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Abstract. We describe an optimization problem arising in reconstructing 3D medical im-
ages from Positron Emission Tomography (PET). A mathematical model of the problem,
based on the Maximum Likelihood principle is posed as a problem of minimizing a convex
function of several millions variables over the standard simplex. To solve a problem of these
characteristics, we develop and implement a new algorithm, Ordered Subsets Mirror De-
scent, and demonstrate, theoretically and computationally, that it is well suited for solving
the PET reconstruction problem.
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1 Introduction

The goal of this paper is to develop a practical algorithm for an extremely large-scale convex
optimization problem arising in Nuclear Medicine - that of reconstructing images from data
acquired by Positron Emission Tomography (PET).

The PET technique is described in Section 2, and the corresponding mathematical optimiza-
tion problem is given in Section 3. The specific characteristics of the problem rules out most
advanced optimization methods, and as a result we focus on gradient-type methods. Specifically,
we develop an accelerated version of the Mirror Descent (MD) method ([Nem78]). The accel-
eration is based on the Incremental Gradient idea ([Ber95], [Ber96], [Ber97], [Luo91], [Luo94],
[Tse98]), also known as the Ordered Subsets (OS) technique in the Medical Imaging Literature
([Hud94], [Man95], [Kam98]). The MD method is described in Section 4. The accelerated ver-
sion, OSMD, is studied in Section 5 in particular for a specific setup of OSMD, suitable for the
PET reconstruction problem. In Section 6 we report the results of testing the OSMD algorithm
on several realistic cases, and also to the classical Subgradient Descent method. Our conclusion
from these tests is that OSMD is a reliable and efficient algorithm for PET reconstruction, which
compares favourably with the best currently commercially used methods.
∗The research is part of the PARAPET Project supported by the EUC Esprit Programme.
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2 Positron Emission Tomography

Positron Emission Tomography (PET) is a powerful, non-invasive, medical diagnostic imaging
technique for measuring the metabolic activity of cells in the human body. It has been in clinical
use since the early 1990s. PET imaging is unique in that it shows the chemical functioning
of organs and tissues, while other imaging techniques - such as X-ray, computerized tomography
(CT) and magnetic resonance imaging (MRI) - show anatomic structures. PET is the only
method that can detect and display metabolic changes in tissue, distinguish normal tissue from
those that are diseased, such as in cancer, differentiate viable from dead or dying tissue, show
regional blood flow, and determine the distribution and fate of drugs in the body. It is useful
clinically in patients with certain conditions affecting the brain and the heart as well as in
patients with certain types of cancer. Because of its accuracy, effectiveness, and cost efficiency,
PET is becoming indispensable for the diagnosis of disease and treatment of patients.

2.1 The physical principles of PET

A PET scan involves the use of a small amount of a radioactive material which has the property
of emitting positrons (positively charged electrons). Such a substance is referred to as positron
emitter. One of the prime reasons for the importance of PET in medical research and practice
is the existence of positron-emitting isotopes of elements such as carbon, oxygen and fluorine.
These isotopes can be attached or tagged to biochemical compounds such as glucose, ammonia,
water etc. to form radioactive tracers that will mimic their stable counterparts biologically
(i.e., the radio-tracer element does not modify the biochemical behavior of the molecule). The
choice of the biochemical compound and the radioactive tracer depends on the particular med-
ical information being sought. When these radioactive drugs (or “radio-pharmaceuticals”) are
administered to a patient, either by injection or inhalation of gas, they distribute within the
body according to the physiologic pathways associated with their stable counterparts.

The scan begins after a delay ranging from seconds to minutes to allow for the radio-tracer
transport to the organ of interest. Then, the radio-isotope decays to a more stable atom by
emitting a positron from its nucleus. The emitted positron loses most of its kinetic energy after
traveling only a few millimeters in living tissue. It is then highly susceptible to interaction with
an electron, an event that annihilates both particles. The mass of the two particles is converted
into 1.02 million electron volts of energy, divided equally between two gamma rays.

The two gamma rays fly off the point of annihilation in nearly opposite directions along a
line with a completely random orientation (i.e., uniformly distributed in space). They penetrate
the surrounding tissue and are recordered outside the patient by a PET scanner consisting of
circular arrays (rings) of gamma radiation detectors.

Since the two gamma rays are emitted simultaneously and travel in almost exactly opposite
directions, their source can be established with high accuracy. This is achieved by grouping
the radiation detectors in pairs. Two opposing detectors register a signal only if both sense
high-energy photons within a short (∼ 10−8sec) timing window. Detection of two events at the
same time is referred to as coincidence event. Each detector is in coincidence with a number of
detectors opposite so as to cover a field of view (FOV) about half as large in diameter as the
diameter of the detector array.

A coincidence event is assigned to a line of response (LOR) connecting the two relevant
detectors. In the two-dimensional case, an LOR is identified by the angle φ and the distance
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s from the scanner axis (the center of the FOV). A certain pair of detectors is identified by
the LOR joining their centers, and is sometimes referred to as a bin. The total number of
coincidence events detected by a specific pair of detectors, approximates the line integral of the
radio-tracer concentration along the relevant LOR. Considering the total number of coincidence
events detected by all pairs of detectors with the same angle φ, we get a parallel set of such line
integrals, known as a parallel projection set or shortly, as a projection.

The measured data set is the collection of numbers of coincidences counted by different pairs
of detectors, or equivalently, the number of counts in all bins that intersect the FOV. Based on
the measured data, a mathematical algorithm, applied by a computer, tries to reconstruct the
spatial distribution of the radioactivity within the body. The principle of image reconstruction
by computerized tomography is that an object can be reproduced from a set of its projections
taken at different angles. The validity of such a reconstruction depends, of course, on the number
of counts collected. The number of projections is a parameter of the scanner, and it determines
the size of the mathematical reconstruction problem.

Note that there are several factors affecting quantitative accuracy of the measured data (e.g.,
detector efficiency, attenuation, scatter, random events, etc.). Therefore, the total number of
counts is typically much smaller than the total number of emissions.

The final result of the scan study is usually presented as a set of two-dimensional images
(known as slices), which together compose the three-dimensional mapping of the tracer distri-
bution within the body.

3 The optimization problem

For consistent data, i.e. free of noise and measurement errors, there is a unique analytic solution
of the two-dimensional inversion problem of recovering a 2D image from the set of its one-
dimensional projections. This solution derived by Radon in 1917 and becomes later the basis
for computerized tomography. The method, named Filtered Back-projection (FBP), was first
applied for 2D PET image reconstruction by Shepp and Logan in 1974 ([She74]).

The images obtained by the FBP method as well as other analytical methods, which are
based on inverse transforms, tend to be “streaky” and noisy. To address the problem of noise,
the study of statistical (iterative) reconstruction techniques has received much attention in the
past few years. Iterative methods allow to incorporate naturally physical constraints and a priori
knowledge not contained in the measured projections e.g., the Poisson nature of the emission
process.

The formulation of the PET reconstruction problem as a maximum likelihood (ML) problem
rather than as an inverse problem was initially suggested by Rockmore and Mackovski in 1976
([Roc76]). It became feasible when Shepp and Vardi in 1982 ([She82]) and Vardi, Shepp and
Kaufman in 1985 ([Var85]) showed how the Expectation Maximization (EM) algorithm could
be used for the ML computation.

Mathematical model and the Maximum-Likelihood problem The goal of ML estima-
tion, as applied to emission tomography, is to find the expected number of annihilations by
maximizing the probability of the set of observations, i.e. the detected coincidence events.

The mathematical model is based on the realistic assumption that photon counts follow a
Poisson process. To simplify the computations, we form a finite parameter space by imposing a
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grid of boxes (voxels) over the emitting object. Let X(j) denote the number of radioactive events
emitted from voxel j. It is assumed that X(j), j = 1, . . . , n are independent Poisson-distributed
random variables with unknown means λj ,

X(j) ∼ Poisson(λj).

Let pij be the probability that an emission from voxel j will be detected in bin i. Note that pij
defines a transition matrix (likelihood matrix) assumed to be known from the geometry of the
detector array. The probability to detect an event emitted from voxel j is:

pj =
m∑

i=1

pij . (1)

The number of events emitted from voxel j and detected in bin i is defined by X(i, j) = pijX(j).
By a Bernoulli thinning process with the probabilities pij , for different j and i, {X(i, j)} are also
independent Poisson random variables. Let Y (i) denote the total number of events detected by
bin i, i.e.,

Y (i) =
∑

j

pijX(i, j), (2)

then, Y (i) is also a Poisson random variable, with the mean

µi =
∑

j

pijλj , (3)

and Y (i)’s are independent of each other. A more accurate model of the observations would be

µi =
∑

j

mipijλj + ri + si,

where, ri and si are known values for random and scatter coincidences, and mi are known
attenuation coefficients, but we will use the simplified model. We denote by yi the observations,
namely the realizations of the random variables Y (i).

The problem of PET image reconstruction can be formulated in the context of an incomplete
data problem: the complete data (but unobserved) are the number of counts emitted from
each voxel (X(j)); the incomplete data (observed) are counts of photons collected in various
bins (yi); and the parameter to be estimated is the expected number of counts emitted from
each voxel (λj). Thus, the reconstruction problem is equivalent to a parameter estimation
problem, and a maximum likelihood function can be formulated. In general, the likelihood
function can be defined as the joint probability density of the measured data known up to the
unobservable parameters to be estimated. Maximizing this likelihood function with respect to
the unobservable parameters yields the parameters with which the data are most consistent.

According to (2) and (3) the vector of observed data y = (y1, . . . , ym)T has the following
likelihood function:

L(λ) = p(Y = y|λ) =
m∏
i=1

e−µi µ
yi
i
yi!

=
m∏
i=1

(exp[−∑n
j=1 λjpij ]

[
∑n

j=1
λjpij ]

yi

yi!
)

(4)

The maximum likelihood estimate of λ is the vector λ maximizing L(λ) or equivalently its
logarithm:

lnL(λ) = −
n∑

j=1

λjpj +
m∑

i=1

yi ln(
n∑

j=1

λjpij)− constant. (5)
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Note that the function lnL(λ) is concave ([She82]). Therefore, we can write the following convex
minimization problem with non-negativity constraints:

F (λ) ≡
n∑

j=1

pjλj −
m∑

i=1

yi ln




n∑

j=1

pijλj


→ min | λ ≥ 0, (6)

The optimal solution to the problem is the Maximum Likelihood estimate of the (discretized)
density of the tracer.

Problem (6) is an extremely large-scale convex optimization program: the design dimension
n (the number of voxels) normally is 1283 = 2, 097, 152, while the number m of bins (i.e., the
number of log-terms in the objective) can vary from 6,000,000 to 20,000,000, depending on the
type of the tomograph. On a 450 MHz Pentium III computer with 200 Mb RAM, a single
computation of the value and the gradient of the objective (i.e., multiplication of given vectors
once by the matrix P = ||pij || and once by P T ) takes from 15 to 45 minutes, depending on m.

The huge sizes of the PET Image Reconstruction problem impose severe restrictions on the
type of optimization techniques which could be used to solve (6):

A. With the design dimension of order of n = 106, the only option is to use methods whose
computational effort per iteration is linear in n. Even with this complexity per iteration,
the overall number of iterations should be at most few tens – otherwise the running time
of the method will be too large for actual clinical applications.

B. The objective in (6) is not defined on the whole Rn and may blow up to∞ as λ approaches
a “bad” boundary point of the nonnegative orthant (e.g. the origin); moreover, (6) is a
constrained problem, however simple the constraint might look.

Observation A rules out basically all advanced optimization methods, like Interior Point ones
(or other Newton-based optimization techniques): in spite of the fast convergence in terms of
iteration counts, these techniques (at least in their “theoretically valid” forms) will “never”
finish even the first iteration... In principle, it could be possible to use quasi-Newton techniques.
Such an approach, however, would require resolving difficulties coming from B, without a clear
reward for the effort: to the best of our knowledge, in the case when the number of iterations
is restricted to only a small fraction of the design dimension (see A), there is no theoretical or
computational evidence in favor of quasi-Newton methods.

Consequently, in our case, the most promising methods seem to be simple gradient-descent
type methods aimed at solving convex problems with simple constraints. For these methods,
the complexity per iteration is linear in n. Moreover, in favorable circumstances, the rate of
convergence of gradient-type methods, although poor, is independent (or nearly so) of the de-
sign dimension. As a result, with a gradient-type method one usually reaches the first one or
two digits of the optimal value in a small number of iterations, and then the method “dies”,
i.e., in many subsequent iterations no more progress in accuracy is obtained. Note that this
“convergence pattern” is, essentially, what is needed in the PET Image Reconstruction problem.
Indeed, this is an inverse (and as such – an ill-posed) optimization problem; practice demon-
strates that when solving it to high accuracy, in terms of the optimal value, (which is possible
in the 2D case), the quality of the image first improves and then tends to deteriorate, resulting
eventually in a highly noisy image. Thus, in the case in question we in fact are not interested
in high-accuracy solutions, which makes gradient descent techniques an appropriate choice.

5



4 The Mirror Descent Scheme and minimization over a simplex

4.1 The general Mirror Descent scheme

The general Mirror Descent (gMD) scheme is aimed at solving a convex optimization problem

f(x)→ min | x ∈ X ⊂ Rn, (7)

where X is a convex compact set in Rn and f is a Lipschitz continuous convex function on X.

Note that the PET Image Reconstruction problem with pij > 0 can be easily
converted to (7). Indeed, from the KKT conditions for (6) we deduce the comple-
mentarity equations


pj −

∑

i

yi
pij∑

`
pi`λ`


λj = 0, j = 1, ..., n.

Summing up these equations, we see that any optimal solution λ to problem (6) must
satisfy the equation ∑

j

pjλj = B ≡
∑

i

yi.

Thus, we loose nothing by adding to problem (6) the equality constraint
∑
j
pjλj = B.

If we further introduce the change of variables

xj =
pjλj
B

,

we end up with the optimization program

f(x) ≡ −
m∑

i=1

yi ln(
∑

j

rijxj)→ min | x ∈ ∆n ≡ {x ∈ Rn : x ≥ 0,
∑

i

xi = 1}, (8)

where
rij = B

pij
pj

which is equivalent to (6). The new formulation (8) is of the form (7), with the
standard simplex ∆n playing the role of X. Besides this, the resulting objective f is
convex and Lipschitz continuous on X = ∆n, provided that pij > 0.

The setup for the gMD method is given by the following entities:

1. A compact convex set Y ⊃ X;

2. A norm ‖ · ‖ on Rn and its associated projector of Y onto X

π(y) ∈ Argmin
x∈X

‖y − x‖,

along with the corresponding separator

η(y) ∈ Rn : ‖η(y)‖∗ ≤ 1, ηT (y)(y − x) ≥ ‖y − π(y)‖ ∀x ∈ X, (9)

where
‖ξ‖∗ = max{ξTx | ‖x‖ ≤ 1}

is the norm on Rn conjugate to ‖ · ‖;
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3. A positive real α and a continuously differentiable convex function w : Y → R which is
α-strongly convex on Y w.r.t. the norm ‖ · ‖, i.e.

(w′(x)− w′(y))T (x− y) ≥ α‖y − x‖2 ∀x, y ∈ Y [w′ ≡ ∇w]

It is assumed that we can compute efficiently

• The projector π(y) and the separator η(y), y ∈ Y ;

• The Legendre transformation

W (ξ) = max
y∈Y

[
ξT y − w(y)

]

of w(·), ξ ∈ Rn.

Note that α-strong convexity of w on Y implies, via the standard duality relations ([RW98],
Proposition 12.54), that W is continuously differentiable on the entire Rn with Lipschitz
continuous gradient:

‖W ′(ξ)−W ′(η)‖ ≤ 1
α
‖ξ − η‖∗ ∀ξ, η ∈ Rn. (10)

Moreover, the mapping ξ 7→W ′(ξ) = argmaxx∈Y [ξTx− w(x)] is a parameterization of Y .

The gMD method for solving (7) generates sequences ξt ∈ Rn, x̂t ∈ Y , xt ∈ X as follows:

• Initialization: Choose (arbitrarily) x0 ∈ X and set ξ1 = w′(x0);

• Step t,t = 1, 2, ...:

S.1) Set
x̂t = W ′(ξt); xt = π(x̂t); ηt = η(x̂t).

S.2) Compute the value f(xt) and a subgradient f ′(xt) of f at xt. If f ′(xt) = 0, then
xt is the exact minimizer of f on X, and we terminate. If f ′(xt) 6= 0, we set

ξt+1 = w′(x̂t)− γt[f ′(xt) + ‖f ′(xt)‖∗ηt], (11)

where γt > 0 is a stepsize, and pass to step t+ 1.

• Approximate solution xt generated in course of the first t steps of the method is the best
(with the smallest value of f) of the points x1, ..., xt: xt ∈ Argminx∈{x1,...,xt} f(x).

The convergence properties of the Mirror Descent method are summarized in the following

Theorem 4.1 Assume that f is convex and Lipschitz continuous on X, with Lipschitz constant,
w.r.t. ‖·‖, equal to L‖·‖(f), and that the subgradients f ′(xt) used in the gMD satisfy the condition

‖f ′(xt)‖∗ ≤ L‖·‖(f).

Then for every t ≥ 1 one has

f(xt)−min
x∈X

f(x) ≤ min
1≤s≤r≤t

Γ(w) + 2
α

r∑
τ=s

γ2
τ‖f ′(xτ )‖2∗

r∑
τ=s

γτ

, (12)
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where
Γ(w) = max

x,y∈Y
[w(x)− w(y)− (x− y)Tw′(y)].

In particular, whenever γt → +0 as t → ∞ and
∑
τ
γτ = ∞, one has f(xt) − min

x∈X
f(x) → 0 as

t→∞. Moreover, with the stepsizes chosen as

γτ =
C(αΓ(w))1/2

‖f ′(xτ )‖∗
√
t
, (13)

one has

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)L‖·‖(f)

√
Γ(w)
α

t−1/2, t = 1, 2, ... (14)

with certain universal function Ĉ(·).

The theorem, in a slightly modified setting, is proved in [Nem78]. Here it will be derived as a
straightforward simplification of the proof of Theorem 5.1 below.

4.2 ‖ · ‖p-Mirror Descent and minimization over the standard simplex

As we have seen, the PET Image Reconstruction problem can be converted to the form of (8),
i.e., posed as the problem of minimizing a convex function f over the standard simplex ∆n.
Therefore we focus on the gMD scheme as applied to the particular case of X = ∆n.

Let us choose somehow p ∈ (1, 2] and consider the following setup for gMD:

Y = {x | ‖x‖p ≤ 1} [⊃ ∆n]; ‖ · ‖ = ‖ · ‖p; w(x) =
1
2
‖x‖2p. (15)

This setup defines a family {MDp}1<p≤2 of `p-Mirror Descent methods for minimizing convex
functions over the standard simplex ∆n (in fact, MDp can be used to minimize a convex function
over a convex subset of the unit ‖ · ‖p-ball). A natural question is which one of these methods is
best suited for minimization over ∆n ? To answer this question, note first that for setup (15),
a straightforward calculation yields that

W (ξ) =

{
1
2‖ξ‖2q , ‖ξ‖q ≤ 1
‖ξ‖q − 1

2 , ‖ξ‖q > 1
, q =

p

p− 1
. (16)

Moreover, it is known (to be self-contained, we reproduce the proof in Appendix 1) that the
parameter α of strong convexity of w w.r.t. the ‖ · ‖p-norm satisfies the relation

α ≡ αp(n) ≥ O(1)(p− 1), (17)

and the quantity Γ(w) defined in (12) is

Γ(w) = O(1)

(here and in what follows, O(1) are appropriate positive absolute constants). Consequently, the
efficiency estimate (14) becomes

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)
L‖·‖p(f)√
p− 1

t−1/2, t = 1, 2, ... (18)
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Recalling that for every x ∈ Rn one clearly has ‖x‖p ≤ ‖x‖1 ≤ ‖x‖pn
p−1
p , and therefore

L‖·‖1(f) ≤ L‖·‖p(f) ≤ L‖·‖1n
p−1
p ,

we derive from (18) that

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)
n
p−1
p√

p− 1
L‖·‖1(f)t−1/2, t = 1, 2, ... (19)

Assuming n > 1 and minimizing the right hand side over p ∈ (1, 2], we see that a good choice
of p is

p = p(n) = 1 +
O(1)
lnn

. (20)

With this choice of p, the efficiency estimate (19) becomes

f(xt)−min
x∈X

f(x) ≤ Ĉ(C)

√
lnnL‖·‖1(f)√

t
, t = 1, 2, ..., (21)

while the underlying stepsizes are

γt =
C

‖f ′(xτ )‖∗
√

lnn
√
t

[C > 0]. (22)

In what follows, we refer to the Mirror Descent method with the setup given by (15), (20), (22)
(where C = O(1)) as to ‖ · ‖1-Mirror Descent method MD1.

Discussion. In the family {MDp}1≤p≤2 of Mirror Descent methods, the special case MD2 is
well known – it is a kind of the standard Subgradient Descent method originating from [Sho67]
and [Pol67] and studied in numerous papers (for the “latest news” on SD, see [KLP99] and
references therein). The only modification needed to get from the MD scheme not a “kind of”
the Subgradient Descent, but exactly the standard SD method

xt+1 = πX(xt − γtf ′(xt)), πX(x) = argmin
y∈X

‖x− y‖2, (23)

for minimizing a convex function over a convex subset X of the unit Euclidean ball, is to set in
(15) p = 2 and Y = X rather than p = 2 and Y = {x | ‖x‖2 ≤ 1}. Our analysis demonstrates,
however, that when minimizing over the standard simplex, the “non-Euclidean” Mirror Descent
MD1 is preferable to the usual SD. Indeed, the best efficiency estimate known so far for SD as
applied to minimizing a convex Lipschitz continuous function f over the standard simplex ∆n

is

f(xt)− min
x∈∆n

f(x) ≤ O(1)
L‖·‖2(f)√

t
,

while the efficiency bound for MD1 is

f(xt)− min
x∈∆n

f(x) ≤ O(1)

√
lnnL‖·‖1(f)√

t
;

the ratio of these efficiency estimates is

R = O(1)
L‖·‖2(f)√

lnnL‖·‖1(f)
.
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Now, the ratio L‖·‖2(f)/L‖·‖1(f) is always ≥ 1 and can be as large as O(1)
√
n (in the case where

all partial derivatives of f are of order of 1, and their sum is identically zero). It follows that for
the problem of minimization over the standard simplex, as far as the efficiency estimates are
concerned, the “non-Euclidean” Mirror Descent MD1 can outperform the standard Subgradient
Descent by a factor of order of (n/ lnn)1/2, which, for large n, can make a huge difference.

4.3 MD1 and complexity of large-scale convex minimization over a simplex

We next show that the efficiency estimate of MD1 as applied to minimization of Lipschitz con-
tinuous functions over an n-dimensional simplex cannot be improved by more than an O(lnn)-
factor, provided that n is large. Thus, MD1 is a “nearly optimal” method, in the sense of
Information-based Complexity theory, for large-scale convex minimization over the standard
simplex.

Consider the family F ≡ F(L, n) of all problems

f(x)→ min | x ∈ ∆n ≡ {x ∈ Rn
+ :

n∑

i=1

xi = 1}

associated with convex functions f : ∆n → R which are Lipschitz continuous and whose Lips-
chitz constant (taken w.r.t. ‖ · ‖1) does not exceed a given positive L. The Information-based
Complexity Compl(ε) of the family F is defined as follows. Let B be a routine which, as applied
to a problem f from the family F , successively generates search points xt = xt(B, f) ∈ Rn and
approximate solutions xt = xt(B, f); the only restriction on the mechanism of generating the
search points and the approximate solutions is that both xt and xt should be deterministic func-
tions of the values f(xτ ) and the subdifferentials ∂f(xτ ) of the objective taken at the previous
search points xτ , τ < t, so that x1, x

1 are independent of f , x2, x
2 depend only on f(x1), ∂f(x1),

and so on. We define the complexity of F w.r.t. B as the function

ComplB(ε) = inf{T : f(xt(B, f))−min
∆n

f ≤ ε ∀(t ≥ T, f ∈ F},

i.e., as smallest number of steps after which the inaccuracy of approximate solutions generated
by B is at most ε, whatever is f ∈ F . The complexity of the family F is defined as

Compl(ε) = min
B

ComplB(ε),

where the minimum is taken over all aforementioned “solution methods” B. Note that the
efficiency bound (21) says that

ComplMD1
(ε) ≤ O(1)

[
L2 lnn
ε2

+ 1

]
, ε > 0. (24)

On the other hand, the following statement takes place (for the proof, see Appendix 2):

Proposition 4.1 The Information-based complexity of the family F(L, n) is at least O(1) min
[
L2

ε2
, n
]
.

Comparing (24) with the lower complexity bound given by Proposition 4.1, we see that in the
case of ε ≥ Ln−1/2 the accuracy guarantees given by MD1 as applied to optimization problems
from F cannot be improved by more than factor O(lnn).
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5 Incremental Gradient version of the Mirror Descent scheme -
the OSMD method

The objective function in the PET Image Reconstruction problem is a sum of a huge numberm of
simple convex functions. A natural way to exploit this fact in order to reduce the computational
effort per iteration is offered by the Incremental Gradient technique (see e.g, [Ber95]), which in
the medical imaging literature is known as the Ordered Subsets (OS) scheme (see [Hud94]).

The idea of the OS scheme is very simple: when solving problem (7) with the objective of
the form

f(x) =
k∑

`=1

f`(x), (25)

one replaces at iteration t the “true” gradient f ′(xt) with “partial gradient” f ′`(t)(xt), with `(t)
running, in the cyclic order, through the set 1, ..., k of indices of the components f1, ..., fk. With
this approach, one reduces the computational effort required to compute f ′, and thus – reduces
the complexity of an iteration. Computational practice in many cases demonstrates that such a
modification does not affect much the quality of approximate solutions generated after a given
number of iterations, provided that k is not too large.

Below, we present the Ordered Subsets version of the general Mirror Descent scheme and
demonstrate that its convergence properties are similar to those of the original scheme.

The Ordered Subsets Mirror Descent scheme for solving problem (7) with objective of the
form (25) (where all components f` are convex and Lipschitz continuous on X) has the same
setup (Y,X, ‖ · ‖, w,W ) as the original gMD scheme and is as follows:

• Initialization: Choose x0 ∈ X and set ξ1 = w′(x0);

• Outer iteration t,t = 1, 2, ...:

O.1) Given ξt, run a k-iteration inner loop as follows:

• Initialization: Set ξ1
t = ξt;

• Inner iteration `, ` = 1, ..., k:

I.1) Given ξ`t , compute

x̂`t = W ′(ξ`t ); x`t = π(x̂`t); η`t = η(x̂`t)

(cf. step S.1 in the original MD scheme).
I.2) Compute the value f`(x`t) and a subgradient f ′`(x

`
t) of f` at the point

x`t and set
ξ`+1
t = ξ`t − γt[f ′`(x`t) + ‖f ′`(x`t)‖∗η`t ],

where γt > 0 is a stepsize.

O.2) Set
ξt+1 = w′(W ′(ξm+1

t ))

and pass to Outer iteration t+ 1.

• Approximate solution xt generated in course of t steps of the method is the point x1
τ(t), where

τ(t) ∈ Argmin
t/2≤τ≤t

f̃τ , f̃τ =
k∑

`=1

f`(x`τ )

11



(note that f̃τ is a natural estimate of f(x1
τ )).

The main theoretical result of our paper summarizes the convergence properties of the Or-
dered Subsets version of the Mirror Descent scheme in the following

Theorem 5.1 Assume that f`, ` = 1, ...,m, are convex and Lipschitz continuous on X, with
Lipschitz constants w.r.t. ‖ · ‖ not exceeding L‖·‖(f), and that the subgradients f ′`(x

`
t) used in

the Mirror Descent method satisfy the condition

‖f ′`(x`t)‖∗ ≤ L‖·‖(f).

Assume, in addition, that the ‖ · ‖-projector π(·) is Lipschitz continuous on Y , with a Lipschitz
constant β w.r.t. ‖ · ‖, i.e.,

‖πX(x)− πX(x′)‖ ≤ β‖x− x′‖, ∀x, x′ ∈ Y.
Then for every t ≥ 1 one has

f(xt)−min
x∈X

f(x) ≤
Γ(w) + 2k(k + 1)βα−1L2

‖·‖(f)
∑

t/2≤τ≤t
γ2
τ

∑
t/2≤τ≤t

γτ
+ 4k2βα−1L2

‖·‖(f) max
t/2≤τ≤t

γτ . (26)

In particular, whenever γt → +0 and
∑

t/2≤τ≤t
γτ →∞ as t→∞, one has f(xt)−min

x∈X
f(x)→ 0

as t→∞. Moreover, with the stepsizes chose as

γt =
(αβ−1Γ(w))1/2

kLt
√
t

, (27)

where Lt are any numbers satisfying

0 < Lmin ≤ Lt ≤ Lmax <∞,
one has

f(xt)−min
x∈X

f(x) ≤ O(1)k

√
βΓ(w)
α

(
Lmax +

L2
‖·‖(f)

Lmin

)
t−1/2, t = 1, 2, ... (28)

Proof. 10. Let x∗ be a minimizer of f on X, let W∗(ξ) = W (ξ)− ξTx∗, and let

g`τ = f ′`(x
`
τ ), h`τ = g`τ + ‖g`τ‖∗η`τ .

Observe, first, that from ‖η`τ‖∗ ≤ 1 and ‖f ′`(x`τ )‖∗ ≤ L‖·‖(f) it follows that

‖h`τ‖∗ ≤ 2‖g`τ‖∗ ≤ 2L, L = L‖·‖(f), (29)

whence
‖ξ`τ − ξ`+1

τ ‖∗ ≤ 2γτL.

Besides this, by (10) and by assumptions on π(·) and f` we have

‖W ′(ξ)−W ′(η)‖ ≤ 1
α‖ξ − η‖∗ ∀ξ, η ∈ Rn,

‖π(x)− π(y)‖ ≤ β‖x− y‖ ∀x, y ∈ Y,

|f`(x)− f`(y)| ≤ L‖x− y‖ ∀x, y ∈ X.

12



Combining these relations and taking into account the description of the method, we get

(a) ‖x̂`τ − x̂1
τ‖ ≤ 2kα−1γτL, ` = 1, ..., k;

(b) ‖x`τ − x1
τ‖ ≤ 2kβα−1γτL, ` = 1, ..., k;

(c) |f`(x`τ )− f`(x1
τ )| ≤ 2kβα−1γτL

2, ` = 1, ..., k.

(30)

20. Since W∗ differs from W by a linear function, relation (10) holds true for W∗ as well,
whence

W∗(ξ+η) = W∗(ξ)+ηTW ′∗(ξ)+
1∫

0

[W ′∗(ξ+tη)−W ′∗(ξ)]T ηdt ≤W∗(ξ)+ηTW ′∗(ξ)+
1

2α
‖η‖2∗. (31)

Besides this, whenever ξ ∈ Rn, we have

W ′(ξ) = argmaxx∈Y [ξTx− w(x)],

and since w is continuously differentiable on Y , it follows that

[ξ − w′(W ′(ξ))]T (W ′(ξ)− y) ≥ 0 ∀y ∈ Y.

It follows that

W∗(ξ) = W (ξ)− ξTx∗ = ξTW ′(ξ)− w(W ′(ξ))− ξTx∗

= [w′(W ′(ξ))]TW ′(ξ)− w(W ′(ξ)) + [ξ − w′(W ′(ξ))]T (W ′(ξ)− x∗)− [w′(W ′(ξ))]Tx∗

≥ [w′(W ′(ξ))]TW ′(ξ)− w(W ′(ξ))− [w′(W ′(ξ))]Tx∗

= W∗(w′(W ′(ξ))).

(32)
We now have

W∗(ξ`+1
τ ) = W∗(ξ`τ − γτh`τ )

≤ W∗(ξ`τ )− γτ [h`τ ]TW ′∗(ξ`τ ) + 1
2αγ

2
τ‖h`τ‖2∗ [by (31)]

≤ W∗(ξ`τ )− γτ [h`τ ]TW ′∗(ξ`τ ) + 2
αγ

2
τL

2 [by (29)]

= W∗(ξ`τ )− γτ [h`τ ]T [x̂`τ − x∗] + 2
αγ

2
τL

2

= W∗(ξ`τ ) + 2
αγ

2
τL

2 + γτ [h`τ ]T [x∗ − x̂`τ ]

= W∗(ξ`τ ) + 2
αγ

2
τL

2 + γτ [f ′`(x
`
τ )]T [x∗ − x̂`τ ] + γt‖f ′`(x`τ )‖∗[η`τ ]T [x∗ − x̂`τ ].

13



The last term here is ≤ −‖x̂`τ − x`τ‖ by (9), so that

W∗(ξ`+1
τ ) ≤ W∗(ξ`τ ) + 2

αγ
2
τL

2 − γt‖f ′`(x`τ )‖∗‖x̂`τ − x`τ‖+ γτ [f ′`(x
`
τ )]T [x∗ − x̂`τ ]

= W∗(ξ`τ ) + 2
αγ

2
τL

2 − γt‖f ′`(x`τ )‖∗‖x̂`τ − x`τ‖

+γτ [f ′`(x
`
τ )]T [x∗ − x`τ ] + γτ [f ′`(x

`
τ )]

T [x`τ − x̂`τ ]

The last term here is ≤ ‖f ′`(x`τ )‖∗‖x̂`τ − x`τ‖, whence

W∗(ξ`+1
τ ) ≤ W∗(ξ`τ ) + 2

αγ
2
τL

2 + γτ [f ′`(x
`
τ )]T [x∗ − x`τ ]

≤ W∗(ξ`τ ) + 2
αγ

2
τL

2 + γτ [f`(x∗)− f`(x`τ )] [convexity of f`]

≤ W∗(ξ`τ ) + 2
αγ

2
τL

2 + γτ [f`(x∗)− f`(x1
τ )] + γτ [f`(x1

τ )− f`(x`τ )].

Since the last term is ≤ 2kβα−1γτL
2 by (30.c), we come to

W∗(ξ`+1
τ ) ≤W (ξ`τ )− γτ [f`(x1

τ )− f`(x∗)] + 2(k + 1)βα−1γ2
τL

2.

Adding up these inequalities for ` = 1, ..., k, we conclude that

W∗(ξk+1
τ ) ≤W (ξ1

τ )− γτ [f(x1
τ )− f(x∗)] + 2k(k + 1)βα−1γ2

τL
2.

Since ξ1
τ = ξτ and ξτ+1 = w′(W ′(ξk+1

τ )), the latter inequality, by (32), implies that

W∗(ξτ+1) ≤W∗(ξτ )− γτ [f(x1
τ )− f(x∗)] + 2k(k + 1)βα−1γ2

τL
2. (33)

Summing up the resulting inequalities over τ , t/2 ≤ τ ≤ t, and denoting by t̄ the smallest value
of τ in this range, we get

[
min
t̄≤τ≤t

f(x1
τ )− f(x∗)

]
t∑

τ=t̄
γτ ≤

t∑
τ=t̄

γτ [f(x1
τ )− f(x∗)]

≤ W∗(ξt̄)−W∗(ξt+1) + 2k(k + 1)βα−1L2
t∑

τ=t̄
γ2
τ .

(34)

Now, since W is the Legendre transformation of w
∣∣∣∣
Y

and x∗ ∈ X ⊂ Y , we have W∗(ξt+1) =

W (ξt+1) − ξTt+1x∗ ≥ −w(x∗), while, by construction, ξt̄ = w′(yt̄) for certain yt̄ ∈ Y . It follows
that W∗(ξt̄) = [w′(yt̄)]T yt̄ − w(yt̄)− [w′(yt̄)]Tx∗, whence

W∗(ξt̄)−W∗(ξt+1) ≤ w(x∗)−
[
w(yt̄) + [w′(yt̄)]

T (x∗ − yt̄)
]
≤ Γ(w).

Thus, (34) implies that

min
t̄≤τ≤t

f(x1
τ )− f(x∗) ≤

Γ(w) + 2k(k + 1)βα−1L2
t∑

τ=t̄
γ2
τ

t∑
τ=t̄

γτ

. (35)
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At the same time, from (30.c) it follows that whenever t ≥ τ ≥ t/2, one has

|f̃τ − f(x1
τ )| ≤ 2k2βα−1L2 max

t/2≤τ≤t
γτ [f̃τ =

m∑
`=1

f`(x`τ ))]

Taking into account the latter inequality, the inequality (30) and the rule for generating xt, we
come to (26).

The remaining statements of Theorem 5.1 are straightforward consequences of (26).

Remark 5.1 The theoretical efficiency estimate of OSMD stated by Theorem 5.1 is not better
(in fact, it is larger, by a factor O(kβ1/2)) than the estimate stated in Theorem 4.1 for gMD.
The advantage of the Ordered Subsets techniques is a matter of practical experience in several
difficult application areas (e.g., Training of Neural Nets ([Ber97]) and Tomography ([Hud94])).
In this regard, the role of Theorem 5.1 is to make the approach legitimate theoretically.

5.1 Ordered Subsets implementation of MD1

From now on, we focus on problem (7) with objective of the form (25), and assume that X is
the standard n-dimensional simplex ∆n. Our current goal is to complete the description of the
associated Ordered Subsets version of MD1. The only elements which still are missing are the
calculation of the projector

π(x) ≡ πp(x) = argmin
y∈∆n

‖x− y‖p,

of the separator η(x) and an explicit upper bound on the Lipschitz constant of this projector
w.r.t. ‖ · ‖p-norm, i.e., on the quantity

β(p) = sup
x,x′∈Rn,x6=x′

‖πp(x)− πp(x′)‖p
‖x− x′‖p .

The required information is provided by the following result:

Proposition 5.1 Let 1 < p <∞. Then

(i) The projector πp(x) is independent of p, and is given component-wise by

(πp(x))j = (xj + λ(x))+, j = 1, ..., n, [a+ = max[0, a]] (36)

where λ(x) is the unique root of the equation

n∑

j=1

(xj + λ)+ = 1. (37)

In particular, πp(x), for every p > 1, is also a ‖ · ‖1-projector of Rn onto ∆n:

πp(x) ∈ Argmin{‖x− y‖1 : y ∈ ∆n}.

The separator ηp(x) :

‖ηp(x)‖q ≤ 1, ηTp (x)(x− y) ≥ ‖x− πp(x)‖p ∀y ∈ X
[
q = p

p−1

]
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is readily given by πp(x):

x ∈ X ⇒ ηp(x) = 0;

x 6∈ X ⇒ ηp(x) = [∇‖z‖p]z=x−πp(x) =
{
|δi|p−1 sign(δi)

‖δ‖p−1
p

}n

i=1
, δ = x− πp(x).

(38)

(ii) β(p) ≤ 2.

Proof. 00. Relation (38) is evident, since ‖ · ‖p is continuously differentiable outside of the
origin for p > 1.

10. Let us verify first that πp(x) is indeed given by (36) and thus is independent of p. There
is nothing to prove when x ∈ ∆n (in this case the unique root of (37) is λ(x) = 0, and (36) says
correctly that πp(x) = x). Now let x 6∈ ∆n. It is immediately seen that λ(x) is well-defined; let
y be the vector with the coordinates given by the right hand side of (36). This vector clearly
belongs to ∆n, and the vector d = y − x is as follows: there exists a nonempty subset J of the
index set {1, ..., n} such that dj = λ(x) for j ∈ J and dj < λ(x) and yj = 0 for j 6∈ J . In order

to verify that y is the ‖ · ‖p-projection of x onto ∆n, it suffices to prove that if δ = ∂‖z‖p
∂z

∣∣∣∣
z=d

,

then the linear form δTu attains its minimum over u ∈ ∆n at the point y. We have

δj = θ|dj |p−1 sign(dj), j = 1, ..., n [θ > 0],

i.e., same as for the vector d itself, for certain µ it holds δj = µ, j ∈ J and δj < µ, yj = 0 for
j 6∈ J , so that the linear form δTu indeed attains its minimum over u ∈ ∆n at the point y.

20. Now let us prove that β(p) ≤ 2. Observe that πp(x) is Lipschitz continuous (since πp(·)
is independent of p, and the ‖ · ‖2-projector onto a closed convex set is Lipschitz continuous,
with constant 1, w.r.t. ‖ · ‖2).

20.1. Let J(x) = {j | xj + λ(x) ≥ 0}, and let k(x) be the cardinality of J(x). Since λ(x)

solves (37), we have k(x) ≥ 1 and λ(x) = 1
k(x)

[
1− ∑

j∈J(x)
xj

]
. Denoting by e(x) the characteristic

vector of the set J(x) and by E(x) the matrix Diag(e(x)), we therefore get

πp(x) = E(x)x+
1

k(x)
e(x)− 1

k(x)
e(x)eT (x)x. (39)

Let J be the set of all nonempty subsets of the index set {1, ..., n}, and letX[J ] = {x | J(x) = J}
for J ∈ J . From (39) it follows that for every J ∈ J we have

x, y ∈ X[J ]⇒

‖πp(x)− πp(y)‖p ≤ ‖E(x)(x− y)‖p + 1
k(x)‖e(x)eT (x)(x− y)‖p

≤ ‖x− y‖p + 1
k(x)‖e(x)‖p‖e(x)‖ p

p−1
‖x− y‖p

= 2‖x− y‖p.

(40)

20.2. Let
X = {x ∈ Rn : ∃(J ∈ J , j ≤ n) : Card(J)xj =

∑

j′∈J
xj′ − 1}.
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Note that X is the union of finitely many hyperplanes. We claim that if x, y ∈ Rn are such that
the segment [x, y] does not intersect X , then J(x) = J(y) and, consequently (see (40)),

‖πp(x)− πp(y)‖p ≤ 2‖x− y‖p. (41)

Indeed, assume that J(x) 6= J(y), or, which is the same, the sets {j : xj ≥ −λ(x)} and
{j : yj ≥ −λ(y)} are distinct from each other. Since λ(·) clearly is continuous, it follows that on
the segment [x, y] there exists a point x̄ such that one of the coordinates of the point equals to

−λ(x̄), i.e., to 1
k(x̄)

[
∑

j′∈J(x̄)
x̄j′ − 1

]
. In other words, x̄ ∈ X , which contradicts the assumption.

20.3. Now let y, y′ ∈ Rn\X . Since X is a union of finitely many hyperplanes, the segment
[y, y′] can be partitioned into subsequent segments [y, y1], [y1, y2],..., [ys, y′] in such a way that
the interior of every segment of the partition does not intersect X . By the result of 20.2, πp(·) is
Lipschitz continuous with constant 2 w.r.t. ‖ · ‖p on the interiors of the above segments. Since
πp(·), as we just have mentioned, is continuous, it follows that

‖πp(y)− πp(y′)‖p ≤ 2‖y − y′‖p.
The latter relation holds true for all pairs y, y′ ∈ Rn\X , i.e., for all pairs from a set which is
dense in Rn; since πp(·) is continuous, this relation in fact holds for all y, y′.

Remark 5.2 The upper bound 2 on β(p) cannot be improved, unless one restricts the range of
values of p and/or values of n. Indeed, the ‖ · ‖p-distance from the origin to a vertex of ∆n

is 1, while the ‖ · ‖p-distance between the ‖ · ‖p-projections of these points onto ∆n, i.e., the

‖ · ‖p-distance from a vertex to the barycenter of ∆n, is
(
n−1
np +

(
n−1
n

)p)1/p
; when n is large and

p is close to 1, the latter quantity is close to 2.

We see that to project onto ∆n is easy: computation of π(x) requires, basically, the same effort
as ordering the coordinates of x, which can be done in time O(n lnn).

6 Implementation and testing

In this section, we present results of the Mirror Descent method as applied to the PET image
reconstruction problem based on several sets of simulated and real clinical data. We compare
the results obtained by OSMD1 and MD1. In addition, we compare the results of MD to those
of the usual Subgradient Descent method.

6.1 Implementation of the algorithms

In our experiments, we have worked with several sets of tomography data. Each data set gives
rise to a particular optimization problem of the form of (8) which was solved by the Mirror
Descent scheme (in both the usual and the Ordered Subset versions). The setup for Mirror
Descent was

Y = {x | ‖x‖p ≤ 1} [⊃ ∆n], ‖ · ‖ = ‖ · ‖1, w(x) =
1
2
‖x‖2p, p = p(n) = 1 +

1
lnn

.

This setup differs from (15) – (20) by setting ‖ · ‖ = ‖ · ‖1 instead of ‖ · ‖ = ‖ · ‖p(n); with the
above p(n), this modification does not affect the theoretical efficiency estimate of the algorithm.
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The indicated setup defines the algorithm up to the stepsize policy. The latter for the “No
Ordered Subsets” version MD of the method was chosen as (cf. (22)):

γt =
C

‖f ′(xτ )‖∞
√

lnn
√
t

with C = 0.03 (this value of the stepsize factor C was found the best one in our preliminary
experiments and never was changed afterwards).

The Ordered Subsets version OSMD of the method uses 24-component representation (25)
of the objective, the components being partial sums of the terms in the sum (8), with m/24
subsequent terms in every one of the partial sums. The stepsizes here were chosen according to
the rule (cf. (27))

γt =
C

24Lt
√
t
√

lnn
,

where Lt is a current guess for the ‖·‖1-Lipschitz constant of the objective; in our implementation,
this guess, starting with the second outer iteration, was defined as

∑
1≤`≤24

‖f ′`(x`t−1)‖∞. The

stepsize factor C in OSMD was set to 0.3.

In our experiments we have used, as a “reference point”, the standard Subgradient Descent
method (23) (in the usual “No subsets”) version with the “theoretical” stepsize policy

γt =
C

‖f ′(xt)‖2
√
t
.

The stepsize factor C was tuned to get as good reconstruction as possible; the resulting “optimal
value” of it turned out to be 0.006.

The starting point x0 in all our runs was the barycenter of the simplex ∆n.

Measuring quality of reconstructions. In Medical Imaging, the standard way to evaluate
the quality of a reconstruction algorithm is to apply the algorithm to simulated data and to check
how the resulting pictures reproduce important for a particular application elements of the true
image (in tomography, these elements could be, e.g., small areas with high density of the tracer
mimicking tumors). In what follows we combine this, basically qualitative, way of evaluation
with a quantitative one, where the quality of the approximate solution xt to (8) yielded after t
steps of the method is measured by the quantity εt = f(xt) − min

∆n

f . Note that this quantity

is not “observable” (since the true optimal value f∗ = min
∆n

f is unknown). We can, however,

easily compute a lower bound on f∗. Assume, e.g., that we have run a “no subset” version of
the method, and in course of computations have computed the values f(xt) and subgradients
f ′(xt) of the objective at N search points xt, 1 ≤ t ≤ N . Then we can build the standard
piecewise-linear minorant fN (·) of our objective:

fN (x) = max
1≤t≤N

[
[f(xt)− xTt f ′(xt)] + xT f ′(xt)

]
≤ f(x).

The quantity fN∗ ≡ min
x∈∆n

fN (x) clearly is a lower bound on f∗, so that the “observable” quantities

ε̂t = f(xt)− fN∗ , 1 ≤ t ≤ N
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are upper bounds on the actual inaccuracies εt. In our experiments, the bound fN∗ was computed
at the post-optimization phase according to the relation

fN∗ ≡ min
x∈∆n

max
t≤N

[
[f(xt)− xTt f ′(xt)] + xT f ′(xt)

]
= max

λ∈∆N

φ(λ),

φ(λ) ≡ min
x∈∆n

N∑
t=1

λt


[f(xt)− xTt f ′(xt)]︸ ︷︷ ︸

dt

+xT f ′(xt)


 =

N∑
t=1

λtdt + min
j≤n

[
N∑
t=1

λtf
′(xt)]j ,

which reduces the computation of fN∗ to maximizing a convex function φ(λ) of N variables. In
our experiments, the total number of iterations N was just 10, and there was no difficulty in
minimizing φ.

In the Ordered Subsets version of the method, the policy for bounding f∗ from below was
similar: here after N outer iterations we know the values and the subgradients of the components
f`, ` = 1, ..., k, in decomposition (25) along the points x`t, t = 1, ..., N . This allows to build a
piecewise minorant

fN (x) =
k∑

`=1

max
t=1,...,N

[
[f`(x`t)− [x`t]

T f ′`(x
`
t)] + xT f ′`(x

`
t)
]

of the objective and to use, as the lower bound on f∗, the quantity

fN∗ ≡ min
x∈∆n

fN (x) = max
µ

{
ψ(µ) : µ = {µt`} ≥ 0,

∑
t
µt` = 1, ` = 1, ..., k

}
,

ψ(µ) ≡ min
x∈∆n

∑
t,`
µt`


[f`(x`t)− [x`t]

T f ′`(x
`
t)]︸ ︷︷ ︸

dt`

+xT f ′`(x
`
t)


 =

∑
t,`
µt`dt` + min

j

[
∑
t,`
µt`f

′
`(x

`
t)

]

j

.

6.2 Results

We tested the algorithms on 5 sets of tomography data; the first four are simulated scans of
phantoms (artificial bodies), obtained from the Eidolon simulator ([Zai98], [Zai99]) of PRT-1
PET-scanner. The phantoms (Cylinder, Utah, Spheres, Jaszczak) are 3D cylinders with
piecewise constant density of the tracer; they are commonly used in Tomography to test the
effectiveness of scanners and reconstruction methods (for more details, see [Thi99]). The fifth
data set Brain is obtained from the GE Advance PET-scanner in an actual brain study.

All experiments were carried out on the INTEL Marlinspike Windows NT Workstation (500
MHz 1Mb Cache INTEL Pentium III Xeon processor, 2GB RAM). A single outer iteration of
OSMD takes nearly the same time as a single iteration of MD, namely, appr. 2 min in each of
the four “phantom” tests (n = 515, 871,m = 3, 170, 304), and appr. 90 min in the Brain test
(n = 2, 763, 635,m ≈ 25, 000, 000). About 95% of the running time is used to compute the value
and the gradient of the objective.

Our numerical results are summarized in Table 1.

Note that in OSMD there is no necessity to compute the true values of the objective along
the iterates x`t, and an attempt to compute these values would increase the execution time by
factor k. For the sake of this paper we, however, did compute the values f(x1

t ).

A more detailed description of the data and the results is as follows.
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Table 1: Objective values along iterations (for OSMD, xt = x1
t )

Itr#
Cylinder

f(xt)× 10−8

Utah

f(xt)× 10−8

Spheres

f(xt)× 10−7

Jazszak

f(xt)× 10−7

Brain

f(xt)× 10−9

MD OSMD MD OSMD MD OSMD MD OSMD MD OSMD

1 -2.382 -2.382 -2.549 -2.549 -4.295 -4.295 -5.021 -5.021 -1.463 -1.463

2 -2.648 -2.725 -2.807 -2.902 -4.767 -5.132 -5.643 -5.908 -1.725 -1.848

3 -2.708 -2.732 -2.890 -2.926 -5.079 -5.191 -5.867 -5.968 -1.867 -2.001

4 -2.732 -2.732 -2.929 -2.939 -5.189 -5.200 -5.970 -6.000 -1.951 -2.012

5 -2.723 -2.734 -2.917 -2.938 -5.168 -5.212 -5.950 -5.988 -1.987 -2.015

6 -2.738 -2.738 -2.943 -2.937 -5.230 -5.216 -6.001 -6.005 -1.978 -2.015

7 -2.727 -2.740 -2.923 -2.936 -5.181 -5.205 -5.967 -5.991 -1.997 -2.016

8 -2.740 -2.742 -2.942 -2.936 -5.227 -5.218 -6.007 -6.005 -2.008 -2.016

9 -2.731 -2.737 -2.925 -2.937 -5.189 -5.212 -5.974 -5.994 -1.999 -2.016

10 -2.741 -2.741 -2.941 -2.937 -5.225 -5.205 -6.030 -6.002 -2.009 -2.016

Lower
bound -2.754 -2.966 -5.283 -6.093 -2.050
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Figure 1. Cylinder, progress in accuracy: plot of θ(t) = f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗
]

4 – MD; o – OSMD

“Cylinder” (n = 515, 871,m = 3, 170, 304). This phantom is a cylinder with a uniform
density of the tracer. Fig. 1 displays the “progress in accuracy” in the experiment.

“Utah” (n = 515, 871,m = 3, 170, 304). This phantom (see Fig. 2) is a pair of co-axial
cylinders with 2 vertical tubes in the inner cylinder, and the density of the tracer is high between
the cylinders and in one of the tubes, low in the other tube and is moderate within the inner
cylinder outside the tubes. The phantom allows to test the ability of an algorithm to reconstruct
the borders between areas with different densities of the tracer and the ratios of these densities.
Fig. 3 displays the “progress in accuracy”.

In clinical applications, the yield of a reconstruction algorithm is a collection of slices –
pictures of different 2D cross-sections of the resulting 3D image. To give an idea of the quality
of our reconstructions, Fig. 4 represents their slices (the cross-sections of the outer cylinder by
a plane orthogonal to its axis); in all our pictures, white corresponds to high, and black – to low
density of the tracer.

“Spheres” (n = 515, 871,m = 3, 170, 304). This phantom is a cylinder containing 6 spheres
of different radii centered at the mid-slice of the cylinder. The density of the tracer is high
within the spheres and low outside of them. The mid-slice of the phantom is shown on Fig. 5.
The phantom is used to test tumor detection capability, mainly for torso studies.

Fig. 6 displays the “progress in accuracy”. The mid-slices of our 3D reconstructions are
shown on Fig. 7. The Spheres experiment clearly demonstrates the advantages of the ‖ · ‖1-
Mirror Descent as compared to the usual Subgradient Descent. The best progress in accuracy
we were able to get with SD was to reduce in 10 iterations the initial residual in the objective by
factor 5.26, which is 3.5 times worse than the similar factor (18.51) for MD. What is much more
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Figure 2. The Utah phantom
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Figure 3. Utah, progress in accuracy: plot of θ(t) = f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗
]

4 – MD; o – OSMD
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Figure 4. Utah, near-top slice of the reconstruction.

Figure 5. Mid-slice of the Spheres phantom
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Figure 6. Spheres, progress in accuracy: plot of θ(t) = f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗
]

∆ – MD; o – OSMD; * – Subgradient Descent

dangerous from the clinical viewpoint, is that the reconstructions given by SD can be heavily
affected by artifacts, as can be seen from Fig. 8.

“Jaszczak” (n = 515, 871,m = 3, 170, 304). This phantom is a cylinder containing a number
of vertical tubes of different cross-sections. The density of the tracer is high outside of the tubes
and is zero inside them. The mid-slice of the phantom is shown on Fig. 9. The number and the
sizes of tubes “recognized” by a reconstruction algorithm allow to quantify the resolution of the
algorithm.

Fig. 10 displays the “progress in accuracy”. The mid-slices of our 3D reconstructions are
shown on Fig. 11. The Jaszczak experiment clearly demonstrates the advantages of OSMD as
compared to MD. We see that the quality of the image after just two outer iterations of OSMD
is at leas as good as the one obtained after four iterations of MD. Likewise, four iterations of
OSMD result in an image comparable to the one obtained by MD in ten iterations.

“Brain” (n = 2, 763, 635,m ≈ 25, 000, 000). This data is an actual clinical brain study of a
patient with the Alzheimer disease.

Fig. 12 displays the “progress in accuracy”. The mid-slices of our 3D reconstructions are
shown on Fig. 13. The Brain experiment again demonstrates the advantages of OSMD as
compared to MD. Indeed, OSMD produced in 4 iterations an image which is as good the one
produced after 10 iterations of MD.

The quality of our reconstructions compares favourably with the one given by the commer-
cially used algorithms (based of filtered back-projection). As compared to the “golden stan-
dard” of the new generation of 3D imaging algorithms – the so-called OSEM (Ordered Subset
Expectation Maximization) algorithm, OSMD is highly competitive both in image quality and
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Figure 7. Spheres, mid-slice of the reconstructions.

Figure 8. Spheres, mid-slice of the SD reconstruction after 10 iterations
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Figure 9. Mid-slice of the Jaszczak phantom
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Figure 10. Jaszczak, progress in accuracy: plot of θ(t) = f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗
]

4 – MD; o – OSMD
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Figure 11. Jaszczak, mid-slice of the reconstructions.
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Figure 12. Brain, progress in accuracy: plot of θ(t) = f(xt)−f10∗
f(x1)−f10∗

[
≥ f(xt)−f∗

f(x1)−f∗
]

4 – MD; o – OSMD

computational effort. Moreover, the OSMD algorithm possesses a solid theoretical background
(guaranteed efficiency estimates), which is not the case for OSEM.

7 Conclusions

The outlined results of our research suggest the following conclusions:

1. Simple gradient-descent type optimization techniques, which seem to be the only option
when solving really large-scale (hundreds thousands and millions of variables) convex opti-
mization problems, can be quite successful and can yield a solution of a satisfactory quality
in few iterations.

2. When implementing gradient-type optimization techniques, one should try to adjust the
method to the “geometry” of the problem. For such an adjustment, the general Mirror
Descent scheme can be used.

3. Implementing gradient-descent type techniques in an “incremental gradient” fashion can
accelerate significantly the solution process.

Acknowledgments. We gratefully acknowledge the help of members of the PARAPET con-
sortium, especially Matthew Jacobson and Dr. Ron Levkovitz. We are greatly indebted to
anonymous referees for their suggestions aimed at improving the structure of the paper.
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Figure 13. Brain, near-mid slice of the reconstructions.

[the top-left missing part is the area affected by the Alzheimer disease]
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8 Appendix 1: Strong convexity of 1
2‖ · ‖2

p

Here we reproduce the proof of the following known fact (see, e.g., [Nem78]):

Lemma 8.1 Let 1 < p ≤ 2, and let w(x) = 1
2‖x‖2p : Rn → R. Then the function w is α-strongly

convex w.r.t. the norm ‖ · ‖p, with
α = p− 1. (42)

Proof. It is known ([RW98], Propositions 12.54, 12.60) that the fact that a continuously
differentiable convex function v : Rn → R is α-strongly convex on Rn w.r.t. a norm ‖ · ‖ is
equivalent to the fact that the Legendre transformation

V (ξ) = max
x∈Rn

[ξTx− v(x)]

of v is continuously differentiable and satisfies the relation

V (ξ + η) ≤ V (ξ) + ηT∇V (ξ) +
1

2α
‖η‖2∗ ∀ξ, η ∈ Rn, (43)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. In our case, ‖ · ‖ = ‖ · ‖p and V (ξ) = 1
2‖ξ‖2q ,

q = p/(p − 1) ≥ 2, so that V is twice continuously differentiable outside of the origin (and, of
course, is convex); therefore, in order to verify that (43) is satisfied with α = p− 1, it suffices to
prove that

ηT∇2V (ξ)η ≤ 1
p− 1

‖η‖2q (44)
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for every ξ 6= 0. By homogeneity, ∇2V (tξ) = ∇2V (ξ), t > 0, so that when proving (44), we may
assume that ‖ξ‖q = 1. We now have

ηT∇V (ξ) = ‖ξ‖2−qq

n∑
i=1
|ξ|q−1

i sign(ξi)ηi,

ηT∇2V (ξ)η = (2− q)‖ξ‖2−2q
q

(
n∑
i=1
|ξ|q−1

i sign(ξi)ηi
)2

+(q − 1)‖ξ‖2−qq

n∑
i=1
|ξi|q−2η2

i

≤ (q − 1)
n∑
i=1
|ξi|q−2η2

i [since q ≥ 2, ‖ξ‖q = 1]

≤ (q − 1)
(∑

i
|ξi|q

) q−2
q
(∑

i
|η|qi

) 2
q

[Hölder’s inequality]

≤ (q − 1)‖η‖2q ,

so that (44) is satisfied, due to q − 1 = 1
p−1 .

9 Appendix 2: Proof of Proposition 4.1

10. W.l.o.g., we can assume that n is a power of 2: n = 2k. It is known that there exists an
orthogonal basis u1, ..., um in Rm, m = 2k−1, such that |u`j | = 1 for all `, j = 1, ...,m. Let

e` =
(
u`

−u`
)
∈ R2m = Rn, ` = 1, ...,m. Note that

10.A. ‖e`‖22 = n, ` = 1, ...,m;

10.B. [e`]T e`
′

= 0, 1 ≤ ` < `′ ≤ m.

10.C.
n∑
t=1

e`t = 0, ` = 1, ...,m.

10.D. For every linear combination e[λ] =
m∑
`=1

λ`e
` one has ei[λ] = −em+i[λ], i = 1, ...,m, whence

‖e[λ]‖∞ = max
i≤n

ei[λ] = −min
i≤n

ei[λ].

20. Let δ > 0, 1 < k ≤ m, and let B be a method for solving problems from F = F(L, n). Let
us set

ε(B, k) = sup
f∈F

[
f(xk−1(B, f))−min

∆n

f

]
.

We are about to prove that

ε(B, k) ≥ L√
k
. (45)

Note that this inequality immediately implies the desired lower bound on the information-based
complexity of F .

From the viewpoint of the behaviour of B at the first k − 1 steps (which is the only issue
we are interested in when proving (45)), we change nothing when assuming that B, as applied
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to a problem from F , performs exactly k steps; the search points generated by the method at
the first k − 1 steps are as given by the search rules specifying the method, and the last search
point xk is the kth approximate solution generated by B as applied to the problem. Thus, from
now on we assume that the point xk−1(B, f) in (45) is the k-st search point generated by B as
applied to f .

30. To prove (45), we intend to construct a “difficult” for B objective f as the pointwise maximum
of k linear functions with orthogonal descent directions chosen from the set {±`1, ...,±`m}. These
linear functions will be successively constructed according to the adversary principle. i.e., when
B requires evaluation at search point xi, the ith linear function is defined such that little progress
is achieved while consistency with previous information is maintained. The construction is as
follows. Let x1 be the first search point of the method (this point is problem-independent), let

`1 ∈ Argmax
1≤`≤k

|xT1 e`|, σ1 = sign(xT1 e
`1)

[
sign(s) =

{
1, s ≥ 0
−1, s < 0

]
, f1(x) = Lσ1x

T e`1 − δ.

Suppose we have defined already x1, ..., xp, `1, ..., `p, f1(·), ..., fp(·), σ1, ..., σp ∈ {−1; 1} in such
a way that

(ap) 1 ≤ `i ≤ k and the indices `1, ..., `p are distinct from each other;

(bp) f i(x) = max
j=1,...,i

[LσjxT e`j − jδ], i = 1, ..., p;

(cp) x1, ..., xi is the initial i-element segment of the trajectory (the sequence of search points)
of B as applied to f i(·);

(dp) σix
T
i e

`i = max{|xTi e`| | ` ∈ {1, ..., k}\{`1, ..., `i−1}}, i = 1, ..., p.

Note that with our initialization conditions (a1) – (d1) do hold.

In the case of p < k, let us extend the collection we have built to a similar collection of
(p+1)-element tuples; to this end we define xp+1 as the (p+1)th search point of B as applied to
fp(·), `p+1 as the index from the set Ip = {1, ..., k}\{`1, ..., `p} which maximizes the quantities
xTp+1e

` over ` ∈ Ip, and σp+1 as sign(xTp+1e
`p+1), and finally set

fp+1(x) = max{fp(x), Lσp+1x
T e`p+1 − (p+ 1)δ}.

It is easily seen that when 1 ≤ i ≤ j ≤ p+1, one has f j(x) = f i(x) in a neighbourhood of xi;
with this observation, (ap+1) – (dp+1) immediately follow from (ap) – (dp) and our construction.

After k steps of the aforementioned construction, we get a function

f(x) ≡ fk(x) = max
1≤i≤k

[LσixT e`i − iδ]

such that the trajectory of B on f is x1, .., xk, so that xk is the result of B as applied to f .
Observe that f ∈ F(L, n), due to ‖e`‖∞ = 1. In view of (dp), we have

f(xk) ≥ −kδ. (46)

On the other hand, let us bound from above the minimum value of f over ∆n. We have

f(x) = max
i=1,...,k

[LσixT e`i − iδ] ≤ g(x) ≡ max
i=1,...,k

Lσix
T e`i
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and therefore

min
x∈∆n

f(x) ≤ min
x∈∆n

g(x) = L min
x∈∆n

max
i≤k

xT [σie`i ]

= L min
x∈∆n

max
λ∈∆k

xT
[
k∑

i=1

λiσie
`i

]

︸ ︷︷ ︸
ẽ[λ]

= L max
λ∈∆k

min
x∈∆n

xT ẽ[λ] = L max
λ∈∆k

min
i=1,...,n

ẽi[λ]

= L max
λ∈∆k

[−‖ẽi[λ]‖∞] [see 10.D]

= −L min
λ∈∆k

‖ẽ[λ]‖∞ ≤ −Ln−1/2 min
λ∈∆k

‖ẽ[λ]‖2

= −Ln−1/2 min
λ∈∆k

√
k∑
i=1

λ2
iσ

2
i ‖e`i‖22 [see 10.B]

= −Ln−1/2 min
λ∈∆k

√
k∑
i=1

λ2
in [see 10.A]

≤ −Lk−1/2,

We see that min
x∈∆n

f(x) ≤ −Lk−1/2, which combines with (46) to yield that

f(xk)− min
x∈∆n

f ≥ Lk−1/2 − kδ.

Since f ∈ F , xk = xk−1(B, f) and δ > 0 is arbitrary, (45) follows.
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