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Abstract. We propose a prox-type method with efficiency estimate O(ε−1) for approximat-
ing saddle points of convex-concave C1,1 functions and solutions of variational inequalities with
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1. Introduction. This paper is inspired by a recent paper of Nesterov [13] in
which a new method for minimizing a nonsmooth Lipschitz continuous function f over
a convex compact finite-dimensional set X is proposed. The characteristic feature
of Nesterov’s method is that under favorable circumstances it exhibits a (nearly)
dimension-independent O(1/t)-rate of convergence: f(xt) − minX f ≤ O(1/t), where
xt is the approximate solution built after t iterations. This is in sharp contrast
with the results of information-based complexity theory, which state in particular
(see [11]) that for a “black-box-oriented” method (one which operates with the values
and subgradients of f only, without access to the “structure” of the objective) the
number of function evaluations required to build an ε-solution when minimizing a
Lipschitz continuous, with constant 1, function over an n-dimensional unit Euclidean
ball cannot be less than O(1/ε2), provided that n ≥ 1/ε2. The explanation of the
apparent “contradiction” between these approaches is that Nesterov’s method is not
black-box-oriented; specifically, it is assumed that the objective function f is given as
a cost function of the first player in a specific convex-concave game:

f(x) = max
y∈Y

φ(x, y), φ(x, y) = g(x) + xTAy + hT y,(1.1)

where Y is a convex compact set and g is a C1,1 (i.e., with Lipschitz continuous gra-
dient) convex function on X.1 When solving the problem, we are given the structure
of the objective, specifically, know X and Y , and are able (a) to compute the value
and the gradient of g at a point and (b) to multiply a vector by A and AT . The result
of Nesterov states that if X and Y are simple enough (e.g., are unit Euclidean balls),

then it is possible to minimize the objective (1.1) with accuracy ε in O(1)L‖A‖
ε steps,
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with a single computation of g, g′, two matrix-vector multiplications (one by A and
one by AT ), and O(dimX + dimY ) additional arithmetic operations per step; here
L is the Lipschitz constant of g′ with respect to the standard Euclidean norm, and
‖A‖ is the standard matrix norm of A. Nesterov’s method is based on smoothing—
approximating f by a function with Lipschitz continuous gradient (the possibility of
“computationally cheap” smoothing is given by representation (1.1)) and minimizing
the approximation by a method with the rate of convergence O(1/t2).

In this paper, we propose another method for convex optimization with a nearly
dimension-independent, under favorable circumstances, O(1/t)-rate of convergence.
Our “favorable circumstances” are essentially the same as in [13]; specifically, we
assume that the objective function is given as the cost function of the first player in
a game,

f(x) = max
y∈Y

φ(x, y),(1.2)

with C1,1 convex-concave function φ; additionally, both X and Y , as in Nesterov’s
construction, should be “simple enough” convex compact sets. In spite of similarity
in the setup and in the resulting complexity bound, our method is completely differ-
ent from that of Nesterov: instead of using smoothing and advanced techniques for
minimizing C1,1 functions, we directly apply to the underlying saddle point problem a
simple prox-type method. Specifically, we reduce the problem of minimizing objective
(1.2), i.e., the problem of approximating a saddle point of φ on X × Y , to solving the
associated variational inequality (v.i.):

find z∗ = (x∗, y∗) ∈ X × Y : 〈Φ(z∗), z − z∗〉 ≥ 0 ∀z ∈ X × Y,

Φ(x, y) =

[
∂
∂xφ(x, y)

− ∂
∂yφ(x, y)

]
.

(1.3)

Note that since φ is convex-concave and C1,1, the operator Φ is monotone and Lips-
chitz continuous:

‖Φ(z) − Φ(z′)‖∗ ≤ L‖·‖[Φ]‖z − z′‖ ∀z, z′ ∈ Z ≡ X × Y,

where ‖·‖ is a norm and ‖·‖∗ is the conjugate norm. We solve (1.3) by a prox-method:

zt = solution to v.i. on Z

with the operator Φt(z) = γΦ(z) + ω′(z) − ω′(zt−1),(1.4)

where the “stepsize” γ is positive and ω(z) is a C1 strongly convex function on Z:

〈ω′(z) − ω′(z′), z − z′〉 ≥ α‖z − z′‖2 ∀z, z′ ∈ Z [α > 0].

It is easily seen that the prox-method converges ergodically to the set of solutions of
(1.3): setting (xt, yt) ≡ zt = 1

t

∑t
τ=1 zτ−1, one has

max
y∈Y

φ(xt, y) − min
x∈X

φ(x, yt) ≤ O(1)
Θ(z0)

γαt
,

Θ(z0) = max
z∈Z

[ω(z) − ω(z0) − 〈z − z0, ω
′(z0)〉] ;

(1.5)

note that (1.5) even does not exploit the fact that Φ is Lipschitz continuous. The rate
of convergence in (1.5) is exactly what we are looking for; the difficulty, however, is
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that method (1.4) is “conceptual” rather than implementable: a step requires solving
a nontrivial variational inequality. Our central observation is that in the case of
Lipschitz continuous Φ, a step of the prox-method is easily implementable, provided
that the stepsize γ is chosen properly. Specifically, when γ ≤ α√

2L‖·‖[Φ]
, the prox-

mapping

z 	→ Pt(z) = argmin
z′∈Z

[ω(z′) + 〈γΦ(z) − ω′(zt−1), z
′〉] : Z → Z

turns out to be a 1√
2
-contraction: ‖Pt(z) − Pt(z

′)‖ ≤ 1√
2
‖z − z′‖ for all z, z′ ∈ Z,

and zt as given by (1.4) is exactly the fixed point of this contraction. It follows
that with a properly chosen stepsize, the prox-method becomes implementable: for
all computational purposes, its step requires a small number of fixed point iterations
z 	→ Pt(z), i.e., a small number (in fact, just two!) of computations of Φ(·) and solving
auxiliary problems of the form

min
z∈Z

[ω(z) + 〈ξ, z〉] .(1.6)

As a result, one can approximate within accuracy ε a saddle point of a C1,1 convex-
concave function (or, more generally, a solution to a v.i. with monotone Lipschitz con-
tinuous operator) at the cost (the number of computations of the associated monotone
operator and solving auxiliary problems (1.6)) which is inversely proportional to ε.

Note that both “building blocks” of our construction—the ergodic convergence
properties of a prox-method (see [3, 10, 12, 4, 6, 16] and references therein) and the
contraction properties of the prox-mapping—seem to be well studied. Surprisingly,
the aforementioned complexity result, to the best of our knowledge, is new even in
the standard Euclidean case (the one where ω(z) = 1

2 〈z, z〉). In this case, our scheme
results in the extragradient method

z+
t−1 = πZ (zt−1 − γΦ(zt−1)) , zt = πZ

(
zt−1 − γΦ(z+

t−1)
)[

πZ(z) = argmin
z′∈Z

〈z − z′, z − z′〉
]

proposed, from a different perspective, by Korpelevich as early as 1976 (see [7, 8]);
here again the efficiency estimate O(1/t) for the ergodic version zt = 1

t

∑t
τ=1 z

+
τ−1

seems to be new.
The rest of the paper is organized as follows. In section 2 we formulate the problem

of interest—a variational inequality with Lipschitz continuous monotone operator—
and investigate the possibility of solving the problem by a “conceptual” prox-method.
In section 3 we present “implementable” versions of the method and carry out the com-
plexity analysis of the resulting algorithms. In section 4, we present some extensions
and modifications of the method. In section 5, we discuss a number of generic appli-
cations of our algorithms, specifically, solving matrix games, eigenvalue minimization,
and computing the Lovasz capacity number of a graph. In particular, we demonstrate
that our techniques allow us to compute the Lovasz capacity number ϑ of an n-node
graph within accuracy εϑ, ε ∈ (0, 1], in no more than O(n4ε−1

√
ln(n) ln(n/ε)) arith-

metic operations.2 In concluding section 6, we present encouraging numerical results
for matrix games with sparse matrices of sizes ranging up to 20,000 × 20,000 and for
Lovasz capacity problems on random and Hamming graphs. (The largest graph we
consider has 1024 nodes and 197120 arcs.)

2Note that if both the graph and its complement have O(n2) arcs, then the arithmetic cost of a
single iteration of an interior point method as applied to computing Lovasz capacity is O(n6).
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2. The problem and the conceptual prox-method.

2.1. The problem. Let Z be a convex compact set in Euclidean space E with
inner product 〈·, ·〉, let ‖ · ‖ be a norm on E (not necessarily the one associated with
the inner product), and let F : Z → E be a Lipschitz continuous monotone mapping,

(a) ∀(z, z′ ∈ Z) : ‖F (z) − F (z′)‖∗ ≤ L‖z − z′‖,
(b) ∀(z, z′ ∈ Z) : 〈F (z) − F (z′), z − z′〉 ≥ 0,

(2.1)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖:

‖ξ‖∗ = max
z:‖z‖≤1

〈ξ, z〉.

We are interested in approximating a solution to the v.i. associated with Z,F , i.e., a
point z∗ ∈ Z such that

〈F (z), z∗ − z〉 ≤ 0 ∀z ∈ Z.

(Note that since F is single-valued and continuous on Z, the latter relation is equiva-
lent to 〈F (z∗), z− z∗〉 ≥ 0 for all z ∈ Z, which is the standard definition of a (strong)
solution to the v.i. associated with Z,F .)

2.2. Prox-mapping—Preliminaries. Let us fix a continuously differentiable
function ω(z) : Z → R which is strongly convex,

〈ω′(z) − ω′(w), z − w〉 ≥ α‖z − w‖2 ∀z, w ∈ Z [α > 0],(2.2)

and is such that one can easily solve problems of the form

min
z∈Z

[ω(z) + 〈e, z〉] , e ∈ E.

Let also

Ω(ξ) = max
z∈Z

[〈ξ, z〉 − ω(z)]

be the Legendre transformation of ω|Z , and let

Ωu(ξ) = Ω(ξ) − 〈ξ, u〉 : E → R,

Hu(z) = Ωu(ω′(z)) : Z → R.
(2.3)

Let us fix γ > 0. Given γ and z ∈ Z, let us define the prox-mapping

Pz : E → Z : Pz(ξ) = argmin
w∈Z

[ω(w) + 〈w, ξ − ω′(z)〉] .

At least the first statement of the following lemma is well known.
Lemma 2.1. The mapping Pz is Lipschitz continuous; specifically,

‖Pz(ξ) − Pz(η)‖ ≤ α−1‖ξ − η‖∗ ∀ξ, η ∈ E.(2.4)

Besides this,

∀(u ∈ Z) :Hu(Pz(ξ))−Hu(z)≤〈ξ, u− Pz(ξ)〉 + [ω(z) + 〈ω′(z), Pz(ξ) − z〉 − ω(Pz(ξ))]︸ ︷︷ ︸
≤0

.
(2.5)
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Proof. Setting v = Pz(ξ), w = Pz(η), we have

〈ω′(v) − ω′(z) + ξ, v − u〉 ≤ 0 ∀u ∈ Z,(2.6)

〈ω′(w) − ω′(z) + η, w − u〉 ≤ 0 ∀u ∈ Z.(2.7)

Setting u = w in (2.6) and u = v in (2.7), we get

〈ω′(v) − ω′(z) + ξ, v − w〉 ≤ 0, 〈ω′(w) − ω′(z) + η, v − w〉 ≥ 0,

whence 〈ω′(w) − ω′(v) + [η − ξ], v − w〉 ≥ 0 or

‖η − ξ‖∗‖v − w‖ ≥ 〈η − ξ, v − w〉 ≥ 〈ω′(v) − ω′(w), v − w〉 ≥ α‖v − w‖2,

and (2.4) follows.
To prove (2.5), let v = Pz(ξ). We have

Hu(Pz(ξ)) −Hu(z)

= Ωu(ω′(v)) − Ωu(ω′(z))

= Ω(ω′(v)) − 〈u, ω′(v)〉 − Ω(ω′(z)) + 〈u, ω′(z)〉
= 〈ω′(v), v〉 − ω(v) − 〈u, ω′(v)〉 − 〈ω′(z), z〉 + ω(z) + 〈u, ω′(z)〉
= 〈ω′(v) − ω′(z) + ξ, v − u〉 + [ω(z) + 〈ω′(z), v − z〉 − ω(v)] + 〈ξ, u− v〉
≤ 〈ξ, u− v〉 + [ω(z) + 〈ω′(z), v − z〉 − ω(v)]

(we have used (2.6)), as required in (2.5).

2.3. The prox-method. The prox-method with general prox-term (“with Breg-
man distances”) for convex minimization and solving variational inequalities has been
investigated in many papers (see [4, 16, 6, 1] and references therein). As applied to the
v.i. associated with Z,F , the (slightly modified; see below) method in its conceptual
form is as follows.

CPM [conceptual prox-method].
Initialization. Choose starting point z0 ∈ Z.
Step t, t = 1, 2, . . . : Given zt−1, check whether

Pzt−1(F (zt−1)) = zt−1.(2.8)

If it is the case, claim that zt−1 is the solution to the variational inequality associated
with Z,F and terminate. Otherwise choose γt > 0 and a point wt ∈ Z such that

〈wt − Pzt−1
(γtF (wt)), γtF (wt)〉

+
[
ω(zt−1) + 〈ω′(zt−1), Pzt−1

(γtF (wt)) − zt−1〉 − ω(Pzt−1
(γtF (wt)))

]
≤ 0.

(2.9)

Set

zt = Pzt−1
(γtF (wt)),

zt =

(
t∑

τ=1

γτ

)−1 t∑
τ=1

γτwτ ,

and pass to step t + 1.
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Note: zt is the approximate solution built in course of t steps.
Note that the standard way to ensure (2.9) is to define wt as the solution to the

v.i. with the monotone operator Ft−1(z) = ω′(z) − ω′(zt−1) + γtF (z), which, as it is
immediately seen, results in wt = Pzt−1(γtF (wt)) and thus makes the left-hand side
of (2.9) nonpositive. The resulting procedure takes the form

zt = solution to the v.i. given by Z,Ft−1,(2.10)

and this is exactly what is called the “prox-method with Bregman distances” and
what is considered in the aforementioned references (primarily in the case when F is
the (sub)gradient mapping generated by a convex function). Note that rule (2.10) is
not “directly implementable,” since it requires solving a nontrivial v.i., and thus the
“standard” prox-method is conceptual only, as for the above “algorithm.”

The convergence properties of CPM are summarized in the following statement
(which is very similar to numerous results on ergodic convergence of gradient-type
algorithms for convex minimization and v.i.’s with monotone operators; see, e.g.,
[3, 10, 11, 12, 16]).

Proposition 2.2. Consider a “relaxed” version of CPM, where condition (2.9)
is weakened to

〈wt − Pzt−1
(γtF (wt)), γtF (wt)〉 + ω(zt−1)

+ 〈ω′(zt−1), Pzt−1(γtF (wt)) − zt−1〉 − ω(Pzt−1(γtF (wt))) ≤ εt.
(2.11)

(i) If the relaxed algorithm terminates at a certain step N according to rule (2.8),
then zN−1 is a solution to the v.i.

〈F (zN−1), u− zN−1〉 ≥ 0 ∀u ∈ Z.(2.12)

(ii) If the relaxed algorithm does not terminate in the course of N steps, then

ε(zN ) ≡ max
u∈Z

〈F (u), zN − u〉 ≤ Θ(z0) +
∑N

t=1 εt∑N
t=1 γt

,

Θ(z0) = max
z∈Z

[ω(z) − ω(z0) − 〈ω′(z0), z − z0〉] .
(2.13)

If, in addition, the v.i. in question is associated with a convex-concave saddle point
problem, i.e.,

• E = Ex × Ey for Euclidean spaces Ex, Ey,
• Z = X × Y for convex compacts X ⊂ Ex, Y ⊂ Ey,

• F (z) ≡ F (x, y) =
[ f ′

x(x, y)
−f ′

y(x, y)

]
for a continuously differentiable

function f(x, y) : X × Y → R, which is convex in x ∈ X and is
concave in y ∈ Y ,

then

εf (zN ) ≡
[

max
y∈Y

f(xN , y) − min
x∈X

max
y∈Y

f(x, y)

]
+

[
max
y∈Y

min
x∈X

f(x, y) − min
x∈X

f(x, yN )

]
≤ Θ(z0) +

∑N
t=1 εt∑N

t=1 γt
,

(2.14)

with Θ(z0) given by (2.13).
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Proof. (i) is evident, since Pz(ξ) = z means exactly that 〈ξ, u − z〉 ≥ 0 for all
u ∈ Z, by definition of Pz(·).

To prove (ii), observe that zt = Pzt−1
(γtF (wt)), whence for every u ∈ Z and every

t ≤ N one has

Hu(zt) −Hu(zt−1) ≤ 〈γtF (wt), u− zt〉 + [ω(zt−1) + 〈ω′(zt−1), zt − zt−1〉 − ω(zt)]
[by (2.5)]

≤ 〈γtF (wt), u− wt〉 + εt [by (2.11)].

Thus,

〈γtF (wt), wt − u〉 ≤ Hu(zt−1) −Hu(zt) + εt.(2.15)

Summing up the resulting inequalities over t = 1, . . . , N , we get

∀(u ∈ Z) :
N∑
t=1

γt〈F (wt), wt − u〉

≤ Hu(z0) −Hu(zN ) +

N∑
t=1

εt

= [〈z0 − u, ω′(z0)〉 − ω(z0)] + [〈u− zN , ω′(zN )〉 + ω(zN )]︸ ︷︷ ︸
≤ω(u)

≤ ω(u) − 〈ω′(z0), u− z0〉 − ω(z0) +

N∑
t=1

εt ≤ Θ(z0) +

N∑
t=1

εt.

(2.16)

Now, to get (2.13), note that by monotonicity of F one has

〈F (wt), wt − u〉 ≥ 〈F (u), wt − u〉,

and thus (2.16) implies that

(
N∑
t=1

γt

)
〈F (u), zN − u〉 =

N∑
t=1

γt〈F (u), wt − u〉 ≤ Θ(z0) +

N∑
t=1

εt ∀u ∈ Z,

whence

ε(zN ) = max
u∈Z

〈F (u), zN − u〉 ≤ Θ(z0) +
∑N

t=1 εt∑N
t=1 γt

,

as required in (2.13).
Now assume that the variational inequality in question comes from a convex-

concave saddle point problem. Setting λt = γt/
∑N

τ=1 γτ , (2.16) gives the first in-
equality in the following computation (where zt = (xt, yt) is the trajectory of the
method and u = (x, y) ∈ Z = X × Y ):
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Θ(z0) +
∑N

t=1 εt∑N
t=1 γt

≥
N∑
t=1

λt〈F (zt), zt − u〉

=
N∑
t=1

λt[〈f ′
x(xt, yt), xt − x〉 + 〈f ′

y(xt, yt), y − yt〉]

≥
N∑
t=1

λt [[f(xt, yt) − f(x, yt)] + [f(xt, y) − f(xt, yt)]]

[since f is convex in x and concave in y]

=
N∑
t=1

λt [f(xt, y) − f(x, yt)]

≥ f

(
N∑
t=1

λtxt, y

)
− f

(
x,

N∑
t=1

λtyt

)
= f(xN , y) − f(x, yN ).

The resulting inequality is valid for all x ∈ X, y ∈ Y , whence

max
x∈X,y∈Y

[
f(xN , y) − f(x, yN )

]
=

[
max
y∈Y

f(xN , y) − min
x∈X

max
y∈Y

f(x, y)

]
+

[
max
y∈Y

min
x∈X

f(x, y) − min
x∈X

f(x, yN )

]

≤ Θ(z0) +
∑N

t=1 εt∑N
t=1 γt

,

as claimed. (Note that maxy∈Y minx∈X f(x, y) = minx∈X maxy∈Y f(x, y), since X,Y
are convex compact and f is convex-concave.)

Remark 2.3. From now on, we assume that the starting point z0 for the conceptual
prox-method is chosen as the minimizer of ω(·) on Z. With this choice of z0, one has

Θ(z0) ≤ V [ω] ≡ max
z∈Z

ω(z) − min
z∈Z

ω(z).

3. From conceptual method to implementable algorithm. Our main ob-
servation is extremely simple, as follows.

(∗) Let F satisfy (2.1), and let γ ≤ α√
2L

. Then, for every z ∈ Z, the mapping

Pγ
z : Z → Z : Pγ

z (w) = Pz(γF (w))

is a contraction:

‖Pγ
z (w) − Pz(w

′)‖ ≤ 1√
2
‖w − w′‖ ∀w,w′ ∈ Z.(3.1)

Indeed, the mapping in question is the superposition of the Lipschitz continuous,
with constant γL, mapping w 	→ γF (w) : (Z, ‖·‖) → (E, ‖·‖∗) (see (2.1)) and Lipschitz
continuous, with constant α−1 (by Lemma 2.1) mapping ξ 	→ Pz(ξ) : (E, ‖ · ‖∗) →
(Z, ‖ · ‖).

Observation (∗) suggests the following implementation of step t in the conceptual
prox-method.



PROX-METHOD WITH RATE OF CONVERGENCE O(1/t) 237

[“Basic implementation”] Given a point zt−1 ∈ Z which does not satisfy (2.8), set

γt = γ ≡ α√
2L

;(3.2)

build, starting with wt,0 ≡ zt−1, the iterates

wt,s = Pzt−1(γF (wt,s−1)), s = 1, 2, . . . ,(3.3)

until the condition

〈γF (wt,s−1), wt,s−1 − wt,s〉 + ω(zt−1)
+ 〈ω′(zt−1), wt,s − zt−1〉 − ω(wt,s) ≤ 0

(3.4)

is met. Denote by st the corresponding value of s and set

wt = wt,st−1 [⇒ zt = wt,st ].

Note that with the basic implementation we do ensure (2.11) with εt = 0 (this
requirement is nothing but (3.4)). On the other hand, the sequence {wt,s}∞s=0 rapidly
converges to the fixed point of the mapping Pγ

zt−1
:

‖wt,s+1 − wt,s‖ ≤ 1√
2
‖wt,s − wt,s−1‖, s = 1, 2, . . . .

We are in the situation when zt−1 ≡ wt,0 is not a fixed point of P1
zt−1

, whence, as
it is immediately seen, wt,0 is not a fixed point of the mapping Pγ

zt−1
; it follows that

the first term on the left-hand side of (3.4) rapidly converges to zero (as a geometric
progression with the ratio

√
1/2), while the second term, as it is immediately seen, is

at least α
16‖wt,1 − wt,0‖2. Thus, we have the following.

(!) For all computational purposes, the number of “inner iterations” (3.3) at a
step t in the basic implementation of the prox-method can be treated as a moderate
constant C, while the number N(ε) of steps sufficient to make the right-hand side of
(2.13), (2.14) ≤ ε can be bounded from above as

N(ε) ≤ 2LV [ω]

αε
.(3.5)

We are about to prove that in fact the number of “inner iterations” can be made
as small as two. Note that in the first draft of this paper, this possibility of a “two-step
implementation” was established only for the case of C1,1 function ω(·); since then,
inspired by the latest related results of Nesterov [14], we have succeeded in extending
this result to the general case.

Lemma 3.1. Let a nonempty set U ⊂ Z be convex and closed, and let z ∈ Z. Let
ξ, η be two points from E, and let γ > 0. Consider the points

w = argmin
y∈U

[〈γξ − ω′(z), y〉 + ω(y)] ,

z+ = argmin
y∈U

[〈γη − ω′(z), y〉 + ω(y)] .
(3.6)
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Then for all u ∈ U one has

(a) ‖w − z+‖ ≤ α−1γ‖ξ − η‖∗,
(b) 〈γη, w − u〉 ≤ Hu(z) −Hu(z+)

+ 〈γη, w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)]︸ ︷︷ ︸
δ

,

(c) δ ≤ 〈γ(η − ξ), w − z+〉 + [ω(z) + 〈ω′(z), w − z〉 + 〈ω′(w), z+ − w〉 − ω(z+)]︸ ︷︷ ︸
ε

,

(d) ε ≤ α−1γ2‖ξ − η‖2
∗ −

α

2

[
‖w − z‖2 + ‖w − z+‖2

]
.

(3.7)

Proof. (3.7.a): The verification is completely similar to that for (2.4) (which is
nothing but the particular case of (3.7.a) corresponding to the case U = Z). For all
u ∈ U one has

(a) 〈γξ + ω′(w) − ω′(z), w − u〉 ≤ 0,
(b) 〈γη + ω′(z+) − ω′(z), z+ − u〉 ≤ 0.

(3.8)

Applying (3.8.a) with u = z+ and (3.8.b) with u = w, we get

γ〈ξ, w − z+〉 ≤ 〈ω′(z) − ω′(w), w − z+〉,
γ〈η, z+ − w〉 ≤ 〈ω′(z) − ω′(z+), z+ − w〉.

Summing up these inequalities, we get

γ〈ξ − η, w − z+〉 ≤ 〈ω′(z+) − ω′(w), w − z+〉,

whence

−γ‖ξ − η‖∗‖w − z+‖≤ γ〈ξ − η, w − z+〉≤ 〈ω′(z+) − ω′(w), w − z+〉≤ − α‖w − z+‖2,

and we arrive at (3.7.a).
(3.7.b): Let φ(u) = [〈γη, w − u〉 + Hu(z+) −Hu(z)]; an immediate computation

demonstrates that

φ(z+) = 〈γη, w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)] ,

so that (3.7.b) is exactly the claim that φ(u) ≤ φ(z+) for all u ∈ U . To see that this
claim is true, note that φ(u) = −〈γη + ω′(z+) − ω′(z), u〉 + const, so that (3.8.b) is a
sufficient condition for z+ ∈ U to maximize φ(·) on U .

(3.7.c): For u ∈ U we have

δ ≡ 〈γη, w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)]
= 〈γ(η − ξ), w − z+〉 + 〈γξ, w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)]
≤ 〈γ(η − ξ), w − z+〉 + 〈ω′(z) − ω′(w), w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)]

[by (3.8.a) with u = z+]
= 〈γ(η − ξ), w − z+〉 + [ω(z) + 〈ω′(z), w − z〉 + 〈ω′(w), z+ − w〉 − ω(z+)] ,

as required in (3.7.c).
(3.7.d): For u ∈ U we have
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ε ≡ 〈γ(η − ξ), w − z+〉 + [ω(z) + 〈ω′(z), w − z〉 + 〈ω′(w), z+ − w〉 − ω(z+)]

≤ γ‖η − ξ‖∗‖w − z+‖ + [ω(z) + 〈ω′(z), w − z〉 − ω(w)]

+ [ω(w)+〈ω′(w), z+ − w〉−ω(z+)] ≤ α−1γ2‖η − ξ‖2
∗ −

α

2

[
‖w − z‖2 + ‖w − z+‖2

]
,

where the concluding inequality is given by (3.7.a) and by the strong convexity of
ω(·).

Theorem 3.2. Assume that F satisfies (2.1). Then the basic implementation
ensures relation (3.4) (and thus (2.11) with εt = 0) in no more than two inner it-
erations. Thus, with the basic implementation, the error bounds (2.13) and (2.14)
become, respectively,

ε(zN ) ≤
√

2Θ(z0)L

αN
(3.9)

and

εf (zN ) ≤
√

2Θ(z0)L

αN
,(3.10)

while the “computational price” of zN does not exceed 2N computations of F (·) and
solving 2N auxiliary problems (1.6).

Proof. Let (2.1) be the case. All we need to verify is that if, for a given t, (3.4)
is not met with st = 1, it definitely is met with st = 2. Indeed, let us set z = zt−1,
ξ = F (z), w = wt,1, η = F (w), z+ = wt,2, and γ = γt; let also U = Z. Comparing
the description of the basic implementation and (3.6), we see that our (z, w, z+, γ, U)
are exactly as required by the premise of Lemma 3.1, so that by that lemma we have

〈γF (wt,1), wt,1 − wt,2〉 + [ω(zt−1) + 〈ω′(zt−1), wt,2 − zt−1〉 − ω(wt,2)]

≡ 〈γF (w), w − z+〉 + [ω(z) + 〈ω′(z), z+ − z〉 − ω(z+)]

≤ α−1γ2‖F (z) − F (w)‖2
∗ −

α

2

[
‖w − z‖2 + ‖w − z+‖2

]
.

The concluding quantity in this chain, by (2.1), is ≤
[
α−1γ2L2 − α

2

]
‖z −w‖2, which

is just zero by (3.2). Thus, condition (3.4) is indeed met after at most two inner
iterations.

4. Extensions. The case of a non-Lipschitzean monotone operator. In fact, we
can handle monotone operators of various degrees of continuity, as follows.

Theorem 4.1. Assume that F is monotone and satisfies the relation

‖F (z) − F (z′)‖∗ ≤ L‖z − z′‖σ ∀z, z′ ∈ Z,(4.1)

where L < ∞ and σ ∈ [0, 1]. Note that the case of σ = 0 corresponds to a bounded
monotone operator.

Consider the algorithm

zt−1 	→ wt = Pzt−1
(γtF (zt−1)) ≡ argmin

u∈Z
[〈γtF (zt−1) − ω′(zt−1), u〉 + ω(u)] ,

wt 	→ zt = Pzt−1
(γtF (wt)) ≡ argmin

u∈Z
[〈γtF (wt) − ω′(zt−1), u〉 + ω(u)] ,

(4.2)

with the stepsizes

γt = 0.7L−1

(
Θ[ω]

t

) 1−σ
2

α
1+σ
2 , Θ[ω] = max

z0∈Z
Θ(z0),(4.3)
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and the following rule for generating approximate solutions:

zt =

⎛⎝ t∑
τ=	t/2


γτ

⎞⎠−1
t∑

τ=	t/2

γτwτ .

Then for every N one has

ε(zN ) ≤ O(1)L

(
Θ[ω]

αN

) 1+σ
2

(4.4)

with an absolute constant O(1). In the saddle point case, ε(zN ) in this bound can be
replaced with εf (zN ).

Proof. Applying Lemma 3.1 with U = Z, we conclude that algorithm (4.2)
guarantees (2.11) with

εt = α−1γ2
t ‖F (zt−1) − F (wt)‖2

∗ −
α

2

[
‖wt − zt−1‖2 + ‖wt − zt‖2

]
≤ α−1γ2

tL
2‖zt−1 − wt‖2σ − α

2
‖wt − zt−1‖2

≤ sup
d≥0

[
α−1γ2

tL
2dσ − α

2
d

]
,

and the concluding quantity is ≤ Θ[ω]
t in view of (4.3). Applying (2.13) to the segment

of iterations from �N/2� to N , we get

ε(zN ) ≤
Θ[ω]

(
1 +

∑N
t=	N/2
 t

−1
)

∑N
t=	N/2
 γt

≤ O(1)L

(
Θ[ω]

αN

) 1+σ
2

.

“Bundle” version of algorithm (4.2). In this version, one keeps in memory and
utilizes not only the latest value of F , but past values as well. The algorithm is as
follows.

(A) At the beginning of step t, we have at our disposal previous iterates z0, z1, . . . ,
zt−1, w1, w2, . . . , wt−1 (the set of all these iterates is denoted by Wt−1) along with a
set

Ut−1 =
{
u ∈ Z : ht−1

j (u) ≥ 0, i ∈ Jt−1

}
,

which intersects the relative interior of Z. Here ht−1
j (·) are combinations, with non-

negative coefficients, of the affine functions

ψv(u) ≡ 〈F (v), v − u〉, v ∈ Wt−1.

(B) At step t, we set

wt = argmin
y∈Ut−1

[〈γtF (zt−1) − ω′(zt−1), y〉 + ω(y)] ,

zt = argmin
y∈Ut−1

[〈γtF (wt) − ω′(zt−1), y〉 + ω(y)] ,

εt = 〈γt(F (wt) − F (zt−1)), wt − zt〉
+ [ω(zt−1) + 〈ω′(zt−1), wt − zt−1〉 + 〈ω′(wt), zt − wt〉 − ω(zt)] .

(4.5)
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(C) Applying Lemma 3.1 to U = Ut−1, z = zt−1, ξ = F (zt−1), η = F (wt), γ = γt,
we get

max
u∈Ut−1

[〈γtF (wt), wt − u〉 −Hu(zt−1) + Hu(zt)] ≤ εt

≤ α−1γ2
t ‖F (zt−1) − F (wt)‖2

∗ −
α

2

[
‖wt − zt−1‖2 + ‖wt − zt‖2

]
.

(4.6)

Recalling the structure of Ut−1, there exist nonnegative weights {λt
v}v∈Wt−1

such that

max
u∈Z

[
〈γtF (wt), wt − u〉 −Hu(zt−1) + Hu(zt) +

∑
v∈Wt−1

λt
v〈F (v), v − u〉

]
≤ εt,

whence

∀u ∈ Z : 〈γtF (wt), wt − u〉 +
∑

v∈Wt−1

λt
v〈F (v), v − u〉 ≤ Hu(zt−1) −Hu(zt) + εt,

εt ≤ α−1γ2
t ‖F (zt−1) − F (wt)‖2

∗ −
α

2

[
‖wt − zt−1‖2 + ‖wt − zt‖2

]
.

(4.7)

We compute the weights {λt
v}v∈Wt−1 , set

Γt = γt +
∑

v∈Wt−1

λt
v,(4.8)

choose Ut in accordance with the above restrictions, and pass to step t + 1.
(D) The approximate solution zt obtained in the course of t steps is

zt =

(
t∑

τ=
t/2	
Γτ

)−1 t∑
τ=
t/2	

[
γτwτ +

∑
v∈Wτ−1

λτ
vv

]
.

Theorem 4.2. Let F be monotone. For the outlined algorithm, one has

ε(zN ) ≤
(∑N

t=
N/2	 γt∑N
t=
N/2	 Γt

)
︸ ︷︷ ︸

χ≤1

Θ[ω] +
∑N

τ=
N/2	 εt∑N
t=
N/2	 γt

.(4.9)

In particular, if F satisfies (4.1) and γt are chosen according to (4.3), bound (4.9)
becomes

ε(zt) ≤ O(1)χL

(
Θ[ω]

αt

) 1+σ
2

.(4.10)

In the case when F comes from a game with convex-concave cost function f(x, y), the
error measure ε(·) in the above bounds can be replaced with εf (·).

Proof. Error bound (4.9) can be derived from (4.7) exactly in the same fashion as
the error bounds in Proposition 2.2 were derived from (2.15). Relation χ ≤ 1 follows
from Γt ≥ γt (see (4.8) and note that λt

v ≥ 0). As in the proof of Theorem 4.1, in the
case of (4.1), (4.3) we have εt ≤ t−1Θ[ω], and therefore (4.9) implies (4.10).

Note that the bundle version of algorithm (4.2) is more computationally demand-
ing than its prototype; as a compensation, it has a better theoretical efficiency esti-
mate (since χ ≤ 1).
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5. Examples. We are about to list a number of interesting particular cases of
the above construction.

Euclidean setup. In this case, ω(z) = 1
2 〈z, z〉 ≡ 1

2‖z‖2
2 and ‖ · ‖ = ‖ · ‖2, which

results in α = 1, Θ[ω] = 1
2 maxz′,z′′∈Z ‖z′ − z′′‖2

2. The basic implementation here
becomes

(a) wt = ΠZ(zt−1 − γF (zt−1)),

(b) zt = ΠZ(zt−1 − γF (wt)),(5.1)

(c) zt =
1

t

t∑
τ=1

wt,

where
• ΠZ(u) = argmin v∈Z ‖u− v‖2 is the projector onto Z,

• γ = 1√
2L

, L ≥ supz,z′∈Z,z �=z′
‖F (z)−F (z′)‖2

‖z−z′‖2
.

The efficiency estimates (3.9) and (3.10) become, respectively,

ε(zN ) ≤
√

2LD2[Z]

N
, εf (zN ) ≤

√
2LD2[Z]

N
,(5.2)

where D[Z] = maxz,z′∈Z ‖z − z′‖2 is the ‖ · ‖2-diameter of Z.
Note that in order for the method to be implementable, the projector ΠZ(·) onto

Z should be easy to compute; that is, Z should be “simple,” like a Euclidean ball, a
box, or the standard simplex ∆n = {x ∈ Rn : x ≥ 0,

∑
x = 1}. A less trivial example

is the “matrix box,” defined as follows:
• E is the space S(d1,...,dm) of block-diagonal symmetric matrices x with di×di

diagonal blocks x[i], i = 1, . . . ,m, equipped with the Frobenius inner product
〈x, y〉 = Tr(xy);

• Z = {x : |x[i]|∞ ≤ ai, i = 1, . . . ,m}, where |u|∞ is the usual spectral norm
(i.e., the maximal singular value) of a matrix.

Method (5.1.a–b) is nothing but the extragradient method for variational inequal-
ities proposed by Korpelevich in 1976 (see [7, 8]; for recent results, see [15] and
references therein); in particular, she proved the convergence of zt to a solution of the
v.i. The bounds (5.2) for the ergodic version of this method are, to the best of our
knowledge, new.

Note that the rate of convergence exhibited by the prox-method is, in a sense,
optimal. Specifically, given D,L > 0, consider the case when Z is the direct prod-
uct of two n-dimensional Euclidean balls X,Y of radii D and f(x, y) = yT (Ax − b)
for a symmetric operator A with operator norm not exceeding L, and b is such that
the operator equation Ax = b has a solution in X. The corresponding saddle point
problem maxy∈Y f(x, y) = D‖Ax− b‖2 is associated with an affine Lipschitz contin-
uous monotone operator with constant L with respect to ‖ · ‖ = ‖ · ‖2. Let B be
an arbitrary “first order” method for solving saddle point problems of the outlined
type, i.e., a method which is given b,X, Y in advance while having no direct access
to A; however, B has access to an “oracle” which, given an input vector x, returns
the vector Ax. It turns out [9] that whenever N ≤ 1

4n and B is a first order method
which is allowed to make no more than N calls to the oracle, there is a problem in
the family such that the result z obtained by B as applied to the problem satisfies the

relations ε(z) ≥ O(1)LD2

N , εf (z) ≥ O(1)LD2

N . Thus, when Z is the direct product of
two n-dimensional Euclidean balls and the dimension is large (n > N), bounds (5.2)
cannot be improved by more than an absolute constant factor.
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Spectahedron setup. In this case,
• E = S(d1,...,dm);
• Z = {z ∈ E : z � 0, Tr(z) = 1, z[i] � aiIdi

, i = 1, . . . ,m};
• ω(·) is the “regularized matrix entropy”

ω(z) =

n∑
i=1

(λi(z) + n−1δ) ln(λi(z) + n−1δ),

n =

m∑

=1

k
,

(5.3)

where δ ∈ (0, 1] is a permanently fixed regularization parameter (say, δ =
10−16) and λj(z), j = 1, . . . , n ≡ d1 + · · · + dm, are the eigenvalues of z ∈ E;

• ‖ · ‖ is the norm |z|1 =
∑

j |λj(z)| (so that ‖ · ‖∗ is the usual matrix norm
|z|∞).

Note that in the case of di = 1, i = 1, . . . ,m, Z is just the truncated simplex {x ∈
Rm : 0 ≤ xi ≤ bi,

∑
i xi = 1}.

It is known (see, e.g., [2]) that for the spectahedron setup one has

α ≥ 1

2
, Θ[ω] ≤ 4 ln

(
n

δ

)
= O(1) lnn,(5.4)

so that the efficiency estimates (2.13), (2.14) for the basic implementation become,
respectively,

ε(zN ) ≤ O(1)
L ln(n)

N
, εf (zN ) ≤ O(1)

L ln(n)

N
,(5.5)

where L is an a priori upper bound on the “1,∞” Lipschitz constant

L∗ = sup
z,z′∈Z,z �=z′

|F (z) − F (z′)|∞
|z − z′|1

of the operator F .
Note that basically the only computation at a step of our prox-method, aside

from computing F at a point, is computing Pz(ξ) for given z and ξ, that is, solving
the optimization problem of the form

min
z∈Z

{ω(z) + 〈p, z〉} .(5.6)

It is easily seen that solving the latter problem reduces to
(1) computing the eigenvalue decompositions p[i] = ViDiag{πi1, . . . , πidi}V T

i of
the diagonal blocks p[i] of p;

(2) finding the solution ξ∗ to the problem

min
ξ

{
m∑
i=1

di∑
j=1

[
(ξij + nδ−1) ln(ξij + nδ−1) + πidiξij

]
: 0 ≤ ξij ≤ ai,

m∑
i=1

di∑
j=1

ξij = 1

}
;

(5.7)
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(3) recovering the optimal solution z∗ to (5.6) as z∗[i] = ViDiag
{
ξ∗i1, . . . , ξ

∗
idi

}
V T
i ,

i = 1, . . . ,m.
Now, (3) is easy. Step (2) also is easy: ξ∗ij = fij(λ∗), where

fij(λ) = Π[0,ai](exp{λ− πij} − n−1δ︸ ︷︷ ︸
sij(λ)

)

is the point closest to sij(λ) in the segment [0, ai], and λ∗ is the root of the equation∑
i

∑
j

fij(λ) = 1.(5.8)

This equation can easily be solved by bisection; as a result, it takes just O(n) op-
erations to implement (2) within machine precision. Note also that when δ is less
than machine zero, from the computer’s viewpoint fij(λ) = min [ai, exp{λ− πij}]; if,
in addition, there is no truncation (i.e., ai = 1 for all i), computing ξ∗ij requires no
bisection, since within machine precision one has

ξ∗ij =
exp{−πij}∑

r

∑
s exp{−πrs}

.3

We see that the only “nontrivial” operation in solving (5.6) is (1). This operation is
“numerically tractable” when the sizes di of blocks in z ∈ Z are within a few hundreds,
and is easy, when these sizes are small integers; in particular, with di = O(1), solving
(5.6) within machine precision costs just O(d1 + · · · + dm) operations.

Mixed setups. In some applications (e.g., in those we are about to consider), E is
the direct product of Euclidean spaces Ek, k = 1, . . . ,K; Z is the direct product of
“standard” sets Zk ⊂ Ek (simplexes, boxes, spectahedrons, etc.); and we know what
are “good setup parameters” ωk(·), ‖ · ‖k for every one of the factors. The question
is how to “assemble” these entities into a “reasonably good” setup for a variational
inequality on Z = Z1 × · · · × ZK . When answering this question, we assume that we
know the quantities Θk = Θ[ωk], the parameters αk of strong convexity of ωk(·)|Zk

with respect to ‖ · ‖k, and upper bounds Lpq on “partial Lipschitz constants,”

L∗
pq = max

z,z′∈Z

{‖Fp(z) − Fp(z
′)‖∗p

‖zq − z′q]‖q
: z
 = z′
, � �= q, zq �= z′q

}
,

of the monotone operator F in question. Here up is the natural projection of u on Ep,
and ‖·‖∗k is the norm on Ek which is conjugate to ‖·‖k. To simplify our considerations,
assume that Lpq = Lqp.

4 Let us look at “assemblings” of the form

ω(z) =

K∑
k=1

γkωk(zk), ‖z‖ =

√√√√ K∑
k=1

µ2
k‖zk‖2

k

⎡⎣⇔ ‖z‖∗ =

√√√√ K∑
k=1

µ−2
k [‖zk‖∗k]2

⎤⎦,
(5.9)

3This explains the computational advantages of regularized entropy with δ of the order of machine
zero as compared to other functions ensuring (5.4), like

∑
i λ

p
i (x) with appropriately chosen p,

specifically, p = 1 +O(1)/ln(n); with the latter choice of ω, computing Pz(·) would always require a
bisection to solve the corresponding version of (5.8).

4Note that in the saddle point case (Z = X × Y , Zk are direct factors in either X or Y , and
Fk(z) = εk(∇f(z))k with εk = ±1), which is the case of primary interest here, one has L∗

k� = L∗
�k,

so that the assumption Lk� = L�k is fully justified.
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where µk > 0, γk > 0 are parameters of the construction. Note that auxiliary problems
(1.6) associated with Z = Z1 × · · · × ZK and ω(·) given by (5.9) are easy, provided
that problems (1.6) associated with every pair Zk, ωk(·) are easy. Further, we can
easily express the (natural bounds on the) quantities Θ[ω], α, and L (the Lipschitz
constant L of F with respect to ‖ · ‖) in terms of µ, γ; a straightforward computation
demonstrates that

Θ[ω] ≤ Θ̃ =
∑
k

γkΘ[ωk], α ≥ α̃ = min
k

γkαk

µ2
k

, L ≤ L̃ =
∣∣[µ−1

k µ−1

 Lk


]∣∣
∞ .(5.10)

Now, what matters for the complexity bound of our method, the setup being given by
ω(·), ‖ · ‖, is the quantity α−1ΘL (the smaller its value, the better), and it is natural

to look for the assembling which results in the smallest possible upper bound α̃−1Θ̃L̃
on this quantity. This problem can be easily solved; an optimal solution is given by
(5.9) with the parameters γk, µk given by

Mk
 := Lk


√
ΘkΘ


αkα

, σk :=

∑

 Mk
∑
p,
 Mp


, γk =
σk

Θk
, µk =

√
γkαk.(5.11)

For the resulting assembling, one has

(5.12) α̃ = Θ̃ = 1, L̃ =
∑
k,


Lk


√
ΘkΘ


αkα

.5

By Theorem 3.2, the efficiency estimate for the resulting algorithm is

ε(zN ) ≤

√
2
∑

k,
 Lk


√
ΘkΘ�

αkα�

N
.(5.13)

(In the saddle point case, ε(·) can be replaced with εf (zN ).)
Example 1: Matrix game. Assume that we are interested in finding a saddle

point of a bilinear function xTAy, x ∈ Rp, y ∈ Rq, on the product Z of two standard
simplexes ∆p = {x ≥ 0 :

∑
i xi = 1} and ∆q = {y ≥ 0 :

∑
j yj = 1}. Consider the

prox-method with mixed setup corresponding to spectahedron setups for the factors.

The monotone operator in question is F (x, y) =
[ Ay

−AT x

]
, so that L11 = L22 = 0,

while L12 = L21 is the Lipschitz constant of the mapping x 	→ ATx considered as a
mapping from (Rp, ‖ · ‖1) to (Rq, ‖ · ‖∞ ≡ ‖ · ‖∗1), so that L12 = L21 = maxi,j |Aij |.
Applying (5.4) and (5.13), we see that the algorithm yielded by the mixed setup obeys
the efficiency estimate

εf (zN ) ≤ O(1)
maxi,j |Aij |

√
ln(p + 1) ln(q + 1)

N
.(5.14)

(Recall that we treat the entropy regularization parameter δ as an absolute constant.)
In the basic implementation of the resulting method, effort per step is dominated by

5The fact that (5.11) implies that α̃ = Θ̃ = 1 follows immediately from (5.10). To verify that

λ ≡
∑

k,� Lk�

√
ΘkΘ�
αkα�

≡
∑

k,� Mk� ≥ L̃ ≡ |[µ−1
k µ−1

� Lk�]|∞ ≡ |[Mk�/
√
σkσ�]|∞, note that the matrix

λDiag{σ1, . . . , σm}−[Mk�] is diagonal-dominated and therefore is � 0, whence λIm−
[
Mk�/

√
σkσ�

]
�

0 as well.
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two computations of F (·), that is, by four matrix-vector multiplications (two by A
and two by AT ).

Example 2: Semidefinite programming. The matrix game considered in Exam-
ple 1 can be interpreted as follows: we are given p diagonal matrices Ai (the diag-
onal entries of Ai form the ith row in the game matrix A); the cost function of the
first player is f(x) = maxy∈∆q

xTAy or, which is the same, is the largest eigenvalue
of the matrix

∑
i xiAi, so that the first player is looking for a convex combination

of the matrices Ai that has the smallest possible maximum eigenvalue. Now con-
sider the latter problem in the case of symmetric matrices Ai ∈ S(d1,...,dm). This
problem again can be posed as a saddle point problem for the bilinear function
f(x, y) = Tr(y

∑p
i=1 xiAi), with x running through the simplex ∆p and y running

through the spectahedron Σd = {y ∈ S(d1,...,dm) : y � 0, Tr(y) = 1}. Indeed,
for B ∈ S(d1,...,dm), the quantity maxy∈Σd Tr(yB) is exactly the maximum eigenvalue
λmax(B) of B. Thus, finding a saddle point of f(x, y) on the direct product of ∆p×Σd

is exactly the semidefinite program of minimizing the maximum eigenvalue of a convex
combination of matrices A1, . . . , Ap. Equipping both factors with the spectahedron
setup, we get Θ1 = O(1) ln(p + 1), Θ2 = O(1) ln(q + 1), q = d1 + · · · + dm, α1 =

α2 = O(1). The associated monotone operator is F (x, y) =
[

(Tr(A1y),...,Tr(Apy))T

−ΣixiAi

]
so that L11 = L22 = 0 and L12 = L21 is the Lipschitz constant of the mapping
x 	→

∑p
i=1 xiAi considered as a mapping from (Rp, ‖ · ‖1) to (S(d1,...,dm), | · |∞ ≡ | · |∗1),

so that L12 = L21 = max1≤i≤p |Ai|∞. Applying (5.4) and (5.13), we see that the
algorithm yielded by the mixed setup obeys the efficiency estimate

εf (zN ) ≤ O(1)
max1≤i≤p |Ai|∞

√
ln(p + 1) ln(q + 1)

N
.(5.15)

In the basic implementation of the resulting method, effort per step is dominated
by two computations of F (·) and by two eigenvalue decompositions of matrices from
S(d1,...,dm).

Example 3: Computing Lovasz capacity. The Lovasz capacity number ϑ of a graph
with vertices 1, . . . , n and an m-element set of arcs V is, by definition, the optimal
value in the optimization problem

min
x∈X

λmax(d + x) = min
x∈X

max
y∈Σn

f(x, y), f(x, y) = Tr([d + x]y),(5.16)

where Σn = {x ∈ Sn : x � 0, Tr(x) = 1},

d =

[
dij =

{
0, (i, j) ∈ V
1, (i, j) �∈ V

]
,

and X is the set of all symmetric n × n matrices x = [xij ] such that xij = 0 for
(i, j) �∈ V . Note that for an optimal x the matrix ϑI − [d+x] is positive semidefinite,
so that nonzero entries in x satisfy the bound |xij | ≤ ϑ − 1. It follows that if µ is a
valid a priori upper bound on ϑ, then

ϑ = min
x∈Xµ

max
y∈Σn

Tr([d + x]y), Xs = {x ∈ X : |xij | ≤ s− 1}.(5.17)

Consequently, we can approximate ϑ by our prox-method as applied to the (variational
inequality associated with the) saddle point problem (5.17). Equipping Xµ with a
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Euclidean setup, and Σn with the spectahedron setup, we have α1 = 1, α2 ≥ 1
2 ,

Θ1 = 1
2 maxx′,x′′∈Xµ ‖x′ − x′′‖2

2 = 4mµ2, where m is the number of arcs in the graph

and Θ2 = O(1) ln(n+1). The monotone operator in question is F (x, y) =
[ y
−x − d

]
, so

that L11 = L22 = 0, while L12 = L21 is the Lipschitz constant of the mapping x 	→ x
considered as the mapping from (Sn, | · |2) to (Sn, | · |∞ ≡ |· |∗1), that is, L12 = L21 = 1.
Applying (5.4) and (5.13), we see that the algorithm yielded by the mixed setup obeys
the efficiency estimate

εf (zN ) ≤ O(1)
µ
√
m ln(n)

N
.(5.18)

For the basic implementation, the effort per step is dominated by the necessity of
finding eigenvalue decompositions of two matrices from Sn, which requires O(n3)
operations. Note that εf (xN , yN ) is the difference of the quantities maxy∈Σn Tr([d +
xN ]y) = λmax(d + xN ) (which is an upper bound on ϑ) and the easily computable
quantity minx∈Xµ

Tr([d + x]yN ) (which is a lower bound on ϑ). Computing these
bounds, we localize the Lovasz capacity ϑ in a segment of the length εf (xN , yN ).

We always can take µ = n; with this choice, the bound (5.18) implies that, in order
to approximate ϑ within absolute accuracy ε, it suffices to run O(n

√
m ln(n)ε−1) steps

of the algorithm. Since the arithmetic cost of a step is O(n3), we arrive at the overall
complexity of O(n4

√
m ln(n)ε−1) ≤ O(n5

√
ln(n)ε−1) operations. Note that a slight

modification of the outlined construction (see section 6) allows us to approximate ϑ
within relative accuracy ε (i.e., within absolute accuracy εϑ) in O(n3

√
m ln(n)ε−1) ≤

O(n4
√

ln(n)ε−1) operations. It is instructive to compare these complexity estimates
with those for interior point (IP) methods: for an n-node graph with no specific
structure and the number arcs in both the graph and its complement of order of n2,
the arithmetic cost of a single iteration in an IP method is O(n6).6 Thus, when ap-
proximating Lovasz capacity with fixed absolute (respectively, relative) accuracy, the
prox-method outperforms the IP methods by factors of order of O(n/

√
lnn) (respec-

tively, O(n2/
√

lnn)).
In the examples above, we have dealt with optimization problems which can be

reformulated as saddle point problems for biaffine functions. An application which
goes beyond this specific situation is minimization of the maximum of smooth (with
Lipschitz continuous gradients) convex functions. Indeed, the problem

min
x∈X

max
1≤
≤m

f
(x)

is nothing but the saddle point problem

min
x∈X

max
y∈∆m

f(x, y), f(x, y) =

m∑

=1

y
f
(x).

When f
 are smooth on X, the convex-concave function f(x, y) possesses a Lipschitz
continuous gradient, and the associated saddle point problem can be solved by our
prox-method.

6Indeed, under our assumptions, both the semidefinite program minθ,x∈X{θ : θI � d+x} defining
ϑ and the dual of this program have O(n2) design variables, so that the cost of a Newton step is
O(n6).
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6. Numerical illustration. Below we present numerical results obtained with
our prox-method on matrix games (Example 1) and the Lovasz capacity problem
(Example 3), with the setups as described in the previous section. Our implementation
was, essentially, the basic method with one modification: instead of always using fixed
“theoretically safe” stepsizes γt = γ̄ ≡ α√

2L
, a simple policy for on-line adjusting the

stepsizes was used. Specifically, whenever at step t the termination condition (3.4)
was met after at most two inner iterations, the starting value of γ at the next step
was taken to be 1.2 times larger than the final value of γ at step t. On the other hand,
when in the course of a step the termination condition was not met during the first
three inner iterations, the value of γ at every subsequent inner iteration was reduced
according to γ 	→ max[γ/2, γ̄]. The regularization parameter δ in (5.3) was set to
1.e−16.

Matrix games. We dealt with “square” matrix games minx∈∆p maxy∈∆p fA(x, y),
fA(x, y) = xTAy, with sparse matrices A generated as follows. We first chose at
random cells ij with nonzero entries Aij , with a given probability κ of choosing a
particular cell. In the chosen cells, the values of Aij were picked at random from the
uniform distribution on [−1, 1]. Periodically we measured the “actual accuracy”

εf (zt) = max
y∈∆q

(xt)TAy − min
x∈∆p

xTAyt = max
1≤j≤q

(ATxt)j − min
1≤i≤p

(Ayt)i

of current approximate solution zt = (xt, yt).
Note that with |Aij | ≤ 1, the efficiency estimate (5.14) implies that

N(ε) ≡ min{N : εf (xN , yN ) ≤ ε} ≤ 16 ln(2p)

ε
.(6.1)

The numerical results are presented in Table 1. We see that, qualitatively speak-
ing, the actual performance of the algorithm obeys the complexity bound (6.1) (see
the values of the products #F · ε). At the same time, the “empirical” constants
C in the bound εf (xt, yt) ≈ C

t are essentially better than the constant 16 ln(2p)
in (6.1); moreover, these constants seem to decrease as p grows. This phenomenon
is in full accordance with the surprisingly nice behavior of our simple on-line ad-
justment of the stepsizes: the “theoretically safe” value for them is about 0.125,
while the averaged, over t, empirical value varies from ≈ 3 for the smallest exam-
ple to ≈ 400 for the largest one. Note that even those “large” values of γt still
allow us to keep the average number of computations of F per step well below three.
Of course, we do not pretend to consider our experiments as conclusive—the nice
picture we observe perhaps reflects specific features of randomly generated game
problems.

Computing Lovasz capacity. In order to work with the “meaningful” upper bound
µ on ϑ, the execution was split into subsequent stages. At every stage, we applied
the method to the saddle point problem (5.17) with the upper bound on the Lovasz
capacity ϑ, coming from the previous stage, in the role of µ (at the very first stage, µ
was set to the number n of nodes). A stage was terminated when the current upper
bound on ϑ became < µ/2. It is easily seen that, with this implementation of the
prox-method, the total number of steps required to approximate ϑ within relative
accuracy ε is, up to logarithmic factors, O(1)n3

√
m ≤ O(1)n4, where m is the number
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Table 1

Experiments with matrix games. p = dimx = dim y; κ is the density of nonzeros in the game
matrix; ε = εf (xt, yt); ε1 = εf (x0, y0); #F is the total number of computations of F (·) in the course

of steps 1, . . . , t; γ̄ = t−1
∑t

τ=1 γτ . MATLAB code was run on a Pentium IV 1.3 GHz PC.

p
κ t =1 t =32 t =64 t =128 t =256 t =512 t =1024 t =2048 CPU

sec

ε 2.5e-1 3.7e-2 1.6e-2 7.6e-3 3.7e-3 1.8e-3 8.6e-4 4.3e-4
ε
ε1

1.0 1.4e-1 6.2e-2 3.0e-2 1.5e-2 7.0e-3 3.4e-3 1.7e-3

100 #F 2 72 144 296 592 1184 2376 4752 12

1.0 #F · ε 5.1e-1 2.6 2.3 2.3 2.2 2.1 2.0 2.0

γ̄ 0.5 2.7 3.0 3.2 3.2 3.3 3.3 3.3

ε 7.4e-2 1.4e-2 5.1e-3 2.2e-3 1.0e-3 4.8e-4 2.4e-4 1.2e-4
ε
ε1

1.0 1.9e-1 7.0e-2 3.0e-2 1.4e-2 6.5e-3 3.2e-3 1.6e-3

500 #F 2 68 145 293 589 1185 2373 4753 62

0.2 #F · ε 1.5e-1 9.7e-1 7.5e-1 6.5e-1 6.0e-1 5.7e-1 5.7e-1 5.7e-1

γ̄ 0.5 8.3 11.5 13.0 13.9 14.3 14.5 14.6

ε 4.0e-2 9.2e-3 2.9e-3 1.2e-3 5.5e-4 2.7e-4 1.3e-4 6.5e-5
ε
ε1

1.0 2.3e-1 7.3e-2 2.9e-2 1.4e-2 6.8e-3 3.3e-3 1.6e-3

1000 #F 2 68 140 292 588 1180 2372 4748 144

0.1 #F · ε 8.0e-2 6.3e-1 4.1e-1 3.4e-1 3.2e-1 3.2e-1 3.2e-1 3.1e-1

γ̄ 0.5 14.3 23.4 27.2 28.4 29.2 29.6 29.9

ε 3.3e-3 2.9e-3 7.9e-4 2.7e-4 9.5e-5 3.8e-5 1.5e-5 6.6e-6
ε
ε1

1.0 8.8e-1 2.4e-1 8.2e-2 2.9e-2 1.2e-2 4.6e-3 2.0e-3

10,000 #F 2 64 138 285 578 1169 2355 4732 1607

5.0e-3 #F · ε 6.6e-3 1.9e-1 1.1e-1 7.7e-2 5.5e-2 4.5e-2 3.5e-2 3.1e-2

γ̄ 0.5 26.6 106.4 135.6 181.3 241.3 289.4 335.9

ε 1.8e-3 1.8e-3 4.9e-4 1.5e-4 7.8e-5 2.9e-5 1.2e-5 5.3e-6
ε
ε1

1.0 9.7e-1 2.7e-1 8.5e-2 4.3e-2 1.6e-2 6.9e-3 2.9e-3

20,000 #F 2 64 139 288 578 1166 2342 4704 3566

2.5e-3 #F · ε 3.6e-3 1.1e-1 6.7e-2 4.4e-2 4.5e-2 3.4e-2 2.9e-2 2.5e-2

γ̄ 0.5 26.6 175.0 256.3 251.2 333.4 383.4 445.7

of arcs. Note also that every pair (x, y) ∈ X × Y (see (5.16)) produces a lower and
an upper bound on ϑ. The upper bound, of course, is merely λmax(d + x), while the
lower bound is obtained as follows. As we remember, the x-component of a saddle
point of f(·, ·) on X × Σn is a matrix from Xϑ−1, whence

ϑ = min
x′∈Xϑ−1

max
y′∈Σn

Tr([d + x′]y′) ≥ min
x′∈Xϑ−1

Tr([d + x′]y)

= Tr(dy) − (ϑ− 1)
∑

(i,j)∈V

|yij |

⇒ ϑ ≥
Tr(dy) +

∑
(i,j)∈V

|yij |

1 +
∑

(i,j)∈V
|yij |

.

Running the method, we computed the outlined upper and lower bounds on ϑ given
by iterates (xt, yt) and approximate solutions (xt, yt), thus getting current “best ob-
served” bounds. Computations were terminated when the difference between
the “best observed so far” upper and lower bounds on ϑ became < 1. We have
run the method on six randomly generated graphs and six Hamming graphs; the
results are presented in Tables 2 and 3.
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