
Stochastic Approximation Approach to Stochastic

Programming

Anatoli Juditsky∗ Guanghui Lan† Arkadi Nemirovski‡ Alexander Shapiro §

Abstract. In this paper we consider optimization problems where the objective function is
given in a form of the expectation. A basic difficulty of solving such stochastic optimization
problems is that the involved multidimensional integrals (expectations) cannot be computed with
high accuracy. The aim of this paper is to compare two computational approaches based on
Monte Carlo sampling techniques, namely, the Stochastic Approximation (SA) and the Sample
Average Approximation (SAA) methods. Both approaches, the SA and SAA methods, have a
long history. Current opinion is that the SAA method can efficiently use a specific (say linear)
structure of the considered problem, while the SA approach is a crude subgradient method which
often performs poorly in practice. We intend to demonstrate that a properly modified SA approach
can be competitive and even significantly outperform the SAA method for a certain class of convex
stochastic problems. We extend the analysis to the case of convex-concave stochastic saddle point
problems, and present (in our opinion highly encouraging) results of numerical experiments.

Key words: stochastic approximation, sample average approximation method, stochastic pro-
gramming, Monte Carlo sampling, complexity, saddle point, minimax problems, mirror descent
algorithm

∗LJK, Université J. Fourier, B.P. 53, 38041 Grenoble Cedex 9, France, Anatoli.Juditsky@imag.fr
†Georgia Institute of Technology, Atlanta, Georgia 30332, USA, glan@isye.gatech.edu,

research of this author was partially supported by NSF award CCF-0430644 and ONR award

N00014-05-1-0183.
‡Georgia Institute of Technology, Atlanta, Georgia 30332, USA, nemirovs@isye.gatech.edu,

research of this author was partly supported by the NSF award DMI-0619977.
§Georgia Institute of Technology, Atlanta, Georgia 30332, USA, ashapiro@isye.gatech.edu,

research of this author was partly supported by the NSF awards DMS-0510324 and DMI-0619977.

1



1 Introduction

In this paper we consider the following optimization problem

min
x∈X

{
f(x) := E[F (x, ξ)]

}
. (1.1)

Here X ⊂ Rn is a nonempty bounded closed convex set, ξ is a random vector whose probability
distribution P is supported on set Ξ ⊂ Rd and F : X × Ξ → R. We assume that for every ξ ∈ Ξ
the function F (·, ξ) is convex on X, and that the expectation

E[F (x, ξ)] =
∫
Ξ F (x, ξ)dP (ξ) (1.2)

is well defined and finite valued for every x ∈ X. It follows that function f(·) is convex and finite
valued on X. Moreover, we assume that f(·) is continuous on X. Of course, continuity of f(·)
follows from convexity if f(·) is finite valued and convex on a neighborhood of X. With these
assumptions, (1.1) becomes a convex programming problem.

A basic difficulty of solving stochastic optimization problem (1.1) is that the multidimensional
integral (expectation) (1.2) cannot be computed with a high accuracy for dimension d, say, greater
than 5. The aim of this paper is to compare two computational approaches based on Monte
Carlo sampling techniques, namely, the Stochastic Approximation (SA) and the Sample Average
Approximation (SAA) methods. To this end we make the following assumptions.

(A1) It is possible to generate an iid sample ξ1, ξ2, ..., of realizations of random vector ξ.

(A2) There is a mechanism (an oracle) which for every given x ∈ X and ξ ∈ Ξ returns value F (x, ξ)
and a stochastic subgradient – a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is well defined
and is a subgradient of f(·) at x, i.e., g(x) ∈ ∂f(x).

Recall that if F (·, ξ), ξ ∈ Ξ, is convex and f(·) is finite valued in a neighborhood of a point x,
then (cf., Strassen [18])

∂f(x) = E [∂xF (x, ξ)] . (1.3)

In that case we can employ a measurable selection G(x, ξ) ∈ ∂xF (x, ξ) as a stochastic subgradient.
At this stage, however, this is not important, we shall see later other relevant ways for constructing
stochastic subgradients.

Both approaches, the SA and SAA methods, have a long history. The SA method is going
back to the pioneering paper by Robbins and Monro [13]. Since then stochastic approximation
algorithms became widely used in stochastic optimization and, due to especially low demand for
computer memory, in signal processing (cf., [3] and references therein). In the classical analysis of
the SA algorithm (it apparently goes back to the works [4] and [14]) it is assumed that f is twice
continuously differentiable and strongly convex, and in the case when the minimizer of f belongs
to the interior of X, exhibits asymptotically optimal rate of convergence E[f(xt) − f∗] = O(1/t)
(here xt is t-th iterate and f∗ is the minimal value of f(x) over x ∈ X). This algorithm, however,
is very sensitive to a choice of the respective stepsizes. The difficult to implement “asymptotically
optimal” stepsize policy can be very bad in the beginning, so that the algorithm often performs
poorly in practice.

An important improvement of the SA method was developed by B. Polyak [11, 12], where longer
stepsizes were suggested with consequent averaging of the obtained iterates. Under the outlined

1



“classical” assumptions, the resulting algorithm exhibits the same optimal O(1/t) asymptotical
convergence rate, while using an easy to implement and “robust” stepsize policy. It should be
mentioned that the main ingredients of Polyak’s scheme – long steps and averaging – were, in a
different form, proposed already in [9] for the case of problems (1.1) with general type Lipschitz
continuous convex objectives and for convex-concave saddle point problems. The algorithms from
[9] exhibit, in a non-asymptotical fashion, the unimprovable in the general convex case O(1/

√
t)-rate

of convergence. For a summary of early results in this direction, see [10].
The SAA approach was used by many authors in various contexts under different names. Its

basic idea is rather simple: generate a (random) sample ξ1, ..., ξN , of size N , and approximate the
“true” problem (1.1) by the sample average problem

min
x∈X

{
f̂N (x) := N−1

∑N
j=1 F (x, ξj)

}
. (1.4)

Note that the SAA method is not an algorithm, the obtained SAA problem (1.4) still has to be
solved by an appropriate numerical procedure. Recent theoretical studies (cf., [6, 16, 17]) and
numerical experiments (see, e.g., [7, 8, 19]) show that the SAA method coupled with a good (deter-
ministic) algorithm could be reasonably efficient for solving certain classes of two stage stochastic
programming problems. On the other hand classical SA type numerical procedures typically per-
formed poorly for such problems. We intend to demonstrate in this paper that a properly modified
SA approach can be competitive and even significantly outperform the SAA method for a certain
class of stochastic problems.

The rest of this paper is organized as follows. In Section 2 we focus on the theory of SA as
applied to problem (1.1). We start with outlining the (relevant to our goals part of the) classical
“O(1/t) SA theory” (Section 2.1) along with its “O(1/

√
t)” modifications (Section 2.2). Well known

and simple results presented in these sections pave road to our main developments carried out in
Section 2.3. In Section 3 we extend the constructions and results of Section 2.3 to the case of
convex-concave stochastic saddle point problem. In concluding Section 4 we present results (in our
opinion, highly encouraging) of numerical experiments with the SA algorithm (Sections 2.3 and
3) applied to large-scale stochastic convex minimization and saddle point problems. Finally, some
technical proofs are given in the Appendix.

Throughout the paper, we use the following notation. By ‖x‖p we denote the `p norm of vector
x ∈ Rn, in particular, ‖x‖2 =

√
xT x denotes the Euclidean norm. By ΠX we denote the metric

projection operator onto the set X, that is ΠX(x) = arg minx′∈X ‖x − x′‖2. Note that ΠX is a
contraction operator, i.e.,

‖ΠX(x′)−ΠX(x)‖2 ≤ ‖x′ − x‖2, ∀x′, x ∈ Rn. (1.5)

By O(1) we denote a generic constant independent of the data. The notation bac stands for the
largest integer less than or equal to a ∈ R. Unless stated otherwise all relations between random
variables are supposed to hold almost surely.

2 Stochastic Approximation, Basic Theory

In this section we discuss theory and implementations of the stochastic approximation (SA) ap-
proach to the minimization problem (1.1).

2



2.1 Classical SA Algorithm

The classical SA algorithm solves problem (1.1) by mimicking the simplest subgradient descent
method. That is, for chosen x1 ∈ X and a sequence γj > 0, j = 1, ..., of stepsizes, it generates the
iterates by the formula

xj+1 := ΠX

(
xj − γjG(xj , ξj)

)
. (2.1)

Of course, the crucial question of that approach is how to choose the stepsizes γj . Let x̄ be an
optimal solution of problem (1.1). Note that since the set X is compact and f(x) is continuous,
problem (1.1) has an optimal solution. Note also that the iterate xj = xj(ξ[j−1]) is a function of
the history ξ[j−1] := (ξ1, ..., ξj−1) of the generated random process and hence is random.

Denote Aj := 1
2‖xj − x̄‖2

2 and aj := E[Aj ] = 1
2E

[‖xj − x̄‖2
2

]
. By using (1.5) and since x̄ ∈ X

and hence ΠX(x̄) = x̄, we can write

Aj+1 = 1
2

∥∥ΠX

(
xj − γjG(xj , ξj)

)− x̄
∥∥2

2

= 1
2

∥∥ΠX

(
xj − γjG(xj , ξj)

)−ΠX(x̄)
∥∥2

2

≤ 1
2

∥∥xj − γjG(xj , ξj)− x̄
∥∥2

2
= Aj + 1

2γ
2
j ‖G(xj , ξj)‖2

2 − γj(xj − x̄)T G(xj , ξj).

(2.2)

We also have
E

[
(xj − x̄)T G(xj , ξj)

]
= Eξ[j−1]

{
Eξj

[
(xj − x̄)T G(xj , ξj)

]}

= Eξ[j−1]

{
(xj − x̄)TE

[
G(xj , ξj)

]}

= E
[
(xj − x̄)T g(xj)

]
.

(2.3)

Therefore, by taking expectation of both sides of (2.2) we obtain

aj+1 ≤ aj − γjE
[
(xj − x̄)T g(xj)

]
+ 1

2γ
2
j M2, (2.4)

where
M2 := sup

x∈X
E

[‖G(x, ξ)‖2
2

]
. (2.5)

We assume that the above constant M is finite.
Suppose, further, that the expectation function f(x) is differentiable and strongly convex on

X, i.e., there is constant c > 0 such that

f(x′) ≥ f(x) + (x′ − x)T∇f(x) + 1
2c‖x′ − x‖2

2, ∀x′, x ∈ X,

or equivalently that

(x′ − x)T (∇f(x′)−∇f(x)) ≥ c‖x′ − x‖2
2, ∀x′, x ∈ X. (2.6)

Note that strong convexity of f(x) implies that the minimizer x̄ is unique. By optimality of x̄ we
have that

(x− x̄)T∇f(x̄) ≥ 0, ∀x ∈ X,

which together with (2.6) implies that

E
[
(xj − x̄)T∇f(xj)

] ≥ E [
(xj − x̄)T (∇f(xj)−∇f(x̄))

] ≥ cE
[‖xj − x̄‖2

2

]
= 2caj .

3



Therefore it follows from (2.4) that

aj+1 ≤ (1− 2cγj)aj + 1
2γ

2
j M2. (2.7)

Let us take stepsizes γj = θ/j for some constant θ > 1/(2c). Then by (2.7) we have

aj+1 ≤ (1− 2cθ/j)aj + 1
2θ

2M2/j2,

and by induction
aj ≤ κ/j, (2.8)

where

κ := max
{

1
2θ

2M2(2cθ − 1)−1, a1

}
.

Suppose, further, that x̄ is an interior point of X and ∇f(x) is Lipschitz continuous, i.e., there is
constant L > 0 such that

‖∇f(x′)−∇f(x)‖2 ≤ L‖x′ − x‖2, ∀x′, x ∈ X. (2.9)

Then
f(x) ≤ f(x̄) + 1

2L‖x− x̄‖2
2, ∀x ∈ X, (2.10)

and hence
E

[
f(xj)− f(x̄)

] ≤ Laj ≤ Lκ/j. (2.11)

Under the specified assumptions, it follows from (2.10) and (2.11), respectively, that after t
iterations the expected error of the current solution is of order O(t−1/2) and the expected error of
the corresponding objective value is of order O(t−1), provided that θ > 1/(2c). We have arrived
at the O(t−1)-rate of convergence mentioned in the Introduction. Note, however, that the result is
highly sensitive to our a priori information on c. What would happen if the parameter c of strong
convexity is overestimated? As a simple example consider f(x) = x2/10, X = [−1, 1] ⊂ R and
assume that there is no noise, i.e., F (x, ξ) ≡ f(x). Suppose, further, that we take θ = 1 (i.e.,
γj = 1/j), which will be the optimal choice for c = 1, while actually here c = 0.2. Then the
iteration process becomes

xj+1 = xj − f ′(xj)/j =
(
1− 1

5j

)
xj ,

and hence starting with x1 = 1,

xj =
∏j−1

s=1

(
1− 1

5s

)
= exp

{
−∑j−1

s=1 ln
(
1 + 1

5s−1

)}
> exp

{
−∑j−1

s=1
1

5s−1

}

> exp
{
−

(
0.25 +

∫ j−1
1

1
5t−1dt

)}
> exp

{−0.25 + 0.2 ln 1.25− 1
5 ln j

}
> 0.8j−1/5.

That is, the convergence is extremely slow. For example for j = 109 the error of the iterated
solution is greater than 0.015. On the other hand for the optimal stepsize factor of γ = 1/c = 5,
the optimal solution x̄ = 0 is found in one iteration.

4



2.2 Robust SA Approach

The results of this section go back to [9] and [10].
Let us look again at the basic estimate (2.4). By convexity of f(x) we have that for any x,

f(x) ≥ f(xj) + (x− xj)T g(xj), and hence

E
[
(xj − x̄)T g(xj)

] ≥ E[
f(xj)− f(x̄)

]
= E

[
f(xj)

]− f(x̄).

Together with (2.4) this implies

γjE
[
f(xj)− f(x̄)

] ≤ aj − aj+1 + 1
2γ

2
j M2.

It follows that
j∑

t=1

γtE
[
f(xt)− f(x̄)

] ≤
j∑

t=1

[at − at+1] + 1
2M

2
j∑

t=1

γ2
t ≤ a1 + 1

2M
2

j∑

t=1

γ2
t , (2.12)

and hence

E

[
j∑

t=1

νtf(xt)− f(x̄)

]
≤ a1 + 1

2M
2
∑j

t=1 γ2
t∑j

t=1 γt

, (2.13)

where νt := γt∑j
i=1 γi

(note that
∑j

t=1 νt = 1). Consider points

x̃j :=
j∑

t=1

νtxt. (2.14)

By convexity of f(x) we have f(x̃j) ≤
∑j

t=1 νtf(xt), and since x̃j ∈ X, by optimality of x̄ we have
that f(x̃j) ≥ f(x̄). Thus, by (2.13),

0 ≤ E [f(x̃j)− f(x̄)] ≤ a1 + 1
2M

2
∑j

t=1 γ2
t∑j

t=1 γt

. (2.15)

Let us suppose for the moment that the number of iterations of the method is fixed in advance, say
equal to N . In this case one can use a constant stepsize strategy, i.e., choose γt ≡ γ for t = 1, ..., N .
For this choice of γt we obtain immediately from (2.15) that the obtained approximate solution

x̃N = N−1
N∑

t=1

xt, (2.16)

satisfies:

E [f(x̃N )− f(x̄)] ≤ a1

γN
+

M2γ

2
. (2.17)

Let us denote DX := maxx∈X ‖x− x1‖2. Then a1 ≤ D2
X/2, and taking

γ :=
DX

M
√

N
, (2.18)

we achieve
E [f(x̃N )− f(x̄)] ≤ DXM√

N
. (2.19)

5



Discussion. We conclude that the expected error of Robust SA algorithm (2.1),(2.16), with con-
stant stepsize strategy (2.18), after N iterations is O(N−1/2) in our setting. Of course, this is worse
than the rate O(N−1) for the classical SA algorithm when the objective function f(x) is strongly
convex. However, the error bound (2.19) is guaranteed wether the function f(x) is strongly convex
on X or not. Note also that it follows from (2.17) that the rate O(N−1/2) is guaranteed for the
constant stepsize of the form γ := θ/

√
N for any choice of the constant θ > 0. This explains the

adjective Robust in the name of the algorithm.

In applications it can be convenient to construct an approximate solution x̃N which is the
average of only part of the trajectory x1, ..., xN . For instance, let for some integer ` ∈ {1, ..., N},

x̃j :=
1

bN/`c
N∑

t=N−bN/`c+1

xt. (2.20)

If we sum in (2.12) between N − bN/`c and N (instead of summing from 1 to N) we easily get

E [f(x̃N )− f(x̄)] ≤ DXM(` + 1)
2
√

N
, (2.21)

where DX := maxx′,x∈X ‖x′ − x‖2.
Of course, the constant stepsize strategy is not the only possible one. For instance, let γj =

θj−1/2, j = 1, 2, ..., with θ > 0 and let x̃j be defined as follows:

x̃j =




j∑

t=j−bj/`c
γt



−1

j∑

t=j−bj/`c
γtxt,

for some integer 2 ≤ ` ≤ j and j ≥ 2. Then

E [f(x̃j)− f(x̄)] ≤ O(1)
`[D2

X + M2θ2]
θ
√

j
. (2.22)

Note that (D2
X + M2θ2)/θ attains its minimum at θ = DX/M . For that choice of θ the estimate

(2.22) becomes

E [f(x̃j)− f(x̄)] ≤ O(1)
`DXM√

j
. (2.23)

2.3 Mirror Descent SA Method

In this section we develop a substantial generalization of the robust SA approach (a very rudimen-
tary form of this generalization can be found in [10], from where, in particular, the name “Mirror
Descent” originates). Let ‖ · ‖ be a (general) norm on Rn and ‖x‖∗ = sup‖y‖≤1 yT x be its dual
norm. We say that a function ω : X → R is a distance generating function modulus α > 0 with
respect to ‖ · ‖, if ω is convex and continuous on X, the set

Xo :=
{
x ∈ X : there exists p ∈ Rn such that x ∈ arg minu∈X [pT u + ω(u)]

}

6



is convex (note that Xo always contains the relative interior of X), and restricted to Xo, ω is
continuously differentiable and strongly convex with parameter α with respect to ‖ · ‖, i.e.,

(x′ − x)T (∇ω(x′)−∇ω(x)) ≥ α‖x′ − x‖2, ∀x′, x ∈ Xo. (2.24)

An example of distance generating function (modulus 1 with respect to ‖ · ‖2 ) is ω(x) := 1
2‖x‖2

2.
For that choice of ω(·) we have that Xo = X,

ΠX(x− y) = arg min
z∈X

{‖z − x‖2
2

2
+ yT (z − x)

}

and
‖z − x‖2

2

2
= ω(z)− [ω(x) +∇ω(x)T (z − x)].

Let us define function V : Xo ×X → R+ as follows

V (x, z) := ω(z)− [ω(x) +∇ω(x)T (z − x)]. (2.25)

In what follows we shall refer to V (·, ·) as prox-function associated with distance generating function
ω(x). Note that V (x, ·) is nonnegative and is strongly convex modulus α with respect to the norm
‖ · ‖. Let us define prox mapping Px : Rn → Xo, associated with ω and a point x ∈ Xo, viewed as
a parameter, as follows:

Px(y) := arg min
z∈X

{
yT (z − x) + V (x, z)

}
. (2.26)

For ω(x) = 1
2‖x‖2

2 we have that Px(y) = ΠX(x− y). Let us observe that the minimum in the right
hand side of (2.26) is attained since ω is continuous on X and X is compact, and all the minimizers
belong to Xo, whence the minimizer is unique, since V (x, ·) is strongly convex on Xo, and hence
the prox-mapping is well defined. Using the definition of the prox-mapping for ω(x) = 1

2‖x‖2
2, the

iterative formula (2.1) can be written as

xj+1 = Pxj (γjG(xj , ξj)), x1 ∈ Xo. (2.27)

We discuss now the recursion (2.27) for general distance generating function ω(x). As it was
mentioned above, if ω(x) = 1

2‖x‖2
2, then formula (2.27) coincides with (2.1). In that case we refer

to the procedure as Euclidean SA algorithm.
The following statement is a simple consequence of the optimality conditions of the right hand

side of (2.26).

Lemma 2.1 For any u ∈ X,x ∈ Xo and y the following inequality holds

V (Px(y), u) ≤ V (x, u) + yT (u− x) +
‖y‖2∗
2α

. (2.28)

Proof of this lemma is given in the Appendix.

Using (2.28) with x = xj , y = γjG(xj , ξj) and u = x̄, we get

γj(xj − x̄)T G(xj , ξj) ≤ V (xj , x̄)− V (xj+1, x̄) +
γ2

j

2α
‖G(xj , ξj)‖2

∗. (2.29)

7



If we compare inequality (2.29) with (2.2) we see that values of the prox-function V (xj , x̄) along
the iterations of the Mirror Descent SA satisfy exactly the same relations as values Aj = 1

2‖xj− x̄‖2
2

along the trajectory of the Euclidean SA. The proposed construction of the prox-function V (·, ·)
allows us to act in the general case exactly in the same way as we have done in the Euclidean
situation of the previous section. Setting

∆j := G(xj , ξj)− g(xj), (2.30)

we can rewrite (2.29), with j replaced by t, as

γt(xt − x̄)T g(xt) ≤ V (xt, x̄)− V (xt+1, x̄)− γt∆T
t (xt − x̄) +

γ2
t

2α
‖G(xt, ξt)‖2

∗. (2.31)

Summing up over t = 1, ..., j, and taking into account that V (xj+1, u) ≥ 0, u ∈ X, we get

j∑

t=1

γt(xt − x̄)T g(xt) ≤ V (x1, x̄) +
j∑

t=1

γ2
t

2α
‖G(xt, ξt)‖2

∗ −
j∑

t=1

γt∆T
t (xt − x̄). (2.32)

Now let νt := γt∑j
i=1 γi

, t = 1, ..., j, and

x̃j :=
j∑

t=1

νtxt. (2.33)

By convexity of f(·) we have that

∑j
t=1 γt(xt − x̄)T g(xt) ≥ ∑j

t=1 γt [f(xt)− f(x̄)] =
(∑j

t=1 γt

) [∑j
t=1 νtf(xt)− f(x̄)

]

≥
(∑j

t=1 γt

)
[f(x̃j)− f(x̄)] .

Together with (2.32) this implies that

f(x̃j)− f(x̄) ≤ V (x1, x̄) +
∑j

t=1
γ2

t
2α‖G(xt, ξt)‖2∗ −

∑j
t=1 γt∆T

t (xt − x̄)∑j
t=1 γt

. (2.34)

Let us suppose, as in the previous section (cf., (2.5)), that there is a constant M2∗ > 0 such that

E
[‖G(x, ξ)‖2

∗
] ≤ M2

∗ , ∀x ∈ X. (2.35)

Taking expectations of both sides of (2.34) and noting that: (i) xt is a deterministic function of
ξ[t−1] = (ξ1, ..., ξt−1), (ii) conditional on ξ[t−1] the expectation of ∆t is 0, and (iii) the expectation
of ‖G(xt, ξt)‖2∗ does not exceed M2∗ , we obtain

E [f(x̃j)− f(x̄)] ≤ h1 + (2α)−1M2∗
∑j

t=1 γ2
t∑j

t=1 γt

, (2.36)

where h1 := maxu∈X V (x1, u).
To design the stepsize strategy let us start with the situation when the number j of iterations

of the method is fixed in advance, say equals to N . Then the constant stepsize strategy γt ≡ γ,

8



t = 1, ..., N , can be implemented. Let us suppose from now on that the initial point x1 is exactly
the minimizer of ω(x) on X. Then V (x1, z) ≤ D2

ω,X , where

Dω,X := [maxz∈X ω(z)−minz∈X ω(z)]1/2 , (2.37)

and thus h1 ≤ D2
ω,X . Then the approximate solution x̃N satisfies:

E [f(x̃N )− f(x̄)] ≤ D2
ω,X

γN
+

M2∗γ
2α

, (2.38)

where

x̃N =
1
N

N∑

t=1

xt. (2.39)

If we set

γ :=
Dω,X

M∗

√
2α

N
, (2.40)

we get

E [f(x̃N )− f(x̄)] ≤ Dω,XM∗

√
2

αN
. (2.41)

We refer to the method (2.27), (2.33) and (2.40) as Robust Mirror Descent SA algorithm with
constant stepsize policy.

By Markov inequality it follows from (2.41) that for any ε > 0,

Prob {f(x̃N )− f(x̄) > ε} ≤
√

2Dω,XM∗
ε
√

αN
. (2.42)

It is possible, however, to obtain much finer bounds for those probabilities when imposing more
restrictive assumptions on the distribution of G(x, ξ). Let us assume that

E
[
exp

{
‖G(x, ξ)‖2

∗ /M2
∗
}]

≤ exp{1}, ∀x ∈ X. (2.43)

Note that condition (2.43) is stronger than condition (2.35). Indeed, if a random variable Y satisfies
E[exp{Y/a}] ≤ exp{1} for some a > 0, then by Jensen inequality exp{E[Y/a]} ≤ E[exp{Y/a}] ≤
exp{1}, and therefore E[Y ] ≤ a. Of course, condition (2.43) holds if ‖G(x, ξ)‖∗ ≤ M∗ for all
(x, ξ) ∈ X × Ξ.

Proposition 2.1 Suppose that condition (2.43) holds. Then for the constant stepsizes (2.40) the
following inequality holds for any Ω ≥ 1:

Prob

{
f(x̃N )− f(x̄) > M∗Dω,X

√
2

αN
(12 + 2Ω)

}
≤ 2 exp{−Ω}. (2.44)

Proof of this proposition is given in the Appendix.

9



Discussion. The confidence bound (2.44) can be written as

Prob {f(x̃N )− f(x̄) > ε} ≤ O(1) exp
{− κε

√
N

}
, (2.45)

where κ :=
√

α√
8M∗Dω,X

and ε > 0. (Condition Ω ≥ 1 means here that N ≥ 49κ−2ε−2.) It follows

that for chosen accuracy ε and confidence level δ ∈ (0, 1), the sample size

N ≥ O(1)M2∗D2
ω,X ln2(δ−1)

αε2
(2.46)

guarantees that x̃N is an ε-optimal solution of the true problem with probability at least 1 − δ.
This can be compared with a similar estimate for an optimal solution of the SAA problem (1.4)
(cf., [16]). In both cases the estimated sample size N , considered as a function of the accuracy ε,
is of order O(ε−2) and depends logarithmically on the confidence level δ.

We can modify Robust Mirror Descent SA algorithm so that the approximate solution x̃N is
obtained by averaging over a part of trajectory, namely, let for some integer `, 1 ≤ ` ≤ N ,

x̃N :=
1

bN/`c
N∑

t=N−bN/`c+1

xt.

In this case we have for the constant stepsize strategy with γ := Dω,X

M∗ ,

E [f(x̃N )− f(x̄)] ≤ Dω,XM∗(` + 1)
2
√

αN
,

where the quantity

Dω,X :=
[
2 supx∈Xo,z∈X V (x, z)

]1/2

is assumed to be finite (which definitely is the case when ω is continuously differentiable on the
entire X). Note that in the case of Euclidean SA, when ω(x) = 1

2‖x‖2
2, Dω,X coincides with the

Euclidean diameter DX of X.
A decreasing stepsize strategy with

γt :=
θ√
t
, t = 1, 2, ..., (2.47)

can be also used in the Robust Mirror Descent algorithm. One can easily verify that when θ :=
Dω,X/M∗, the approximate solution x̃j ,

x̃j =




j∑

t=j−bj/`c
γt



−1

j∑

t=j−bj/`c
γtxt,

satisfies for j ≥ 2 and 2 ≤ ` ≤ j:

[f(x̃j)− f(x̄)] ≤ O(1)
`Dω,XM∗√

αj
. (2.48)

10



We see that for both methods, (Euclidean) Robust SA and Robust Mirror Descent SA, the expected
value of the error of the last iterate after t steps is of order O(t−1/2). A potential benefit of the
Mirror Descent over the Euclidean algorithm is that the norm ‖ · ‖ and the distance generating
function ω(·) can be adjusted to the geometry of the set X.

Example 2.1 Let X := {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0} be a standard simplex. Suppose that
the initial solution is the barycenter x1 = n−1(1, 1, ..., 1) of the simplex. In that case it is not
difficult to find the exact Euclidean projection ΠX(x). The estimate (2.19) suggests an error of
order DXMN−1/2 of obtained solution for a sample of size N , with the constant M defined in
(2.5). Here the (Euclidean) characteristics DX of the set X, DX = maxx∈X ‖x − x1‖2 ≤

√
2 for

any n ≥ 1.
Now let us consider the `1 norm ‖x‖1 =

∑n
i=1 |xi|. Its dual norm is the `∞ norm ‖x‖∞ =

max{|x1|, ..., |xn|}. For ω(x) = 1
2‖x‖2

2 the corresponding estimate (2.41) suggests an error of order
α−1/2Dω,XM∗N−1/2, where the constants α and M∗ are computed with respect to the norms ‖ · ‖1

and ‖ · ‖∞, respectively. We have that for any x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞ and ‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2,

and these inequalities are sharp. This indicates that the constant M∗ might be up to
√

n-times
smaller than the constant M . However, the constant α, taken with respect to the `1 norm is also√

n-times smaller than the corresponding constant of ω taken with respect to the `2 norm. In other
words, we do not gain anything in terms of the estimate (2.41) as compared with the estimate
(2.23). This, of course, should be not surprising since the algorithm depends on a chosen norm
only through the choice (2.40) of stepsizes.

Consider now the entropy distance generating function

ω(x) :=
n∑

i=1

xi ln xi. (2.49)

Here Xo = {x ∈ X : x > 0}, Dω,X =
√

ln n, x1 := argmin Xω = n−1(1, ..., 1)T is the barycenter of
X, and α = 1 (see the Appendix). The corresponding prox-function V (x, z) is

V (x, z) =
n∑

i=1

zi ln
zi

xi
.

Note that we can easily compute the prox mapping Px(y) of (2.26) in this case:

[Px(y)]i =
xie

−yi

∑n
k=1 xke−yk

, i = 1, ..., n.

We can compare the Mirror Descent SA algorithm associated with the above choice of “entropy like”
distance generating function coupled with the `1 norm and its dual `∞ norm, with the Euclidean

SA algorithm. The error estimate (2.41) suggests that we lose a factor lnn in the ratio
D2

ω,X

α as

compared with D2
X

α . On the other hand, we have a potential gain of factor of order
√

n in M∗
(which is computed with respect to the norm `∞) as compared with M (computed with respect to
the Euclidean norm).

11



3 Stochastic saddle point problem

We show in this section how the Mirror Descent SA algorithm can be modified to solve a convex-
concave stochastic saddle point problem. Consider the following minimax (saddle point) problem

min
x∈X

max
y∈Y

{
φ(x, y) := E[Φ(x, y, ξ)]

}
. (3.1)

Here X ⊂ Rn and Y ⊂ Rm are nonempty bounded closed convex sets, ξ is a random vector whose
probability distribution P is supported on set Ξ ⊂ Rd and Φ : X × Y × Ξ → R. We assume that
for every ξ ∈ Ξ, function Φ(x, y, ξ) is convex in x ∈ X and concave in y ∈ Y , and for all x ∈ X,
y ∈ Y the expectation

E[Φ(x, y, ξ)] =
∫

Ξ
Φ(x, y, ξ)dP (ξ)

is well defined and finite valued. It follows that φ(x, y) is convex in x ∈ X and concave in y ∈ Y ,
finite valued, and hence (3.1) is a convex-concave saddle point problem. In addition, we as-
sume that φ(·, ·) is Lipschitz continuous on X × Y . It is well known that in the above setting
the problem (3.1) is solvable, i.e., the corresponding “primal” and “dual” optimization prob-
lems minx∈X [maxy∈Y φ(x, y)] and maxy∈Y [minx∈X φ(x, y)], respectively, have optimal solutions
and equal optimal values, denoted φ∗, and the pairs (x∗, y∗) of optimal solutions to the respective
problems form the set of saddle points of φ(x, y) on X × Y .

As in the case of the minimization problem (1.1) we assume that neither the function φ(x, y)
nor its sub/supergradients in x and y are available explicitly. However, we make the following
assumption.

(A2′) We have at our disposal an oracle which for every given x ∈ X, y ∈ Y and ξ ∈ Ξ re-
turns value Φ(x, y, ξ) and a stochastic subgradient, that is, (n + m)-dimensional vector

G(x, y, ξ) =
[

Gx(x, y, ξ)
−Gy(x, y, ξ)

]
such that vector g(x, y) =

[
gx(x, y)
−gy(x, y)

]
:=

[
E[Gx(x, y, ξ)]
−E[Gy(x, y, ξ)]

]

is well defined, and gx(x, y) ∈ ∂xφ(x, y) and −gy(x, y) ∈ ∂y(−φ(x, y)). For example, under
mild assumptions we can set

G(x, y, ξ) =
[

Gx(x, y, ξ)
−Gy(x, y, ξ)

]
∈

[
∂xΦ(x, y, ξ)

∂y(−Φ(x, y, ξ))

]
.

Let ‖ · ‖x be a norm on Rn and ‖ · ‖y be a norm on Rm, and let ‖ · ‖∗,x and ‖ · ‖∗,y stand for the
corresponding dual norms. As in Section 2.1, the basic assumption we make about the stochastic
oracle (aside of its unbiasedness which we have already postulated) is that there exist positive
constants M2∗,x and M2∗,y such that

E
[
‖Gx(u, v, ξ)‖2

∗,x
]
≤ M2

∗,x and E
[
‖Gy(u, v, ξ)‖2

∗,y
]
≤ M2

∗,y, ∀(u, v) ∈ X × Y. (3.2)

3.1 Mirror SA algorithm for saddle point problems

We equip X and Y with distance generating functions ωx : X → R modulus αx with respect to
‖ · ‖x, and ωy : Y → R modulus αy with respect to ‖ · ‖y. Let Dωx,X and Dωy,Y be the respective

12



constants (see definition (2.37)). We equip Rn × Rm with the norm

‖(x, y)‖ :=
√

αx

2D2
ωx,X

‖x‖2
x +

αy

2D2
ωy,Y

‖y‖2
y, (3.3)

so that the dual norm is

‖(ζ, η)‖∗ =

√
2D2

ωx,X

αx
‖ζ‖2∗,x +

2D2
ωy ,Y

αy
‖η‖2∗,y. (3.4)

It follows by (3.2) that

E
[‖G(x, y, ξ)‖2

∗
] ≤ 2D2

ωx,X

αx
M2
∗,x +

2D2
ωy,Y

αy
M2
∗,y =: M2

∗ . (3.5)

We use notation z = (x, y) and equip Z := X ×Y with the distance generating function as follows:

ω(z) :=
ωx(x)

2D2
ωx,X

+
ωy(y)

2D2
ωy ,Y

.

It is immediately seen that ω indeed is a distance generating function for Z modulus α = 1 with
respect to the norm ‖·‖, and that Zo = Xo×Y o and Dω,Z = 1. In what follows, V (z, u) : Zo×Z → R
and Pz(ζ) : Rn+m → Zo are the prox-function and prox-mapping associated with ω and Z, see
(2.25), (2.26).

We are ready now to present the Mirror SA algorithm for saddle point problems. This is the
iterative procedure

zj+1 := Pzj (G(zj , ξj)), (3.6)

where the initial point z1 ∈ Z is chosen to be the minimizer of ω(z) on Z. As before (cf., (2.39)),
we define the approximate solution z̃j of (3.1) after j iterations as

z̃j = (x̃j , ỹj) :=

(
j∑

t=1

γt

)−1 j∑

t=1

γtzt. (3.7)

We refer to the procedure (3.6), (3.7) as Saddle Point Mirror SA algorithm.
Let us analyze the convergence properties of the algorithm. We measure quality of an approxi-

mate solution z̃ = (x̃, ỹ) by the error

εφ(z̃) :=
[
max
y∈Y

φ(x̃, y)− φ∗

]
+

[
φ∗ −min

x∈X
φ(x, ỹ)

]
= max

y∈Y
φ(x̃, y)−min

x∈X
φ(x, ỹ).

By convexity of φ(·, y) we have

φ(xt, yt)− φ(x, yt) ≤ gx(xt, yt)T (xt − x), ∀x ∈ X,

and by concavity of φ(x, ·),
φ(xt, y)− φ(xt, yt) ≤ gy(xt, yt)T (y − yt), ∀y ∈ Y,

13



so that for all z = (x, y) ∈ Z,

φ(xt, y)− φ(x, yt) ≤ gx(xt, yt)T (xt − x) + gy(xt, yt)T (y − yt) = g(zt)T (zt − z).

Using once again the convexity-concavity of φ we write

εφ(z̃j) = max
y∈Y

φ(x̃j , y)−min
x∈X

φ(x, ỹj)

≤
[

j∑

t=1

γt

]−1 [
max
y∈Y

j∑

t=1

γtφ(xt, y)−min
x∈X

j∑

t=1

γtφ(x, yt)

]

≤
(

j∑

t=1

γt

)−1

max
z∈Z

j∑

t=1

γtg(zt)T (zt − z). (3.8)

To bound the right-hand side of (3.8) we use the following result.

Lemma 3.1 In the above setting, for any j ≥ 1 the following inequality holds

E

[
max
z∈Z

j∑

t=1

γtg(zt)T (zt − z)

]
≤ 2 +

5
2
M2
∗

j∑

t=1

γ2
t . (3.9)

Proof of this lemma is given in the Appendix.
Now to get an error bound for the solution z̃j it suffices to substitute inequality (3.9) into (3.8)

to obtain

E[εφ(z̃j)] ≤
(

j∑

t=1

γt

)−1 [
2 +

5
2
M2
∗

j∑

t=1

γ2
t

]
.

Let us use the constant stepsize strategy

γt =
2

M∗
√

5N
, t = 1, ..., N. (3.10)

Then εφ(z̃N ) ≤ 2M∗
√

5
N , and hence (see definition (3.5) of M∗) we obtain

εφ(z̃N ) ≤ 2

√√√√10
[
αyD2

ωx,XM2∗,x + αxD2
ωy,Y M2∗,y

]

αxαyN
. (3.11)

Same as in the minimization case, we can pass from constant stepsizes on a fixed “time horizon”
to decreasing stepsize policy (2.47) with θ = 1/M∗ and from averaging of all iterates to the “sliding
averaging”

z̃j =




j∑

t=j−bj/`c
γt



−1

j∑

t=j−bj/`c
γtzt,

arriving at the efficiency estimate

ε(z̃j) ≤ O(1)
`Dω,ZM∗√

j
, (3.12)

14



where the quantity Dω,Z =
[
2 supz∈Zo,w∈Z V (z, w)

]1/2 is assumed to be finite.

We give below a bound on the probabilities of large deviations of the error εφ(z̃N ).

Proposition 3.1 Suppose that conditions of the bound (3.11) are verified and, further, it holds for
all (u, v) ∈ Z that

E
[
exp

{
‖Gx(u, v, ξ)‖2

∗,x /M2
∗,x

}]
≤ exp{1}, E

[
exp

{
‖Gy(x, y, ξ)‖2

∗,y /M2
∗,y

}]
≤ exp{1}. (3.13)

Then for the stepsizes (3.10) one has for any Ω ≥ 1 that

Prob

{
εφ(z̃N ) >

(8 + 2Ω)
√

5M∗√
N

}
≤ 2 exp{−Ω}. (3.14)

Proof of this proposition is given in the Appendix.

3.2 Application to minimax stochastic problems

Consider the following minimax stochastic problem

min
x∈X

max
1≤i≤m

{
fi(x) := E[Fi(x, ξ)]

}
, (3.15)

where X ⊂ Rn is a nonempty bounded closed convex set, ξ is a random vector whose probability
distribution P is supported on set Ξ ⊂ Rd and Fi : X × Ξ → R, i = 1, ..., m. We assume that
for a.e. ξ the functions Fi(·, ξ) are convex and for every x ∈ Rn, Fi(x, ·) are integrable, i.e., the
expectations

E[Fi(x, ξ)] =
∫

Ξ
Fi(x, ξ)dP (ξ), i = 1, ...,m, (3.16)

are well defined and finite valued. To find a solution to the minimax problem (3.15) is exactly the
same as to solve the saddle point problem

min
x∈X

max
y∈Y

{
φ(x, y) :=

m∑

i=1

yifi(x)

}
, (3.17)

with Y := {y ∈ Rm : y ≥ 0,
∑m

i=1 yi = 1}.
Similarly to assumptions (A1) and (A2), assume that we cannot compute fi(x) (and thus φ(x, y))

explicitly, but are able to generate independent realizations ξ1, ξ2, ... distributed according to P ,
and for given x ∈ X and ξ ∈ Ξ we can compute Fi(x, ξ) and its stochastic subgradient Gi(x, ξ), i.e.,
such that gi(x) = E[Gi(x, ξ)] is well defined and gi(x) ∈ ∂fi(x), x ∈ X, i = 1, ..., m. In other words
we have a stochastic oracle for the problem (3.17) such that assumption (A2′) holds, with

G(x, y, ξ) :=
[ ∑m

i=1 yiGi(x, ξ)(− F1(x, ξ), ...,−Fm(x, ξ)
)

]
, (3.18)

and

g(x, y) := E[G(x, y, ξ)] =
[ ∑m

i=1 yigi(x)
(−f1(x), ...,−fm(x))

]
∈

[
∂xφ(x, y)

−∂yφ(x, y)

]
. (3.19)

15



Suppose that the set X is equipped with norm ‖ · ‖x, whose dual norm is ‖ · ‖∗,x, and a distance

generating function ω modulus αx with respect to ‖ · ‖x, and let R2
x :=

D2
ωx,X

αx
. We equip the set Y

with norm ‖ · ‖y := ‖ · ‖1, so that ‖ · ‖∗,y = ‖ · ‖∞, and with the distance generating function

ωy(y) :=
m∑

i=1

yi ln yi,

and set R2
y :=

D2
ωy,Y

αy
= ln m. Next, following (3.3) we set

‖(x, y)‖ :=

√
‖x‖2

x

2R2
x

+
‖y‖2

1

2R2
y

,

and hence
‖(ζ, η)‖∗ =

√
2R2

x‖ζ‖2∗,x + 2R2
y‖η‖2∞.

Let us assume uniform bounds:

E
[

max
1≤i≤m

‖Gi(x, ξ)‖2
∗,x

]
≤ M2

∗,x, E
[

max
1≤i≤m

|Fi(x, ξ)|2
]
≤ M2

∗,y, i = 1, ...,m.

Note that

E
[‖G(x, y, ξ)‖2

∗
]

= 2R2
x E

[
∥∥

m∑

i=1

yiGi(x, ξ)
∥∥2

∗,x

]
+ 2R2

y E
[‖F (x, ξ)‖2

∞
]

(3.20)

≤ 2R2
xM2

∗,x + 2R2
yM

2
∗,y = 2R2

xM2
∗,x + 2M2

∗,y ln m =: M2
∗ . (3.21)

Let us now use the Saddle Point Mirror SA algorithm (3.6), (3.7) with the constant stepsize
strategy

γt =
2

M∗
√

5N
, t = 1, 2, ..., N.

When substituting the value of M∗, we obtain from (3.11):

E [εφ(z̃N )] = E
[
max
y∈Y

φ(x̂N , y)−min
x∈X

φ(x, ŷN )
]
≤ 2M∗

√
5
N

≤ 2

√
10

[
R2

xM2∗,x + M2∗,x ln m
]

N
. (3.22)

Discussion. Looking at the bound (3.22) one can make the following important observation.
The error of the Saddle Point Mirror SA algorithm in this case is “almost independent” of the
number m of constraints (it grows as O(

√
lnm) as m increases). The interested reader can easily

verify that if an Euclidean SA algorithm were used in the same setting (i.e., the algorithm tuned
to the norm ‖ · ‖y := ‖ · ‖2), the corresponding bound would grow with m much faster (in fact, our
error bound would be O(

√
m) in that case).

Note that properties of the Saddle Point Mirror SA can be used to reduce significantly the
arithmetic cost of the algorithm implementation. To this end let us look at the definition (3.18)

16



of the stochastic oracle: in order to obtain a realization G(x, y, ξ) one has to compute m random
subgradients Gi(x, ξ), i = 1, ..., m, and then the convex combination

∑m
i=1 yiGi(x, ξ). Now let η be

an independent of ξ and uniformly distributed in [0, 1] random variable, and let ı(η, y) : [0, 1]×Y →
{1, ...,m} equals to i when

∑i−1
s=1 ys < η ≤ ∑i

s=1 ys. That is, random variable ı̂ = ı(η, y) takes values
1, ..., m with probabilities y1, ..., ym. Consider random vector

G(x, y, (ξ, η)) :=
[

Gı(η,y)(x, ξ)
(−F1(x, ξ), ...,−Fm(x, ξ))

]
. (3.23)

We refer to G(x, y, (ξ, η)) as a randomized oracle for problem (3.17), the corresponding random
parameter being (ξ, η). By construction we still have E

[
G(x, y, (ξ, η))

]
= g(x, y), where g is defined

in (3.19), and, moreover, the same bound (3.20) holds for E
[‖G(x, y, (ξ, η))‖2∗

]
. We conclude

that the accuracy bound (3.22) holds for the error of the Saddle Point Mirror SA algorithm with
randomized oracle. On the other hand, in the latter procedure only one randomized subgradient
Gı̂(x, ξ) per iteration is to be computed. This simple idea is further developed in another interesting
application of the Saddle Point Mirror SA algorithm to bilinear matrix games which we discuss
next.

3.3 Application to bilinear matrix games

Consider the standard matrix game problem, that is, problem (3.1) with

φ(x, y) := yT Ax + bT x + cT y,

where A ∈ Rm×n, and X and Y are the standard simplices, i.e.,

X :=
{
x ∈ Rn : x ≥ 0,

∑n
j=1 xj = 1

}
, Y :=

{
y ∈ Rm : y ≥ 0,

∑m
i=1 yi = 1

}
.

In the case in question it is natural to equip X (respectively, Y ) with the usual ‖ · ‖1-norm on Rn

(respectively, Rm). We choose entropies as the corresponding distance generating functions:

ωx(x) :=
n∑

i=1

xi ln xi, ωy(x) :=
m∑

i=1

yi ln yi.

As we already have seen, this choice results in
D2

ωx,X

αx
= lnn and

D2
ωy,Y

αy
= ln m. According to

(3.3) we set

‖(x, y)‖ :=

√
‖x‖2

1

2 ln n
+
‖y‖2

1

2 lnm
,

and thus

‖(ζ, η)‖∗ =
√

2‖ζ‖2∞ ln n + 2‖η‖2∞ lnm. (3.24)

In order to compute the estimates Φ(x, y, ξ) of φ(x, y) and G(x, y, ξ) of g(x, y) = (b+AT y,−c−Ax)
to be used in the Saddle Point Mirror SA iterations (3.6), we use the randomized oracle

Φ(x, y, ξ) = cT x + bT y + Aı(ξ1,y)ı(ξ2,x),

G(x, y, ξ) =
[

c + Aı(ξ1,y)

−b−Aı(ξ2,x)

]
,

17



where ξ1 and ξ2 are independent uniformly distributed on [0, 1] random variables, ĵ = ı(ξ1, y) and
î = ı(ξ2, x) are defined as in (3.23), i.e., ĵ can take values 1, ...,m with probabilities y1, ..., ym and î
can take values 1, ..., n with probabilities x1, ..., xn, and Aj , [Ai]T are j-th column and i-th row in
A, respectively.

Note that g(x, y) := E
[
G(x, y, (ĵ, î))

] ∈
[

∂xφ(x, y)
∂y(−φ(x, y))

]
. Besides this,

|G(x, y, ξ)i| ≤ max
1≤j≤m

‖Aj + b‖∞, for i = 1, ..., n,

and
|G(x, y, ξ)i| ≤ max

1≤j≤n
‖Aj + c‖∞, for i = n + 1, ..., n + m.

Hence, by the definition (3.24) of ‖ · ‖∗,
E‖G(x, y, ξ)‖2

∗ ≤ M2
∗ := 2 lnn max

1≤j≤m
‖Aj + b‖2

∞ + 2 lnm max
1≤j≤n

‖Aj + c‖2
∞.

The bottom line is that inputs of the randomized Mirror Saddle Point SA satisfy the conditions of
validity of the bound (3.11) with M∗ as above. Using the constant stepsize strategy with

γt =
2

M∗
√

5N
, t = 1, ..., N,

we obtain from (3.11):

E
[
εφ(z̃N )

]
= E

[
max
y∈Y

φ(x̃N , y)−min
x∈X

φ(x, ỹN )
]
≤ 2M∗

√
5
N

. (3.25)

We continue with the counterpart of Proposition 3.1 for the Saddle Point Mirror SA in the setting
of bilinear matrix games.

Proposition 3.2 For any Ω ≥ 1 it holds that

Prob

{
εφ(z̃N ) > 2M∗

√
5
N

+
4M√

N
Ω

}
≤ exp

{−Ω2/2
}

, (3.26)

where
M := max

1≤j≤m
‖Aj + b‖∞ + max

1≤j≤n
‖Aj + c‖∞. (3.27)

Discussion. Consider a bilinear matrix game with m = n and b = c = 0. Suppose that we are
interested to solve it within a fixed relative accuracy ρ, that is, to ensure that a (perhaps random)
approximate solution z̃N , we get after N iterations, satisfies the error bound

εφ(z̃N ) ≤ ρ max
1≤i, j≤n

|Aij |

with probability at least 1−δ. According to (3.26), to this end one can use the randomized Saddle
Point Mirror SA algorithm (3.6), (3.7) with

N = O(1)
ln n + ln(δ−1)

ρ2
. (3.28)

18



The computational cost of building z̃N with this approach is

C(ρ) = O(1)

[
lnn + ln(δ−1)

]R
ρ2

arithmetic operations, where R is the arithmetic cost of extracting a column/row from A, given
the index of this column/row. The total number of rows and columns visited by the algorithm
does not exceed the sample size N , given in (3.28), so that the total number of entries in A used
in course of the entire computation does not exceed

M = O(1)
n(lnn + ln(δ−1))

ρ2
.

When ρ is fixed and n is large, this is incomparably less that the total number n2 of entries of
A. Thus, the algorithm in question produces reliable solutions of prescribed quality to large-scale
matrix games by inspecting a negligible, as n → ∞, part of randomly selected data. Note that
randomization here is critical. It is easily seen that a deterministic algorithm which is capable to
find a solution with (deterministic) relative accuracy ρ ≤ 0.1, has to “see” in the worst case at least
O(1)n rows/columns of A.

4 Numerical results

In this section, we report the results of our computational experiments where we compare the
performance of the Robust Mirror Descent SA method and the SAA method applied to three
stochastic programming problems, namely: a stochastic utility problem, a stochastic max-flow
problem and network planning problem with random demand. We also present a small simulation
study of performance of randomized Mirror SA algorithm for bilinear matrix games.

4.1 A stochastic utility problem

Our first experiment was carried out with the utility model

min
x∈X

{
f(x) := E

[
φ
(∑n

i=1(ai + ξi)xi

)] }
. (4.1)

Here X = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0}, ξi ∼ N(0, 1) are independent random variables having
standard normal distribution, ai = i/n are constants, and φ(·) is a piecewise linear convex function
given by φ(t) = max{v1 + s1t, ..., vm + smt}, where vk and sk are certain constants.

Two variants of the Robust Mirror Descent SA method have been used for solving problem (4.1).
The first variant, the Euclidean SA (E-SA), employs the Euclidean distance generating function
ω(x) = 1

2‖x‖2
2, and its iterates coincide with those of the classic SA as discussed in Section 2.3.

The other distance generating function used in the following experiments is the entropy function
defined in (2.49). The resulting variant of the Robust Mirror Descent SA is referred to as the
Non-Euclidean SA (N-SA) method.

These two variants of SA method are compared with the SAA approach in the following way:
fixing an i.i.d. sample (of size N) for the random variable ξ, we apply the three afore-mentioned
methods to obtain approximate solutions for problem (4.1), and then the quality of the solutions

19



Table 1: the selection of step-sizes
[method: N-SA, N:2,000, K:10,000, instance: L1]

η
policy 0.1 1 5 10

variable -7.4733 -7.8865 -7.8789 -7.8547
constant -6.9371 -7.8637 -7.9037 -7.8971

yielded by these algorithms is evaluated using another i.i.d. sample of size K >> N . It should be
noted that SAA itself is not an algorithm and in our experiments it is coupled with the so-called
Non-Euclidean Restricted Memory Level (NERML) deterministic algorithm (see [2]), for solving
the sample average problem (1.4).

In our experiment, the function φ(·) in problem (4.1) was set to be a piecewise linear function
with 10 breakpoints (m = 10) over the interval [0, 1] and four instances (namely: L1, L2, L3 and
L4) with different dimensions ranging from n = 500 to 5, 000 were randomly generated. Note that
each of these instances assumes a different function φ(·), i.e., has different values of vk and sk for
k = 1, ..., m. All the algorithms were coded in ANSI C and the experiments were conducted on a
Intel PIV 1.6GHz machine with Microsoft Windows XP professional.

The first step of our experimentation is to determine the step-sizes γt used by both variants
of SA method. Note that in our situation, either a constant stepsize policy (2.40) or a variable
step-size policy (2.47) can be applied. Observe however that the quantity M∗ appearing in both
stepsize policies is usually unknown and requires an estimation. In our implementation, an estimate
of M∗ is obtained by taking the maxima of ‖G(·, ·)‖∗ over a certain number (for example, 100) of
random feasible solutions x and realizations of the random variable ξ. To account for the error
inherited by this estimation procedure, the stepsizes are set to ηγt for t = 1, ..., N , where γt are
defined as in (2.40) or (2.47), and η > 0 is a user-defined parameter that can be fine-tuned, for
example, by a trial-and-error procedure.

Some results of our experiments for determining the step-sizes are presented in Table 1. Specifi-
cally, Table 1 compares the solution quality obtained by the Non-Euclidean SA method (N = 2,000
and K = 10,000) applied for solving the instance L1 (n = 500) with different stepsize polices and
different values of η. In this table, column 1 gives the name of the two policies and column 2 through
column 5 report the objective values for η = 0.1, 1, 5 and 10 respectively. The results given in Table
1 show that the constant step-size policy with a properly chosen parameter η slightly outperforms
the variable stepsize policy and the same phenomenon has also been observed for the Euclidean
SA method. Based on these observations, the constant step-size was chosen for both variants of
SA method. To set the parameter η, we run each variant of SA method in which different values
of η ∈ {0.1, 1, 5, 10} are applied, and the best selection of η in terms of the solution quality was
chosen. More specifically, the parameter η was set to 0.1 and 5, respectively, for the Euclidean SA
method and Non-Euclidean throughout our computation.

We then run each of the three afore-mentioned methods with various sample-sizes for each test
instance and the computational results are reported in Table 2, where n is the dimension of problem,
N denotes the sample-size, ‘OBJ’ and ‘DEV’ represents mean and deviation, respectively, of the
objective values of problem (4.1) as evaluated over a sample of size K = 10, 000 for the solutions
generated by the algorithms, ‘TIME’ is the CPU seconds for obtaining the solutions, and ‘ORC’
stands for the number of calls to the stochastic oracle.

20



Table 2: SA vs. SAA on the stochastic utility model
- L1: n = 500 L2: n = 1000

alg. N obj dev time orc obj dev time orc
N-SA 100 -7.7599 0.5615 0.00 200 -5.8340 0.1962 0.00 200

1,000 -7.8781 0.3988 2.00 1,100 -5.9152 0.1663 2.00 1,100
2,000 -7.8987 0.3589 2.00 2,100 -5.9243 0.1668 5.00 2,100
4,000 -7.9075 0.3716 5.00 4,100 -5.9365 0.1627 12.00 4,100

E-SA 100 -7.6895 0.3702 0.00 200 -5.7988 0.1046 1.00 200
1,000 -7.8559 0.3153 2.00 1,100 -5.8919 0.0998 4.00 1,100
2,000 -7.8737 0.3101 3.00 2,100 -5.9067 0.1017 7.00 2,100
4,000 -7.8948 0.3084 7.00 4,100 -5.9193 0.1060 13.00 4,100

SAA 100 -7.6571 0.9343 7.00 4,000 -5.6346 0.9333 8.00 4,000
1,000 -7.8821 0.4015 31.00 40,000 -5.9221 0.2314 68.00 40000
2,000 -7.9100 0.3545 72.00 80,000 -5.9313 0.2100 128.00 80,000
4,000 -7.9087 0.3696 113.00 160,000 -5.9384 0.1944 253.00 160,000

- L3: n = 2000 L4: n = 5000
alg. N obj dev time orc obj dev time orc
N-SA 100 -7.1419 0.2394 1.00 200 -5.4688 0.2719 3.00 200

1,000 -7.2312 0.1822 6.00 1,100 -5.5716 0.1762 13.00 1,100
2,000 -7.2513 0.1691 10.00 2,100 -5.5847 0.1506 25.00 2,100
4,000 -7.2595 0.1685 20.00 4,100 -5.5935 0.1498 49.00 4,100

E-SA 100 -7.0165 0.1547 1.00 200 -4.9364 0.1111 4.00 200
1,000 -7.2029 0.1301 7.00 1,100 -5.3895 0.1416 20.00 1,100
2,000 -7.2306 0.1256 15.00 2,100 -5.4870 0.1238 39.00 2,100
4,000 -7.2441 0.1282 29.00 4,100 -5.5354 0.1195 77.00 4,100

SAA 100 -6.9748 0.8685 19.00 4,000 -5.3360 0.7188 44.00 4,000
1,000 -7.2393 0.2469 134.00 40,000 -5.5656 0.2181 337.00 40,000
2,000 -7.2583 0.2030 261.00 80,000 -5.5878 0.1747 656.00 80,000
4,000 -7.2664 0.1838 515.00 160,000 -5.5967 0.1538 1283.00 160,000

In order to evaluate variability of these algorithms, we run each method 100 times and compute
the resulting statistics as shown in Table 3. Note that the instance L2 is chosen as a representative
and only two different sample-sizes (N = 1000 and 2000) are applied since this test is more time-
consuming. In Table 3, column 1 and column 2 give the instance name and the sample-size used
for each run of the method. The objective value of the approximate solution yielded by each run
of the algorithm was evaluated over K = 104 sample size, and the mean and standard deviation
of these objective values over 100 runs are given in columns 3-4, columns 6-7, and columns 9-10,
respectively, for N-SA, E-SA and SAA method. The average solution time of these three methods
over 100 runs are also reported in column 5, 8, and 11 respectively.

The experiment demonstrates that the solution quality is improved for all three methods with
the increase of the sample size N . Moreover, for a given sample size, the solution time for N-SA is
significantly smaller than that for SAA, while the solution quality for N-SA is close to that for the
latter one.

21



Table 3: The variability for the stochastic utility problem
- N-SA E-SA SAA

obj avg. obj avg. obj avg.
inst N mean dev time mean dev time mean dev time
L2 1,000 -5.9159 0.0025 2.63 -5.8925 0.0024 4.99 -5.9219 0.0047 67.31
L2 2,000 -5.9258 0.0022 5.03 -5.9063 0.0019 7.09 -5.9328 0.0028 131.25

4.2 Stochastic max-flow problem

In the second experiment, we consider a simple two-stage stochastic linear programming, namely, a
stochastic max-flow problem. The problem is to investigate the capacity expansion over a stochastic
network. Let G = (N,A) be a diagraph with a source node s and a sink node t. Each arc (i, j) ∈ A
has an existing capacity pij ≥ 0, and a random implementing/operating level ξij . Moreover, there
is a common random degrading factor denoted by θ for all arcs in A. The goal is to determine how
much capacity to add to the arcs subject to a budget constraint, such that the expected maximum
flow from s to t is maximized. Let xij denote the capacity to be added to arc (i, j). The problem
can be formulated as

max
x

{
f(x) := E[F (x, ξ)]

}

s.t.
∑

(i,j)∈A

cijxij ≤ b, xij ≥ 0, ∀(i, j) ∈ A, (4.2)

where cij is unit cost for the capacity to be added, b is the total available budget, and F (x, ξ)
denotes the maximum s − t flow in the network when the capacity of an arc (i, j) is given by
θξij(pij + xij). Note that the above is a maximization rather than minimization problem.

For our purpose, we assume that the random variables ξij and θ are independent and uniformly
distributed over (0, 1) and (0.5, 1), respectively. Also let pij = 0 and cij = 1 for all (i, j) ∈ E,
and b = 1. We randomly generated 4 network instances (referred to as F1, F2, F3 and F4) using
the network generator GRIDGEN, which is available on DIMACS challenge. The push-relabel
algorithm (see [5]) was used to solve the second stage max-flow problem.

The three methods, namely: N-SA, E-SA and SAA, and the same stepsize policy as discussed in
Subsection 4.1, were applied for solving these stochastic max-flow instances. In the first test, each
algorithm was run once for each test instance and the computational results are reported in Table
4, where m and n denote the number of nodes and arcs in G, respectively, N denotes the number
of samples, ‘OBJ’ and ‘DEV’ represent the mean and standard deviation, respectively, of objective
values of problem (4.2) as evaluated over K = 104 sample size at the approximated solutions yielded
by the algorithms, ‘TIME’ is CPU seconds for obtaining the approximated solution, and ‘ORC’
stands for the number of calls to the stochastic oracle. Similar to the stochastic utility problem,
we investigate the variability of these three methods by running each method for 100 times and
computing the statistical results as shown in Table 5 whose columns have exactly the same meaning
as in Table 3.

This experiment, once more, shows that for a given sample size N , the solution quality for N-SA
is close to or even in some cases is better than that for SAA, meanwhile, the solution time of N-SA
is much smaller than the latter one.

22



Table 4: SA vs. SAA on the stochastic max-flow model
- F1: m = 50, n = 500 F2: m = 100, n = 1000

alg. N obj dev time orc obj dev time orc
N-SA 100 0.1140 0.0786 0.00 200 0.0637 0.0302 0.00 200

1000 0.1254 0.0943 1.00 1,100 0.0686 0.0300 3.00 1,100
2000 0.1249 0.0947 3.00 2,100 0.0697 0.0289 6.00 2,100
4000 0.1246 0.0930 5.00 4,100 0.0698 0.0268 11.00 4,100

E-SA 100 0.0840 0.0362 0.00 200 0.0618 0.0257 1.00 200
1000 0.1253 0.0944 3.00 1,100 0.0670 0.0248 6.00 1,100
2000 0.1246 0.0947 5.00 2,100 0.0695 0.0263 13.00 2,100
4000 0.1247 0.0929 9.00 4,100 0.0696 0.0264 24.00 4,100

SAA 100 0.1212 0.0878 5.00 4,000 0.0653 0.0340 12.00 4,000
1000 0.1223 0.0896 35.00 40,000 0.0694 0.0296 84.00 40,000
2000 0.1223 0.0895 70.00 80,000 0.0693 0.0274 170.00 80,000
4000 0.1221 0.0893 140.00 160,000 0.0693 0.0264 323.00 160,000

- F3: m = 100, n = 2000 F4: m = 250, n = 5000
alg. N obj dev time orc obj dev time orc
N-SA 100 0.1296 0.0735 1.00 200 0.1278 0.0800 3.00 200

1000 0.1305 0.0709 6.00 1,100 0.1329 0.0808 15.00 1,100
2000 0.1318 0.0812 11.00 2,100 0.1338 0.0834 29.00 2,100
4000 0.1331 0.0834 21.00 4,100 0.1334 0.0831 56.00 4,100

E-SA 100 0.1277 0.0588 2.00 200 0.1153 0.0603 7.00 200
1000 0.1281 0.0565 16.00 1,100 0.1312 0.0659 39.00 1,100
2000 0.1287 0.0589 28.00 2,100 0.1312 0.0656 72.00 2,100
4000 0.1303 0.0627 53.00 4,100 0.1310 0.0683 127.00 4,100

SAA 100 0.1310 0.0773 20.00 4,000 0.1253 0.0625 60.00 4,000
1000 0.1294 0.0588 157.00 40,000 0.1291 0.0667 466.00 40,000
2000 0.1304 0.0621 311.00 80,000 0.1284 0.0642 986.00 80,000
4000 0.1301 0.0636 636.00 160,000 0.1293 0.0659 1885.00 160,000

4.3 A network planning problem with random demand

In the last experiment, we consider the so-called SSN problem of Sen, Doverspike, and Cosares [15].
This problem arises in telecommunications network design where the owner of the network sells
private-line services between pairs of nodes in the network, and the demands are treated as random
variables based on the historical demand patterns. The optimization problem is to decide where
to add capacity to the network to minimize the expected rate of unsatisfied demands. Since this
problem has been studied by several authors (see, e.g., [7, 15]), it could be interesting to compare
the results. Another purpose of this experiment is to investigate the behavior of the SA method
when one variance reduction technique, namely, the Latin Hyperplane Sampling (LHS), is applied.

The problem has been formulated as a two-stage stochastic linear programming as follows:

min
x

{
f(x) := E[Q(x, ξ)]

}

s.t.
∑

j xj = b, xj ≥ 0,
(4.3)

where x is the vector of capacities to be added to the arcs of the network, b (the budget) is the
total amount of capacity to be added, ξ denotes the random demand, and Q(x, ξ) represents the

23



Table 5: The variability for the stochastic max-flow problem
- N-SA E-SA SAA

obj avg. obj avg. obj avg.
inst N mean dev time mean dev time mean dev time
F2 1,000 0.0691 0.0004 3.11 0.0688 0.0006 4.62 0.0694 0.0003 90.15
F2 2,000 0.0694 0.0003 6.07 0.0692 0.0002 6.91 0.0695 0.0003 170.45

number of unserved requests. We have

Q(x, ξ̃) = min
s,f

∑
i si

s.t.
∑

i

∑
r∈R(i) Airfir ≤ x + c,∑

r∈R(i) fir + si = ξ̃i, ∀i,
fir ≥ 0, si ≥ 0, ∀i, r ∈ R(i).

(4.4)

Here, R(i) denotes a set of routes that can be used for connections associated with the node-pair
i (Note that a static network-flow model is used in the formulation to simplify the problem); ξ̃ is
a realization of the random variable ξ; the vectors Air are incidence vectors whose jth component
airj is 1 if the link j belongs to the route r and is 0 otherwise; c is the vector of current capacities;
fir is the number of connections associated with pair i using route r ∈ R(i); s is the vector of
unsatisfied demands for each request.

In the data set for SSN, there are total of 89 arcs and 86 point-to-point pairs; that is, the
dimension of x is 89 and of ξ is 86. Each component of ξ is an independent random variable with
a known discrete distribution. Specifically, there are between three and seven possible values for
each component of ξ, giving a total of approximately 1070 possible complete demand scenarios.

The three methods, namely: N-SA, E-SA and SAA, and the same stepsize policy as discussed
in Subsection 4.1, were applied for solving the SSN problem. Moreover, we compare these methods
with or without using the Latin Hyperplane Sampling (LHS) technique. In the first test, each
algorithm was run once for each test instance and the computational results are reported in Table
6, where N denotes the number of samples, ‘OBJ’ and ‘DEV’ represent the mean and standard
deviation, respectively, of objective values of problem (4.3) as evaluated over K = 104 sample size
at the approximated solutions yielded by the algorithms, ‘TIME’ is CPU seconds for obtaining the
approximated solution, and ‘ORC’ stands for the number of calls to the stochastic oracle. Similar
to the stochastic utility problem, we investigate the variability of these three methods by running
each method for 100 times and computing the statistical results as shown in Table 7. Note that
these tests for the SSN problem were conducted on a more powerful computer: Intel Xeon 1.86GHz
with Red Hat Enterprize Linux.

This experiment shows that for a given sample size N , the solution quality for N-SA is close to
that for SAA, meanwhile, the solution time of N-SA is much smaller than the latter one. However,
for this particular instance, the improvement on the solution quality by using the Latin Hyperplane
sampling is not significant, especially when a larger sample-size is applied. This result seems to be
consistent with the observation in [7].

24



Table 6: SA vs. SAA on the SSN problem
- Without LHS With LHS

alg. N obj dev time orc obj dev time orc
N-SA 100 11.0984 19.2898 1.00 200 10.1024 18.7742 1.00 200

1,000 10.0821 18.3557 6.00 1100 10.0313 18.0926 7.00 1100
2,000 9.9812 18.0206 12.00 2100 9.9936 17.9069 12.00 2100
4,000 9.9151 17.9446 23.00 4100 9.9428 17.9934 22.00 4100

E-SA 100 10.9027 19.1640 1.00 200 10.3860 19.1116 1.00 200
1,000 10.1268 18.6424 6.00 1100 10.0984 18.3513 6.00 1100
2,000 10.0304 18.5600 12.00 2100 10.0552 18.4294 12.00 2100
4,000 9.9662 18.6180 23.00 4100 9.9862 18.4541 23.00 4100

SAA 100 11.8915 19.4606 24.00 4,000 11.0561 20.4907 23.00 4000
1,000 10.0939 19.3332 215.00 40,000 10.0488 19.4696 216.00 40,000
2,000 9.9769 19.0010 431.00 80,000 9.9872 18.9073 426.00 80,000
4,000 9.8773 18.9184 849.00 160,000 9.9051 18.3441 853.00 160,000

Table 7: The variability for the SSN problem
- N-SA E-SA SAA

obj avg. obj avg. obj avg.
N LHS mean dev time mean dev time mean dev time

1,000 no 10.0624 0.1867 6.03 10.1730 0.1826 6.12 10.1460 0.2825 215.06
1,000 yes 10.0573 0.1830 6.16 10.1237 0.1867 6.14 10.0135 0.2579 216.10
2,000 no 9.9965 0.2058 11.61 10.0853 0.1887 11.68 9.9943 0.2038 432.93
2,000 yes 9.9978 0.2579 11.71 10.0486 0.2066 11.74 9.9830 0.1872 436.94

4.4 N-SA vs. E-SA

The data in Tables 3, 4, 6 demonstrate that with the same sample size N , the N-SA somehow
outperforms the E-SA in terms of both the quality of approximate solutions and the running time.
The difference, at the first glance, seems slim, and one could think that adjusting the SA algorithm
to the “geometry” of the problem in question (in our case, to minimization over a standard simplex)
is of minor importance. We, however, do believe that such a conclusion would be wrong. In order
to get a better insight, let us come back to the stochastic utility problem. This test problem has an
important advantage – we can easily compute the value of the objective f(x) at a given candidate
solution x analytically1. Moreover, it is easy to minimize f(x) over the simplex – on a closest
inspection, this problem reduces to minimizing an easy-to-compute univariate convex function, so
that we can approximate the true optimal value f∗ to high accuracy by Bisection. Thus, in the
case in question we can compare solutions x generated by various algorithms in terms of their “true
inaccuracy” f(x)− f∗, and this is the rationale behind our “Gaussian setup”. We can now exploit
the just outlined advantage of the stochastic utility problem for comparing properly N-SA and
E-SA. In Table 8, we present the true values of the objective f(x∗) at the approximate solutions x∗
generated by N-SA and E-SA as applied to the instances L1 and L4 of the stochastic utility problem
(cf. Table 3) along with the inaccuracies f(x∗)− f∗ and the Monte Carlo estimates f̂(x∗) of f(x∗)

1Indeed, (ξ1, ..., ξn) ∼ N(0, In), so that the random variable ξx =
∑

i(ai + ξi)xi is normal with easily computable
mean and variance, and since φ is piecewise linear, the expectation f(x) = E[φ(ξx)] can be immediately expressed
via the error function.

25



Table 8: N-SA vs. E-SA
Method Problem f̂(x∗), f(x∗) f(x∗)− f∗ Time

N-SA, N = 2, 000 L2: n = 1000 -5.9232/-5.9326 0.0113 2.00
E-SA, N = 2, 000 L2 -5.8796/-5.8864 0.0575 7.00
E-SA, N = 10, 000 L2 -5.9059/-5.9058 0.0381 13.00
E-SA, N = 20, 000 L2 -5.9151/-5.9158 0.0281 27.00
N-SA, N = 2, 000 L4: n = 5000 -5.5855/-5.5867 0.0199 6.00
E-SA, N = 2, 000 L4 -5.5467/-5.5469 0.0597 10.00
E-SA, N = 10, 000 L4 -5.5810/-5.5812 0.0254 36.00
E-SA, N = 20, 000 L4 -5.5901/-5.5902 0.0164 84.00

obtained via 50,000-element samples. We see that the difference in the inaccuracy f(x∗)−f∗ of the
solutions produced by the algorithms is much more significant than it is suggested by the data in
Table 3 (where the actual inaccuracy is “obscured” by the estimation error and summation with
f∗). Specifically, at the common for both algorithms sample size N = 2, 000, the inaccuracy yielded
by N-SA is 3 – 5 times less than the one for E-SA, and in order to compensate for this difference,
one should increase the sample size for E-SA (and hence the running time) by factor 5 – 10. It
should be added that in light of theoretical complexity analysis carried out in Example 2.1, the
outlined significant difference in performances of N-SA and E-SA is not surprising; the surprising
fact is that E-SA works at all.

4.5 Bilinear matrix game

We consider here a bilinear matrix game

min
x∈X

max
y∈Y

yT Ax,

where both feasible sets are the standard simplices in Rn, i.e., Y = X = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥
0}. We consider two versions of the randomized Mirror SA algorithm (3.6), (3.7) for the saddle
point problem: Euclidean Saddle Point SA (E-SA) which uses as ωx and ωy Euclidean distance
generating function ωx(x) = 1

2‖x‖2
2. The other version of the method, which is referred to as the

Non-Euclidean Saddle Point SA (N-SA), employs the entropy distance generating function defined
in (2.49). To compare the two procedures we compute the corresponding approximate solutions
tzN after N iterations and compute the exact values of the error:

ε(z̃N ) := max
y∈Y

yT Ax̃N −min
x∈X

ỹT
NAx, i = 1, 2.

In our experiments we consider symmetric matrices A of two kinds. The matrices of the first family,
parameterized by α > 0, have the elements which obey the formula

Aij :=
(

i + j − 1
2n− 1

)α

, 1 ≤ i, j ≤ n.

The second family of matrices, which is also parameterized by α > 0, contains the matrices with
generic element

Aij :=
( |i− j|+ 1

2n− 1

)α

, 1 ≤ i, j ≤ n.

26



Table 9: SA for bilinear matrix games
E2(2), ε(z̃1) = 0.500 E2(1), ε(z̃1) = 0.500 E2(0.5), ε(z̃1) = 0.390

N-SA ε(z̃N ) avg. ε(z̃N ) avg. ε(z̃N ) avg.
N mean dev time mean dev time mean dev time

100 0.0121 3.9 e-4 0.58 0.0127 1.9 e-4 0.69 0.0122 4.3 e-4 0.81
1,000 0.00228 3.7 e-5 5.8 0.00257 2.2 e-5 7.3 0.00271 4.5 e-5 8.5
2,000 0.00145 2.1 e-5 11.6 0.00166 1.0 e-5 13.8 0.00179 2.7 e-5 16.4
E-SA ε(z̃N ) avg. ε(z̃N ) avg. ε(z̃N ) avg.
N mean dev time mean dev time mean dev time

100 0.00952 1.0 e-4 1.27 0.0102 5.1 e-5 1.77 0.00891 1.1 e-4 1.94
1,000 0.00274 1.3 e-5 11.3 0.00328 7.8 e-6 17.6 0.00309 1.6 e-5 20.9
2,000 0.00210 7.4 e-6 39.7 0.00256 4.6 e-6 36.7 0.00245 7.8 e-6 39.2

E1(2), ε(z̃1) = 0.0625 E1(1), ε(z̃1) = 0.125 E1(0.5), ε(z̃1) = 0.138
N-SA ε(z̃N ) avg. ε(z̃N ) avg. ε(z̃N ) avg.

N mean dev time mean dev time mean dev time
100 0.00817 0.0016 0.58 0.0368 0.0068 0.66 0.0529 0.0091 0.78

1,000 0.00130 2.7 e-4 6.2 0.0115 0.0024 6.5 0.0191 0.0033 7.6
2,000 0.00076 1.6 e-4 11.4 0.00840 0.0014 11.7 0.0136 0.0018 13.8
E-SA ε(z̃N ) avg. ε(z̃N ) avg. ε(z̃N ) avg.
N mean dev time mean dev time mean dev time

100 0.00768 0.0012 1.75 0.0377 0.0062 2.05 0.0546 0.0064 2.74
1,000 0.00127 2.2 e-4 17.2 0.0125 0.0022 19.9 0.0207 0.0020 18.4
2,000 0.00079 1.6 e-4 35.0 0.00885 0.0015 36.3 0.0149 0.0020 36.7

We use the notations E1(α) and E2(α) to refer to the experiences with the matrices of the first and
second kind with parameter α. We present in Table 9 the results of experiments conducted for the
matrices A of size 104 × 104. We have done 100 simulation runs in each experiment, we present
the average error (column MEAN), standard deviation (column Dav) and the average running
time (time which is necessary to compute the error of the solution is not taken into account). For
comparison we also present the error of the initial solution z̃1 = (x1, y1).

Our basic observation is as follows: both Non-Euclidean SA (N-SA) and Euclidean SA (E-SA)
algorithms succeed to reduce the error of solution reasonably fast. The mirror implementation
is preferable as it is more efficient in terms of running time. For comparison, it takes Matlab
from 10 (for the simplest problem) to 35 seconds (for the hardest one) to compute just one answer

g(x, y) =
[

AT y
−Ax

]
of the deterministic oracle.

References

[1] Azuma, K. Weighted sums of certain dependent random variables. Tökuku Math. J., 19, 357-
367 (1967).

[2] Ben-Tal, A. and Nemirovski, A., Non-euclidean restricted memory level method for large-scale
convex optimization, Mathematical Programming, 102, 407-456 (2005).

27



[3] Benveniste, A., Métivier, M., Priouret, P., Algorithmes adaptatifs et approximations stochas-
tiques , Masson, (1987). English trans. Adaptive Algorithms and Stochastic Approximations,
Springer Verlag (1993).

[4] Chung, K.L., On a stochastic approximation method, Ann. Math. Stat. 25, 463-483 (1954).

[5] Goldberg, A.V. and Tarjan, R.E., A New Approach to the Maximum Flow Problem, Journal
of ACM, 35, 921-940 (1988).

[6] Kleywegt, A. J., Shapiro, A. and Homem-de-Mello, T., The sample average approximation
method for stochastic discrete optimization, SIAM J. Optimization, 12, 479-502 (2001).

[7] Linderoth, J., Shapiro, A. and Wright, S., The empirical behavior of sampling methods for
stochastic programming, Annals of Operations Research, 142, 215-241 (2006).

[8] Mak, W.K., Morton, D.P. and Wood, R.K., Monte Carlo bounding techniques for determining
solution quality in stochastic programs, Operations Research Letters, 24, 47–56 (1999).

[9] Nemirovskii, A., and Yudin, D. ”On Cezari’s convergence of the steepest descent method for
approximating saddle point of convex-concave functions.” (in Russian) - Doklady Akademii
Nauk SSSR, v. 239 (1978) No. 5 (English translation: Soviet Math. Dokl. v. 19 (1978) No. 2)

[10] Nemirovski, A., Yudin, D., Problem complexity and method efficiency in optimization, Wiley-
Interscience Series in Discrete Mathematics, John Wiley, XV, 1983.

[11] Polyak, B.T., New stochastic approximation type procedures, Automat. i Telemekh., 7 (1990),
98-107.

[12] Polyak, B.T. and Juditsky, A.B., Acceleration of stochastic approximation by averaging, SIAM
J. Control and Optimization, 30 (1992), 838-855.

[13] Robbins, H. and Monro, S., A stochastic spproximation method, Annals of Math. Stat., 22
(1951), 400-407.

[14] Sacks, J., Asymptotic distribution of stochastic approximation, Ann. Math. Stat., 29, 373-409
(1958).

[15] Sen, S., Doverspike, R.D. and Cosares, S., Network Planning with Random Demand, Telecom-
munication Systems, 3, 11-30 (1994).

[16] Shapiro, A., Monte Carlo sampling methods, in: Ruszczyński, A. and Shapiro, A., (Eds.),
Stochastic Programming, Handbook in OR & MS, Vol. 10, North-Holland Publishing Company,
Amsterdam, 2003.

[17] Shapiro, A. and Nemirovski, A., On complexity of stochastic programming problems, in: Con-
tinuous Optimization: Current Trends and Applications, pp. 111-144, V. Jeyakumar and A.M.
Rubinov (Eds.), Springer, 2005.

[18] Strassen, V., The existence of probability measures with given marginals, Annals of Mathe-
matical Statistics, 38, 423–439 (1965).

28



[19] Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G. and Shapiro, A., The sample aver-
age approximation method applied to stochastic routing problems: a computational study,
Computational Optimization and Applications, 24, 289–333 (2003).

5 Appendix

Proof of Lemma 2.1. Let x ∈ Xo and v = Px(y); note that v is of the form argmin z∈X [ω(z) +
pT z] and thus v ∈ Xo, so that ω is differentiable at v. As ∇vV (x, v) = ∇ω(v) − ∇ω(x), the
optimality conditions for (2.26) imply that

(∇ω(v)−∇ω(x) + y)T (v − u) ≤ 0 ∀u ∈ X. (5.1)

For u ∈ X we therefore have

V (v, u)− V (x, u) = [ω(u)−∇ω(v)T (u− v)− ω(v)]− [ω(u)−∇ω(x)T (u− x)− ω(x)]
= (∇ω(v)−∇ω(x) + y)T (v − u) + yT (u− v)

−[ω(v)−∇ω(x)T (v − x)− ω(x)]
[due to (5.1)] ≤ yT (u− v)− V (x, v).

By Young’s inequality2 we have

yT (x− v) ≤ ‖y‖2∗
2α

+
α

2
‖x− v‖2,

while V (x, v) ≥ α
2 ‖x− v‖2, due to the strong convexity of V (x, ·). We get

V (v, u)− V (x, u) ≤ yT (u− v)− V (x, v) = yT (u− x) + yT (x− v)− V (x, v) ≤ yT (u− x) +
‖y‖2∗
2α

,

as required in (2.28).

Entropy as a distance-generating function on the standard simplex. The only property
which is not immediately evident is that the entropy w(x) :=

∑n
i=1 xi ln xi is strongly convex,

modulus 1 with respect to ‖ · ‖1-norm, on the standard simplex X :=
{
x ∈ Rn : x ≥ 0,

∑n
i=1 xi

}
.

We are in the situation where Xo = {x ∈ X : x > 0}, and in order to establish the property in
question it suffices to verify that hT∇2ω(x)h ≥ ‖h‖2

1 for every x ∈ Xo. Here is the computation:

[∑

i

|hi|
]2

=

[∑

i

(x−1/2
i |hi|)x1/2

i

]2

≤
[∑

i

h2
i x
−1
i

][∑

i

xi

]
=

∑

i

h2
i x
−1
i = hT∇2ω(x)h,

where the inequality follows by Cauchy inequality.
2For any u, v ∈ Rn we have by the definition of the dual norm that ‖u‖∗‖v‖ ≥ uT v and hence (‖u‖2∗/α+α‖v‖2)/2 ≥

‖u‖∗‖v‖ ≥ uT v.

29



Proof of Lemma 3.1. By (2.28) we have for any u ∈ Z that

γt(zt − u)T G(zt, ξt) ≤ V (zt, u)− V (zt+1, u) +
γ2

t

2
‖G(zt, ξt)‖2

∗ (5.2)

(recall that we are in the situation of α = 1). This relation implies that for every u ∈ Z one has

γt(zt − u)T g(zt) ≤ V (zt, u)− V (zt+1, u) +
γ2

t

2
‖G(zt, ξt)‖2

∗ − γt(zt − u)T ∆t, (5.3)

where ∆t := G(zt, ξt)− g(zt). Summing up these inequalities over t = 1, ..., j, we get

j∑

t=1

γt(zt − u)T g(zt) ≤ V (z1, u)− V (zt+1, u) +
j∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j∑

t=1

γt(zt − u)T ∆t.

Now we need the following simple lemma.

Lemma 5.1 Let ζ1, ..., ζj be a sequence of elements of Rn+m. Define the sequence vt, t = 1, 2, ...
in Zo as follows: v1 ∈ Zo and

vt+1 = Pvt(ζt), 1 ≤ t ≤ j.

Then for any u ∈ Z the following holds

j∑

t=1

ζT
t (vt − u) ≤ V (v1, u) + 1

2

j∑

t=1

‖ζt‖2
∗. (5.4)

Proof. Using the bound (2.28) of Lemma 2.1 with y = ζt and x = vt (so that vt+1 = Pvt(ζt)) and
recalling that we are in the situation of α = 1, we obtain for any u ∈ Z:

V (vt+1, u) ≤ V (vt, u) + ζT
t (u− vt) +

‖ζt‖2∗
2

.

Summing up from t = 1 to t = j we conclude that

V (vj+1, u) ≤ V (v1, u) +
j∑

t=1

ζT
t (u− vt) +

j∑

t=1

‖ζt‖2∗
2

,

which implies (5.4) due to V (v, u) ≥ 0 for any v ∈ Zo, u ∈ Z.

Applying Lemma 5.1 with v1 = z1, ζt = −γt∆t:

∀u ∈ Z :
j∑

t=1

γt∆T
t (u− vt) ≤ V (z1, u) +

1
2

j∑

t=1

γ2
t ‖∆t‖2

∗. (5.5)

Observe that

E‖∆t‖2
∗ ≤ 4E‖G(zt, ξt)‖2

∗ ≤ 4

(
2D2

ωx,X

αx
M2
∗,x +

2D2
ωy ,Y

αy
M2
∗,y

)
= 4M2

∗ ,

30



so that when taking the expectation of both sides of (5.5) we get

E sup
u∈Z

(
j∑

t=1

γt∆T
t (u− vt)

)
≤ 1 + 2M2

∗
j∑

t=1

γ2
t (5.6)

(recall that V (z1, ·) is bounded by 1 on Z). Now we proceed exactly as in Section 2.2: we sum up
(5.3) from t = 1 to j to obtain

j∑

t=1

γt(zt − u)T g(zt) ≤ V (z1, u) +
j∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j∑

t=1

γt(zt − u)T ∆t

= V (z1, u) +
j∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j∑

t=1

γt(zt − vt)T ∆t +
j∑

t=1

γt(u− vt)T ∆t. (5.7)

When taking into account that zt and vt are deterministic functions of ξ[t−1] = (ξ1, ..., ξt−1) and that
the conditional expectation of ∆t, ξ[t−1] being given, vanishes, we conclude that E[(zt−vt)T ∆t] = 0.
We take now suprema in u ∈ Z and then expectations on both sides of (5.7):

E

[
sup
u∈Z

j∑

t=1

γt(zt − u)T g(zt)

]
≤ sup

u∈Z
V (z1, u) +

j∑

t=1

γ2
t

2
E‖G(zt, ξt)‖2

∗ + sup
u∈Z

j∑

t=1

γt(u− vt)T ∆t

[by (5.6)] ≤ 1 +
M2∗
2

j∑

t=1

γ2
t +

[
1 + 2M2

∗
j∑

t=1

γ2
t

]
= 2 +

5
2
M2
∗

j∑

t=1

γ2
t .

and we arrive at (3.9).

Proof of Propositions 2.1 and 3.1. We provide here the proof of Proposition 3.1 only. The
proof of Proposition 2.1 follows the same lines and can be easily reconstructed using the bound
(2.34) instead of the relations (5.5) and (5.7) in the proof below.

First of all, with M∗ given by (3.5) one has

∀(z ∈ Z) : E
[
exp{‖G(z, ξ)‖2

∗/M
2
∗ }

] ≤ exp{1}. (5.8)

Indeed, setting px =
2D2

ωx,XM2
∗,x

αxM2∗
, py =

2D2
ωy,Y M2

∗,y

αyM2∗
we have px + py = 1, whence, invoking (3.4),

E
[
exp{‖G(z, ξ)‖2∗/M2

∗}
]

= E
[
exp{px‖Gx(z, ξ)‖2∗,x/M2

∗,x + py‖Gy(z, ξ)‖2∗,y/M2
∗,y}

]
,

and (5.8) follows from (3.13) by the Hölder inequality.

Setting ΓN =
∑N

t=1 γt and using the notation from the proof of Lemma 3.1, relations (3.8),
(5.5), (5.7) combined with the fact that V (z1, u) ≤ 1 for u ∈ Z, imply that

ΓN εφ(z̃N ) ≤ 2 +
N∑

t=1

γ2
t

2
[‖G(zt, ξt)‖2

∗ + ‖∆t‖2
∗
]

︸ ︷︷ ︸
αN

+
N∑

t=1

γt(vt − zt)T ∆t

︸ ︷︷ ︸
βN

. (5.9)

Now, from (5.8) it follows straightforwardly that

E[exp{‖∆t‖2
∗/(2M∗)2}] ≤ exp{1}, E[exp{‖G(zt, ξt)‖2

∗/M
2
∗ }] ≤ exp{1}, (5.10)

31



which in turn implies that

E[exp{αN/σα}] ≤ exp{1}, σα =
5
2
M2
∗

N∑

t=1

γ2
t , (5.11)

and therefore, by Markov inequality,

∀(Ω > 0) : Prob{αN ≥ (1 + Ω)σα} ≤ exp{−Ω}. (5.12)

Indeed, we have by (5.8)

‖g(zt)‖∗ = ‖E[G(zt, ξt)|ξ[t−1]]‖∗ ≤
√
E(‖G(zt, ξt)‖2∗|ξ[t−1]) ≤ M∗,

and
‖∆t‖2∗ = ‖G(zt, ξt)− g(zt)‖2∗ ≤ (‖G(zt, ξt)‖∗ + ‖g(zt)‖∗)2 ≤ 2‖G(zt, ξt)‖2∗ + 2M2

∗ ,

what implies that

αN ≤
N∑

t=1

γ2
t

2

[
3‖G(zt, ξt)‖2∗ + 2M2

∗
]
.

Further, by the Hölder inequality we have from (5.8):

E

[
exp

{
γ2

t

[
3
2
‖G(zt, ξt)‖2∗ + M2

∗
]

5
2
γ2

t M2∗

}]
≤ exp(1).

Observe that if r1, ..., ri are nonnegative random variables such that E[exp{rt/σt}] ≤ exp{1} for some deterministic
σt > 0, then, by convexity of the exponent, w(s) = exp{s},

E

[
exp

{ ∑
t≤i rt∑
t≤i σt

}]
≤ E


∑

t≤i

σt∑
τ≤i στ

exp{rt/σt}

 ≤ exp{1}. (5.13)

Now applying (5.13) with rt = γ2
t

[
3
2
‖G(zt, ξt)‖2∗ + M2

∗
]

and σt = 5
2
γ2

t M2
∗ we obtain (5.11).

Now let ζt = γt(vt − zt)T ∆t. Observing that vt, zt are deterministic functions of ξ[t−1], while
E[∆t|ξ[t−1]] = 0, we see that the sequence {ζt}N

t=1 of random real variables forms a martingale-
difference. Besides this, by strong convexity of ω with modulus 1 w.r.t. ‖ · ‖ and due to Dω,Z ≤ 1
we have

u ∈ Z ⇒ 1 ≥ V (z1, u) ≥ 1
2
‖u− z1‖2,

whence the ‖ · ‖-diameter of Z does not exceed 2
√

2, so that |ζt| ≤ 2
√

2γt‖∆t‖∗, and therefore

E[exp{|ζt|2/(32γ2
t M2

∗ )}|ξ[t−1]] ≤ exp{1}
by (5.10). Applying Cramer’s deviation bound, we arrive at

∀Ω > 0 : Prob
{

βN > 4ΩM∗
√∑N

t=1 γ2
t

}
≤ exp{−Ω2/4}. (5.14)

Indeed, for 0 ≤ γ, setting σt = 4
√

2γtM∗ and taking into account that ζt is a deterministic function of ξ[t] with
E[ζt|ξ[t−1]] = 0 and E[exp{ζ2

t /σ2
t }|ξ[t−1]] ≤ exp{1}, we have

0 < γσt ≤ 1 ⇒ (as ex ≤ x + ex2
)

E[exp{γζt}|ξ[t−1]] ≤ E[exp{γ2ζ2
t }|ξ[t−1]] ≤ E[(exp{ζ2

t /σ2
t })γ2σ2

t |ξ[t−1]] ≤ exp{γ2σ2
t };

γσt > 1 ⇒
E[exp{γζt}|ξ[t−1]] ≤ E[exp{[ 12γ2σ2

t + 1
2ζ2

t /σ2
t }|ξ[t−1]] ≤ exp{ 1

2γ2σ2
t + 1

2} ≤ exp{γ2σ2
t }

32



that is, in both cases E[exp{γζt}|ξ[t−1]] ≤ exp{γ2σ2
t }. Therefore

E[exp{γβi}] = E
[
exp{γβi−1}E[exp{γζi}|ξ[i−1]]

] ≤ exp{γ2σ2
i }E[exp{γβi−1}],

whence

E[exp{γβN}] ≤ exp{γ2
N∑

t=1

σ2
t },

and thus by Markov inequality for every Ω > 0 it holds

Prob



βN > Ω

√√√√
N∑

t=1

σ2
t



 ≤ exp

{
γ2

N∑
t=1

σ2
t

}
exp



−γΩ

√√√√
N∑

t=1

σ2
t



 .

When choosing γ = 1
2Ω

(∑N
t=1 σ2

t

)−1/2

we arrive at (5.14).

Combining (5.9), (5.10) and (5.14), we get for any positive Ω and Θ:

Prob



ΓN εφ(z̃t) > 2 +

5
2
(1 + Ω)M2

∗
N∑

t=1

γ2
t + 4

√
2ΘM∗

√√√√
N∑

t=1

γ2
t



 ≤ exp{−Ω}+ exp{−Θ2/4}.

When setting Θ = 2
√

Ω and substituting (3.10) we obtain (3.14).

Proof of Proposition 3.2 As in the proof of Proposition 3.1, when setting ΓN =
∑N

t=1 γt and
using the relations (3.8), (5.5), (5.7), combined with the fact that ‖G(z, ξy)‖∗ ≤ M∗, we obtain

ΓN εφ(z̃N ) ≤ 2 +
N∑

t=1

γ2
t

2
[‖G(zt, ξt)‖2

∗ + ‖∆t‖2
∗
]
+

N∑

t=1

γt(vt − zt)T ∆t

≤ 2 +
5
2
M2
∗

N∑

t=1

γ2
t +

N∑

t=1

γt(vt − zt)T ∆t

︸ ︷︷ ︸
αN

. (5.15)

Recall that by definition of ∆t, ‖∆t‖∗ = ‖G(zt, ξt)− g(zt)‖∗ ≤ ‖G(zt, ξt)‖+ ‖g(zt)‖∗ ≤ 2M∗.

Note that ζt = γt(vt − zt)T ∆t is a bounded martingale-difference, i.e., E(ζt|ξ[t−1]) = 0, and
|ζt| ≤ 4γtM (here M is defined in (3.27)). Then by Azuma-Hoeffding’s inequality [1] for any
Ω ≥ 0:

Prob


αN > 4ΩM

√√√√
N∑

t=1

γ2
t


 ≤ e−Ω2/2. (5.16)

Indeed, let us denote vt = (v
(x)
t , v

(y)
t ) and ∆t = (∆

(x)
t , ∆

(y)
t ). When taking into account that ‖v(x)

t ‖1 ≤ 1, ‖v(y)
t ‖1 ≤ 1,

and ‖xt‖1 ≤ 1, ‖yt‖1 ≤ 1, we conclude that

|(vt − zt)
T ∆t| ≤ |(v(x)

t − xt)
T ∆

(x)
t |+ |(v(y)

t − yt)
T ∆

(y)
t |

≤ 2‖∆(x)
t ‖∞ + 2‖∆(y)

t ‖∞ ≤ 4 max
1≤j≤m

‖Aj + b‖∞ + 4 max
1≤j≤n

‖Aj + c‖∞ = 4M.

We conclude from (5.15) and (5.16) that

Prob


ΓN εφ(z̃N ) > 2 +

5
2
M2
∗

N∑

t=1

γ2
t + 4ΩM

√√√√
N∑

t=1

γ2
t


 ≤ e−Ω2/2,

33



and the bound (3.26) of the proposition can be easily obtained by substituting the constant
stepsizes γt as defined in (3.10).

34


