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Abstract. In this paper we are concerned with the problem of robust dissipativity of linear
systems with parameters affected by box uncertainty; our major goal is to evaluate the largest
uncertainty level for which all perturbed instances share a common dissipativity certificate. While it
is NP-hard to compute this quantity exactly, we demonstrate that under favorable circumstances one
can build an O(1)-tight lower bound of this “intractable” quantity by solving an explicit semidefinite
program of the size polynomial in the size of the system. We consider a number of applications,
including the robust versions of the problems of extracting nearly optimal available storage, providing
nearly optimal required supply, Lyapunov stability analysis, and linear-quadratic control.
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1. Introduction and motivation. An important requirement of any modern
control system is its robustness. In many system theory and control applications,
the concept of robustness is related to the stability of the closed-loop system and its
performance measured with respect to a certain objective function.

In this paper, we focus on robustness with respect to unknown-but-bounded (and
possibly time-varying) perturbations of the entries in the matrix Σ =

[
A B
C D

]
of a

continuous-time linear dynamical system

ż = Az +Bu,
y = Cz +Du.

For the time being, we assume the simplest interval model of perturbations—every
entry Σij in Σ, independently of all other entries, can vary in the interval Σij±ρdΣij ,
where Σij are the nominal data, dΣij are given scale factors, and ρ is the uncertainty
level. The set of matrices just defined will be referred to as interval matrix and will
be denoted by Uρ.

The question we are addressing is as follows:
(?) What is the supremum ρ� of those uncertainty levels ρ under

which all perturbations of level ρ preserve a particular property of the
system, such as stability, passivity, contractiveness, etc.?

Typically, it is computationally intractable to give a precise answer to such a question.
For example, it is known to be NP-hard to check the stability of all instances of an
interval matrix Uρ [7]. In other words, we do not know how to check efficiently whether
every one of the Lyapunov linear matrix inequalities (LMIs)
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find X such that X � 0 and ATX +XA ≺ 01

corresponding to the instances A of an interval square matrix is solvable.
The situation does not improve at all when we pass from the question “whether all

instances of an interval matrix are stable” to the seemingly simpler question “whether
all instances of an interval matrix admit a common quadratic Lyapunov stability
certificate,” or, which is the same, whether the aforementioned LMIs have a common
solution. Although in the new form the question is to check the solvability of a finite
system of LMIs

X � 0, ATX +XA ≺ 0 ∀(A ∈ V),
where V is the (finite!) set of the extreme points of the original interval matrix, the
number of LMIs in this system blows up exponentially with the size of the matrix
(unless the number of uncertain entries in the matrix remains once and for ever fixed).
It turns out that in general it is already NP-hard to check whether a given candidate
solution X is feasible for the above system of LMIs.2

The difficulty arising when checking stability of (all instances of) an interval
matrix is typical for other problems of the aforementioned type: the property of
interest is equivalent to the solvability of certain LMI LΣ(X) � 0 with the data
coming from the matrix Σ of the system in question. When Σ is subject to interval
uncertainty, both of the following tasks become NP-hard:

(1.A) Checking whether every one of the LMIs

LΣ(X) � 0(1)

with Σ ∈ Uρ is solvable (i.e., to verify that the desired property is possessed by all
instances), and

(1.B) Checking whether the infinite system of LMIs

LΣ(X) � 0 ∀(Σ ∈ Uρ)
is solvable, i.e., whether all instances of our interval matrix share a common certificate
for the property of interest (which normally is a sufficient condition for the property
to be preserved also by dynamic perturbations).

Now, in light of the fact that it is NP-hard to answer questions (1.A), (1.B)
exactly, a natural course of action is to relax the questions in order to make them
tractable. We are not aware of any good relaxation of question (1.A). In contrast
to this, recent progress in what is called robust semidefinite programming [1, 5, 6]
(specifically, the matrix cube theorem [3]) leads to “tight” tractable relaxations of
question (1.B). It turns out that under favorable circumstances (which do take place
for a wide family of “properties of interest”) one can build efficiently a lower bound ρ̂
on the supremum ρ� of those uncertainty levels ρ for which the answer to the question
(1.B) is affirmative, and this lower bound is tight within an absolute constant factor
(the latter is in most of the cases π2 = 1.57 . . . ). The goal of this paper is to justify
the above claim.

1We write A � B (A � B) to express that A,B are symmetric matrices of the same size such
that A−B is positive semidefinite (respectively, positive definite).

2This “analysis” problem is not simpler than checking whether all instances of a given interval
symmetric matrix are positive semidefinite; it is shown in [7] that the latter problem is NP-hard
already in the case when all entries in the interval matrix, except for those from the first two rows
and columns, are fixed.
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A convenient general framework for our study is the dissipativity-based approach,
as developed in the seminal papers of Willems [9, 10]. The notion of dissipativity is
one of the most important concepts in systems and control theory, both from the
theoretical point of view as well as from the practical perspective. In many mechan-
ical and electrical engineering applications, dissipativity is related to the notion of
energy. Here, a dissipative system is characterized by the following property: at any
moment of time, the amount of energy which the system can supply to its environ-
ment cannot exceed the amount of energy that has been supplied to it. However, the
dissipativity-based framework is not restricted to the energy-related issues; it allows
us to investigate stability analysis and linear-quadratic control as well.

The rest of the paper is organized as follows. In section 2, we review basic notions
and results from dissipativity theory. In section 3, we present the box model of uncer-
tainty (which is slightly more general than the simple interval model) and pose and
motivate three basic dissipativity-related versions of question (1.B): finding a common
dissipativity certificate for all instances of a given uncertain system (a particular case
of this problem is the Lyapunov stability analysis under box uncertainty); extracting
available storage/providing required supply in the face of uncertainty (this covers, in
particular, the optimal linear-quadratic control of uncertain systems). In the central
section 4, we develop “tractable tight relaxations” of the problems posed in section
3. Finally, in section 5, we present several illustrating numerical examples.

On many occasions in this paper we use the term “efficient computability” of
various quantities. An appropriate definition of this notion does exist,3 but for our
purposes here it suffices to agree that all “LMI-representable” quantities—those which
can be represented as optimal values in semidefinite programs

min
x

{
cTx : A0 +

N∑
i=1

xiAi 	 0

}

or generalized eigenvalue problems

min
x,ω


ω :

A(x) ≡ A0 +
N∑
i=1

xiAi 	 0

B(x) ≡ B0 +
N∑
i=1

xiBi � ωA(x)

C(x) ≡ C0 +
N∑
i=1

xiCi 	 0


—are efficiently computable functions of the data c, {Ai ∈ Sn}Ni=0, respectively,
{Ai, Bi, Ci ∈ Sn}Ni=0; where S

n is the space of real symmetric n × n matrices. From
now on, missing blocks in block matrices are assumed to be zero.

2. Dissipative systems. In this section, we shall briefly review the dissipativity
theory for linear systems with quadratic storage and supply functions as developed in
[10]. The readers less familiar with the topic are referred to [8] for details.

Consider a continuous-time linear time-invariant dynamical system given by

ż(t) = Az(t) +Bu(t), z(0) = ζ,
y(t) = Cz(t) +Du(t),

(2)

3For a definition which fits best of all the contents of the paper, see [2, Chapter 5].
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where Σ ≡ [
A B
C D

] ∈ R(n+p)×(n+m) is the matrix of system coefficients, u(·) ∈ Rm is

the input (which henceforth is assumed to be locally square integrable), z(·) ∈ Rn is
the state, and y(·) ∈ Rp is the output. In what follows we refer to system (2) given
by a matrix Σ as “system Σ.”

Let us fix a quadratic supply function

S : Rp+m → R, S(y, u) =

[
y
u

]T [
Q L
LT R

] [
y
u

]
;(3)

here

P =

[
Q L
LT R

]
is a symmetric supply matrix (Q is p×p, R ism×m). Given a trajectory (z(·), y(·), u(·))
of (2) and two time instants t0 ≤ t1, we interpret the corresponding supply∫ t1

t0

S(y(t), u(t))dt

as the work carried on the system in the time interval [t0, t1] along the trajectory in
question, if the supply is nonnegative, and as minus the energy extracted from the
system, if the supply is negative.

Note that along a trajectory of (2) the supply can be expressed in terms of the
state and the input:

SΣ(z, u) ≡ S(Cz +Du, u)

=

[
z
u

]T [
CTQC CT (L+QD)

(L+QD)TC DTQD + LTD +DTL+R

]
︸ ︷︷ ︸

SΣ

[
z
u

]
.

(4)

Definition 2.1. System Σ is called dissipative with respect to supply S, if there
exists a nonnegative storage function V (z), V (0) = 0, such that

V (z(0)) +

∫ T

0

S(y(t), u(t))dt ≥ V (z(T ))(5)

for all T ≥ 0 and all trajectories (z(·), y(·), u(·)) of the system.
The standard interpretation of a storage function is that V (z) is the internal

energy stored by system in state z; with this interpretation, (5) means that the work
W on the system needed to move it from one state to another is at least the resulting
change ∆V in the internal energy stored by the system; the excess W − ∆V ≥ 0 is
thought of to be dissipated by the system.

The summary of facts on dissipativity we need in what follows is as follows.
Assume that system Σ is controllable, and let S be a quadratic supply:

D.1. (Σ,S) is dissipative if and only if (Σ,S) admits a quadratic storage function
V (z) = zTZz, where Z ∈ Sn+ (from now on, Sn+ is the cone of positive
semidefinite matrices from Sn).

D.2. A quadratic function V (z) = zTZz is a storage function for (Σ,S) if and only
if Z ∈ Sn+ and

S(y(t), u(t))− d

dt
(zT (t)Zz(t)) ≥ 0
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for all trajectories (z(·), y(·), u(·)), or, which is the same, if and only if Z ∈ Sn

solves the system of matrix inequalities (MIs)

Z 	 0,(6a)

DΣ[Z] ≡ SΣ −
[

ATZ + ZA ZB
BTZ

]
	 0(6b)

(for notation, see (4)). Note that MI (6b) expresses a very transparent re-
quirement that

SΣ(z(t), u(t)) ≥ d

dt
(zT (t)Zz(t))(7)

for all t and all trajectories (z(t), y(t), u(t)) of Σ. In what follows, we call the
solutions of (6) the dissipativity certificates for (Σ,S).

D.3. If (Σ,S) is dissipative, then we have the following:
(a) among the associated storage functions there exist the (pointwise) min-

imal one,

Vav(z) = sup
(z(·),y(·),u(·))

{
−
∫ t1

0

S(y(t), u(t))dt :
(z(·), y(·), u(·)) is a trajectory,
z(0) = z

}
(“available storage”), and the (pointwise) maximal one,

Vreq(z) = inf
(z(·),y(·),u(·))

{∫ t1

0

S(y(t), u(t))dt :
(z(·), y(·), u(·)) is a trajectory,
z(0) = 0, z(t1) = z

}
(“required supply”). Every storage function V (·) for (Σ,S) satisfies the
relations Vav(z) ≤ V (z) ≤ Vreq(z) for all z, and every convex combina-
tion of Vav(·) and Vreq(·) is a storage function for (Σ,S).

(b) Both the available storage and the required supply are quadratic func-
tions of the state:

Vav(z) = zTZavz,
Vreq(z) = zTZreqz,

where the positive semidefinite matrices Zav, Zreq are, respectively, the
	-minimal and the 	-maximal solutions of (6). The set of solutions to
(6) is exactly the “matrix interval” {Z : Zav � Z � Zreq}.

D.4. Assume that (Σ,S) is dissipative and that the matrix DTQD+LTD+DTL+
R is positive definite. Then the state feedback

u = Favz, Fav = −(DTQD+ LTD+DTL+R)−1(BTZav − (L+QD)TC)

stabilizes the system (i.e., the real parts of all eigenvalues of the matrix A+
BFav of the closed-loop system are negative), and with this feedback, the
energy extracted from the system, the initial state of the system being ζ ∈ R

n,
is exactly the available storage Vav(ζ):

−
∫ ∞

0

S(y(t), u(t))dt = ζTZavζ,
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where (y(t), u(t)) are given by

ż(t) = Az(t) +Bu(t), z(0) = ζ,
u(t) = Favz(t),
y(t) = Cz(t) +Du(t).

Similarly, the state feedback

u = Freqz, Freq = −(DTQD+LTD+DTL+R)−1(BTZreq−(L+QD)TC)

stabilizes the “backward time” system (i.e., the real parts of all eigenvalues
of the matrix −(A + BFreq) of the closed-loop system with backward time
are negative), and with this feedback the supply required to move the system
from the origin to a state ζ is exactly the required supply Vreq(ζ):∫ ∞

0

S(y(t), u(t))dt = ζTZreqζ,

where (y(t), u(t)) are given by

ż(t) = −[Az(t) +Bu(t)], z(0) = ζ,
u(t) = Freqz(t),
y(t) = Cz(t) +Du(t).

Let us list several important examples of supply functions.
Example 1 (positive-real systems). Here m = p, and the supply matrix is

P = [ I
I

], i.e.,

S(y, u) = 2yTu.

Assuming that A is stable and (A,B,C) is minimal, the pair (Σ,S) is dissipative if

and only if (2) is passive, i.e.,
∫ T
0

yT (t)v(t)dt ≥ 0 for all T ≥ 0 and all trajectories
(z(t), y(t), v(t)) with z(0) = 0. Under the same assumptions on A,B,C, the frequency
domain characterization of passivity is that the transfer function

H(s) = C(sI −A)−1B +D

of the system is such that

�(s) ≥ 0 ⇒ H(s) +H∗(s) 	 0,

where H∗(s) is the Hermitian conjugate of H(s) and �(s) is the real part of s ∈ C.
Example 2 (nonexpansive systems [4]). Here the supply matrix is P = [Ip

Im
]

(Ik is the k × k unit matrix), i.e.,

S(y, u) = uTu− yT y.

Assuming again that A is stable and (A,B,C) is minimal, dissipativity of (Σ,S) is
equivalent to the fact that∫ T

0

yT (t)y(t)dt ≤
∫ T

0

uT (t)u(t)dt
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for all T ≥ 0 and trajectories (z(t), y(t), u(t)) of (2) with z(0) = 0. Under the same
assumption on A,B,C, the frequency domain characterization of nonexpansivity is
that the transfer function H(s) of the system is such that

�(s) ≥ 0 ⇒ H∗(s)H(s) � I.

Example 3 (linear-quadratic control [4]). Here the supply matrix P is positive
semidefinite. Assuming that (A,B) is controllable, the pair (Σ,S) is always dissipa-
tive, with the available storage Vav(z) ≡ 0. The required supply Vreq(z) is the optimal

value in the problem of optimal control where the goal is to minimize
∫ T
0

S(y(t), u(t))dt
when moving the system from the origin at time 0 to the state z at time T (to be cho-
sen).

3. Dissipativity under uncertainty. Now assume that the linear dynamic
system in question is uncertain, so that all we know about the matrix Σ is that Σ
belongs to a given uncertainty set Uρ in the space of (n+ p)× (m+ p) real matrices.
In this paper we focus on the case of box uncertainty:

Uρ =
{
Σ = Σ+

L∑
�=1

u�dΣ� : −ρ ≤ u� ≤ ρ, " = 1, . . . , L

}
,(8)

where
• Σ = [A B

C D
] is the nominal system;

• dΣ� = [dA	 dB	
dC	 dD	

], " = 1, . . . , L, are basic perturbation matrices;
• ρ > 0 is the uncertainty level.

In what follows, we refer to matrices Σ ∈ Uρ as to instances of the uncertain system
associated with the uncertainty set Uρ.

Let us fix a quadratic supply function (3); in what follows, when speaking about
the dissipativity of a certain system, we mean the dissipativity with respect to this
supply function. We assume from now on that the nominal pair (A,B) is controllable,
and the nominal system Σ is dissipative, with the minimal and maximal dissipativity
certificates Zav, Zreq, respectively.

We intend to focus on three dissipativity-related problems for uncertain systems,
specifically, the following problems:

1. Common dissipativity certificate. Find a common dissipativity certificate for
all instances of the uncertain system.

2. Extracting available storage. Given ε ∈ (0, 1), find a feedback which stabilizes
all instances of the uncertain system and allows us to extract from the initial
state ζ of any instance energy at least (1− ε)ζTZavζ.

3. Providing required supply. Given δ > 0, find a feedback which stabilizes
in backward time all instances of the uncertain system and allows to move
every instance from the origin to a given state ζ with total supply at most
(1 + δ)ζTZreqζ.

Our next goal is to motivate and to model the outlined problems.

3.1. Common dissipativity certificate. The problem of finding a common
dissipativity certificate for all instances of an uncertain system is as follows.

Problem 1. Given a supply S, a convex set I in the cone Sn+, and the data
specifying Uρ, find the supremum of those ρ ≥ 0 for which all instances from Uρ admit
a common dissipativity certificate in I, or, which is the same in view of D.2, find the
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supremum of those ρ ≥ 0 for which the system of constraints

Z ∈ I,(9a)

DΣ[Z] ≡
[

CTQC −ATZ − ZA CT (L+QD)− ZB
(L+QD)TC −BTZ DTQD + LTD +DTL+R

]
	 0(9b)

∀Σ =

[
A B
C D

]
∈ Uρ

(see (6)) in matrix variable Z is solvable.
The motivation behind Problem 1 is quite transparent: there are cases when the

dissipativity is a highly desirable property, and in these cases it is worthy of knowing
what are the largest perturbations which for sure preserve this property. With this
motivation, however, it remains unclear why we should be interested in a common
dissipativity certificate for all Σ ∈ Uρ rather than to ask what is the largest ρ for
which every instance from Uρ admits a dissipativity certificate (perhaps depending on
the instance). The motivation behind seeking a common dissipativity certificate comes
from the fact that such a certificate ensures dissipativity of the uncertain time-varying
system

ż(t) = A(t)z(t) +B(t)u(t),
y(t) = C(t)z(t) +D(t)u(t),

(10)

where the dependence of Σ(t) ≡ [A(t) B(t)
C(t) D(t)

] on t is not known in advance; all we

know is that Σ(t) is a measurable function of t taking values in Uρ. The precise
meaning of the claim “existence of a common dissipativity certificate for all instances
Σ ∈ Uρ implies dissipativity of the uncertain time-varying system (10)” is given by
the following simple statement.

Proposition 3.1. Let Z be a common dissipativity certificate for all instances
Σ ∈ Uρ, i.e., let Z 	 0 satisfy (9b). Then for every T ≥ 0 and every trajectory
(z(t), y(t), u(t)) of the time-varying system (10) with Σ(t) ∈ Uρ for all t, one has

zT (0)Zz(0) +

∫ T

0

S(y(t), u(t))dt ≥ zT (T )Zz(T ).(11)

Proof. It is immediately seen that (9b) implies that

S(y(t), u(t)) ≥ d

dt
(zT (t)Zz(t))

for all t. Integrating this inequality, we arrive at (11).
Example 4 (Lyapunov stability analysis under box uncertainty). Assume that

we have designed a controller for a linear dynamical system, and let

ż = Az

be the description of the closed-loop system (so that some components of z represent
states of the plant, while the remaining components of z represent states of the con-
troller). After the design is completed, a natural question is how the performance of
the system can be affected by perturbations in A (i.e., in the parameters of the plant
and of the controller). Assuming a box model of perturbations

A ∈ Vρ =
{
A = A+

L∑
�=1

u�dA� : −ρ ≤ u� ≤ ρ, " = 1, . . . , L

}
,
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an important component of the above question is, What is the supremum ρ� of those
uncertainty levels ρ for which all instances A ∈ Vρ remain stable, moreover, such that

zT (t)Zz(t) ≤ β exp{−αt}zT (0)Zz(0) ∀t ≥ 0(12)

for all trajectories z(·) of all perturbed instances? Here Z � 0, β > 1, and α > 0
are given in advance. A well-known sufficient condition for (12) is the existence of
an appropriate quadratic Lyapunov stability certificate, namely, a matrix Z satisfying
the relations

β−1Z � Z � Z,(13a)

ATZ + ZA � −αZ ∀A ∈ Vρ.(13b)

Indeed, if Z satisfies (13) and z(t) is a trajectory of the time-varying system

ż(t) = A(t)z(t) (A(t) ∈ Vρ ∀t),

then

d
dt (z

T (t)Zz(t)) = zT (t)[AT (t)Z + ZA(t)]z(t)
≤ −αzT (t)Zz(t) (cf. (13b))
≤ −αzT (t)Zz(t) (cf. (13a));

hence

zT (t)Zz(t) ≤ exp{−αt}zT (0)Zz(0)
≤ exp{−αt}zT (0)Zz(0) (cf. (13a))

and therefore

zT (t)Zz(t) ≤ βzT (t)Zz(t) (cf. (13a))
≤ β exp{−αt}zT (0)Zz(0).

On the other hand, it is immediately seen that relations (13) say exactly that Z is a
common dissipativity certificate, belonging to the matrix interval I = {Z : β−1Z � Z
� Z} for all instances Σ ∈ Uρ of the system

ż = Az + 0n×1 · u,
y = z + 0n×1 · u(14)

when the supply matrix is specified as

P =

[ −αZ
I

]
;(15)

here Uρ is the box uncertainty given by

dΣ� =

[
dA� 0n×1

0n×n 0n×1

]
, " = 1, . . . , L.

We see that Problem 1 can be used to find the largest uncertainty level ρ for which the
validity of (13) can be guaranteed by a quadratic Lyapunov stability certificate.
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3.2. Extracting available storage. Assume that we are interested in retriev-
ing the energy stored in the initial state ζ. If there were no perturbations, the maximal
amount of energy we could retrieve would be the nominal available storage ζTZavζ,
and the corresponding control could be chosen in the state feedback form (see D.4).
With perturbations, we hardly could guarantee the same amount of retrieved energy;
however, it is reasonable to look for a state feedback which stabilizes all instances of
the uncertain system in question and allows us to retrieve, whatever is an instance
and an initial state ζ, at least a given fraction (1 − ε)ζTZavζ of the nominal avail-
able storage. To model this target mathematically, we start with the following simple
observation.

Proposition 3.2. Assume that 0 ≺ Zav, and let ε ∈ [0, 1), ρ ≥ 0 be given.
Assume that matrices G,H ∈ Sn+ and a state feedback u = Fz are such that

1.

[
CTQC CT (L+QD)

(L+QD)TC DTQD + LTD +DTL+R

]
−
[

ATG+GA GB
BTG

]
	 0

∀
[

A B
C D

]
∈ Uρ,

(16)

i.e., G is a common dissipativity certificate for all instances of Uρ;
2.

[
I FT

] [ CTQC CT (L+QD)
(L+QD)TC DTQD + LTD +DTL+R

] [
I
F

]
≺ [

(A+BF )TH +H(A+BF )
]

∀
[

A B
C D

]
∈ Uρ;

(17)

3.

(1− ε)Zav � H ≺ G.(18)

Then all instances of the uncertain time-varying closed-loop system

ż(t) = A(t)z(t) +B(t)u(t),
y(t) = C(t)z(t) +D(t)u(t),
u(t) = Fz(t),

[
A(t) B(t)
C(t) D(t)

]
∈ Uρ ∀t(19)

share a common quadratic Lyapunov function zT (G−H)z. Moreover, for every initial
state ζ = z(0) of (19), one has

−
∫ ∞

0

S(y(t), u(t))dt ≥ ζTHζ ≥ (1− ε)ζTZavζ,(20)

i.e., the state feedback F allows us to extract at least (1−ε) times the nominal available
storage ζTZavζ.

Proof. Consider a time-invariant instance Σ =
[
A B
C D

]
of (19), and let (z(t), y(t),

u(t)) be a trajectory of this instance. By (16), the quadratic function V (z) = zTGz
is a storage function for (Σ,S); hence for every t0 ≤ t1

zT (t0)Gz(t0) +

∫ t1

t0

S(y(t), u(t))dt ≥ zT (t1)Gz(t1).(21)

On the other hand, (17) implies that
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S(y(t), u(t)) ≤ d

dt

(
zT (t)Hz(t)

)− θzT (t)z(t)

for certain θ > 0; hence∫ t1

t0

S(y(t), u(t))dt ≤ [
zT (t1)

THz(t1)− zT (t0)
THz(t0)

]− θ

∫ t1

t0

zT (t)z(t)dt.

Substituting this inequality into (21), we see that for every trajectory of every time-
invariant instance of (19) and every pair t0 ≤ t1 of time instants one has

zT (t0)[G−H]z(t0)− θ

∫ t1

t0

zT (t)z(t)dt ≥ zT (t1)[G−H]z(t1);

hence d
dt (z

T (t)[G−H]z(t)) ≤ −θzT (t)z(t) for all t ≥ 0 and all trajectories, so that

(A+BF )T [G−H] + [G−H](A+BF ) � −θI.

Since this relation is valid for all Σ ∈ Uρ, and since G − H � 0 by (18), G − H is
indeed a quadratic Lyapunov stability certificate for (19).

Now consider a trajectory (z(t), y(t), u(t)) of (19). Same as above, we have

S(y(t), u(t)) ≤ d

dt

(
zT (t)Hz(t)

)
.

Integrating both sides of this inequality from 0 to ∞ and taking into account that
(z(t), y(t), u(t)) converges exponentially fast to 0 as t → ∞ (we have seen that (19)
admits quadratic Lyapunov stability certificate!), we get∫ ∞

0

S(y(t), u(t))dt ≤ −zT (0)Hz(0),

as required in the first inequality in (20); the second inequality in (20) is readily given
by (18).

In view of Proposition 3.2, we could pose the problem of extracting available
storage as the problem of finding the supremum of those uncertainty levels ρ for
which the semi-infinite system of MIs (16), (17), (18) in matrix variables G,H,F is
solvable. This problem, however, is too difficult; it is completely unclear how to check
efficiently the solvability of this nonlinear in F,H MI even in the nominal case ρ = 0.
This is why we are forced to simplify our task by assuming that either F or H are
given in advance. With this simplification, we arrive at the following pair of problems.

Problem 2A. Given a supply S, a feedback matrix F , parameter ε ∈ (0, 1), and
the data specifying Uρ, find the supremum of those ρ ≥ 0 for which the system of MIs
(16)–(18) in matrix variables G,H is solvable.

With F specified as the ideal nominal feedback Fav, see D.4, Problem 2A becomes
a quite natural question of finding the largest uncertainty level for which we can certify
the fact that whatever is an initial state ζ of an instance of the uncertain system, the
nominal feedback allows us to extract at least the fraction (1−ε) of the corresponding
nominal available storage ζTZavζ.

Problem 2B. Given a supply S, parameter ε ∈ (0, 1), an n× n positive definite
matrix H 	 (1− ε)Zav, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system of MIs (16), (18) in matrix variables G and F is solvable.

A simple choice for the matrix H in Problem 2B is the solution of Problem 2A.
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3.3. Providing required supply. The motivation behind this problem is com-
pletely similar to the one for the extracting storage problem; the only difference is
that now we want to drive the system from the origin to a given state ζ and we are
interested in achieving this target with the total supply not exceeding (1 + δ) times
the nominal required supply ζTZreqζ. We have the following analogy of Proposition
3.2.

Proposition 3.3. Assume that 0 ≺ Zreq, and let δ ∈ [0, 1), ρ ≥ 0 be given.
Assume that matrices G,H ∈ Sn+ and a state feedback u = Fz are such that the
conditions (16), (17) and the condition

G ≺ H � (1 + δ)Zreq(22)

are satisfied.
Then all instances of the uncertain time-varying closed-loop system

ż(t) = −[A(t)z(t) +B(t)u(t)],
y(t) = C(t)z(t) +D(t)u(t),
u(t) = Fz(t),

[
A(t) B(t)
C(t) D(t)

]
∈ Uρ ∀t(23)

(which is the backward time version of system (19)) share a common quadratic Lya-
punov function zT [H − G]z. Moreover, for every initial state ζ = z(0) of (23), one
has ∫ ∞

0

S(y(t), u(t))dt ≤ (1 + δ)ζTZreqζ,(24)

i.e., the state feedback F allows us to move system (19) from the origin to a given
state ζ with total supply at most (1 + δ) times the nominal required supply ζTZreqζ.

The proof is similar to the one of Proposition 3.2.
In view of Proposition 3.3, a natural way to model the providing required supply

problem would be to look for the largest ρ for which the semi-infinite system (16),
(17), (22) in matrix variables F,G,H is solvable; however, “tractability reasons”
similar to those in section 3.2 force us to simplify the setting and restrict ourselves to
the following pair of problems.

Problem 3A. Given a supply S, a feedback matrix F , parameter δ > 0, and the
data specifying Uρ, find the supremum of those ρ ≥ 0 for which the system of MIs
(16), (17), (22) in matrix variables G,H is solvable.

Problem 3B. Given a supply S, parameter δ > 0, an n × n positive definite
matrix H � (1+δ)Zreq, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system of MIs (16), (17) in matrix variables G, 0 � G ≺ H, and F is
solvable.

In contrast to the situation of section 3.2, now there exists a particular “tractable
case” where one can treat in the system of interest (which is now the system (16), (17),
(22)) both F and H as design variables; this is the case of positive semidefinite supply
matrix [ Q L

LT R
] (as it happens in linear-quadratic control).4 In this case it makes sense

to specify the common dissipativity certificate G of the perturbed instances as the
zero matrix; this choice ensures the validity of (16) and is “ideal” from the viewpoint
of the constraint (22). Setting G = 0 and treating F , H as the design variables in the

4Note that this case makes no sense in the extracting storage problem, since there it would imply
that “there is nothing to extract” – Zav = 0
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system (16), (17), (22), we arrive at the following version of the problem of providing
required supply.

Problem 3C. Given a supply S such that the supply matrix P is positive semidef-
inite, parameter δ > 0, and the data specifying Uρ, find the supremum of those ρ ≥ 0
for which the system comprised of semi-infinite MI (17) and the LMI

0 ≺ H � (1 + δ)Zreq(25)

in matrix variables F,H is solvable.

4. Processing the problems. Every one of Problems 1, 2A, 2B, 3A, 3B, and
3C asks for finding the largest ρ such that a given system of MIs (depending on
ρ as on a parameter) is solvable. The systems in question are semi-infinite—they
involve infinitely many MIs with the data running through the uncertainty sets. It
is well known that semi-infinite systems of MIs are, in general, NP-hard; it is easy
to show that in general this is the case with the specific semi-infinite systems arising
in Problems 1, 2A, 2B, 3A, 3B, and 3C. What we intend to do is to replace these
NP-hard systems with their computationally tractable conservative approximations,
the latter notion being defined as follows.

Definition 4.1. Let S be a system of constraints on a design vector x. We
say that a system A of constraints on x and a vector of additional variables y is a
conservative approximation of S if the x-component of every feasible solution (x, y)
of the approximating system A is a feasible solution of the original system S.

Our plan for processing Problems 1, 2A, 2B, 3A, 3B, and 3C is as follows: we
start with reviewing the basic results we intend to use when building computationally
tractable approximations of the problems and then apply these results to the problems
of interest.

4.1. The matrix cube theorem. Consider an uncertain LMI with affine box
uncertainty

A0(x) +

L∑
�=1

u�A�(x) 	 0 ∀(u : ‖u‖∞ ≤ ρ),(26)

where
• x ∈ Rd is the vector of decision variables;
• A�(x), " = 0, 1, . . . , L, are symmetric m×m matrices affinely depending on

x;
• u1, . . . , uL are perturbations, and ρ ≥ 0 is the uncertainty level.

It is known that in general, it is NP-hard to solve (26) or even to check whether
a given candidate solution x is feasible. However, (26) admits a computationally
tractable conservative approximation which is a system of LMIs in original variables
x and additional symmetric matrix variables X1, . . . , XL. Let us write X 	 ±Y
as a shortcut for the system of two matrix inequalities X 	 Y , X 	 −Y . The
aforementioned conservative approximation of (26) is as follows:

X� 	 ±A�(x), " = 1, . . . , L;(27a)

ρ
L∑
�=1

X� � A0(x).(27b)
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The fact that (27) is indeed a conservative approximation of (26) is evident: if x can
be extended by appropriately chosen X1, . . . , XL to a feasible solution of (27), then
from (27a) it follows that u�A�(x) 	 −ρX� for all u� such that |u�| ≤ ρ; hence

A0(x) +

L∑
�=1

u�A�(x) 	 A0(x)− ρ

L∑
�=1

X� ∀(u : ‖u‖∞ ≤ ρ);

the right-hand side matrix in the latter relation is 	 0 by (27b), so that x indeed
satisfies (26).

It turns out that the “level of conservativeness” of the approximation (27) is not
too big, provided that the matrices A1(x), . . . ,AL(x) are of small ranks.

Proposition 4.1 (matrix cube theorem [3]). Let µ = maxxmax�≥1 Rank(A�(x)).
(Note " ≥ 1 in the max!). Then the relation between the feasible sets of (26) and (27)
is as follows:

1. If x can be extended to a feasible solution of (27), then x is feasible for (26).
2. If x cannot be extended to a feasible solution of (27), then x is infeasible for

(26) with ρ replaced by ϑ(µ)ρ, where ϑ(·) is certain universal function such
that ϑ(µ) ≤ π

√
µ

2 for all µ and

ϑ(1) = 1, ϑ(2) =
π

2
= 1.57 . . . , ϑ(3) = 1.73 . . . , ϑ(4) = 2.

In particular, for every set X ⊂ Rd one has

1 ≤ sup{ρ : (26) has a solution in X}
sup{ρ : (27) has a solution in X} ≤ ϑ(µ)

provided that the numerator in the fraction is positive.
Remark 1. Sometimes we shall be interested in a sufficient condition for the strict

version

A0(x) +

L∑
�=1

u�A�(x) � 0 ∀(u : ‖u‖∞ ≤ ρ)

of the semi-infinite LMI (26). Such a sufficient condition can be obtained from (27)
by replacing the nonstrict LMI (27b) with its strict version. For the resulting pair of
conditions, a statement completely similar to the matrix cube theorem takes place.

4.2. Approximating Problem 1. Let

Q = Q+ −Q−

be the representation of Q as a difference of two positive semidefinite symmetric
matrices with orthogonal image spaces, and let

S+ = Q
1/2
+ , S− = Q

1/2
− .

From now on, we assume that the set I in Problem 1 is LMI-representable, i.e., it can
be specified by LMI {Z : Z[Z] 	 0}, where Z[·] is an affine function taking values
in the space of symmetric matrices. With this assumption, Problem 1 becomes the
problem of finding the supremum ρ�1 of those ρ > 0 for which the system of LMIs

Z[Z] 	 0,(28a) [ −ATZ − ZA CTL− ZB
LTC −BTZ LTD +DTL+R

]
+

[
CT

DT

]
Q
[

C D
] 	 0(28b)

∀(A,B,C,D) ∈ Uρ
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in symmetric matrix variable Z has a solution. This system can be equivalently
rewritten as

Z[Z] 	 0,(29a)
δCTQC+CTQδC +CTQC

−ATZ − ZA
δCTQD+CTQδD +CTQD

+CTL− ZB
DTQδC + δDTQC+DTQC

+LTC −BTZ
δDTQD+DTQδD +DTQD

+LTD +DTL+R


−
[

δCTS−
δDTS−

] [
S−δC S−δD

]
+

[
δCT

δDT

]
Q+

[
δC δD

] 	 0(29b)

∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

Since Q+ 	 0, the last term in the left-hand side of (29b) is positive semidefinite.
Eliminating this term, we pass from (29) to a conservative approximation of this
system. By the Schur complement lemma,5 this approximation is equivalent to the
system of LMIs

Z[Z] � 0,(30a)



δCTQC + CTQδC + CTQC
−ATZ − ZA

δCTQD + CTQδD + CTQD
+CTL− ZB

δCTS−

DTQδC + δDTQC + DTQC
+LTC −BTZ

δDTQD + DTQδD
+DTQD

+LTD + DTL + R

δDTS−

S−δC S−δD Ip

 � 0

(30b)

∀
[

A = A + δA B = B + δB
C = C + δC D = D + δD

]
∈ Uρ.

Taking into account (8), we see that the latter semi-infinite system of LMIs is in the
form of (26), and we can use the construction from section 4.1 to build a computa-
tionally tractable conservative approximation of this system (and thus of (28)). The
approximation is the following system of LMIs in matrix variables Z, {X�}:

Z[Z] � 0,

X� � ±

A	[Z]︷ ︸︸ ︷
dCT

� QC + CTQdC�

−dAT
� Z − ZdA�

dCT
� [L + QD]

+CTQdD� − ZdB�
dCT

� S−

[L + QD]T dC�

+dDT
� QC − dBT

� Z
dDT

� [L + QD]
+[L + QD]T dD�

dDT
� S−

S−dC� S−dD� 0pp

, � = 1, . . ., L,

ρ
L∑

�=1

X� �


CTQC − ATZ − ZA CT [L + QD] − ZB

[L + QD]TC − BTZ
LTD + DTL
+DTQD + R

Ip

 .

(31)

5The Schur complement lemma (see, e.g., [2, Chapter 4]) states that a symmetric block matrix[
P L

LT Q

]
with Q � 0 is positive definite (positive semidefinite) if and only if the matrix P −LQ−1LT

is positive definite (positive semidefinite).
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Note that the supremum ρ̂1 of those ρ ≥ 0 for which system (31) is solvable is efficiently
computable—it is the optimal value in the problem

max
ρ,{X	},Z

{ρ : (ρ, {X�}, Z) solves (31)} .

The latter is a generalized eigenvalue problem, so that its optimal value is efficiently
computable. We intend to use the efficiently computable quantity ρ̂ as a bound for the
“quantity of interest” ρ�1. The properties of this bound are described in the following
statement.

Proposition 4.2. (i) System (31) is a conservative approximation of (28), so
that the Z-component of a feasible solution to (31) is a feasible solution of (28). In
particular, ρ̂1 is a lower bound for ρ�1.

(ii) If either
(a) Q � 0 (i.e., Q+ = 0) (as it is the case, e.g., in Examples 1, 2, 4)

or
(b) D and C are certain (i.e., dC� = 0, dD� = 0 for all "),

then

1 ≤ ρ�1
ρ̂1

≤ ϑ(µ)(32)

provided that ρ�1 > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max
�=1,... ,L

max
Z

Rank(A�[Z]);

see (31).
Proof. The validity of the first claim is readily given by the origin of (31). To

justify the second claim, note that in the case of Q � 0, same as in the case when
C, D are certain, system (30) is solvable if and only if (28) is solvable, so that ρ�1 is
the supremum of those ρ ≥ 0 for which (30) is solvable; with this observation, (32) is
readily given by Proposition 4.1.

Unfortunately, we cannot bound from above fraction (32) in the case of uncertain
C,D and Q+  = 0, since here the derivation of the approximating system includes a
step (passing from (28) to (30)) with an unknown “level of conservativeness.”

4.3. Approximating Problems 2A and 3A. It suffices to process Problem
2A, since Problem 3A can be treated in a completely similar fashion. The semi-infinite
LMI (16), similar to the semi-infinite LMI (28), admits the conservative approximation
(cf. (30))



δCTQC+CTQδC +CTQC
−ATG−GA

δCTQD+CTQδD +CTQD
+CTL−GB

δCTS−

DTQδC + δDTQC+DTQC
+LTC −BTG

δDTQD+DTQδD
+DTQD

+LTD +DTL+R
δDTS−

S−δC S−δD Ip

 � 0

∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ,

(33)
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which is equivalent to (16) in the case of Q+ = 0, as well as in the case of certain
C,D. The semi-infinite LMI (17) can be rewritten as

[
I FT

] 
CTQC

+δCTQC+CTQδC
CT (L+QD) + δCT (L+QD)

(L+QD)TC+ (L+QD)T δC
δDT (L+QD) + (L+QD)T δD
+DTQD+DTL+ LTD+R

[ I
F

]

+ (δC + δDF )TS2
+(δC + δDF )

− (δC + δDF )TS2−(δC + δDF ) ≺ [
(A+BF )TH +H(A+BF )

]
∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(34)

The third term in the left-hand side of this MI is negative semidefinite; eliminating
this term, we get a conservative approximation of (34), and this approximation, by
the Schur complement lemma, is equivalent to the following semi-infinite LMI, where
we set

F =

 In
F

Ip

 :

FT


ATH +HA− CTQC
−δCTQC − CTQδC

HB − CT (L+QD)
−δCT (L+QD)

δCTS+

BTH − (L+QD)TC
−(L+QD)T δC

−δDT (L+QD)− (L+QD)T δD
−DTL+ LTD − DTQD −R

δDTS+

S+δC S+δD Ip

F � 0

∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ

(35)

in matrix variable H. Thus, the system of semi-infinite LMIs (33), (35) in matrix
variables G,H is a conservative approximation of (16), (17); in the cases when Q = 0
and/or C,D are certain, the former system in fact is equivalent to the latter one. The
semi-infinite system (33), (35) is in the form of (26). Applying the construction from
section 4.1, we end up with computationally tractable conservative approximation of
the system (16), (17), (18). The approximation is the following system of LMIs in
matrix variables G,H, {X�, Y�}:

X� � ±

B	[G]︷ ︸︸ ︷
dCT

� QC + CTQdC�

−dAT
� G−GdA�

dCT
� (L + QD)

+CTQdD� −GdB�
dCT

� S−

(L + QD)T dC�

+dDT
� QC − dBT

� G
dDT

� (L + QD)
+(L + QD)T dD�

dDT
� S−

S−dC� S−dD�

, � = 1, . . . , L,

(36a)

ρ

L∑
�=1

X� �
 CTQC − ATG−GA CT (L + QD) −GB

(L + QD)TC − BTG DTQD + LTD + DTL + R

Ip

 ,

(36b)
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Y� � ±

C	[H]︷ ︸︸ ︷
FT


dAT

� H + HdA�

−dCT
� QC − CTQdC�

HdB�

−dCT
� (L + QD) − CTQdD�

dCT
� S+

dBT
� H

−(L + QD)T dC� − dDT
� QC

−dDT
� (L + QD)

−(L + QD)T dD�
dDT

� S+

S+dC� S+dD�

F ,

(36c)

ρ

L∑
�=1

Y� ≺ FT

 ATH + HA − CTQC HB − CT (L + QD)

BTH − (L + QD)TC −DTQD − LTD − DTL−R

Ip

F ,

(36d)

(1 − ε)Zav � H ≺ G.
(36e)

The supremum ρ̂2A of those ρ ≥ 0 for which system (36) is solvable is efficiently
computable, and this efficiently computable quantity can be used as a bound for the
optimal value ρ�2A in Problem 2A. The properties of this bound are described in the
following.

Proposition 4.3. (i) System (36) is a conservative approximation of (16), (17),
(18) so that the G,H-components of a feasible solution to (36) are a feasible solution
of (16), (17), (18). In particular, ρ̂2A is a lower bound for ρ�2A.

(ii) If either
(a) Q = 0 (i.e., Q+ = Q− = 0),

or
(b) D and C are certain (i.e., dC� = 0, dD� = 0 for all "),

then

1 ≤ ρ�2A
ρ̂2A

≤ ϑ(µ)(37)

provided that ρ�2A > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max

[
max
�≥1,G

Rank(B�[G]), max
�≥1,H

Rank(C�[H])

]
;

see (36).
Tractable conservative approximation of Problem 3A looks exactly as (36), up to

the constraint (36e), which should be replaced with the constraint

0 � G ≺ H � (1 + δ)Zreq.

The properties of this approximation are completely similar to those established in
Proposition 4.3.

4.4. Approximating Problems 2B and 3B. Our current goal is to build a
tractable conservative approximation of the semi-infinite system of MIs associated
with Problems 2B and 3B. Both problems have the same structure, so that it suffices
to consider the system associated with Problem 2B, i.e., the system (16), (17), (22)
in variables G,F (H now is fixed). We have already built a tractable conservative
approximation of the semi-infinite MI (16); it is given by system of LMIs (36a), (36b)
in matrix variables G, {X�}. Let us focus on the semi-infinite MI (17) in variable F .
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We can rewrite this inequality equivalently as

(S+δC + S+δDF )T (S+δC + S+δDF )− (S−δC + S−δDF )T (S−δC + S−δDF )

+
[

I FT
]


δCTQC+CTQδC
+CTQC

CT (L+QD) + δCT (L+QD)
+CTQδD

(L+QD)TC+ (L+QD)T δC
+δDTQC

DTQD+ LTD+DTL+R
δDTQD+DTQδD
+LT δD + δDTL


[

I
F

]

≺ (
[A+BF ]TH +H[A+BF ]

)
∀
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(38)

The second term in the left-hand side of the latter MI always is negative semidefinite;
eliminating this term, we come to a conservative approximation of (38) as follows:

(S+δC + S+δDF )T (S+δC + S+δDF )

+
[

I FT
]


J00[Σ]︷ ︸︸ ︷
δCTQC+CTQδC

+CTQC

J01[Σ]︷ ︸︸ ︷
CT (L+QD) + δCT (L+QD)

+CTQδD

(L+QD)TC+ (L+QD)T δC
+δDTQC︸ ︷︷ ︸

J10[Σ]

DTQD+ LTD+DTL+R
+δDTQD+DTQδD
+LT δD + δDTL︸ ︷︷ ︸

J11[Σ]


[

I
F

]

≺ (
[A+BF ]TH +H[A+BF ]

)
∀Σ ≡

[
A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(39)

Note that the matrices Jij [Σ] are affine in Σ.
Observe that (39) is exactly the semi-infinite MI

[A+BF ]TH +H[A+BF ]− J00[Σ]− FTJ10[Σ]− J01[Σ]F

−(S+δC + S+δDF )T (S+δC + S+δDF )− FTJ11[Σ]F � 0

∀Σ ≡
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ.

(40)

Now assume that J11[Σ] � 0. Note that this assumption is quite natural—the matrix
J11[Σ] should be positive semidefinite already to make feasible (16) with ρ = 0. Let

K = J−1
11 [Σ], δJ11[δΣ] = J11[Σ + δΣ]− J11[Σ].

We claim that the following relations hold true:

K−KδJ11[δΣ]K � 0 ∀Σ ≡ Σ+ δΣ ∈ Uρ(41a)

$

J11[Σ] � 0 ∀Σ ∈ Uρ(41b)

⇓
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[K−KδJ11[δΣ]K]−1 	 [J11[Σ]]
−1 � 0 ∀Σ ≡ Σ+ δΣ ∈ Uρ.(41c)

Indeed, the equivalence between (41a) and (41b) follows from the identity

K−KδJ11[δΣ]K = KJ11[Σ− δΣ]K

(which is readily given by the definition of K), combined with the fact that Uρ is
symmetric with respect to Σ. To see that (41b) implies (41c), observe, first, that

X � ±Y ⇒ [X−1 −X−1Y X−1]−1 	 X + Y � 0.(42)

Indeed, assuming X � ±Y and setting Z = X−1/2Y X−1/2 (so that I � ±Z), we
have

(X + Y )−1 − [X−1 −X−1Y X−1] = [X1/2(I + Z)X1/2]−1 −X−1/2[I − Z]X−1/2

= X−1/2[(I + Z)−1 − (I − Z)]X−1/2

= X−1/2Z(I + Z)−1ZX−1/2 	 0,

hence (X+Y )−1 	 [X−1−X−1Y X−1] and thus [X−1−X−1Y X−1]−1 	 X+Y � 0,
as required in (42). Now let δΣ be such that Σ + δΣ ∈ Uρ. Since Uρ is symmetric
with respect to Σ, we have Σ − δΣ ∈ Uρ as well. In the case of (41b) it follows that
J11[Σ± δΣ] � 0 or, which is the same, J11[Σ] � ±δJ11[δΣ]. Applying (42), we arrive
at (41c).

By (41), in the case of (41a) the semi-infinite MI

[A+BF ]TH +H[A+BF ]− J00[Σ]− FTJ10[Σ]− J01[Σ]F

− (S+δC + S+δDF )T (S+δC + S+δDF )− FT [K−KδJ11[δΣ]K]−1F � 0

∀Σ ≡ Σ+ δΣ ≡
[

A = A+ δA B = B+ δB
C = C+ δC D = D+ δD

]
∈ Uρ

is a conservative approximation of (40), which in turn is a conservative approximation
of (17). Applying the Schur complement lemma, the resulting semi-infinite MI can
be rewritten as


[A + BF ]TH + H[A + BF ]

−J00[Σ] − FTJ10[Σ] − J01[Σ]F
(S+δC + S+δDF )T FT

(S+δC + S+δDF ) I

F K − KδJ11[δΣ]K

 � 0

∀Σ ≡ Σ + δΣ ≡
[

A = A + δA B = B + δB
C = C + δC D = D + δD

]
∈ Uρ.

(43)

Note that the validity of this semi-infinite LMI automatically implies (41a). Further,
the matrix in the left-hand side of the resulting semi-infinite LMI is affine in Σ, so that
we can apply the scheme from section 4.1 to build a computationally tractable con-
servative approximation of this semi-infinite LMI. The approximation is the following
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system of LMIs in matrix variables F, {Y�}:

Y	 � ±

D	[F ]︷ ︸︸ ︷

[dA	 + dB	F ]TH +H[dA	 + dB	F ]

−dCT
	 QC − CTQdC	

−
{
dCT

	 [L+QD] + CTQdD	

}
F

−FT
{
dCT

	 [L+QD] + CTQdD	

}T

dCT
	 S+

+FT dDT
	 S+

S+dC	

+S+dD	F

−KdDT
	 [L+QD]K

−K[L+QD]T dD	K


,

� = 1, . . . , L,

ρ
L∑

	=1

Y	 ≺


[A + BF ]TH +H[A + BF ] − CTQC

−FT [L+QD]TC − CT [L+QD]F
FT

I
F K

 .

(44)

We arrive at the following result.
Proposition 4.4. Assume that the matrix

K−1 ≡ DTQD+ LTD+DTL+R(45)

is positive definite. Then
(i) The system of LMIs (36a), (36b), (44) and the LMI

H ≺ G(46)

in matrix variables G,F, {X�, Y�} is a conservative approximation of the system (16),
(17), (18) associated with Problem 2B. In particular, the efficiently computable supre-
mum ρ̂ of those ρ ≥ 0 for which the approximating system is solvable is a lower bound
on the optimal value ρ�2B of Problem 2B.

(ii) If either
(a) C,D are certain (i.e., dC� = 0, dD� = 0 for all ")

or
(b) Q = 0 and D is certain,

then

1 ≤ ρ�2B
ρ̂

≤ ϑ(µ),(47)

provided that ρ�2B > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max

[
max
�≥1,G

Rank(B�[G]), max
�≥1,F

Rank(D�[F ])

]
;

see (36a), (44) for the definitions of B�[G] and D�[F ].
Tractable conservative approximation of Problem 3B looks exactly like the one

for Problem 2B, with the only difference that the LMI (46) should now be replaced
with the LMIs

0 � G ≺ H.

The properties of this approximation are completely similar to those established in
Proposition 4.4.
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4.5. Approximating Problem 3C. Now consider Problem 3C. The system
of MIs to be approximated is now comprised of the semi-infinite MI (17) in matrix
variables F,H and the LMI 0 ≺ H � (1 + δ)Zreq. The system in question can be
rewritten equivalently as

[
I FT

] [ CT

DT I

] [
Q L
LT R

] [
C D

I

] [
I
F

]
≺ [

(A+BF )TH +H(A+BF )
]

∀
[

A B
C D

]
∈ Uρ,

0 ≺ H 
 (1 + δ)Zreq .

(48)

We can assume that Zreq � 0—otherwise the system clearly is unsolvable. Let us
use the standard change of variables (H,F ) '→ (U = H−1, V = FH−1). Multiplying
both sides of (48) from the right and from the left by H−1, we rewrite (48) in the new
variables as

[
U V T

] [ CT

DT I

] [
Q L
LT R

]
︸ ︷︷ ︸

P

[
C D

I

] [
U
V

]
≺ [

AU + UAT +BV + V TBT
]

∀
[

A B
C D

]
∈ Uρ,

U � (1 + δ)−1Z−1
req .

(49)

Setting M ≡
[
Myy Myu

MT
yu Muu

]
= P1/2 (recall that we are in the case of P 	 0) and

applying the Schur complement lemma, we can rewrite the latter system equivalently
as



AU + UAT

+BV + V TBT
UCTMyy

+V T [MyyD +Myu]
T

UCTMyu

+V T [MT
yuD +Muu]

T

MyyCU
+[MyyD +Myu]V

Ip

MT
yuCU

+[MT
yuD +Muu]V

Im

 	 0

∀
[

A B
C D

]
∈ Uρ,

U 	 (1 + δ)−1Z−1
req.

(50)

System (50) is in the form of (26); applying the construction from section 4.1, we end
up with a tractable conservative approximation of (49), which is the following system
of LMIs in matrix variables U, V, {X�}:

U � (1 + δ)−1Z−1
req ,

X� � ±



dA�U + UdAT
�

+dB�V + V T dBT
�

UdCT
� Myy

+V T dDT
� Myy

UdCT
� Myu

+V T dDT
� Myu

MyydC�U
+MyydD�V

0p×p

MT
yudC�U

+MT
yudD�V

0m×m


︸ ︷︷ ︸

E	[U,V ]

, � = 1, . . . , L,

(51)



ROBUST DISSIPATIVITY OF INTERVAL UNCERTAIN LINEAR SYSTEMS 1683

ρ
L∑

�=1
X� 




AU + UAT

+BV + V TBT
UCTMyy

+V T [MyyD+Myu]T
UCTMyu

+V T [MT
yuD+Muu]T

MyyCU
+[MyyD+Myu]V

Ip

MT
yuCU

+[MT
yuD+Muu]V

Im

 .

We arrive at the following.

Proposition 4.5. Assume that the supply matrix P =
[

Q L

LT R

]
is positive

semidefinite and that Zreq � 0. Then the system of LMIs (51) in matrix variables
U, V, {X�} is a conservative approximation of the system associated with Problem 3C.
In particular, the efficiently computable supremum ρ̂ of those ρ ≥ 0 for which the ap-
proximating system is solvable is a lower bound on the optimal value ρ�3C of Problem
3C. For this lower bound, one has

1 ≤ ρ�3C
ρ̂

≤ ϑ(µ),(52)

provided that ρ�3C > 0. Here ϑ(µ) is the function from Proposition 4.1 and

µ = max
�≥1,U,V

Rank(E�[U, V ]);

see (51).

4.6. Simplifying approximating systems. A severe practical disadvantage of
the tractable approximations of Problems 1, 2A, 2B, 3A, 3B, and 3C we have built is
that the sizes of these approximations, although polynomial in the sizes m,n, p, L of
the underlying dynamical system and uncertainty set, are quite large. For example,
approximation (31) has a single (m+n+ p)× (m+n+ p) symmetric matrix variable
X� and two (m + n + p) × (m + n + p) LMIs per every basic perturbation in the
data, so that the design dimension of the approximation is of order of L(m+n+ p)2,
a quantity which typically is prohibitively large for practical computations. We are
about to demonstrate that under favorable circumstances the sizes of the approxi-
mating systems can be reduced dramatically. For the sake of simplicity, we restrict
our considerations to the case of the approximation (31) associated with Problem 1;
the approximations associated with other problems can be processed in a completely
similar fashion.

System (31) is of the generic form

P(x) 	 0,(53a)

U� 	 ±Q�(x), " = 1, . . . ,M,(53b)

V� 	 ±R�, " = 1, . . . , N,(53c)

ρ

[∑
�

U� +
∑
�

V�

]
� S(x),(53d)

where
• x is the collection of the original design variables (for (31), x = Z);
• U�, V� are additional K × K matrix variables (for (31), K = m + n + p,

M +N = L, the U -variables are those of X� for which A�[Z] indeed depends
on Z, while the V -variables correspond to those of X� for A�[Z] in fact does
not depend on Z);
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• P(x), Q�(x), S(x) are affine functions of x taking values in the spaces of
symmetric matrices of appropriate sizes, and R� are given K ×K symmetric
matrices.

Note that in the situations we are interested in, the ranks of the matrices Q�(x), R�
are small, provided that the ranks of basic perturbation matrices dA�, dB�, dC�, dD�
are small (as indeed is the case in applications). The undesirable large sizes of the
approximating system (53) come exactly from the necessity to introduce large-size
“matrix bounds” U�, V� on the small rank matrices Q�(x), R�.

Note that in our applications all we are interested in are the x-components of
the feasible solutions of (53). Thus, for our purposes (53) can be replaced with any
x-equivalent system of LMIs—a system of LMIs L(x, y) 	 0 in the original variables
x and additional variables y such that the set of x-components of feasible solutions to
the latter system is exactly the same as the set of x-components of feasible solutions of
(53). What we intend to do is to demonstrate that under favorable circumstances we
can build a system of LMIs which is x-equivalent to (53), while being “much smaller”
than the latter system. The key to our construction is given by the following two
observations.

Lemma 4.6 (see [3, Lemma 3.1 and Proposition 2.1]). (i) Let a, b be two nonzero
vectors. A symmetric matrix X satisfies the relation

X 	 ±[abT + baT ]

if and only if there exists positive λ such that

X 	 λaaT +
1

λ
bbT .

(ii) Let A be a n × n symmetric matrix of rank k > 0, so that A = PT ÂP for

appropriately chosen k × k matrix Â and k × n matrix P of rank k. A symmetric
matrix X satisfies the relation

X 	 ±A

if and only if there exists k × k symmetric matrix X̂ such that

X 	 PT X̂P,

X̂ 	 ±Â.
(54)

Now assume that the matrices Q�(x) are of the from
Q�(x) = a�b

T
� (x) + b�(x)a

T
� ,(55)

where a�  = 0, b�(x)  ≡ 0 are, respectively, a vector and an affine vector-valued function
of x. Let also

R� = PT� R̂�P� : R̂� = R̂T� ∈ Sk	 , k� = Rank(R�) > 0.

Applying Lemma 4.6, we see that (53) is x-equivalent to the following system of

constraints in the original variables x and the additional variables λ� ≥ 0, V̂� ∈ Sk	 :

P(x) 	 0,

V̂� 	 ±R̂�, " = 1, . . . , N,

ρ

[∑
�

[
λ�a�a

T
� + 1

λ	
b�(x)b

T
� (x)

]
+
∑
�

PT� V̂�P�

]
� S(x)
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(where 1
0bb

T is 0 for b = 0 and is undefined for b  = 0). The resulting system, via the
Schur complement lemma, is x-equivalent to the system of LMIs

P(x) 	 0,(56a) 

X −
M∑
�=1

λ�a�a
T
� b1(x) b2(x) . . . bM (x)

bT1 (x) λ1

bT2 (x) λ2

...
. . .

bTM (x) λM


	 0,(56b)

V̂� 	 ±R̂�, " = 1, . . . , N,(56c)

ρ

[
X +

∑
�

PT� V̂�P�

]
� S(x)(56d)

in the original variables x and additional scalar variables {λ�}M�=1 and matrix variables

X, {V̂�}N�=1.
System (56) is x-equivalent to our original system (53) and is usually much better

suited for numerical processing than the original system. Indeed, as compared to (53),
in (56) there are

• a single K ×K matrix variable X and M scalar variables {λ�}M�=1 instead of
M K ×K matrix variables U�;

• k�× k� matrix variables V̂� instead of K ×K matrix variables V�, and k�× k�
LMIs (56c) instead of K × K LMIs (53c) (recall that k� are assumed to be
small as compared to K);

• a single LMI (56b) instead of M LMIs (53b). Although the size of LMI (56b)
is larger than those of LMIs (53b), the LMI is of very simple arrow structure
and is extremely sparse.

It remains to understand what should be required from the uncertainty set Uρ
in order to ensure that the approximations associated with Problems 1, 2A, 2B, 3A,
3B, and 3C possess property (55) and thus admit the outlined simplification. The
corresponding requirements are as follows:

A. In the case of Problems 1, 2A, 3A, it suffices to assume the following:
A.1. The parts [A,B] and [C,D] of the matrix Σ =

[
A B
C D

]
are perturbed

independently (i.e., for every " exactly one of the matrices [dA�, dB�],
[dC�, dD�] is nonzero).

A.2. The basic perturbations of the part [A,B] of Σ are of ranks ≤ 1.
Note that under these assumptions the quantity µ in Propositions 4.2, 4.3
and the above quantities k� satisfy the relation

k� ≤ µ ≤ 2max

[
1,max

�
(Rank(dC�) + Rank(dD�))

]
.

B. In the case of Problems 2B, 3B, it suffices to assume the following.
B.1. The parts A, B, C, D of Σ are perturbed independently (i.e., for every

" exactly one of the matrices dA�, dB�, dC�, dD� is nonzero).
B.2. The basic perturbations of the parts A, B, C, D of Σ are of ranks ≤ 1

and
i. either Q = 0
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A

1

2

3

4

Fig. 1. “Bridge.”

ii. or D is certain.
Note that under these assumptions the quantity µ in Proposition 4.4 and the
above quantities k� satisfy the relation

k� ≤ µ ≤ 2.

C. In the case of Problem 3C, it suffices to assume that
C.1. the basic perturbations dΣ� are of ranks ≤ 1.
Note that under these assumptions the quantity µ in Proposition 4.5 equals
2.

Note that the sets A.1–A.2, B.1–B.2, C.1 of the assumptions are satisfied in the
simplest case of the interval uncertainty—every entry in Σ, independently of other
entries, runs through a given interval. In this case, k� ≤ µ = 2, and the corresponding
“tightness bound” ϑ(µ) (see (32), (37), (47), (52)) becomes π2 .

5. Illustrating examples. Here we present three simple illustrations of the
proposed approach. The first two of them correspond to the positive-real case, while
the third has to do with the linear-quadratic case.

5.1. Positive-real case. Consider the simple RC circuit (“bridge”) presented in
Figure 1. The input is the outer voltage applied between the node A and the ground,
the output is the current through the circuit. The state variables are the potentials
at the nodes 1, 2, 3 (normalized by the condition that the potential of the ground is
identically zero). Applying the Kirchoff laws, the description of the system becomes

ż(t) = Ac,rz(t) +Bc,ru(t),
y(t) = Crz(t) +Dru(t),

(57)

where we have the following:
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• c ∈ R10 is the vector of capacitances of the capacitors in the 10 arcs of the
circuit (9 “visible arcs” and the external arc from node 2 via point A to the
ground; for arc i with no capacitor, ci = 0).

• r ∈ R10 is the vector of conductances of the resistors in the 10 arcs of the
circuit (for arc i with no resistor, ri = 0).

• the matrix Σ =
[

A B
C D

]
is given by

Σ = Σc,r ≡
[ −[PTDiag{c}P ]−1[PTDiag{r}P ] [PTDiag{c}P ]−1[PTDiag{r}J ],

−[PTDiag{r}J ], JTDiag{r}J,
]
,

where Diag{p} denotes the diagonal matrix with diagonal entries given by
vector p and
– P is the incidence matrix. The rows of P are indexed by the 10 arcs in

the circuit, the columns are indexed by the 3 nonground nodes 1, 2, 3
and the element Pij is equal to +1, −1 or 0 depending on whether node
# j starts arc # i, ends this arc, or is not incident to the arc. For our
circuit, P is as follows (R stands for arcs with resistors, C for arcs with
capacitors):

Arcs Nodes
Origin Destination Type 1 2 3

1 2 R 1 −1 0
1 2 C 1 −1 0
2 3 R 0 1 −1
2 3 C 0 1 −1
3 4 R 0 0 1
3 4 C 0 0 1
4 1 R −1 0 0
4 1 C −1 0 0
1 3 C 1 0 −1
2 → A → 4 R 0 1 0

– J = (0, . . . , 0, 1)T ∈ R10 “points” to the external arc (which in our
enumeration is the last of the 10 arcs of the circuit).

We treat as the uncertain parameters the capacitances of the capacitors and the
conductances of the resistors (except for the “outer” resistor in the external arc; it
represents the inner resistance of the outer supply and is assumed to be certain) and
assume that every one of these parameters can vary, independently of others, by at
most ρ times the nominal value of the parameter, where ρ is the uncertainty level in
question. The nominal values of the data are given in Table 1. Here is the nominal
instance (entries are rounded to 4 digits after the dot):

Σ =


−0.5005 −50.0000 −0.4995 50.0000
0.1000 −101.1000 0.0000 100.0000

−0.4995 −50.0000 −0.5005 50.0000
0 −100.0000 0 100.0000

 .

The elements of the matrix Σc,r are nonlinear functions of the “physical data” c, r, so
that an interval uncertainty in the latter data is not equivalent to a box uncertainty
in Σc,r. We neglect this phenomenon by linearizing Σr,c at the nominal data, thus
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Table 1
Nominal values for the bridge circuit.

Element Nominal value Element Nominal value

R12 1.2 C12 1.0
R23 1.0 C23 1.0
R34 1.0 C34 1.0
R41 1.0 C41 1.0
R2A 100 C13 1000

arriving at a box uncertainty set with L = 9 basic perturbation matrices, according
to the number of uncertain capacitances and conductances in the circuit. Note that
for our particular circuit, the resulting uncertainty affects only the [A,B]-part of Σ,
and the basic perturbation matrices [dA�, dB�] are of rank 1.

Recall that the supply in the SISO positive-real case is 2yu, i.e.,

P =

[
Q = 0 L = 1
LT = 1 R = 0

]
;

for our RC circuit, the supply is nothing but (twice) the electrical power pumped into
the circuit by the external voltage.

We have carried out two experiments with the outlined system: the first deals
with extracting the energy stored in the circuit, and the second with moving the
circuit from the zero initial state to a given state.

Extracting available energy. The question we are addressing is to find the
largest level ρ�av of uncertainty for which the “performance” Θ of the “ideal extracting
feedback” Fav (see D.4) corresponding to the nominal instance is at least 1− ε, i.e.,
this feedback still allows, for every perturbed instance and every initial state ζ of the
circuit, to extract at least (1 − ε)-part of the nominal available storage ζTZavζ. In
our experiment, we set ε = 0.1. Solving the conservative approximation

max
ρ,G,H,{X	,Y	}

{ρ : (ρ,G,H, {X�, Y�}) satisfies (36)}

of the associated Problem 2A, we end up with a lower bound

ρ̂ = 1.1e−3

on ρ�av; in other words, we can be sure that with 0.11% perturbations of the uncertain
capacitances and conductances, the nominal feedback Fav still allows us to extract at
least 90% of the nominal available storage, whatever is the initial state of the circuit.
A natural question arises, How conservative is our bound? Recall that there are two
reasons for it to be conservative:

• First, the bound comes from solving a conservative approximation of Problem
2A rather than from solving the problem itself; according to Proposition 4.3,
the true optimal value in the problem is at most π

2 times larger than the
bound (recall that we are in the situation of Q = 0 and µ = 2).

• Second, and worse, even the true optimal value in Problem 2A is a lower
bound on ρ�av, since the problem comes from the sufficient condition, stated
by Proposition 3.2, for “good” performance of the nominal feedback Fav
under data perturbations. Note that we have no idea how conservative this
sufficient condition is.
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Table 2
Performance of the nominal feedback Fav versus uncertainty level.

ρ 1.2ρ̂ = 1.3e−3 2.2ρ̂ = 2.3e−3 3ρ̂ = 3.2e−3
Θ 0.893 0.805 0.736
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Fig. 2. Sample plots of Eav(t)

zT (0)Zavz(0)
.

In spite of these pessimistic considerations, the experiment shows that our bound is
pretty tight. Looking through all 2L = 512 “extreme” perturbations of the data,
and playing with the initial state of the circuit, we found out that the worst-case
(with respect to relative perturbations of the uncertain entries in c, r of level ρ and
initial states) performance Θ of the ideal nominal feedback is at most as given in
Table 2. In particular, we see that with the level of perturbations 1.2ρ̂, the worst-case
performance of the ideal nominal feedback is less than 0.9 (≡ 1− ε) times the nominal
available storage. It follows that ρ�av ≤ 1.2ρ̂, i.e., our bound ρ̂ is within 20% margin
of the quantity of interest.

Figure 2 represents three sample plots of the extracted energy Eav(t) as a function
of time for the feedback Fav.
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Table 3
Price of the nominal feedback Freq versus uncertainty level.

ρ 1.2ρ̂ = 5.5e−4 2.2ρ̂ = 1.0e−3 3ρ̂ = 1.4e−3
Γ 1.056 1.105 1.148

Moving the circuit to a given state. Now let us try to find the largest
uncertainty level ρ�req for which the “price” Γ of the “ideal driving feedback” Freq
(see D.4) corresponding to the nominal instance is at most 1 + δ, i.e., this feedback
still allows, for every perturbed instance and every target state ζ of the circuit, to
move the circuit from the zero initial state to the state ζ while pumping into the circuit
at most (1+δ) times the nominal required energy ζTZreqζ. In our experiment, we set
δ = 0.1. Solving the conservative approximation of the associated Problem 3A (see
the end of section 4.3), we end up with a lower bound

ρ̂ = 4.6e−4
on ρ�req; thus, we can be sure that with 0.046% perturbations of the uncertain ca-
pacitances and conductances, the ideal nominal feedback Freq still allows us to move
the circuit from the zero state to (any) target one while pumping into the circuit at
most 110% of the nominal required energy. It turns out that our bound is perhaps
not as tight as in the previous case, but still is good enough. Indeed, looking at
the data in Table 3, which represent lower bounds on the price of the ideal nominal
driving feedback Freq under different levels of perturbations, we see that with the
perturbations of the level 2.2ρ̂ the price of moving the circuit to certain target state
ζ by the feedback Freq can be larger than 1.1 (≡ 1 + δ) times the nominal required
energy ζTZreqζ; hence ρ�req ≤ 2.2ρ̂. Note that, in the case in question, the conser-
vative approximation of Problem 3A contributes to the ratio ρ�req/ρ̂ ≈ 2.2 a factor
≤ π

2 = 1.57; the remaining factor in the ratio (which is at least 2.2/1.57 ≈ 1.4) comes
from the conservativeness of the sufficient condition expressed in Proposition 3.3 and
underlying Problem 3A.

Figure 3 presents three sample plots of the pumped energy Ereq(t) as a function
of time for the feedback Freq.

5.2. Linear-quadratic case. Consider the mechanical system shown on Figure
4; it consists of 5 material points in a two-dimensional plane linked to each other by
elastic springs as shown on the figure; the points can slide without friction along the
respective axes 01, . . . , 05. The nominal data for the system are given in Table 4. The
system is controlled by two external forces acting at the masses 1 and 5. The first 5
components of the state vector are the shifts xi of the points from their equilibrium
positions along the lines of motion, and the next 5 components are the linear velocities
ẋi of the points; these velocities are the outputs of the system. With respect to these
states, the dynamical system in question is

d
dt

[
x
ẋ

]
=

[
I5

−M−1E

] [
x
ẋ

]
+Bu,

y = ẋ,

(58)

where M is the diagonal matrix with the masses m(i) of the points as the diagonal
entries, E is the stiffness matrix readily given by the rigidities of the springs and
the equilibria positions of the points, and B is the 10 × 2 matrix with two nonzero
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Fig. 3. Sample plots of
Ereq(t)

zT (0)Zreqz(0)
.

entries B5,1 = m−1(1) and B10,2 = m−1(5). Here is the nominal instance (entries are
rounded to 4 digits after the dot):

Σ =



1
1

1
1

1
−2.5647 −1.0797 −1.0890 1.9637
−0.6038 −0.8206 −0.4766

−0.6009 −1.5044 −0.4808
−0.4300 −1.1142 −0.5131

−0.6190 −0.4626 −0.8352 1.1161
1

1
1

1
1



.

We are interested to bring the system from the equilibrium to a given state while
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Fig. 4. 5 masses linked by elastic springs

Table 4
The nominal data.

Point Mass
Distance to the origin

at equilibrium
Spring Rigidity

1 0.5093 0.8034 1 - 2 1.461
2 0.9107 0.7430 2 - 3 1.369
3 0.7224 0.9456 3 - 4 1.088
4 0.8077 0.8810 4 - 5 1.203
5 0.8960 0.7282 5 - 1 1.468

minimizing the cost functional∫ ∞

0

[
5∑
i=1

(ẋi)
2(t) +

2∑
i=1

u2
i (t)

]
dt,

which is equivalent to the providing required supply problem with the supply matrix

P =

[
Q = I5 L = 05×2

LT = 02×5 R = I2

]
.

In our experiment, we treat as uncertain parameters the masses of the points and
the rigidities of the springs and assume that every one of these parameters can vary,
independently of others, by at most ρ times the nominal value of the parameter. Note
that the perturbations affect only the [A,B]-part of the matrix Σ of the system and
that the dependence of Σ on the masses and rigidities is nonlinear (although both
M and E in (58) are affine in the parameters). As in the previous example, we
neglect this phenomenon by linearizing Σ at the nominal data, and end up with a box
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uncertainty set with L = 10 basic perturbation matrices, according to the number of
uncertain parameters; all these perturbation matrices turn out to be of rank 1. The
outlined model underlies two numerical experiments we are about to report.

Designing robust feedback with “nearly optimal” performance. For the
nominal system, there exists the ideal state feedback u = Fz which moves the sys-
tem from the equilibrium to (any) given initial state ζ at the minimum possible cost
ζTZreqζ. What we are interested in now is to find the largest uncertainty level for
which there still exists an instance-independent state feedback with a given perfor-
mance index 1+δ; the latter means that the feedback allows to move every instance of
the perturbed system from the equilibrium to (any) given state ζ at the cost at most
(1+δ) times the “ideal nominal cost” ζTZreqζ. In our experiment, we set δ = 0.1 and
get the desired feedback by solving the conservative approximation (50) of Problem
3C associated with the outlined model. As a result, we get

(a) state feedback with the matrix

F =
[−0.0396 0.0220 −0.3685 −0.8069 −0.4099 0.0152 −0.3694 0.0647 −0.0498 1.3167
−0.3993 −0.6453 −0.4886 −0.2269 −0.0322 1.1859 −0.5896 −0.2165 −0.3263 0.0268

]
,

which is slightly different from the ideal nominal feedback

F =
[−0.0281 0.0289 −0.4196 −0.8948 −0.4551 0.0063 −0.3897 0.0628 −0.0558 1.3826
−0.4467 −0.7133 −0.5466 −0.2423 −0.0311 1.2269 −0.6375 −0.2570 −0.3520 0.0111

]
,

and
(b) the “safe” uncertainty level ρ̂ = 0.0048, which is a lower bound on the optimal

value ρ�3C in Problem 3C.
What we know about F and ρ̂ from their origin is the following:

• The performance index of the state feedback u = Fz is no worse than 1 + δ,
provided that the level of perturbations does not exceed 0.48% (which is our
ρ̂). Note that this statement remains true even for dynamical perturbations.

• The true optimal value ρ�3C in Problem 3C is at most π2 times larger than ρ̂
(see Proposition 4.5; note that our basic perturbation matrices are of rank 1,
so that the quantity µ in (52) equals 2 by item C of Section 4.6).

What we are interested in now is how conservative are our results, specifically, what
is the actual value of the ratio ρ�3C/ρ̂. An even more important question is as follows.
The optimal value ρ�3C of Problem 3C is itself no more than a lower bound on the
supremum ρ� of those perturbation levels for which there still exists a state feedback
with performance index 1 + δ = 1.1 (since what underlies Problem 3C is no more
than a sufficient condition for good performance under uncertainty). How large is the
ratio ρ�/ρ̂, or, in other words, how far is the robustness of our feedback F from the
“ideal” robustness compatible with the prescribed performance index 1.1? It turns
out that the answers to these questions are quite assuring. Indeed, looking at a large
enough number of randomly perturbed instances with different perturbation levels
and computing the required supply for these instances, one can find out that already
at the perturbation level 1.2ρ̂ = 0.0058 there exist perturbed instances Σ and target
states ζ such that Σ cannot be moved from the equilibrium to the state ζ at the cost
≤ 1.1ζTZreqζ. It follows that

ρ�3C ≤ ρ� < 1.2ρ̂,

which is much better than we could expect.
Lyapunov stability analysis. Here we use the data yielded by the previous

experiment for illustrating another application of the proposed approach, namely,
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estimating the level of perturbations which keep the closed-loop system stable. This
problem was the subject of Example 4 in section 3.1, where it was shown that the
problem can be posed as the one of finding the supremum of those uncertainty levels for
which all perturbed instances of the system share a common dissipativity certificate.
As our sample closed-loop system, we used the outlined mechanical system equipped
with the state feedback F found in the previous experiment. Our uncertainty model
for the matrix

Â = A+BF

of the closed-loop system is as follows: we use the aforementioned “physical” model of
perturbations in [A,B] and assume, in addition, that the entries in F also are subject
to perturbations. Since we have no physical model of the controller, we assume that
the entries Fij in F can vary, independently of each other (and independently of
the perturbations in [A,B]), in the intervals [F c

ij − ρ|F c
ij |, F c

ij + ρ|F c
ij |], where ρ is

the uncertainty level, and F c
ij are the “nominal” values as computed in the previous

experiment.
As in the previous cases, we linearized the dependence of Â on the perturbations,

thus arriving at a box model of perturbations in the matrix of the closed-loop sys-
tem. Then we solved the conservative approximation (31) of Problem 1 associated
with system (14) and the supply matrix (15). Since we were interested solely in the
stability of the closed-loop system under perturbations and did not care of any kind
of performance, we looked for the common dissipativity certificate Z in a pretty wide
“matrix interval” I = {Z : 10−7Z � Z � Z}, which in the situation of Example
4 basically means that we do not impose restrictions on Z except for being positive
definite.

The results of our experiment are as follows. The solution of (31) yields a level
of perturbations ρ̂ = 0.041 and a positive definite matrix Z, which is a common Lya-
punov stability certificate for all perturbed instances of the matrix Â of the closed-
loop system when the level of perturbations is ρ̂. Thus, we can be sure that the
closed-loop system remains stable whatever are 4.1% perturbations of the physical
parameters of our mechanical system and 4.1% perturbations of the coefficient in the
feedback matrix, even when these perturbations are dynamical. A natural question
is, How conservative is this conclusion? Note that, a priori, there is no reason to be
too optimistic in this respect, since the existence of a common Lyapunov stability
certificate, as a sufficient condition for stability, may be quite conservative already by
itself, and we are dealing with conservative approximation of this condition. However,
the experiment demonstrates that we are lucky: simulating about 1,000 random per-
turbations of the closed-loop system at different uncertainty levels, it turns out that
at the uncertainty level 1.6ρ̂ = 0.065 there already exist perturbations which make
the closed-loop system unstable. Thus, the closed-loop system definitely survives
perturbations not exceeding 4.1% and can be crushed by 6.5% perturbations.

6. Conclusions. We have developed techniques for specifying the magnitudes
of dynamic perturbations in the parameters of a linear system which preserve a de-
sired property of the system (such as positive-realness, nonexpansiveness, etc.). The
standard sufficient condition for this is the solvability of an associated infinite system
S of linear matrix inequalities. The latter condition, however, is usually NP-hard to
verify, so that one is forced to look for efficiently verifiable sufficient conditions for S
to be solvable. We propose such a condition and demonstrate that in many cases it
is provably tight, within an absolute constant factor, π2 in most cases (for details, see
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Propositions 4.2, 4.3, 4.4, 4.5). This “guaranteed tightness” is a specific (and, to the
best of our knowledge, unique) feature of the paper.

Recently, it turned out that the matrix cube theorem, which underlies all our
developments, can be extended to the complex case and even with a model of uncer-
tainty richer than the interval one. These extensions could then imply corresponding
extensions of the results we have presented here.
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