vector f such that

Ef ≤ θ′f ;

the same holds true when θ′ = θ, provided the leading eigenvector of E (which
always can selected to be nonnegative) is positive.
Fact: With αℓℓ′ = ln(fℓ′/fℓ), the risk bound from Proposition reads

RiskC(T |H1, ..., HL) ≤ θ′.

Thus, assembling the detectors ϕℓℓ′ appropriately, one can get a test with C-risk arbi-
trarily close to ∥E∥2,2.
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♠ Utilizing repeated observations. Assuming K-repeated observations allowed,
we can apply the above construction to
• K-repeated observation ωK = (ω1, ..., ωK) in the role of ω,
• quasi-direct powers P⊗,Kℓ = Pℓ ⊗ ...⊗ Pℓ of families Pℓ in the role of these

families, and respective hypotheses H⊗,Kℓ in the role of hypotheses Hℓ,

• detectors ϕ(K)
ℓℓ′ (ωK) =

∑K
k=1 ϕℓℓ′(ωk) in the role of detectors ϕℓℓ′, which allows

to replace ϵℓℓ′ with ϵKℓℓ′.
As a result, we get K-observation test T K such that

RiskC(T K|H⊗,K1 , ..., H
⊗,K
L ) ≤ θ′K

where θ′K can be made arbitrarily close (under favorable circumstances, even equal)
to the quantity

θK =
∣∣∣∣∣∣∣∣[ϵKℓℓ′χℓℓ′]Kℓℓ′=1

∣∣∣∣∣∣∣∣
2,2
, χℓℓ′ =

{
1, (ℓ, ℓ′) ̸∈ C
0, (ℓ, ℓ′) ∈ C

In particular, in the case when ϵℓℓ′ < 1 whenever (ℓ, ℓ′) ̸∈ C, we can ensure that the
C-risk of T K converges to 0 exponentially fast as K →∞.
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♣ “Universality” of detector-based tests. Let Pχ, χ = 1,2, be two families of
probability distributions on observation space Ω, and letHχ, χ = 1,2, be associated
hypotheses on the distribution of an observation.

Assume that there exists a simple deterministic or randomized test T deciding on
H1, H2 with risk ≤ ϵ ∈ (0,1/2). Then there exists a detector ϕ with

Risk[ϕ|P1,P2] ≤ ϵ+ := 2
√
ϵ[1− ϵ] < 1.

Indeed, let T be deterministic, let Ωχ = {ω ∈ Ω : T (ω) = {χ}}, χ = 1,2, and let

ϕ(ω) =

{
1
2
ln ([1− ϵ]/ϵ) , ω ∈ Ω1

1
2
ln (ϵ/[1− ϵ]) , ω ∈ Ω2

Then
P ∈ P1, ϵ′ =

∫
Ω2
P (dω) [≤ ϵ]⇒∫

e−ϕ(ω)P (dω) =
√
ϵ/[1− ϵ](1− ϵ′) +

√
[1− ϵ]/ϵϵ′

=
√
ϵ/[1− ϵ] +

[√
[1− ϵ]/ϵ−

√
ϵ/[1− ϵ]

]
︸ ︷︷ ︸

≥0

ϵ′︸︷︷︸
≤ϵ

≤
√
ϵ/[1− ϵ] +

[√
[1− ϵ]/ϵ−

√
ϵ/[1− ϵ]

]
ϵ = 2

√
ϵ[1− ϵ]

P ∈ P2, ϵ′ =
∫
Ω1
P (dω) [≤ ϵ]⇒∫

eϕ(ω)P (dω) =
√
ϵ/[1− ϵ](1− ϵ′) +

√
[1− ϵ]/ϵϵ′ ≤ 2

√
ϵ[1− ϵ]

⇒ Riskχ[ϕ|P1,P2] ≤ 2
√
ϵ[1− ϵ].
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Now let T be randomized. Setting P+
χ = {P×Uniform[0,1] : P ∈ Pχ}, χ = 1,2, Ω+ = Ω×[0,1],

by above there exists a bounded detector ϕ+ : Ω+ → R such that

∀(P ∈ P1) :
∫
Ω

[∫ 1
0 e−ϕ+(ω,s)ds

]
P (dω)ds ≤ ϵ+ = 2

√
ϵ[1− ϵ],

∀(P ∈ P2) :
∫
Ω

[∫ 1
0 eϕ+(ω,s)ds

]
P (dω) ≤ ϵ+,

whence, setting ϕ(ω) =
∫ 1
0 ϕ(ω, s)ds and applying Jensen’s Inequality,

∀(P ∈ P1) :
∫
Ω e−ϕ(ω)P (dω) ≤ ϵ+,

∀(P ∈ P2) :
∫
Ω eϕ(ω)P (dω) ≤ ϵ+

□

♠ Risk 2
√
ϵ[1− ϵ] of the detector-based test induced by simple test T is “much

worse” than the risk ϵ of T .
However: When repeated observations are allowed, we can compensate for risk
deterioration ϵ 7→ 2

√
ϵ[1− ϵ] by passing in the detector-based test from a single

observation to a moderate number of them.

3.14



inf
ϕ

{
Risk[ϕ|P1,P2] = min

{
ϵ :

∫
Ω e−ϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P1)∫
Ω eϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P2)

}}
(!)

Note:
• The optimization problem specifying risk has constraints convex in (ϕ, ϵ)

•When passing from families Pχ, χ = 1,2, to their convex hulls, the risk of a
detector remains intact.

♣ Bottom line: It would be nice to be able to solve (!), thus arriving at the lowest
risk detector-based tests.
But: (!) is an optimization problem with infinite-dimensional decision “vector” and
infinitely many constraints.
⇒ (!) in general is intractable.

Simple observation schemes: A series of special cases where (!) is efficiently
solvable via Convex Optimization.
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Preliminaries from Convex Programming: Saddle Points

♣ Let X ⊂ Rn, Λ ⊂ Rm be nonempty sets, and let F (x, λ) be a real-valued function
on X × Λ. This function gives rise to two optimization problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Game interpretation: Player I chooses x ∈ X, player II chooses λ ∈ Λ. With
choices of the players x, λ, player I pays to player II the sum of F (x, λ). What should
the players do to optimize their wealth?
♢If Player I chooses x first, and Player II knows this choice when choosing λ, II will
maximize his profit, and the loss of I will be F (x). To minimize his loss, I should solve
(P ), thus ensuring himself loss Opt(P ) or less.
♢If Player II chooses λ first, and Player I knows this choice when choosing x, I will
minimize his loss, and the profit of II will be F(λ). To maximize his profit, II should
solve (D), thus ensuring himself profit Opt(D) or more.
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Observation: For Player I, second situation seems better, so that it is natural to guess
that his anticipated loss in this situation is ≤ his anticipated loss in the first situation:

Opt(D) ≡ sup
λ∈Λ

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ) ≡ Opt(P ).

This indeed is true: assuming Opt(P ) <∞ (otherwise the inequality is evident),

∀(ϵ > 0) : ∃xϵ ∈ X : sup
λ∈Λ

F (xϵ, λ) ≤ Opt(P ) + ϵ

⇒ ∀λ ∈ Λ : F(λ) = inf
x∈X

F (x, λ) ≤ F (xϵ, λ) ≤ Opt(P ) + ϵ

⇒ Opt(D) ≡ sup
λ∈Λ

F(λ) ≤ Opt(P ) + ϵ

⇒ Opt(D) ≤ Opt(P ).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

♣What should the players do when making their choices simultaneously?
A “good case” when we can answer this question – F has a saddle point.
Definition: We call a point (x∗, λ∗) ∈ X × Λ a saddle point of F , if

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ).

In game terms, a saddle point is an equilibrium – no one of the players can improve
his wealth, provided the adversary keeps his choice unchanged.
Proposition [Existence and Structure of saddle points]: F has a saddle point if
and only if both (P ) and (D) are solvable with equal optimal values. In this case,
the saddle points of F are exactly the pairs (x∗, λ∗), where x∗ is an optimal solution
to (P ), and λ∗ is an optimal solution to (D).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Proof, ⇒: Assume that (x∗, λ∗) is a saddle point of F , and let us prove that x∗
solves (P ), λ∗ solves (D), and Opt(P ) = Opt(D).
Indeed, we have

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ)

whence
Opt(P ) ≤ F (x∗) = sup

λ∈Λ
F (x∗, λ) = F (x∗, λ∗)

Opt(D) ≥ F(λ∗) = inf
x∈X

F (x, λ∗) = F (x∗, λ∗)

Since Opt(P ) ≥ Opt(D), we see that all inequalities in the chain

Opt(P ) ≤ F (x∗) = F (x∗, λ∗) = F(λ∗) ≤ Opt(D)

are equalities. Thus, x∗ solves (P ), λ∗ solves (D) and Opt(P ) = Opt(D).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

Proof, ⇐. Assume that (P ), (D) have optimal solutions x∗, λ∗ and Opt(P ) =

Opt(D), and let us prove that (x∗, λ∗) is a saddle point. We have

Opt(P ) = F (x∗) = sup
λ∈Λ

F (x∗, λ) ≥ F (x∗, λ∗)

Opt(D) = F(λ∗) = inf
x∈X

F (x, λ∗) ≤ F (x∗, λ∗)
(∗)

Since Opt(P ) = Opt(D), all inequalities in (∗) are equalities, so that

sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗) = inf
x∈X

F (x, λ∗).
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Existence of Saddle Points

♣ Theorem [Sion-Kakutani] Let X ⊂ Rn, Λ ⊂ Rm be nonempty convex closed
sets and F (x, λ) : X × Λ → R be a continuous function which is convex in x ∈ X
and concave in λ ∈ Λ. Assume that Λ is compact.

(i) ”MinMax equals MaxMin:” One has

SadVal := inf
x∈X

sup
λ∈Λ

F (x, λ) = sup
λ∈Λ

min
x∈X

F (x, λ)

Note: SadVal is either real, or −∞.

(ii) Assume that there exists λ̄ ∈ Λ such that for every a ∈ R the set

Xa : {x ∈ X : F (x, λ̄) ≤ a}

is bounded (e.g., since X is bounded).
Then SadVal is real, and F possesses a saddle point on X × Λ.
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Proof of Sion-Kakutani Theorem

MinMax Lemma [von Neumann] Let X ba a nonempty convex compact set and
f1, ..., fN be continuous convex functions on X. then the quantity

Opt = min
x∈X

max[f1(x), f2(x), ..., fN(x)]

is the minimum over X of certain convex combination of fi:

∃µ∗ ∈ RN+,
∑
i

µ∗i = 1 : Opt = min
x

N∑
i=1

µ∗i fi(x).

Note: for every collection of nonnegative weights µi summing up to one we have∑
i µifi(x) ≤ maxi fi(x) and therefore

min
X

∑
i

µifi(x) ≤ Opt.
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Proof of MinMax Lemma: Assuming w.l.o.g. that Opt = 0 (replace fi with fi−Opt !), consider two
convex sets in RN :

S = {0}, T = {y ∈ RN : ∃x ∈ X : y ≥ f(x) := [f1(x); ...; fN(x)]}.
From convexity of X and fi’s it follows that T is convex. Besides this, T clearly possesses a nonempty
interior.
We claim that S = {0} ̸∈ intT . Indeed, assuming the opposite, T contains a negative vector,
whence, by definition of T , fi(x̄) < 0 for some x̄ ∈ X and all i, so that minX maxi fi(x) < 0, while
we are in the case Opt = 0.
By Separation Theorem, the fact that S = {0} ̸∈ intT ̸= ∅ implies that S and T can be separated:
there exists λ = [λ1; ...;λN ] ̸= 0 such that

0 = max
s∈S

λTs ≤ inf
y∈Y

∑
i

λiyi. (∗)

since T contains all positive vectors with large enough entries, (∗) implies that λ ≥ 0, and since
f(x) ∈ T for all x ∈ X, (∗) says that

Opt = 0 ≤
∑
i

λifi(x) ∀x ∈ X (!)

Since 0 ̸= λ ≥ 0, the weights µ∗i = λi/
∑

j λj are well defined, nonnegative, sum up to 1, and by (!)
we have

Opt = 0 ≤
∑
i

µ∗ifi(x) ∀x ∈ X □
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Proof of Sion-Kakutani Theorem: We should prove that problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

are solvable with equal optimal values.
10. Since X is compact and F (x, λ) is continuous on X × Λ, the function F (λ) is
continuous on Λ. Besides this, the sets

Λa = {λ ∈ Λ : F (λ) ≥ a}

are contained in the sets

Λa = {λ ∈ Λ : F (x̄, λ) ≥ a}

and therefore are bounded. Finally, Λ is closed, so that the continuous function F (·)
with bounded level sets Λa attains it maximum on a closed set Λ. Thus, (D) is
solvable.
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20. Consider the sets

X(λ) = {x ∈ X : F (x, λ) ≤ Opt(D)}.
These are closed convex subsets of a compact set X. Let us prove that every finite
collection of these sets has a nonempty intersection. Indeed, assume that X(λ1) ∩
... ∩X(λN) = ∅, so that

maxj=1,...,NF (x, λj) > Opt(D) ∀x ∈ X

⇒ minx∈XmaxjF (x, λj) > Opt(D)

by compactness of X and continuity of F .
By MinMax Lemma, there exist weights µj ≥ 0,

∑
j µj = 1, such that

min
x∈X

∑
j
µjF (x, λj)︸ ︷︷ ︸

≤ F (x,
∑

jµjλj)
since F is concave in λ

> Opt(D),

⇒ F (
∑

j
µjλj) := min

x∈X
F (x,

∑
j
µjλj) ≥ min

x∈X

∑
j

µjF (x, λj) > Opt(D),

which is impossible.
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30. Since every finite collection of closed convex subsets X(λ) of the compact set
X has a nonempty intersection, all these sets have a nonempty intersection:

∃x∗ ∈ X : F (x∗, λ) ≤ Opt(D) ∀λ.

Due to Opt(P ) ≥ Opt(D), this is possible iff x∗ is optimal for (P ) and Opt(P ) =

Opt(D).
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Simple Observation Schemes

♣ Simple Observation Scheme is a collection
O = ((Ω,Π), {pµ : µ ∈M},F),

where
• (Ω,Π) is a (complete separable metric) observation space Ω with (σ-finite σ-

additive) reference measure Π,
suppΠ = Ω;

• {pµ(·) : µ ∈M} is a parametric family of probability densities, taken w.r.t. Π, on
Ω, and

• M is a relatively open convex set in some Rn

• pµ(ω): positive and continuous in µ ∈M, ω ∈ Ω

• F is a finite-dimensional space of continuous functions on Ω containing con-
stants and such that

ln(pµ(·)/pν(·)) ∈ F ∀µ, ν ∈M
• For ϕ ∈ F , the function

µ 7→ ln

(∫
Ω

eϕ(ω)pµ(ω)P (dω)

)
is finite and concave in µ ∈M.
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♠ Example 1: Gaussian o.s.
• (Ω,Π) = (Rd,mesd) is Rd with Lebesgue measure,
• {pµ(·)= N (µ, Id) : µ ∈ Rd},

• F = {affine functions on Ω}⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

ea
Tω+bpµ(ω)Π(dω)

)
= aTµ+ b+ aTa

2
: is concave in µ.

• Gaussian o.s. is the standard observation model in Signal Processing.

♠ Example 2: Poisson o.s.
• (Ω,Π), is the nonnegative part Zd+ of integer lattice in Rd equipped with counting measure,

• {pµ(ω) =
d∏

i=1

µωii e
−µi

ωi!
: µ ∈M := Rd++} is the family of distributions of random vectors with inde-

pendent across i Poisson entries ωi ∼ Poisson(µi),

• F = {affine functions on Ω}⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

ea
Tω+bpµ(ω)Π(dω)

)
= b+

∑
i(e

ai − 1)µi is concave in µ.

Poisson o.s. arises in Poisson Imaging, including
• Positron Emission Tomography,
• Large binocular Telescope,
• Nanoscale Fluorescent Microscopy.
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♠ Example 3: Discrete o.s.
• (Ω,Π) is finite set {1, ..., d} with counting measure,
• {pµ(ω) = µω, µ ∈M = {µ > 0 :

∑d
ω=1 µω = 1}} is the set of non-vanishing

probability distributions on Ω,

• F = {all functions on Ω}⇒


ln(pµ(·)/pν(·)) ∈ F ,

ln

(∫
Ω

eϕ(ω)pµ(ω)Π(dω)

)
= ln

(∑
ω∈Ω eϕ(ω)µω

)
is concave in µ.

♠ Example 4: Direct product of simple o.s.’s.
Simple o.s.’s

Ok =
(
(Ωk,Πk), {pµk,k(·) : µk ∈Mk},Fk

)
, 1 ≤ k ≤ K

give rise to their direct product
⊗K
k=1Ok defined as the o.s.(

(ΩK,ΠK), {pµK(·) : µK ∈MK},FK
)
,

where
• ΩK = Ω1×, ...×ΩK, ΠK = Π1 × ...×ΠK

• MK =M1 × ...×MK, p(µ1,...,µK)(ω1, ..., ωK) =
K∏
k=1

pµk,k(ωk)

• FK = {ϕ(ω1, ..., ωK︸ ︷︷ ︸
ωK

) =
∑K

k=1 ϕk(ωk) : ϕk ∈ Fk, 1 ≤ k ≤ K}

♡ Fact: Direct product of simple o.s.’s is a simple o.s.
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♠ Example 5: Power of a simple o.s.
When all K o.s.’s in direct product OK =

⊗K
k=1Ok are identical to each other:

Ok = O := ((Ω,Π), {pµ(·) : µ ∈M},F) , 1 ≤ k ≤ K
we can “restrict OK to its diagonal,” arriving at K-th power O(K) of O:

O(K) =
(
(ΩK,ΠK), {p(K)

µ (·) : µ ∈M},F(K)
)
,

p
(K)
µ (ω1, ..., ωK) =

K∏
k=1

pµ(ωk), F(K) = {ϕ(K)(ωK) =
K∑
k=1

ϕ(ωk) : ϕ ∈ F}

♡ Fact: Power of a simple o.s. is a simple o.s.
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ε⋆(P1,P2) = min
ϕ(·),ϵ

{
ϵ :

∫
Ω e−ϕ(ω)P (dω) ≤ ϵ∀(P ∈ P1)∫
Ω eϕ(ω)P (dω) ≤ ϵ∀(P ∈ P2)

}
(!)

♣ Main Result. Let O = ((Ω,Π), {pµ(·) : µ ∈ M},F) be a simple o.s., and let
M1, M2 be two nonempty compact convex subsets ofM. These subsets give rise
to two families of probability distributions P1, P2 on Ω and two hypotheses on the
distribution P of random observation ω ∈ Ω:

Pχ = {P : the density of P is pµ with µ ∈Mχ}, Hχ : P ∈ Pχ, χ = 1,2.

Consider the function

Φ(ϕ;µ, ν) = 1
2

[
ln
(∫

Ω e−ϕ(ω)pµ(ω)Π(dω)
)
+ ln

(∫
Ω eϕ(ω)pν(ω)Π(dω)

)]
:

F × [M1 ×M2]→ R.
Then

A. Φ(ϕ;µ, ν) is continuous on its domain, convex in ϕ ∈ F , concave in (µ, ν) on
M1 ×M2 and possesses saddle point (min in ϕ, max in (µ, ν)):

∃(ϕ∗ ∈ F , (µ∗, ν∗) ∈M1 ×M2) :
Φ(ϕ;µ∗, ν∗) ≥ Φ(ϕ∗;µ∗, ν∗) ≥ Φ(ϕ∗;µ, ν) ∀(ϕ ∈ F , (µ, ν) ∈M1 ×M2)
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ε⋆(P1,P2) = min
ϕ(·),ϵ

{
ϵ :

∫
Ω e−ϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P1)∫
Ω eϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P2)

}
(!)

Φ(ϕ;µ, ν) = 1
2

[
ln
(∫

Ω e−ϕ(ω)pµ(ω)Π(dω)
)
+ ln

(∫
Ω eϕ(ω)pν(ω)Π(dω)

)]
:

F × [M1 ×M2]→ R.

B. The component ϕ∗ of a saddle point (ϕ∗, (µ∗, ν∗)) of Φ is an optimal solution
to (!), and

ε⋆(P1,P2) = exp{Φ(ϕ∗;µ∗, ν∗)}.
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ε⋆(P1,P2) = min
ϕ(·),ϵ

{
ϵ :

∫
Ω e−ϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P1)∫
Ω eϕ(ω)P (dω) ≤ ϵ ∀(P ∈ P2)

}
(!)

Φ(ϕ;µ, ν) = 1
2

[
ln
(∫

Ω e−ϕ(ω)pµ(ω)Π(dω)
)
+ ln

(∫
Ω eϕ(ω)pν(ω)Π(dω)

)]
:

F × [M1 ×M2]→ R.

C. A saddle point (ϕ∗, (µ∗, ν∗)) can be found as follows. We solve the optimization
problem

SadVal = max
µ∈M1,ν∈M2

ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
;

which is a solvable convex optimization problem, and take an optimal solution to the
problem as (µ∗, ν∗). We then set

ϕ∗(ω) = 1
2
ln
(
pµ∗(ω)/pν∗(ω)

)
,

thus getting an optimal detector ϕ∗ ∈ F . For this detector and the associated simple
test Tϕ∗,

Risk(Tϕ∗|H1, H2) ≤ Risk[ϕ∗|P1,P2] = Risk1[ϕ∗|P1,P2] = Risk2[ϕ∗|P1,P2]
= ε⋆(P1,P2) = eSadVal =

∫
Ω

√
pµ∗(ω)pν∗(ω)Π(dω).
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Informal explanation of Main Result

A. Question: Assume that we are given two distributions, one with density p(ω) > 0, and another
with density q(ω) > 0, What is the smallest risk detector for the “families” P1 = {p} and P2 = {q} ?
Answer: We want to solve the problem

min
ϕ(·)

max

[∫
Ω
exp{−ϕ(ω)}p(ω)Π(dω),

∫
Ω
exp{ϕ(ω)}q(ω)Π(dω)

]
.

As we remember, what matters is the product of partial risks; shifting ϕ(·) by constant, we can redis-
tribute the product between the factors as we want.
⇒ All we need is to solve the problem

min
ϕ(·)

1

2

[
ln

(∫
Ω
exp{−ϕ(ω)}p(ω)Π(dω)

)
+ ln

(∫
Ω
exp{ϕ(ω)}q(ω)Π(dω)

)]
The (balanced) optimal solution is just ϕ∗(ω) = 1

2
ln (p(ω)/q(ω)), and its risk on the pair {p}, {q}

is
∫
Ω

√
p(ω)q(ω)Π(dω). The simplest way to see it is represent a candidate solution in the form of

ϕ∗(ω) + δ(ω) and to note that in terms of δ(·) the objective to be minimized becomes

Φ[δ] =
1

2

[
ln

(∫
Ω
exp{−δ(ω)}

√
p(ω)q(ω)Π(dω)

)
+ ln

(∫
Ω
exp{δ(ω)}

√
p(ω)q(ω)Π(dω)

)]
We see that Φ[δ] is convex and even functional of δ(·), and thus it attains its minimum when δ(·) = 0.
Note: We lose nothing when assuming that we select the best detector from some linear space F of
functions on Ω rather than from the space of all functions on Ω; all that matters is for F to contain
ln(p(·)/q(·)).
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B. Now let us try to find the minimum risk detector for “massive” families of probability densities
P1 = {pµ(·) : µ ∈M1}, P2 = {pµ(·) : µ ∈M2}, where {pµ(·), µ ∈ M} is a parametric family of
positive probability densities, and M1 and M2 are given subsets ofM.
By the same “redistributing partial risks” argument all we need is to solve the optimization problem

Opt = min
ϕ(·)

1

2

[̈
max
µ∈M1

ln

(∫
Ω
exp{−ϕ(ω)}pµ(ω)Π(dω)

)
+max

ν∈M2

ln

(∫
Ω
exp{ϕ(ω)}pν(ω)Π(dω)

)]
• Let us look at all pairs pµ(·), pν(·) with µ ∈M1 and ν ∈M2 and at the optimal for these pairs
detectors ϕµν(ω) = 1

2
ln(pµ(ω)/pν(ω)) and their risks

∫
Ω

√
pµ(ω)pν(ω)Π(dω). These risks clearly

lower-bound Opt.
⇒ The quantity

Opt = max
µ∈M1,ν∈M2

ln

(∫
Ω

√
pµ(ω)pν(ω)Π(dω)

)
(!)

lower-bounds Opt.
• We now can make an educated guess that Opt is equal to Opt, and the optimal detector for the
“worst” pair µ ∈M1, ν ∈M2 – one which is an optimal solution to (!) – is an optimal solution to the
problem of interest.
♣ Simplicity of the observation scheme in question and compactness and convexity of M1 and M2

turn out to be the conditions which make our educated guess true, and make the problem of computing
the optimal detector convex and thus computationally tractable!
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Implementation

♠ Gaussian o.s. Pχ = {N (µ, Id) : µ ∈Mχ}, χ = 1,2:

• Problem maxµ∈M1,ν∈M2
ln
(∫ √

pµ(ω)pν(ω)Π(dω)
)

reads

max
µ∈M1,ν∈M2

[
−
1

8
∥µ− ν∥22

]
• The optimal balanced detector and its risk are given by

ϕ∗(ω) = 1
2
[µ∗ − ν∗]ω − c,

(µ∗, ν∗) ∈ Argmin
µ∈M1,ν∈M2

||µ− ν∥22
c = 1

4
[µ∗ − ν∗]T [µ∗+ ν∗]

ε⋆(P1,P2) = exp
{
−∥µ

∗−ν∗∥22
8

}
Note: We are in the “signal plus noise” model of observations with noise ∼ N (0, Id). The test Tϕ∗ is
nothing but the pairwise Euclidean separation test associated with Xχ =Mχ, χ = 1,2.
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♠ Poisson o.s. Pχ = {
d⊗

i=1
Poisson(µi) : µ = [µ1; ...;µd] ∈Mχ}, χ = 1,2:

• Problem maxµ∈M1,ν∈M2
ln
(∫ √

pµ(ω)pν(ω)Π(dω)
)

reads

max
µ∈M1,ν∈M2

[
−
1

2

d∑
i=1

(
√
µi −

√
νi)

2

]
︸ ︷︷ ︸∑

i
[
√
µiνi−

1
2
µi−

1
2
νi]

• The optimal balanced detector and its risk are given by

ϕ∗(ω) = 1
2

∑d
i=1[ln(µ

∗
i/ν
∗
i )ωi + ν∗i − µ∗i ],

(µ∗, ν∗) ∈ Argmax
µ∈M1,ν∈M2

∑
i[
√
µiνi − 1

2
µi − 1

2
νi]

ε⋆(P1,P2) = exp
{
−1

2

∑
i

(√
µ∗i −

√
ν∗i
)2}
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♠ Discrete o.s.

Pχ = {µ ∈Mχ},Mχ ⊂ ∆o
d = {µ ∈ Rd+ :

∑
ω µω = 1, µ > 0},

χ = 1,2

• Problem maxµ∈M1,ν∈M2
ln
(∫ √

pµ(ω)pν(ω)Π(dω)
)

reads

max
µ∈M1,ν∈M2

∑
ω

√
µωνω

• The optimal balanced detector and its risk are given by

ϕ∗(ω) = 1
2
ln(µ∗ω/ν

∗
ω), ω ∈ Ω = {1, ..., d}

(µ∗, ν∗) ∈ Argmin
µ∈M1,ν∈M2

∑
ω

√
µωνω

ε⋆(P1,P2) =
∑

ω

√
µ∗ων

∗
ω
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♠ Direct product of simple o.s.’s. Let
Ok =

(
(Ωk,Πk), {pµk,k(·) : µk ∈Mk},Fk

)
, 1 ≤ k ≤ K,

be simple o.s.’s, and Mχ,k ⊂Mk, χ = 1,2, be nonempty convex compact sets. Consider the simple
o.s. (

(ΩK,ΠK), {pµK : µK ∈MK},FK
)
=

K⊗
k=1

Ok

along with two compact convex sets

Mχ =Mχ,1 × ...×Mχ,K, χ = 1,2.

♡ Question: What is the problem

max
µK∈M1,νK∈M2

ln

(∫
ΩK

√
pµK(ω

K)pνK(ω
K)ΠK(dωK)

)
responsible for the smallest risk detector for the families of distributions P(K)

1 , P(K)
2 associated in OK

with the sets M1, M2 ?
♡ Answer: This is the separable problem

max
{µk∈M1,k,νk∈M2,k}Kk=1

∑K

k=1
ln

(∫
Ωk

√
pµk,k(ωk)pνk,k(ωk)Πk(dωk)

)
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⇒ Minimum risk balanced detector for P(K)
1 , P(K)

2 can be chosen as

ϕK∗ (ω1, ..., ωK) =
∑K

k=1 ϕ∗,k(ωk),
ϕ∗,k(ωk) = 1

2
ln
(
pµ∗k,k(ω)/pν∗k ,k(ω)

)[
(µ∗k, ν

∗
k) ∈ Argmax

µk∈M1,k,νk∈M2,k

ln
(∫

Ωk

√
pµk,k(ωk)pνk,k(ωk)Πk(dωk)

)]
and

ε⋆(P(K)
1 ,P(K)

2 ) =
K∏
k=1

ε⋆(P1,k,P2,k),

where Pχk are the families of distributions associated in Ok with Mχ,k, χ = 1,2.
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♠ Remark: The families of distributions P(K)
χ are direct products of the families Pχ,k over k = 1, ...K.

From Detector Calculus, extending P(K)
χ to families P⊗,Kχ of quasi-direct products of families Pχ,k,

k = 1, ...,K, we still have

Risk[ϕK∗ |P
⊗,K
1 ,P⊗,K2 ] ≤

K∏
k=1

ε⋆(P1,k,P2,k)︸ ︷︷ ︸
=:ϵK

,

whence also ϵK = ε⋆(PK1 ,PK2 ) ≤ ε⋆(P⊗,K1 ,P⊗,K2 ) ≤ ϵK

⇒ ε⋆(P⊗,K1 ,P⊗,K2 ) =
K∏
k=1

ε⋆(P1,k,P2,k).
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♠ Power of a simple o.s. Let
O = ((Ω,Π), {pµ(·) : µ ∈M},F)

be a simple o.s., and Mχ ⊂M, χ = 1,2, be nonempty convex compact sets. Consider the K-th
power of O, that is, the simple o.s.

O(K) =

(
(ΩK,ΠK), {p(K)

µ (ω1, ..., ωK) =
K∏
k=1

pµ(ωk) : µ ∈M},F(K)

)
.

♡ Question: What is the problem

max
µ∈M1,ν∈M2

ln

(∫
ΩK

√
p(K)
µ (ωK)p(K)

ν (ωK)ΠK(dωK)

)
responsible for the smallest risk detector for the families of distributions PKχ associated in O(K) with
the sets Mχ, χ = 1,2 ?
♡ Answer: This is the separable problem

maxµ∈M1,ν∈M2

∑K

k=1
ln

(∫
Ω

√
pµ(ωk)pν(ωk)Π(dωk)

)
︸ ︷︷ ︸

K ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)
⇒ Minimum risk balanced detector for PK1 , PK2 can be chosen as

ϕ(K)
∗ (ω1, ..., ωK) =

∑K
k=1 ϕ∗(ωk) with ϕ∗(ωk) = 1

2
ln (pµ∗(ω)/pν∗(ω))[

(µ∗, ν∗) ∈ Argmax
µ∈M1,ν∈M2

ln
(∫

Ω

√
pµ(ω)pν(ω)Π(dω)

)]
and

ε⋆(PK1 ,PK2 ) = [ε⋆(P1,P2)]
K,

where Pχ are the families of distributions associated in O with Mχ, χ = 1,2.
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♠ Remark: The families of distributions PKχ are direct powers P⊕,Kχ of the families Pχ. From Detector
Calculus, extending PKχ to families P⊗,Kχ of quasi-direct powers of families Pχ, we still have

Risk[ϕ(K)
∗ |P

⊗,K
1 ,P⊗,K2 ] ≤ [ε⋆(P1,P2)]

K︸ ︷︷ ︸
=:ϵK

,

whence also ϵK = ε⋆(PK1 ,PK2 ) ≤ ε⋆(P⊗,K1 ,P⊗,K2 ) ≤ ϵK

⇒ ε⋆(P⊗,K1 ,P⊗,K2 ) = [ε⋆(P1,P2)]
K.
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Near-Optimality of Minimum Risk Detector-Based Tests
in Simple Observation Schemes

♣ Proposition A. Let
O = ((Ω,Π), {pµ : µ ∈M},F)

be a simple o.s., and Mχ ⊂M, χ = 1,2, be nonempty convex compact sets, giving rise to families
of distributions

Pχ = {P : P has density pµ(·) w.r.t. Π with µ ∈Mχ}, χ = 1,2,
hypotheses

Hχ : P ∈ Pχ, χ = 1,2,
on the distribution of a random observation ω ∈ Ω, and minimum risk detector ϕ∗ for P1, P2.

Assume that in the nature there exists a simple single-observation test, deterministic or randomized,
T with

Risk(T |H1, H2) ≤ ϵ < 1/2.

Then the risk of the simple test Tϕ∗ accepting H1 when ϕ∗(ω) ≥ 0 and accepting H2 otherwise “is
comparable” to ϵ:

Risk(Tϕ∗|H1, H2) ≤ ϵ+ := 2
√
ϵ(1− ϵ) < 1.
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Proof. From what we called “universality” of detector-based tests, there exists a detector ϕ with
Risk[ϕ|P1,P2] ≤ ϵ+, and Risk[ϕ∗|P1,P2] can be only less than Risk[ϕ|P1,P2]. □
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♣ Proposition B. Let O = ((Ω,Π), {pµ : µ ∈M},F) be a simple o.s., and Mχ ⊂M, χ = 1,2, be
nonempty convex compact sets, giving rise to families of distributions

Pχ = {P : P has density pµ(·) w.r.t. Π with µ ∈Mχ}, χ = 1,2
their direct powers

P⊙,Kχ = {P × ...× P : P ∈ Pχ}, χ = 1,2, K = 1,2, ...

hypotheses HK
χ : P ∈ P⊙,Kχ , χ = 1,2, K = 1,2, ... on the distribution P of random K-repeated

observation ωK = (ω1, ...ωK) ∈ ΩK, and minimum risk detector ϕ∗ for P1, P2.
Assume that in the nature there positive integer K∗ and a simple K∗-observation test, deterministic or
randomized, TK∗ capable to decide on the hypotheses HK∗

χ , χ = 1,2, with risk ≤ ϵ < 1/2. Then the
test Tϕ∗,K deciding on HK

χ , χ = 1,2, by accepting HK
1 whenever ϕ(K)(ωK) :=

∑K
k=1 ϕ∗(ωk) ≥ 0

and accepting HK
2 otherwise, satisfies

Risk(Tϕ∗,|HK
1 , H

K
2 ) ≤ ϵ ∀K ≥ K̂∗ =

2

1− ln(4(1−ϵ))
ln(1/ϵ)

K∗.

Moreover, this risk bound remains true when the hypotheses HK
χ are extended to H⊗,Kχ stating that

the distribution P of ωK belongs to the quasi-direct K-th power P⊗,Kχ of Pχ, χ = 1,2. Note that
K̂∗/K∗ → 2 as ϵ→ +0.
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Proof. As we know, K∗-th powerO(K∗) ofO is simple o.s. along withO, and ϕ(K∗)
∗ is the minimum risk

detector for the families P⊙,K∗χ , χ = 1,2, the risk of this detector being [ε⋆(P1,P2)]
K∗. By Proposition

A as applied to O(K∗) in the role of O, we have

[ε⋆(P1,P2)]
K∗ ≤ 2

√
ϵ(1− ϵ)⇒ ε⋆(P1,P2) ≤ [2

√
ϵ(1− ϵ)]1/K∗ < 1.

By Detector Calculus, it follows that for K = 1,2, ... it holds

Risk[ϕ(K)
∗ |P

⊗,K
1 ,P⊗,K2 ] ≤ [2

√
ϵ(1− ϵ)]K/K∗

and the right hand side is ≤ ϵ whenever K ≥ K̂∗. □
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Near-Optimality of Detector-Based Up to Closeness Testing
in Simple Observation Schemes

♣ Situation: We are given a simple o.s.

O = ((Ω,Π), {pµ : µ ∈M},F)
and a collection of nonempty convex compact subsets Mℓ, 1 ≤ ℓ ≤ L giving rise to
• Families Pℓ = {P : P admits density pµ, µ ∈Mℓ w.r.t. Π}, ℓ = 1, ..., L, along with quasi-direct

powers P⊗,Kℓ of Pℓ and hypothesesH⊗,Kℓ : P ∈ P⊗,Kℓ on the distribution P ofK-repeated observation
ωK = (ω1, ..., ωK),
• minimum-risk balanced single-observation detectors ϕℓℓ′(ω) for Pℓ, Pℓ′ along with their risks

ε⋆(Pℓ,Pℓ′), 1 ≤ ℓ < ℓ′ ≤ L, and K-repeated versions

ϕKℓℓ′(ω
K) =

K∑
k=1

ϕℓℓ′(ωk)

of ϕℓℓ′ such that

Risk[π(K)
ℓℓ′ |H

⊗,K
ℓ , H⊗,Kℓ′ ] ≤ [ε⋆(Pℓ,Pℓ′)]K .
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♠ Assume that in addition to the above data, we are given a closeness relation C on {1, ..., L}.
Applying Calculus of Detectors, for every positive integer K, setting

θK =

∣∣∣∣∣
∣∣∣∣∣
[
εK⋆ (Pℓ,Pℓ′) ·

{
1, (ℓ, ℓ′) ̸∈ C
0, (ℓ, ℓ′) ∈ C

]L
ℓ,ℓ′=1

∣∣∣∣∣
∣∣∣∣∣
2,2

we can assemble the outlined data, in a computationally efficient fashion, into a K-observation test
T K deciding on H⊗,Kℓ , 1 ≤ ℓ ≤ L, with C-risk upper-bounded as follows:

RiskC(T K|H⊗,K1 , ..., H⊗,KL ) ≤ κθK
(κ > 1 can be selected to be as close to 1 as we want).
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♠ Proposition. In the just described situation, assume that for some ϵ < 1/2 and K∗ in the nature
there exists a K∗-observation test T , deterministic or randomized, deciding on the hypotheses

H⊙,K∗ℓ : ωK∗ = (ω1, ..., ωK∗) is an i.i.d. sample drawn from a P ∈ Pℓ,

ℓ = 1, ..., L, with C-risk ≤ ϵ. Then the test T K with

K ≥ 2

[
1+ ln(κL)/ ln(1/ϵ)

1− ln(4(1− ϵ))/ ln(1/ϵ)

]
︸ ︷︷ ︸

→1 as ϵ→+0

K∗

decides on H⊗,Kℓ , ℓ = 1, ..., L, with C-risk ≤ ϵ as well.
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Proof. • Let us fix ℓ, ℓ′ such that (ℓ, ℓ′) ̸∈ C, and let us convert T into a simple K∗-observation test
T̃ deciding on H⊙,K∗ℓ , H⊙,K∗ℓ′ as follows: whenever ℓ ∈ T (ωK∗), T̃ accepts H⊙,K∗ℓ and rejects H⊙,K∗ℓ′ ,
otherwise the test accepts H⊙,K∗ℓ′ and rejects H⊙,K∗ℓ . It is immediately seen that

Risk(T̃ |H⊙,K∗ℓ , H⊙,K∗ℓ′ ) ≤ ϵ.

Indeed, let PK∗ = P × ...× P be the distribution of ωK∗. Whenever PK∗ obeys H⊙,K∗ℓ , T must accept
the hypothesis with PK∗-probability ≥ 1− ϵ, whence

Risk1(T̃ |H⊙,K∗ℓ , H⊙,K∗ℓ′ ) ≤ ϵ.

If PK∗ obeys H⊙,K∗ℓ′ , the PK∗-probability of the event “T accepts H⊙,K∗ℓ′ and rejects H⊙,K∗ℓ ” is≤ ϵ, since
H⊙,K∗ℓ′ , H⊙,K∗ℓ are not C-close to each other
⇒ PK∗-probability to reject H⊙,K∗ℓ is at least 1− ϵ
⇒ Risk2(T̃ |H⊙,K∗ℓ , H⊙,K∗ℓ′ ) ≤ ϵ.

3.52



H⊙,K∗ℓ , H⊙,K∗ℓ′ can be decided upon by a simple test with risk ≤ ϵ

• H⊙,K∗ℓ′ , H⊙,K∗ℓ can be decided upon with risk ≤ ϵ < 1/2

⇒ ε⋆(P⊙,K∗ℓ ,P⊙,K∗ℓ′ ) ≤ 2
√
ϵ(1− ϵ) < 1 (Calculus of Detectors)

⇒ ε⋆(Pℓ,Pℓ′) ≤
[
2
√
ϵ(1− ϵ)

]1/K∗
< 1 (since O is a simple o.s.)

⇒ θK ≤
[
2
√
ϵ(1− ϵ)

]K/K∗
L

⇒ RiskC(T K|H⊗,K1 , ..., H⊗,KL ) ≤ κθK ≤ ϵ when

K/K∗ ≥ 2
1+ ln(κL)/ ln(1/ϵ)

1− ln(4(1− ϵ))/ ln(1/ϵ)
.
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How it works: Illustration 0
Comparison with Euclidean Separation

♣ Recall testing, via repeated observations, L = 5 hypotheses

Hℓ : µ ∈ Eℓ
on location µ of 2D Student random vector with parameter ν:

ω = µ+ g
√
ν/χ, g ∼ N (0, I2), χ ∼ χ2[ν]

[χ2[ν] – distribution of ξTξ, ξ ∼ N (0, Iν)]

♠ Sets Eℓ: 5 ellipses

1

2

3

4

5

♠ Closeness C: Hℓ is close to Hℓ′ when the ellipses Eℓ, Eℓ′ intersect

3.54



♣ As ν →∞, the distribution of ω approaches the Gaussian distribution N (µ, I2).
♠ The limiting case ν = ∞ can be treated by testing multiple hypotheses up to
closeness, with pairwise repeated-observation tests yielded by
either

(a) Euclidean separation
or

(b) detectors for convex hypotheses in Gaussian o.s.
♠ On close inspection, both options result in tests of similar structure:
(I) We define quantities Φij, 1 ≤ i ≤ j ≤ L as follows:
— when Hi is close to Hj (i.e., Ei ∩ Ej ̸= ∅), we set Φij = 0;
— when Hi is not close to Hj (i.e., Ei ∩ Ej = ∅), we

• set ϕij(ω) = [xij − yij]T
[
ω − xij+yij

2

]
, (xij, yij) = argmin x∈Ei

y∈Ej
∥x− y∥2

• assemble ϕij(ωk), k ≤ K, into Φij according to

for (a): Φij =

{
1 , ϕij(ωk) ≥ 0 for at least K/2 values of k
−1 , otherwise

for (b): Φij =

{
1 ,

∑
k
ϕij(ωk) ≥ 0

−1 , otherwise

(II) For j < i, we set Φij = −Φji, thus arriving at a skew-symmetric matrix Φ = [Φij].
♡We accept exactly those hypotheses Hℓ for which ℓ-th row in Φ is nonnegative.
♠ Comparing (a) and (b), K = 127 semi-stationary observations:

(a) (b)
upper risk bound 0.320 0.230

empirical risk over 500 simulations 0.120 0.078
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How it works: Illustration I
Predicting Outcome of Elections via Opinion Polls

Situation: L candidates are running for office, with just one to be elected, and every
voter has already decided whom to vote for in the forthcoming elections. We want to
predict elections’ outcome via Opinion poll where K randomly selected voters reveal
their choices. How large should be K in order to predict the winner with a given con-
fidence?
Model: Assume that K voters to be interviewed are drawn from the population uni-
formly and independently of each other. Denoting by µℓ the fraction of voters intend-
ing to vote for candidate #ℓ in the entire population, we get a probability distribution
µ on the L-element set of candidates.
Note: Outcomes of K interviews form K-element i.i.d. sample ωK drawn from µ.
♠ Given small “winning margin” δ > 0 and assuming that the distribution µ of vot-
ers’ preferences is not a “δ-tie” – the difference between the largest and the second
largest entries in µ is at least δ — predicting the winner can be modeled as deciding
on L convex hypotheses

Hℓ : µ ∈ Pℓ := {p ∈ ∆L : pℓ ≥ δ+maxj ̸=ℓ pj}, ℓ = 1, ..., L
[∆L = {p ∈ RL+ :

∑
ℓ pℓ = 1}]

in Discrete o.s. via stationary K-repeated observation.
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Hℓ : µ ∈ Pℓ := {p ∈ ∆L : pℓ ≥ δ+maxj ̸=ℓ pj}, ℓ = 1, ..., L

♠ Our machinery applies as follows:
•We solve L(L− 1)/2 convex optimization problems

ϵij = maxµ,ν
{∑

i
√
µiνi : µ ∈ Pi, ν ∈ Pj

}
, 1 ≤ i < j ≤ L.

with optimal solutions µij, νij giving rise to detectors
ϕij(ω) = 1

2 ln
(
µ
ij
ω /ν

ij
ω

)
, ω ∈ Ω = {1,2, ..., L}

We set also
ϵji = ϵij, ϕji(·) = −ϕij(·), 1 ≤ i < j ≤ m, ϵii = 0, ϕii(·) ≡ 0, i ≤ m

• We build the symmetric matrix E =
[
ϵKij

]
i,j≤L

The Perron-Frobenius eigenvector

f of E gives rise to the detectors
ϕ
(K)
ij (ωK) =

∑K
k=1 ϕij(ωk) + ln(fi/fj)

and the test which accepts Hℓ if and only if p(K)
ℓj (ωK) > 0 for all j ̸= ℓ.

The risk of this test does not exceed the spectral norm of E.
♠ Given δ and upper bound ϵ on the risk of predicting elections’ outcome, we can
specify the smallest size K of Opinion poll resulting in prediction of required quality.
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♣ Results, confidence level 1− ϵ = 0.95:

winning margin δ
10% 5% 2.5% 1%

L = 2 166 ∨ 597 664 ∨ 2,394 2,657 ∨ 9,584 16,607 ∨ 59,912
L = 4 166 ∨ 815 664 ∨ 3,272 2,657 ∨ 13,098 16,607 ∨ 81,882
L = 8 166 ∨ 984 664 ∨ 3949 2,657 ∨ 15,809 16,694 ∨ 98,811
• upper bounds on poll sizes are given by our machinery
• lower bounds on poll sizes stem from lower bounding of pairwise risks

♠ USA Presidential Elections-2016:

State Actual
margin

Poll size,
lower bound

Poll size,
upper bound

Georgia 5.1% 638 2,301
Wisconsin 0.77% 28,008 101,043

Pennsylvania 0.72% 32,030 115,555
Michigan 0.23% 313,864 1,132,333

Note: the total number of Michigan voters participated in Presidential Elections-2016
was 4,799,284
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Variation: Comparative Drug Study

♣ Situation: We want to carry out a clinical study aimed at comparing the effects of
two drugs, A and B. The effect of a drug on a particular patient is categorical with
µ mutually exclusive values, say, ternary: “positive effect,” “no effect,” or “negative
effect.”
The study is organized as follows: in a single trial we
— draw trial’s subject at random, from the uniform distribution on the pool of animals

(or people) participating in the study
— flip a coin, with probability α for heads and β for tails, to decide which drug, A or
B, to administer.

After the subject is administered the drug, we record the effect.
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Model: Let us associate with k-th member of the pool 2µ-dimensional vector xk as
follows:
— the first µ entries encode the effect on the member of drug A: when it is
ι ∈ {1, ..., µ}, we write 1 in position ι and 0 in other positions of the first half of xk

— the last µ entries encode the effect of drug B: when it is ι, we write 1 in position
µ+ ι and 0 in the remaining positions of the second half of xk.

Example: With ternary effect,
— x = [1; 0; 0;0; 0; 1] encodes ”positive effect of drug A, negative effect of drug B”
— x = [0; 1; 0;1; 0; 0] encodes ”no effect of drug A, positive effect of drug B”
— x = [1; 0; 1;0; 0; 1] is illegitimate
Let x be the average of the vectors {xk}k taken over the pool of all candidates.
Note: x encodes the probabilities pUι of possible outcomes “administered drug U ∈
{A,B}, observed effect ι ∈ {1, ..., µ}” of a single trial:

pAι = αxι, pBι = βxµ+ι

⇒ The distribution p of outcomes of a single trial is linearly parameterized by the
(unknown in advance) vector x known to belong to the convex set

∆µ = {x ∈ R2µ
+ :

µ∑
ι=1

xι =
µ∑
ι=1

xµ+ι = 1}
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... the distribution p of outcomes of a single trial is linearly parameterized by the (unknown in advance)

vector x known to belong to the convex compact set

∆µ = {x ∈ R2µ
+ :

∑µ
ι=1 xι =

∑µ
ι=1 xµ+ι = 1}

⇒ Various questions about relative performance of the drugs, like

Which of the drugs have more chances to have positive effect?

reduce to testing convex hypotheses in Discrete o.s.
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Example 1: Assume that the effect is ternary:

ι = 1⇒ positive effect; ι = 2⇒ no effect; ι = 3⇒ negative effect

and we want to decide via K experiments on the hypotheses
• the chances for A to have positive effect are at least by margin δ > 0 larger than those for B
• the chances for A to have positive effect are smaller than those for B

Equivalently: Given stationary K-repeated observation ωK with components ωk
taking values (U, ι) ∈ {A,B} × {1,2,3}, and the distribution p affinely parameter-
ized by x ∈∆3, decide on the hypotheses

HA : p ∈ P(XA), HB : p ∈ P(XB)
where

P(X) = {p(x) : x ∈ X}
and

p(x)Uι =

{
αxι, U = A
βxµ+ι, U = B

, XA = {x ∈∆3 : x1 ≥ x4 + δ}, XB = {x ∈∆3 : x1 ≤ x4}.
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Numerical results: With ternary effect, the number K of observations needed to
decide 0.95-reliably on the hypotheses
• The chances to get an outcome from I with drug A are at least by margin δ larger

than the chances to get an outcome from J with drug B
• The chances to get an outcome from I with drug A are smaller than the chances

to get an outcome from J with drug B
are independent of proper and nonempty subsets I, J of the set

{”positive effect,” ”no effect,” ”negative effect”}
of outcomes of a single trial and is as follows:

δ 0.50 0.25 0.15 0.10 0.05
K 87 375 591 2,388 9,578

δ 0.50 0.25 0.15 0.10 0.05
K 117 501 788 3,185 12,771

α = 0.5, β = 0.5 α = 0.75, β = 0.25
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Note: When trials using different drugs require different amounts of resources
(money, time, clinical facilities, etc.), one could use easy-to-compute dependency
of K on α = 1− β to optimize our study under constraints on how reliable and how
“costly” it should be.

δ

0.50 Cost(B) = 1 Cost(B) = 2 Cost(B) = 3 Cost(B) = 4 Cost(B) = 5
0.50/87/87 0.58/127/91 0.63/163/96 0.66/197/96 0.68/229/104
Cost(B) = 6 Cost(B) = 7 Cost(B) = 8 Cost(B) = 9 Cost(B) = 10
0.72/260/104 0.72/291/104 0.72/322/117 0.72/351/117 0.76/380/117

0.25 Cost(B) = 1 Cost(B) = 2 Cost(B) = 3 Cost(B) = 4 Cost(B) = 5
0.50/375/375 0.59/547/391 0.63/700/412 0.67/845/412 0.68/983/447
Cost(B) = 6 Cost(B) = 7 Cost(B) = 8 Cost(B) = 9 Cost(B) = 10

0.72/1118/447 0.72/1252/447 0.73/1378/501 0.75/1503/501 0.77/1628/501
0.13 Cost(B) = 1 Cost(B) = 2 Cost(B) = 3 Cost(B) = 4 Cost(B) = 5

0.50/1525/1525 0.50/2225/1589 0.64/2849/1676 0.67/3436/1676 0.69/3995/1816
Cost(B) = 6 Cost(B) = 7 Cost(B) = 8 Cost(B) = 9 Cost(B) = 10

0.71/4540/1816 0.73/5085/1816 0.74/5596/2035 0.75/6105/2035 0.76/6614/2035
0.06 Cost(B) = 1 Cost(B) = 2 Cost(B) = 3 Cost(B) = 4 Cost(B) = 5

0.50/6127/6127 0.59/8935/6382 0.63/11446/6733 0.67/13803/6733 0.69/16047/7294
Cost(B) = 6 Cost(B) = 7 Cost(B) = 8 Cost(B) = 9 Cost(B) = 10

0.71/18235/7294 0.72/20423/7294 0.74/22468/8170 0.75/24510/8170 0.76/26553/8170

Optimized Study
X/XX/XXX in cells: X: α; XX: cost of study; XXX: K

Cost(A)=1
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How it Works: Illustration II
Selecting the Best in a Family of Estimates

♣ Problem:
• We are given a simple o.s. O = ((Ω,Π), {pµ : µ ∈M},F) and have access to stationary K-

repeated observations
ωk ∼ pA(x∗)(·), k = 1, ...,K,

of unknown signal x∗ known to belong to a given convex compact set X ⊂ Rn.
[x 7→ A(x): affine mapping such that A(X) ⊂M].
• We are given M candidate estimates xi ∈ Rn, 1 ≤ i ≤ M , of x∗, a norm ∥ · ∥ on Rn, and a

reliability tolerance ϵ ∈ (0,1)
• Ideal Goal: Use observations ω1, ..., ωK to identify (1 − ϵ)-reliably the ∥ · ∥-closest to x∗ point

among x1, ..., xM .
• Actual Goal: Given α ≥ 1, β ≥ 0 and a grid Γ = {r0 > r1 > ... > rN > 0}, use observations

ω1, ..., ωK to identify (1− ϵ)-reliably a point xi(ωK) such that

∥x∗ − xi(ωK)∥ ≤ αρ(x∗) + β[
ρ(x) := min{r : r ∈ Γ, r ≥ mini ∥x− xi∥}

ρ(x) is grid approximation of mini ∥x− xi∥

]
Note: We select r0 large enough to ensure that X ⊂ ∪i{x : ∥x − xi∥ ≤ r0}, rN to be small enough, and Γ to be dense

enough. For example, we can set Γ = {1010[0.9]−s,0 ≤ s ≤ 438}, resulting in rN < 10−10. In our application this

439-point grid approximation of R+ for all practical purposes is as good as R+ itself.
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♠ Proposed solution: Use testing hypotheses up to closeness.
Recall the recipe for deciding via i.i.d. observations ωk ∼ P on L convex hypothe-
ses Hℓ : P ∈ Pℓ in simple o.s. up to closeness C:

A. For ℓ < ℓ′ such that ℓ, ℓ′ are not C-close to each other, compute the opti-
mal single-observation detector ϕℓℓ′ for Pℓ,P ′ℓ and its risk ϵℓℓ′. Set ϵℓ′ℓ = ϵℓℓ′ and
ϕℓ′ℓ(·) = −ϕℓℓ′(·).
For ℓ, ℓ′ C-close to each other, set ϵℓℓ′ = 0.

B. If some of ϵℓℓ′ are equal to 1, terminate – our machinery does not work. Other-
wise look at symmetric L× L matrices EK = [ϵKℓℓ′]ℓ,ℓ′ and find the smallest K such
that

∥EK∥2,2 ≤ ϵ [ϵ : desired C-risk of would-be test]

With the resulting K, the detectors ϕℓℓ′ can be assembled in K-observation test T K
deciding on H1, ..., HL up to closeness C with risk ≤ ϵ.

Test T K works as follows:

• find Perron-Frobenius eigenvector f of EK .

• Given ωK , for ℓ, ℓ′ not C-close to each other, compute the quantities ϕKℓℓ′ =
∑K

k=1
ϕℓℓ′(ωk) + ln(fℓ/fℓ′)

• accept all hypotheses Hℓ, if any, such that ϕKℓℓ′ > 0 for all ℓ′ not C-close to ℓ.
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Goal: Given α ≥ 1, β ≥ 0 and a grid Γ = {r0 > r1 > ... > rN > 0}, use observations ω1, ..., ωK to
identify (1− ϵ)-reliably a point xi(ωK) such that

∥x∗ − xi(ωK)∥ ≤ αρ(x∗) + β[
ρ(x) := min{r : r ∈ Γ, r ≥ mini ∥x− xi∥}

]
Construction:
•We look at M(N +1) hypotheses

Hij : ωk ∼ pA(x)(·) for some x ∈ Xij := {x ∈ X : ∥x− xi∥ ≤ rj}.
and discard those which are empty: Xij = ∅. We end up with a list of L ≤ M(N + 1) hypotheses
{Hij : ij ∈ I}.
•We define closeness C = Cα,β: ij C-close to i′j′ iff

∥xi − xi′∥ ≤ ᾱ(rj + rj ′) + β
[
ᾱ = α−1

2

]
•We apply the above recipe to build K-observation test T K deciding on Hij, ij ∈ I, up to closeness

C. If the recipe fails to work, reject (α, β). Otherwise, given ωK, we apply T K.

— If T K(ωK) ̸= ∅, the test accepts some hypotheses Hij. We select among them the one, Hi∗j∗, with

the largest j, and claim that xi∗ is the desired point: ∥x∗ − xi∗∥ ≤ αρ(x∗) + β.

— If T K(ωK) = ∅, we can do whatever we want, e.g., return x1 as the closest to x∗ point among xi.
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♣ Fact: In the situation in question, whenever (α, β) is not rejected, the resulting
inference ωK 7→ i∗ = i∗(ωK) meets the design specifications:

(x∗ ∈ X,ωk ∼ pA(x∗)(·) independent across k ≤ K)
⇒ Prob{∥x∗ − xi∗(ωK)∥ ≤ αρ(x∗) + β} ≥ 1− ϵ

Indeed, let i✠ be the index of the closest to x∗ point among xi:

∥x∗ − xi✠∥ ≤ ρ(x∗) = rj✠.

Then Hi✠j✠ is true, and since the C-risk of T K is ≤ ϵ, the stemming from x∗ probability of the event
“T K accepts Hi✠j✠, and every other hypothesis accepted by T K is C-close to Hi✠j✠”

is ≥ 1 − ϵ. When this event takes place, j⋆ ≥ j✠, whence rj∗ ≤ rj✠ = ρ(x∗), and Hi∗j∗ is C-close to
Hi✠j✠, whence

∥xi∗ − xi✠∥ ≤
α− 1

2
[rj∗ + rj✠] + β ≤ (α− 1)ρ(x∗) + β

⇒ ∥xi∗ − x∗∥ ≤ ∥xi∗ − xi✠∥+ ∥xi✠ − x∗∥ ≤ (α− 1)ρ(x∗) + β+ ρ(x∗) = αρ(x∗) + β □
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♣ Fact: In the situation in question, assume that for some ϵ ∈ (0,1/2), a, b ≥ 0 and
positive integer K∗ in the nature there exists an inference ωK∗ → i∗(ωK∗) such that

(x∗ ∈ X,ωk ∼ pA(x∗) independent across k)
⇒ Prob{∥x∗ − xi∗(ωK∗)∥ ≤ aρ(x∗) + b} ≥ 1− ϵ.

Then the pair (α = 2a+3, β = 2b) is not rejected by the above construction, and
the number of observations K required by it to infer from ωK index î(ωK) such that

(x∗ ∈ X,ωk ∼ pA(x∗) independent across k)
⇒ Prob{∥x∗ − x̂i(ωK)∥ ≤ αρ(x∗) + β} ≥ 1− ϵ

is comparable to K∗: K ≤ Ceil
(
21+ln(M(N+1))/ ln(1/ϵ)

1−ln(4(1−ϵ))/ ln(1/ϵ) K∗
)
.
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Indeed, let Hij : ∥x∗ − xi∥ ≤ rj and Hi′j ′ : ∥x∗ − xi′∥ ≤ rj ′ be not Cα,β-close to each other.
Claim: Hij and Hi′j ′ can be decided upon via K∗ observations with risk ≤ ϵ.
Here is K∗-observation test T deciding on Hij vs. Hi′j ′ with risk ≤ ϵ:

Given ωK∗, apply the inference ωK∗ → i∗(ωK∗) and check whether ∥xi − xi∗(ωK∗)∥ ≤ (a+
1)rj + b. If it is the case, accept Hij, otherwise accept Hi′j ′.

Let us prove that the risk of T is ≤ ϵ. Indeed, let the event E : ∥x∗−xi∗(ωK∗)∥ ≤ aρ(x∗)+ b take place
(it happens with probability ≥ 1− ϵ). Then
— if Hij is true, we have ∥x∗ − xi∥ ≤ rj, whence ρ(x∗) ≤ rj and thus ∥x∗ − xi∗(ωK∗)∥ ≤ arj + b. Red
relations imply that ∥xi − xi∗(ωK∗)∥ ≤ (a+ 1)rj + b, thus T accepts Hij. Thus, when E takes place
and Hij is true, T accepts Hij.
— if Hi′j ′ is true, we, same as above, have ∥xi′ − xi∗(ωK∗)∥ ≤ (a+1)rj ′ + b. Assuming that T rejects
Hi′j ′ we have also ∥xi − xi∗(ωK∗)∥ ≤ (a+1)rj + b, implying that ∥xi − xi′∥ ≤ (a+1)[rj + rj ′] + 2b,
which is not the case since Hij and Hi′j ′ are not C2a+3,2b-close to each other.
Bottom line: When E takes place, T makes no errors, so that the risk of T is ≤ ϵ. □

⇒Whenever Hij, Hi′j ′ are not Cα,β-close to each other, we have ϵij,i′j ′ ≤ [2
√
ϵ(1− ϵ)]1/K∗ < 1

⇒ T K with announced K is well defined and has Cα,β-risk ≤ ϵ. □
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♣ Numerical illustration: Given noisy observation

ω = Ax+ σξ, ξ ∼ N (0, In)

of the “discretized primitive” Ax of a signal x = [x1; ...;xn] ∈ Rn:

[Ax]j =
1

n

j∑
s=1

xs, 1 ≤ j ≤ n,

for i = 1, ..., κ we have built Least Squares polynomial, of order i−1, approximations
xi of x:

xi = argminx∈Xi ∥Ax− ω∥
2
2[

Xi = {x = [x1; ...;xn] : restriction of polynomial of degree ≤ i− 1 on the grid {s/n,1 ≤ s ≤ n}}
]

and now want to use K additional observations to identify the nearly closest to x∗, in
the norm

∥u∥ =
1

n

n∑
j=1

|uj|

on Rn, among the points xi, 1 ≤ i ≤ κ.
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♠ Experiment [ϵ = 0.01, n = 128, σ = 0.01, κ = 5, α = 3, β = 0.05]

Left: x∗ and xi. Right: the primitive of x∗
i 1 2 3 4 5

∥x− xi∥ 0.5348 0.33947 0.23342 0.16313 0.16885

distances from x∗ to xi
• Computation yielded K = 3. But

— withK = 3, in sample of 1000 simulations, not a single case of wrong identification of the exactly

closest to x∗ point was observed, i.e., we always got ∥x− xi(ω3)∥ = ρ(x∗), in spite of the theore-

tical guarantee as poor as ∥x∗ − xi(ω3)∥ ≤ 3ρ(x∗) + 0.05

— the same was true when K = 3 was replaced with K = 1;

— replacing K = 3 with K = 1 and increasing σ from 0.01 to 0.05, the procedure started to make

imperfect conclusions. However, the exactly closest to x∗ point x4 was identified correctly in as

many as 961 of 1000 simulations, and the empirical mean E{∥x∗−xi(ω1)∥−ρ(x∗)} was as small

as 0.0024.
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How it Works: Illustration III
Recovering Linear-Fractional Function of a Signal

♣ Problem: An unknown signal x known to belong to a given convex compact set
X ⊂ Rn is observed according to

ω = Ax+ σξ, ξ ∼ N (0, Id)

Our goal is to recover the value at x of a linear-fractional functional F (z) = fTz/eTz,
with eTz > 0, z ∈ X.
♠ Illustration: We are given noisy measurements of voltages Vi at some nodes i
and currents Iij in some arcs (i, j) of an electric circuit, and want to recover the
resistance of a particular arc (̂i, ĵ):

r̂îj =
Vĵ − V̂i
Îîj
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Circuit with 8 nodes and 11 arcs

input node (# 1)

output node (# 8)

x = [voltages at nodes; currents in arcs]
Ax = [observable voltages; observable currents]

• Currents are measured in blue arcs only
• Voltages are measured in magenta nodes only
• We want to recover resistance of red arc

• X :

{ conservation of current, except for nodes ##1,8
zero voltage at node #1, nonnegative currents
current in red arc at least 1, total of currents at most 33
Ohm Law, resistances of arcs between 1 and 10
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♠ Strategy: Given L,
• split the range ∆ = [minx∈X F (x),maxx∈X F (x)] into L consecutive bins ∆ℓ

of length δL = length(∆)/L,
• define the convex compact sets

Xℓ = {x ∈ X : F (x) ∈∆ℓ}, Mℓ = {Ax : x ∈ Xℓ}, 1 ≤ ℓ ≤ L
Îîj

Vĵ − V̂i
2D projections of X and X1, ..., X8

• decide on L hypotheses Hℓ : P = N (µ, σ2I), µ ∈Mℓ on the distribution P of
observation ω = Ax+ σξ up to closeness C “Hℓ is close to Hℓ′ iff |ℓ− ℓ′| ≤ 1”
• estimate F (x) by the center of masses of all accepted bins.
♠ Fact: For the resulting test T , with probability ≥ 1 − RiskC(T |H1, ..., HL) the
estimation error does not exceed δL.
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♠ Implementation and results: Given target risk ϵ and L, we selected the largest σ
for which RiskC(T |H1, ..., HL) is ≤ ϵ.
• This is what we get in our Illustration for ϵ = 0.01: ∆ = [1,10]

L 8 16 32

δL 9/8 ≈ 1.13 9/16 ≈ 0.56 9/32 ≈ 0.28
σ 0.024 0.010 0.005

σopt/σ ≤ 1.31 1.31 1.33

σ 0.031 0.013 0.006
σopt/σ ≤ 1.01 1.06 1.08

• σopt – the largest σ for which “in the nature” there exists a test deciding on
H1, ..., HL with C-risk ≤ 0.01
• Red data: Risks ϵℓℓ′ of pairwise tests are bounded via risks of optimal detectors, C-risk of T is
bounded by ∣∣∣∣∣∣[ϵℓℓ′ · χ(ℓ,ℓ′)̸∈C

]L
ℓ,ℓ′=1

∣∣∣∣∣∣
2,2

;

• Brown data: Risks ϵℓℓ′ of pairwise tests are bounded via error function, C-risk of T is bounded by

max
ℓ

∑
ℓ′:(ℓ,ℓ′)̸∈C

ϵℓℓ′.
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Illustration III Revisited
Recovering N -Convex Functionals

♣ Fact: The construction used to recover linear-fractional function can be extended
to recovering N -convex functionals.

♠ Definition: Let X ⊂ Rn be a convex compact set, F : X → R be a continuous
function, and N be a positive integer. We say that F is N -convex, if for every real a
the sets

Xa,≥ = {x ∈ X : F (x) ≥ a}, Xa,≤ = {x ∈ X : F (x) ≤ a}

can be represented as the unions of at most N convex compact sets.

Examples: A. Fractional-linear function F (x) = e(x)
d(x) with positive on X denomina-

tor is 1-convex:

{x ∈ X : F (x)
≥
≤
a} = {x ∈ X : e(x)− ad(x)

≥
≤
0}
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B. If Fχ is Nχ-convex on X, χ = 1,2, then max[F1, F2] and min[F1, F2] are
max[N1 +N2, N1N2]-convex on X:{

Xa,≥
χ := {x ∈ X : Fχ(x) ≥ a} =

⋃Nχ

ν=1U
a
ν,χ

Xa,≤
χ := {x ∈ X : Fχ(x) ≤ a} =

⋃Nχ

ν=1 V
a
ν,χ

, χ = 1,2 [U, V : convex]

⇒


{x ∈ X : max[F1(x), F2(x)] ≥ a} =

[ ⋃
µ≤N1

Ua
µ,1

]⋃[ ⋃
ν≤N2

Ua
ν,2

]
{x ∈ X : max[F1(x), F2(x)] ≤ a} =

⋃
µ≤N1,ν≤N2

[
V a
µ,1

⋂
V a
ν,2

]
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C. Conditional quantile. Let a probabilistic vector 0 < p ∈ Rn represent probability
distribution on finite subset S = {s1 < s2 < ... < sn} of the real axis.
Regularized α-quantile qα[p] is defined as follows:
— we pass from p to the probability distribution P in ∆ = [s1, sn] by assigning prob-
ability mass p1 to s1 and uniformly spreading the probability masses pi, i > 1, over
the segments [si−1, si]
— qα[p] is the usual α-quantile of P :

qα[p] = min{s ∈∆ : Probξ∼P{ξ ≤ s} ≥ α}
Fact: Let X = {x(t, s) : t ∈ T, s ∈ S} be a convex compact set comprised
of nonvanishing probability distributions on 2D grid T × S, let t ∈ T , and let{
x|t(s) = x(t,s)∑

s′∈S x(t,s
′), s ∈ S

}
be the conditional, given t, probability distribution on

S induced by x ∈ X. Then

fα,t(x) = qα[x|t(·)]

is 1-convex function of x ∈ X.
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♠ Problem of interest: Given
• convex compact set X ⊂ Rn,
• N -convex functional F : X → R,
• a collection Xj, ℓ = 1, ..., J , of convex compact subsets of X,
• stationary K-repeated observations ω1, ..., ωK stemming, via simple o.s.,

from unknown signal x ∈
J⋃

j=1
Xj,

we want to recover F (x).
Strategy: Given L, we
• Split the range ∆ = [minx∈X F (x),maxx∈X F (x)] into L consecutive bins ∆ℓ of length δL =
length(∆)/L,
• Observe that by N -convexity of F every one of the sets

{x ∈
⋃J

j=1
Xj : F (x) ∈∆ℓ}

is the union of at most N2J convex compact sets Y ℓ
s

• Associate with the nonempty among the sets Y ℓ
s the hypotheses “observation stems from a signal

from Y ℓ
s ”

• Define closeness C on the resulting collection of hypotheses H1, ..., HL, L ≤ N2JL, by claiming Hµ

and Hν C-close iff both hypotheses stem from the same or from two consecutive bins ∆ℓ

• Use our machinery for testing multiple convex hypotheses in simple o.s. to build a test TK deciding

on H1, ..., HL up to closeness C via K-repeated observation.
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• Apply the test TK to observations ω1, ..., ωK and take as the estimate of F (x) the
center of masses of all bins associated with the hypotheses accepted by the test.

♠ Same as in the above fractional-linear example, it is immediately seen that

• The probability for the recovery error to be > δL is upper-bounded by the C-risk of
TK .

In addition, with our estimate, the number of observations K required to ensure re-
covery error ≤ δL with a given reliability 1− ϵ, ϵ≪ 1, is within logarithmic in N, J, L
factor off the “ideal” number of observations needed to achieve, with reliability 1− ϵ,
recovery error δL/2.
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Sequential Hypothesis Testing

♣ Motivating example: Opinion polls. Recall the elections’ story:
• Population-wide elections with L candidates are to be held.
• Preferences of a voter are represented by L-dimensional basic orth with 1 in posi-
tion ℓ meaning voting for candidate #ℓ.
Equivalently: Preference ω of a voter is a vertex in the L-dimensional probabilistic
simplex

∆L = {p ∈ RL : p ≥ 0,
∑
ℓ pℓ = 1}.

• The average µ = [µ1; ...;µL] of preferences of all voters “encodes” election’s
outcome: µℓ is the fraction of voters supporting ℓ-th candidate, and the winner corre-
sponds to the largest entry in µ (assumed to be uniquely defined).
Note: µ is a probabilistic vector: µ ∈ ∆L. We think of µ as of a probability distribu-
tion on the L-element set Ω = Ext(∆L) of vertices of ∆L.
• Our goal is to design opinion poll – to select K voters at random from the uniform
distribution on the voters’ population and to observe their preferences, in order to
predict, with reliability 1− ϵ, election’s outcome.

♠ Poll’s model is drawing stationary K-repeated observation ωK = (ω1, ..., ωK),
ωk ∈ Ω, from distribution µ.
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♠We assume that the elections never end with “near tie,” that is, the fraction of votes
for the winner is at least by a known margin δ larger than the fraction of votes for every
no-winner, and introduce L hypotheses on the distribution µ from which ω1, ..., ωK
are drawn:

Hℓ : µ ∈ Pℓ = {µ ∈ ∆L : µℓ ≥ µℓ′+ δ, ∀ℓ′ ̸= ℓ}, ℓ = 1, ..., L

Our goal is to specify K in a way which allows to decide on H1, ..., HL via stationary
K-repeated observations with risk ≤ ϵ.
♠ We are in the case of Discrete o.s., and can use our machinery to build a near-
optimal K-observation test deciding on H1, ..., HL up to trivial closeness C “Hℓ is
close to Hℓ′ iff ℓ = ℓ′” and then select the smallest K for which the C-risk of this test
is ≤ ϵ.
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♠ Illustration L = 2: In this case Ω is two-point set of basic orths in R2, the
minimum risk single-observation detector is

ϕ∗(ω) =
1

2
ln
(
1+ δ

1− δ

)
[ω1 − ω2] : Ω→ R

and Risk[ϕ∗|P1,P2] = 1− δ2

⇒ K = Ceil
(

ln(1/ϵ)
ln(1/(1−δ2))

)
≍ 1

δ2
ln(1/ϵ).

δ 0.3162 0.1000 0.0316 0.0100
K ∨K 16 ∨ 57 166 ∨ 597 1,660 ∨ 5,989 16,607 ∨ 59,912

K: lower bound on optimal poll size

Poll sizes, ϵ = 0.05
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δ 0.3162 0.1000 0.0316 0.0100
K ∨K 16 ∨ 57 166 ∨ 597 1,660 ∨ 5,989 16,607 ∨ 59,912

K: lower bound on optimal poll size

Bad news: Required size of opinion poll grows rapidly as “winning margin” de-
creases.
♠ Question: Can we do better?

♠ Partial remedy: Let us pass to sequential tests, where we attempt to make con-
clusion before all K respondents required by the worst-case-oriented analysis are
interviewed.
Hope: If elections are about to be “landslide” (i.e., in the unknown to us actual dis-
tribution µ∗ of voters’ preferences the winner beats all other candidates by margin
δ∗ ≫ δ), the winner hopefully can be identified after a relatively small number of
interviews.
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♣ Strategy. We select a number S of attempts and associate with attempt s number
K(s) of observations, K(1) < ... < K(S).
s-th attempt to make inference is made whenK(s) observations are collected. When
it happens, we apply to the collected so far observation ωK(s) = (ω1, ..., ωK(s)) a

test Ts which, depending on ωK(s),
– either accepts exactly one of the hypotheses H1, ..., HL, in which case we ter-

minate,
– or claims that information collected so far does not allow to make an inference,

in which case we pass to collecting more observations (when s < S) or terminate
(when s = S).
♠ Specifications: We want the overall procedure to be
• conclusive: an inference should be made in one of the S attempts (thus, when at-
tempt S is reached, making inference becomes a must);
• reliable: whenever the true distribution µ∗ underlying observations obeys one of our
L hypotheses, the µ∗-probability for this hypothesis to be eventually accepted should
be ≥ 1− ϵ, where ϵ ∈ (0,1) is a given in advance risk bound.
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♠ An implementation:
• We select somehow the number of attempts S and set δs = δs/S so that δ1 > δ2 > ... > δS = δ.
Besides this, we split risk bound ϵ into S parts ϵs: ϵs > 0, s ≤ S &

∑S
s=1 ϵs = ϵ;

• For s < S, we define 2L hypotheses

Hs
2ℓ−1 = Hℓ : µ ∈ Ps2ℓ−1 = Pℓ := {µ ∈ ∆L : µℓ ≥ δS +maxℓ′ ̸=ℓ µℓ′}

“weak hypothesis”
Hs

2ℓ = {µ ∈ Ps2ℓ := {µ ∈ ∆L : µℓ ≥ δs +maxℓ′ ̸=ℓ µℓ′} ⊂ Pℓ
“strong hypothesis”

1 ≤ ℓ ≤ L, and assign Hs
2ℓ−1 and Hs

2ℓ with color ℓ, 1 ≤ ℓ ≤ L.

• For s = S we introduce L hypotheses HS
ℓ = Hℓ, ℓ = 1, ..., L, with HS

ℓ assigned color ℓ.

• For s < S, we introduce closeness relation Cs on the collection of hypotheses Hs
1, ..., H

s
2L as follows:

• the only hypotheses close to a strong hypothesis Hs
2ℓ are the hypotheses Hs

2ℓ and Hs
2ℓ−1 of the

same color;

• the only hypotheses close to a weak hypothesis Hs
2ℓ−1 are all weak hypotheses and the strong

hypothesis H2ℓ of the same color as H2ℓ−1.

• For s = S, the Cs-closeness is trivial: HS
ℓ ≡ Hℓ is CS-close to HS

ℓ′ ≡ Hℓ′ if and only if ℓ = ℓ′.
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3-candidate hypotheses in probabilistic simplex ∆3
[weak green] M1 dark green + light green: candidate A wins with margin ≥ δS
[strong green] Ms

1 dark green: candidate A wins with margin ≥ δs > δS
[weak red] M2 dark red + pink: candidate B wins with margin ≥ δS
[strong red] Ms

2 dark red: candidate B wins with margin ≥ δs > δS
[weak blue] M3 dark blue + light blue: candidate C wins with margin ≥ δS
[strong blue] Ms

3 dark blue: candidate C wins with margin ≥ δs > δS
• Hs

2ℓ−1 : µ ∈Mℓ [weak hypothesis]
weak hypothesis Hs

2ℓ−1 is Cs-close to itself, to all other weak hypotheses
and to strong hypothesis Hs

2ℓ of the same color as Hs
2ℓ−1

• Hs
2ℓ : µ ∈M

s
ℓ [strong hypothesis]

strong hypothesis Hs
2ℓ is S-close only to itself and to weak hypothesis

Hs
2ℓ−1 of the same color as Hs

2ℓ−1
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• Note: We are in the case of stationary repeated observations in Discrete o.s., the hypotheses Hs
j

are of the form “i.i.d. observations ω1, ω2, ... are drawn from distribution µ ∈Ms
j with nonempty closed

convex sets Ms
j ⊂ ∆L,” and sets Ms

j , Ms
j ′ with (j, j′) ̸∈ Cs do not intersect

⇒ the risks of the minimum-risk pairwise detectors for Psj , Psj ′, (j, j′) ̸∈ Cs, are < 1

⇒ we can efficiently find out the smallest K = K(s) for which our machinery produces a test T = Ts
deciding, via stationary K(s)-repeated observations, on the hypotheses {Hs

j}j with Cs-risk ≤ ϵs.
• It is easily seen that K(1) < K(2) < ... < K(S − 1). In addition, discarding all attempts

s < S with K(s) < K(S) and renumbering the remaining attempts, we may assume w.l.o.g. that

K(1) < K(2) < ... < K(S).

♠ Our inference routine works as follows: we observe ωk, k = 1,2, ...,K(S)
(i.e., carry interviews with one by one randomly selected voters), and perform s-th
attempt to make conclusion when K(s) observations are acquired (K(s) interviews
are completed).
At s-th attempt, we apply the test Ts to observation ωK(s). If the test does accept
some of the hypotheses Hs

j and all accepted hypotheses have the same color ℓ,
we accept ℓ-th of our original hypotheses H1, ..., HL (i.e., predict that ℓ-th candidate
will be the winner) and terminate, otherwise we proceed to next observations (i.e.,
next interviews) (when s < S) or claim the winner to be, say, the first candidate and
terminate (when s = S).
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♠ Facts:

• The risk of the outlined sequential hypothesis testing procedure is≤ ϵ: whenever
the distribution µ∗ underlying observations obeys hypothesis Hℓ for some ℓ ≤ L,
the µ∗-probability of the event “Hℓ is the only accepted hypothesis” is at least
1− ϵ.

• The worst-case volume of observationsK(S) is within logarithmic factor from the
minimal number of observations allowing to decide on the hypothesesH1, ..., HL
with risk ≤ ϵ.

• Whenever the distribution µ∗ underlying observations obeys strong hypothesis
Hs

2ℓ for some ℓ and s (“distribution µ∗ of voters’ preferences corresponds to win-
ning margin at least δs”), the conclusion, with µ∗-probability≥ 1−ϵ, will be made
in course of the first s attempts (i.e., in course of the first K(s) interviews).

Informally: In landslide elections, the winner will be predicted reliably after a small
number of interviews.
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How it Works: 2-Candidate Elections

♠ Setup:
• # of candidates L = 2
• # δs = 10−s/4
• range of # of attempts S: 1 ≤ S ≤ 8

♠ Numerical Results:
S 1 2 4 5 6 8

δ = δS 0.5623 0.3162 0.1000 0.0562 0.0316 0.0100
K 25 88 287 917 9206 92098

K(S) 25 152 1594 5056 16005 160118
Volume K of non-sequential test, number of attempts S and worst-case volume
K(S) of sequential test as functions of winning margin δ = δS. Risk ϵ is set to 0.01.

Note: Worst-case volume of sequential test is essentially worse than the volume of
non-sequential test.
But: When drawing the true distribution µ∗ of voters’ preferences at random from the
uniform distribution on the set of µ’s with winning margin ≥ 0.01, the typical size of
observations used by Sequential test with S = 8 prior to termination is≪ K(S):

Empirical Volume of Sequential test

median mean 60% 65% 75% 80% 85% 90% 95% 100%
177 9182 177 397 617 1223 1829 8766 87911 160118

Column ”X%”: empirical X%-quantile of test’s volume. Data over 1,000 experiments.
Empirical risk: 0.01
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Measurement Design

♣ Observation: In our Hypothesis Testing setup, observation scheme is our “envi-
ronment” and is completely out of our control. However, there are situations where
the observation scheme is under our partial control.
♠ Example: Opinion Poll revisited. In our original Opinion Poll problem, a particu-
lar voter was represented by basic orth ω = [0; ...; 0; 1; 0; ...; 0] ∈ RL, with entry 1
in position ℓ meaning that the voter prefers candidate ℓ to all other candidates. Our
goal was to predict the winner by observing preferences of respondents selected at
random from uniform distribution on voters’ population.
However: Imagine we can split voters in I non-intersecting groups (say, according to
age, education, gender, income, occupation,...) in such a way that we have certain a
priori knowledge of the distribution of preferences within the groups. In this situation,
our poll can be organized as follows:
•We assign the groups with nonnegative weights qi summing up to 1
• To organize an interview, we first select at random one of the groups, with prob-

ability qi to select group i, and then select a respondent from i-th group at random,
from uniform distribution on the group.
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•We assign the groups with nonnegative weights qi summing up to 1

• To organize an interview, we first select at random one of the groups, with probability qi to select

group i, and then select a respondent from i-th group at random, from uniform distribution on the

group.

Note: When qi is equal to the fraction θi of group i in the entire population, the above
policy reduces to the initial one. It can make sense, however, to use qi different from
θi, with qi ≪ θi if a priori information about preferences of voters from i-th group is
rich, and qi ≫ θi if this information is poor. Hopefully, this will allow us to make more
reliable predictions with the same total number of interviews.
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♠ The model of outlined situation is as follows:
•We characterize distribution of preferences within group i by vector µi ∈ ∆L. for 1 ≤ ℓ ≤ L, ℓ-th

entry in µi is the fraction of voters in group i voting for candidate ℓ;
Note: The population-wide distribution of voters’ preferences is µ =

∑I
i=1 θiµ

i.

• A priori information on distribution of preferences of voters from group i is modeled as the inclusion
µi ∈M i, for some known subset M i ⊂ ∆L which we assume to be nonempty convex compact
set.
• Output of particular interview is pair (i, j), where i ∈ {1, ..., I} is selected at random according to

probability distribution q, and j is the candidate preferred by respondent selected from group i at
random, according to uniform distribution on the group.

⇒ Our observation (outcome of an interview) becomes

ω := (i, ℓ) ∈ Ω = {1, ..., I} × {1, ..., L}, Prob{ω = (i, j)} = p(i, j) := qiµ
i
j.

The hypotheses to be decided upon are

Hℓ[q] : p ∈ Pℓ[q] :=

{pij = qiµ
i
j}1≤i≤I,

1≤j≤L
:
µi ∈M i ∀i,[∑

i

θiµi

]
ℓ

≥ δ+
[∑

i

θiµi

]
ℓ′

∀(ℓ′ ̸= ℓ)


Hℓ[q], ℓ = 1, ..., L, states that the “signal” µ⃗ = [µ1; ...;µI] underlying distribution
p of observations ω induces population-wide distribution

∑
i θiµ

i of votes resulting in
electing candidate ℓ with winning margin ≥ δ.
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Hℓ[q] : p ∈ Pℓ[q] :=

{pij = qiµij}1≤i≤I,
1≤j≤L

:

µi ∈M i ∀i,[∑
i

θiµi

]
ℓ

≥ δ+
[∑

i

θiµi

]
ℓ′

∀(ℓ′ ̸= ℓ)


♠ Note: Hypotheses Hℓ[q] are of the form

Hℓ[q] = {p = A[q]µ⃗ : µ⃗ := [µ1; ...;µL] ∈Mℓ},
[A[q]µ⃗]ij = qiµ

i
j,

where Mℓ, ℓ = 1, ..., L, are nonempty nonintersecting convex compact subsets in
∆L × ...×∆L︸ ︷︷ ︸

I
Note: Opinion Poll with K interviews corresponds to stationary K-repeated obser-
vation in Discrete o.s. with (IL)-element observation space Ω

⇒ Given K, we can use our machinery to design a near-optimal detector-based
test TK deciding via stationary K-repeated observation (i.e., via the outcomes of
K interviews) on hypotheses Hℓ[q], ℓ = 1, ..., L up to trivial closeness “Hℓ[q]
is close to Hℓ′[q] iff ℓ = ℓ′.” This test will predict the winner with reliability
1−Risk(TK|H1[q], ..., HL[q]).
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Hℓ[q] = {p = A[q]µ⃗ : µ⃗ := [µ1; ...;µL] ∈Mℓ},
[A[q]µ⃗]ij = qiµ

i
j,

♠ By our theory, setting χℓℓ′ =
{

0, ℓ = ℓ′

1, ℓ ̸= ℓ′
, we have

Risk(TK|H1[q], ..., HL[q]) ≤ ϵK[q] :=
∣∣∣∣∣∣[ϵKℓℓ′[q]χℓℓ′]Lℓ,ℓ′=1

∣∣∣∣∣∣
2,2
,

ϵℓℓ′[q] = max
µ⃗∈Mℓ,ν⃗∈Mℓ′

∑
i,j

√
[A[q]µ⃗]ij[A[q]ν⃗]ij

= max
µ⃗∈Mℓ,ν⃗∈Mℓ′

I∑
i=1

qi

 L∑
j=1

√
µijν

i
j


︸ ︷︷ ︸

Φ(q;µ⃗,ν⃗)

Note: Φ(q; µ⃗, ν⃗) is linear in q.

3.96



♣ Let us carry out Measurement Design – optimization of ϵK[q] in q.
♠ Main observation: ϵK[q] = Γ(Ψ(q)), where
• Γ(Q) = ∥[(Qℓℓ′)Kχℓℓ′]Lℓ,ℓ′=1∥2,2 is efficiently computable convex and entrywise

nondecreasing function on the space of nonnegative L× L matrices
• Ψ(q) is matrix-valued function with efficiently computable convex in q and non-

negative entries
Ψℓℓ′(q) = max

µ⃗∈Mℓ,ν⃗∈Mℓ′Φ(q; µ⃗, ν⃗)

⇒ Optimal selection of qi’s reduces to solving explicit convex problem

min
q

{
Γ(Ψ(q)) : q = [q1; ...; qI] ≥ 0,

∑I
i=1 qi = 1

}
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How it Works: Measurement Design in Election Polls

♠ Setup:
• Opinion Poll problem with L candidates and winning margin δ = 0.05

• Reliability tolerance ϵ = 0.01

• A priori information on voters’ preferences in groups:

M i = {µi ∈ ∆L : piℓ − ui ≤ µ
i
ℓ ≤ p

i
ℓ+ ui, ℓ ≤ L}

• pi: radomly selected probabilistic vector • ui: uncertainty level

♠ Sample of results:

L I
Group sizes θ

Uncertainty levels u Kini qopt Kopt

2 2 θ = [0.50; 0.50] 1212 [0.44; 0.56] 1194
u = [0.03; 1.00]

2 2 [0.50; 0.50] 2699 [0.00; 1.00] 1948
[0.02; 1.00]

3 3 [0.33; 0.33; 0.33] 3177 [0.00; 0.46; 0.54] 2726
[0.02; 0.03; 1.00]

5 4 [0.25; 0.25; 0.25; 0.25] 2556 [0.00; 0.13; 0.32; 0.55] 2086
[0.02; 0.02; 0.03; 1.00]

5 4 [0.25; 0.25; 0.25; 0.25] 4788 [0.25; 0.25; 0.25; 0.25] 4788
[1.00; 1.00; 1.00; 1.00]

Effect of measurement design. Kini and Kopt are the poll sizes required for
0.99-reliable prediction of the winner when qi = θi and q = qopt, respectively.
Note: Uncertainty= 1.00⇔ No a priori information
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♣ In numerous situations, we do have partial control of observation scheme and thus
can look for optimal Measurement Design.
However: the situations where optimal Measurement Design can be found efficiently,
like in design of Election Polls, are rare.
Additional examples of these rare situations are Poisson o.s. and Gaussian o.s. with
time control.
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♠ Poisson o.s. with time control. Typical models where Poisson o.s. arises are as
follows:
• “in the nature” there exists a “signal” x known to belong to some convex compact

set ⊂ Rn
For example, in Positron Emission Tomography, x is (discretized) density of radioactive tracer admin-
istered to patient
•We observe random vector ω ∈ Rm with independent entries ωi ∼ Poisson(aTi x),

and want to make inferences on x.
For example, in PET, tracer disintegrates, and every disintegration act results in pair of gamma-quants
flying in opposite directions along a randomly oriented line passing through disintegration point. This
line is registered when two detector cells are (nearly) simultaneously hit:
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The data acquired in PET study are the numbers ωi of lines registered in bins (pairs
of detector cells) i = 1, ...,m over a time horizon T , and

ωi ∼ Poisson(T
∑n
j=1 pijxj)[

pij: probability for line emanated from voxel j = 1, ..., n
to cross pair i = 1, ...,m of detector cells

] ⇒ A = T
[
pij
]
i≤m,j≤n
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ω = {ωi ∼ Poisson([Ax]i)}i≤m
• In some situations, the sensing matrix A can be partially controlled:

A = A[q] := Diag{q}A∗
• A∗: given m× n matrix; • q ∈ Q: vector of control parameters.

For example, in a full body PET scan the position of the patient w.r.t. the scanner is updated several
times to cover the entire body.

The data acquired in position ι form subvector ωι in the entire observation ω = [ω1; ...;ωI]:

ωιi ∼ Poisson([tιAιx]i, 1 ≤ i ≤ m̄ = m/I[
Aι : given matrices; tι : duration of study in position ι

]
implying that ω = Diag{q}A∗ with properly selected A∗ and q of the form

q =
[
t1; ...; t1︸ ︷︷ ︸

m̄

; ...; tI; ...; tI︸ ︷︷ ︸
m̄

]
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Hq
ℓ : ωi ∼ Poisson([A[q]x]i)are independent across i ≤ m and x ∈ Xℓ

A = A[q] := Diag{q}A∗
• A∗: given m× n matrix; • q ∈ Q: control parameters.

• Let our goal be to decide, up to a given closeness C, on L hypotheses on the
distribution of Poisson observation ω:

H
q
ℓ : ω ∼ Poisson([A[q]x]1)× ...× Poisson([A[q]x]m) & x ∈ Xℓ

Xℓ: given convex compact sets, 1 ≤ ℓ ≤ L.
♠ By our theory, the (upper bound on the) C-risk of near-optimal test deciding on Hq

ℓ ,
ℓ = 1, ..., L, is ϵ(q) =

∣∣∣∣∣∣[exp{Optℓℓ′(q)}χℓℓ′]
L
ℓ,ℓ′=1

∣∣∣∣∣∣
2,2

where

χℓℓ′ =

{
0, (ℓ, ℓ′) ∈ C
1, (ℓ, ℓ′) ̸∈ C ,Optℓℓ′(q) = max

u∈Xℓ,v∈Xℓ′
−1

2

∑m
i=1

(√
[A[q]u]i −

√
[A[q]v]i

)2
• As in Opinion Polls, ϵ(q) = Γ(Ψ(q)), where

• Γ(Q) = ∥ [exp{Qℓℓ′}χℓℓ′]Lℓ,ℓ′=1 ∥2,2 is a convex entrywise nondecreasing function of Q ∈ RL×L+

• [Ψ(q)]ℓℓ′ = exp

{
max

u∈Xℓ,v∈Xℓ′

∑m

i=1
qi

(√
[A∗u]i[A∗v]i − 1

2
[A∗u]i − 1

2
[A∗v]i

)}
is efficiently computable

and convex in q

⇒ Assuming the set Q ⊂ Rm+ of allowed controls q convex, optimizing ϵ(q) over
q ∈ Q is an explicitly given convex optimization problem.
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♣ An efficiently solvable Measurement Design problem in Gaussian o.s.

ω = A[q]x+ ξ, ξ ∼ N (0, Im)
[• A[q] partially controlled sensing matrix; • q ∈ Q: control parameters.]

is the one where
A[q] = Diag{√q1, ...,

√
qm}A∗ & Q ⊂ Rm+ is a convex compact set

In this case, minimizing Q-risk of test deciding up to closeness C on L hypotheses
H
q
ℓ : ω ∼ N (A[q]x, Im), x ∈ Xℓ, 1 ≤ ℓ ≤ L

associated with nonempty convex compact sets Xℓ reduces to solving convex prob-
lem

minq∈QΓ(Ψ(q))

where
Γ(Q) = ∥ [exp{Qℓℓ′/8}χℓℓ′]ℓ,ℓ′≤L ∥2,2

is convex entrywise nondecreasing function of L× L matrix Q, and
[Ψ(q)]ℓℓ′ = max

u∈Xℓ,v∈Xℓ′

[
−∥A[q](u− v)∥22

]
= − min

u∈Xℓ,v∈Xℓ′
(u− v)TAT∗Diag{q}A∗(u− v)

is efficiently computable convex function of q ∈ Q.
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♠ Illustration. In some applications, “the physics” beyond Gaussian o.s. ω = Ax+ξ

is as follows. There are m sensors measuring analogous vector-valued continuous
time signal x(t) (nearly constant on the observation horizon). The output of sensor
#i is

ωi =
1
|∆i|

∫
∆i

[aTi,∗x(t) +Bi(t)]dt
• ∆i : continuous time interval on which sensor #i is on

• Bi(t) : ”Brownian motion:” 1
|∆|

∫
∆
Bi(t)dt ∼ N (0, |∆|−1),∫

∆
Bi(t)dt,

∫
∆′
Bi(t)dt are independent when ∆ ∩∆′ = ∅

• Brownian motions Bi(t) are independent across i


•When all sensors work in parallel for unit time, we arrive at the standard Gaussian o.s. ω = A∗x+ξ,
ξ ∼ N (0, Im).
•When sensors work on consecutive segments ∆1, ...,∆m of durations qi = |∆i|, we arrive at

ωi = aTi,∗x+ q
−1/2
i ξi, ξi ∼ N (0,1) are independent across i

Rescaling observations: ωi 7→
√
qiωi, we arrive at partially controlled o.s.

ω = Diag{√q1, ...,
√
qm}A∗x+ ξ, ξ ∼ N (0, Im)

A natural selection of Q is, e.g., Q = {q ≥ 0 :
∑

i qi = m} – setting the overall “time budget” to the

same value as in the case of sensors working for unit time in paralel.
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Recovering Linear Functionals in Simple o.s.

♣ Situation: Given are:
• Simple o.s. O = ((Ω,Π), {pµ : µ ∈M},F)
• Convex compact set X ⊂ Rn and affine mapping x 7→ A(x) : X →M
• Linear function gTx on Rn

Given observation

ω ∼ pA(x)
stemming from unknown signal x known to belong to X, we want to recover gTx.
♣ Given reliability tolerance ϵ ∈ (0,1), we quantify performance of a candidate esti-
mate ĝ(·) : Ω→ R by its ϵ-risk

Riskϵ[ĝ|X] = min
{
ρ : Probω∼pA(x)

{
|ĝ(ω)− gTx| > ρ

}
≤ ϵ ∀x ∈ X

}
.

♣ We intend to build, in a computationally efficient manner, a provably near-optimal
in terms of its ϵ-risk estimate of the form

ĝ(ω) = ϕ(ω) + κ

with ϕ ∈ F .
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♣ Construction: Let us set

Φ(ϕ;µ) = ln
(
Eω∼pµ {exp{ϕ(ω)}}

)
Recall that Φ is continuous real-valued convex-concave function on F ×M.
Main observation: Let ψ ∈ F and α > 0. Then for x, y ∈ X one has

ln
(
Probω∼pA(x)

{
ψ(ω) > gTx+ ρ

})
≤ Φ(ψ/α;A(x))− ρ+gTx

α (a)

ln
(
Probω∼pA(y)

{
ψ(ω) < gTy − ρ

})
≤ Φ(−ψ/α;A(y))− ρ−gTy

α (b)

As a result, for every ψ ∈ F and α > 0, setting

Ψ+(α,ψ) = maxx∈X
[
αΦ(ψ/α;A(x))− gTx+ α ln(2/ϵ)

]
,

Ψ−(α,ψ) = maxy∈X
[
αΦ(−ψ/α;A(y)) + gTy+ α ln(2/ϵ)

]
,

κ = 1
2

[
Ψ−(α,ψ)−Ψ+(α,ψ)

]
,

for the estimate ϕ(ω) = ψ(ω) + κ we have

Riskϵ[ϕ(·)|X] ≤
1

2

[
Ψ+(α,ψ) +Ψ−(α,ψ)

]
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Φ(ϕ;µ) = ln
(
Eω∼pµ {exp{ϕ(ω)}}

)
Claim: For every ψ ∈ F , α > 0 and all x, y ∈ X one has

ln
(
Probω∼pA(x)

{
ψ(ω) > gTx+ ρ

})
≤ Φ(ψ/α;A(x))− ρ+gTx

α
(a)

ln
(
Probω∼pA(y)

{
ψ(ω) < gTy − ρ

})
≤ Φ(−ψ/α;A(y))− ρ−gTy

α
(b)

Indeed,

exp{Φ(ψ/α;A(x))} = Eω∼pA(x) {exp{ψ(ω)/α}} = Eω∼pA(x)

{
exp{ψ(ω)−g

Tx−ρ
α

}
}
exp{g

Tx+ρ
α
}

≥ Probω∼pA(x)
{
ψ(ω) > gTx+ ρ

}
exp{g

Tx+ρ
α
} ⇒ (a);

exp{Φ(−ψ/α;A(y))} = Eω∼pA(y) {exp{−ψ(ω)/α}} = Eω∼pA(y)

{
exp{−ψ(ω)+g

Ty−ρ
α

}
}
exp{−g

Ty+ρ
α
}

≥ Probω∼pA(y)
{
ψ(ω) < gTy − ρ

}
exp{−g

Ty+ρ
α
} ⇒ (b).
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ln
(
Probω∼pA(x)

{
ψ(ω) > gTx+ ρ

})
≤ Φ(ψ/α;A(x))− ρ+gTx

α
(a)

ln
(
Probω∼pA(y)

{
ψ(ω) < gTy − ρ

})
≤ Φ(−ψ/α;A(y))− ρ−gTy

α
(b)

Claim: For every ψ ∈ F and α > 0, setting

Ψ+(α,ψ) = maxx∈X
[
αΦ(ψ/α;A(x))− gTx+ α ln(2/ϵ)

]
,

Ψ−(α,ψ) = maxy∈X
[
αΦ(−ψ/α;A(y)) + gTy+ α ln(2/ϵ)

]
,

κ = 1
2 [Ψ−(α,ψ)−Ψ+(α,ψ)]

we have

Riskϵ[ψ(·) + κ|X] ≤
1

2
[Ψ+(α,ψ) +Ψ−(α,ψ)] (∗)

Indeed, given ψ ∈ F , α > 0, z ∈ X, let Ψ± = Ψ±(α,ψ),Ψ = 1
2 [Ψ+ +Ψ−] . We have

Probω∼pA(z)
{
ψ(ω) + κ > gTz+Ψ

}
= Probω∼pA(z)

{
ψ(ω) > gTz+Ψ+

}
≤ exp{Φ(ψ/α;A(z))− (Ψ+ + gTz)/α} [by (a)]
≤ exp{Φ(ψ/α;A(z))− (αΦ(ψ/α;A(z))− gTz+ α ln(2/ϵ) + gTz)/α} = ϵ/2

and

Probω∼pA(z)
{
ψ(ω) + κ < gTz −Ψ

}
= Probω∼pA(z)

{
ψ(ω) < gTz −Ψ−

}
≤ exp{Φ(−ψ/α;A(z))− (Ψ− − gTz)/α} [by (b)]
≤ exp{Φ(−ψ/α;A(z))− (αΦ(−ψ/α;A(z)) + gTz+ α ln(2/ϵ)− gTz)/α} = ϵ/2

and (∗) follows.

3.109



♣ Result: We have justified the first claim in the following
Theorem [Ju&N’09] In the situation in question, consider convex (due to convexity-
concavity of Φ) optimization problem

Opt = inf
α>0,ψ∈F

{
Ψ(α, ω) :=

1

2

[
Ψ+(α,ψ) +Ψ−(α,ψ)

]}
.

A feasible solution α,ψ to this problem gives rise to estimate ϕ(ω) = ψ(ω)+κ such
that

Riskϵ[ϕ|X] ≤ Ψ(α, ω).

and the right hand side in this bound can be made arbitrarily close to Opt.

In addition, when ϵ < 1/2, Opt is within moderate factor of the minimax optimal
ϵ-risk

RiskOptϵ[X] = inf
ĝ(·)

Riskϵ[ĝ|X],

specifically,
Opt ≤ 2 ln(2/ϵ)

ln
(

1
4ϵ(1−ϵ)

)RiskOptϵ[X].

Note: The “Gaussian o.s.” version of this result is due to D. Donoho (1994).
3.110



Note: The above scheme is applicable to every simple o.s., in particular, to K-th
degree of simple o.s. O = ((Ω,Π), {pµ : µ ∈M},F) , that is, to the case where
instead of estimation via single observation ω we speak about estimating via station-
ary K-repeated observation ωK = (ω1, ..., ωK) with ω1, ..., ωK supplied by O.
In terms of O, our Main Observation reads:
Let ψ ∈ F , α > 0, and ψK(ωK) =

∑K
k=1ψ(ωk). Then for x, y ∈ X one has

ln

(
Prob

ωK∼pK
A(x)

{
ψK(ωK) > gTx+ ρ

})
≤ KΦ(ψ/α;A(x))− ρ+gTx

α (a)

ln

(
Prob

ωK∼pK
A(y)

{
ψK(ωK) < gTy − ρ

})
≤ KΦ(−ψ/α;A(y))− ρ−gTy

α (b)

As a result, for every ψ ∈ F and α > 0, setting
Ψ+(α,ψ) = maxx∈X

[
KαΦ(ψ/α;A(x))− gTx+ α ln(2/ϵ)

]
,

Ψ−(α,ψ) = maxy∈X
[
KαΦ(−ψ/α;A(y)) + gTy+ α ln(2/ϵ)

]
,

κ = 1
2

[
Ψ−(α,ψ)−Ψ+(α,ψ)

]
,

for the estimate ϕ(ωK) =
∑K
k=1ψ(ωK) + κ we have

Riskϵ[ϕ(·)|X] ≤ 1
2

[
Ψ+(α,ψ) +Ψ−(α,ψ)

]
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Example: Gaussian o.s. Here F = {ϕ(ω) = ψ0 + ψTω}; on a close inspection,
we lose nothing when setting ψ0 = 0.

⇒ Φ(ψ, µ) = ln
(
cn
∫
eψ

Tω−(ω−µ)T (ω−µ)/2dω
)
= {ψTµ+ 1

2ψ
Tψ}

⇒


Ψ+(α,ψ) = max

x∈X

[
ψTA(x)− gTx

]
+
[
KψTψ

2α + α ln(2/ϵ)
]

Ψ−(α,ψ) = max
x∈X

[
gTy − ψTA(y)

]
+
[
KψTψ

2α + α ln(2/ϵ)
]

⇒ The optimization problem min
α>0,ψ

1
2

[
Ψ+(α,ψ) +Ψ−(α,ψ)

]
responsible for good

estimates admits analytical elimination of α and results in the optimization problem

min
ψ

{
1
2 max
x∈X

[
ψTA(x)− gTx

]
+ 1

2 max
y∈X

[
gTy − ψTA(y)

]
+
√
2K ln(2/ϵ)∥ϕ∥2

}
in ψ-variable only.
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Numerical Illustration

Covering story: At the North-bound part of a highway leaving Atlanta there at n+ 1 crossings
where cars traveling North enter/exit the highway.
• Arrivals of cars traveling North and entering the highway at crossing # j, j = 0,1, ..., n− 1,

form Poisson process with (unknown) parameter xj ≤ 1; the arrival processes are mutually
independent
• A car on a highway traveling North and approaching a crossing exits the highway at this crossing

with given probability p
• For i = 1, ..., n, we observe the total number ωi of cars traveling North and exiting the highway

at crossing # i on time horizon [0, T ] and want to recover xj for a particular value of j.
Model: Observation ω = [ω1; ...;ωn] is collection of independent of each other Poisson random
variables; the vector of their Poisson parameters is TAx, with

A =


p

p(1− p) p
p(1− p)2 p(1− p) p

... ... ... . . .
p(1− p)n−1 p(1− p)n−2 p(1− p)n−3 ... p


⇒ Our problem is to recover linear form of signal

x ∈ X = {x ∈ Rn : 0 ≤ xj ≤ 1,0 ≤ j < n}

observed via Poisson o.s.
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Risks of recovering xj vs. j
Note: empirical risks are at most by 5% worse than lower bounds on minimax optimal 0.01-risks
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Intermezzo: Bounding probabilities of deviations

♠ Situation: ξ is real-valued random variable.
♡ Question: Given ϵ ∈ (0,1) and b ∈ R, how to certify that Prob{ξ > b} ≤ ϵ ?
♡ An answer: Assume we have at our disposal upper bound Φ on moment-
generating function:

ln
(
E
{
esξ

})
≤ Φ(s) ∈ R ∪ {∞}, s ∈ R

• For every α > 0 and every real b, the random variable (ξ− b)/α is ≥ 0 when ξ ≥ b

⇒ e(ξ−b)/α
{
≥ 1 , ξ ≥ b
≥ 0 , otherwise ⇒ e−b/αE{eξ/α} = E

{
e(ξ−b)/α

}
≥ Prob{ξ ≥ b}

⇒ ln (Prob{ξ ≥ b}) ≤ Φ(1/α)− b/α
⇒ Existence of α > 0 such that αΦ(1/α) − b + α ln(1/ϵ) ≤ 0 is sufficient for
Prob {ξ ≥ α} ≤ ϵ⇒
Relation inf

α>0
[αΦ(1/α)− b+ α ln(1/ϵ)] ≤ 0 is sufficient for Prob{ξ > b} to be

≤ ϵ.
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♡ Relation inf
α>0

[αΦ(1/α)− b+ α ln(1/ϵ)] ≤ 0 is sufficient for Prob{ξ > b} to be

≤ ϵ.
♡ By “symmetric” reasoning,
Relation inf

α>0
[αΦ(−1/α) + b+ α ln(1/ϵ)] ≤ 0 is sufficient for Prob{ξ < b} to be

≤ ϵ.
Note: When Φ(s) is convex, the function αΦ(s/α) is convex in the domain {(s, α) :

α > 0}
⇒When Φ is convex, verification of the above sufficient conditions reduces to solving
univariate convex minimization problems.
Byproduct of our reasoning:

ln (Prob{ξ > b}) ≤ inf
γ>0

[Φ(γ)− γb]

ln (Prob{ξ < b}) ≤ inf
γ>0

[Φ(−γ) + γb]
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Illustration I: Let ξ ∼ N (µ, σ2). In this case E
{
esξ

}
= exp{µs+ σ2

2 s
2}

⇒ ln
(
E
{
esξ

})
= Φ(s) := sµ+ σ2

2 s
2⇒

t ≥ 0⇒ ln (Prob{ξ > µ+ tσ}) ≤ inf
γ>0

[
γµ+ σ2

2
γ2 − γ[µ+ tσ]

]
= −t2

2

t ≥ 0⇒ ln (Prob{ξ < µ− tσ}) ≤ inf
γ>0

[
−γµ+ σ2

2
γ2 + γ[µ− tσ]

]
= −t2

2

Illustration II: Let ξ ∼ Poisson(µ). In this case

E
{
esξ

}
=
∞∑
i=0

esiµi

i!
e−µ = exp{µ[es − 1]}

⇒ ln
(
E
{
esξ

})
= Φ(s) := µ[es − 1]⇒

t ≥ 1⇒ ln (Prob{ξ > tµ}) ≤ inf
γ>0

[exp{µ[eγ − 1]} − γtµ] = −µ[1 + t ln(t)− t]

0 < t ≤ 1⇒ ln (Prob{ξ < tµ}) ≤ inf
γ>0

[
exp{µ[e−γ − 1]}+ γtµ

]
= −µ[1 + t ln(1/t)− t]
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Back to agenda: Recovering Linear Form on Union of Convex Sets

♣ Situation: Given are:
• Simple o.s. O = ((Ω,Π), {pµ : µ ∈M},F)
•Convex compact setsXi ⊂ Rn, i ≤ I, and affine mappings x 7→ Ai(x) : Xi →M
• Linear function gTx on Rn

Given stationary K-repeated observation ωK = (ω1, ..., ωK), with

ωk ∼ pAi(x), 1 ≤ k ≤ K,

stemming from unknown signal x known to belong to Xi with some unknown i ≤ I,
we want to recover gTx.
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♠ Construction:
A. Given “reliability tolerance” 0 < ϵ < 1, for 1 ≤ i, j ≤ I, let

Φij(α, ϕ;x, y) = 1
2
Kα [ΦO(ϕ/α;Ai(x)) +ΦO(−ϕ/α;Aj(y))] + 1

2
gT [y − x] + α ln(2I/ϵ) :

{α > 0, ϕ ∈ F} × [Xi ×Xj]→ R,
Ψij(α, ϕ) = max

x∈Xi,y∈Xj

Φij(α, ϕ;x, y) = 1
2

[
Ψi,+(α, ϕ) +Ψj,−(α, ϕ)

]
: {α > 0} × F → R,

where
Ψℓ,+(α,ψ) = max

x∈Xℓ

[
KαΦO(ψ/α;Aℓ(x))− gTx+ α ln(2I/ϵ)

]
: {α > 0, ψ ∈ F} → R,

Ψℓ,−(α,ψ) = max
x∈Xℓ

[
KαΦO(−ψ/α;Aℓ(x)) + gTx+ α ln(2I/ϵ)

]
: {α > 0, ψ ∈ F} → R

and ΦO(ϕ;µ) = ln
(∫

Ω eϕ(ω)pµ(ω)Π(dω)
)

Comment: It is easy to verify that whenever αij > 0, ϕij ∈ F , setting

ρij = Ψij(αij, ϕij) = 1
2

[
Ψi,+(αij, ϕij) +Ψj,−(αij, ϕij)

]
κij = 1

2

[
Ψj,−(αij, ϕij)−Ψi,+(αij, ϕij)

]
gij(ω

K) =
∑K
k=1 ϕij(ωk) + κij

we ensure that
x ∈ Xi, ωK ∼ pKAi(x) ⇒ Prob{gij(ωK) > gTx+ ρij} ≤ ϵ

2I

y ∈ Xj, ωK ∼ pKAj(x) ⇒ Prob{gij(ωK) < gTy − ρij} ≤ ϵ
2I
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B. For 1 ≤ i, j ≤ I, we find feasible near-optimal solutions αij, ϕij to (convex by
their origin) optimization problems

Optij = min
α>0,ϕ∈F

Ψij(α, ϕ),

and set

ρij = Ψij(αij, ϕij), κij = 1
2

[
Ψj,−(αij, ϕij)−Ψi,+(αij, ϕij)

]
gij(ω

K) =
∑K
k=1 ϕij(ωk) + κij

Given observation ωK , we set

G = [gij(ω
K)] i≤I

j≤I
, ri = max

j
gij(ω

K), cj = min
i
gij(ω

K)

and take the quantity

ĝ(ωK) =
1

2

[
min
i
ρi+max

j
cj

]

as the estimate of gTx.
♠ Proposition: ϵ-risk of the estimate ĝ does not exceed ρ = maxi,j ρij, i.e., when-
ever ℓ ≤ I and x ∈ Xℓ, the pK

Aℓ(x)
-probability of the event |gTx− ĝ(ωK)| > ρ is ≤ ϵ.

Note that ρ can be made arbitrarily close to Opt(K) = maxi,jOptij.
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Sketch of the proof: Let ωK ∼ pK
Aℓ(x)

. From comment to A it follows that the

pK
Aℓ(x)

-probability of the event

∀i, j : gℓj ≤ gTx+ ρℓj & giℓ ≤ gTx− ρiℓ [gij = gij(ω
K)]

is at least 1− ϵ.
When this event takes place, we have
• all entries in ℓ-th row of G = [gij] by magenta inequalities are ≤ gTx+ ρ,
• all entries in ℓ-to column of G, by red inequalities, are ≥ gTx− ρ
• ri = max

j
gij, cj = min

i
gij (by definition of ri and cj)

⇒ fTx− ρ ≤ min
i
giℓ ≤ min

i
ri ≤ rℓ ≤ gTx+ ρ⇒ fTx ∈ [min

i
ri − ρ,min

i
ri+ ρ]

and similarly fTx ∈ [max
j

cj − ρ,max
j

cj + ρ] □
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Near-Optimality: Let ϵ ∈ (0,1/2) and K∗ be a positive integer, and let Risk∗ϵ(K∗)
be the minimax optimal ϵ-risk, the number of observations being K∗ (that is, the
infimum, over all Borel K∗-observation estimates, of ϵ-risks of the estimates) Then
for every integer K satisfying

K >
2 ln(2I/ϵ)

ln([4ϵ(1− ϵ)]−1)
K∗

one has

Opt(K) ≤ Risk∗ϵ(K∗).

In addition, assuming that every i, j there exists x̄ij ∈ Xi ∩Xj such that Ai(x̄ij) =

Aj(x̄ij) one has

K ≥ K∗ ⇒ Opt(K) ≤
2 ln(2I/ϵ)

ln([4ϵ(1− ϵ)]−1)
Risk∗ϵ(K∗).
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Sketch of the proof [first claim only]: Since Opt(K) = max
i,j

Optij(K), all we need to

verify is that when

K >
2 ln(2I/ϵ)

ln([4ϵ(1− ϵ)]−1)
K∗ (∗)

we have Optij(K) ≤ Risk∗ϵ(K∗) for every i, j.

• Recall that Optij(K) = inf
α>0,ϕ∈F

[
Ψij(α, ϕ) := max

x∈Xi,y∈Xj

Φij(α, ϕ;x, y)

]
and by its origin, Φij is

convex in α, ϕ and concave in x, y, whence
Optij(K) = max

x∈Xi,y∈Xj

inf
α>0,ϕ∈F

Φij(α, ϕ;x, y)

=︸︷︷︸
(!)

max
x,y

{
1
2
gT [y − x] : x ∈ Xi, y ∈ Xj,

[∫ √
pAi(x)(ω)pAj(y)(ω)Π(dω)

]K ≥ ϵ
2I

}
. with

(!) given by straightforward computation,
Assuming, on the contrary to what should be proved, that Optij(K) > Risk∗ϵ(K∗), we can find
x̄ ∈ Xi, ȳ ∈ Xj such that with µ = Ai(x̄), ν = Aj(x̄) it holds

1
2
gT [ȳ − x̄] > Risk∗ϵ(K∗) &

[∫ √
pµ(ω)pν(ω)Π(dω)

]K
≥ ϵ

2I
(!)

By first relation in (!), two simple hypotheses stating that the distributions of ωK∗ is pK∗µ , resp., pK∗ν can
be decided upon with risk ≤ ϵ, whence by elementary results about Hellinger affinity,

2
√
ϵ(1− ϵ) ≥

∫ √
pK∗µ (ωK)pK∗ν (ωK)ΠK(dωK) =

[∫ √
pµ(ω)pν(ω)Π(dω)

]K∗
.

This combines with (∗) to imply the inequality opposite to (!), which is a desired contradiction. □
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Toy Illustration: Recovering Origin-Destination Traffics

♠ Covering story: Nodes in the network represent five villages (magenta dots) and crossing with no
population (cyan dot), and arcs represent road segments.
• There are two states of the road net:

— normal: some normal traveling times in all segments,
— abnormal: normal traveling times in magenta segments and much larger than normal traveling

times in blue segments.
• There are L = 7 origin-destination pairs, ℓ-th with its own traffic xℓ. The travelers know normal and

abnormal traveling times of the arcs and the state of the network and select the fastest routs
between their origins and destinations. As a result, the total traffic in arc γ is

∑
ℓA

χ
γℓxℓ where χ ∈

{normal, abnormal} is the state of the network.
•We do not know network’s state and traffics in origin-destination pairs. All we know are
— the number L of origin-destination pairs and an upper bound T on the total traffic

∑
ℓ xℓ

— the sensing matrices Aχ = [Aχγℓ]γ∈Γ,ℓ≤L, where χ ∈ {normal, abnormal}, and Γ is the set of
M = 29 arcs where we measure traffic.
• Given noisy measurements of traffics in the arcs of Γ: yγ = [Aχx]γ + σξγ, with independent across
γ noises ξγ ∼ N (0,1) and known σ, we want to recover origin-destination traffics xℓ, ℓ ≤ L.
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♠ Model: The unknown signal x lives in X = {x ∈ RL+ :
∑

ℓ xℓ ≤ T}. We set X1 = X2 = X and

A1(x) = Anormalx, A2(x) = Aabnormalx.

⇒ The problem of recovering xℓ for a particular ℓ is covered by the Gaussian case of our setup, and
we can use the above machinery to recover xℓ’s one by one.

∥ · ∥∞ recovery errors computed upper
σ mean median maximal bound on 0.01 risk

2−3 0.478 0.480 0.994 0.665
2−5 0.119 0.112 0.224 0.166
2−7 0.030 0.028 0.066 0.042
2−9 0.008 0.007 0.017 0.011
2−11 0.002 0.001 0.005 0.003

Numerical results over 100 simulations

• Pay attention to clear “numerical consistency.”
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Note: For every σ, our estimate is a “nonlinear aggregation” of 4 estimates which are
affine in observations. In the reported instance, this estimate is consistent.
In contrast: In the same instance, even in the noiseless case, the worst-case recov-
ery error for every affine estimate of x2 is ≥ 0.25.
Explanation: We are observing in Gaussian noise either Ax, or Bx, with unknown x
belonging to the known signal set X = {x ∈ R7

+ :
∑
ℓ xℓ ≤ T}. We do know A and

B, but do not know from which one of the matrices A, B the observation comes. In
this situation, the ultimate obstacle for high-accuracy recovering gTx in the low-noise
case is
— for our estimate – the fact that gTx− gTy is not identically zero on the intersection

of X×X and the linear subspace L = {[x; y] : Ax = By} of pairs (x, y) of ”non-
distinguishable signals.” In the reported instance, this obstacle is absent – the only
common point of L and X ×X is the origin.

— for an affine estimate – the fact that the vector [g;−g] is not orthogonal to L.
In the reported instance this obstacle is present – the vector [e2;−e2] is far from
being orthogonal to L.
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Another Illustration

♣ SetUp: Given J = 100 points xj ∈ R20 and stationary K-repeated observation

ωK = (ω1, .., ωK), ωk ∼ N (Ax, I20)

of one of the points (we do not know which one!), we want to recover the first entry of the point.
• A: randomly generated matrix
• ϵ = 0.01.

Note: we are in the situation where Xi = {xi} are singletons.
♠ Results:

20 30 40 50 100 200 300

0

0.5

1

1.5

2

2.5

Recovery error vs. K, data over 20 randomly generated collections {xi}100i=1
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.

HYPOTHESIS TESTING, III

• Beyond simple observation schemes



♣ Goal: to extend our detector-based hypothesis testing machinery beyond the
scope of simple o.s.’s

♠ Starting point: “Executive Summary” of what happened with simple o.s.’s.

0. Basic problem of interest: Given two families P1 and P2 of probability distribu-
tions on observation space Ω and an observation ω ∼ P ∈ P1 ∪ P2, we want to
decide on the hypothesis H1 : P ∈ P1 vs. the alternative P ∈ P2.

1. Basic tool: A family F of candidate detectors ϕ(·) : Ω→ R. Associated tests Tϕ
were of the form

ϕ(ω)

{
> 0 ⇒ accept H1, reject H2
≤ 0 ⇒ accept H2, reject H1

,

and we upper-bounded the risk of Tϕ by the risk of detector ϕ

Risk[ϕ|P1,P2] = max

[
sup
P∈P1

Eω∼P{exp{−ϕ(ω)}}, sup
P∈P2

Eω∼P{exp{ϕ(ω)}}
]
.
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Basic tool: A family F of candidate detectors ϕ(·) : Ω→ R...

2. In simple o.s.’s we dealt with the families F of candidate detectors were in fact
comprised of affine functions of ω.
Indeed, this was the case with Gaussian and Poisson o.s.’s, but seemingly was not the case with

Discrete o.s. – there Ω = {1, ..., d} and F was comprised of whatever functions of ω ∈ Ω.

However: When encoding the points 1,2, ..., d ∈ Ω with the standard basic orths e1, ..., ed in Rd —

when identifying Ω with the set of vertices of d-dimensional probabilistic simplex — every function on

Ω becomes affine function of ω ∈ Ω!

Note: When the families F associated with simple o.s.’s in question are comprised of affine functions

of ω ∈ Ω, so are the families associated with direct products/direct powers of these simple o.s.’s!
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3. The key element of our setup was convex-concave function Φ(h;µ) : Rd×M→
R. Our families P1 = {Pµ : µ ∈M1}, P2 = {Pµ : µ ∈M2} of a parametric family
of distributions {Pµ : µ ∈M} on Ω, and Φ was linked to this family by the relation

ln
(
Eω∼Pµ

{
eh

Tω
})

= Φ(h;µ). (!)

We dealt with the situation when M1, M2 were convex compact subsets ofM, and
(!) allowed us to pose the problem of finding minimum risk affine detector ϕ(ω) =

hTω+ κ as the convex-concave saddle point problem

SadVal = min
h

max
µ∈M1,ν∈M2

1

2
[Φ(−h;µ) +Φ(h; ν)] , (∗)

and the risk of affine detector stemming from the h-component of a saddle point was
exp{SadVal}.
• An additional reasoning demonstrated that in the case of simple o.s., this construc-
tion yields minimum risk detectors.
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♠ In the forthcoming extension, we

• Still stick to detector-based tests and detectors affine in ω

• Relax the assumption that P1 = {Pν : ν ∈M1}, P2 = {Pν : ν ∈M2} for convex
compact sets M1,M2 and parametric family P = {Pν : ν ∈M} such that

ln
(
Eω∼Pν

{
eh

Tω
})

=Φ(h; ν). (!)

for a known to us convex-concave function Φ(h; ν).
Instead, we assume that
• we are given a convex-concave function Φ(h; ν) : Rd ×M→ R
• P1 and P2 are sub-families of a family P of distributions on Rd, and every P ∈ P
can be assigned (perhaps in many ways!) a value of parameter ν ∈M in such a way
that

∀h : ln
(
Eω∼P

{
eh

Tω
})
≤Φ(h; ν). (!!)

• Pχ, χ = 1,2, can be associated with convex compact setsMχ in such a way that

ln
(
Eω∼P

{
eh

Tω
})
≤
{

Φ(h; ν)∀h and some ν ∈M1, P ∈ P1
Φ(h; ν)∀h and some ν ∈M2, P ∈ P2
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We assume that
• we are given a convex-concave function Φ(h; ν) : Rd ×M→ R
• P1 and P2 are sub-families of a family P of distributions on Rd, and every P ∈ P can be assigned (perhaps in many
ways!) a value of parameter ν ∈M in such a way that

∀h : ln
(
Eω∼P

{
eh

Tω
})
≤Φ(h; ν). (!!)

• Pχ, χ = 1,2, can be associated with convex compact setsMχ in such a way that

ln
(
Eω∼P

{
eh

Tω
})
≤
{

Φ(h; ν) ∀h and some ν ∈M1, P ∈ P1
Φ(h; ν) ∀h and some ν ∈M2, P ∈ P2

♠With this extension, the convex-concave saddle point problem

SadVal = min
h

max
µ∈M1,ν∈M2

1

2
[Φ(−h;µ) +Φ(h; ν)] , (∗)

still supplies “presumably good” affine detector with risk ≤ exp{SadVal}.
Bad news: the resulting tests not necessarily are near-optimal
Good news: Our new setup covers situations going far beyond simple o.s.’s, e.g., the
case of sub-Gaussian distributions, where the “parameter” µ = (u,Θ) ∈ Rd × Sd+
of a distribution P satisfies

ln
(
Eω∼P{eh

Tω}
)
≤ hTu+

1

2
hTΘh∀h.
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Setup

♣ Given an observation space Ω = Rd, consider a triple H,M,Φ, where
• H is a nonempty closed convex set in Ω symmetric w.r.t. the origin,
• M is a compact convex set in some Rn,
•Φ(h;µ) : H×M→ R is a continuous function convex in h ∈ H and concave in

µ ∈M.

♣ H,M,Φ specify a family S[H,M,Φ] of probability distributions on Ω. A prob-
ability distribution P belongs to the family iff there exists µ ∈M such that

ln
(∫

Ω
eh

TωP (dω)
)
≤ Φ(h;µ) ∀h ∈ H (∗)

We refer to µ ensuring (∗) as to parameter of distribution P .
•Warning: A distribution P may have many different parameters!
♡ We refer to triple H,M,Φ satisfying the above requirements as to regular data,
and to S[H,M,Φ] – as to the simple family of distributions induced by these data.
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♠ Example 1: Gaussian and sub-Gaussian distributions. When
• M = {(u,Θ)} ⊂ Rd × intSd+ is a convex compact set such that Θ ≻ 0 for all

(u,Θ) ∈M,
• H = Rd,
• Φ(h;u,Θ) = hTu+ 1

2h
TΘh,

S = S[H,M,Φ] contains all probability distributions P which are sub-Gaussian with
parameters (u,Θ), meaning that

ln
(∫

Ω
eh

TωP (dω)
)
≤ hTu+

1

2
hTΘh ∀h, (1)

and, in addition, the “parameter” (u,Θ) belongs toM.
Note: Whenever P is sub-Gaussian with parameters (u,Θ), u is the expectation of
P .

Note: N (u,Θ) ∈ S whenever (u,Θ) ∈M; for P = N (u,Θ), (1) is an identity.
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♠ Example 2: Poisson distributions. When
• M ⊂ Rd+ is a convex compact set,
• H = Rd,
• Φ(h;µ) =

∑d
i=1 µi(e

hi − 1),

S = S[H,M,Φ] contains distributions of all d-dimensional random vectors ωi with
independent across i entries ωi ∼ Poisson(µi) such that µ = [µ1; ...;µd] ∈M.

♠ Example 3: Discrete distributions. When
• M = {µ ∈ Rd : µ ≥ 0,

∑
j µj = 1} is the probabilistic simplex in Rd,

• H = Rd,
• Φ(h;µ) = ln

(∑d
i=1 µie

hi
)
,

S = S[H,M,Φ] contains all discrete distributions supported on the vertices of the
probabilistic simplex.
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♠ Example 4: Distributions with bounded support. Let X ⊂ Rd be a nonempty
convex compact set with support function ϕX(·):

ϕX(y) = max
x∈X

yTx : Rd → Rd.

WhenM = X, H = Rd and

Φ(h;µ) = hTµ+
1

8
[ϕX(h) + ϕX(−h)]2, (2)

S = S[H,M,Φ] contains all probability distributions supported on X, and for such
a distribution P , µ =

∫
X ωP (dω) is a parameter of P .

• Note: When G, 0 ∈ G, is a convex compact set, the conclusion in Example 4
remains valid when function (2) is replaced with the smaller function

Φ(h;µ) = min
g∈G

[
µT (h− g) +

1

8
[ϕX(h− g) + ϕX(g − h)]2 + ϕX(g)

]
.
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♣ Fact: Simple families of probability distributions admit “calculus:”
♠ [summation] For 1 ≤ ℓ ≤ L, let λℓ be reals, and let Hℓ,Mℓ,Φℓ be regular data

with common observation space: Hℓ ⊂ Ω = Rd. Setting

H = {h ∈ Rd : λℓh ∈ Hℓ,1 ≤ ℓ ≤ L},M =M1 × ...×ML,

Φ(h;µ1, ..., µL) =
∑L
ℓ=1Φℓ(λℓh;µℓ),

we get regular data with the following property:

Whenever random vectors ξℓ ∼ Pℓ ∈ S[Hℓ,Mℓ,Φℓ], 1 ≤ ℓ ≤ L, are in-
dependent across ℓ, the distribution P of the random vector ξ =

∑L
ℓ=1 λℓξℓ

belongs to S[H,M,Φ]. Denoting by µℓ parameters of Pℓ, µ = [µ1; ...;µL]

can be taken as parameter of P .
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♠ [direct product] For 1 ≤ ℓ ≤ L, let Hℓ,Mℓ,Φℓ be regular data with observation
spaces Ωℓ = Rdℓ. Setting

H = H1 × ...×HL ⊂ Ω = Rd1+...+dL.M =M1 × ...×ML,

Φ(h1, ..., hL;µ1, ..., µL) =
∑L
ℓ=1Φℓ(hℓ;µℓ),

we get regular data with the following property:

Whenever Pℓ ∈ S[Hℓ,Mℓ,Φℓ], 1 ≤ ℓ ≤ L, the direct product distribution
P = P1 × ... × PL belongs to S[H,M,Φ]. Denoting by µℓ parameters of
Pℓ, µ = [µ1; ...;µL] can be taken as parameter of P .
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♠ [marginal distribution] Let H,M,Φ be regular data with observation space Rd,
and let ω 7→ Aω+ a : Rd 7→ Ω = Rδ. Setting

H̄ = {h ∈ Rδ : ATh ∈ H}, Φ̄(h;µ) = hTa+Φ(ATh;µ),

we get regular data H̄,M, Φ̄ with the following property:

Whenever ξ ∼ P ∈ S[H,M,Φ], the distribution P̄ of the random variable
ω = Aξ+ a belongs to the simple family S[H̄,M, Φ̄], and parameter of P
is a parameter of P̄ as well.
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♣ Main observation: When deciding on simple families of distributions, affine tests
and their risks can be efficiently computed via Convex Programming:
♡ Theorem. Let Hχ,Mχ,Φχ, χ = 1,2, be two collections of regular data with
compactM1,M2 and H1 = H2 =: H, and let

Ψ(h) = maxµ1∈M1,µ2∈M2

1

2
[Φ1(−h;µ1) +Φ2(h, µ2)]︸ ︷︷ ︸

Φ(h;µ1,µ2)

: H → R

Then Ψ is efficiently computable convex function, and for every h ∈ H, setting

ϕ(ω) = hTω+
1

2

[
maxµ1∈M1

Φ1(−h;µ1)−maxµ2∈M2
Φ2(h;µ2)

]
︸ ︷︷ ︸

κ

,

one has
Risk[ϕ|P1,P2] ≤ exp{Ψ(h)} [Pχ = S[H,Mχ,Φχ]]

In particular, if convex-concave function Φ(h;µ1, µ2) possesses a saddle point
h∗, (µ∗1, µ

∗
2) on H× (M1 ×M2), the affine detector

ϕ∗(ω) = hT∗ ω+ 1
2

[
Φ1(−h;µ∗1)−Φ2(h

∗;µ∗2)
]

admits risk bound
Risk[ϕ∗|P1,P2] ≤ exp{Φ(h∗;µ∗1, µ

∗
2)}
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Indeed, let h ∈ H. Selecting µ∗1 ∈ Argmax
µ1∈M1

Φ1(−h;µ1), µ∗2 ∈ Argmax
µ2∈M2

Φ2(h;µ2),

we have
P ∈ P1 := S[H,M1,Φ1]⇒ ∃µ1 ∈M1 : Eω∼P

{
e−h

Tω
}
≤ eΦ1(−h;µ1)

⇒ Eω∼P
{
e−ϕ(ω)

}
≤ eΦ1(−h;µ∗1)−κ = eΨ(h)⇒ Risk1[ϕ|P1,P2] ≤ eΨ(h).

Similarly,

P ∈ P2 := S[H,M2,Φ2]⇒ ∃µ2 ∈M2 : Eω∼P

{
eh

Tω
}
≤ eΦ2(h;µ2)

⇒ Eω∼P
{
eϕ(ω)

}
≤ eΦ2(h;µ

∗
2)+κ = eΨ(h)⇒ Risk2[ϕ|P1,P2] ≤ eΨ(h).
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♠ Numerical Illustration. Given observation

ω = Ax+ σADiag {√x1, ...,
√
xn} ξ [ξ ∼ N (0, In)]

of an unknown signal x known to belong to a given convex compact set M ⊂ Rn++,
we want to decide on two hypotheses Hχ : x ∈ Xχ, χ = 1,2, with risk 0.01.
Xχ: convex compact subsets of X.
Novelty: Noise intensity depends on the signal!
• Introducing regular data Hχ = Rn,Mχ = Xχ,

Φχ(h, µ) = hTAµ+
σ2

2
hT [ADiag{µ}AT ]h [χ = 1,2]

distribution of observations under Hχ belongs to S[H,Mχ,Φχ].
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• An affine detector for families Pχ of distributions obeying Hχ, χ = 1,2, is given by
the saddle point of the function

Φ(h;µ1, µ2) :=
1

2

[
hT [µ2 − µ1] +

σ2

2
hTADiag{µ1 + µ2}ATh

]
♡ Data: n = 16, σ = 0.1, target risk 0.01,

• A = UDiag{0.01(i−1)/15, i ≤ 16}V with random orthogonal U , V ,

• X1 =

{
x ∈ R16 :

0.001 ≤ x1 ≤ δ
0.001 ≤ xi ≤ 1, i ≥ 2

}
• X2 =

{
x ∈ R16 :

2δ ≤ x1 ≤ 1
0.001 ≤ xi ≤ 1, i ≥ 2

}
♡ Results:

δ = 0.1⇒ Risk[ϕ∗|P1,P2] = 0.4346⇒ 6-repeated observation

δ = 0.01⇒ Risk[ϕ∗|P1,P2] = 0.9201⇒ 56-repeated observation

• Safe “Gaussian o.s. approximation” of the above observation scheme requires 37-repeated obser-

vations to handle δ = 0.1 and 3685-repeated observation to handle δ = 0.01.
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♣ Sub-Gaussian case. For χ = 1,2, let Uχ ⊂ Ω = Rd and Vχ ⊂ intSd+ be convex
compact sets. Setting

Mχ = Uχ × Vχ, Φ(h;u,Θ) = hTu+
1

2
hTΘh : H×Mχ → R,

the regular data H = Rd,Mχ,Φ specify the families

Pχ = S[Rd, Uχ × Vχ,Φ]

of sub-Gaussian distributions with parameters from Uχ × Vχ.

♠ Saddle point problem responsible for design of affine detector for P1,P2 reads

SadVal = min
h∈Rd

max
u1∈U1,u2∈U2
Θ1∈V1,Θ2∈V2

1

2

[
hT(u2 − u1) +

1

2
hT [Θ1 +Θ2]h

]
• Saddle point (h∗; (u∗1, u

∗
2,Θ

∗
1,Θ

∗
2)) does exist and satisfies

h∗ = [Θ∗1 +Θ∗2]
−1[u∗1 − u∗2],

SadVal = −1
4
[u∗1 − u∗2][Θ∗1 +Θ∗2]

−1[u∗1 − u∗2] = −
1
4
hT∗ [u

∗
1 − u∗2]

• The associated affine detector and its risk are
ϕ∗(ω) = hT∗

[
ω − 1

2
[u∗1 + u∗2]

]
= [u∗1 − u∗2]T [Θ∗1 +Θ∗2]

−1 [ω − 1
2
[u∗1 + u∗2]

]
Risk(ϕ∗|P1,P2)
≤ exp{SadVal} = exp{−1

4
[u∗1 − u∗2][Θ∗1 +Θ∗2]

−1[u∗1 − u∗2]}
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♡ Note: In the symmetric case V1 = V2 (h∗; (u∗1, u
∗
2,Θ

∗
1,Θ

∗
2)) can be selected

to have Θ∗1 = Θ∗2 =: Θ∗. In this case, the affine detector we end up with is the
minimum risk detector for P1, P2.
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What is “affine?” Quadratic Lifting

♣We have developed a technique for building “presumably good” affine detectors for
simple families of distributions.
But: Given observation ζ ∼ P , we can subject it to nonlinear transformation
ζ 7→ ω = ψ(ζ), e.g., to quadratic lifting

ζ 7→ ω = (ζ, ζζT )

and treat as our observation ω rather than the “true” observation ζ.
Note: Affine in ω detectors are nonlinear in ζ.
Example: Detectors affine in the quadratic lifting ω = (ζ, ζζT ) of ζ are exactly the
quadratic functions of ζ.
♠ We can try to apply our machinery for building affine detectors to nonlinear trans-
formations of true observations, thus arriving at nonlinear detectors.
• Bottleneck: To apply the outlined strategy to a pair P1,P2 of families of distri-
butions of interest, we need to cover the families P+

χ of distributions of ω = ψ(ζ)

induced by distributions P ∈ Pχ of ζ, χ = 1,2, by simple families of distributions.
•What is ahead: Simple “coverings” of quadratic lifts of (sub)Gaussian distributions.
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♣ Situation: Given are:
• a compact nonempty set U ⊂ Rn

• an affine mapping u 7→ A(u) = A[u; 1] : Rn → Rd

• a convex compact set V ⊂ intSd+.
• The above data specify families of probability distributions of random observations

ω = (ζ, ζζT ), ζ = A(u) + ξ ∈ Rd, (∗)

specifically,
— the family G of all distributions of ω induced by deterministic u ∈ U and

Gaussian noise ξ ∼ N (0,Θ ∈ V)
— the family SG of all distributions of ω induced by deterministic u ∈ U and

sub-Gaussian, with parameters (0,Θ ∈ V) noise ξ
♡ Goal: To cover G (SG) by a simple family of distributions.
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Gaussian case

♣ Proposition. Given the above data U,A(u) = A[u; 1],V, let us select
• γ ∈ (0,1)
• a computationally tractable convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z ⪰ 0, Zn+1,n+1 = 1}
such that [u; 1][u; 1]T ∈ Z ∀u ∈ U
• A matrix Θ∗ ∈ Sd and δ ∈ [0,2] such that
∀(Θ ∈ V) : Θ ⪯ Θ∗ & ∥Θ1/2Θ

−1/2
∗ − Id∥ ≤ δ [∥ · ∥ is the spectral norm]

Let us set

B =

[
A

0, ...,0,1

]
∈ R(d+1)×(n+1), M = V × Z, H = {(h,H) ∈ Rd × Sd : −γΘ−1∗ ⪯ H ⪯ γΘ−1∗ }

ΦA,Z(h,H;Θ, Z) = −1
2
lnDet(I −Θ1/2

∗ HΘ1/2
∗ ) + 1

2
Tr([Θ−Θ∗]H)+δ(2+δ)∥Θ1/2

∗ HΘ1/2
∗ ∥2F

2(1−∥Θ1/2
∗ HΘ1/2

∗ ∥)
[∥ · ∥F – Frobenius norm]

+1
2
Tr

(
ZBT

[[
H h
hT

]
+ [H,h]T

[
Θ−1∗ −H

]−1
[H,h]

]
B

)
: H×M→ R

Then H,M,ΦA,Z is efficiently computable regular data, and G ⊂ S[H,M,ΦA,Z].
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Sub-Gaussian case

♣ Proposition. Given the above data U,A(u) = A[u; 1],V, let us select
• γ, γ+ ∈ (0,1) with γ < γ+

• a computationally tractable convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z ⪰ 0, Zn+1,n+1 = 1}

such that [u; 1][u; 1]T ∈ Z ∀u ∈ U
• A matrix Θ∗ ∈ Sd and δ ∈ [0,2] such that

∀(Θ ∈ V) : Θ ⪯ Θ∗ & ∥Θ1/2Θ
−1/2
∗ − Id∥ ≤ δ

Let us set

B =

[
A

0, ...,0,1

]
∈ R(d+1)×(n+1), H = {(h,H) ∈ Rd × Sd : −γΘ−1∗ ⪯ H ⪯ γΘ−1∗ }

H+ = {(h,H,G) ∈ Rd × Sd × Sd : −γ+Θ−1∗ ⪯ H ⪯ G ⪯ γ+Θ−1∗ , 0 ⪯ G},M = Z

ΦA,Z(h,H;Z) = min
G:(h,H,G)∈H+

{
− 1

2
lnDet(I −Θ1/2

∗ GΘ1/2
∗ )

+1
2
Tr
(
ZBT

[[
H h
hT

]
+ [H,h]T

[
Θ−1∗ −G

]−1
[H,h]

]
B
)}

: H×M→ R

ThenH,M,ΦA,Z is efficiently computable regular data, and SG ⊂ S[H,M,ΦA,Z].
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♠ How to specify Z. To apply the above construction, one should specify a computationally tractable
convex compact set

Z ⊂ Z+ = {Z ∈ Sn+1 : Z ⪰ 0, Zn+1,n+1 = 1}
the smaller the better, such that u ∈ U → [u; 1][u; 1]T ∈ Z
• The ideal selection is

Z = Z[U ] = Conv{[u; 1][u; 1]T : u ∈ U}
However: Z[U ] usually is computationally intractable.
Important exception:

Q ≻ 0, U = {u : uTQu ≤ 1} ⇒ Z[U ] = {Z ∈ Z+ :
n∑

i,j=1

ZijQij ≤ 1}
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♡ “Simple” case: When U is given by quadratic inequalities:

U = {u ∈ Rn : [u; 1]TQs[u; 1] ≤ qs, 1 ≤ s ≤ S}
we can set

Z = {Z ∈ Sn+1 : Z ⪰ 0, Zn+1,n+1 = 1,Tr(QsZ) ≤ qs, 1 ≤ s ≤ S}. (∗)

• Warning: (∗) can yield very conservative outer approximation of Z[U ]. This conservatism with

luck can be reduced by passing from the original description of U to an equivalent one, with emphasis

on eliminating/updating linear constraints. For example,

• a constraint of the form |aTu− c| ≤ r should be replaced with (aTu− c)2 ≤ r2

Note: every linear constraint in the description of U can be written as α − aTu ≥ 0 and augmented

by redundant constraint aTu ≥ β, with appropriately selected β. The resulting pair of constraints is

equivalent to |aTu− c| ≤ r with c = 1
2
[α+ β] and r = 1

2
[α− β].

• It could make sense to write the linear constraints in the description of U in the form α − aTu ≥ 0

and add to these constraints their pairwise products.
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Quadratic Lifting – Does it Pay?

♣ Situation: Let for χ = 2,1 be given
• convex compact sets Uχ ⊂ Rnχ
• affine mappings uχ 7→ Aχ(uχ) : Rnχ → Rd

• convex compact sets Vχ ⊂ intSd+.
These data define families Gχ of Gaussian distributions:

Gχ = {N (Aχ(uχ),Θχ) : uχ ∈ Uχ,Θχ ∈ Vχ}
♠ Our machinery offers two types of detectors for G1, G2:
♠ Affine detector ϕaff yielded by the solution to the saddle point problem

SadValaff = min
h∈Rd

max
u1∈U1,u2∈U2
Θ1∈V1,Θ2∈V2

1

2

[
hT [A2(u2)−A1(u1)] +

1

2
hT [Θ1 +Θ2]h

]
with Risk(ϕaff|G1,G2) ≤ exp{SadValaff}
♠ Quadratic detector ϕlift yielded by the solution to the saddle point problem

SadVallift = min
(h,H)∈H

max
Θ1∈V1
Θ2∈V2

1

2

[
ΦA1,Z1

(−h,−H;Θ1) +ΦA2,Z2
(h,H;Θ2)

]
with Risk(ϕlift|G1,G2) ≤ exp{SadVallift}
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♠ Fact: Assume that the sets Vχ contain ⪰-largest elements. Then with proper
selection of the “design parameters” Zχ,Θ(χ)

∗ participating in the construction of
ΦAχ,Zχ, χ = 1,2, passing from affine to quadratic detectors helps:

SadVallift ≤ SadValaff

♡ Numerical illustration:
• U1 = Uρ

1 = {u ∈ R12 : ui ≥ ρ,1 ≤ i ≤ 12}, U2 = Uρ
2 = −Uρ

1, A1 = A2 ∈ R8×13;

• Vχ = {Θ(χ)
∗ = σ2

χI8}
ρ σ1 σ2 unrestricted H and h H = 0 h = 0

0.5 2 2 0.31 0.31 1.00
0.5 1 4 0.24 0.39 0.62
0.01 1 4 0.41 1.00 0.41

Risk of quadratic detector ϕ(ζ) = hTζ + 1
2
ζTHζ + κ

♣ We see that • when deciding on families of Gaussian distributions with common covariance

matrix and expectations varying in associated with the families convex sets, passing from affine to

quadratic detectors does not help.

• in general, both affine and purely quadratic components in a quadratic detector are useful.

• when deciding on families of Gaussian distributions in the case where distributions from different

families can have close expectations, affine detectors are useless, while the quadratic ones are not.
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Illustration: Simple Change Point Detection
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Frames from a noisy “movie”

When the picture starts to change?
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♣ Model: We observe one by one vectors (“vectorized” 2D images)

ωt = xt+ ξt,

• xt: deterministic image
• ξt ∼ N (0, σ2Id): independent across t observation noises.
Note: We know a range [σ, σ] of σ, but perhaps do not know σ exactly.

• We know that x1 = x2 and want to check whether x1 = ... = xK (“no change”)
or there is a change.
♠ Goal: Given an upper bound ϵ > 0 on the probability of false alarm, we want to
design a sequential change detection routine capable to detect change, if any.
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♠ Approach:
• Pass from observations ωt, 1 ≤ t ≤ K, to observations

ζt = ωt − ω1 = xt − x1︸ ︷︷ ︸
yt

+ ξt − ξ1︸ ︷︷ ︸
ηt

, 2 ≤ t ≤ K

• Test hypothesis H0 : y2 = ... = yK = 0 vs. alternative

K⋃
k=2

H
ρ
k , H

ρ
k : y2 = ... = yk−1 = 0, ∥yk∥2 ≥ ρ

via our machinery for testing
magenta hypothesis H0

vs.
brown hypotheses Hρ

2, , ..., H
ρ
K

via quadratic liftings ζtζTt of observations ζt up to closeness
C: all brown hypotheses are close to each other and are not close to the magenta hypothesis

•We intend to find the smallest ρ for which the C-risk of the resulting inference is≤ ϵ,
and utilize this inference in change point detection.
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How It Works

♠ Setup: dim y = 2562 = 65536, σ = 10, σ2/σ2 = 2, K = 9, ϵ = 0.01

♠ Inference: At time t = 2, ...,K, compute

ϕ∗(ζt) = −2.7138
∥ζt∥22
105

+366.9548.

ϕ∗(ζt) < 0⇒ conclude that the change took place and terminate
ϕ∗(ζt) ≥ 0⇒ conclude that there was no change so far and proceed

to the next image, if any
♠ Note:
•When magenta hypothesis H0 holds true, the probability not to claim change
on time horizon 2, ...,K is at least 0.99.
•When a brown hypothesis Hρ

k holds true, the change at time ≤ K is detected
with probability at least 0.99, provided ρ ≥ ρ∗ = 2716.6 (average per pixel energy
in yk at least by 12% larger than σ2)
• No test can 0.99-reliably decide via ζ1, ..., ζk on Hρ

k vs. H0 when ρ/ρ∗ < 0.965.
• In the movie, the change takes place at time 3 and is detected at time 4.
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.

ESTIMATING SIGNALS IN GAUSSIAN O.S.
AND BEYOND

• Problem of interest
• Developing tools
• Conic Programming
• Conic Duality

• Optimizing linear estimates
• Ellitopic case
• Spectratopic case

• Near-optimality of linear estimates
• Beyond linearity: polyhedral estimates



♣ Situation: “In the nature” there exists a signal x known to belong to a given convex
compact set X ⊂ Rn. We observe corrupted by noise affine image of the signal
(“indirect observations”):

ω = Ax+ ξ ∈ Rm

• A: given m× n sensing matrix
• ξ: N (0, σ2I) observation noise
♠ Goal: To recover the image Bx of x under a given linear mapping
•B: given ν × n matrix.
♠ Risk of a candidate estimate x̂(·) : Ω→ Rν is defined as

Risk2[x̂|X ] = sup
x∈X

√
Eξ

{
∥Bx− x̂(Ax+ ξ)∥22

}
⇒ Risk22 is the worst-case, over x ∈ X , expected ∥ · ∥22 recovery error.
♠ With this worst-case quantification of risk, the “golden standard” is the minimax
risk

Risk2Opt[X ] = inf
x̂

Risk2[x̂|X ],

inf being taken over all estimates – all (measurable) functions x̂(·) : Rm → Rν. .

5.1



♠ Building the minimax-optimal estimate in a “closed analytical form” seemingly is
beyond our abilities even in the simplest case

Recover x known to belong to X = [−1,1] ∈ R
from observation ω = x+ ξ, ξ ∼ N (0, σ2)

• The precise form of minimax-optimal estimate is unknown. However, in our toy situ-
ation it can be efficiently approximated to high accuracy by passing from the segment
X to a fine finite grid X in X , thus arriving at the problem

min
x̂(·):R→R

max
x∈X

√
Eξ∼N (0,σ2)

{
(x̂(ω)− x)2

}
which can be solved numerically within a desired accuracy after appropriate dis-
cretization in ω.
•We can easily build minimum risk linear estimate x̂h(ω) = hω. We have

max
x∈X

(Risk2[x̂h|X ])2 = max
x∈X

Eξ∼N (0,σ2)

{
(h[x+ ξ]− x)2

}
= (1− h)2 + h2σ2.

Minimizing over h, we arrive at the minimum risk linear estimate

x̂Lin(ω) =
1

1+ σ2
ω

[
Risk2[x̂Lin|X ] = σ√

1+σ2

]



Recover x known to belong to X = [−1,1] ∈ R
from observation ω = x+ ξ, ξ ∼ N (0, σ2)

• Passing from a whatever estimate x̂(·) to its projected version

x̂X (ω) = argmin
u∈X

|x̂(ω)− u|

reduces pointwise recovery error and thus reduces Risk2. In particular, we can
improve the minimum risk linear estimate by passing to its projected version

x̂LinPr(ω) =


−1 , ω ≤ −[1 + σ2]
ω

1+σ2
, |ω| ≤ 1+ σ2

1 , ω ≥ 1+ σ2

• Maximum Likelihood estimate x̂ML(ω) obtained by maximizing π(x − ω) :=
1√
2πσ

exp{−(x−ω)2
2σ2

} over x ∈ X is just the projected version of the simplest un-
biased linear estimate x̂ULin(ω):

x̂ML(ω) =


−1 , ω < 1
ω , |ω| ≤ 1
1, ω ≥ 1

, x̂ULin(ω) = ω.
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Recover x known to belong to X = [−1,1] ∈ R
from observation ω = x+ ξ, ξ ∼ N (0, σ2)

♠ Here are the performances of our estimates:
σ = 1.00 σ = 0.50 σ = 0.10 σ = 0.05

Risk2[x̂ULin|X ] 1.00000 0.50000 0.10000 0.05000

Risk2[x̂Lin|X ] 0.70711 0.44721 0.09950 0.04994
Risk2[x̂LinPr|X ] 0.53743 0.39549 0.09913 0.04989
Risk2[x̂ML|X ] 0.71838 0.47073 0.10000 0.05000
Risk2Opt 0.44608 0.33526 0.09259 0.04859

♣ Comments, A. As σ → +0, the ratios of 2-risks of our estimates to the minimax optimal 2-risk
approach 1. This “asymptotic optimality” takes place in the general recovery problem

ω = Ax+ ξ ??⇒?? Bx
[
x ∈ X , ξ ∼ N (0, σ2Im)

]
(∗)

provided that A is invertible and intX ̸= ∅. However, in typical multivariate applications, in order
for a simple estimate, like the ML or the “plug-in” ω 7→ BA−1ω one, to be minimax optimal within a
reasonable factor, like 2 or 10, the level of noise should be impractically low.
Comments, B. In our toy univariate example we in fact were recovering linear form of the signal
underlying observations. It is known (Donoho 1994) that when B in (∗) is a row vector and X is
a convex compact set, the (efficiently computable) minimum risk affine estimate is Risk2-minimax
optimal within absolute constant factor like 1.2. This is the Risk2-version of already known to us
results on near minimax optimality, in terms of ϵ-risk, of properly built efficiently computable affine
estimate of a linear form of a signal observed via simple o.s.
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♣ Agenda: Under appropriate assumptions on X , we shall show that
A. One can build, in a computationally efficient fashion, (nearly) the best, in terms

of Risk2, estimate in the family of linear estimates

x̂(ω) = x̂H(ω) = HTω [H ∈ Rm×ν]

B. The resulting linear estimate is nearly minimax optimal – optimal among all
estimates, linear and nonlinear alike.

C. Under appropriate assumptions on a norm ∥ · ∥ and a family P of distributions
of observation noise, the results of A, B can be extended to the situation where
— the recovery error is measured in norm ∥ · ∥,
— distribution P of observation noise is known to belong to P,
— the 2-risk

Risk2[x̂|X ] = sup
x∈X

√
Eξ

{
∥Bx− x̂(Ax+ σξ)∥22

}
is replaced with (∥ · ∥,P)-risk

Risk∥·∥,P[x̂|X ] = sup
x∈X

sup
P∈P

Eξ∼P {∥Bx− x̂(Ax+ ξ)∥}
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What makes signal recovery difficult for analysis?

ω = Ax+ ξ ??⇒?? x̂(ω) ≈ Bx (∗)

♣ What makes (∗) difficult for the synthesis of (near) optimal estimates and their risk analysis, is the
“interplay” of several different geometries – those of the matrices A,B, the set X , and the norm ∥ · ∥.
• It is easily seen that one of these geometries can be “nearly standardized,” specifically, by appro-
priate updating other components of the data, we can assume that A is square diagonal matrix with
diagonal entries λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0. Observe that entries of x corresponding to small λi, if any,
are suppressed by multiplication by A, so that the attempt to recover them from observations leads
to amplifying the noise, the more significant the smaller are λi. In principle, this phenomenon, in the
case of ill-conditioned A, prevents good recovery of x and Bx. However, it may happen that
• “difficult to recover” entries in x are a priori small due to the geometry of X , and/or
• these entries are suppressed by multiplication by B, and/or
• changes in Bx stemming from recovery errors in difficult to recover entries of x are suppressed
by the norm ∥ · ∥ quantifying the overall recovery error.

♠ We see that achievable risks in (∗) indeed depend on interplay between geometries of A,B,X ,
∥ · ∥. In simple cases, like the diagonal one (A,B are diagonal, X , ∥ · ∥ are “diagonal-representable,”
e.g. X = {x : ∥Cx∥p ≤ 1}, ∥u∥ = ∥Du∥r with diagonal C,D) this interplay is amenable to ana-
lytical investigation resulting in “closed analytic form” descriptive results on what are the near-optimal
estimates and their risks. However, in general, as a matter of fact, analytical investigation of (∗) and
related descriptive results are out of question.
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ω = Ax+ ξ ??⇒?? x̂(ω) ≈ Bx (∗)

♣ Surprisingly, (∗) allows for nice operational results – under not too restrictive
assumptions on X and ∥ · ∥, assumptions incomparably weaker than the above “di-
agonal representability,” we can point out efficiently computable estimates which are
provably near-optimal in terms of Risk∥·∥. As a matter of fact, these “good estimates’
are linear:

x̂(ω) = HTω.
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Why linear estimates?

♠ As it was announced, a “nearly optimal” linear estimate can be built in a computa-
tionally efficient fashion.

♠ In contrast,

• Exactly minimax optimal estimate is unknown even in the simplest case when
the observation is ω = x+ ξ with ξ ∼ N (0, σ2) and x ∈ X = [−1,1]
• The “magic wand” of Statistics – the Maximum Likelihood estimate — is known
to be optimal in the “noise goes to 0” asymptotics and can be disastrously bad
before this asymptotics starts.
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x
ω

x̂ml(ω)

blue: X magenta: AX
• X = {x ∈ Rn : x2n + ϵ−2

∑n−1
i=1 x

2
i ≤ 1}

• A = Diag{1/ϵ, ...,1/ϵ,1}, η ∼ N (0, σ2In), B = In
⇒ MLE: x̂ml(ω) = A−1 · argmin∥u∥2≤1 ∥ω − u∥2

When σ ≪ 1, σ2n ≥ O(1), and ϵ ≤ O(σ), the risk of MLE is O(1), while the risk of
the linear estimate x̂(ω) = ωn is O(σ)≪ O(1).
Note: As σ → 0, the ML estimate regains optimality, but this happens the later the
larger is n.
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Developing Tools, Optimization
“Structure-Revealing” Representation of Convex Problem: Conic

Programming

♣When passing from a Linear Programming program
min
x

{
cTx : Ax− b ≥ 0

}
to a convex one, the traditional wisdom is to replace linear inequality constraints

aTi x− bi ≥ 0

with nonlinear ones:
gi(x) ≥ 0 [gi are concave]

♠ There exists, however, another way to introduce nonlinearity, namely, to replace
the coordinate-wise vector inequality

y ≥ z ⇔ y − z ∈ Rm+ = {u ∈ Rm : ui ≥ 0∀i} [y, z ∈ Rm]

with another vector inequality
y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

where K is a regular cone (i.e., closed, pointed and convex cone with a nonempty
interior) in Rm.
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y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

K: closed, pointed and convex cone in Rm with a nonempty interior.
Requirements on K ensure that ≥K obeys the usual rules for inequalities:

• ≥K is a partial order:

x ≥K x∀x [reflexivity]
(x ≥K y & y ≥K x)⇒ x = y [antisymmetry]
(x ≥K y, y ≥K z)⇒ x ≥K z [transitivity]

• ≥K is compatible with linear operations: the validity of ≥K inequality is preserved when we
multiply both sides by the same nonnegative real and add to it another valid ≥K-inequality;

• in a sequence of ≥K-inequalities, one can pass to limits:

{ai ≥K bi, i = 1,2, ...& ai → a& bi → b}⇒a ≥K b

• one can define the strict version >K of ≥K:

a >K b⇔ a− b ∈ intK.

Arithmetics of >K and ≥K inequalities is completely similar to the arithmetics of the usual
coordinate-wise ≥ and >.
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♣ LP problem:

min
x

{
cTx : Ax− b ≥ 0

}
⇔ min

x

{
cTx : Ax− b ∈ Rm+

}
♣ General Conic problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
• (A, b) – data of conic problem

• K - structure of conic problem

♠ Note: Every convex problem admits equivalent conic reformulation
♠ Note: With conic formulation, convexity is “built in”; with the standard MP formula-
tion convexity should be kept in mind as an additional property.

♣ (??) A general convex cone has no more structure than a general convex function.
Why conic reformulation is “structure-revealing”?

♣ (!!) As a matter of fact, just 3 types of cones allow to represent an extremely wide
spectrum (“essentially all”) of convex problems!
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min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
♠ Three Magic Families of cones:
• LP: Nonnegative orthants Rm+ – direct products of m nonnegative rays

R+ = {s ∈ R : s ≥ 0} giving rise to Linear Programming programs
min
s

{
cTx : aTℓ x− bℓ ≥ 0,1 ≤ ℓ ≤ q

}
.

• CQP: Direct products of Lorentz cones

Lp+ = {u ∈ Rp : up ≥
(∑p−1

i=1 u
2
i

)1/2
} giving rise to Conic Quadratic programs

min
x

{
cTx : ∥Aℓx− bℓ∥2 ≤ cTℓ x− dℓ,1 ≤ ℓ ≤ q

}
.

• SDP : Direct products of Semidefinite cones
Sp+ = {M ∈ Sp :M ⪰ 0} giving rise to Semidefinite programs

min
x

{
cTx : λmin(Aℓ(x)) ≥ 0︸ ︷︷ ︸

⇔Aℓ(x)⪰0

, 1 ≤ ℓ ≤ q
}
.

where Sp is the space of p × p real symmetric matrices, Aℓ(x) ∈ Sp are affine
in x and λmin(S) is the minimal eigenvalue of S ∈ Sp.
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What can be reduced to LP/CQP/SDP ?
Calculus of Conic programs

♣ Let K be a family of regular cones closed w.r.t. taking direct products.
♠ Definition: • A K-representation of a set X ⊂ Rn is a representation

X = {x ∈ Rn : ∃u ∈ Rm :Ax+Bu− b ∈ K} (*)
where K ∈ K.
• X is called K-representable, if X admits a K-r.
♡ Note: Minimizing a linear objective cTx over a K-representable set X reduces to
a conic program on a cone from K.
Indeed, given (∗), problem min

x∈X
cTx is equivalent to

Opt = minx,u
{
cTx : Ax+Bu− b ∈ K

}
♠ Definition: • A K-representation of a function f : Rn → R ∪ {+∞} is a K-
representation of the epigraph of f :

Epi{f} := {(x, t) : t ≥ f(x)}
= {x, t : ∃v : Px+ pt+Qv − q ∈ K}, K ∈ K

• f is called K-representable, if f admits a K-r.
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♡ Note:
• A level set of a K-r. function is K-r.:

Epi{f} := {(x, t) : t ≥ f(x)}
= {x, t : ∃v : Px+ pt+Qu− q ∈ K}

⇒ {x : f(x) ≤ c} = {x : ∃v : Px+Qu− [q − cp] ∈ K}
• Minimization of a K-r. function f over a K-r. set X reduces to a conic program on
a cone from K:

x ∈ X ⇔ ∃u : Ax+Bu− b ∈ KX
t ≥ f(x) ⇔ ∃v : Px+ pt+Qv − q ∈ Kf

}
⇒

minx∈X f(x)
⇕

min
t,x,u,v

{
t : [Ax+Bu− b;Px+ pt+Qv − q] ∈ KX ×Kf︸ ︷︷ ︸

∈K

}
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♣ Investigating “expressive abilities” of generic Magic conic problems reduces to an-
swering the question

What are LP/CQP/SDP-r. functions/sets?

♠ “Built-in” restriction is Convexity: A K-representable set/function must be con-
vex.

♠ Good news: Convexity, essentially, is the only restriction: for all practical pur-
poses, all convex sets/functions arising in applications are SDP-r. Quite rich families
of convex functions/sets are LP/CQP-r.
♡ Note: Nonnegative orthants are direct products of (1-dimensional) Lorentz cones,
and Lorentz cones are intersections of semidefinite cones and properly selected lin-
ear subspaces⇒ LP ⊂ CQP ⊂ SDP.
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♣ Let K be a family of regular cones closed w.r.t. taking direct products and passing
from a cone K to its dual cone

K∗ = {λ : ⟨λ, ξ⟩ ≥ 0 ∀ξ ∈ K}
Note: K∗ is regular cone provided K is so, and

(K∗)∗ = K

♠ Fact: K-representable sets/functions admit fully algorithmic calculus: all basic
convexity-preserving operations with functions/sets, as applied toK-r. operands, pro-
duce K-r. results, and the resulting K-r.’s are readily given by K-r.’s of the operands.
“Calculus rules” are independent of what K is.
⇒ Starting with “raw materials” (characteristic for K elementary K-r. sets/functions)
and applying calculus rules, we can recognize K-representability and get explicit K-
r.’s of sets/functions of interest.
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♣ Basics of “calculus of K-representability”:
♠ [Sets:] If X1, ..., Xk are K-r. sets, so are their
• intersections,
• direct products,
• images under affine mappings,
• inverse images under affine mappings.
♠ [Functions:] If f1, ..., fk are K-r. functions, so are their
• linear combinations with nonnegative coefficients,
• superpositions with affine mappings.

Moreover, if F, f1, ..., fk areK-r. functions, so is the superposition F (f1(x), ..., fk(x))

provided that F is monotonically nondecreasing in its arguments.
♠More advanced convexity-preserving operations preserveK-representability under
(pretty mild!) regularity conditions. This includes
• for sets: taking conic hulls and convex hulls of (finite) unions and passing from a
set to its recessive cone, or polar, or support function
• for functions: partial minimization, projective transformation, and taking Fenchel
dual.

♠ Note: Calculus rules are simple and algorithmic
⇒ Calculus can be run on a compiler [used in cvx].
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Illustration
min cTx+ dTy

y ≥ 0, Ax+By ≤ b
2y
−7

2
1 y−32 y

−1
5
3 +3y

−3
2

2 y
−2

3
4 ≤ eTx+4y

1
5
1y

2
5
2y

2
5
3 +5y

1
3
3y

2
5
4

x1 − x2 x3 + x2
x3 + x2 x2 − x4 x5 − 6

x5 − 6 x6 + x7 −x8
−x8 x5

 ⪰ 0

Det



x1 x2 x3 x4 x5
x2 x6 x7 x8 x9
x3 x7 x10 x11 x12
x4 x8 x11 x13 x14
x5 x9 x12 x14 x15


 ≥ 1

Sum of 2 largest singular values of

 x1 x2 x3
x4 x5 x6
x7 x8 x9
x10 x11 x12
x13 x14 x15

 is ≤ 6

1−
∑6

i=1
[xi − xi+1]si ≤ 0, 3

2
≤ s ≤ 6∑4

i=1
x2i cos(iϕ)−

∑4

i=1
xi sin(iϕ) ≤ 1, π

3
≤ ϕ ≤ π

2

• the blue part of the problem is in LP
• the blue-magenta part of the problem is in CQP and can

be approximated, in a polynomial time fashion, by LP
• the entire problem is in SDP

and the reductions to LP/CQP/SDP are “fully algorithmic.”
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Conic Duality

♣ Conic Programming admits nice Duality Theory completely similar to LP Duality.
Primal problem:

min
x

{
cTx :

{
Ax− b ≥K 0

Rx = r

}
⇔ [passing to primal slack ξ = Ax− b]

min
ξ

{
eT ξ : ξ ∈ [L − b] ∩K

}
(P)[

e : AT e+RTf = c for some f
L = {Au : Ru = 0}

]
Dual problem:

max
y,z

{
bTy : ATy+RTz = c, y ≥K∗ 0

}
⇔ max

y

{
bTy : y ∈ K∗, ∃z : ATy+RTz = c

}
max
y

{
bTy : y ∈ [L⊥+ e]

⋂
K∗

]
(D)

[K∗: cone dual to K]
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Note:

• the dual problem is conic along with primal
• the duality is completely symmetric

Note: Cones from Magic Families are self-dual, so that the dual of a Linear/Conic
Quadratic/Semidefinite program is of exactly the same type.
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Derivation of the Dual Problem

♣ Primal problem:

Opt(P ) = minx

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

♠ Goal: find a systematic way to bound Opt(P ) from below.
♠ Simple observation: When yi ∈ Ki

∗, the scalar inequality yTi Aix ≥ y
T
i bi is a

consequence of the constraint Aix− bi ∈ Ki. If z is a vector of the same dimension
as r, the scalar inequality zTRx ≥ zT r is a consequence of the constraint Rx = r.
⇒ Whenever yi ∈ Ki

∗ for all i and z is a vector of the same dimension as r, the
scalar linear inequality

[
∑
iA

T
i yi+RTz]Tx ≥

∑
i b
T
i yi+ rTz

is a consequence of the constraints in (P )
⇒Whenever yi ∈ Ki

∗ for all i and z is a vector of the same dimension as r such that∑
iA

T
i yi+RTz = c,

the quantity
∑
i b
T
i yi+ rTz is a lower bound on Opt(P ).

• The Dual problem

Opt(D) = max
yi,z

∑i bTi yi+ rTz :
yi ∈ Ki

∗, i ≤ m∑
i
ATi yi+RTz = c

 (D)

is just the problem of maximizing this lower bound on Opt(P ).
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♣ Definition: A conic problem

min
x

cTx :
Aix− bi ∈ Ki, i ≤ m
Ax ≤ b
Rx = r

 (C)

is called strictly feasible, if there exists a feasible solution x̄ where all conic and ≤
constraints are satisfied strictly:

Aix̄− bi ∈ intKi ∀i& Ax̄ < b,

and is called essentially strictly feasible, if there exists a feasible solution x̄ where all
non-polyhedral constraints are satisfied strictly:

Aix̄− bi ∈ intKi ∀i.
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♣ Conic Programming Duality Theorem. Consider a conic problem

Opt(P ) = min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

along with its dual

Opt(D) = max
yi,z

∑i b
T
i yi+ rTz :

yi ∈ Ki
∗, i ≤ m∑

i
ATi yi+RTz = c

 (D)

Then:
♠ [Symmetry] Duality is symmetric: the dual problem is conic, and its dual is (equiv-
alent to) the primal problem;
♠ [Weak duality] One has Opt(D) ≤ Opt(P );
♠ [Strong duality] Let one of the problems be essentially strictly feasible and
bounded. Then the other problem is solvable, and

Opt(D) = Opt(P ).

In particular, if both problems are essentially strictly feasible, both are solvable with
equal optimal values.
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min
x

{
cTx :

Aix− bi ∈ Ki, i ≤ m
Rx = r

}
(P )

↑↓

max
yi,z

{∑
i b
T
i yi+ rTz :

yi ∈ Ki
∗, i ≤ m∑

iA
T
i yi+RTz = c

}
(D)

Conic Programming Optimality Conditions:
Let both (P ) and (D) be essentially strictly feasible. Then a pair (x, [{yi}, z]) of
primal and dual feasible solutions is comprised of optimal solutions to the respective
problems if and only if

• [Zero Duality Gap]
DualityGap(x, [{yi}, z]) := cTx− [

∑
i b
T
i yi+ rTz] = 0

Indeed,DualityGap(x, [{yi}, z]) = [cTx−Opt(P )]︸ ︷︷ ︸
≥0

+[Opt(D)− [
∑

i
bTi yi + rTz]]︸ ︷︷ ︸

≥0
and if and only if
• [Complementary Slackness]

[Aix− bi]Tyi = 0, i ≤ m
Indeed,

∑
i [Aix− bi]

Tyi︸ ︷︷ ︸
≥0

= [
∑

iA
T
i yi]x−

∑
i b
T
i yi = [c−RTz]Tx︸ ︷︷ ︸

=cTx−rTz

−
∑

i b
T
i yi = cTx− [

∑
i b
T
i yi + rTz]

= DualityGap(x, [{yi}, z])
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♣ Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given the primal, is a purely mechanical
process

• fully symmetric: the dual problem “remembers” the primal one

♡ Cf. Lagrange Duality:

min
x
{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P )

⇓
max
y≥0

L(y) (D)[
L(y) = min

x

{
f(x) +

∑
i
yigi(x)

}]

• Dual “exists in the nature”, but is given implicitly; its objective, typically, is not
available in a closed form

• Duality is asymmetric: given L(·), we, typically, cannot recover f and gi...
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Developing Tools, Optimization
Schur Complement Lemma

♣ Lemma: Symmetric block matrix
[
P ST

S R

]
with R ≻ 0 is positive semidefinite if

and only if the matrix P − STR−1S is so.

Proof:
[
P ST

S R

]
⪰ 0 iff

0 ≤ min
u,v

[uTPu+2uTSTv+ vTRv]

= min
u

[
min
v

[uTPu+2uTSTv+ vTRv]︸ ︷︷ ︸
achieved when v = −R−1Su

]

= min
u
uT

[
P − STR−1S

]
u.
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Optimizing Linear Estimates

♣ Situation: “In the nature” there exists a signal x known to belong to a given convex
compact set X ⊂ Rn. We observe corrupted by noise affine image of the signal:

ω = Ax+ σξ ∈ Ω = Rm

• A: given m× n sensing matrix • ξ: random noise
♠ Goal: To recover the image Bx of x
•B: given ν × n matrix.
♠ Risk of a candidate estimate x̂(·) : Ω→ Rν is

Risk2[x̂|X ] = sup
x∈X

√
Eξ

{
∥Bx− x̂(Ax+ σξ)∥22

}
♣ Assumption on noise: ξ is zero mean with unit covariance matrix.
⇒ The risk of a linear estimate x̂H(ω) = HTω (H: contrast matrix) is given by

(Risk2[x̂H|X ])2 = max
x∈X

Eξ

{
∥[B −HTA]x− σHTξ∥22

}
= max

x∈X

{
∥[B −HTA]x∥22 + σ2Eξ{Tr(HTξξTH)}

}
= σ2Tr(HTH) +max

x∈X
Tr([B −HTA]xxT [BT −ATH])︸ ︷︷ ︸

Ψ(H)

.
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(Risk2[x̂H|X ])2 = σ2Tr(HTH) +Ψ(H), Ψ(H) = max
x∈X

Tr([B −HTA]xxT [BT −ATH]).

♡ Note: Ψ is convex⇒ building the minimum risk linear estimate reduces to solving
convex minimization problem

Opt = min
H

[
Ψ(H) + σ2Tr(HTH)

]
. (∗)

But: Convex function Ψ is given implicitly and can be difficult to compute, making
(∗) difficult as well.
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Opt = minH
[
σ2Tr(HTH) +Ψ(H)

]
Ψ(H) = max

x∈X
Tr([B −HTA]xxT [BT −ATH])

(∗)

♡ Fact: Basically, the only cases when (∗) is known to be easy are those when
• X is given as a convex hull of finite set of moderate cardinality
• X is an ellipsoid.
X is a box⇒ computing Ψ is NP-hard...
♠ When Ψ is difficult to compute, we can to replace Ψ in the design problem (∗)
with an efficiently computable convex upper bound Ψ+(H).
We are about to consider a family of sets X – ellitopes – for which reasonably tight
bounds Ψ+ of desired type are available.
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♣ A basic ellitope is a set Y ⊂ RN given as

Y = {y ∈ RN : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

where
• Sk ⪰ 0 are positive semidefinite matrices with

∑
k Sk ≻ 0

• T is a convex compact subset of K-dimensional nonnegative orthant RK+ such
that
• T contains some positive vectors
• T is monotone: if 0 ≤ t′ ≤ t and t ∈ T , then t′ ∈ T as well.

♠ An ellitope X is linear image of a basic ellitope:

X = {x ∈ Rn : ∃y ∈ RN , t ∈ T :x = Fy, yTSky ≤ tk, k ≤ K}

• F is a given n×N matrix,

♠ Note: Every ellitope is a symmetric w.r.t. the origin convex compact set.
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Examples of basic ellitopes:
A. Ellipsoid centered at the origin

(K = 1, T = [0; 1])
B. (Bounded) intersection of K ellispoids/elliptic cylinders centered at the origin

(T = {t ∈ RK : 0 ≤ tk ≤ 1, k ≤ K})
C. Box {x ∈ Rn : −1 ≤ xi ≤ 1}

(T = {t ∈ Rn : 0 ≤ tk ≤ 1, k ≤ K = n}, xTSkx = x2k)
D. ℓp-ball X = {x ∈ Rn : ∥x∥p ≤ 1} with p ≥ 2

(T = {t ∈ Rn+ : ∥t∥p/2 ≤ 1}, xTSkx = x2k, k ≤ K = n)

♠ Ellitopes admit fully algorithmic calculus: if Xi, 1 ≤ i ≤ I, are ellitopes, so are their
• intersection

⋂
iXi

• direct product X1 × ...×XI
• arithmetic sum X1 + ...+ XI
• linear images {Ax : x ∈ Xi}
• inverse linear images {y : Ay ∈ Xi} under linear embedding A
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♣ Observation: Let

X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk , k ≤ K} (∗)

be an ellitope. Given a quadratic form xTWx, W ∈ Sn, we have

max
x∈X

xTWx ≤ min
λ

{
ϕT (λ) : λ ≥ 0,

K∑
k=1

λkSk ⪰ FTWF

}
ϕT (λ) = max

t∈T
tTλ : support function of T

Indeed, we have

λ ≥ 0, F TWF ⪯
∑

k λkSk, x ∈ X⇒∃(t ∈ T , y) : yTSky ≤ tk ∀k ≤ K,x = Fy
⇒∃(t ∈ T , y) : xTWx = yTF TWFy ≤

∑
k λky

TSky ≤
∑

k λktk ≤ ϕT (λ)
⇒xTWx ≤ ϕT (λ).
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X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk , k ≤ K} (∗)

♠ Corollary: Let X be the ellitope (∗). Then the function

Ψ(H) = max
x∈X

Tr((B −HTA)xxT (BT −ATH))

= max
x∈X

xT [(BT −ATH)(B −HTA)]x

can be upper-bounded as

Ψ(H) ≤ Ψ(H) := min
λ

{
ϕT (λ) : λ ≥ 0, F T [BT −ATH][B −HTA]F ⪯

∑
k

λkSk

}
[Schur Complement Lemma]

= min
λ

{
ϕT (λ) : λ ≥ 0,

[ ∑
k λkSk F T [BT −ATH]

[B −HTA]F Iν

]
⪰ 0

}
The function Ψ(H) is real-valued and convex, and is efficiently computable whenever
ϕT is so, that is, whenever T is computationally tractable.
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♠ Bottom line: Given matrices A ∈ Rm×n, B ∈ Rν×n and an ellitope

X = {x : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk, k ≤ K} (∗)
contained in Rn, consider the convex optimization problem

Opt = min
H,λ

{
ϕT (λ) + σ2Tr(HTH) :

λ ≥ 0,[ ∑
k
λkSk F T [BT −ATH]

[B −HTA]F Iν

]
⪰ 0

}
[
ϕT (λ) = maxt∈T λT t

] .

Assuming the noise ξ in observation ω = Ax+ σξ zero mean with unit covariance
matrix, the risk of the linear estimate x̂H∗(·) induced by the optimal solution H∗ to
the problem (this solution clearly exists provided σ > 0) satisfies the risk bound

Risk2[x̂H∗|X ] ≤
√
Opt.

♠ Note: We shall see eventually that in the case of ξ ∼ N (0, Im), Opt is “nearly”
the same as the ideal minimax risk

Risk2Opt = inf
x̂(·)

Risk2[x̂|X ],

where inf is taken w.r.t. all, not necessarily linear, estimates x̂(·).
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How It Works: Inverse Heat Equation

♣ Situation: Square plate is heated at time 0 and is rest to cool; the temperature at
the plate’s boundary is all the time is kept 0.
Given given noisy measurements, taken along m points, of plate’s temperature at
time t1, we want to recover distribution of temperature at a given time t0, 0 < t0 < t1.
♠ The model: The temperature field u(t; p, q) evolves according to Heat Equation

∂
∂tu(t; p, q) =

[
∂2

∂p2
+ ∂2

∂q2

]
u(t; p, q), t ≥ 0, (p, q) ∈ S

• t: time • S = {(p, q),−1 ≤ p, q ≤ 1}: the plate

with boundary conditions u(t; p, q)
∣∣∣
(p,q)∈∂S

≡ 0.

♡ It is convenient to represent u(t; p, q) by its expansion

u(t; p, q) =
∑
k,ℓ xkℓ(t)ϕk(p)ϕℓ(q), (∗)

ϕk(s) =

{
cos(ω2i−1s), ω2i−1 = (i− 1/2)π k = 2i− 1
sin(ω2is), ω2i = iπ k = 2i

Note: ϕk(s) are harmonic oscillations vanishing at s = ±1.
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u(t; p, q) =
∑
k,ℓ xkℓ(t)ϕk(p)ϕℓ(q), (∗)

ϕk(s) =

{
cos(ω2i−1s), ω2i−1 = (i− 1/2)π k = 2i− 1
sin(ω2is), ω2i = iπ k = 2i

Note:
• {ϕkℓ(p, q) = ϕk(p)ϕℓ(q)}k,ℓ form an orthonormal basis in L2(S)
• ϕkℓ(·) meet the boundary conditions

ϕkℓ(p, q)
∣∣∣
(p,q)∈∂S

= 0

• in terms of the coefficients xkℓ(t), the Heat Equation becomes

d

dt
xkℓ(t) = −[ω2

k + ω2
ℓ ]xkℓ(t)⇒ xkℓ(t) = e−[ω

2
k+ω

2
ℓ ]txkℓ(0).

♡We select integer discretization parameter N and
• restrict (∗) to terms with 1 ≤ k, ℓ ≤ 2N − 1
• discretize the spatial variable (p, q) to reside in the grid

GN = {Pij = (pi, pj) = (
i

N
− 1,

j

N
− 1), 1 ≤ i, j ≤ 2N − 1}

Note: Restricting functions ϕkℓ(·, ·), 1 ≤ k, ℓ ≤ 2N − 1 on grid GN , we get orthog-
onal basis in R(2N−1)×(2N−1).
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♠We arrive at the model as follows:
• The signal x underlying observation is

x = {xkℓ := xkℓ(t0),1 ≤ k, ℓ ≤ 2N − 1} ∈ R(2N−1)×(2N−1)

• The observation is

ω = A(x) + σξ ∈ Rm, ξ ∼ N (0, Im)

[A(x)]ν =
∑2N−1
k,ℓ=1 xkℓe

−[ω2
k+ω

2
ℓ ][t1−t0]ϕk(pi(ν))ϕℓ(pj(ν))xkℓ

• (pi(ν), pj(ν)) ∈ S, 1 ≤ ν ≤ m: measurement points

•We want to recover the restriction B(x) of u(t0; p, q) to some grid, say, square grid

GK = {(ri =
i

K
− 1, rj =

j

K
− 1), 1 ≤ i, j ≤ 2K − 1} ⊂ S,

resulting in

[B(x)]ij =
∑2N−1

k,ℓ=1
ϕk(ri)ϕℓ(rj)xkℓ
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• We assume that the initial distribution of temperatures [u(0; pi, pj)]
2N−1
i,j=1 satisfies

∥u∥2 ≤ R, for some given R, implying that x resides in the ellitope, namely, the
ellipsoid

X =

{xkℓ} ∈ R(2N−1)×(2N−1) :
∑
k,ℓ

[
e[ω

2
k+ω

2
ℓ ]t0xkℓ

]2
≤ R2
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u(t; pi, pj) =
∑
k,ℓ e

−[ω2
k+ω

2
ℓ ][t−t0]ϕk(pi)ϕℓ(pj)xkℓ

[A(x)]ν =
∑2N−1
k,ℓ=1 xkℓe

−[ω2
k+ω

2
ℓ ][t1−t0]ϕk(pi(ν))ϕℓ(pj(ν))xkℓ

♣ Bad news: Contributions of high frequency (with large ω2
k + ω2

ℓ ) signal compo-
nents xkℓ to A(x) decrease exponentially fast with high decay rate as t1 − t0 grows
⇒ High frequency components xkℓ are impossible to recover from observations at
time t1, unless t1 is very small.

X =

{
{xkℓ} :

∑
k,ℓ

[
e[ω

2
k+ω

2
ℓ ]t0xkℓ

]2
≤ R2

}
[B(x)]ij =

∑2N−1
k,ℓ=1ϕk(ri)ϕℓ(rj)xkℓ

♣ Good news: High frequency components xkℓ of x ∈ X are very small, provided
t0 is not too small
⇒ There is no necessity to recover well high frequency components of signal from
observations!
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♣ Numerical results N = 32, m = 125, K = 6, t0 = 0.01, t1 = 0.02, σ = 0.001, R = 15
♡ Minimax risk of optimal linear estimate: 0.1707

63× 63 grid G63 and m = 125 measurement points
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b b̂ b̃

∥b∥2 = 2.13
∥b∥∞ = 0.43

∥b̂− b∥2 = 0.15
∥b̂− b∥∞ = 0.03

∥b̃− b∥2 = 7.99
∥b̃− b∥∞ = 1.80

Sample results
• left: b = B(x)
• center: sample optimal linear recovery b̂ = HT

∗ ω of b = B(x)
• right: naive recovery b̃ = B(x̃), x̃: Least Squares solution to A(x) = ω
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How It Works: Denoising & Deblurring Images

• A grayscale image can be thought of as 2D m × n array [xij]0≤i<m,
0≤j<n

with entries

(pixels’ intensities) in [0,255]

• Taking picture can be modeled as observing noisy convolution

ωij =
∑

0≤p<µ,
0≤q<ν

κpqxi−p,j−q

︸ ︷︷ ︸
κ⋆x

+ξij, 0 ≤ i < m+ µ− 1,0 ≤ j < n+ ν − 1

[
ξij ∼ N (0, σ2) independent across i, j

] (∗)

of the image and a given blurring kernel [κpq]0≤p<µ,
0≤q<ν

.

Note: In (∗), xij = 0 outside of the actual range {0 ≤ i < m,0 ≤ j < n} of i, j.
Note: “Centering” image – subtracting from xij entries in x the midpoint S of the
range [0,255] of pixels’ intensities and updating ωij accordingly, the images become
2D arrays from the box

X∞ = {x ∈ Rm×n : |xij| ≤ S},

and the recovery problem falls into our framework.
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x 7→ κ ⋆ x+ ξ ?? ⇒ ?? x̂ ≈ x

Bad news: Linear dimensions mn of typical images are in the range of 105–106, making straightfor-
ward design of linear estimates ω 7→ x̂ = HTω intractable—linear dimensions of contrast matrices
should be in the range of 1010–1012.
Good news: Extending x and κ to M := [m+ µ] × N := [n+ ν] arrays x+, κ+ by adding zero
entries to x, κ, and passing to 2D Discrete Fourier Transforms χ = Fx+, θ = Fκ+ of these arrays,
observation scheme becomes extremely simple:

ζ := Fω = θ • χ+
√
MNση

[• : entrywise product; η : (complex-valued) white Gaussian noise with unit covariance matrix]

Note: DFT multiplies ∥ · ∥2 by
√
MN ⇒ when the recovery error is measured in ∥ · ∥2, recovering x

from ω is equivalent to recovering χ from ζ
Besides this, when a priori information on x translates into simple constraints on χ, like∑

r,s

βrs|χrs|2 ≤ β and/or |χrs| ≤ γrs ∀r, s, 0 ≤ r < M,0 ≤ s < N (!)

frequency representations χ of signals of interest become points of a simple (complexified) ellitope,
and sensing matrix A becomes (complex-valued) diagonal
⇒ Working in frequency domain, we lose nothing when looking for linear estimates with diagonal
(complex-valued) contrast matrices.
Moreover, when the number of constraints (!) is small, designing the best linear estimate with diago-
nal contrast matrix reduces to solving a low-dimensional convex problem and takes few seconds even
when MN is in the range of millions.
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... in frequency domain recovery problem becomes ζ = θ • χ+
√
MNση ?? ⇒ ?? χ̂ ≈ χ, and easy-

to-utilize a priori information on χ are constraints of the form∑
r,s

βrs|χrs|2 ≤ β and/or |χrs| ≤ γrs ∀r, s, 0 ≤ r < M,0 ≤ s < N (!)

Note: Our “built in” box constraint ∥x∥∞ ≤ L does not translate into a simple con-
straint on χ; the best simple (conservative!) frequency domain version of this con-
straint is the bound

∥χ∥2 ≤
√
MN ·

√
mnL (E)

on the ∥ · ∥2-norm of χ.
Similarly, the standard in Image Reconstruction bounds

TV(x) :=
∑
i,j

|xi+1,j − xi,j|+
∑
i,j

|xi,j+1 − xi,j| ≤ U

on Total Variation of x do not translate into simple constraints on χ.
• However: we can impose on χ, in addition to (E), empirical upper bounds on
∥χ∥∞ and ∥χ∥1 by inspecting a “representative library” of images.
•Warning: When the blur is present (i.e., κ is not a δ-function), the recovery problem
can easily become ill-posed, since convolution can “kill” come frequencies (formally:
some of the entries in θ can be very small).
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Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, ill-posed case
[with bound on signal’s energy]

σ = 1.992 σ = 0.498 σ = 0.031
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Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, ill-posed case
[with rudimentary form of Total Variation constraints]

σ = 1.992 σ = 0.498 σ = 0.031
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Blurred noisy observations (top) and recoveries (bottom) of 1200×1600 image, well-posed case

σ = 31.88 σ = 7.969 σ = 0.498
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Byproduct on Semidefinite Relaxation

♠ Theorem Let C be a symmetric n× n matrix and X be an ellitope:

X = {x ∈ Rn : ∃(t ∈ T , y) : x = Fy, yTSky ≤ tk ∀k ≤ K}.

Then the efficiently computable quantity

Opt = minλ
{
ϕT (λ) : λ ≥ 0, FTCF ⪯

∑
k λkSk

}[
ϕT (λ) = maxt∈T λ

T t
]

is a tight upper bound on

Opt∗ = max
x∈X

xTCx :

namely,

Opt∗ ≤ Opt ≤ 3 ln(
√
3K)Opt∗.

Note: Opt∗ is difficult to compute within 4% accuracy when X is as simple as the
unit box in Rn.
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♣ Let X be given by quadratic inequalities:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K} ̸= ∅
[T : nonempty convex compact set]

We have

Opt∗ := max
x∈X

xTCx≤Opt := minλ{ϕT (λ) : λ ≥ 0, C ⪯
∑
k λkSk}≤Θ ·Opt∗

What can be said about tightness factor Θ ?

Facts:
A. Assuming K = 1 and Slater condition: x̄TS1x̄ < t for some x̄ and some t ∈ T ,
one can set Θ = 1.
[famous S-Lemma]

B. Assuming that xTSkx = x2k , k ≤ K = dimx, T = [0; 1]K , and C is Laplacian
of a graph (i.e., off-diagonal entries in C are nonpositive and all row sums are zero),
one can set Θ = 1.1382...

[MAXCUT Theorem of Goemans and Williamson, 1995]
Note: Laplacian of a graph always is ⪰ 0
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K} ̸= ∅
[T : nonempty convex compact set]

⇒Opt∗ := max
x∈X

xTCx≤Opt := minλ{ϕT (λ) : λ ≥ 0, C ⪯
∑

k λkSk}≤Θ ·Opt∗

C. Assuming that C ⪰ 0 and all matrices Sk are diagonal, one can set Θ = π
2 =

1.5708...

[π2 Theorem, Nesterov, 1998]

D. Assuming X is an ellitope (i.e., Sk ⪰ 0,
∑
k Sk ≻ 0 and T contains a positive

vector), one can set Θ = 3 ln(
√
3K)

Note: In the case of D, Θ indeed can be as large as O(ln(K))
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♠ A byproduct of Theorem is the following useful fact:
Theorem [upper-bounding of operator norms] Let ∥ · ∥x be a norm on RN such that
the unit ball X of the norm is an ellitope:
X := {x : ∥x∥x ≤ 1} = {x : ∃(t ∈ T , y) : x = Py, yTSky ≤ tk, k ≤ K}

For example, ∥ · ∥x = ∥ · ∥p with 2 ≤ p ≤ ∞
Let, further, ∥ · ∥ be a norm on RM such that the unit ball B∗ of the norm ∥ · ∥∗
conjugate to ∥ · ∥ is an ellitope:
B∗ := {u ∈ Rm : uTv ≤ 1∀(v, ∥v∥ ≤ 1)} = {u : ∃(r ∈ R, z) : u = Qz, zTRℓz ≤ rℓ, ℓ ≤ L}

For example, ∥ · ∥ = ∥ · ∥r with 1 ≤ r ≤ 2.
Then the efficiently computable quantity

Opt(C) = minλ,µ

{
ϕT (λ) + ϕR(µ) : λ ≥ 0, µ ≥ 0

[ ∑
ℓ µℓRℓ

1
2
QTCP

1
2
P TCTQ

∑
k λkSk

]
⪰ 0

}
[
C ∈ RM×N

]
is a convex in C upper bound on the operator norm

∥C∥∥·∥x→∥·∥ = max
x
{∥Cx∥ : ∥x∥x ≤ 1}

of the mapping x 7→ Cx, and this bound is reasonably tight:

∥C∥∥·∥x→∥·∥ ≤ Opt(C) ≤ 3 ln(
√
3(K + L))∥C∥∥·∥x→∥·∥.
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Indeed, the operator norm in question is the maximum of a quadratic form over an
ellitope:

∥z∥ = max
u

{
uTz : u ∈ B∗

}
⇒

∥C∥∥·∥x→∥·∥ = max
{
uTCx : x ∈ X , u ∈ B∗

}
⇒

∥C∥∥·∥x→∥·∥ = 1
2 max
x∈X ,u∈B∗

[x;u]T
[

C

CT

]
[x;u]

= 1
2 max
[y;z]∈W

[y; z]T
[

QTCP

PTCTQ

]
[y; z]

whereW is the basic ellitope given by

W =

{
[y; z] : ∃[t; r] ∈ T ×R :

yTSky ≤ tk, k ≤ K
zTRℓz ≤ rℓ, ℓ ≤ L

}
.
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What is inside

♠ In the above results on tightness of semidefinite relaxation, we speak about tight-
ness of the Semidefinite Relaxation upper bound on the maximum of a quadratic form
over an ellitope:

Opt∗ = max
x,t

{
xTCx : xTSkx ≤ tk, k ≤ K, t ∈ T

}
(∗)

♠ Fact: Semidefinite relaxation admits an alternative description as follows:
Let us associate with (∗) another optimization problem where instead of deterministic
candidate solutions (x, t) we are looking for random solutions (ξ, τ) satisfying the
constraints at average:

Opt+ = max
ξ,τ

{
E{ξTCξ} : E{ξTSkξ} ≤ E{τk}

E{τ} ∈ T

}
(!)

• Immediate observation: Property of a random solution (ξ, τ) to be feasible for
(!) depends solely on the matrix Q = E{ξξT} and the vector t = E{τ}, so that

Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q ⪰ 0, t ∈ T

}
(#)
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Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q ⪰ 0, t ∈ T

}
(#)

Note: (#) is not a conic problem, the obstacle being the constraint t ∈ T . We can
easily make this constraint conic.
• Let T + = {[t; 1] ∈ RK+1 : t ∈ T }, and let T ∈ RK+1 be the set of nonnegative multiples of
vectors from T +:

τ

Sets T , T + and cone T

plane τ = 0 in (t, τ)-space

• T is a regular cone (since T is a convex compact set with a nonempty interior)
• T = {t : [t; 1] ∈ T}
• The cone T∗ dual to T is {[y; s] ∈ RK+1 : s ≥ ϕT (−y)}

Indeed, {[y; s] ∈ T∗} ⇔ {yT t+ sτ ≥ 0 ∀[t; τ ] ∈ T}
⇔ {yT t+ s ≥ 0 ∀t : [t; 1] ∈ T} ⇔ s ≥ −yT t∀t ∈ T }
⇔ s ≥ maxt∈T [−y]T t
⇔ {s ≥ ϕT (−y)}
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Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q ⪰ 0, [t; 1] ∈ T

}
(#)

[T∗ = {[y; s] : s ≥ ϕT (−y)}]
♠ Note: (#) is strictly feasible and bounded, and the problem

Opt = min
λ

ϕT (λ) : λ ≥ 0, C ⪯
∑
k

λkSk


specifying Semidefinite relaxation upper bound on Opt is is nothing but the conic
dual to (#)⇒Opt+ = Opt.
• (#) suggests the following recipe for quantifying the conservatism of the upper
bound Opt on Opt∗:
— Find an optimal solution Q∗, t∗ to (#) and treat Q∗ ⪰ 0 as the covariance matrix
of random vector ξ (many options!)
— Random solutions (ξ, t∗) satisfy (∗) “at average.” Try to “correct” them to get fea-
sible solutions to (∗) and look how “costly” this correction is in terms of the objective.
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Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q ⪰ 0, [t; 1] ∈ T

}
(#)

For example, in Goemans-Williamson MAXCUT and in Nesterov’s π/2 Theorems,
where xTCx is maximized over the unit box

X = {∥x∥∞ ≤ 1} = {x ∈ Rn : ∃t ∈ T := [0,1]n : x2k ≤ tk, k ≤ n},

that is, T = {[t; τ ] : 0 ≤ tk ≤ τ, k ≤ n}, (#) reads

Opt+ = max
Q,t

{
Tr(CQ) :

Tr(Qkk) ≤ tk, k ≤ K = n
Q ⪰ 0, [t; 1] ∈ T = {t : 0 ≤ tk ≤ 1, k ≤ n}

}
(#)

one selects ξ ∼ N (0, Q∗) and “corrects” ξ according to ξ 7→ sign[ξ].
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Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

Opt+ = max
Q,t

{
Tr(CQ) :

Tr(SkQ) ≤ tk
Q ⪰ 0, [t; 1] ∈ T

}
(#)

♠ This is how the above recipe works in the general ellitopic case:
A. Let (Q∗, t∗) be an optimal solution to (#). Set

C̄ := Q
1/2
∗ CQ

1/2
∗ = UDUT

(U is orthogonal, D is diagonal).
B. Let ξ = Q

1/2
∗ Uζ with Rademacher random ζ (ζi take values ±1 with probability

1/2 and are independent across i), so that

E{ξξT} = E{Q1/2
∗ UζζTUTQ

1/2
∗ } = Q

1/2
∗ U E{ζζT}︸ ︷︷ ︸

I

UTQ
1/2
∗ = Q∗.
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C̄ := Q
1/2
∗ CQ

1/2
∗ = UDUT , ξ = Q

1/2
∗ Uζ

Note that

ξTCξ = ζTUT [Q
1/2
∗ CQ

1/2
∗ ]Uζ = ζTDζ

≡ Tr(D) = Tr(Q
1/2
∗ CQ

1/2
∗ ) ≡ Tr(CQ∗)

= Opt,

E{ξTSkξ} = E{ζTUTQ1/2
∗ SkQ

1/2
∗ Uζ}

= Tr(UTQ
1/2
∗ SkQ

1/2
∗ U)

= Tr(Q
1/2
∗ SkQ

1/2
∗ ) = Tr(SkQ∗)

≤ t∗k, k ≤ K
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ξTCξ ≡ Opt (a)
E{ξTSkξ} ≤ t∗k, k ≤ K (b)

C. Since Sk ⪰ 0 and ξ is “light-tail” (it comes from Rademacher random vector),
simple bounds on probabilities of large deviations combine with (b) to imply that

∀(γ ≥ 0, k ≤ K) :
Prob{ξ : ξTSkξ > γt∗k} ≤ O(1) exp{−O(1)γ}

⇒ with γ∗ = O(1) ln(K +1), there exists a realization ξ̂ of ξ such that ξ̂TSkξ̂ ≤
γ∗t∗k, k ≤ K
⇒ (ξ∗ = ξ̂/

√
γ∗, t∗) is feasible for

Opt∗ = max
x,t

{
xTCx : ∃(t ∈ T ) : xTSkx ≤ tk

}
(∗)

⇒Opt∗ ≥ ξ̂TCξ̂/γ∗ = Opt/γ∗ (look at (a)!)
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♠ “Simple bounds on probabilities of large deviations” stem from the following
Mini-Lemma: Let P be positive semidefinite N ×N matrix with trace ≤ 1 and ζ be
N -dimensional Rademacher random vector. Then

E
{
exp

{
ζTPζ/3

}}
≤
√
3.

♠ Mini-Lemma⇒ bounds: We have
ξTSkξ = ζT UTQ

1/2
∗ SkQ

1/2
∗ U︸ ︷︷ ︸

t∗kPk

ζ

and Tr(Pk) = Tr(Q
1/2
∗ SkQ

1/2
∗ )/t∗k = Tr(SkQ∗)/t

∗
k≤ 1

⇒ [Mini-Lemma] E
{
exp

{
ζTPkζ/3

}}
≤
√
3

⇒ Prob{ζTPkζ > 3ρ} ≤
√
3e−ρ

⇒ Prob{ξTSkξ > γt∗k} = Prob{ζTPkζ > γ}≤
√
3e−γ/3.
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Proof of Mini-Lemma: Let P =
∑
i σifif

T
i be the eigenvalue decomposition of P ,

so that fTi fi = 1, σi ≥ 0, and
∑
i σi ≤ 1. The function

f(σ1, ..., σN) = E
{
e
1
3

∑
iσiζ

Tfif
T
i ζ
}

is convex on the simplex {σ ≥ 0,
∑
i σi ≤ 1} and thus attains it maximum over the

simplex at a vertex, implying that for some h = fi, hTh = 1, it holds

E{e
1
3ζ
TPζ} ≤ E{e

1
3(h

T ζ)2}.

Let ξ ∼ N (0,1) be independent of ζ. We have

Eζ
{
exp{13(h

T ζ)2}
}
= Eζ

{
Eξ

{
exp{[

√
2/3hT ζ]ξ}

}}
= Eξ

{
Eζ

{
exp{[

√
2/3hT ζ]ξ}

}}
= Eξ

{
N∏
s=1

Eζ
{
exp{

√
2/3ξhsζs}

}}

= Eξ

{
N∏
s=1

cosh(
√
2/3ξhs)

}
≤ Eξ

{
N∏
s=1

exp{ξ2h2s/3}
}

= Eξ
{
exp{ξ2/3}

}
=
√
3

□
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Extensions

♣ So far, we have considered a problem of recovering Bx from observation

ω = Ax+ ξ ∈ Rm

where
• x is unknown signal known to belong to a given basic ellitope

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}

Note: Assuming signal set X basic ellitope rather than ellitope is w.l.o.g.: when X = FY with basic

ellitope Y, we lose nothing when assuming that the signal is y rather than x = Fy and replacing A,

B with AF , BF .

• A ∈ Rm×n and B ∈ Rν×n are given matrices
• ξ ∼ N (0, σ2Im) is observation noise
• (squared) risk of a candidate estimate is the worst-case, over x ∈ X , expected

squared ∥ · ∥2-norm of recovery error:

(Risk2[x̂|X ])2 = sup
x∈X

E
{
∥Bx− x̂(Ax+ ξ)∥22

}
.
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♠We are about to extend our results to the situation where
• Noise ξ not necessary is zero mean Gaussian; we allow the distribution P of

noise to be unknown in advance and to depend on signal x.
♡ Assumption: We are given a convex compact set Π ⊂ intSm+ such that the
variance matrix of P admits an upper bound from Π:

P ∈ P[Π] :=
{
P : ∃Q ∈ Π : Var[P ] := Eξ∼P{ξξT} ⪯ Q

}
•We measure recovering error in a given norm ∥ · ∥, not necessarily the Euclidean

one, and define risk of a candidate estimate x̂(·) as

Risk∥·∥,Π[x̂|X ] = sup
x∈X

sup
P∈P[Π]

Eξ∼P {∥Bx− x̂(Ax+ ξ)∥}

♡ Assumption: The unit ball B∗ of the norm conjugate to ∥ · ∥ is an ellitope:

∥u∥ = max
h∈B∗

hTu,

B∗ = {h : ∃(y ∈ RM , r ∈ R) : h = Fy, yTRℓy ⪯ rℓ ∀ℓ ≤ L}
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk ∀k ≤ K}
ω = Ax+ ξ ??⇒?? x̂H(ω) = HTω ≈ Bx

Building Presumably Good Linear Estimate
♣We have

Risk∥·∥,Π[x̂H |X ] = sup
x∈X

sup
P∈P[Π]

Eξ∼P
{
∥Bx−HT [Ax+ ξ]∥

}
≤ sup

x∈X
sup

P∈P[Π]
Eξ∼P

{
∥[B −HTAx]∥+ ∥HT ξ∥

}
≤ Φ(H) +ΨΠ[H],

Φ(H) = max
x∈X

∥[B −HTA]x∥,

ΨΠ(H) = sup
P∈P[Π]

Eξ∼P
{
∥HT ξ∥

}
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Next,

B∗ = {u =My : y ∈ Y},
Y = {y : ∃r ∈ R : yTRℓy ≤ rℓ ∀ℓ ≤ L}

whence

Φ(H) := max
x∈X
∥[B −HTA]x∥ = max

[u;x]∈B∗×X
[u;x]T

[
1
2
[B −HTA]

1
2
[BT −ATH]

]
[u;x]

= max
[y;x]∈Y×X

[y;x]T
[

1
2
F T [B −HTA]

1
2
[BT −ATH]Fy

]
[y;x]

[semidefinite relaxation; note that Y × X is an ellitope]

≤ Φ(H) := min
λ,µ

{
ϕT (λ) + ϕR(µ) :

λ ≥ 0, µ ≥ 0,[ ∑
ℓ µℓRℓ

1
2
F T [HTA−B]

1
2
[ATH −BT ]F

∑
k λkSk

]
⪰ 0

}
[
ϕT (λ) = max

t∈T
λT t, ϕR(µ) = max

r∈R
µTr

]
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X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ = {u =My : y ∈ Y},Y = {y : ∃r ∈ R : yTRℓy ≤ rℓ ∀ℓ ≤ L}

ω = Ax+ ξ ⇒ x̂H(ω) = HTω ≈ Bx
⇓

Risk∥·∥,Π[x̂H|X ] ≤ Φ(H) +ΨΠ(H),

Φ(H) = min
λ,µ

{
ϕT (λ) + ϕR(µ) :

λ ≥ 0, µ ≥ 0,[ ∑
ℓ µℓRℓ

1
2
MT [HTA−B]

1
2
[ATH −BT ]M

∑
k λkSk

]
⪰ 0

}
ΨΠ(H) = sup

P∈P[Π]
Eξ∼P

{
∥HTξ∥

}
♣ Lemma: One has

ΨΠ(H) ≤ ΨΠ(H) := min
Θ,κ

ΓΠ(Θ)+ ϕR(κ) :
κ ≥ 0[ ∑

ℓ κℓRℓ
1
2
MTHT

1
2
HM Θ

]
⪰ 0


ΓΠ(Θ) = max

Q∈Π
Tr(QΘ).
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Lemma:

∥z∥ = maxy
{
zTMy : ∃r ∈ R : yTRℓy ≤ rℓ, ℓ ≤ L

}
ΓΠ(Θ) = max

Q∈Π
Tr(QΘ).

⇓

ΨΠ(H) ≤ ΨΠ(H) := min
Θ,κ

ΓΠ(Θ)+ ϕR(κ) :
κ ≥ 0[ ∑

ℓ κℓRℓ
1
2
MTHT

1
2
HM Θ

]
⪰ 0


Indeed, let (κ,Θ) be feasible for the problem specifying ΨΠ, and let Var[P ] ⪯ Q ∈ Π. We have

∥HTξ∥ = max
u∈B∗

[−uTHTξ] = max
y∈Y

[−yTMTHTξ] ≤ max
y∈Y

[
yT [
∑

ℓ κℓRℓ]y+ ξTΘξ
]

= max
r∈R,y

{
yT [
∑

ℓ κℓRℓ]y+ ξTΘξ : yTRℓy ≤ rℓ, ℓ ≤ L
}
≤ max

r∈R

{∑
ℓ κℓrℓ + ξTΘξ

}
≤ ϕR(κ) + ξTΘξ = ϕR(κ) +Tr(Θ[ξξT ]).

Taking expectation in ξ, we get

Eξ∼P
{
∥HTξ∥

}
≤ ϕR(κ) +Tr(ΘVar[P ]) ≤ ϕR(κ) + ΓΠ(Θ).

and the conclusion of Lemma follows. □
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Illustration: When ∥ · ∥ = ∥ · ∥p, p ∈ [1,2], Lemma implies that whenever Var[P ] ⪯
Q, one has

Eξ∼P
{
∥HT ξ∥p

}
≤
∥∥∥[∥Col1[Q

1/2H]∥2; ...; ∥Colk[Q
1/2H]∥2

]∥∥∥
p

5.67



♠ Summary: Consider convex optimization problem

Opt = min
H,λ,µ,κ,Θ

{
ϕT (λ) + ϕR(µ) + ϕR(κ) + ΓΠ(Θ) : λ ≥ 0, µ ≥ 0,κ ≥ 0,[ ∑

ℓ µℓRℓ
1
2
MT [HTA−B]

1
2
[ATH −BT ]M

∑
k λkSk

]
⪰ 0,

[ ∑
ℓ κℓRℓ

1
2
MTHT

1
2
HM Θ

]
⪰ 0

}
[
ΓΠ(Θ) = maxQ∈ΠTr(ΘQ)

]
The problem is solvable, and theH-componentH∗ of its optimal solution yields linear
estimate

x̂H∗(ω) = HT
∗ ω

such that

Risk∥·∥,Π[x̂H∗|X ] ≤ Opt.
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Fact: In the case of zero mean Gaussian observation noise, the estimate x̂H∗ is
near-optimal:

♠ Theorem: We have

Risk∥·∥,Π[x̂H∗|X ] ≤ Opt ≤ O(1)
√
ln(2K) ln(2L)RiskOpt∥·∥,Π[X ],

where
• O(1) is a positive absolute constant,

• K and L are “sizes” of the ellitopes

X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K},
B∗ = MY, Y = {y : ∃r ∈ R : yTRℓy ≤ rℓ, ℓ ≤ L},

• RiskOpt∥·∥,Π[X ] = inf
x̂(·)

sup
Q∈Π

sup
x∈X

Eξ∼N (0,Q) {∥x− x̂(Ax+ ξ)∥} is the mini-

max optimal risk taken w.r.t. Gaussian zero mean observation noises with covariance
matrices from Π.
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Variation: Recovery of partially stochastic signals

♣ So far, we have considered the problem of recovering the image Bx of unknown
deterministic signal x known to belong to a given signal setX from noisy observations

ω = Ax+ ξ

of linear image of the signal.

In some applications, it makes sense to consider similar problem when the signal has
a stochastic component.
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Example: Kalman’s Filter. Consider linear dynamical system

y1 = ζ0
yt+1 = Ptyt+ ut+ ζt,
ωt = Ctyt+ ξt

, t = 1,2, ..., T

• yt ∈ Rn: states
• ut: controls
• ωt ∈ Rm: observations
• ζt: random “process noise”
• ξt: random observation noise
• Pt, Ct: known matrices.

What we want is to recover from observations ω1, ..., ωT linear image

z := R[y1; ...; yT+1]

of the state trajectory, e.g., yT (“filtering”) or yT+1 (“forecast”).
Note: In the classical Kalman Filter,
— ζ0, ..., ζT are independent of each other zero mean Gaussian
— ξ1, ..., ξT are independent of each other and of ζt’s zero mean Gaussian
— u1, ..., uT are deterministic and known (reduces to the case when ut ≡ 0)
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y1 = ζ0, yt+1 = Ptyt + ut + ζt, ωt = Ctyt + ξt

(ω1, ..., ωT) ??⇒?? z = R[y1; ...; yT+1]

• When modeling the situation as an estimation problem, we can use state equation
to express the states yt as known linear functions of controls ut and process noises
ζt, thus arriving at the model

ω = A[u; ζ] + ξ ??⇒??z = B[u; ζ]
[ω = [ω1; ...;ωT ], u = [u1; ...;uT ], ζ = [ζ0; ...; ζT ], ξ = [ξ1; ...; ξT ]]

• When quantifying the performance of a candidate estimate x̂(ω), it makes sense
to look at risk of the form

Risk[x̂] = sup
u

Eξ,ζ {∥B[u; ζ]− x̂(A[u; ζ] + ξ)∥} .
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Situation: We observe noisy linear image

ω = A[u; ζ] + ξ = Adu+Asζ + ξ

of “signal” x = [u; ζ] with deterministic component u and stochastic component ζ.
We assume that
• u is “uncertain-but-bounded” – is known to belong to a given set U
• ζ and ξ have partially known distributions, specifically, for given Qζ ≻ 0, Qξ ≻ 0

it holds

Var[ξ] = E{ξξT} ⪯ Qξ, Var[ζ] = E{ζζT} ⪯ Qζ
Given matrix B = [Bd, Bs] and a norm ∥ · ∥ on the image space of B, we want to
recoverB[u; ζ] = Bdu+Bsζ, quantifying the recovery error in ∥·∥. The performance
of a candidate estimate x̂(·) is quantified by

Risk[x̂] = sup
u∈U

sup
P∈P

E[ξ;ζ]∼P {∥B[u; ζ]− x̂(A[u; ζ] + ξ)∥}[
P : probability distributions such that E[ξ;ζ]∼P

{
ξξT
}
⪯ Qξ, E[ξ;ζ]∼P

{
ζζT

}
⪯ Qζ

]
Goal: To build “presumably good” linear estimate x̂H(ω) = HTω.
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ω = Adu+Asζ + ξ & u ∈ U & Var[ξ] ⪯ Qξ & Var[ζ] ⪯ Qζ

?? ⇓??
x̂H(ω) := HTω ≈ Bdu+Bsζ

Assumption: U is a basic ellitope, and the unit ball of the norm ∥ · ∥∗ dual to ∥ · ∥ is
an ellitope:

U = {u : ∃t ∈ T : uTSku ≤ tk, k ≤ K}
{v : ∥v∥∗ ≤ 1} = {v : ∃r ∈ R, w : v =Mw,wTRℓw ≤ rℓ, ℓ ≤ L}

• For a candidate linear estimate x̂H(ω) = HTω, u ∈ U , and a distribution P of [ξ; ζ] satisfying the
bounds on the matrices of second moments of ξ and ζ we have

E[ξ,ζ]∼P
{
∥Bdu+Bsζ −HT [Adu+Asζ + ξ]∥

}
≤ ∥Bd −HTAd]u∥+ E[ξ;ζ]∼P

{
∥HTξ∥

}
+ E[ξ;ζ]∼P

{
∥[Bs −HTAs]ζ∥

}
As we know,

u ∈ U ⇒ ∥[Bd −HTAd]u∥ ≤ min
λ≥0,ν≥0

{
ϕT (λ) + ϕR(ν) :

[ ∑
ℓ
νℓRℓ

1
2
MT [Bd −HTATd ]

1
2
[BT

d −A
T
dH]

∑
k
λkSk

]
⪰ 0

}
Var[ξ] ⪯ Qξ ⇒ Eξ

{
∥HT ξ∥

}
≤ min

µ≥0,G

{
Tr(GQξ) + ϕR(µ) :

[
G 1

2
HM

1
2
MTHT

∑
ℓ
µℓRℓ

]
⪰ 0

}
Var[ζ] ⪯ Qζ ⇒ Eζ

{
∥[Bs −HTAs]ζ∥

}
≤ min

µ≥0,G

{
Tr(GQξ) + ϕR(µ) :

[
G 1

2
[BT

s −ATsH]M
1
2
MT [Bs −HTAs]

∑
ℓ
µℓRℓ

]
⪰ 0

}
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ω = Adu+Asζ + ξ & u ∈ {u : ∃t ∈ T : uTSku ≤ tk, k ≤ K}& Var[ξ] ⪯ Qξ & Var[ζ] ⪯ Qζ

?? ⇓??
x̂H(ω) := HTω ≈ Bdu+Bsζ

{v : ∥v∥∗ ≤ 1} = {v : ∃r ∈ R, w : v =Mw,wTRℓw ≤ rℓ, ℓ ≤ L}

Bottom line: In the situation at hand, consider the convex optimization problem

Opt = min
H,λ,ν,

µ,µ′,G,G′

{
ϕT (λ) + ϕR(ν) + ϕR(µ) + ϕR(µ

′) +Tr(QξG) +Tr(QζG
′) :

λ ≥ 0, ν ≥ 0, µ ≥ 0, µ′ ≥ 0,
[ ∑

ℓ
νℓRℓ

1
2
MT [Bd −HTATd ]

1
2
[BT

d −A
T
dH]

∑
k
λkSk

]
⪰ 0[

G 1
2
HM

1
2
MTHT

∑
ℓ
µℓRℓ

]
⪰ 0,

[
G′ 1

2
[BT

s −ATsH]M
1
2
MT [Bs −HTAs]

∑
ℓ
µ′ℓRℓ

]
⪰ 0

}

The problem is efficiently solvable, and the H-component H∗ of its optimal solution
gives rise to linear estimate x̂H∗(ω) = HT

∗ ω such that

Risk[x̂H∗] ≤ Opt.
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How it works

• System: Discretized pendulum ẍ = −ẋ− κx:[
xt+1

vt+1

]
=

[
0.9990 0.0951
−0.0190 0.9039

][
xt
vt

]
+ (ut+ ζt)

[
0.0048
0.0951

]
, 1 ≤ t ≤ 128

ωt = xt+ ξt[[
x1
v1

]
∼ N (0, I), ζt ∼ N (0,0.052), ξt ∼ N (0,0.052), |ut| ≤ 0.1

]
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Recovery under uncertain-but-bounded noise

♣ So far, we have considered recovering Bx, x ∈ X , from observation

ω = Ax+ ξ

affected by random noise ξ. We are about to consider the case when ξ is “uncertain-
but-bounded:” all we know is that

ξ ∈ H

with a given convex and compact set H.
♠ In the case in question, natural definition of risk of a candidate estimate x̂(·) is

RiskH,∥·∥[x̂(·)|X ] = sup
x∈X ,ξ∈H

∥Bx− x̂(Ax+ ξ)∥.

♠ Observation: Signal recovery under uncertain-but-bounded noise reduces to the
situation where there is no observation noise at all.
Indeed, let us treat as the signal the pair z = [x; ξ] ∈ Z := X ×H and replace A
with Ā = [A, I] and B with B̄ = [B,0], so that

ω = Ā[x; ξ] & Bx = B̄[x; ξ],

thus reducing signal recovery to recovering B̄z, z ∈ Z, from noiseless observation
Āz.

5.77



♣ Let us focus on the problem of recovering the image Bx ∈ Rν of unknown signal
x ∈ Rn known to belong to signal set X ⊂ Rn via observation

ω = Ax ∈ Rm.

Given norm ∥ · ∥ on Rν, we quantify the performance of an estimate x̂(·) : Rm → Rν
by its ∥ · ∥-risk

Risk∥·∥[x̂|X ] = sup
x∈X
∥Bx− x̂(Ax)∥.

♠ Observation: Assuming that X is computationally tractable convex compact set
and ∥ · ∥ is computationally tractable, it is easy to build an efficiently computable
optimal within factor 2 nonlinear estimate:

Given ω, let us solve the convex feasibility problem

Find y ∈ Y[ω] := {y ∈ X : Ay = ω}.
and take, as x̂(ω), the vector By, where y is (any) solution to the feasibility
problem.

Note: When ω stems from a signal x ∈ X , the set Y[ω] contains x
⇒ x̂(·) is well defined
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x ∈ X , ω = Ax ⇒ x̂(ω) = By
[y ∈ Y[ω] = {y ∈ X : Ay = ω}]

♠ Performance analysis: Let

R = max
y,z

{
1
2∥B[y − z]∥ : y, z ∈ X , A[y − z] = 0

}
= 1

2∥B[y∗ − z∗]∥ [y∗, z∗ ∈ X , A[y∗ − z∗] = 0]

Claim A: For every estimate x̃(·) it holds Risk∥·∥[x̃|X ] ≥ R.

Indeed, the observation ω = Ay∗ = Az∗ stems from both y∗ and z∗, whence the
∥ · ∥-risk of every estimate is at least 1

2∥y∗ − z∗∥ = R.

Claim B: One has Risk∥·∥[x̂|X ] ≤ 2R.

Indeed, let ω = Ax with x ∈ X , and let x̂(ω) = Bŷ with ŷ ∈ Y[ω]. Then both x, ŷ
belong to Y[ω]

⇒ 1
2∥B[x− ŷ]∥ ≤ R.
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♣We have built optimal, within factor 2, estimate. How to upper-bound its ∥ · ∥-risk?
♠ Observation: Let X and the unit ball B∗ of the norm ∥ · ∥∗ conjugate to ∥ · ∥ be
ellitopes:

X =
{
x = Py : y ∈ Y := {y : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

}
B∗ =

{
u = Qv : v ∈ V := {v : ∃r ∈ R : vTRℓv ≤ rℓ, ℓ ≤ L}

}
Then the ∥ · ∥-risk of the optimal, within factor 2, efficiently computable nonlinear
estimate x̂(·) cam be tightly lower- and upper-bounded as follows.
• Assuming KerA ∩ X ̸= {0} (otherwise the risk is zero), the set XA = {x ∈ X : Ax = 0} is an
ellitope:

XA =
{
x = Fw,w ∈ W := {w : ∃t ∈ T : wTTkw ≤ tk, k ≤ K}

}
Indeed, setting E = {y : APy = 0}, the set

YA = {y ∈ E : ∃t ∈ T : yTSky ≤ tk, k ≤ K}
is a basic ellitope in some RN ′ ⇒ XA = {Py : y ∈ YA} is an ellitope.

⇒ R := max
x′,x′′∈X

{
1
2
∥B[x′ − x′′]∥ : A[x′ − x′′] = 0

}
= max

x∈XA
∥Bx∥ = max

w∈W
∥BFw∥

= ∥BF∥∥·∥w→∥·∥ [∥ · ∥w: norm with the unit ballW]

⇒ R ≤ Opt ≤ 3 ln(
√
3[K + L])R, with Opt given by

Opt = minλ,µ

ϕT (λ) + ϕR(µ) :
λ ≥ 0, µ ≥ 0[ ∑

ℓ µℓRℓ
1
2
QTBF

1
2
F TBTQ

∑
k λkTk

]
⪰ 0

 .

⇒ The optimal ∥ · ∥-risk is ≥ R ≥ Opt
3 ln(

√
3[K+L])

, and Risk∥·∥[x̂|X ] ≤ 2R ≤ 2Opt.
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♠ In fact, under mild assumptions a linear estimate is near-optimal:
Theorem. Consider the problem of recovering Bx in ∥ · ∥, x ∈ X , via observation
ω = Ax. Let the signal set X and the unit ball B∗ of the norm conjugate to ∥ · ∥ be
ellitopes:

X =
{
x = Py : y ∈ Y := {y : ∃t ∈ T : yTSky ≤ tk, k ≤ K}

}
B∗ = {u = Qz : z ∈ Z = {∃r ∈ R : zTRℓz ≤ rℓ, ℓ ≤ L}}

Then the linear estimate x̂(ω) = HT
∗ ω yielded by the H-component of optimal solu-

tion to the efficiently solvable optimization problem

Opt = min
λ,µ,H

{
ϕT (λ) + ϕR(µ) : λ ≥ 0, µ ≥ 0

[ ∑
ℓ µℓRℓ

1
2
[B −HTA]P

1
2
P T [BT −ATH]

∑
k λkSk

]
⪰ 0

}
is near-optimal:

Risk∥·∥[x̂H∗|X ] ≤ Opt ≤ O(1) ln(K + L)Risk∗∥·∥[X ],

where

Risk∗∥·∥[X ] = inf
x̂(·)

Risk∥·∥[x̂|X ],

inf being taken over all estimates, linear and nonlinear alike, is the minimax optimal
risk.
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From Ellitopes to Spectratopes

♠ Fact: All our results extend from ellitopes – sets of the form

{y ∈ RN : ∃t ∈ T , z : y = Pz, zTSkz ≤ tk, k ≤ K}[
Sk ⪰ 0,

∑
k Sk ≻ 0

T ⊂ RK+ : monotone convex compact, T
⋂

intRK+ ̸= ∅

]
(E)

which played the roles of signal sets, ranges of bounded noise, and unit balls of the
norms conjugate to the norms ∥ · ∥ in which the recovering error is measured, to a
wider family – spectratopes

basic spectratope: Y = {y ∈ RN : ∃t ∈ T , S2
k [y] ⪯ tkIdk, k ≤ K}

spectratope: Z = {z = Py, y ∈ Y} Sk[y] =
∑

j yjS
kj, Skj ∈ Sdk : linear mapings with values in Sdk

y ̸= 0⇒
∑

k S
2
k [y] ̸= 0 [equivalent to Y being bounded]

T as in (E)

 (S)
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Note:
• Every ellitope is a spectratope.
It suffices to verify that basic ellitope X = {x : ∃t ∈ T : xTSkx ≤ tk, k ≤ K} is a basic spectratope.

Indeed, representing Sk =
∑rk

i=1 fkif
T
ki, we have

X =
{
x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K

}
=

{
x ∈ Rn : ∃{tki ≥ 0,1 ≤ k ≤ K,1 ≤ i ≤ ri} : [

∑
i
t1i; ...;

∑
i
tKi] ∈ T : [fTkix]

2 ⪯ tkiI1∀(k ≤ K, i ≤ rk)
}

• Denoting by ∥ · ∥2,2 the spectral norm, matrix box

X = {x ∈ Rp×q : ∥x∥2,2 ≤ 1} = {x ∈ Rp×q :
[

x

xT

]2
⪯ Ip+q}

and its symmetric version
X = {x ∈ Sn : −In ⪯ x ⪯ In} = {x ∈ Sn : x2 ⪯ In}

are spectratopes⇒ access to matrix boxes as signal sets and nuclear norm as the
recovery norm
• Spectratopes admit the same fully algorithmic calculus as ellitopes
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basic spectratope: Y = {y ∈ RN : ∃t ∈ T , S2
k [y] ⪯ tkIdk, k ≤ K}

spectratope: Z = {z = Py, y ∈ Y} Sk[y] =
∑

j yjS
kj, Skj ∈ Sdk : linear mapings with values in Sdk

y ̸= 0⇒
∑

k S
2
k [y] ̸= 0 [equivalent to Y being bounded]

T ∈ RK+ monotone convex compact set intersecting intRK+

 (S)

♠ Modifications of the results when passing from ellitopes to spectratopes are as
follows:
A. The “size” K of an ellitope (E) (logs of these sizes participate in our tightness
factors) in the case of spectratope (S) becomes D =

∑
k dk
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B. Semidefinite relaxation bound for the quantity

Opt∗ = max
y

{
yTBy : ∃t ∈ T , z : y = Pz, S2

k [z] ⪯ tkIdk, k ≤ K
}

= max
z,t

{
zT B̂z : t ∈ T , S2

k [z] ⪯ tkIdk, k ≤ K
}
, B̂ = P TBP

is as follows. We associate with Sk[z] =
∑
j zjS

kj, Skj ∈ Sdk, two linear mappings:

Q 7→ Sk[Q] : Sdim z → Sdk : Sk[Q] =
∑

i,j
1
2
Qij[SkiSkj + SkjSki] =

∑
i,jQijSkiSkj

Λ 7→ S∗k[Λ] : Sdk → Sdim z :
[
S∗k[Λ]

]
ij
= 1

2
Tr(Λ[SkiSkj + SkjSki]) = Tr(ΛSkiSkj)

Note: • S2
k [z] = Sk[zzT ]

• the mappings Sk and S∗k are conjugates of each other w.r.t. to the Frobenius inner product:

Tr(Sk[Q]Λ) = Tr(QS∗k[Λ]) ∀(Q ∈ Sdim z,Λ ∈ Sdk)

Selecting Λk ⪰ 0, k ≤ K, such that
∑

k S∗k[ΛK] ⪰ B̂, for
z ∈ Z = {z : ∃t ∈ T : S2

k [z] ⪯ tkIdk, k ≤ K}
we have

∃t ∈ T : S2
k [z] ⪯ tkIdk∀k⇒ zT B̂z ≤ zT

[∑
k S∗k[Λk]

]
z =

∑
k z

TS∗k[Λk]z =
∑

kTr(S∗k[Λk][zzT ])
=
∑

kTr(ΛkSk[zzT ]) =
∑

kTr(ΛkS2
k [z]) ≤

∑
k tkTr(Λk)≤ ϕT (λ[Λ]),

ϕT (λ) = max
t∈T

tTλ, λ[Λ] = [Tr(Λ1); ...;Tr(ΛK)]

⇒ Opt∗ ≤ Opt := min
Λ={Λk,k≤K}

{
ϕT (λ[Λ]) : Λk ⪰ 0, k ≤ K, B̂ ⪯

∑
k S∗k[Λk]

}
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♠ Theorem. Semidefinite relaxation bound

Opt := min
Λ={Λk,k≤K}

{
ϕT (λ[Λ]) : Λk ⪰ 0, k ≤ K, B̂ ⪯

∑
k
S∗k[Λk]

}
on the quantity

Opt∗ = maxy
{
yTBy : ∃t ∈ T , z : y = Pz, S2

k [z] ⪯ tkIdk, k ≤ K
}

= maxz,t
{
zT B̂z : t ∈ T , S2

k [z] ⪯ tkIdk, k ≤ K
}

is tight:

Opt∗ ≤ Opt ≤ 2 ln(2
∑

k
dk)Opt∗.

Note: Proof follows the one for the ellitopic case.
But: The role of elementary Mini-Lemma in the spectratopic case is played by the
following fundamental matrix concentration result:
Noncommutative Khintchine Inequality [Lust-Picard 1986, Pisier 1998, Buchholz
2001] Let Ai ∈ Sd, 1 ≤ i ≤ N , be deterministic matrices such that∑

iA
2
i ⪯ Id,

and let ζ be N -dimensional N (0, IN) or Rademacher random vector. Then for all
s ≥ 0 it holds

Prob
{
∥
∑
i ζiAi∥2,2 ≥ s

}
≤ 2d exp{−s2/2}.
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C. Assuming that the signal set X and the unit ball B∗ of the norm conjugate to ∥ · ∥
spectratopes:

X = {x ∈ Rn : ∃t ∈ T : S2
k [x] ⪯ tkIdk, k ≤ K}

B∗ = MY, Y = {y ∈ RN : ∃r ∈ R : R2
ℓ [y] ⪯ rℓIfℓ, ℓ ≤ L}

and that the distribution of noise in observation ω = Ax+ ξ belongs to P[Π], the
problem responsible for building presumably good linear estimate of Bx via ω reads

Opt = min
H,Λ,Υ,Υ′,Θ

{
ϕT (λ[Λ]) + ϕR(λ[Υ]) + ϕR(λ[Υ

′]) + ΓΠ(Θ) :

Λ = {Λk ⪰ 0}k≤K,Υ = {Υℓ ⪰ 0}ℓ≤L,Υ′ = {Υ′ℓ ⪰ 0}ℓ≤L[ ∑
ℓR∗ℓ[Υℓ]

1
2
MT [HTA−B]

1
2
[ATH −BT ]M

∑
k S∗k[Λk]

]
⪰ 0[ ∑

ℓR∗ℓ[Υ′ℓ]
1
2
MTHT

1
2
HM Θ

]
⪰ 0

}


ΓΠ(Θ) = max

Q∈Π
Tr(ΘQ), ϕG(h) = max

g∈G
gTh

Sk[x] =
∑

i
xSk[x] =

∑
i
xiSki ⇒ S∗k[Λk] =

[
Tr(SkpΛkSkq)

]
p,q
≤ n

Rℓ[y] =
∑

i
yiRki ⇒R∗ℓ [Υℓ] =

[
Tr(RℓpΥℓR

ℓq)
]
p,q≤N

λ[{U1, ..., Us]} = [Tr(U1); ...;Tr(Us)]


The risk Risk∥·∥,P[Π][x̂H∗|X ] of the linear estimate x̂H∗(ω) = HT

∗ ω yielded by the
H-component of optimal solution to the problem does not exceed Opt.
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X = {x ∈ Rn : ∃t ∈ T : S2
k [x] ⪯ tkIdk, k ≤ K}

B∗ = MY, Y = {y ∈ RN : ∃r ∈ R : R2
ℓ [y] ⪯ rℓIfℓ, ℓ ≤ L}

D. Near-optimality statement reads as follows:
The ∥ · ∥-risk of the just defined presumably good linear estimate x̂H∗ is within mod-
erate factor of minimax optimal Gaussian risk:

Risk∥·∥,P[Π][x̂H∗|X ] ≤ Opt ≤ O(1)
√
ln(2D) ln(2F )RiskOpt∥·∥,P[Π][X ]

where

D =
∑
k

dk, F =
∑
ℓ

fℓ

are the spectratopic sizes of X and B∗, and

RiskOpt∥·∥,P[Π][X ] = inf
x̂

sup
Q∈Π

max
x∈X

Eξ∼N (0,Q) {∥Bx− x̂(Ax+ ξ)∥}

is the Gaussian minimax optimal risk, i.e., the minimax risk associated with zero
mean Gaussian noises with covariance matrices from Π.
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Proof of Near-Optimality: Executive Sketch

Preliminaries, 1. We shall use the following important
Anderson’s Lemma. Let f : RN → R be an even nonnegative summable function
such that the sets {u : f(u) ≥ t} are convex for all t ≥ 0, and let X be a symmetric
w.r.t. the origin closed convex subset of Rn. Then the function∫

X+τe
f(u)du [e ∈ RN ]

is nonincreasing in τ ≥ 0. As a result, if W ∈ SN+, ∥ · ∥ is a norm on Rν and Y is an
ν ×N matrix, one has

Probη∼N (0,W ){∥Y η+ e∥ ≥ r} ≥ Prob{∥Y η∥ ≥ r} ∀(e ∈ RN , r ≥ 0).
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Preliminaries, 2. By simple saddle point argument, the optimal value Opt in the
problem specifying the presumably good linear estimate is as if the distribution of
noise were zero mean with appropriately selected covariance matrix Q∗ ∈ Π.
From now on we restrict the observation noise to be N (0, Q∗).
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Preliminaries, 3. The crucial role in the proof is played by the following
Main Lemma. Let the unit ball B∗ of the norm conjugate to norm ∥ · ∥ on Rν be a
spectratope:

B∗ =MY, Y = {y ∈ RN : ∃r ∈ R : R2
ℓ [y] ⪯ rℓIfℓ, ℓ ≤ L},

let Y be an S×ν matrix, and η ∼ N (0,Σ) with 0 ≺ Σ ∈ SS. Then the upper bound

ΨΣ(Y ) = min
Υ,Θ

ϕR(λ[Υ]) +Tr(ΣΘ) :

Υ = {Υℓ ⪰ 0}ℓ≤L[ ∑
ℓR∗ℓ [Υℓ]

1
2M

TY T

1
2YM Θ

]
⪰ 0


on the quantity Eη

{
∥Y Tη∥

}
is tight:

Eη∼N (0,Σ)

{
∥Y Tη∥

}
≤ ΨΣ(Y ) ≤ O(1)

√
ln(2F )Eη∼N (0,Σ)

{
∥Y Tη∥

}
, F =

∑
ℓ fℓ

Besides this, for every δ ∈ (0,1) it holds

Probη∼N (0,Σ)

∥Y Tη∥ > δ√
ln(2F/δ)

ΨΣ(Y )

 ≥ 1−O(1)δ.

Proof of Main Lemma heavily utilizes Conic Duality.
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ω = Ax+ ξ : x ∈ X , ξ ∼ N (0, Q∗), Q∗ ≻ 0

Step 1: All we need is to upper-bound Opt in terms of the minimax optimal risk

RiskOpt∥·∥[X ] = inf
x̂

sup
x∈X

Eξ∼N (0,Q∗) {∥Bx− x̂(Ax+ ξ)∥} .

Technically it is easier to upper-bound Opt in terms of the minimax ϵ-risk Riskϵ:

Riskϵ := inf
x̂

min
{
ρ : Probξ∼N (0,Q∗) {∥Bx− x̂(Ax+ ξ)∥ > ρ} ≤ ϵ ∀x ∈ X

}
In the proof we use once for ever fixed ϵ, namely, ϵ = 1

8.
Note: Risk1

8
≤ 8Risk∥·∥[X ]⇒ upper-bounding Opt in terms of Risk1

8
automatically

implies upper-bounding of Opt in terms of Risk∥·∥.
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ω = Ax+ ξ : x ∈ X , ξ ∼ N (0, Q∗), Q∗ ≻ 0

Step 2: LetW ∈ Sn+. Consider the Bayesian version of our estimation problem, where the observation
is

ω = Aη+ ξ
ξ ∼ N (0, Q∗), η ∼ N (0,W ) are independent of each other

Fact [well known]: Since [ω; η] is zero mean Gaussian, the conditional, given ω, expectation
E|ω {Bη} of Bη is a linear function H̄Tω of ω.
Given this fact, Anderson’s Lemma, and Main Lemma, we, with moderate effort, arrive at the following
♠ Intermediate Conclusion: Given W ≻ 0 and setting

Ψ(H) = min
Υ,Θ

ϕR(λ[Υ]) +Tr(Q∗Θ) :
Υ = {Υℓ ⪰ 0}ℓ≤L[ ∑

ℓR∗ℓ[Υℓ]
1
2
MTHT

1
2
HM Θ

]
⪰ 0


Φ(W,H) = min

Υ,Θ

ϕR(λ[Υ]) +Tr(WΘ) :
Υ = {Υℓ ⪰ 0}ℓ≤L[ ∑

ℓR∗ℓ[Υℓ]
1
2
MT [B −HTA]

1
2
[BT −ATH]M Θ

]
⪰ 0


for an appropriate absolute constant O(1) > 0 and every estimate x̂(·) we have

Prob[ξ;η]∼N (0,Q∗)×N (0,W )

{
∥Bη − x̂(Aη+ ξ)∥ ≥

O(1)√
ln(2F )

inf
H

[
Φ(W,H) +Ψ(H)

]}
≥

1

4

where F =
∑

ℓ fℓ is the spectratopic size of B∗.
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X = {x ∈ Rn : ∃t ∈ T : S2
k [x] ⪯ tkIdk, k ≤ K}

For appropriate positive absolute constant O(1), for every W ∈ Sn+ and every estimate x̂(·) one has

Prob[ξ;η]∼N (0,Q∗)×N (0,W )

{
∥Bη − x̂(Aη+ ξ)∥ ≥ O(1)√

ln(2F )
inf
H

[
Φ(W,H) +Ψ(H)

]}
≥ 1

4
. (!)

Concluding steps: Consider the parametric family of convex sets
W[κ] = {W ∈ Sn+ : ∃t ∈ T : Sk[W ] ≤ κtkIdk, k ≤ K}

[
Sk[W ] =

∑
i,jWijSkiSkj

]
where κ ∈ (0,1], and the parametric family of convex-concave saddle point problems

Opt(κ) = sup
W∈W[κ]

inf
H

[
Φ(W,H) +Ψ(H)

]
. (∗κ)

Note: When W ∈ W[κ]̃ and η ∼ N (0,W ), the vector η/
√
κ “belongs to X at average:”

∃t ∈ T : ∀k ≤ K :κtkIdk ⪰ Sk[W ] =
∑

i,j
Eη∼N (0,W ){ηiηj}SkiSkj = Eη∼N (0,W ){

∑
i,j
ηiηjSkiSkj} = Eη∼N (0,W ){S2

k [η]}.

• It is not difficult to verify that for every κ ∈ (0,1]:
a. The convex-concave saddle point problem (∗κ) has a solution (W [κ], H[κ])
b. Opt(κ) ≥

√
κOpt(1)

c. Opt(1) = Opt (miracle stemming from Conic Duality)
d. As κ ↘ 0, Probη∼N (0,W [κ]){η ̸∈ X} rapidly goes to 0:

Probη∼N (0,W [κ]){η ̸∈ X} ≤ 2exp{− 1
2κ}

∑
k dk

(stems from Noncommutative Khintchine Inequality)
• By b, c and (!), for every estimate x̂ and every κ ∈ (0,1] we have

Prob[ξ;η]∼N (0,Q∗)×N (0,W [κ])

{
∥Bη − x̂(Aη+ ξ)∥ ≥ O(1)√

ln(2F )

√
κOpt

}
> 1

4
.
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For every estimate x̂ and every κ ∈ (0,1] we have

Prob[ξ;η]∼N (0,Q∗)×N (0,W [κ])

{
∥Bη − x̂(Aη+ ξ)∥ ≥

O(1)√
ln(2F )

√
κOpt

}
>

1

4
, (!)

and as κ ↘ 0, Probη∼N (0,W [κ]){η ̸∈ X} rapidly goes to 0:

Probη∼N (0,W [κ]){η ̸∈ X} ≤ 2exp{−
1

2κ
}D, (!!)

where D =
∑

k dk is the spectratopic size of X .
These facts easily combine to yield the target upper bound

Opt ≤ O(1)
√

ln(2D) ln(2F )Risk1

8

on Opt in terms of Risk1

8
.

Indeed, with κ = O(1)/ ln(2D) probability for η ∼ N (0,W [κ]) to be outside of X is < 1/8 by (!!)
⇒ invoking (!),

Prob[ξ;η]∼N (0,Q∗)×N (0,W [κ])

{
∥Bη − x̂(Aη+ ξ)∥ ≥

O(1)√
ln(2F )

√
κOpt︸ ︷︷ ︸

R

& η ∈ X
}
>

1

4
−

1

8
=

1

8

⇒ Risk1

8
≥ R. □
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Beyond linearity: Polyhedral estimates

♣ As before, our problem of interest is: given noisy observation

ω = Ax+ ξ ∈ Rm, ξ ∼ Px,

of unknown signal x known to belong to a given convex compact signal set X ⊂ Rn,
we want to recover Bx ∈ Rν in a given norm ∥ · ∥.
We have seen that under reasonable assumptions on problem’s data, efficiently com-
putable via convex Programming linear in ω estimates are near-optimal.
However: There are meaningful situations which go beyond the scope of “reason-
able assumptions,” moreover, situations where linear estimation is provably far from
being near-optimal.
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Example: Let X = {x ∈ Rn : ∥x∥1 ≤ 1} be the unit ℓ1-ball, observations be direct:

ω = x+ ση, η ∼ N (0, In),

and we want to recover Bx ≡ x in Euclidean norm. For a linear estimate HTω,
worst-case expected squared recovery error is

max
x∈X

Eη∼N (0,In)

{
∥HT(x+ ση)− x∥22

}
= max

i
∥Rowi[I −H]∥22 + σ2Tr(HTH)

Its minimum over n × n matrices H is achieved at the scalar matrix H = hIn with
h = 1

σ2n+1
and equals

Risk2lin =
σ2n

σ2n+1
.

When σ2n ≥ 1, this squared risk is at least 1/2.
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• Now consider the estimate as follows: given ω, we estimate x by the optimal solu-
tion x̂(ω) to the convex optimization problem

Opt(ω) = min {∥ω − y∥∞ : y ∈ X} .
Observe that when ω = x+ ση with x ∈ X, setting x̂ = x̂(ω) we have

Opt(ω) ≤ ∥ω − x∥∞ = σ∥η∥∞
⇒ ∥x− x̂∥∞ ≤ ∥x− ω∥∞+ ∥ω − x̂∥∞︸ ︷︷ ︸

Opt(ω) ≤ ∥x− ω∥∞

≤ 2σ∥η∥∞

⇒ ∥x− x̂∥22 ≤ ∥x− x̂∥∞ ∥x− x̂∥1︸ ︷︷ ︸
≤2

≤ 4σ∥η∥∞

⇒ Risk2[x̂] := maxx∈X E
{
∥x− x̂(Ax+ ση)∥22

}
≤ 4σEη∼N (0,In) {∥η∥∞}

It is easily seen that Eη∼N (0,In) {∥η∥∞} ≤ 2
√
ln(2n), whence

Risk2[x̂] ≤ 8σ
√
ln(2n) & Risk2lin =

σ2n

σ2n+1
.

⇒ When σ is small and σ2n is of order of 1, an appropriate nonlinear estimate
significantly outperforms the best linear one – for the former, squared risk is nearly
O(σ), and for the latter it is O(1).
♠What is ahead: nonlinear polyhedral estimates with the “scope of near-optimality”
strictly wider than the one for linear estimates.
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Polyhedral Estimate: Motivation

♣ To motivate Polyhedral Estimate, let us start with the problem where

ω = Ax∗+ σξ, ξ ∼ N (0, Im)

with unknown x∗ known to belong to a convex compact signal set X ⊂ Rn, and we
want to recover Bx∗ in norm ∥ · ∥. Let us once for ever fix reliability tolerance ϵ≪ 1.
♠ The simplest inference we can make from observation is:
Let us select somehow in advance N vectors hi ∈ Rm. Then with confidence 1 − ϵ
x∗ belongs to the “confidence box”

B := {|hTi [ω −Ax]| ≤ ρi, i ≤ N}
[
ρi = σ

√
2 ln(2N/ϵ)∥hi∥2

]
Indeed, with δi := hTi [ω−Ax∗] = σhTi ξ one has Prob{|δi| ≤ ρi ∀i} ≥ 1−2

∑
i exp{−

ρ2
i

2σ2} ≥ 1− ϵ.
Acting as if B were summarising all information on x∗ contained in ω, we could select
a point x̃ ∈ X ∩ B, take it as estimate of x∗, and recover Bx∗ by Bx̃.
Note: Assuming x∗ ∈ B, all we know with our ”as if” is that x∗ ∈ B, x̃ ∈ B and x∗ ∈ X , x̃ ∈ X , or,
which is the same,

∆ :=
1

2
[x∗ − x̃] ∈ Xs :=

1

2
[X − X ] & |hTi A∆| ≤ ρi, i ≤ N,

⇒ all we can say about the recovery error is that with probability ≥ 1− ϵ, it holds

∥Bx∗ −Bx̃∥ = 2∥B∆∥ ≤ R := max
z
{2∥Bz∥ : z ∈ Xs, |hTi Az| ≤ ρi,1 ≤ i ≤ N}.
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♠ Choosing in advance hi ∈ Rm, i ≤ N , and given ω = Ax∗+ σξ, take, as estimate of Bx∗, vector
Bx̃ with x̃ ∈ X ∩ B, where the “confidence box” B is given by

B = {x : |hTi [ω −Ax]| ≤ ρi := σ
√

2 ln(2N/ϵ)∥hi∥2, i ≤ N},
thus ensuring that

∥Bx∗ −Bx̃∥ ≤ R := max
z
{2∥Bz∥ : z ∈ Xs, |hTi Az| ≤ ρi,1 ≤ i ≤ N}

with confidence 1− ϵ.
Small modification: with probability 1 − ϵ the set B ∩ X contains x∗ and thus is
nonempty; however, it can be empty with positive probability.
⇒ It is better to replace the rule for selecting x̃ with

x̃ ∈ Argmin
x

{
max
i
|hTi [ω −Ax]|/ρi : x ∈ X

}
which is always well defined and results in x̃ ∈ B ∩ X provided x∗ ∈ B and thus
preserves the risk bound

∥Bx∗ −Bx̃∥ ≤ R with confidence 1− ϵ
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Illustration: When X = {x ∈ Rn : ∥x∥1 ≤ 1} and A = B = In, selecting N = n

and taking as hi the standard basic orths, we arrive at the recovery

ω 7→ Argmin
x∈X

∥x− ω∥∞

and

R = max
z

{
2∥z∥2 : ∥z∥1 ≤ 1︸ ︷︷ ︸

z∈Xs

& ∥z∥∞ ≤ σ
√
2 ln(2n/ϵ)

}
≤ 2

√
σ
√
2 ln(2n/ϵ)

where the concluding inequality is due to ∥z∥22 ≤ ∥z∥1∥z∥∞.
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• To say that hTω estimates hTAx∗ within accuracy 0.1 is the same as to say that
10hTω estimates 10hTAx∗ within accuracy 1. It is technically convenient to scale
hi to make ρi = 1, that is, to ensure that

∥hi∥2 ≤ [σ
√
2 ln(2N/ϵ)]−1.

With this convention, setting H = [h1, ..., hN ], our recovering routine becomes

ω 7→ x̃ ∈ Argmin
x∈X

∥HT [ω −Ax]∥∞ 7→ x̂ = Bx̃

and the formula for R becomes

R = max
z
{2∥Bz∥2 : z ∈ Xs & ∥HTAz∥∞ ≤ 1}
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X ⊂ Rn & ω = Ax+ ξ ∈ Rm, ξ ∼ Px with x ∈ X ??⇒?? x̂(ω) ≈ Bx ∈ Rν

Polyhedral Estimate: Construction. Generic polyhedral estimate stems from the
above motivation and is as follows:
The estimate is specified by m×N contrast matrix H and is given by

ω 7→ x̄(ω) ∈ Argmin
y∈X

∥HT [ω −Ay]∥∞ 7→ x̂H(ω) = Bx̄(ω)

Risk Analysis. In what follows, it is convenient to quantify the performance of a
candidate estimate x̂(·) by its ϵ-risk rather the worst-case, over x ∈ X , expected
error. Specifically, given reliability tolerance ϵ ∈ (0,1), we define (ϵ, ∥ · ∥)-risk of a
candidate estimate x̂(·) : Rm → Rν as the worst case, over x ∈ X , width of “∥ · ∥ –
(1− ϵ)-confidence interval:”

Riskϵ,∥·∥[x̂(·)|X ] = min
{
ρ : Probξ∼Px{∥x̂(Ax+ ξ)−Bx∥ > ρ} ≤ ϵ ∀x ∈ X

}
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X ⊂ Rn & ω = Ax+ ξ ∈ Rm, ξ ∼ Px with x ∈ X ??⇒?? x̂(ω) ≈ Bx ∈ Rν

Immediate observation: Given reliability tolerance ϵ ∈ (0,1), assume that contrast
matrix H satisfies

Probξ∼Px{∥H
T ξ∥∞ ≤ 1} ≥ 1− ϵ ∀x ∈ X (!)

Let Xs = 1
2 [X − X ] =

{
1
2[x− x

′] : x, x′ ∈ X
}

and

R = maxz
{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
For the polyhedral estimate x̂H associated with the contrast matrix H we have

Riskϵ,∥·∥[x̂H |X ] ≤ R.

Indeed, let us fix x ∈ X , and let E = {ξ : ∥HTξ∥∞ ≤ 1}, so that Px{E} ≥ 1 − ϵ. For ξ ∈ E , setting

x̂ = x̂(Ax+ ξ), we have x̂ = Bx̄ with x̄ ∈ Argmin
y∈X

F (y) := ∥HT [Ax+ ξ −Ay]∥∞

We have x ∈ X and F (x) ≤ ∥HTξ∥∞ ≤ 1 since ξ ∈ E
⇒ x̄ ∈ X and F (x̄) ≤ 1

⇒ 2 ≥ F (x) + F (x̄) = ∥HTξ∥∞+ ∥HTA[x− x̄] +HTξ∥∞ ≥ ∥HTA[x− x̄]∥∞
⇒ for z = 1

2
[x− x̄] ∈ Xs it holds ∥HTAz∥∞ ≤ 1⇒ ∥Bx− x̂∥ = ∥Bx−Bx̄∥ = 2∥z∥ ≤ R.

⇒ when x ∈ X and ξ ∈ E (which happens with Px-probability at least 1− ϵ) it holds

∥x− x̂(Ax+ ξ)∥ ≤ R.
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Probξ∼Px{∥H
T ξ∥∞ ≤ 1} ≥ 1− ϵ ∀x ∈ X (!)

⇒ x̂H(ω) = Bx̄(ω), x̄(ω) ∈ Argmin
x∈X

∥HT [ω −Ax]∥∞ :

Riskϵ,∥·∥[x̂H |X ] ≤ R := maxz
{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
. (∗)

Questions to be addressed:
A. How to define a set Hϵ, the wider the better, of contrast matrices H satisfying (!)

B. How to upper-bound R efficiently
Note: Optimization problem in (∗) is a difficult problem of maximizing convex
function over a convex set.

C. How to optimize, to the largest extent possible, R over H ∈ Hϵ
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A. How to define a set Hϵ of contrast matrices H satisfying
Probξ∼Px{∥H

T ξ∥∞ ≤ 1} ≥ 1− ϵ ?
Answering Question A. In the sequel, we restrict ourselves with 3 observation
schemes:
A.I. Sub-Gaussian case: For every x ∈ X , the distribution Px of observation noise
is sub-Gaussian with parameters (0, σ2Im):

Eξ∼Px{exp{h
T ξ}} ≤

σ2

2
hTh ∀h.

Given positive integer N and setting

πG(h) = ϑG∥h∥2 where ϑG = σ
√
2 ln(2N/ϵ),

Hϵ = HGϵ = {H ∈ Rm×N : πG(Colj[H]) ≤ 1, 1 ≤ j ≤ N}

we ensure that for every H ∈ Hϵ and every (0, σ2Im)-sub-Gaussian ξ it holds

Prob{∥HT ξ∥∞ ≤ 1} ≥ 1− ϵ.

Note: πG(h) decreases as O(σ) as σ → +0
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A.II. Discrete case: X is a convex compact subset of the probabilistic simplex ∆n =

{x ∈ Rn : x ≥ 0,
∑
i xi = 1}, A is column-stochastic matrix, and observation ω

stemming from signal x ∈ X is

ω =
1

K

K∑
k=1

ζk

with independent across k ≤ K random vectors ζk, each taking values ei with prob-
abilities [Ax]i, i = 1, ....,m, ei being the basic orths in Rm.
Setting

πD(h) = 2
√
ϑDmaxx∈X

∑
i[Ax]ih

2
i + 16

9 ϑ
2
D∥h∥

2
∞ with ϑD = ln(2N/ϵ)

K ,

Hϵ = HDϵ := {H ∈ Rm×N : πD(Colj[H]) ≤ 1, j ≤ m},
we ensure that for every H ∈ Hϵ and every x ∈ X , for the zero mean i.i.d. random
noise ξx = ω −Ax, with the above ω, it holds

Prob{∥HT ξx∥∞ ≤ 1} ≥ 1− ϵ.

Note: πD(h) decreases as O(1/
√
K) as K grows
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Note: The crucial role in the justification of the above bounds on probabilities of large
deviations of histograms from true distributions is played by the fundamental
Bernstein Inequality: Let X1, ..., XN be independent zero mean random variables
with variations σ21, ..., σ

2
N such that |Xi| ≤ M < ∞ for all i and some M . Then for

every t ≥ 0 one has

Prob


N∑
i=1

Xi ≥ t

 ≤ exp

− t2

2
[∑N

i=1 σ
2
i + 1

3Mt
]
 .
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A.III. Poisson case: X is a convex compact subset of the nonnegative orthant Rn+,
A is entrywise nonnegative, and the observation ω stemming from x ∈ X is random
vector with independent across i entries ωi ∼ Poisson([Ax]i).
In the Poisson case we set

πP (h) = 2
√
ϑP maxx∈X

∑
i[Ax]ih

2
i + 4

9ϑ
2
P∥h∥

2
∞ with ϑP = ln(2N/ϵ),

Hϵ = HPϵ := {H ∈ Rm×N : πP (Colj[H]) ≤ 1,1 ≤ j ≤ N}.
thus ensuring that for every H ∈ Hϵ and every x ∈ X , for the zero mean random
noise ξx = ω −Ax, with the above ω, it holds

Prob{∥HT ξx∥∞ ≤ 1} ≥ 1− ϵ.

Note: In all 3 cases, the setHϵ of “legitimate” in our context m×N contrast matrices
is of the form

Hϵ = {H ∈ Rm×N : π(Colj(H)) ≤ 1, j ≤M}

where π(·) is norm of the form

π(h) =
√
αmax
y∈Y

∑
i

yih
2
i + β∥h∥2∞} [Y ⊂ Rm+: convex compact set]

with α > 0, β ≥ 0 logarithmically depending on N/ϵ.
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Riskϵ,∥·∥[x̂H |X ] ≤ R[H] = maxz
{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
B. How to upper-bound R[H] ? C. How to optimize R[H] over H ?

Answering Questions B, C, Version I
♠ The reference case for what follows is the one of ∥ · ∥ = ∥ · ∥∞. In this case R[H]
is easy to compute by solving ν convex optimization problems

ςℓ[H] = maxz
{
[Bz]ℓ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
= maxz

{
|[Bz]ℓ| : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
,

ℓ = 1, ..., ν, and taking the maximum of their optimal values as 1
2R[H].

♠ Assume that we restrict H to be an m × N matrix with a given N ≥ ν satisfying,
for a given norm π(·), the constraints

π(Colj[H]) ≤ 1, 1 ≤ j ≤ N. (∗)
It turns out that under constraints (∗) on H, it is easy to minimize simultaneously all
ςℓ[H], ℓ ≤ ν, over H.
Note: In the observation schemes we are considering, the design restriction H ∈ Hϵ
on a candidate contrast matrix H indeed is given by constraints (∗) with appropriate
norm π !
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ςℓ[H] = maxz
{
[Bz]ℓ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
, ℓ = 1, ..., ν[

H ∈ Rm×N : π(Colj[H]) ≤ 1,1 ≤ j ≤ N & N ≥ ν
]

Optimizing ςℓ[H] over H

♠ Given a vector b ∈ Rn and a norm π(·) on Rm, consider convex-concave saddle
point problem

Opt[b] = inf
g∈Rm

max
x∈Xs

{
ϕ(g, x) := [b−ATg]Tx+ π(g)

}
(SP )

Claim: (SP ) has a saddle point. This saddle point induces vector h̄ = h̄[b] ∈ Rm

with π(h̄) = 1 such that maxx
{
|bTx| : x ∈ Xs, |h̄TAx| ≤ 1

}
≤ Opt[b]. In addition,

for any matrix G = [g1, ..., gM ] ∈ Rm×M with π(gj) ≤ 1, 1 ≤ j ≤M , one has

maxx
{
|bTx| : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
= maxx

{
bTx : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
≥ Opt[b].

Corollary: Let H be the m × ν matrix with the columns h̄ℓ = h̄[Bℓ], where BTℓ
is ℓ-th row of B, 1 ≤ ℓ ≤ ν. Then π(Colj[H]) ≤ 1, j ≤ ν, and H minimizes
simultaneously all quantities ςℓ[H], ℓ ≤ ν, over m×N contrast matrices H satisfying
π(Colj[H]) ≤ 1, 1 ≤ j ≤ N . The resulting value of ςℓ is Opt[Bℓ], ℓ ≤ ν.
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Building h̄: The convex-concave saddle point problem

Opt[b] = inf
g∈Rm

max
x∈Xs

{
ϕ(g, x) := [b−ATg]Tx+ π(g)

}
(SP )

induces primal and dual problems

Opt(P ) = infg∈Rm

[
ϕ(g) := maxx∈Xs ϕ(g, x)

]
(P )

= infg∈Rm

[
π(g) +maxx∈Xs[b−A

Tg]Tx
]
,

Opt(D) = maxx∈Xs
[
ϕ(g) := infg∈Rm ϕ(g, x)

]
(D)

= maxx∈Xs
[
infg∈Rm

[
bTx− [Ax]Tg+ π(g)

]]
= maxx

[
bTx : x ∈ Xs, θ(Ax) ≤ 1

]
where θ(·) is the norm conjugate to π(·) (we have used the evident fact that
infg∈Rm[f

Tg + π(g)] is either −∞ or 0 depending on whether θ(f) > 1 or
θ(f) ≤ 1). Since Xs is compact, we have Opt(P ) = Opt(D) = Opt[b] by
the Sion-Kakutani theorem. Besides this, (D) is solvable (this is evident) and (P )

is solvable as well, since ϕ(g) is continuous due to the compactness of Xs, and
ϕ(g) ≥ π(g), so that ϕ(·) has bounded level sets. Let ḡ be an optimal solution to
(P ). We select h̄ = h̄[b] ∈ Rm in such a way that

ḡ = π(ḡ)h̄& π(h̄) = 1.
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♠ The construction just outlined basically resolves the question of how to build the
“legitimate” contrast matrix leading to the best, in terms of its risk bound, polyhedral
estimate, provided that the recovery norm is ∥ · ∥∞.
♠ In fact, this construction has other consequences. Let us make the following as-
sumptions:
A.1. The recovery norm is ∥ · ∥ = ∥ · ∥r with some r ∈ [1,∞]

A.2. We have at our disposal a sequence γ = {γi > 0, 1 ≤ i ≤ ν} and ρ ∈ [1,∞]

such that the image of Xs under the mapping x 7→ Bx is contained in the “scaled
∥ · ∥ρ-ball”

Y = {y ∈ Rν : ∥Diag{γ}y∥ρ ≤ 1}.

5.113



Observation: Let BTℓ be ℓ-th row in B, 1 ≤ ℓ ≤ ν. Under assumptions A.1-2, let
ϵ ∈ (0,1) and a positive real N ≥ ν be given, and let π(·) be a norm on Rm such
that

∀(h : π(h) ≤ 1, x ∈ X ) : Prob{|hT ξx| ≤ 1} ≥ 1− ϵ/N.

Let, next, an m×N matrix H and positive reals ςℓ, 1 ≤ ℓ ≤ ν, satisfy the relations

(a) π(Colj[H]) ≤ 1, 1 ≤ j ≤ N ;

(b) maxx
{
BTℓ x : x ∈ Xs, ∥HTAx∥∞ ≤ 1

}
≤ ςℓ, 1 ≤ ℓ ≤ ν.

Then the quantity

R[H] = max
z

{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
can be upper-bounded as follows:

R[H] ≤ Ψ(ς) := 2maxv {∥[v1/γ1; ...; vν/γν]∥r : ∥v∥ρ ≤ 1, 0 ≤ vℓ ≤ γℓςℓ, 1 ≤ ℓ ≤ ν} .

implying that

Riskϵ,∥·∥[ŵH |X ] ≤ Ψ(ς).

Function Ψ is nondecreasing on the nonnegative orthant and is easy to compute.
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Note: We know how to make all ςℓ as small as possible under the restriction

π(Colj[H]) ≤ 1, 1 ≤ j ≤ N ;

we should select as H the m × N matrix with the columns h̄[Bℓ], 1 ≤ ℓ ≤ ν, and,
say, zero columns with indexes > ν, resulting in

ςℓ = Opt[Bℓ] := inf
g∈Rm

max
x∈Xs

{
ϕ(g, x) := BTℓ x− g

TAx+ π(g)
}

where BTℓ is ℓ-th row of B.
Note: There is no reason to use N > ν; N = ν already results in the best legitimate
contrast.
Note: An attractive feature of the contrast design we have just developed is that it
is completely independent of the entities participating in Assumptions A.1-2 – these
entities affect theoretical risk bounds of the resulting polyhedral estimate, but not the
estimate itself.
Near-optimality. Unfortunately, for the proposed polyhedral estimate no really gen-
eral results on near-optimality are known.

5.115



However: There are important special cases where near-optimality can be justified,
most notably,
Simple diagonal case (one of the typical cases considered in the traditional Nonparametric Statistics),
where
• X = {x ∈ Rn : ∥Dx∥ρ ≤ 1}, where D = Diag{ℓδ, ℓ = 1,2, ..., n},
• ∥ · ∥ = ∥ · ∥r with 1 ≤ ρ ≤ r <∞,
•m = ν = n, A = Diag{ℓ−α, ℓ = 1, ..., n}, B = Diag{ℓ−β, ℓ = 1, ..., n},
with

β ≥ α ≥ 0, δ ≥ 0 & (β − α)r < 1

•We are in Sub-Gaussian case: ξx is (0, σ2In)-sub-Gaussian, x ∈ X .
Assuming that σ, ϵ, n are in the range 0 <

√
ln(2n/ϵ)σ ≤ 1 and n is large enough:

n ≥ cϑ
− 1

α+δ+1/ρ

G [ϑG = σ
√

2 ln(2n/ϵ)]
(here and what follows c and C depend solely on α, β, δ, r, ρ) our design results in

H = [σκ]−1 In with κ =
√

2 ln(2n/ϵ)

Riskϵ,∥·∥r[x̂H|X ] ≤ C [σκ]φ, φ =
β+ δ+1/ρ− 1/r

α+ δ+1/ρ
,

while the minimax optimal (ϵ, ∥ · ∥r)-risk is ≥ cσφ.
⇒ the risk of our polyhedral estimate is within logarithmic in n/ϵ factor of the minimax
optimal risk.
Not so good news: The above near-optimality result is obtained by the traditional for
classical Non-Parametric Statistics analytical closed form risk analysis, this is where
heavy structural restrictions on X , A, and B come from.
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Paying debts for Version I: Proofs

♠ Observation to be verified: Let BT
ℓ be ℓ-th row in B, 1 ≤ ℓ ≤ ν. Under assumptions

A.1: ∥ · ∥ = ∥ · ∥r A.2: BXs ⊂ Y = {y : ∥Diag{γ}y∥ρ ≤ 1} ,
let ϵ ∈ (0,1) and a positive real N ≥ ν be given, and let π(·) be a norm on Rm such that

∀(h : π(h) ≤ 1, x ∈ X ) : Prob{|hTξx| ≤ 1} ≥ 1− ϵ/N.
Let, next, an m×N matrix H and positive reals ςℓ, 1 ≤ ℓ ≤ ν, satisfy the relations

(a) π(Colj[H]) ≤ 1, 1 ≤ j ≤ N ;
(b) maxx

{
BT
ℓ x : x ∈ Xs, ∥HTAx∥∞ ≤ 1

}
≤ ςℓ, 1 ≤ ℓ ≤ ν.

Then the quantity
R[H] = max

z

{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
can be upper-bounded as follows:

R[H] ≤ Ψ(ς) := 2maxv {∥[v1/γ1; ...; vν/γν]∥r : ∥v∥ρ ≤ 1, 0 ≤ vℓ ≤ γℓςℓ, 1 ≤ ℓ ≤ ν} .
implying that

Riskϵ,∥·∥[ŵH|X ] ≤ Ψ(ς).

Function Ψ is nondecreasing on the nonnegative orthant and is easy to compute.
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Proof. Let z̄ ∈ Xs and ∥HTAz̄∥∞ ≤ 1. Setting y = Bz̄, we have y ∈ Y due to z̄ ∈ Xs and A.2.
Thus, ∥Diag{γ}y∥p ≤ 1. Besides this, by (b) relations z̄ ∈ Xs and ∥HTAz̄∥∞ ≤ 1 combine with the
symmetry of Xs to imply that |yℓ| = |BT

ℓ z̄| ≤ ςℓ, ℓ ≤ ν. Taking into account that ∥ · ∥ = ∥ · ∥r by A.1,
we see that

R[H] = maxz
{
2∥Bz∥r : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
≤ 2maxy {∥y∥r : |yℓ| ≤ ςℓ, ℓ ≤ ν & ∥Diag{γ}y∥ρ ≤ 1}
= 2maxv {∥[v1/γ1; ...; vν/γν]∥r : ∥v∥ρ ≤ 1,0 ≤ vℓ ≤ γℓςℓ, ℓ ≤ ν} = Ψ(ς),

as claimed. It is evident that Ψ is nondecreasing on the nonnegative orthant, and it is easy to verify
that Ψ is efficiently computable. □
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♠ Claim to be verified: Given a vector b ∈ Rn and a norm π(·) on Rm, consider convex-concave
saddle point problem

Opt[b] = inf
g∈Rm

[
π(g) +max

x∈Xs
[b−ATg]Tx

]
(SP )

(SP ) has a saddle point. The g-component ḡ of a saddle point induces vector h̄ = h̄[b] given by

ḡ = π(ḡ)h̄& π(h̄) = 1

such that
max
x

{
|bTx| : x ∈ Xs, |h̄TAx| ≤ 1

}
≤ Opt[b].

In addition, for any matrix G = [g1, ..., gM ] ∈ Rm×M with π(gj) ≤ 1, 1 ≤ j ≤M , one has

maxx
{
|bTx| : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
= maxx

{
bTx : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
≥ Opt[b].
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Proof, Step 1: Building h̄. The induced by the convex-concave saddle point problem

Opt[b] = inf
g∈Rm

max
x∈Xs

{
ϕ(g, x) := [b−ATg]Tx+ π(g)

}
(SP )

primal and dual problems are

Opt(P ) = infg∈Rm

[
ϕ(g) := maxx∈Xs ϕ(g, x)

]
(P )

= infg∈Rm

[
π(g) +maxx∈Xs[b−A

Tg]Tx
]
,

Opt(D) = maxx∈Xs
[
ϕ(g) := infg∈Rm ϕ(g, x)

]
(D)

= maxx∈Xs
[
infg∈Rm

[
bTx− [Ax]Tg+ π(g)

]]
= maxx

[
bTx : x ∈ Xs, θ(Ax) ≤ 1

]
where θ(·) is the norm conjugate to π(·) (we have used the evident fact that infg∈Rm[fTg + π(g)]
is either −∞ or 0 depending on whether θ(f) > 1 or θ(f) ≤ 1). Since Xs is compact, we have
Opt(P ) = Opt(D) = Opt[b] by the Sion-Kakutani theorem. Besides this, (D) is solvable (this
is evident) and (P ) is solvable as well, since ϕ(g) is continuous due to the compactness of Xs, and
ϕ(g) ≥ π(g), so that ϕ(·) has bounded level sets. Let ḡ be an optimal solution to (P ). h̄ is the vector
given by

ḡ = π(ḡ)h̄& π(h̄) = 1.
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Opt[b] = infg∈Rm
[
ϕ(g) := maxx∈Xs ϕ(g, x) := [b−ATg]Tx+ π(g)

]
(P )

= infg∈Rm
[
π(g) +maxx∈Xs[b−A

Tg]Tx
]
,

= maxx∈Xs

[
ϕ(g) := infg∈Rm ϕ(g, x)

]
= maxx∈Xs

[
infg∈Rm

[
bTx− [Ax]Tg+ π(g)

]]
= maxx

[
bTx : x ∈ Xs, θ(Ax) ≤ 1

]
(D)

where θ(·) is the norm conjugate to π(·).
Proof, Step 2. To justify Claim we are proving, it remains to verify the following
Fact: When ḡ = π(ḡ)h̄, π(h̄) = 1, is an optimal solution (which does exist) to (P ), one has

maxx
{
|bTx| : x ∈ Xs, |h̄TAx| ≤ 1

}
≤ Opt[b], (1)

and for any matrix G = [g1, ..., gM ] ∈ Rm×M with π(gj) ≤ 1, 1 ≤ j ≤M , one has

max
x

{
|bTx| : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
= max

x

{
bTx : x ∈ Xs, ∥GTAx∥∞ ≤ 1

}
≥ Opt[b]. (2)

Justifying Fact: Let x be a feasible solution to the optimization problem in (1). Replacing, if necessary,
x with −x, we can assume that |bTx| = bTx. We now have

|bTx| = bTx = [ḡTAx− π(ḡ)] + [b−AT ḡ]Tx+ π(ḡ)︸ ︷︷ ︸
≤ϕ(ḡ)=Opt[b]

≤ Opt[b] + [π(ḡ)h̄TAx− π(ḡ)]

≤ Opt[b] + π(ḡ) |h̄TAx|︸ ︷︷ ︸
≤1

−π(ḡ) ≤ Opt[b],

as claimed in (1). The equality in (2) is due to the symmetry of Xs w.r.t. the origin. To verify the
inequality in (2), let x̄ be an optimal solution to (D), so that x̄ ∈ Xs and θ(Ax̄) ≤ 1, implying, due to
the fact that the columns of G are of π(·)-norm ≤ 1, that x̄ is a feasible solution to the optimization
problem in (2). As a result, the second quantity in (2) is at least bT x̄ = Opt[b], and (2) follows. □

5.121



Riskϵ,∥·∥[x̂H|X ] ≤ R[H] = maxz
{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
B. How to upper-bound R[H] ? C. How to optimize R[H] over H ?

Answering Questions B, C, Version II

♣ Our second approach to B, C resembles what we did when building linear esti-
mates – it is based on a kind of semidefinite relaxation
♠ Definition. Given a nonempty convex compact set Y ∈ RN , we say that Y is
compatible with Y, if Y = {(V, τ)} is a closed convex cone contained in SN+ × R+

and such that
— ∀(V, τ) ∈ Y : maxy∈Y y

TV y ≤ τ
— relations (V, τ) ∈ Y and τ ′ ≥ τ imply that (V, τ ′) ∈ Y

— Y contains a pair (V, τ) with V ≻ 0.
•We say that a cone Y compatible with Y is sharp, if the only pair (V,0) ∈ Y is with
V = 0.
Example: When Y = {y ∈ Rn : ∥y∥2 ≤ 1}, the cone

Y = {(V, τ) : V ∈ Sn+, V ⪯ τIn},

is the largest cone compatible with Y, and this cone is sharp.
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Fact: When Lin(Y) = RN , every cone compatible with Y is sharp
Fact: When Y is compatible with a shift of Y, Y is compatible with Ys = 1

2[Y − Y]
Indeed, Ys remains intact when shifting Y, so that we can assume that Y is compatible with Y. When

(V, τ) ∈ Y and y, y′ ∈ Y, we have 1
4
(y − y′)TV (y − y′) + 1

4
(y+ y′)TV (y+ y′)︸ ︷︷ ︸

≥0

= 1
2
[yTV y +

(y′)TV y′] ≤ τ ⇒ 1
4
(y − y′)V (y − y′) ≤ τ , y, y′ ∈ Y . □
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♠ The role of compatibility in our context stems from the following
Observation: Assume that we have at our disposal cones X and V compatible,
respectively, with Xs and with the unit ball B∗ = {v ∈ Rν : ∥u∥∗ ≤ 1} of the norm
∥ · ∥∗ conjugate to the norm ∥ · ∥ in which we measure the recovery error. Given
contrast matrix H = [h1, h2, ..., hN ] satisfying

Probξ∼Px{∥H
T ξ∥∞ ≤ 1} ≥ 1− ϵ ∀x ∈ X (!)

let

Opt(H) = min
λ,(U,µ),(V,τ)

4
∑
j

λj +4µ+ τ :
λ ∈ RN+, (U, µ) ∈ X, (V, τ) ∈ V[

V 1
2
B

1
2
BT ATHDiag{λ}HTA+ U

]
⪰ 0


Opt(H) is an efficiently computable upper bound on the quantity

R = max
z

{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
(#)

and thus. due to (!)– upper bound on the (ϵ, ∥ · ∥)-risk of the polyhedral estimate
x̂H(·) on X .
When X and V are sharp, the optimization problem specifying Opt(H) is solvable.
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Situation: X is compatible with Xs, V is compatible with B∗, H = [h1, ..., hN ],

Opt(H) = min
λ,(U,µ),(V,τ)

4
∑
j

λj +4µ+ τ :
λ ∈ RN+, (U, µ) ∈ X, (V, τ) ∈ V[

V 1
2
B

1
2
BT ATHDiag{λ}HTA+ U

]
⪰ 0

 (∗)

R = max
z

{
2∥Bz∥ : z ∈ Xs, ∥HTAz∥∞ ≤ 1

}
(#)

Claim: R ≤ Opt(H)

Immediate reason: When λ ≥ 0, the bunch of two-sided linear inequalities ∥HTAz∥∞ ≤ 1 in (#)
implies, by taking weighted sum of their squares, that zTATHDiag{λ}HTAz ≤

∑
j λj on the feasible

set of (#). The rest is readily given by the semidefinite constraint in (∗).
Formal proof: Let λ, (U, µ), (V, τ) be a feasible solution to (∗) and z be a feasible solution to (#).
Setting w = 2z, we have w ∈ 2Xs and ∥HTAw∥∞ ≤ 2. Let u ∈ B∗. By the semidefinite constraint in
(∗) we have

uTBw ≤ uTV u+ wTATHDiag(λ)HTAw+ wTUw = uTV u+
∑

j λj (h
T
j Aw)

2︸ ︷︷ ︸
≤4

+wTUw

≤ τ +4
∑

j λj +4µ.

Taking supremum over u ∈ B∗, we get 2∥Bz∥ ≤ τ + 4
∑

j λj + 4µ for every feasible solution z to
(#)⇒ R ≤ τ +4

∑
j λj +4µ. Since λ, (U, µ), (V, τ) is an arbitrary feasible solution to (∗), we get

R ≤ Opt(H). □
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H ∈ Rm×N : ∀x ∈ X : Probξ∼Px{∥HTξ∥∞ ≤ 1} ≥ 1− ϵ (!)
X is compatible with Xs, V is compatible with B∗

⇒ Opt(H) = min
λ,(U,µ),(V,τ)

4
∑

j
λj +4µ+ τ :

λ ∈ RN+, (U, µ) ∈ X, (V, τ) ∈ V[
V 1

2
B

1
2
BT ATHDiag{λ}HTA+ U

]
⪰ 0

 (∗)

⇒ x̂H(ω) = BArgmin
x∈X

∥HT [Ax− ω]∥∞
⇓

Riskϵ,∥·∥[x̂H|X ] ≤ Opt(H)

♣What is ahead:
In sub-Gaussian/Discrete/Poisson o.s., to enforce (!) we impose on the columns hj of H the restric-
tion π(hj) ≤ 1, with adjusted to N , ϵ, and the o.s. norm π, thus defining the set

H = {H = [h1, ..., hN ] ∈ Rm×N : π(hj) ≤ 1, j ≤ N}
of “legitimate” contrasts. What matters are not the contrasts H ∈ H per se, but the conic set

H∗ = {(G,µ) : ∃λ ≥ 0, h1, ..., hN : G =
∑

j λjhjh
T
j , π(hj) ≤ 1∀j,

∑
j λj ≤ µ}

of pairs (ATHDiag{λ}HTA,
∑

j λj) we can get from H ∈ H and λ ≥ 0 and thus can use in (∗).
♠ Questions to be addressed:
I. How to build a tight inner approximation of (usually difficult to handle) set H∗ by something appro-
priate for optimizing Opt(H) over H (which now becomes optimization over (G,µ)) ?
II. How to build cones X, V, the larger the better, compatible with Xs, B∗ ?
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Question: Given a norm π on Rm and positive integer N , how to build a tight inner approximation of

the conic set

H∗ = {(G,µ) : ∃λ ≥ 0, h1, ..., hN : G =
∑

j λjhjh
T
j , π(hj) ≤ 1 ∀j,

∑
j λj ≤ µ}

by something appropriate for subsequent optimization over this something?

Fact: The norm π(·) associated with sub-Gaussian/Discrete/Poisson case is of spe-
cial form:

π2(h) = θ([h]2), θ(u) = max
z∈Z

zTu, [[h1; ...;hm]]2 = [h21;h
2
2; ...;h

2
m], (!)

where Z is a convex compact subset of Rm+ with a nonempty interior.
Assumption: From now on we assume that π(·) is given by (!), and that N ≥ m.
Observation: When the columns hj of an m × N matrix H satisfy π(hj) ≤ 1, and
λ ≥ 0, µ satisfy

∑
j λj ≤ µ, we have

θ

(
Dg{

∑
j
λjhjh

T
j }
)
≤ µ (∗)

where Dg{G} ∈ Rm is the diagonal of a matrix G ∈ Sm.
Indeed, θ(·) clearly is convex and homogeneous of degree 1, whence under the premise of Observa-
tion one has

θ(Dg{
∑

i λjhjh
T
j }) = θ(

∑N
j=1λj[hj]

2) ≤
∑

j λjθ([hj]
2) ≤

[∑
jλj

] [
max
j

π2(hj)

]
≤ µ
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Observation: Given norm π(·) such that

π2(h) = θ([h]2), θ(u) = max
z∈Z⊂Rm

+

zTu (∗)

and setting

H∗ = {(G,µ) : ∃λ ≥ 0, h1, ..., hN : G =
∑
j

λjhjh
T
j , π(hj) ≤ 1 ∀j,

∑
j

λj ≤ µ}

we have
(G,µ) ∈ H∗ ⇒ G ⪰ 0 & θ(Dg{G}) ≤ µ

Fact: Observation can be “nearly inverted:” one has

H := {(G,µ) : G ⪰ 0,κθ(Dg{G}) ≤ µ} ⊂ H∗ ⊂ {(G,µ) : G ⪰ 0, θ(Dg{G}) ≤ µ},
where
— κ = 1 when π is proportional to ∥ · ∥2, and
— κ = 4 ln(4m2) for a general norm π of the form (∗).
Thus, H is a reasonably tight computationally tractable (provided Z is so) inner approximation of H∗.
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Illustration I:

π(z) = ∥z∥2 ⇒ π2(z) = ∥[z]2∥1 ⇒ θ(u) =
∑
i

max[ui,0] = max
z∈[0,1]m

zTu.

Here the claim reads
If G ∈ Sm+, then we can find a representation G =

∑
j λjhjh

T
j with π(hj) ≡ ∥hj∥2 ≤ 1 and λj ≥ 0

such that
∑

j λj ≤ θ(Dg(G)) ≡ Tr(G).
This indeed is true and λj, hj are given by eigenvalue decomposition of G.
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Illustration II:

π(z) = ∥z∥∞ ⇒ π2(z) = ∥[z]2∥∞ ⇒ θ(u) = max[max
i
ui,0] = max

z≥0,
∑

i
zi≤1

zTu.

Here the claim reads
If G ∈ Sm+, then we can find a representation G =

∑
j λjhjh

T
j with π(hj) ≡ ∥hj∥∞ ≤ 1 and λj ≥ 0

such that
∑

j λj ≤ κmaxiGii, where κ = 4 ln(4m2).
The construction is as follows. Assume w.l.o.g. that maxiGii = 1.
• Set G = FF T , so that (a): the rows in F are of Euclidean norm ≤ 1
• Let U be once for ever fixed orthogonal m×m matrix such that (b): |Uij| ≤

√
2/m (such a matrix

does exist)
• With Rademacher random χ, we have G = HχHT

χ , Hχ := FDiag{χ}U . From (a-b) it is easily
seen that the probability for Hχ to have magnitudes of all entries ≤ α =

√
κ/m is at least 1/2

Indeed, ij-th entry in Hχ is
∑

k
FikχkUkj, and the typical value of the square of this entry is

Eχ

{
[
∑

k
FikχkUkj]2

}
=
∑

k
F 2
ik U2

kj︸︷︷︸
≤2/m

≤ 2
m

∑
k
F 2
ik ≤

2
m
.

⇒We can rapidly find, in a randomized fashion, H̄ such that H̄H̄T = G and the magnitudes of entries
in H̄ do not exceed α
⇒ Denoting by hj the columns of H̄/α and setting λj = α2, j ≤ m, we have

∥hj∥∞ ≤ 1 & G =
∑

j λjhjh
T
j &

∑
j λj = mα2 = κ = κmaxiGii,

as required.
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Claim: Relations

H∗ = {(G,µ) : ∃λ ≥ 0, h1, ..., hN : G =
∑

j λjhjh
T
j , π(hj) ≤ 1 ∀j,

∑
j λj ≤ µ}

π2(u) = θ(u) := max
z∈Z⊂Rm

+

zTu

imply that

H := {(G,µ) : G ⪰ 0,κθ(Dg{G}) ≤ µ} ⊂ H∗ ⊂ {(G,µ) : G ⪰ 0, θ(Dg{G}) ≤ µ} (∗)
Proof. The right inclusion in (∗) has been proved. Let us prove the left inclusion. By homogeneity it
suffices to prove that when G ⪰ 0 satisfies θ(Dg{G}) ≤ 1, we can represent G as G =

∑
j λjhjh

T
j

with λ ≥ 0 satisfying ∑
j

λj ≤ κ.

Case of π(·) = α∥ · ∥2: Here Z = {[α2; ...;α2]}, θ(u) = α2
∑

j uj, and on the close inspection we
should prove that when G ⪰ 0 and Tr(G) ≤ 1, we have G =

∑
j λjhjh

T
j , with λ ≥ 0,

∑
j λj = 1,

and ∥hj∥2 ≤ 1 for all j – the fact readily given by eigenvalue decomposition of G.
General case: Since G ⪰ 0, we have G = Q2 with some Q ∈ Sm. Setting σi = Gii, we have

1 ≥ θ(σ) &
∑
j

Q2
ij = σi
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G,Q ∈ Sm & G = Q2 &
∑
j

Q2
ij = σi with θ(σ) ≤ 1

• Let U be m×m orthonormal matrix with magnitudes of entries not exceeding γ =
√

2/m (matrices
of this type do exist). For a random Rademacher vector χ, setting Qχ = QDiag{χ}U, we get

QχQ
T
χ ≡ G.

On the other hand, [Qχ]ij =
∑m

ℓ=1QiℓχℓUℓj, whence

Eχ

{
[Qχ]

2
ij

}
=

m∑
ℓ=1

Q2
iℓU

2
ℓj ≤ (2/m)

m∑
ℓ=1

Q2
iℓ = 2σi/m.

It is easily seen that when γ ≥ 1, we have for every i, j:

Prob
{
[Qχ]

2
ij > 2γσi/m

}
≤ 2exp{−γ/2}.

⇒ Setting γ = 2 ln(4m2) = κ/2, the probability for χ to ensure [Qχ]2ij ≤ 2γσi/m for all i, j is at
least 1/2
⇒ ∃Qχ̄ = [q1, ..., qm]: G = Qχ̄QT

χ̄ =
∑

j qjq
T
j and [qj]2 ≤ 2γ

m
σ⇒ π2(qj) ≤ 2γ

m
θ(σ) ≤ 2γ

m

⇒ G =
∑

j λjhjh
T
j with hj =

√
m
2γ
qj and λj = 2γ

m

⇒ G =
∑

j λjhjh
T
j with π(hj) ≤ 1 and λ ≥ 0,

∑
j λj = 2γ = κ. □
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Compatibility of closed convex cone Y = {(U, τ)} ⊂ SN+ × R+ with convex compact set Y ⊂ RN

means that

• yTUy ≤ τ ∀(y ∈ Y, (U, τ) ∈ Y)

• ∃(Ū , τ̄) ∈ Y : Ū ≻ 0

• (U, τ) ∈ Y, τ ′ ≥ τ ⇒ (U, τ ′) ∈ Y.

How to build cone U, the wider the better, compatible with a given convex compact set Y ?

♠We know two sources of cones compatible with Y:
— cones coming from semidefinite relaxation on ellitopes/spectratopes
— cones coming from absolute norms.
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Compatibility via ellitopes/spectratopes

Fact: Let Y be a convex compact subset of an ellitope:

Y ⊂ Z = {z ∈ RN : ∃(t ∈ T , x) : z = Px, xTSkx ≤ tk, k ≤ K}
[Sk ⪰ 0,

∑
k Sk ≻ 0]

Then the cone

Y = {(U, τ) ∈ SN+ × R+ : ∃λ ≥ 0 : PTUP ⪯
∑
k

λkSk, ϕT (λ) := max
t∈T

tTλ ≤ τ}

is compatible with Y.
When Y is a subset of spectratope:

Y ⊂ Z = {z ∈ RN : ∃(t ∈ T , x) : z = Px, S2
k [x] ⪯ tkIdk, k ≤ K},

[Sk[x] =
∑n
j=1 xjS

kj, Skj ∈ Sdk]
the cone

Y = {(U, τ) ∈ SN+ × R+ : ∃{Λk ⪰ 0} : PTUP ⪯
∑
k S∗k[Λk], ϕT (λ[Λ]) ≤ τ}[[

S∗k[Λk]
]
ij

= Tr(SkiΛkS
kj), [λ[Λ]]k = Tr(Λk)

]
is compatible with Y.
This is readily given by what we know on semidefinite relaxation on ellitopes/spectratopes.
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Compatibility via absolute norms

♠ Preliminaries: absolute norms. A norm ∥ · ∥ on RN is called absolute, if it
depends solely on the magnitudes of entries of a vector:

∥z∥ = ∥abs[z]∥, abs[[z1; ...; zN ]] = [|z1|; ..., |zN |].

Examples: The ℓs norms ∥ · ∥s, are absolute; similarly, the block ℓs-norm

∥[z1; ...; zK]∥ = ∥[∥z1∥s1; ∥z
2∥s2; ...; ∥z

K∥sK]∥s [s, s1, ..., sK ∈ [1,∞]]

is absolute.
Facts:
• An absolute norm ∥·∥ is monotone in the magnitudes of entries: if abs[z] ≤ abs[z′],
then ∥z∥ ≤ ∥z′∥.
• The norm ∥y∥∗ = max

x:∥x∥≤1
yTx conjugate to an absolute norm ∥ · ∥ is absolute as

well.
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Observation: An absolute norm p(·) on RN can be “lifted” to an absolute norm
p+(·) on SN by setting

p+(X) = p

(
[p(Col1[X]); p(Col2[X]); ...; p(ColN [X])]

)
, X ∈ SN .

p+ indeed is an absolute norm, and

p+(xxT ) = p2(x) ∀x ∈ RN .

Example: When p(·) is ℓπ-norm on RN , p+(·) is ℓπ norm on SN .
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♣We say that an absolute norm r(·) fits an absolute norm p(·) on RN ,

p(x) ≤ 1⇒ r([x]2) ≤ 1.

Example: When p(·) = ∥ · ∥s, s ∈ [1,∞], the norm

r(·) =

{
∥ · ∥1, 1 ≤ s ≤ 2
∥ · ∥s/2, s ≥ 2

fits p(·).

Fact: Let p be an absolute norm on RN , let absolute norm r(·) fit p(·), and let
Y ⊂ Bp := {x ∈ RN : p(x) ≤ 1}. Then the set

Y =

{
(U, τ) ∈ SN+ × R+ : ∃(W ∈ Sn, w ∈ RN+) :

U ⪯W +Diag{w}
∥W∥p+∗+ r∗(w) ≤ τ

}

where p+∗ is the norm on SN conjugate to p+, and r∗(·) is the norm on RN conju-
gate to r(·), is compatible with Y.
Besides this, p+∗(·) ≤ q+(·), where q(·) is the norm conjugate to p(·).

5.137



Fact: Let p be an absolute norm on RN , let absolute norm r(·) fit p(·), and let

Y ⊂ Bp := {x ∈ RN : p(x) ≤ 1}.
Then the set

Y =

{
(U, τ) ∈ SN+ × R+ : ∃(W ∈ Sn, w ∈ RN+) :

U ⪯W +Diag{w}
∥W∥p+∗ + r∗(w) ≤ τ

}
where p+∗ is the norm on SN conjugate to p+, and r∗(·) is the norm on RN conjugate to r(·), is
compatible with Y. Besides this, p+∗(·) ≤ q+(·), where q(·) is the norm conjugate to p(·).
Indeed, let (U, τ) ∈ Y, so that U ⪯W +Diag{w} with w ≥ 0 and ∥W∥p+∗ + r∗(w) ≤ τ . For y ∈ Y
we have p(y) ≤ 1 due to Y ⊂ Bp, whence

yTUy = Tr(U [yyT ]) ≤ Tr(W [yyT ]) +Tr(Diag{w}yyT) ≤ p+∗(W )p+(yyT) + wT [y]2

≤ p+∗(W ) p2(y)︸ ︷︷ ︸
≤1

+r∗(w) r([y]
2)︸ ︷︷ ︸

≤1

≤ p+∗(W ) + r∗(w) ≤ τ

⇒maxy∈Y yTUy ≤ τ.
Besides this, when U, V ∈ Sn, denoting Uj and Vj the columns of U and V , we have

Tr(UV ) =
∑

j U
T
j Vj ≤

∑
j p(Uj)q(Vj) ≤ [p(U1); ...; p(UN)]T [q(V1); ...; q(VN)]

≤ p([p(U1); ...; p(UN)])q([q(V1); ...; q(VN)]) = p+(U)q+(V )

⇒ ∥V ∥p+∗ = max
U :p+(U)≤1

Tr(UV ) ≤ q+(V ). □
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Example: Let p(·) = ∥ · ∥s with s ∈ [1,∞]. In this case
— we can take r(x) = ∥x∥s̄, s̄ = max[s/2,1], resulting in

r∗(w) = ∥w∥s̄∗, s̄∗ =
s̄

s̄−1 =

{
+∞, 1 ≤ s ≤ 2
s

s−2, s > 2

— p+∗(·) is ∥ · ∥s∗ on SN , s∗ = s
s−1

and we conclude that the cone

Ys =
{
(U, τ) ∈ SN+ × R+ : ∃(w ≥ 0,W ) : U ⪯W +Diag{w}, ∥W∥s∗ + ∥w∥s̄∗ ≤ τ

}
is compatible with any subset of the unit ℓs ball.
Note: It is easily seen that when s ∈ [2,∞], the expression for Y provably simplifies to

Ys =
{
(U, τ) ∈ SN+ × R+ : ∃(w ≥ 0) : U ⪯ Diag{w}, ∥w∥ s

s−2
≤ τ

}
In the case in question Ys is an ellitope, and Ys happens to be exactly the cone compatible with this
ellitope, as given by our “ellitopic” construction.
Note: In our context, the larger is a cone compatible with the set Y in question (for us, this is either
Xs, or B∗), the better. The “ideal” choice would be

Y = Y∗[Y] = {(U, τ) : U ⪰ 0, τ ≥ max
y∈Y

yTUy}.

This ideal cone is typically intractable computationally, this is why we have developed techniques for
building tractable approximations of this cone from inside.
However: When Y = {y ∈ RN : ∥y∥2 ≤ 1}, the cone

Y2 = {(U, τ) : 0 ⪯ U ⪯ τIN}
is exactly the same as the “ideal” cone Y∗[Y].
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Ellitopic case, Signal-Independent White Gaussian Noise

♠ Assume that
• the o.s. is Gaussian: ω = Ax+ σξ, ξ ∼ N (0, Im)
• the signal set X and the unit ball B∗ of the norm conjugate to the one used to measure the recovery
error are ellitopes:

X = {x ∈ Rn : ∃t ∈ T : xTSkx ≤ tk, k ≤ K}
B∗ = {u ∈ Rm : ∃(r ∈ R, z) : u =Mz, zTRℓz ≤ rℓ, ℓ ≤ L}

In this case, our compatibility-based recipe for building presumably good polyhedral estimate com-
bines with the machinery for building cones compatible with ellitopes to result in the polyhedral esti-
mate x̂H yielded by the optimal solution to the convex optimization problem

Opt = min
Θ,U,λ,µ

{
2
[
ϕT (λ) + ϕR(µ) + κ2σ2Tr(Θ)

]
:

Θ ⪰ 0, U ⪰ 0, λ ≥ 0, µ ≥ 0,[
U 1

2
B

1
2
BT ATΘA+

∑
k λkSk

]
⪰ 0,

MTUM ⪯
∑

ℓ µℓRℓ

}
κ =

√
2 ln(2m/ϵ), ϕZ(ν) = max

z∈Z
νTz.

The m×m contrast matrix H is given by the Θ-component Θ∗ of an optimal solution to the problem:
the columns hj of H are the eigenvectors of Θ∗ normalized to satisfy ∥hj∥2 = (κσ)−1, and

Riskϵ,∥·∥[x̂H|X ] ≤ Opt.
Proposition: Assume that ϵ ≤ 1/8. Then the resulting estimate is near-optimal:

Opt ≤ O(1)κ
√

ln(2K) ln(2L)RiskOpt1

8
≤ O(1)κ

√
ln(2K) ln(2L)RiskOptϵ,

where RiskOptϵ is the infimum, over all possible estimates, of (ϵ, ∥ · ∥)-risks of the estimates on X .
Note: Similar result holds true in the case when X and B∗ are spectratopes.
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How It Works

♠ Setup:
• Unknown signal x is restriction of function h(t) of continuous time on the n-element equidistant grid

on [0,4], with the magnitude of h known to be ≤ 1
•We want to recover the result of “numerical double-integration” of h – the vector Bx with

Bij =

{
16
n2 [i− j +1] , i ≥ j
0 , i > j

•We observe in Gaussian noise N (0, σ2Im) the restriction of x onto m randomly selected points of
the grid; this selection specifies A.
• The recovery error is measured in ∥ · ∥2.
♠We are in the case when the signal set X is the unit box:

X = {x ∈ Rn : x2i ≤ 1, 1 ≤ i ≤ n}
Note that our X and B∗ are ellitopes, so that we can build efficiently

— the provably near-optimal linear estimate Lin,
— the polyhedral estimate PolyI,
— the provably near-optimal polyhedral estimate PolyII,

with PolyI, PolyII yielded by the first, resp. the second of our techniques for designing polyhedral
estimates.
♠ In the experiments to be reported, n = 64, m = 32, and ϵ = 0.1.
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How It Works (continued)
Denoising and Deblurring Images

• Grayscale m × n image is m × n array with entries in the range [0,255]. Subtracting from the
entries R = 127.5, we represent the image by matrix x ∈ Rm×n with entries in the range [−R,R].
• Let us look how Polyhedral Estimate works when recovering images x ∈ Rm×n from their blurred
noisy observation

ω = κ ⋆ x+ ξ

with p× q kernel κ and White Gaussian observation noise: entries of ξ are ∼ N (0, σ2) and indepen-
dent of each other.
• Same as with linear estimates, we pass to frequency domain, where the observation becomes

ζ = θ • χ+ η[
χ: DFT of x+; θ: DFT of κ+; η: complex-valued white Gaussian noise; • : entrywise product

x+, κ+: [m+ p− 1]× [n+ q − 1] arrays obtained from x, κ by adding zero rows and columns

]
and a priori information on χ reduces to a small number of (empirically identified) simple constraints
of the form

0 ≤ |χrs| ≤ γrs ∀r, s&
∑
r,s

α(k)
rs |χrs| ≤ α(k)mn,

√∑
r,s

β(k)
rs |χrs|2 ≤ β(k)√mn, k ≤ K

By both theoretical and computational reasons, we use the simplest possible – proportional to the unit
– contrast matrix, resulting in extremely simple (nothing more than Bisection!) recovery routine

χ̂ = argmin
χ

max
r,s
|ζrs − θrsχrs| :

∑
r,s

α(k)
rs |χrs| ≤ α(k)mn,

√∑
r,s

β(k)
rs |χrs|2 ≤ β(k)√mn, k ≤ K, |χrs| ≤ γrs ∀r, s
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ζ = θ • χ+ η

♠ In our implementation, constraints∑
r,s

α(k)
rs |χrs| ≤ α(k)mn,

√∑
r,s

β(k)
rs |χrs|2 ≤ β(k)√mn, k ≤ K, 0 ≤ |χrs| ≤ γrs ∀r, s (∗)

express upper bounds on the ℓ1, ℓ2 and ℓ∞ norms of the Fourier transform of an image x and its
first order finite difference derivatives. These bounds come from analysing a small library of “real life”
images.
Note: When the blur operator is ill-conditioned (some entries in θ are nearly zeros, which is the case
in all experiments to follow), the recovery is sensitive (but not too sensitive) to the bounds in (∗). This
is what happens when the right hand sides in (∗), as given by the library, are multiplied by a common
factor γ:
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True image γ = 0.5 γ = 1 γ = 10 γ = 100 γ = 1000
Conditioning of blur: Card{i : |θi| ≤ 10−4maxi |θi| = 10−4} = 4364 (1.1% of the total of mn = 367500 entries in θ)

♠ A real life option (not used in the experiments to follow) is to tune γ manually.
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♠ Alternative to the recovery routine

χ̂ = argmin
χ

{
max
r,s
|ζrs − θrsχrs| :

∑
r,s

α(k)
rs |χrs| ≤ α(k)mn,

√∑
r,s

β(k)
rs |χrs|2 ≤ β(k)√mn, k ≤ K, |χrs| ≤ γrs ∀r, s

}
(A)

is what in Compressed Sensing was called Regular recovery:

χ̂ = argmin
χ

{
∥χ∥1 :=

∑
r,s
|χrs| : |ζrs − θrsχrs| ≤ ρ

}
=

[
χ̂rs =

{
0, |ζrs| ≤ ρ
[1−ρ/|ζrs|]ζrs

θrs
, |ζrs| > ρ

]
r,s

• ρ: ∥ · ∥∞-norm of the DFT η of observation noise is ≤ ρ with probability close to 1.

(B)

Note: ∥ · ∥1-minimization is irrelevant here: the constraint imposes individual lower bounds on magnitudes of χrs, making
irrelevant which absolute norm of χ is minimized under this constraint.
♠ Note: (A) does not require knowledge of noise’s intensity σ, but does require knowledge of “empirical constants” in
right hand sides of the constraints. In contrast, (B) does not require knowledge of “empirical constants,” but does require
knowledge of σ to specify ρ.
♠ In our experiments, with “properly selected” empirical constants and σ known, both recoveries were of the same quality.
Note: Underestimating the actual noise intensity by factor like 2-3 “kills” (B):
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Recovery (A), Illustrations

True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

5.159



True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

True image Observation, σ =0.128 Recovery
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True image Observation, σ = 6.400
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True image Observation, σ = 0.128
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True image Observation, σ = 6.400
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True image Observation, σ = 0.128
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

5.183



.

ESTIMATING SIGNALS IN MONOTONE
GENERALIZED LINEAR MODELS

• Generalized Linear Model
• Developing tools
• Variational inequalities with monotone operators

• Sample Average Approximation estimate
• Stochastic Approximation estimate
• Illustrations
• Variation: Multi-State Spatio-Temporal Processes



What the story is about

♣ Ultimate Goal: To recover unknown signal x ∈ Rn from observations

ωK = (ω1, ..., ωK)

given by
Generalized Linear Model: ωk = (yk, ηk), where
— ωk, k = 1, ...,K, are i.i.d.
— the common distribution P of regressors ηk is independent of signal x
— the joint distribution of label yk ∈ Rm and regressor ηk ∈ Rn×m depends solely

on signal x, and

E|ηk{yk} = ψ(ηTk x)

• ψ(·) : Rm → Rm: known link function • E|ηk{·}: conditional, given ηk, expectation over yk

• We assume that a priori information on signal x reduces to x ∈ X , for a given
convex compact set X ⊂ Rn.

6.1



{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x

Examples of GLM’s:
Linear model: ψ(s) ≡ s. Assuming additive signal- and regressor-independent
noise, the problem becomes to recover signal x from observations (yk, ηk) , k ≤ K,
where regressors ηk are i.i.d. with independent of x distribution,

yk = ηTk x+ ξk,

and ξk, k ≤ K, are independent of ηk i.i.d. zero mean observation noises.
♣ Linear model admits “special treatment” which was our previous subject.
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logit (left) and probit (right) link functions

Logit model (Logistic regression): m = 1, ψ(s) = exp{s}/(1 + exp{s}), ηk ∈
Rn, 1 ≤ k ≤ K, are i.i.d.. Given ηk, yk takes value 1 with probability ψ(ηTk x) and
value 0 with complementary probability.
Probit model: Exactly as Logistic Regression, but with the cdf of the standard Gaus-

sian distribution in the role of link: ψ(s) = Φ(s) := 1√
2π

s∫
−∞

exp{−t2/2}dt.

♣ Both Logit and Probit models are widely used in Regression Analysis with binary
dependent variables.
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Signal Recovery in GLM

The standard signal recovery in GLM model is given by Maximum Likelihood (ML).
♠ Assuming the conditional, signal x and regressor η given, distribution of the label
y to have density p(y, ηTx) w.r.t. some reference measure, the conditional by the
sequence of regressors log-likelihood of the sequence of labels as a function of can-
didate signal z is

∑K
k=1 ln(p(yk, η

T
k z)). The ML estimate x̂ of the signal underlying

observations is obtained by maximizing log-likelihood in z ∈ X .
• In Linear model with Gaussian noise the ML estimate is given by Least Squares:

x̂ ∈ Argmin
z∈X

∑K

k=1
∥yk − ηTk z∥

2
2

• In Logit model the ML estimate is

x̂ ∈ Argmin
z∈X

∑K

k=1

[
ln
(
1+ exp{ηTk z}

)
− ykηTk z

]
• In Probit model the ML estimate is

x̂ ∈ Argmin
z∈X

∑K

k=1

[
− ln

(
1−Φ(ηTk z)

)
− yk ln

(
Φ(ηTk z)

1−Φ(ηTk z)

)]
In all these cases likelihood maximization (which we convert to minimizing minus
log-likelihood) happens to be convex, and thus efficiently solvable, problem.
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However: Minimizing minus log-likelihood in GLM can be a nonconvex problem. For
example, this happens when the link function ψ(s) = exp{s}/(1+exp{s}) in Logit
model is replaced with ψ(s) = 1

2 + 1
π atan(s):
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atan (solid) and logit (dotted) links ψ
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ln(ψ) (left) and ln(1− ψ) (right) for atan (solid) and logit (dotted) links
[with binary labels, ln(ψ), ln(1− ψ) must be concave to make log-likelihood concave]
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{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x

Common wisdom is to recover x by minimizing minus log-likelihood by Newton
method and to hope for the better.
With non-concave log-likelihood, this approach can fail...
Question: Can we do better?
Answer: Yes! Under monotonicity assumption on the link function, there exists an
alternative to Maximum Likelihood computationally efficient signal recovery with prov-
ably reasonably good performance.
♠ Monotonicity assumption, in nutshell, requires from ψ(·) : Rm → Rm to be
monotone:

⟨ψ(s)− ψ(s′), s− s′⟩ ≥ 0 ∀s, s′ ∈ Rm

Motivation: Recovering signal x from noisy observations hardly can be easier than
recovering w = ηTx from noiseless observation

y = ψ(w). (∗)

Monotonicity of ψ is, basically, the weakest general-type structural assumption which
ensures computational tractability of the square system of nonlinear equations (∗).
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Executive Summary on Variational Inequalities with Monotone Operators

Definition: Let X ⊂ RN be a closed convex set and G : X → RN be a vector field.
G is called monotone on X, if

⟨G(y)−G(y′), y − y′⟩ ≥ 0 ∀y, y′ ∈ X. (∗)
If (∗) can be strengthened to

⟨G(y)−G(y′), y − y′⟩ ≥ α∥y − y′∥22 ∀y, y
′ ∈ X, [α > 0]

G is called strongly monotone, with modulus α, on X.
Examples:
A. Univariate (N = 1) monotone vector fields on closed convex subset X of R are exactly non-

decreasing real-valued functions on X.

B. If f : X → R is convex differentiable on X, the gradient field G(x) = ∇f(x) of f is

monotone on X. The same holds true for (any) subgradient field of convex function f : X → R,

provided that subdifferential of f at every point x ∈ X is nonempty.

C. Let X = U × V , and f(u, v) be differentiable on X convex in u ∈ U and concave in v ∈ V
function. Then the vector field

G(u, v) = [∇uf(u, v);−∇vf(u, v)]
is monotone on X. The same holds true when smoothness of f is weakened to Lipschitz continuity,

and ∇u, ∇v are replaced with respective partial sub- and supergradients.
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Fact: Let G : X → RN be continuously differentiable vector field on a closed convex
subset X, intX ̸= ∅, of RN . G is monotone on X iff the symmeterized Jacobian

Js[G](x) := 1
2

[
∂G(x)
∂x +

[
∂G(x)
∂x

]T ]
is positive semidefinite for all x ∈ X. G is strongly monotone with modulus α > 0 on
X iff Js[G](x) ⪰ αIN , x ∈ X.
Variational Inequality VI(G,X) associated with closed convex set X and a mono-
tone on X vector field G reads

find z∗ ∈ X : ⟨G(z), z − z∗⟩ ≥ 0 ∀z ∈ X (∗)
Vectors z∗ ∈ X satisfying (∗) are called weak solutions to VI(G,X). A strong

solution to VI(G,X) is a point z∗ ∈ X such that

⟨G(z∗), z − z∗⟩ ≥ 0 ∀z ∈ X.
• A strong solution is a weak one, since by monotonicity ⟨G(z), z−z∗⟩ ≥ ⟨G(z∗), z−z∗⟩, z, z∗ ∈ X.

The inverse is true provided that G is continuous on X.
Note: If z∗ ∈ X is a zero of G(·): G(z∗) = 0, then z∗ clearly is a strong solution
to VI(G,X). Strong solution is a “substitution” of zero of G - it can exist when G
does not vanish at any point of X, And a weak solution is a “substitution” of a strong
one: for a monotone G, weak solution does exist whenever X is convex compact set.
When G is monotone and continuous on X, weak and strong solutions are the same.
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X ⊂ Rm: closed and convex G : X → Rm: monotone on X
Weak solution to VI(G,X): z∗ ∈ X such that ⟨G(z), z − z∗⟩ ≥ 0 ∀z ∈ X
Strong solution to VI(G,X): z∗ ∈ X such that ⟨G(z∗), z − z∗⟩ ≥ 0 ∀z ∈ X

Facts:
•Weak solutions to VI(G,X) form a closed convex subset ofX; this set is nonempty,

provided X is bounded.
•When G is a subgradient field of continuous convex function f : X → R, weak

solutions to VI(G,X) are exactly the minimizers of f on X. More generally, when
G is the monotone vector field associated with continuous convex-concave
f(u, v) : X = U ×V → R, the weak solutions to VI(G,X) are exactly the saddle
points of f on U × V .
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Fact: Approximating weak solutions to Monotone Variational Inequalities is compu-
tationally tractable task – all basic algorithms of convex minimization admit “VI ver-
sions.”
Let us define inaccuracy Res(x|G,X) of a candidate solution z ∈ X to the VI

find z∗ ∈ X : ⟨G(z), z − z∗⟩ ≥ 0 ∀z ∈ X
as

Res(z|G,X) = sup
y∈X
⟨G(y), z − y⟩,

so that Res(z|G,X) ≥ 0 and Res(z|G,X) = 0 iff z is a weak solution to VI(G,X).
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Fact: Approximating weak solutions to Monotone Variational Inequalities is computationally tractable
task – all basic algorithms of convex minimization admit “VI versions”

For example, assuming that

— X is closed convex set contained in a given ∥ · ∥2-ball of radius R and containing

ball of a given radius r > 0,

— G is monotone on X and ∥G(x)∥2 ≤ V , x ∈ X, for some known V ,

for every ϵ ∈ (0, V R), a solution z ∈ X with Res(z|G,X ≤ ϵ) can be found

• by Ellipsoid method – in O(1)N2 ln
(
NV R
ϵ
· R
r
+1

)
iterations, with the computational effort per

iteration dominated by the necessity

(a) to check whether a point belongs to X, and if not - to separate the point from X by a linear

form,

(b) to compute the value of G at a point of X, and

(c) to perform, on the top of (a), (b), O(N2) additional arithmetic operations

• by Subgradient Descent – in O(1)V
2R2

ϵ2
iterations, with computational effort per iteration dominated

by the necessity to compute metric projection of a point onto X and the value of G at a point;

• by Mirror Prox – in O(1)LR
2

ϵ
iterations, provided G is Lipschits continuous, with constant L, on X,

with the same iteration complexity as for Subgradient Descent.
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Strongly Monotone Variational Inequalities

find z∗ ∈ X : ⟨G(z), z − z∗⟩ ≥ 0 ∀z ∈ X (VI(G,X))

Fact: Let G be strongly monotone, with modulus α > 0, on convex compact set X.
Then the weak solution z∗ to VI(G,X) is unique, and for every z ∈ X it holds

(a) α∥z − z∗∥22 ≤ ⟨G(z), z − z∗⟩
(b) α∥z − z∗∥22 ≤ 4Res(z|G,X)

Indeed, setting zt = z∗+ t(z − z∗), for 0 < t < 1 we have

⟨G(z), z − zt⟩ ≥ α∥z − zt∥22 + ⟨G(zt), z − zt⟩
by strong monotonicity, and ⟨G(zt), z − zt⟩ = 1−t

t
⟨G(zt), zt − z∗⟩ ≥ 0.

⇒ ⟨G(z), z − zt⟩ ≥ α∥z − zt∥22 ∀t ∈ (0,1)

⇒ [t→ +0] (a).

Next, by (a) applied to z1

2
in the role of z, ⟨G(z1

2
), z1

2
− z∗⟩ ≥ α

4
∥z − z∗∥22

⇒ Res(z|G,X) ≥ ⟨G(z1

2
), z − z1

2
⟩ = ⟨G(z1

2
), z1

2
− z∗⟩ ≥ α

4
∥z − z∗∥22

⇒ (b).
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{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x

Main Observation: Under (slightly strengthened, see below) Monotonicity Assump-
tion

”ψ is continuous and monotone on Rm”
the signal x underlying observations in GLM is the unique weak solution to a Varia-
tional Inequality VI(G,X ) with strongly monotone on X vector field G.
Indeed, given GLM, let P be the distribution of regressors ηk, and let

F (z) = Eη∼P{ηψ(ηTz)}
Observe that for fixed η ∈ Rn×m, z 7→ Fη(z) := ηψ(ηTz) is a vector field on Rn
and this field is monotone and continuous along with ψ:

z, z′ ∈ RN ⇒ ⟨ηψ(ηTz)−ηψ(ηTz′), z−z′⟩ = ⟨ψ(ηTz)−ψ(ηTz′), ηTz−ηTz′⟩ ≥ 0.

Under mild regularity assumptions, monotonicity and continuity are preserved when
taking expectation w.r.t. η. Assuming from now on that
— the distribution P of η has finite moments of all orders, and
— ψ(·) : Rm → Rm is monotone, continuous, and with polynomial growth at infinity,
the vector field F is well defined, continuous, and monotone.
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{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x
F (z) = Eη∼P{ηψ(ηTz)}

Let us make
Assumption A: The monotone vector field F is strongly monotone, with modulus
α > 0, on X .
It is immediately seen that a simple sufficient condition for Assumption A is strong monotonicity of ψ
on bounded subsets of Rm plus positive definiteness of the second order moment matrix Eη∼P{ηηT}
plus compactness of X .
Observe that
A: Underlying observations signal x is zero of continuous and monotone vector field

G(z) = F (z)− F (x) : X → Rn;
under Assumption A, G is strongly monotone, with modulus α > 0, on X .
B. For every fixed z ∈ X and every k, observation (yk, ηk) induces unbiased esti-
mate

Gyk,ηk(z) = ηkψ(η
T
k z)− ηkyk.

of G(z).
Indeed,

Ey,η

{
ηψ(ηTz)− ηy

}
= Eη∼P

{
ηψ(ηTz)− ηE|η {y}

}
= Eη∼P

{
ηψ(ηTz)− ηψ(ηTx)

}
= F (z)− F (x)
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{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x
F (z) = Eη∼P{ηψ(ηTz)} : strongly monotone with modulus α > 0 on X , G(z) = F (z)− F (x)

A : x is the unique weak solution to VI(G,X )
B : Observable vector fields Gyk,ηk(z) = ηkψ(ηTk z)− ηkyk

are unbiased estimates of vector field G(z)

Conclusion: We can recover x via solving VI(G,X ) by an algorithm capable to work
with unbiased stochastic estimates of G(·) instead of the actual values of G.
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{(yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x
F (z) = Eη∼P{ηψ(ηTz)} : strongly monotone with modulus α > 0 on X , G(z) = F (z)− F (x)

A : x is the unique weak solution to VI(G,X )
B : Observable vector fields Gyk,ηk(z) = ηkψ(ηTk z)− ηkyk

are unbiased estimates of vector field G(z)

♠ There are two basic approaches to solving ”stochastic” monotone VI:
Sample Average Approximation: Approximate the ”vector field of interest” G(x) by
its empirical approximation

GωK(z) =
1

K

∑K

k=1

[
ηkψ(η

T
k z)− ηkyk

]
which is monotone along with ψ, find a weak solution x̂(ωK) to VI(GωK ,X ) and
take x̂ as the SAA estimate of x.
Stochastic Approximation: Run stochastic analogy of the simplest First Order al-
gorithm for solving deterministic monotone VI’s – the Stochastic Approximation

zk = ProjX
[
zk−1 − γkGyk,ηk(zk−1)

]
, k = 1,2, ...,K

• ProjX [z] = argminy∈X ∥y − z∥2: metric projection onto X
• z0 ∈ X (arbitrary) deterministic starting point
• γk > 0: deterministic stepsizes
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Sample Average Approximation Estimate

ωK = {ωk = (yk, ηk)}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? ⇒ ??x
F (z) = Eη∼P{ηψ(ηTz)} : strongly monotone with modulus α > 0 on X , G(z) = F (z)− F (x)

⇒ GωK(z) = 1
K

∑K
k=1

[
ηkψ(ηTk z)− ηkyk

]
: EωK∼PK

x
{GωK(z)} = G(z)

⇒ x̂SAA(ω
K) ∈ X : ⟨GωK(z), z − x̂SAA(ω

K)⟩ ≥ 0 ∀z ∈ X

♠ There exists rather sophisticated theoretical performance analysis of SAA recov-
ery, resulting, under mild assumptions, in tight non-asymptotic upper bounds on the
recovery error E{∥x̂(ωK)− x∥22}.
♠ Assume that the link function ψ (which we have assumed to be a continuous mono-
tone vector field on Rm) is the gradient field of a (automatically convex) continuously
differentiable function Ψ:

ψ(s) = ∇Ψ(s).
Note: The assumption definitely holds true when ψ is univariate, as in Logit and Pro-
bit models.
Observation: When ψ = ∇Ψ, the SAA GωK(z) is the gradient field of a continu-
ously differentiable convex function as well:

GωK(z) = ∇z
[
GωK(z) := 1

K

∑K
k=1

[
Ψ(ηTk z)− z

Tηkyk
]]

⇒ The SAA estimate x̂SAA(ωK) minimizes GωK(z) over X .
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Examples:
Linear model ψ(s) ≡ s = ∇ss

T s
2 . In this case, the SAA estimate reduces to Least

Squares:

x̂SAA(ω
K) ∈ Argmin

z∈X

1

2K

∑K

k=1
∥yk − ηTk z∥

2
2

Note: For linear model with regressor- and signal-independent Gaussian noise:

yk = ηTk x+ ξk, 1 ≤ k ≤ K
[noises ξk ∼ N (0, σ2I) are independent of regressors and of each other]

the SAA estimate is the same as the ML one.
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Logit model ψ(s) = exp{s}/(1 + exp{s}). The SAA estimate is

x̂SAA(ω
K) ∈ Argmin

z∈X

1

K

∑K

k=1

[
ln(1 + exp{ηTk z})− ykηTk z

]
and happens to be the same as the ML estimate.
Probit model ψ(s) = Φ(s) = Probξ∼N (0,1){ξ ≤ s}. Here

x̂SAA(ω
K) ∈ Argmin

z∈X
1
K

∑K
k=1

[ Ayk(η
T
k z)︷ ︸︸ ︷

(ηTk z)Φ(ηTk z) + (2π)−1/2 exp{−(ηTk z)2/2} − ykηTk z
]

x̂ML(ω
K) ∈ Argmin

z∈X
1
K

∑K
k=1

[
yk ln

(
(1−Φ(ηTk z))/Φ(ηTk z)

)
− ln(1−Φ(ηTk z))︸ ︷︷ ︸

Byk(η
T
k z)

]
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Note: In the above GLM’s, finding ML estimates happened to be efficiently solvable
convex problems. It is not so in general.
Example: yk = atan(ηx) + 3ξk with i.i.d. regressors ηk ∼ N (0,1) and independent of regressors
i.i.d. noises ξk ∼ N (0,1). With X = [−20,20], K = 20, this is what can happen:

-20 -15 -10 -5 0 5 10 15 20
-5

0

5

10

15

20

25

30

• Magenta curve: graph of the objective ΨSAA to be minimized on X to get the SAA estimate

• Blue curve: graph of the objective ΨML to be minimized on X to get the ML estimate

• Abscissae of vertical segments:

— green: true signal ≈ 1.4047

— magenta: x̂SAA≈ 0.8910 – minimizer of ΨSAA

— blue: local minimizer ≈ 0.4300 of ΨML; the global minimizer of ΨML on X is x̂ML = −20

Note: With one-dimensional signal, the ML estimate can be computed by ”brute
force.” With multidimensional signal, potential nonconvexity of minus log-likelihood
can result in severe computational difficulties. For the SAA estimate, computational
tractability is ”built in.”
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Stochastic Approximation Estimate

zk = ProjX [zk−1 − γkGyk,ηk(zk−1)] , k = 1,2, ...,K
• ProjX [z] = argminy∈X ∥y − z∥2: metric projection onto X
• z0 ∈ X (arbitrary) deterministic starting point
• γk > 0: deterministic stepsizes

♠ The basic performance analysis for the SA estimate is as follows. Let us augment
Assumption A with
Assumption B: For some M < ∞ and for every signal x ∈ X , denoting by Px the
common distribution of observations ωk = (yk, ηk), k ≤ K, stemming from signal x,
one has

E(y,η)∼Px
{
∥ηy∥22

}
≤M2 ∀x ∈ X .
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{(yk, ηk) ∼ Px}k≤K i.i.d., E|ηk{yk} = ψ(ηTk x), x ∈ X ?? → ??x
A: F (z) = Eη∼P{ηψ(ηTz)} : strongly monotone with modulus α > 0 on X , G(z) = F (z)− F (x)
B: E(y,η)∼Px{∥ηy∥22} ≤M2 ∀x ∈ X

Gy,η(z) = ηψ(ηTz)− ηy
zk = ProjX [zk−1 − γkGyk,ηk(zk−1)] , 1 ≤ k ≤ K

Simple standard fact: Under Assumptions A, B and with stepsizes

γk =
1

(k+1)α
, 1 ≤ k ≤ K, (∗)

whatever be signal x ∈ X underlying observations ωk = (yk, ηk), for the SA iterates
zk it holds

Eωk∼P kx

{
∥zk − x∥22

}
≤ 4M2

(k+1)α2
, 1 ≤ k ≤ K

[P k
x : distribution of observation ωk = (ω1, ..., ωk), the signal being x]

(!)

Good news: Typically, the O(1/k)-rate of convergence established in (!) is the best
rate allowed by Statistics.
Another good news: Error bound (!) is non-asymptotic and is governed by the true
modulus of strong monotonicity α of F and the true ”magnitude of uncertainty” M .
Not so good news: To ensure (!), we need to use stepsizes (∗) with α lower-
bounding the true modulus of strong monotonicity of F on X . Overestimating this
modulus could completely destroy (!).

6.22



F (z) = Eη∼P
{
ηψ(ηTz)

}
: X → Rn& ⟨F (z)− F (z′), z − z′⟩ ≥ α∥z − z′∥22&G(z) = F (z)− F (x) ⇒

⟨G(z), z − x⟩ ≥ α∥z − x∥2, z ∈ X (a)
Gy,η(z) = ηψ(ηTy)− ηy&E(y,η)∼Px {Gy,η(z)} = G(z), z ∈ X (b)

ωk = (yk, ηk) ∼ Px i.i.d.E|ηk{yk} = ψ(ηTk x) (c)

E(y,η)∼Pw

{
∥ηy∥22

}
≤M2, w ∈ X (d)

Proof of Standard Fact:
• Claim: from (b)-(d) it follows that

∀(x, z ∈ X ) : ∥F (z)∥ ≤M & E(y,η)∼Px{∥Gy,η(z)∥22 ≤ 4M2 (e)

Indeed, denoting by P the distribution of regressors (it is independent of the signal), we have

∀(x ∈ X ) :M2 ≥ E(y,η)∼Px

{
∥ηy∥22

}
= Eη∼P

{
E|η{∥ηy∥22}

}
≥ Eη∼P{∥ηE|η{y}∥22}︸ ︷︷ ︸

Jensen’s inequality

= Eη∼P
{
∥ηψ(ηTx)∥22

}
⇒
{
∥F (z)∥2 = ∥Eη∼P{ηψ(ηTz)}∥2 ≤ Eη∼P{∥ηψ(ηTz)∥2} ≤

√
Eη∼P{∥ηψ(ηTz)∥22} ≤M

E(y,η)∼Px{∥Gy,η(z)∥22} = E(y,η)∼Px{∥ηψ(ηTz)− ηy∥22} ≤ 2
[
Eη∼P{∥ηψ(ηTz)∥22}+ E(y,η)∼Px{∥ηy∥22}

]
≤ 4M2

• Let us fix signal x ∈ X underlying observations ωk = (yk, xk). Observe that by construction zk is
a deterministic function of ωk = (ω1, ..., ωk): zk = Zk(ωk). Setting Dk(ωk) = 1

2
∥Zk(ωk) − x∥22, we

have
Dk(ωk) ≤ 1

2
∥[Zk−1(ωk−1)− x]− γkGyk,ηk(Zk−1(ω

k−1))∥22
= Dk−1(ωk−1)− γk⟨Gyk,ηk(Zk−1(ω

k−1)), Zk−1(ωk−1)− x⟩+ 1
2
γ2k∥Gyk,ηk(Zk−1(ω

k−1))∥22

Taking expectation and invoking (b), (a), (e) and the fact that (yk, ηk) ∼ Px are independent across
k, we get

dk := Eωk∼P k
x

{
Dk(ωk)

}
≤ dk−1 − γkEωk−1∼P k−1

x

{
⟨G(Zk−1(ωk−1)), Zk−1(ωk−1)− x⟩

}
+2γ2kM

2

≤ (1− 2αγk)dk−1 +2γ2kM
2.
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Dk(ωk) = 1
2
∥Zk(ωk)− x∥22, dk := Eωk∼P k

x

{
Dk(ωk)

}
≤ (1− 2αγk)dk−1 +2γ2kM

2, 1 ≤ k ≤ K
γk = 1

(k+1)α

(!)

• Let us prove by induction in k that with S = 2M2

α2 for k = 0,1, ...,K it holds

dk ≤
S

k+1
(∗k)

Base k = 0: Let D be ∥ · ∥2-diameter of X and z± ∈ X be such that ∥z+ − z−∥2 = D. Invoking (e) and strong
monotonicity, with modulus α, of F on X , we have

αD2 ≤ ⟨F (z+)− F (z−), z+ − z−⟩ ≤ 2MD ⇒ D ≤
2M

α
⇒ d0 ≤

D2

2
≤

2M2

α2
,

implying (∗0).
Step k − 1⇒ k: Assuming k ≥ 1 and (∗k−1) true, note that 2αγk = 2

k+1
≤ 1. Invoking (!) and (∗k−1), we get

dk ≤
[
1−

2

k+1

]
S

k
+

2M2

(k+1)2α2
= S

[
1

k

(
1−

2

k+1

)
+

1

(k+1)2

]
=

S

k+1

[
1−

1

k
+

1

k+1

]
≤

S

k+1
.

Induction is complete.
• Since dk = 1

2
Eωk∼P k

x

{
∥Zk(ωk)− x∥22

}
, (∗k) reads

Eωk∼P k
x

{
∥Zk(ωk)− x∥22

}
≤

4M2

(k+1)α2
. □
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How It Works

Experiment: We consider four univariate link functions:
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Logit, y ∈ {0,1}
ψ(s) = exp{s}

1+exp{s}
Prob|η{y = 1} = ψ(ηTx)

Linear, y ∈ R
ψ(s) = s

y ∼ N (ψ(ηTx),1)

Hinge, y ∈ R
ψ(s) = max[s,0]
y ∼ N (ψ(ηTx),1)

Ramp, y ∈ R
ψ(s) = min[1,max[0, s]]

y ∼ N (ψ(ηTx),1)

• In all four cases, X = {x ∈ R100 : ∥x∥2 ≤ 1}, ηk ∼ N (0, I100)

Note: When we know in advance the common distribution P of regressors ηk, the
vector field

F (z) = Eη∼P
{
ηψ(ηTz)

}
becomes known. In addition, when P = N (0, In), F becomes extremely simple:

F (x) = Ψ(∥x∥2)
x

∥x∥2
, Ψ(t) =

1√
2π

∫ ∞
−∞

sψ(ts)e−s
2/2ds
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η ∼ N (0, In)⇒ F (x) = Ψ(∥x∥2) x
∥x∥2
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Logit Linear Hinge Ramp
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”Single-Observation” Case

♠ Situation: We observe deterministic sequence of regressors {ηk ∈ Rn×m}k≤K
and sequence of random labels yK = {yk ∈ Rm}k≤K . The labels y1, ..., yK are
independent of each other with distributions Px,k parameterized by unknown signal
x ∈ X ⊂ Rn, and

Eyk∼Px,k {yk} = ψ(ηTk x), x ∈ X .

Our goal is to recover x given {ηk}k≤K and yK .
Note: In fact we have a single-observation GLM with deterministic regressor ηK ,
random label yK , and link function ψK given by

ηK = [η1, ..., ηK] ∈ Rn×mK, yK =

 y1
...
yK

 ∈ RmK, ψK([u1; ...;uK]) =

 ψ(u1)
...

ψ(uK)

 : RmK → RmK.

Indeed, we clearly have

EyK∼Px,1×...×Px,K

{
yK

}
= ψK([ηK]Tx), x ∈ X

⇒We can apply our machinery!
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♠ Situation (reworded): We are given
• a deterministic regressor matrix η ∈ Rn×M
• a convex compact signal set X ⊂ Rn
• a random observation (”label”) y ∈ RM with distribution Px parameterized
by signal x ∈ X in such a way that

Ey∼Px {y} = ϕ(ηTx)

for a given link function ϕ(·) : RM → RM
Given y and η, we want to recover x.
Note: Under the circumstances the vector field

F (z) = ηϕ(ηTz) : Rn → Rn

becomes fully observable!
Assumptions:
A′: The vector field ϕ(·) : RM → RM is continuous and monotone, so that F (·) is
continuous and monotone on Rn; in addition, F is strongly monotone, with modulus
α > 0, on X .
B′: For some σ <∞ it holds

Ey∼Pz
{
∥η[y − ϕ(ηTz)]∥22

}
≤ σ2 ∀z ∈ X
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Ey∼Px{y} = ϕ(ηTx) & x ∈ X & Ey∼Pz
{
∥η[y − ϕ(ηTz)]∥22

}
≤ σ2 ∀z ∈ X

♠ Under the circumstances, the SAA estimate x̂SAA(y) of signal x underlying obser-
vation y is the weak solution of VI(Gy,X ) with

Gy(z) = ηϕ(ηTz)− ηy

Proposition Under Assumptions A′, B′ one has

Ey∼Px
{
∥x̂SAA(y)− x∥22

}
≤ σ2/α2 ∀x ∈ X .
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Gy(z) = ηϕ(ηTz)− ηy : α-strongly monotone on X

Proof of Proposition: Let x be the signal underlying observation, y be a realization
of the observation, and let x̂ = x̂SAA(y), so that x̂ is a weak and therefore a strong,
by A′, solution to VI(Gy,X ). It suffices to verify that

∥x̂− x∥ ≤ α−1∥ η[y − ϕ(ηTx)]︸ ︷︷ ︸
∆

∥2 (!)

Setting G(z) = F (z)− F (x), we have
Gy(z) =F (z)− ηy = F (z)− F (x) + [F (x)− ηy] = G(z)− η[y − ϕ(ηTx)] = G(z)−∆;

x̂ solves VI(Gy,X )⇒ 0 ≤ ⟨Gy(x̂), x− x̂⟩ = ⟨G(x̂), x− x̂⟩ − ⟨∆, x− x̂⟩ ⇒
−⟨G(x̂), x− x̂⟩ ≤ −⟨∆, x− x̂⟩ (a)
G(x) = 0⇒ ⟨G(x), x− x̂⟩ = 0 (b)

so that

α∥x− x̂∥22 ≤

by (a), (b)︷ ︸︸ ︷
⟨G(x)−G(x̂), x− x̂⟩ ≤ −⟨∆, x− x̂⟩ ≤ ∥∆∥2∥x− x̂∥2

⇒ (!) □
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Example: Assume that
• ϕ is continuous and strongly monotone, with modulus κ > 0, on the entire RM ,
• n×M regressor η is a realization of random matrix H with independent of each

other N (0,1) entries,
• y = ϕ(ηTx) + ξ, where ξ ∼ N (0, λ2IM) is independent of η,
•M ≫ n.
In this case, with probability rapidly approaching 1 as M →∞,
— F (z) = ηϕ(ηTz) is strongly monotone, with modulus α = O(1)κM , on Rn,
— Ey∼Px

{
∥η[y − ϕ(ηTx)]∥22

}
= Eξ∼N (0,λ2IM)

{
∥ηξ∥22

}
≤ σ2 := O(1)λ2Mn

⇒ Modulo rapidly going to 0 as M ≥ O(1)n grows probability of getting ”pathologi-
cal” η, we have

E
{
∥x̂SAA(y)− x∥22

}
≤
σ2

α2
≤ O(1)

λ2n

κ2M
.
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Illustration: Image reconstruction from blurred noisy observation
y = [κ ⋆ x]1/2 + σξ

κ: nonnegative 2D kernel, ∥κ1∥1 = 1 ⋆: 2D convolution
x: 2D image to be recovered [·]1/2: entrywise square root
ξ: white Gaussian noise σ: 1.2 ≈ 0.075

√
∥x∥∞
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SAA recovery
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Illustration: Tale of Two Retailers

♣ Tale: There are two competing retailers, U and V , selling red herrings.
• A retailer creates “selling capacity” z ∈ R+ (e.g., rents some areas, summing up to
z, in several stores).
• Denoting by u and v the selling capacities of U and V , the daily expected losses
(minus profits) of the retailers are

U(u, v) = pu− u
u+v+cD, V (u, v) = qv − v

u+v+cD,

• D: money volume of total daily demand • c > 0: total selling capacity of other retailers

• p, q: daily expences to support unit selling capacity for U and for V

Rationale: we assume that the actual demand D is split between U , V

and other retailers proportionally to their selling capacities.

•We assume that the actual capacities (u∗, v∗) ∈ R2
+ form Nash Equilibrium, mean-

ing that
— when V selects capacity v∗, U has no incentive to deviate from selection u∗:

U(u, v∗) ≥ U(u∗, v∗)∀u ∈ R+

— when U selects capacity u∗, V has no incentive to deviate from selection v∗:
V (u∗, v) ≥ V (u∗, v∗)∀v ∈ R+



♠ Goal: Given in advance
— D, c, and closed, convex and bounded set X known to contain “parameter of
interest” β := [p; q]

— K i.i.d. unbiased observations yk, 1 ≤ k ≤ K, of (u∗, v∗)
we want to recover β.
Note: Observation noise can come, e.g., from the fact that the selling capacities of
U and V are distributed among many locations, and we measure the capacities in K
locations selected at random from the uniform distribution.
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Executive Summary on Convex Nash Equilibria

♠ Situation: There are m players, i-th selecting xi ∈ Xi ̸= ∅.
• Losses of players are known functions fi(x1, ..., xm) of the vector x = [x1; ...;xm] ∈
X := X1 × ...×Xm of their selections.
• Nash equilibria are points x∗ ∈ X such that no one of the players has incentive to
replace his choice with another one, provided that the remaining players stick to their
choices. In other words, x∗ ∈ X is a Nash equilibrium iff

∀(i, xi ∈ Xi) : fi(x
∗
1, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
m) ≥ fi(x∗).

♠ Nash equilibrium problem is called convex, if
• all Xi are nonempty closed convex sets
• for every i, fi(x) is convex in xi and jointly concave in the collection {xj : j ̸= i}

of all remaining xj ’s
•
∑
i fi(x) is convex

Example: The standard convex-concave saddle point problem
minu∈U maxv∈V ϕ(u, v)

on closed convex domains U , V can be thought of as Nash equilibrium problem with
loss ϕ(u, v) of the player selecting u and loss −ϕ(u, v) of the player selecting v.
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Fact: Consider convex Nash Equilibrium problem with continuously differentiable
losses fi(x) and let us associate with it the vector field

F (x) =

[
∂

∂x1
f1(x);

∂

∂x2
f2(x); ...;

∂

∂xm
fm(x)

]
: X → Rm.

This vector field is monotone, and the weak (or, which is the same since F is contin-
uous, strong) solutions to VI(F,X ) are exactly the Nash equilibria.



Fact: When c > 0, the function s
s+t+c = 1 − t+c

s+t+c of nonnegative s, t is concave
in s and convex in t
⇒ In Tale of Two Retailers, losses of players U , V

U(u, v) = pu−
u

u+ v+ c
D, V (u, v) = qv −

v

u+ v+ c
D

are convex in the choices of the players and concave in the choices of their adver-
saries, while the sum of these losses

pu+ qv −D
u+ v

u+ v+ c

is convex in u, v
⇒ Nash equilibrium in Tale is weak≡strong solution to VI(Gβ,R2

+) with monotone
(in fact, strongly monotone) on R2

+ operator

Gβ(u, v) =

[
−

v+ c

(u+ v+ c)2
D;−

u+ c

(u+ v+ c)2
D

]
︸ ︷︷ ︸

G(u,v)

+β. [β = [p; q]]

Note: Field G is not potential – this is not the gradient field of a function!
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G(u, v) =

[
−

v+ c

(u+ v+ c)2
D;−

u+ c

(u+ v+ c)2
D

]
: R2

+ → R2

Fact: The strongly anti-monotone vector field −G is one-to one smooth mapping of
R2
+ onto the domain

Π = {[p; q] : 0 < p ≤ θ, p2/θ ≤ q ≤
√
θp} [θ = D/c]

with smooth anti-monotone inverse mapping ϕ(p, q) given by explicit formula:

[p; q] ∈ Π, ϕ(p, q) =

 cq
p+q

[
1+ θ

2(p+q)
+
√

θ2

4(p+q)2
+ θ

p+q

]
− c

cp
p+q

[
1+ θ

2(p+q)
+
√

θ2

4(p+q)2
+ θ

p+q

]
− c


⇒ϕ(p, q) ∈ R2

+ & [p; q] +G(ϕ(p, q)) = 0.

In words: For [p; q] ∈ Π, ϕ(p, q) is the vector of selections of U and V , the cost
coefficients for supporting capacities being p for U and q for V .
Bottom line: In Tale of Two Retailers, given compact convex subset X ⊂ Π known to
contain the vector β = [p; q] of parameters to be recovered, identifying p, q reduces
to recovering signal β ∈ X in GLM where
• the link function is the monotone vector field ϕ ≡ −ϕ : Π→ R2

• the regressors ηk, k ≤ K, are the unit 2× 2 matrices
• the labels are −yk ∈ R2, where yk are i.i.d. unbiased observations of [u; v] = ϕ(β).
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How It Works

♠ Setup: D = 100, c = 1
• Selling capacities of U and V are (randomly) distributed over n = 400 locations
and are observed at K = 40 randomly selected locations.
• Relative recovery errors, data over 1000 simulations:

error mean median max

∥β − β̂∥2/∥β∥2 0.073 0.063 0.314

several curves in Π (left) and their ϕ-images in R+
2 (right)

Note: Similar Tale can be told about any number M of retailers.
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Variation: Multi-State Spatio-Temporal Processes
[Ongoing joint research with Anatoli Juditsky, Yao Xie, and Liyan Xie, arXiv:2003.12935]

♠ Motivation: Discrete time modeling of interconnected self-exciting processes
• A realization of inhomogeneous Poisson process is an increasing sequence of positive reals
t1 < t2 < ... interpreted as times at which certain events (e.g., earthquakes or calls to a service
center) happen. The process is characterized by intensity function λ(t) ≥ 0, namely, as follows:
•What happens in time window [t, t+ h] is independent of what happened prior to time t, and in this
window, the probability for happening

— exactly one event is λ(t)h+ o(h)
— no event is 1− λ(t)h+ o(h)
— more than one event is o(h).

In many respects we can think about Poisson process as about the limit, as h → +0, of discrete
time processes with realizations which are random sequences {ξi ∈ {0,1}, i ≥ 1} with independent
entries ξi and probability of ξi = 1 equal to λ(ih)h. These discrete time processes are, basically,
what we get, for small h, from realizations of Poisson process when splitting the time domain t ≥ 0
into consecutive segments ∆i of duration h and setting ξi = 0 or ξi = 1 depending on whether in a
realization there were no, or there were, events in “time cell” ∆i.
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• A Hawkes, or self-exciting, process, can informally be thought of as a generalization of Poisson

process where the intensity λ(t) (which in Poisson process is deterministic function of t) becomes

random, and an event at time τ increases λ(t) for t ≥ τ by some µ(t− τ).

♠ What follows is motivated by the desire to get a simple “computation-friendly” discrete time model

of a self-exciting process by splitting continuous time into short consecutive windows (“cells’) and

neglecting the chances for more than one event to occur in a cell.

• In addition, we consider several interacting processes of this type.

6.40



♠ Consider situation as follows:
• There are K locations. At time instant t (time is discrete!) location k can be at one
of M + 1 states, enumerated 0,1, ...,M ; ωtk ∈ {0,1, ...,M} stands for the state of
location k at time t. We call state 0 the ground state, and states p ≥ 1 – events [of
type] p
• Locations influence each other: location ℓ at state q at time τ contributes to the
probability of event p in location k at time t > τ .
We assume that the conditional on the “history of the process” prior to time t (i.e., on
the array ωt−1 = {ωτk : τ ≤ t − 1,1 ≤ k ≤ K}) probability πtk[p|ωt−1] of event p
at location k at time t is

πtk[p|ωt−1] := Prob|ωt−1{ωtk = p} = βkp+
∑
s≥1

∑
ℓ≤K β

s
kℓ(p, ωt−s,ℓ)

• “birthrate” βkp: component of πtk[p|ωt−1] independent of the history
• βskℓ(p, q): contribution of the event “location ℓ at time t − s was in state q” to the
(conditional on the history) probability of event p at location k at time t.
Clearly, the conditional on ωt−1 probability of ground state at time t at location k is 1−

∑M
p=1 πtk[p|ωt−1]

♠ We observe the process on time horizon t ≤ N , and our goal is to recover from
our observation ωN the collection β = {βkp, βskℓ(p, q)} of parameters of our process.
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πtk[p|ωt−1] := Prob|ωt−1{ωtk = p} = βkp+
∑
s≥1

∑
ℓ≤K

βskℓ(p, ωt−s,ℓ)

♠ We assume once for ever that the process has finite memory: βskℓ(p, q) = 0

whenever s > d, where d ≥ 1 is some known “memory depth.”
⇒What matters as far as the behavior of the process on time horizon t = 1,2, ..., N

is concerned, is the array {ωτk : −d+1 ≤ τ ≤ N,1 ≤ k ≤ K}.
♡ From now on we slightly modify our previous notation and set

ωtτ = {ωrk : τ ≤ r ≤ t,1 ≤ k ≤ K},
ωt = ωt−d+1 = {ωrk : −d+1 ≤ r ≤ t,1 ≤ k ≤ K},

β = {βkp, βskℓ(p, q) : 1 ≤ k, ℓ ≤ K,1 ≤ s ≤ d,1 ≤ p ≤M,0 ≤ q ≤M}

Assigning components of β serial numbers, we treat β as a column vector, and set
ν = dimβ.
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♠ It is convenient to encode the collection of states of locations k, 1 ≤ k ≤ K, at
time t by KM -dimensional block vector ωt, with K blocks of dimension M each.
Vector ωt is defined as follows:
— when at time t in location k event p takes place, the k-th block in ωt is the p-th

basic orth in RM

— when at time t location k is in the ground state 0, the k-th block in ωt is zero.
For example, with K = 3 and M = 2,

ωt = [0; 1; 1; 0; 0; 0]

encodes the fact that at time t
— at location 1, event 2 takes place — [0; 1] is the second basic orth in RM = R2

— at location 2, event 1 takes place — [1; 0] is the first basic orth in RM = R2

— location 3 is in the ground state 0 — [0; 0] is the zero in RM = R2

• Note that not every Boolean KM -dimensional vector ω can encode observed
states of locations at time t; to be “legitimate,” every one of M -dimensional blocks
in ω must have at most one nonzero entry.
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• Our model says that the conditional, given ωt−1 = ωt−1−d+1, probability πtk[p|ωt−1]
of event p at time t at location k is

πtk[p|ωt−1] := Prob|ωt−1{ωtk = p} = βkp+
∑d

s=1

∑K

ℓ=1
βskℓ(p, ωt−s,ℓ)

This is the same as to say that
The conditional, given ωt−1, expectation of the Boolean vector ωt is the
KM -dimensional vector with entries πtk[p|ωt−1], 1 ≤ k ≤ K,1 ≤ p ≤M .

♠We arrive at the model where
— our observation at time t is the vector ωt ∈ RKM ; this vector is Boolean, with at
most one entry equal to 1 in every one of the K blocks of dimension M comprising
ωt
— we have E|ωt−1{ωt} = ηT (ωt−1t−d)β for readily given functions η(·) defined on the
set ΩdKM = {ωsk ∈ {0,1, ...,M} : 1 ≤ k ≤ K,1 ≤ s ≤ d} and taking values in
the space of ν ×KM -matrices.
Note: Our model is close to the GLM model with identity link function, regressors
η(ωt−1t−d), and labels yt = ωt, the difference being in inter-dependence and non-
stationarity of the regressors.
⇒We can try to recover β by the techniques we have developed for GLM’s.
Note: Inter-dependence of regressors makes it difficult to use SA, but the SAA ap-
proach still can be tried!
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• our observation at time t is the vector ωt ∈ RKM ; this vector is Boolean, with at most one entry
equal to 1 in every one of the K blocks of dimension M comprising ωt
• we have E|ωt−1{ωt} = ηT(ωt−1t−d)β for readily given functions η(·) defined on the set of arrays

{ωsk ∈ {0,1, ...,M} : 1 ≤ k ≤ K,1 ≤ s ≤ d} and taking values in the space of ν ×KM -matrices.
♠ Assumption: We are given a convex compact set X ⊂ Rν which contains the
vector β of parameters of the observed process and is such that
For every x ∈ X and every ωt−1t−d ∈ ΩdKM M -dimensional blocks in the KM -
dimensional vector ηT (ωt−1t−d)x are nonnegative with sum of entries ≤ 1:

∀x ∈ X :

{
xkp +

∑d
s=1

∑K
ℓ=1min0≤q≤M xskℓ(p, q) ≥ 0 ∀(1 ≤ p ≤M,1 ≤ k ≤ K) (a)∑M

p=1

[
xkp +

∑d
s=1

∑K
ℓ=1max0≤q≤M xskℓ(p, q)

]
≤ 1 ∀(1 ≤ k ≤ K) (b)

Motivation: p-th entry in an M -dimensional block, associated with location k, of
ηT (ωt−1t−d)β is conditional, ωt−1 given, probability for event p to take place in this
location at time t ⇒ these entries must be nonnegative, and their sum over p =

1, ...,M should be ≤ 1.
⇒We lose nothing when restricting our attention with candidate parameter vectors x
for which blocks in ηT (ωt−1t−d)x, for all ωt−1t−d ∈ ΩdKM , are nonnegative with the sum
of entries ≤ 1.
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E|ωt−1{ωt} = ηT (ωt−1t−d)β
β ∈ X

♠ According to our methodology, the SAA recovery β̂ of β from observations ωN is
a solution to the variational inequality

find z∗ ∈ X : ⟨GωN(z), z − z∗⟩ ≥ 0∀z ∈ X VI(GωN ,X )

given by X and the affine monotone vector field

GωN(x) =
1

N

N∑
t=1

[
η(ωt−1t−d)η

T (ωt−1t−d)x− η(ω
t−1
t−d)ωt

]
.

Note: GωN(·) is the gradient field of the quadratic function:

GωN(x) = ∇xΦωN(x), ΦωN(x) :=
1

2N

N∑
t=1

∥ηT (ωt−1t−d)x− ωt∥
2
2

⇒ Our estimate β̂ is nothing but the Least Squares estimate:

β̂ = β̂LS(ω
N) ∈ Argmin

x∈X
ΦωN(x). (LS)
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GωN(x) = 1
N

∑N
t=1

[
η(ωt−1t−d)η

T(ωt−1t−d)x− η(ω
t−1
t−d)ωt

]
β̂ : solution to VI(GωN ,X )

Towards Performance Analysis
♠ Observation: Consider, along with the observable vector field GωN(·), the
unobservable vector field

GωN(x) =
1

N

 N∑
t=1

η(ωt−1t−d)η
T (ωt−1t−d)x− η(ω

t−1
t−d)η

T (ωt−1t−d)β


Note: GωN(x)−GωN(x) is independent of x and GωN(β) = 0

⇒ GωN(β) =GωN(β)−GωN(β) =
1

N

N∑
t=1

η(ωt−1t−d)

ζt︷ ︸︸ ︷[
ηT (ωt−1t−d)β − ωt

]
︸ ︷︷ ︸

ξt

6.47



GωN(β) =
1

N

N∑
t=1

η(ωt−1t−d)

ζt︷ ︸︸ ︷[
ηT (ωt−1t−d)β − ωt

]
︸ ︷︷ ︸

ξt

Fact: Denoting by E|ωs the conditional, ωs being fixed, expectation, we have

E|ωt−1{ξt} = η(ωt−1t−d)E|ωt−1{ζt} = 0

Indeed, E|ωt−1{ωt} = ηT (ωt−1t−d)β.
Fact: ∥ζt∥∞ ≤ 1.
Indeed, the entries in ηT (ωt−1t−d)β are probabilities, and the entries in ωt are zeros
and ones.
Fact: It is easily seen that η(ωt−1d−1) is Boolean matrix with at most one nonzero in
every row
⇒ ∥ξt∥∞ ≤ ∥ζt∥∞ ≤ 1.
Corollary: Typical value of ∥GωN(β)∥∞ is of order of 1/

√
N :

Prob{∥GωN(β)∥∞ > γ/
√
N} ≤ 2ν exp{−γ2/2} ∀γ ≥ 0.
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Claim: Prob{∥GωN(β)∥∞ > γ/
√
N} ≤ 2ν exp{−γ2/2} ∀γ ≥ 0.Indeed, let us fix i ≤ ν. Given

α ≥ 0, let us prove by induction in t that

Eωt|ω0

{
exp{

∑t

s=1
α[ξt]i}

}
≤ exp{α2t/2} (It)

Base t = 0 is evident.
Step t 7→ t+1: assuming (It) takes place, we have

Eωt+1|ω0

{∑t+1
s=1 α[ξt]i

}
= Eωt|ω0

{[∑t
s=1 α[ξt]i

]
E|ωt {exp{α[ξt+1]i}

}
≤︸︷︷︸
(a)

Eωt|ω0

{[∑t
s=1 α[ξt]i

]
exp{α2/2}

}
≤︸︷︷︸
(b)

exp{α2(t+1)/2}

• (b) is given by (It)
• (a) is given by the following Well known fact: Let ζ be zero mean random variable taking values in
[−α, α]. Then E{exp{ζ}} ≤ exp{α2/2}.
Note: The conditional, ωt given, distribution of α[ξt+1]i is zero mean and is supported on [−α, α],
and thus obeys the premise of the Well known fact.
• (It)⇒ Claim: By (IN) we have for d
Delta ≥ 0 and α ≥ 0:

Prob{
1

N

∑N

t=1
[ξt]i >∆} ≤ E

{
exp{

1

N

∑N

t=1
α[ξt]i}

}
exp{−α∆} ≤ exp{

α2

2N
− α∆}

⇒ [optimizing in α] Prob{ 1
N

∑N
t=1[ξt]i >∆} ≤ exp{−N∆2/2}

⇒ Prob{ 1
N

∑N
t=1[ξt]i > γ/

√
N} ≤ exp{−γ2/2}

Applying the same reasoning to −ξt in the role of ξt, we get Prob{ 1
N

∑N
t=1[ξt]i < −γ/

√
N} ≤

exp{−γ2/2}, and Claim follows from the union bound.
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Proof of Well known fact: Let ζ be zero mean random variable supported on [−α, α]. For every γ
we have

E{eζ} = E{eζ − γζ} ≤ max
−α≤s≤α

[es − γs] = max
[
eα − γα, e−α + γα

]
where the concluding equality is due to the convexity of es − γs in s.
Setting γ = exp{α}−exp{−α}

2α
we get

E{eζ} ≤ cosh(α) ≤ exp{α2/2},
(to arrive at the concluding inequality, compare coefficients of the power series for cosh(s) and
exp{s2/2} and note that 1

(2k)!
≤ 1

2kk!
, k = 1,2, ...). □
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GωN(x) =
1

N

N∑
t=1

η(ωt−1t−d)η
T(ωt−1t−d)︸ ︷︷ ︸

A[ωN]

x−
1

N

N∑
t=1

η(ωt−1t−d)ωt︸ ︷︷ ︸
a[ωN]

Fact: Typical value of ∥GωN(β)∥∞ is of order of 1/
√
N :

Prob{∥GωN(β)∥∞ > γ/
√
N} ≤ 2ν exp{−γ2/2} ∀γ ≥ 0.

♠We can use Fact to design online upper bound on the recovering error.
• Given ν × ν matrix A ⪰ 0, let us set

ϑp[A] = max
{
s : xTAx ≥ s∥x∥2p

}
[1 ≤ p ≤ ∞]

For example, ϑ2[A] is the minimal eigenvalue of A.
• Observation: A ⪰ 0⇒ xTAx ≥ 1

2

[
ϑp[A]∥x∥2p + ϑr[A]∥x∥2r

]
≥
√
ϑp[A]ϑr[A]∥x∥p∥x∥r.

• Fact: The Least Squares recovery β̂ = β̂(ωN) satisfies the bound
∥β̂(ωN)− β∥p ≤ ∥GωN(β)∥∞/

√
ϑ1[A[ωN ]]ϑp[A[ωN ]].

As a result, the recovery error admits online probabilistic bound: for every ϵ ∈ (0,1) one has

Prob

{
∥β̂ − β∥p ≤

√
2 ln(2ν/ϵ)√

Nϑ1[A[ωN ]]ϑp[A[ωN ]]
∀p ∈ [1,∞]

}
≤ ϵ.
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Fact: Prob{∥GωN(β)∥∞ > γ/
√
N} ≤ 2ν exp{−γ2/2} ∀γ ≥ 0.

⇒Prob{∥GωN(β)∥∞ ≤
√

2 ln(2ν/ϵ)/N} ≥ 1− ϵ (∗)

Claim: The Least Squares recovery β̂ = β̂(ωN) satisfies the bound

∥β̂(ωN)− β∥p ≤ ∥GωN(β)∥∞/
√
ϑ1[A[ω

N ]]ϑp[A[ω
N ]]. (!)

As a result, the recovery error admits online probabilistic bound: for every ϵ ∈ (0,1) one has

Prob

{
∥β̂ − β∥p ≤

√
2 ln(2ν/ϵ)√

Nϑ1[A[ωN ]]ϑp[A[ωN ]]
∀p ∈ [1,∞]

}
≤ ϵ.

Proof: The probabilistic bound follows from (!) in view of (∗).
To demonstrate (!), let us fix ωN and set β̂ = β̂(ωN), A = A[ωN ], G(·) = GωN(·), ∆ = β̂ − β.
• G(·) is affine⇒ G(β̂) = G(β) +A∆
• β̂ is weak≡strong solution to VI(G,X )⇒ ⟨G(β̂), β − β̂⟩ ≥ 0
⇒ ⟨G(β) +A∆,−∆⟩ ≥ 0
⇒
√
ϑ1[A]ϑp[A]∥∆∥1∥∆∥p ≤ ⟨∆, A∆⟩ ≤ ⟨G(β),∆⟩ ≤ ∥G(β)∥∞∥∆∥1

⇒
√
ϑ1[A]ϑp[A]∥∆∥1∥∆∥p ≤ ∥G(β)∥∞∥∆∥1. □
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ϑp[A] = max
{
s : xTAx ≥ s∥x∥2p ∀x

}
= minx{xTAx : ∥x∥p = 1}

How to compute ϑp[A] ?
Given ν × ν matrix A ⪰ 0, the computation of ϑp[A] is easy in the trivial case of degenerate A (in
which case ϑp[A] = 0).
When A ≻ 0, computing ϑp[A] is easy when
A. p =∞: ϑ∞[A] = minx

{
xTAx : ∥x∥∞ = 1

}
= min1≤s≤ν minx

{
xTAx : ∥x∥∞ ≤ 1, xs = 1

}
B. p = 2: ϑ2[A] is the minimal eigenvalue of A.
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C. When 1 ≤ p < 2, computing ϑp[A] exactly seems to be difficult. However, when 1 ≤ p ≤ 2, ϑp[A]
admits efficiently computable lower bound tight within the factor π

2
.

Indeed, ϑp[A] is the largest ρ such that the ellipsoid {x : xTAx ≤ 1} is contained in the unit ball
{x : ∥x∥p ≤ 1} of ∥ · ∥p. Passing to the polars, this is the same as to say that ϑp[A] is the largest ρ
such that the ellipsoid {y : yTA−1y ≤ ρ−1} contains the unit ball of the norm ∥ · ∥q, q = p/(p − 1),
conjugate to ∥ · ∥p. The bottom line is that

ϑp[A] =
1

maxy:∥y∥q≤1 y
TA−1y

.

When p ∈ [1,2), we have q ∈ (2,∞]⇒ computing the maximum of the quadratic form yTA−1y over
Y = {y : ∥y∥q ≤ 1} admits semidefinite relaxation:

max
y∈Y

yTA−1y ≤ max
X

{
Tr(A−1X) : X ⪰ 0, ∥[X1,1;X2,2, ...;Xν,ν]∥q/2 ≤ 1

}
. (∗)

By a version of Nesterov’s π/2 Theorem, semidefinite relaxation, as applied to upper-bounding max-
imum of a positive semidefinite quadratic form over a set given by convex constraints on the squares
of variables, as is the case in (∗), is tight within the factor π/2
⇒ The quantity

1

maxX
{
Tr(A−1X) : X ⪰ 0, ∥[X1,1;X2,2, ...;Xν,ν]∥q/2 ≤ 1

}
is an efficiently computable tight within the factor π/2 lower bound on ϑp[A].

6.54



Maximum Likelihood Recovery

♠ Consider spatio-temporal process with K locations, M +1 states (ground state 0
and events 1,2, ...,M ) and memory depth d and assume that the vector of parame-
ters of this process

β = {βkp, βskℓ(p, q) : 1 ≤ k, ℓ ≤ K,1 ≤ s ≤ d,1 ≤ p ≤M,0 ≤ q ≤M} ∈ Rν

is known to belong to a given convex compact set X ⊂ Rν such that for some ς > 0

and all x ∈ X one has

ς ≤ xkp+
∑d
s=1

∑K
ℓ=1min0≤q≤M xskℓ(p, q)∀1 ≤ k ≤ K,1 ≤ p ≤M (a)

1− ς ≥
∑K
p=1

[
xkp+

∑d
s=1

∑K
ℓ=1max0≤q≤M xskℓ(p, q)

]
∀1 ≤ k ≤ K (b)
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♠ Assume that the conditional, ωt−1 given, random states ωtk of locations k at time
t are independent across k.
⇒ The conditional, ωt−1 given, minus log-likelihood of collection of states ωt =

{ωtk : 1 ≤ k ≤ K} at time t is
∑K
k=1ψ

k
ωtk

(ωt−1, β),

ψkωtk(ω
t−1, β) =

 − ln([ηT (ωt−1t−d)β]kp) , ωtk = p ∈ {1, ...,M}
− ln

(
1−

∑M
p=1[η

T (ωt−1t−d)β]kp
)
, ωtk = 0

⇒ Maximizing the conditional, given ω0, likelihood of observation ωN we arrive at
the Maximum Likelihood estimate

β̂ML(ω
N) ∈ Argmin

x∈X
ΨωN(x) :=

1

N

∑N

t=1

∑K

k=1
ψkωtk(ω

t−1, x) (ML)

♠ Note: Optimization problem in (ML) is convex and therefore efficiently solvable!
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β̂ML(ω
N) ∈ Argmin

x∈X
ΨωN(x) :=

1

N

∑N

t=1

∑K

k=1
ψkωtk(ω

t−1, x) (ML)

♠ Solving convex optimization problem in (ML) is equivalent to solving VI(GωN ,X )

with

GωN(x) = ∇ΨωN(x).

♡ Note: GωN(·) is monotone vector field on X .
♡ Note: On a closer inspection, typical value of GωN(β) is of order of 1/

√
N :

Prob{∥GωN(β)∥∞ > γΘ/
√
N} ≤ 2ν exp{−γ2/2} ∀γ ≥ 0,

with Θ (which was just 1 for the LS recovery) depending on ς.
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How It Works: Recovering Network Structure

• K = 5 locations, M = 2 events, memory depth d = 8

• It is known in advance that state q ∈ {0,1,2} in location ℓ contributes to the prob-
ability of event p ∈ {1,2} in location k at a later time only when q ≥ p
• Interacting locations – neighbors in the network: k, ℓ are not adjacent ⇒
βskℓ(p, q) = 0

• Note: When recovering the parameters of the process, we do not know the under-
lying network and act as if all pairs of locations were interacting.
• Our ultimate goal is to recover the network underlying the process we observe.
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• Restrictions on X :
— nonnegativity of all components of β & βskℓ(p, q) = 0 when p > q

— natural restriction
∑M

p=1

[
βkp +

∑d
s=1

∑K
ℓ=1max0≤q≤m βskℓ(p, q)

]
≤ 1, k ≤ K

— βskℓ(p, q) should be nonincreasing and convex in s.
⇒ the dimension of β is 610
• Time horizon N = 60,000 (not as large as it looks — we need to recover 610
parameters!)
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♠ Quality of recovery:

∥ · ∥ = ∥ · ∥1 ∥ · ∥ = ∥ · ∥2 ∥ · ∥ = ∥ · ∥∞
∥β − β̂ML∥ 0.9612(19.3%) 0.0600(15.5%) 0.0145(27.0%)

∥β − β̂LS∥ 1.0272(20.7%) 0.0642(16.6%) 0.0145(26.9%)
In parentheses: ∥β − β̂∥ in percents of ∥β∥

♠ Network recovery:

ℓ
k 1 2 3 4 5

1 0.066 0.044 0.047 0.003 0.005
2 0.042 0.049 0.056 0.009 0.005
3 0.044 0.040 0.056 0.045 0.048
4 0.000 0.002 0.048 0.060 0.043
5 0.003 0.007 0.047 0.044 0.059

Uniform norms of collections of recovered interaction coefficients for locations k, ℓ

♠ Recovering frequency of events:

location event #1 event #2
1 0.058/0.058/0.059 0.043/0.043/0.042
2 0.060/0.059/0.060 0.042/0.042/0.041
3 0.079/0.079/0.078 0.050/0.048/0.051
4 0.059/0.059/0.060 0.042/0.041/0.040
5 0.061/0.062/0.061 0.042/0.041/0.041

blue: in observations red: in simulations with β ← β̂ML cyan: in simulations with β ← β̂LS
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♠ Given ωN and t, the most natural error measure for a candidate estimate β̂(ωN)

is the prediction error

∆∥·∥[β̂|t] = ∥η
T (ωt−1t−d)[β̂ − β]∥

— deviation of the vector of probabilities of various events in various locations at time
t as predicted by β̂ from the vector of true, under our model, probabilities.

• Here is the statistics of prediction error in our experiment:

recovery ∥ · ∥ = ∥ · ∥1 ∥ · ∥ = ∥ · ∥2 ∥ · ∥ = ∥ · ∥∞
β̂LS

0.1339(5.54%)
0.0315(5.84%)

0.0545(6.60%)
0.0127(7.01%)

0.0370(8.23%)
0.0083(10.1%)

β̂ML
0.1396(5.78%)
0.0298(5.52%)

0.0502(6.09%)
0.0120(6.60%)

0.0387(8.61%)
0.0077(9.48%)

red: max
t≤N

∆∥·∥[β̂|t] red, %: max
t≤N

∆∥·∥[β̂|t]/max
t≤N
∥ηT(ωt−1t−d)β∥

cyan: 1
N

∑
t≤N ∆∥·∥[β̂|t] cyan, %:

∑
t≤N ∆∥·∥[β̂|t]/

∑
t≤N ∥η

T(ωt−1t−d)β∥
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Sample of recoveries of βskℓ(p, q) vs. s

blue: β red: β̂ML cyan: β̂LS
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♠ Self-Exciting:

location frequency of pairs of events at consecutive times

1 0.0190/0.0186/0.0191/0.0102
2 0.0189/0.0191/0.0183/0.0103
3 0.0282/0.0266/0.0277/0.0167
4 0.0181/0.0178/0.0179/0.0102
5 0.0199/0.0194/0.0198/0.0107

blue: observation
red: simulation with β ← β̂ML
cyan: simulation with β ← β̂LS
green: frequency of pairs for events independent across time
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Extension: Nonlinear Link

♠ Let us identifyK×M array {ykp : 1 ≤ k ≤ K,1 ≤ p ≤M} withKM -dimensional
block vector with k-th block being [yk1; yk2; ...; ykM ]. With this interpretation, K×M
array ϕ(z) = {ϕkp(z) : 1 ≤ k ≤ K,1 ≤ p ≤ M} of functions depending on KM -
dimensional vector z becomes a vector field

ϕ(z) : RKM → RKM

♣ Assume that we are given
A. Vector field ϕ(z) = {ϕkp(z)} : RKM → RKM and convex compact domain
Z ⊂ RKM such that
• ϕ is continuous and monotone on Z,
• ∀z ∈ Z : ϕkp(z) ≥ 0 ∀k, p&

∑M
p=1 ϕkp(z) ≤ 1.

B. Memory depth d and function η({ωsk}) defined on the set ΩdKM of arrays {ωsk ∈
{0,1, ...,M} : 1 ≤ s ≤ d,1 ≤ k ≤ K} and taking values in the space of ν × (KM)

matrices
C. A convex compact set X ∈ Rν such that ηT ({ωtk})x ∈ Z for all x ∈ X .
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♣ Assume that we are given

A. Vector field ϕ(z) = {ϕkp(z)} : RKM → RKM and convex compact domain Z ⊂ RKM such that

• ϕ is continuous and monotone on Z,

• ∀z ∈ Z : ϕkp(z) ≥ 0 ∀k, p&
∑M

p=1 ϕkp(z) ≤ 1.

B. Memory depth d and function η({ωsk}) defined on the set ΩdKM of arrays {ωsk ∈ {0,1, ...,M} :
1 ≤ s ≤ d,1 ≤ k ≤ K} and taking values in the space of ν × (KM) matrices

C. A convex compact set X ∈ Rν such that ηT({ωtk})x ∈ Z for all x ∈ X .

♠ Given β ∈ X and ω0
−d+1 ∈ ΩdKM , we can associate with the above data random

process evolving on time horizon t = 1,2, ..., N as follows:
• the state of the process in spatio-temporal cell tk is ωtk ∈ {0,1, ...,M}
• the conditional, ωt−1 given, probability to have ωtk = p ∈ {1, ...,M} is

ϕkp
(
ηT (ωt−1t−d)β

)
,

• the conditional, ωt−1 given, probability to have ωtk = 0 is

1−
∑M

p=1
ϕkp

(
ηT (ωt−1t−d)β

)
.

Note: So far we have dealt with ϕ(z) ≡ z and specific structure of η(·) and β.
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♠ In the situation in question,
• The role of observable vector field GωN(x) (which used to be the gradient field of
a convex quadratic function) is played by the monotone vector field

GωN(x) =
1

N

N∑
t=1

[
η(ωt−1t−d)ϕ

(
ηT (ωt−1t−d)x

)
− η(ωt−1t−d)ωt

]
,

where ωt ∈ RKM is our encoding of the collection {ωtk : 1 ≤ k ≤ K} by Boolean
vector
• The role of unobservable vector field GωN(x) is played by the monotone vector
field

GωN(x) =
1

N

N∑
t=1

[
η(ωt−1t−d)ϕ

(
ηT (ωt−1t−d)x

)
− η(ωt−1t−d)ϕ(η

T (ωt−1t−d)β)
]
,

for which β is a zero. As before, GωN(·)−GωN(·) is constant.
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• As before,GωN(β) = GωN(β)−GωN(β) = 1
N

∑N
t=1 η(ω

t−1
t−d)

[
ηT (ωt−1t−d)β − ωt

]
is martingale-difference of typical magnitude of order of 1/

√
N :

Prob
{
∥GωN(β)∥∞ > γΘ/

√
N
}
≤ 2ν exp{−γ2/2} ∀γ > 0

Θ: the maximal, over ωt−1t−d ∈ ΩdKM and i ≤ ν, ℓ1-norm of i-th row in η(ωt−1t−d).
• Recommended recovery, as before, is the solution to VI(GωN ,X )
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THE END
THANK YOU AND TAKE CARE!
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