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♣ To make decisions optimally is one of the most basic desires of a human

being.

Whenever the candidate decisions, design restrictions and design goals

can be properly quantified, optimal decision-making yields an optimization

problem, most typically, a Mathematical Programming one:

minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ...,m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]
x ∈ X [ domain ]

(MP)

♣ In (MP),

♢ a solution x ∈ Rn represents a candidate decision,

♢ the constraints express restrictions on the meaningful decisions (bal-

ance and state equations, bounds on resources, etc.),

♢ the objective to be minimized represents the losses (minus profit) as-

sociated with a decision.



minimize
f(x) [ objective ]

subject to

hi(x) = 0, i = 1, ...,m

[
equality
constraints

]

gj(x) ≤ 0, j = 1, ..., k

[
inequality
constraints

]
x ∈ X [ domain ]

(MP)

♣ To solve problem (MP) means to find its optimal solution x∗, that is,

a feasible (i.e., satisfying the constraints) solution with the value of the

objective ≤ its value at any other feasible solution:

x∗ :


hi(x∗) = 0 ∀i & gj(x∗) ≤ 0 ∀j & x∗ ∈ X

hi(x) = 0 ∀i & gj(x) ≤ 0∀j & x ∈ X

⇒ f(x∗) ≤ f(x)



min
x
f(x)

s.t.
hi(x) = 0, i = 1, ...,m
gj(x) ≤ 0, j = 1, ..., k

x ∈ X

(MP)

♣ In Combinatorial (or Discrete) Optimization, the domain X is a discrete

set, like the set of all integral or 0/1 vectors.

In contrast to this, in Continuous Optimization we will focus on, X is

a “continuum” set like the entire Rn, a box {x : a ≤ x ≤ b}, or simplex

{x ≥ 0 :
∑
j
xj = 1}, etc., and the objective and the constraints are (at

least) continuous on X.

♣ In Linear Programming, X = Rn and the objective and the constraints

are linear functions of x.

In contrast to this, in Nonlinear Continuous Optimization, the objective

and the constraints can be nonlinear functions.



min
x
f(x)

s.t.
hi(x) = 0, i = 1, ...,m
gj(x) ≤ 0, j = 1, ..., k

x ∈ X

(MP)

♣ The goals of our course is to present

• basic theory of Continuous Optimization, with emphasis on existence
and uniqueness of optimal solutions and their characterization (i.e.,
necessary and/or sufficient optimality conditions);

• traditional algorithms for building (approximate) optimal solutions to
Continuous Optimization problems.

♣ Mathematical foundation of Optimization Theory is given by Convex
Analysis – a specific combination of Real Analysis and Geometry unified
by and focusing on investigating convexity-related notions.



Part I

Continuous Optimization: Basic
Theory



Lecture 1:

Convex Sets, I



Convex Sets

Definition. A set X ⊂ Rn is called convex, if X contains, along with every
pair x, y of its points, the entire segment [x, y] with the endpoints x, y:

x, y ∈ X ⇒ (1− λ)x+ λy ∈ X ∀λ ∈ [0,1].

Note: when λ runs through [0,1], the point (1− λ)x+ λy ≡ x+ λ(y − x)
runs through the segment [x, y].
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♣ Immediate examples of convex sets in Rn:
• Rn

• ∅
• singleton {x}.
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Examples of convex sets, I: Affine sets

Definition: Affine set M in Rn is a set which can be obtained as a shift

of a linear subspace L ⊂ Rn by a vector a ∈ Rn:

M = a+ L = {x = a+ y : y ∈ L} (1)

Note: I. The linear subspace L is uniquely defined by affine subspace M

and is the set of differences of vectors from M :

(1) ⇒ L =M −M = {y = x′ − x′′ : x′, x′′ ∈M}

II. The shift vector a is not uniquely defined by affine subspace M ; in (1),

one can take as a every vector from M (and only vector from M):

(1) ⇒M = a′ + L ∀a′ ∈M.
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III. Generic example of affine subspace: the set of solutions of a solvable

system of linear equations:

M is affine subspace in Rn
⇕

∅ ̸=M ≡ {x ∈ Rn : Ax = b} ≡ a︸︷︷︸
Aa=b

+ {x : Ax = 0}︸ ︷︷ ︸
KerA
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♣ By III, affine subspace is convex, due to

Proposition. The solution set of an arbitrary (finite or infinite) system

of linear inequalities is convex:

X = {x ∈ Rn : aTαx ≤ bα, α ∈ A} ⇒ X is convex

In particular, every polyhedral set {x : Ax ≤ b} is convex.

Proof:

x, y ∈ X,λ ∈ [0,1]

⇔ aTαx ≤ bα, aTαy ≤ bα∀α ∈ A, λ ∈ [0,1]

⇒ λaTαx+ (1− λ)aTαy︸ ︷︷ ︸
aTα[λx+(1−λ)y]

≤ λbα+ (1− λ)bα︸ ︷︷ ︸
bα

∀α ∈ A

⇒ [λx+ (1− λ)y] ∈ X ∀λ ∈ [0,1].
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Remark: Proposition remains valid when part of the nonstrict inequalities

aTαx ≤ bα are replaced with their strict versions aTαx < bα.

Remark: The solution set

X = {x : aTαx ≤ bα, α ∈ A}

of a system of nonstrict inequalities is not only convex, it is closed (i.e.,

contains limits of all converging sequences {xi ∈ X}∞i=1 of points from

X).

We shall see in the mean time that

• Vice versa, every closed and convex set X ⊂ Rn is the solution set of

an appropriate countable system of nonstrict linear inequalities:

X is closed and convex
⇓

X = {x : aTi x ≤ bi, i = 1,2, ...}
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Examples of convex sets, II: Unit balls of norms

Definition: A real-valued function ∥x∥ on Rn is called a norm, if it pos-

sesses the following three properties:

♢ [positivity] ∥x∥ ≥ 0 for all x and ∥x∥ = 0 iff x = 0;

♢ [homogeneity] ∥λx∥ = |λ|∥x∥ for all vectors x and reals λ;

♢ [triangle inequality] ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all vectors x, y.

Proposition: Let ∥ · ∥ be a norm on Rn. The unit ball of this norm – the

set {x : ∥x∥ ≤ 1}, same as any other ∥ · ∥-ball {x : ∥x− a∥ ≤ r}, is convex.

Proof:

∥x− a∥ ≤ r, ∥y − a∥ ≤ r, λ ∈ [0,1]

⇒ r ≥ λ∥x− a∥+ (1− λ)∥y − a∥ = ∥λ(x− a)∥+ ∥(1− λ)(y − a)∥
≥ ∥λ(x− a) + (1− λ)(y − a)∥ = ∥[λx+ (1− λ)y]− a∥

⇒ ∥[λx+ (1− λ)y]− a∥ ≤ r ∀λ ∈ [0,1].
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Standard examples of norms on Rn: ℓp-norms

∥x∥p =


(

n∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞

max
i

|xi|, p = ∞

Note: • ∥x∥2 =
√∑

i
x2i is the standard Euclidean norm;

• ∥x∥1 =
∑
i
|xi|;

• ∥x∥∞ = max
i

|xi| (uniform norm).

Note: except for the cases p = 1 and p = ∞, triangle inequality for ∥ · ∥p
requires a nontrivial proof!

Proposition [characterization of ∥ · ∥-balls] A set V in Rn is the unit ball

of a norm iff V is

(a) convex and symmetric w.r.t. 0: V = −V ,

(b) bounded and closed, and

(c) contains a neighbourhood of the origin.
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Fact: A norm ∥ · ∥ norm on Rn defines a metrics d(x, y) = ∥x − y∥ satisfying the usual

axioms of metrics:

• [positivity] d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y

• [symmetry] d(x, y) ≡ d(y, x)

• [triangle inequality] d(x, y) + d(y, z) ≥ d(x, z)

and linked to the linear structure of Rn by

• [shift invariance] d(x+ a, y+ a) ≡ d(x, y)

• [homogeneity] d(λx, λy) = |λ|d(x, y).
Fact: As every metrics, d(x, y) = ∥x− y∥ specifies the notion of convergence: by defini-

tion, a sequence of vectors {xt ∈ Rn}t≥1 converges to vector x̄ ∈ Rn as t → ∞ (notation:

x̄ = limt→∞ xt) iff limt→∞ ∥xt − x̄∥ = 0.

Fact: Every two norms ∥ · ∥, ∥ · ∥′ on Rn are equivalent: for some positive constant c

(depending on the norms), one has ∀(x ̸= 0) : c−1 ≤ ∥x∥
∥x∥′ ≤ c

⇒All norms on Rn specify the same convergence; in particular, limt→∞ xt = x̄ iff

limt→∞ xti = x̄i for all i = 1, ..., n.

Similarly, All norms on Rn specify the same notion of boundedness of a subset of Rn

(recall that a set X in metric space is called bounded is the distances between all pairs

of its points form a bounded set on the axis).

Note: Equivalence of all norms on a linear space is a characteristic property of finite

dimensional linear spaces.
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Proof of norm equivalence: Clearly, it suffices to prove that every norm ∥ · ∥ on Rn is
equivalent to the norm ∥x∥1 =

∑
i |xi|.

• Given a norm ∥ · ∥ on Rn, let ei, i ≤ n, be the standard basic orths in Rn, and let
C = maxi ∥ei∥. Then

∀x ∈ Rn : ∥x∥ = ∥
∑
i

xiei∥ ≤
∑
i

∥xiei∥ =
∑
i

|xi|∥ei∥ ≤ C∥x∥1 (a)

• Now let S = {x ∈ Rn :
∑n

j=1 |xj| = 1}. Given a sequence of points {xt} of S, observe

that the sequences of reals {xti}t≥1, i = 1, ..., n, are bounded, implying that we can find
a subsequence {xtj}j≥1, j1 < j2 < ..., which converges coordinate-wise to some vector
x̄ which clearly belongs to S along with all vectors xtj. Besides this, the subsequence
in question converges to x̄ coordinate-wise and therefore converges to x̄ in the metrics
d1(·, ·) stemming from ∥ · ∥1.
⇒Equipping S with metrics d1(·, ·), we obtain compact metric space — from every
sequence of points from S one can select a subsequence converging to a point from the
set.
• Observe that by (a) the function f(x) = ∥x∥ is continuous on the just defined metric
space: |f(x) − f(y)| ≤ ∥x − y∥ ≤ Cd1(x, y) for all x, y ∈ X (the first ≤ is due to ∥x∥ ≤
∥y∥+ ∥x− y∥ and ∥y∥ ≤ ∥x∥+ ∥y − x∥ = ∥x∥+ ∥x− y∥).
⇒By Weierstrass Theorem, continuous function f on compact metric space (S, d1(·, ·))
attains it minimum on S. Since S does not contain origin, this minimum c is positive:
∀(x, ∥x∥1 = 1) : ∥x∥ ≥ c > 0, implying by homogeneity that

∀(x ̸= 0) : ∥x∥/∥x∥1 ≥ c > 0 (b)

(a) and (b) together say that ∥ · ∥ is equivalent to ∥ · ∥1 □
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Examples of convex sets, III: Ellipsoid

Definition: An ellipsoid in Rn is a set X given by

♢ positive definite and symmetric n × n matrix Q (that is, Q = QT and

uTQu > 0 whenever u ̸= 0),

♢ center a ∈ Rn,
♢ radius r > 0

via the relation

X = {x : (x− a)TQ(x− a) ≤ r2}.

3D ellipsoid



X = {x : (x− a)TQ(x− a) ≤ r2}.

Proposition: An ellipsoid is convex.

Proof: Since Q is symmetric positive definite, by Linear Algebra Q =

(Q1/2)2 for uniquely defined symmetric positive definite matrix Q1/2. Set-

ting ∥x∥Q = ∥Q1/2x∥2, we clearly get a norm on Rn (since ∥ · ∥2 is a norm

and Q1/2 is nonsingular). We have

(x− a)TQ(x− a) = [(x− a)TQ1/2][Q1/2(x− a)]
= ∥Q1/2(x− a)∥22 = ∥x− a∥2Q,

so that X is a ∥ · ∥Q-ball and is therefore a convex set.
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Examples of convex sets, IV: ϵ-neighbourhood of convex set

Proposition: Let M be a nonempty convex set in Rn, ∥ · ∥ be a norm,

and ϵ ≥ 0. Then the set

X = {x : dist∥·∥(x,M) ≡ inf
y∈M

∥x− y∥ ≤ ϵ}

is convex.
Proof: x ∈ X if and only if for every ϵ′ > ϵ there exists y ∈M such that ∥x− y∥ ≤ ϵ′. We
now have

x, y ∈ X,λ ∈ [0,1]

⇒ ∀ϵ′ > ϵ∃u, v ∈M : ∥x− u∥ ≤ ϵ′, ∥y − v∥ ≤ ϵ′

⇒ ∀ϵ′ > ϵ∃u, v ∈M :
λ∥x− u∥+ (1− λ)∥y − v∥︸ ︷︷ ︸
≥∥[λx+(1−λ)y]−[λu+(1−λ)v]∥

≤ ϵ′ ∀λ ∈ [0,1]

⇒ ∀ϵ′ > ϵ ∀λ ∈ [0,1]∃w = λu+ (1− λ)v ∈M :
∥[λx+ (1− λ)y]− w∥ ≤ ϵ′

⇒ λx+ (1− λ)y ∈ X ∀λ ∈ [0,1]
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Convex Combinations and Convex Hulls

Definition: A convex combination of m vectors x1, ..., xm ∈ Rn is their

linear combination ∑
i

λixi

with nonnegative coefficients and unit sum of the coefficients:

λi ≥ 0 ∀i,
∑
i

λi = 1.
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Proposition: A set X ⊂ Rn is convex iff it is closed w.r.t. taking convex
combinations of its points:

X is convex
⇕

xi ∈ X,λi ≥ 0,
∑
i
λi = 1 ⇒

∑
i
λixi ∈ X.

Proof, ⇒: Assume that X is convex, and let us prove by induction in k
that every k-term convex combination of vectors from X belongs to X.
Base k = 1 is evident. Step k ⇒ k + 1: let x1, ..., xk+1 ∈ X and λi ≥ 0,
k+1∑
i=1

λi = 1; we should prove that
k+1∑
i=1

λixi ∈ X. Assume w.l.o.g. that

0 ≤ λk+1 < 1. Then

k+1∑
i=1

λixi = (1− λk+1)

( k∑
i=1

λi
1− λk+1

xi︸ ︷︷ ︸
∈X

)

+λk+1xk+1 ∈ X.

Proof, ⇐: evident, since the definition of convexity of X is nothing but
the requirement for every 2-term convex combination of points from X
to belong to X.

1.14



Proposition: The intersection X =
⋂
α∈A

Xα of an arbitrary family {Xα}α∈A
of convex subsets of Rn is convex.

Proof: evident.

Corollary: Let X ⊂ Rn be an arbitrary set. Then among convex sets con-

taining X (which do exist, e.g. Rn) there exists the smallest one, namely,

the intersection of all convex sets containing X.

Definition: The smallest convex set containing X is called the convex

hull Conv(X) of X.
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Proposition [convex hull via convex combinations] For every subset X of

Rn, its convex hull Conv(X) is exactly the set X̂ of all convex combinations

of points from X.

Proof. 1) Every convex set which contains X contains every convex

combination of points from X as well. Therefore Conv(X) ⊃ X̂.

2) It remains to prove that Conv(X) ⊂ X̂. To this end, by definition of

Conv(X), it suffices to verify that the set X̂ contains X (evident) and is

convex. To see that X̂ is convex, let x =
∑
i
νixi, y =

∑
i
µixi be two points

from X̂ represented as convex combinations of points from X, and let

λ ∈ [0,1]. We have

λx+ (1− λ)y =
∑
i

[λνi+ (1− λ)µi]xi,

i.e., the left hand side vector is a convex combination of vectors from X.
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Examples of convex sets, V: simplex

Definition: A collection of m+ 1 points xi, i = 0, ...,m, in Rn is called

affine independent, if no nontrivial combination of the points with zero

sum of the coefficients is zero:

x0, ..., xm are affine independent
⇕

m∑
i=0

λixi = 0 &
∑
i
λi = 0 ⇒ λi = 0,0 ≤ i ≤ m

Motivation: Let X ⊂ Rn be nonempty.

I. The intersection of all affine subspaces containing X is an affine sub-

space. This clearly is the smallest affine subspace containing X; it is

called the affine span (or affine hull) Aff(X) of X.

Compare: The intersection of all linear subspaces containing X is a linear

subspace. This clearly is the smallest linear subspace containing X; it is

called the linear span Lin(X) of X.
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II. It is easily seen that the affine span Aff(X) of X is nothing but the set

of all affine combinations of points from X, that is, linear combinations

with unit sum of coefficients:

Aff(X) = {x =
∑
i

λixi : xi ∈ X,
∑
i

λi = 1}.

Compare: It is easily seen that the linear span Lin(X) of X is nothing

but the set of all linear combinations of points from X:

Lin(X) = {x =
∑
i

λixi, xi ∈ X}
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III. m + 1 points x0, ..., xm are affinely independent iff every point x ∈
Aff({x0, ..., xm}) of their affine span can be uniquely represented as an

affine combination of x0, ..., xm:∑
i

λixi =
∑
i

µixi &
∑
i

λi =
∑
i

µi = 1 ⇒ λi ≡ µi

Compare:

• Vectors y1, ..., yk are called linearly independent if no nontrivial linear

combination of these vectors is zero:∑
i

λiyi = 0⇒λi = 0 ∀i

• k vectors y1, ..., yk are linearly independent iff every point y ∈ Lin({y1, ..., yk})
of their linear span can be uniquely represented as a linear combination

of y1, ..., yk: ∑
i

λiyi =
∑
i

µiyi ⇒ λi ≡ µi
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♣ When x0, ..., xm are affinely independent, the coefficients λi in the rep-

resentation

x =
m∑
i=0

λixi [
∑
i
λi = 1]

of a point x ∈M = Aff({x0, ..., xm}) as an affine combination of x0, ..., xm
are uniquely defined by x and are called the barycentric coordinates of

x ∈M taken w.r.t. affine basis x0, ..., xm of M .



Definition: m-dimensional simplex ∆ with vertices x0, ..., xm is the convex

hull of m+1 affine independent points x0, ..., xm:

∆ = ∆(x0, ..., xm) = Conv({x0, ..., xm}).

Examples: A. 2-dimensional simplex is given by 3 points not belonging

to a line and is the triangle with vertices at these points.

B. Let e1, ..., en be the standard basic orths in Rn. These n points are

affinely independent, and the corresponding (n − 1)-dimensional simplex

is the standard simplex ∆n = {x ∈ Rn : x ≥ 0,
∑
i
xi = 1}.

C. Adding to e1, ..., en the vector e0 = 0, we get n+1 affine independent

points. The corresponding n-dimensional simplex is

∆+
n = {x ∈ Rn : x ≥ 0,

∑
i
xi ≤ 1}.

• Simplex with vertices x0, ..., xm is convex (as a convex hull of a set),

and every point from the simplex is a convex combination of the vertices

with the coefficients uniquely defined by the point.



point, m = 0 segment, m = 1 triangle, m = 2 tetrahedron, m = 3
Simplexes
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Examples of convex sets, VI: cone

Definition: A nonempty subset K of Rn is called conic, if it contains,
along with every point x, the entire ray emanating from the origin and
passing through x:

K is conic
⇕

K ̸= ∅ & ∀(x ∈ K, t ≥ 0) : tx ∈ K.

A convex conic set is called a cone.

Examples: A. Nonnegative orthant

Rn+ = {x ∈ Rn : x ≥ 0}
B. Lorentz cone

Ln = {x ∈ Rn : xn ≥
√
x21 + ...+ x2n−1}

C. Semidefinite cone Sn+. This cone “lives” in the space Sn of n×n sym-
metric matrices and is comprised of all positive semidefinite symmetric
n× n matrices
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D. The solution set {x : aTαx ≤ 0 ∀α ∈ A} of an arbitrary (finite or infinite)

homogeneous system of nonstrict linear inequalities is a closed cone. In

particular, so is a polyhedral cone {x : Ax ≤ 0}.
Note: Every closed cone in Rn is the solution set of a countable system

of nonstrict homogeneous linear inequalities.

Proposition: A nonempty subset K of Rn is a cone iff

♢ K is conic: x ∈ K, t ≥ 0 ⇒ tx ∈ K, and

♢ K is closed w.r.t. addition:

x, y ∈ K ⇒ x+ y ∈ K.

Proof, ⇒: Let K be convex and x, y ∈ K, Then 1
2(x+y) ∈ K by convexity,

and since K is conic, we also have x+ y ∈ K. Thus, a convex conic set

is closed w.r.t. addition.

Proof, ⇐: Let K be conic and closed w.r.t. addition. In this case, a

convex combination λx+(1−λ)y of vectors x, y from K is the sum of the

vectors λx and (1 − λ)y and thus belongs to K, since K is closed w.r.t.

addition. Thus, a conic set which is closed w.r.t. addition is convex.
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Origin Ray of x1-axis Quadrant of x1x2-plane Ice-cream cone

{x = 0} {x1 ≥ 0, x2 = x3 = 0} {x1 ≥ 0, x2 ≥ 0, x3 = 0} {x3 ≥
√
x21 + x22}

Several cones in R3

♣ Cones form an extremely important class of convex sets with properties

“parallel” to those of general convex sets. For example,

♢ Intersection of an arbitrary family of cones again is a cone. As a result,

for every nonempty set X, among the cones containing X there exists the

smallest cone Cone (X), called the conic hull of X.

♢ A nonempty set is a cone iff it is closed w.r.t. taking conic combinations

of its elements (i.e., linear combinations with nonnegative coefficients).

♢ The conic hull of a nonempty set X is exactly the set of all conic

combinations of elements of X.
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“Calculus” of Convex Sets

Proposition. The following operations preserve convexity of sets:

1. Intersection: If Xα ⊂ Rn, α ∈ A, are convex sets, so is
⋂
α∈A

Xα

2. Direct product: If Xℓ ⊂ Rnℓ, 1 ≤ ℓ ≤ L, are convex sets, so is the set

X = X1 × ...×XL
≡ {x = (x1, ..., xL) : xℓ ∈ Xℓ,1 ≤ ℓ ≤ L}
⊂ Rn1+...+nL

3. Taking weighted sums: If X1, ..., XL are nonempty convex sets in Rn

and λ1,...,λL are reals, then the set

λ1X1 + ...+ λLXL
≡ {x = λ1x1 + ...+ λLxL : xℓ ∈ Xℓ,1 ≤ ℓ ≤ L}

is convex.
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4. Affine image: Let X ⊂ Rn be convex and x 7→ A(x) = Ax+ b be an

affine mapping from Rn to Rk. Then the image of X under the mapping

– the set

A(X) = {y = Ax+ b : x ∈ X}

is convex.

5. Inverse affine image: Let X ⊂ Rn be convex and y 7→ A(y) = Ay+ b

be an affine mapping from Rk to Rn. Then the inverse image of X under

the mapping – the set

A−1(X) = {y : Ay+ b ∈ X}

is convex.
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Application example: Consider a factory which can utilize at various in-

tensities n types of production processes, consuming k types of resources

and producing m types of products. Given the available volumes of re-

sources r = [r1; ...; rk] and requested volumes of products p = [p1; ...; pm],

the management should decide on production plan – vector x = [x1; ...;xn]

of intensities at which the production processes will be used. A produc-

tion plan x = [x1; ...;xn] is feasible if and only if x, r, and p satisfy the

system of constraints

Px ≥ p [demand must be satisfied]
Rx ≤ r [resource bounds must be obeyed]
x ∈ X [technological feasibilty constraints]

(S)

Assume that the set X of feasible production plans is convex.

Question: What is the convexity status of the set of implementable pairs

(r, p), that is, the set RP = {(r, p) : ∃x : (x, r, p) satisfy (S)} ?

Answer: RP is convex.
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Px≥p (a), Rx≤r (b), x∈X (c)
RP = {(r, p) : ∃x : (x, r, p) satisfy (a), (b), (c)}

Claim: When X is convex, so is RP.
Indeed,

• the set S of solutions (x, r, p) to the system of linear constraints (a), (b)
is polyhedral and thus convex,

• the set X = {(x, r, p) : x ∈ X} is the direct product of convex sets X,
Rkr and Rmp and this is convex,

• ⇒ the set XS = X ∩ S is convex as intersection of two convex sets

• ⇒ the set RP is convex as the image of the set XS under the linear
mapping (x, r, p) 7→ (r, p).
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Nice Topological Properties of Convex Sets

♣ Recall that the set X ⊂ Rn is called
♢ closed, if X contains limits of all converging sequences of its points:

xi ∈ X & xi → x, i→ ∞ ⇒ x ∈ X

♢ open, if it contains, along with every of its points x, a ball of a positive
radius centered at x:

x ∈ X ⇒ ∃r > 0 : {y : ∥y − x∥2 ≤ r} ⊂ X.

E.g., the solution set of an arbitrary system of nonstrict linear inequalities
{x : aTαx ≤ bα} is closed; the solution set of finite system of strict linear
inequalities {x : Ax < b} is open.

Facts: A. X is closed iff Rn\X is open
B. The intersection of an arbitrary family of closed sets and the union of
a finite family of closed sets are closed
B′. The union of an arbitrary family of open sets and the intersection of
a finite family of open sets are open
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♢ From B it follows that the intersection of all closed sets containing a

given set X is closed; this intersection, called the closure clX of X, is the

smallest closed set containing X. clX is exactly the set of limits of all

converging sequences of points of X:

clX = {x : ∃xi ∈ X : x = lim
i→∞

xi}.

♢ From B′ it follows that the union of all open sets contained in a given

set X is open; this union, called the interior intX of X, is the largest

open set contained in X. intX is exactly the set of all interior points of

X – points x belonging to X along with balls of positive radii centered at

the points:

intX = {x : ∃r > 0 : {y : ∥y − x∥2 ≤ r} ⊂ X}.

♢ Let X ⊂ Rn. Then intX ⊂ X ⊂ clX. The “difference” ∂X = clX\intX
is called the boundary of X; boundary always is closed (as the intersection

of the closed sets clX and the complement of intX).
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intX ⊂ X ⊂ clX (∗)

♣ In general, the discrepancy between intX and clX can be pretty large.

E.g., let X ⊂ R1 be the set of irrational numbers in [0,1]. Then intX = ∅,
clX = [0,1], so that intX and clX differ dramatically.

♣ Fortunately, a convex set is perfectly well approximated by its closure

(and by interior, if the latter is nonempty).

Proposition: Let X ⊂ Rn be a nonempty convex set. Then

(i) Both intX and clX are convex

(ii) If intX is nonempty, then intX is dense in clX, density of a set Y in a

set X meaning that every point from X can be approximated to whatever

high accuracy by points of Y . Formally: Y is dense in X ⇔ Every point

from X is the limit of a converging sequence of points from Y .

Moreover,

x ∈ intX, y ∈ clX ⇒
λx+ (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)
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• Claim (i): Let X be convex. Then both intX and clX are convex

Proof. (i) is nearly evident. Indeed, to prove that intX is convex, note

that for every two points x, y ∈ intX there exists a common r > 0 such

that the balls Bx, By of radius r centered at x and y belong to X. Since

X is convex, for every λ ∈ [0,1] X contains the set λBx+(1−λ)By, which

clearly is nothing but the ball of the radius r centered at λx+ (1 − λ)y.

Thus, λx+ (1− λ)y ∈ intX for all λ ∈ [0,1].

Similarly, to prove that clX is convex, assume that x, y ∈ clX, so that

x = limi→∞ xi and y = lim
i→∞

yi for appropriately chosen xi, yi ∈ X. Then

for λ ∈ [0,1] we have

λx+ (1− λ)y = lim
i→∞

[λxi+ (1− λ)yi]︸ ︷︷ ︸
∈X

,

so that λx+ (1− λ)y ∈ clX for all λ ∈ [0,1].
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• Claim (ii): Let X be convex and intX be nonempty. Then intX is

dense in clX; moreover,

x ∈ intX, y ∈ clX ⇒
λx+ (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)

Proof. It suffices to prove (!). Indeed, let x̄ ∈ intX (the latter

set is nonempty). Every point x ∈ clX is the limit of the sequence

xi =
1
i x̄+

(
1− 1

i

)
x. Given (!), all points xi belong to intX, thus intX is

dense in clX.
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• Claim (ii): Let X be convex and intX be nonempty. Then

x ∈ intX, y ∈ clX ⇒
λx+ (1− λ)y ∈ intX ∀λ ∈ (0,1]

(!)

Proof of (!): Let x ∈ intX, y ∈ clX, λ ∈ (0,1]. Let us prove that

λx+ (1− λ)y ∈ intX.

Since x ∈ intX, there exists r > 0 such that the ball B of radius r centered

at x belongs to X. Since y ∈ clX, there exists a sequence yi ∈ X such

that y = limi→∞ yi. Now let

Bi = λB+ (1− λ)yi
= {z = [λx+ (1− λ)yi]︸ ︷︷ ︸

zi

+λh : ∥h∥2 ≤ r}

≡ {z = zi+ δ : ∥δ∥2 ≤ r′ = λr}.

Since B ⊂ X, yi ∈ X and X is convex, the sets Bi (which are balls of radius

r′ > 0 centered at zi) are contained in X. Since zi → z = λx+(1− λ)y as

i → ∞, all these balls, starting with certain number, contain the ball B′

of radius r′/2 centered at z. Thus, B′ ⊂ X, i.e., z ∈ intX.
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♣ Let X be a convex set. It may happen that intX = ∅ (e.g., X is a

segment in 3D); in this case, interior definitely does not approximate X

and clX. What to do?

The natural way to overcome this difficulty is to pass to relative interior,

which is nothing but the interior of X taken w.r.t. the affine hull Aff(X)

of X rather than to Rn. This affine hull, geometrically, is just certain

Rm with m ≤ n; replacing, if necessary, Rn with this Rm, we arrive at the

situation where intX is nonempty.

Implementation of the outlined idea goes through the following

Definition: [relative interior and relative boundary] Let X be a nonempty

convex set and M be the affine hull of X. The relative interior rintX

is the set of all points x ∈ X such that a ball in M of a positive radius,

centered at x, is contained in X:

rintX = {x : ∃r > 0 :
{y ∈ Aff(X), ∥y − x∥2 ≤ r} ⊂ X}.

The relative boundary of X is, by definition, clX\rintX.
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Note: An affine subspace M is given by a list of linear equations and
thus is closed; as such, it contains the closure of every subset Y ⊂ M ;
this closure is nothing but the closure of Y which we would get when
replacing the original “universe” Rn with the affine subspace M (which,
geometrically, is nothing but Rm with certain m ≤ n).

The essence of the matter is in the following fact:
Proposition: Let X ⊂ Rn be a nonempty convex set. Then rintX ̸= ∅.
♣ Thus, replacing, if necessary, the original “universe” Rn with a smaller
geometrically similar universe, we can reduce investigating an arbitrary
nonempty convex set X to the case where this set has a nonempty interior
(which is nothing but the relative interior of X). In particular, our results
for the “full-dimensional” case imply that
For a nonempty convex set X, both rintX and clX are convex sets such
that

∅ ̸= rintX ⊂ X ⊂ clX ⊂ Aff(X)
and rintX is dense in clX. Moreover, whenever x ∈ rintX, y ∈ clX and
λ ∈ (0,1], one has

λx+ (1− λ)y ∈ rintX.
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∅ ̸= X is convex ?? ⇒ ?? rintX ̸= ∅

Proof. A. By Linear Algebra, whenever X ⊂ Rn is nonempty, one can

find in X an affine basis for the affine hull Aff(X) of X:

∃x0, x1, ..., xm ∈ X :
Every x ∈ Aff(X) admits a representation

x =
m∑
i=0

λixi,
∑
i

λi = 1

and the coefficients in this representation
are uniquely defined by x.
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B. When xi ∈ X, i = 0,1, ...,m, form an affine basis in Aff(X), the system

of linear equations
m∑
i=0

λixi = x

m∑
i=0

λi = 1

in variables λ has a unique solution whenever x ∈ Aff(X). Since this

solution is unique, it, again by Linear Algebra, depends continuously on

x ∈ Aff(X). In particular, when x = x̄ = 1
m+1

∑m
i=0 xi, the solution is

positive; by continuity, it remains positive when x ∈ Aff(X) is close enough

to x̄:

∃r > 0 : x ∈ Aff(X), ∥x− x̄∥2 ≤ r ⇒
x =

m∑
i=0

λi(x)xi

with
∑
i λi(x) = 1 and λi(x) > 0

We see that when X is convex, x̄ ∈ rintX, Q.E.D.

1.38



♣ Let X be convex and z ∈ rintX. As we know,

λ ∈ (0,1], y ∈ clX ⇒ yλ = λz+ (1− λ)y ∈ rintX.

It follows that in order to pass from X to its closure clX, it suffices to

pass to “radial closure”:

Informally: We look at all rays in Aff(x) emanating from z and add to X

all “missing” – not contained in X from the very beginning – boundary

points, like A and B, of the intersections of rays with X.

z A

B
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Formally: For every direction 0 ̸= d ∈ Aff(X)− z, let

Td = {t ≥ 0 : z+ td ∈ X}.

Note: Td is a convex subset of R+ which contains all small enough posi-

tive t’s.

♢ If Td is unbounded or is a bounded segment: Td = {t : 0 ≤ t ≤ t(d) <∞},
the intersection of clX with the ray {z+ td : t ≥ 0} is exactly the same as

the intersection of X with the same ray.

♢ If Td is a bounded half-segment: Td = {t : 0 ≤ t < t(d) < ∞}, the inter-

section of clX with the ray {z+ td : t ≥ 0} is larger than the intersection

of X with the same ray by exactly one point, namely, z + t(d)d. Adding

to X these “missing points” for all d, we arrive at clX.
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Lecture 2:

Convex Sets, II



Main Theorems on Convex Sets, I: Caratheodory Theorem

Definition: Let M be affine subspace in Rn, so that M = a+L for a lin-

ear subspace L. The linear dimension of L is called the affine dimension

dimM of M .

Examples: The affine dimension of a singleton is 0. The affine dimension

of Rn is n. The affine dimension of an affine subspace M = {x : Ax = b}
is n−Rank(A).

For a nonempty set X ⊂ Rn, the affine dimension dimX of X is exactly

the affine dimension of the affine hull Aff(X) of X.

Theorem [Caratheodory] Let ∅ ̸= X ⊂ Rn. Then every point x ∈ Conv(X)

is a convex combination of at most dim(X) + 1 points of X.
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Theorem [Caratheodory] Let ∅ ̸= X ⊂ Rn. Then every point x ∈ Conv(X)

is a convex combination of at most dim(X) + 1 points of X.

Proof. 10. We should prove that if x is a convex combination of finitely

many points x1, ..., xk of X, then x is a convex combination of at most

m+ 1 of these points, where m = dim(X). Replacing, if necessary, Rn

with Aff(X), it suffices to consider the case of m = n.

20. Consider a representation of x as a convex combination of x1, ..., xk
with minimum possible number of nonzero coefficients; it suffices to prove

that this number is ≤ n+ 1. Let, on the contrary, the “minimum repre-

sentation” of x

x =
p∑

i=1

λixi [λi ≥ 0,
∑
i
λi = 1]

has p > n+1 terms.
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30. Consider the homogeneous system of linear equations in p variables

δi 
(a)

p∑
i=1

δixi = 0 [n linear equations]

(b)
∑
i
δi = 0 [single linear equation]

Since p > n+1, this system has a nontrivial solution δ. Observe that for

every t ≥ 0 one has

x =
p∑

i=1

[λi+ tδi]︸ ︷︷ ︸
λi(t)

xi&
∑
i

λi(t) = 1.
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δ : δ ̸= 0 &
∑
i
δi = 0

∀t ≥ 0 : x =
p∑

i=1
[λi+ tδi]︸ ︷︷ ︸

λi(t)

xi&
∑
i
λi(t) = 1.

♢ When t = 0, all coefficients λi(t) are nonnegative
♢ When t→ ∞, some of the coefficients λi(t) go to −∞ (indeed, otherwise
we would have δi ≥ 0 for all i, which is impossible since

∑
i
δi = 0 and not

all δi are zeros).
♢ It follows that the quantity

t∗ = max {t : t ≥ 0 & λi(t) ≥ 0∀i}

is well defined; when t = t∗, all coefficients in the representation

x =
p∑

i=1

λi(t∗)xi

are nonnegative, sum of them equals to 1, and at least one of the coef-
ficients λi(t∗) vanishes. This contradicts the assumption of minimality of
the original representation of x as a convex combination of xi.
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Theorem [Caratheodory, Conic Version.] Let ∅ ̸= X ⊂ Rn. Then every

vector x ∈ Cone (X) is a conic combination of at most n vectors from X.

Remark: The bounds given by Caratheodory Theorems (usual and conic

version) are sharp:

♢ for a simplex ∆ with m+1 vertices v0, ..., vm one has dim∆ = m, and

it takes all the vertices to represent the barycenter 1
m+1

m∑
i=0

vi as a convex

combination of the vertices;

♢ The conic hull of n standard basic orths in Rn is exactly the nonneg-

ative orthant Rn+, and it takes all these vectors to get, as their conic

combination, the n-dimensional vector of ones.
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Problem: Supermarkets sell 99 different herbal teas; every one of them

is certain blend of 26 herbs A,...,Z. In spite of such a variety of marketed

blends, John is not satisfied with any one of them; the only herbal tea he

likes is their mixture, in the proportion

1 : 2 : 3 : ... : 98 : 99

Once it occurred to John that in order to prepare his favorite tea, there is

no necessity to buy all 99 marketed blends; a smaller number of them will

do. With some arithmetics, John found a combination of 66 marketed

blends which still allows to prepare his tea. Do you believe John’s result

can be improved?
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Answer: In fact, just 26 properly selected market bends are enough.
Indeed, let us represent a blend by its unit weight portion, say, 1g. Such a portion can be
identified with 26-dimensional vector x = [x1; ...;x26] with nonnegative entries summing
up to 1, where xi is the weight, in grams, of herb #i in the portion. Clearly, we have

x ∈ R26
+ &

∑
i

xi = 1.

When mixing market blends x1, x2, ..., x99 to get unit weight portion x of mixture, we
take λi ≥ 0 grams of market blend xi, i = 1, ...,99, and mix them together, that is,

x =
∑
i

λixi.

Looking at the weights of both sides, we get
∑

i λi = 1.
The bottom line: blend x can be obtained by mixing market blends x1, ..., x99 if and
only if x ∈ Conv{x1, ..., x99}.
By Caratheodory Theorem, every blend which can be obtained my mixing market blends
can be obtained by mixing m+1 of them, where m is the affine dimension of the affine
span of x1, ..., x99. In our case, this span belongs to the 25-dimensional affine plane

{x ∈ R26 :
∑
i

xi = 1}

that is, m ≤ 25.
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Theorem [Radon] Let x1, ..., xm be m ≥ n+ 2 vectors in Rn. One can
split these vectors into two nonempty and non-overlapping groups A, B
such that Conv(A) ∩Conv(B) ̸= ∅.

Coloring 4 points from R2 to make convex hulls of red and of blue points intersecting

Proof. Consider the homogeneous system of linear equations in m variables δi:{ ∑m
i=1 δixi = 0 [n linear equations]∑m
i=1 δi = 0 [single linear equation]

Since m ≥ n+2, the system has a nontrivial solution δ. Setting
I = {i : δi > 0}, J = {i : δi ≤ 0},

we split indices {1, ...,m} into two nonempty (due to δ ̸= 0,
∑
i

δi = 0) groups such that∑
i∈Iδixi =

∑
j∈J[−δj]xj, γ =

∑
i∈I δi =

∑
j∈J −δj > 0

whence ∑
i∈I

δi

γ
xi︸ ︷︷ ︸

∈Conv({xi:i∈I})

=
∑

j∈J

−δj
γ
xj︸ ︷︷ ︸

∈Conv({xj:j∈J})

.

2.8



Theorem [Helley] Let A1, ..., AM be convex sets in Rn. Assume that every n+ 1 sets
from the family have a point in common. Then all M sets have point in common.
Proof: induction in M .
Base M ≤ n+1 is trivially true.
Step: Assume that for certain M ≥ n+1 our statement hods true for every M-member
family of convex sets, and let us prove that it holds true for M + 1-member family of
convex sets A1, ..., AM+1.
♢ By inductive hypotheses, every one of the M +1 sets

Bℓ = A1 ∩A2 ∩ ... ∩Aℓ−1 ∩Aℓ+1 ∩ ... ∩AM+1

is nonempty. Let us choose xℓ ∈ Bℓ, ℓ = 1, ...,M +1.
♢ By Radon’s Theorem, the collection x1, ..., xM+1 can be split in two sub-collections
with intersecting convex hulls. W.l.o.g., let the split be {x1, ..., xJ−1}∪{xJ , ..., xM+1}, and
let

z ∈ Conv({x1, ..., xJ−1})
⋂

Conv({xJ , ..., xM+1}).
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Situation: xj belongs to all sets Aℓ except, perhaps, for Aj and

z ∈ Conv({x1, ..., xJ−1})
⋂

Conv({xJ , ..., xM+1}).

Claim: z ∈ Aℓ for all ℓ ≤M +1.
Indeed, for ℓ ≤ J − 1, the points xJ , xJ+1, ..., xM+1 belong to the convex set Aℓ, whence

z ∈ Conv({xJ , ..., xM+1}) ⊂ Aℓ.

For ℓ ≥ J, the points x1, ..., xJ−1 belong to the convex set Aℓ, whence

z ∈ Conv({x1, ..., xJ−1}) ⊂ Aℓ.
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Refinement: Assume that A1, ..., AM are convex sets in Rn and that
♢ the union A1 ∪ A2 ∪ ... ∪ AM of the sets belongs to an affine subspace P of affine
dimension m
♢ every m+1 sets from the family have a point in common
Then all the sets have a point in common.
Proof. We can think of Aj as of sets in P , or, which is the same, as sets in Rm and
apply the Helley Theorem!
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What about infinite collections {Aα}α∈A ?

• When trying to extend Helley’s Theorem from finite to infinite collections of convex
sets, we meet two immediate obstacles:
• Things can go wrong when the sets Aα are not closed. E.g. for the collection {Ai =
(0,1/i)}i≥1 of convex subsets of R, intersection of sets from every finite subcollection is
nonempty, but the intersection of all Ai is empty
• Things can go wrong when the intersections of sets from finite subcollections can
“run to infinity,” as is the case for collection {Ai = [i,∞)}i≥1 of convex subsets of
R. Here again intersection of sets from every finite subcollection is nonempty, but the
intersection of all Ai is empty.
♠ It turns out that these are the only two obstacles for Helley Theorem to be applicable
to infinite collections of convex sets.
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Helley Theorem II: Let Aα, α ∈ A, be a family of convex sets in Rn such that every
n+1 sets from the family have a point in common.
Assume, in addition, that
♢ the sets Aα are closed
♢ one can find finitely many sets Aα1, ..., AαM

with a bounded intersection.
Then all sets Aα, α ∈ A, have a point in common.
Proof. By the Helley Theorem, every finite collection of the sets Aα has a point in
common, and it remains to apply the following standard fact from Analysis:
Let Bα be a family of closed sets in Rn such that
♢ every finite collection of the sets has a nonempty intersection;
♢ in the family, there exists finite collection with bounded intersection.
Then all sets from the family have a point in common.
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Proof of the Standard Fact is based upon the following fundamental property of Rn:

Every closed and bounded subset of Rn is a compact set.

Recall two equivalent definitions of a compact set:
• A subset X in a metric space M is called compact, if from every sequence of points
of X one can extract a sub-sequence converging to a point from X
• A subset X in a metric space M is called compact, if from every open covering of X
(i.e., from every family of open sets such that every point of X belongs to at least one
of them) one can extract a finite sub-covering.
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Now let Bα be a family of closed sets in Rn such that every finite sub-family of the
sets has a nonempty intersection and at least one of these intersection, let it be B, is
bounded.
Let us prove that all sets Bα have a point in common.
• Assume that it is not the case. Then for every point x ∈ B there exists a set Bα which
does not contain x. Since Bα is closed, it does not intersect an appropriate open ball Vx
centered at x. Note that the system {Vx : x ∈ B} forms an open covering of B.
• By its origin, B is closed (as intersection of closed sets) and bounded and thus is a
compact set. Therefore one can find a finite collection Vx1, ..., VxM which covers B. For
every i ≤ M , there exists a set Bαi

in the family which does not intersect Vxi; therefore
M⋂
i=1

Bαi
does not intersect B. Since B itself is the intersection of finitely many sets Bα, we

see that the intersection of finitely many sets Bα (those participating in the description
of B and the sets Bα1,...,BαM

) is empty, which is a contradiction.
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Exercise: We are given a function f(x) on a 7,000,000-point set X ⊂ R. At every
7-point subset of X, this function can be approximated, within accuracy 0.001 at every
point, by appropriate polynomial of degree 5. To approximate the function on the entire
X, we want to use a spline of degree 5 (a piecewise polynomial function with pieces of
degree 5). How many pieces do we need to get accuracy 0.001 at every point?
Answer: Just one. Indeed, let Ax, x ∈ X, be the set of coefficients of all polynomials of
degree 5 which reproduce f(x) within accuracy 0.001:

Ax =
{
p = (p0, ..., p5) ∈ R6 :

|f(x)−
5∑
i=0

pixi| ≤ 0.001
}
.

The set Ax is polyhedral and therefore convex, and we know that every 6 + 1 = 7 sets
from the family {Ax}x∈X have a point in common. By Helley Theorem, all sets Ax,
x ∈ X, have a point in common, that is, there exists a single polynomial of degree 5
which approximates f within accuracy 0.001 at every point of X.
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Exercise: We should design a factory which, mathematically, is described by the follow-
ing Linear Programming model:

Ax ≥ d [d1, ..., d1000: demands]
Bx ≤ f [f1 ≥ 0, ..., f10 ≥ 0: amounts of resources of various types]
Cx ≤ c [other constraints]

(F )

The data A,B,C, c are given in advance. We should buy in advance resources fi ≥ 0,
i = 1, ...,10, in such a way that the factory will be capable to satisfy all demand scenarios
d from a given finite set D, that is, (F ) should be feasible for every d ∈ D. Amount fi
of resource i costs us aifi.
It is known that in order to be able to satisfy every single demand from D, it suffices to
invest $1 in the resources.
How large should be investment in resources in the cases when D contains
♢ just one scenario?
♢ 3 scenarios?
♢ 10 scenarios?
♢ 2004 scenarios?
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Answer: D = {d1} ⇒ $1 is enough
D = {d1, d2, d3} ⇒ $3 is enough
D = {d1, ..., d10} ⇒ $10 is enough
D = {d1, ..., d2004} ⇒ $11 is enough!
Indeed, for d ∈ D let Fd be the set of all nonnegative f ∈ R10, f ≥ 0 which cost at most
$11 and result in solvable system

Ax ≥ d
Bx ≤ f
Cx ≤ c

(F [d])

in variables x. The set Fd is convex (why?), and every 11 sets of this type have a
common point. Indeed, given 11 scenarios d1, ..., d11 from D, we can meet demand
scenario di investing $1 in properly selected vector of resources f i ≥ 0; therefore we can
meet every one of 11 scenarios d1, ..., d11 by a single vector of resources f1 + ...+ f11 at
the cost of $11, and therefore this vector belongs to every one of the sets Fd1..., Fd11.
Since every 11 of 2004 convex sets Fd ⊂ R10, d ∈ D, have a point in common, all these
sets have a point f in common; for this f , every one of the systems (F [d]), d ∈ D, is
solvable.
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Exercise: Consider an optimization program

c∗ = min
{
cTx : gi(x) ≤ 0, i = 1, ...,2004

}
with 11 variables x1, ..., x11. Assume that the constraints are convex, that is, every one
of the sets

Xi = {x : gi(x) ≤ 0}, i = 1, ...,2004

is convex. Assume also that the problem is solvable with optimal value 0.
Clearly, when dropping one or more constraints, the optimal value can only decrease or
remain the same.
♢ Is it possible to find a constraint such that dropping it, we preserve the optimal
value? Two constraints which can be dropped simultaneously with no effect on the
optimal value? Three of them?
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Answer: You can drop as many as 2004 − 11 = 1993 appropriately chosen constraints
without varying the optimal value!
Assume, on the contrary, that every 11-constraint relaxation of the original problem has
negative optimal value. Since there are finitely many such relaxations, there exists ϵ < 0
such that every problem of the form

min
x

{cTx : gi1(x) ≤ 0, ..., gi11(x) ≤ 0}

has a feasible solution with the value of the objective < −ϵ. Since this problem has a
feasible solution with the value of the objective equal to 0 (namely, the optimal solution
of the original problem) and its feasible set is convex, the problem has a feasible solution
x with cTx = −ϵ. In other words, every 11 of the 2004 sets

Yi = {x : cTx = −ϵ, gi(x) ≤ 0}, i = 1, ...,2004

have a point in common.
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Every 11 of the 2004 sets

Yi = {x : cTx = −ϵ, gi(x) ≤ 0}, i = 1, ...,2004

have a point in common!
The sets Yi are convex (as intersections of convex sets Xi and an affine subspace). If
c ̸= 0, then these sets belong to affine subspace of affine dimension 10, and since every
11 of them intersect, all 2004 intersect; a point x from their intersection is a feasible
solution of the original problem with cTx < 0, which is impossible.
When c = 0, the claim is evident: we can drop all 2004 constraints without varying the
optimal value!
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Lecture 3:

Polyhedral Sets



Theory of Systems of Linear Inequalities, 0
Polyhedrality & Fourier-Motzkin Elimination

♣ Definition: A polyhedral set X ⊂ Rn is a set which can be represented as

X = {x : Ax ≤ b},
that is, as the solution set of a finite system of nonstrict linear inequalities.
♣ Definition: A polyhedral representation of a set X ⊂ Rn is a representation of X of
the form:

X = {x : ∃w : Px+Qw ≤ r},
that is, a representation of X as the a projection onto the space of x-variables of a
polyhedral set X+ = {[x;w] : Px+Qw ≤ r} in the space of x,w-variables.
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Rotated 3D cube and its 2D projection (hexagon)
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♠ Examples of polyhedral representations:
• The set X = {x ∈ Rn :

∑
i |xi| ≤ 1} admits the p.r.

X =

x ∈ Rn : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n,∑
iwi ≤ 1

 .

• The set

X =
{
x ∈ R6 : max[x1, x2, x3] + 2max[x4, x5, x6]
≤ x1 − x6 +5

}
admits the p.r.

X =

x ∈ R6 : ∃w ∈ R2 :
x1 ≤ w1, x2 ≤ w1, x3 ≤ w1

x4 ≤ w2, x5 ≤ w2, x6 ≤ w2

w1 +2w2 ≤ x1 − x6 +5

 .
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Whether a Polyhedrally Represented Set
is Polyhedral?

♣ Question: Let X be given by a polyhedral representation:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r},
that is, as the projection of the solution set

Y = {[x;w] : Px+Qw ≤ r} (∗)
of a finite system of linear inequalities in variables x,w onto the space of x-variables.
Is it true that X is polyhedral, i.e., X is a solution set of finite system of linear inequalities
in variables x only?
Theorem.Every polyhedrally representable set is polyhedral.
Proof is given by the Fourier — Motzkin elimination scheme which demonstrates that
the projection of the set (∗) onto the space of x-variables is a polyhedral set.

3.4



Y = {[x;w] : Px+Qw ≤ r}, (∗)
Elimination step: eliminating a single slack variable. Given set (∗), assume that
w = [w1; ...;wm] is nonempty, and let Y + be the projection of Y on the space of variables
x,w1, ..., wm−1:

Y + = {[x;w1; ...;wm−1] : ∃wm : Px+Qw ≤ r} (!)

Let us prove that Y + is polyhedral. Indeed, let us split the linear inequalities
pTi x+ qTi w ≤ ri, 1 ≤ i ≤ I

defining Y into three groups:
• black – the coefficient at wm is 0
• red – the coefficient at wm is > 0
• green – the coefficient at wm is < 0
Then

Y =
{
[x;w] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
wm ≤ aTi x+ bTi [w1; ...;wm−1] + ci, i is red

wm ≥ aTi x+ bTi [w1; ...;wm−1] + ci, i is green
}
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Y =
{
[x;w] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
wm ≤ aTi x+ bTi [w1; ...;wm−1] + ci, i is red

wm ≥ aTi x+ bTi [w1; ...;wm−1] + ci, i is green
}

⇒
Y + =

{
[x;w1; ...;wm−1] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci, i is black
aTµx+ bTµ [w1; ...;wm−1] + cµ ≥ aTν x+ bTν [w1; ...;wm−1] + cν

whenever µ is red and ν is green
}

and thus Y + is polyhedral.
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We have seen that the projection

Y + = {[x;w1; ...;wm−1] : ∃wm : [x;w1; ...;wm] ∈ Y }
of the polyhedral set Y = {[x,w] : Px+Qw ≤ r} is polyhedral. Iterating the process, we
conclude that the set X = {x : ∃w : [x,w] ∈ Y } is polyhedral, Q.E.D.
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♣ Given an LO program

Opt = max
x

{
cTx : Ax ≤ b

}
, (!)

observe that the set of values of the objective at feasible solutions can be represented
as

T = {τ ∈ R : ∃x : Ax ≤ b, cTx− τ = 0}
= {τ ∈ R : ∃x : Ax ≤ b, cTx ≤ τ, cTx ≥ τ}

that is, T is polyhedrally representable. By Theorem, T is polyhedral, that is, T can
be represented by a finite system of linear inequalities in variable τ only. It immediately
follows that if T is nonempty and is bounded from above, T has the largest element.
Thus, we have proved
Corollary. A feasible and bounded LO program admits an optimal solution and thus is
solvable.
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T = {τ ∈ R : ∃x : Ax ≤ b, cTx− τ = 0}
= {τ ∈ R : ∃x : Ax ≤ b, cTx ≤ τ, cTx ≥ τ}

♣ Fourier-Motzkin Elimination Scheme suggests a finite algorithm for solving an LO
program, where we
• first, apply the scheme to get a representation of T by a finite system S of linear
inequalities in variable τ ,
• second, analyze S to find out whether the solution set is nonempty and bounded from
above, and when it is the case, to find out the optimal value Opt ∈ T of the program,
• third, use the Fourier-Motzkin elimination scheme in the backward fashion to find x
such that Ax ≤ b and cTx = Opt, thus recovering an optimal solution to the problem of
interest.

Bad news: The resulting algorithm is completely impractical, since the number of
inequalities we should handle at a step usually rapidly grows with the step number and
can become astronomically large when eliminating just tens of variables.
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Theory of Systems of Linear Inequalities, I
Homogeneous Farkas Lemma

♣ Consider a homogeneous linear inequality

aTx ≥ 0 (∗)
along with a finite system of similar inequalities:

aTi x ≥ 0, 1 ≤ i ≤ m (!)

♣ Question: When (∗) is a consequence of (!), that is, every x satisfying (!) satisfies
(∗) as well?
Observation: If a is a conic combination of a1, ..., am:

∃λi ≥ 0 : a =
∑
i

λiai, (+)

then (∗) is a consequence of (!).
Indeed, (+) implies that

aTx =
∑
i

λia
T
i x ∀x,

and thus for every x with aTi x ≥ 0 ∀i one has aTx ≥ 0.
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aTx ≥ 0 (∗)

aTi x ≥ 0, 1 ≤ i ≤ m (!)

♣ Homogeneous Farkas Lemma: (∗) is a consequence of (!) if and only if a is a
conic combination of a1, ..., am.
♣ Equivalently: Given vectors a1, ..., am ∈ Rn, let K = Cone {a1, ..., am} = {

∑
i λiai : λ ≥

0} be the conic hull of the vectors. Given a vector a,
• it is easy to certify that a ∈ Cone {a1, ..., am}: a certificate is a collection of weights
λi ≥ 0 such that

∑
i λiai = a;

• it is easy to certify that a̸∈Cone {a1, ..., am}: a certificate is a vector d such that
aTi d ≥ 0∀i and aTd < 0.
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Proof of HFL: All we need to prove is that If a is not a conic combination of a1, ..., am,
then there exists d such that aTd < 0 and aTi d ≥ 0, i = 1, ...,m.
Fact: The set K = Cone {a1, ..., am} is polyhedrally representable:

Cone {a1, ..., am} =

{
x : ∃λ ∈ Rm :

x =
∑

i λiai
λ ≥ 0

}
.

⇒By Fourier-Motzkin, K is polyhedral:

K = {x : dTℓ x ≥ cℓ,1 ≤ ℓ ≤ L}.
Observation I: 0 ∈ K ⇒ cℓ ≤ 0 ∀ℓ
Observation II: λai ∈ Cone {a1, ..., am} ∀λ > 0 ⇒λdTℓ ai ≥ cℓ ∀λ ≥ 0 ⇒ dTℓ ai ≥ 0 ∀i, ℓ.
Now, a ̸∈ Cone {a1, ..., am} ⇒∃ℓ = ℓ∗ : dTℓ∗a < cℓ∗ ≤ 0⇒ dTℓ∗a < 0.

⇒ d = dℓ∗ satisfies aTd < 0, aTi d ≥ 0, i = 1, ...,m, Q.E.D.
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Theory of Systems of Linear Inequalities, II
Theorem on Alternative

♣ A general (finite!) system of linear inequalities with unknowns x ∈ Rn can be written
down as

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

Question: How to certify that (S) is solvable?
Answer: A solution is a certificate of solvability!
Question: How to certify that S is not solvable?
Answer: ???
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aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

Question: How to certify that S is not solvable?
Conceptual sufficient insolvability condition:
If we can lead the assumption that x solves (S) to a contradiction, then (S) has no
solutions.
Example: To certify that the system

−4u −9v +5w > 2
−2u +6v ≥ −2
7u −5w ≥ 1

has no solutions, it suffices to point out that aggregating the inequalities of the system
with weights 2,3,2, we get a contradictory inequality:

2× −4u −9v +5w > 2
+

3× −2u +6v ≥ −2
+

2× 7u −5w ≥ 1
0 · u +0 · v +0 · w > 0

By how we aggregate, every solution to the system must solve the aggregated inequality.
The latter has no solutions ⇒ so is the system.
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aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

“Contradiction by linear aggregation”: Let us associate with inequalities of (S) non-
negative weights λi and sum up the inequalities with these weights. The resulting
inequality [

m∑
i=1

λiai

]T
x


>
∑
i

λibi,
ms∑
i=1

λi > 0

≥
∑
i

λibi,
ms∑
i=1

λi = 0
(C)

by its origin is a consequence of (S), that is, it is satisfied at every solution to (S).
Consequently, if there exist λ ≥ 0 such that (C) has no solutions at all, then (S) has no
solutions!
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Question: When a linear inequality

dTx

{
>
≥ e

has no solutions at all?
Answer: This is the case if and only if d = 0 and

— either the sign is ”>”, and e ≥ 0,

— or the sign is ”≥”, and e > 0.
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Conclusion: Consider a system of linear inequalities

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

in variables x, and let us associate with it two systems of linear inequalities in variables
λ:

TI :



λ ≥ 0
m∑
i=1

λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑
i=1

λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

If one of the systems TI, TII is solvable, then (S) is unsolvable.
Note: If TII is solvable, then already the system

aTi x ≥ bi, i = ms +1, ...,m

is unsolvable!
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General Theorem on Alternative: A system of linear inequalities

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

is unsolvable iff one of the systems

TI :



λ ≥ 0
m∑
i=1

λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑
i=1

λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

is solvable.
Note: The subsystem

aTi x ≥ bi, i = ms +1, ...,m

of (S) is unsolvable iff TII is solvable!
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Proof. We already know that solvability of one of the systems TI, TII is a sufficient
condition for unsolvability of (S). All we need to prove is that if (S) is unsolvable, then
one of the systems TI, TII is solvable.
Assume that the system

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

in variables x has no solutions. Then every solution x, τ, ϵ to the homogeneous system
of inequalities

τ −ϵ ≥ 0
aTi x −biτ −ϵ ≥ 0, i = 1, ...,ms

aTi x −biτ ≥ 0, i = ms +1, ...,m

has ϵ ≤ 0.
Indeed, in a solution with ϵ > 0 one would also have τ > 0, and the vector τ−1x would
solve (S).
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Situation: Every solution to the system of homogeneous inequalities

τ −ϵ ≥ 0 [weight ν ≥ 0]
aTi x −biτ −ϵ ≥ 0, i = 1, ...,ms [weight λi ≥ 0]
aTi x −biτ ≥ 0, i = ms +1, ...,m [weight λi ≥ 0]

(U)

has ϵ ≤ 0, i.e., the homogeneous inequality

−ϵ ≥ 0 (I)

is a consequence of system (U) of homogeneous inequalities. By Homogeneous Farkas
Lemma, the vector of coefficients in the left hand side of (I) is a conic combination of
the left hand side vectors of coefficients of (U):

∃λ ≥ 0, ν ≥ 0 :
m∑
i=1

λiai = 0 [coefficients at x]

−
m∑
i=1

λibi + ν = 0 [coefficient at τ ]

−
ms∑
i=1

λi − ν = −1 [coefficient at ϵ]

Assuming that λ1 = ... = λms = 0, we get ν = 1, and therefore λ solves TII. In the case

of
ms∑
i=1

λi > 0, λ clearly solves TI.

3.20



Corollaries of GTA

♣ Principle A: A finite system of linear inequalities has no solutions iff one can lead
it to a contradiction by linear aggregation, i.e., an appropriate weighted sum of the
inequalities with “legitimate” weights is either a contradictory inequality

0Tx > a [a ≥ 0]

or a contradictory inequality

0Tx ≥ a [a > 0]
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♣ Principle B: [Inhomogeneous Farkas Lemma] A linear inequality

aTx ≤ b

is a consequence of solvable system of linear inequalities

aTi x ≤ bi, i = 1, ...,m

iff the target inequality can be obtained from the inequalities of the system and the
identically true inequality

0Tx ≤ 1

by linear aggregation, that is, iff there exist nonnegative λ0, λ1, ..., λm such that

a =
m∑
i=1

λiai

b = λ0 +
m∑
i=1

λibi

⇔


a =
m∑
i=1

λiai

b ≥
m∑
i=1

λibi
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Linear Programming Duality Theorem

♣ The origin of the LP dual of a Linear Programming program

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is the desire to get a systematic way to bound from below the optimal value in (P ).
The conceptually simplest bounding scheme is linear aggregation of the constraints:
Observation: For every vector λ of nonnegative weights, the constraint

[ATλ]Tx ≡ λTAx ≥ λT b

is a consequence of the constraints of (P ) and as such is satisfied at every feasible
solution of (P ).
Corollary: For every vector λ ≥ 0 such that ATλ = c, the quantity λT b is a lower bound
on Opt(P ).
♣ The problem dual to (P ) is nothing but the problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

of maximizing the lower bound on Opt(P ) given by Corollary.
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♣ The origin of (D) implies the following
Weak Duality Theorem: The value of the primal objective at every feasible solution
of the primal problem

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is ≥ the value of the dual objective at every feasible solution to the dual problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

that is,

x is feasible for (P )
λ is feasible for (D)

}
⇒ cTx ≥ bTλ

In particular,

Opt(P ) ≥ Opt(D).
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♣ LP Duality Theorem: Consider an LP program along with its dual:

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

Then
♢ Duality is symmetric: the problem dual to dual is (equivalent to) the primal
♢ The value of the dual objective at every dual feasible solution is ≤ the value of the
primal objective at every primal feasible solution
♢ The following 5 properties are equivalent to each other:

(i) (P ) is feasible and bounded (below)
(ii) (D) is feasible and bounded (above)
(iii) (P ) is solvable
(iv) (D) is solvable
(v) both (P ) and (D) are feasible

and whenever they take place, one has Opt(P ) = Opt(D).
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Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

♢ Duality is symmetric
Proof: Rewriting (D) in the form of (P ), we arrive at the problem

min
λ

−bTλ :

 AT

−AT
I

λ ≥

 c
−c
0

 ,

with the dual being

max
u,v,w

{
cTu− cTv+0Tw :

u ≥ 0, v ≥ 0, w ≥ 0,
Au−Av+ w = −b

}
⇕

max
x=v−u,w

{
−cTx : w ≥ 0, Ax = b+ w

}
⇕

min
x

{
cTx : Ax ≥ b

}
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♢ The value of the dual objective at every dual feasible solution is ≤ the value of the
primal objective at every primal feasible solution
This is Weak Duality
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♢ The following 5 properties are equivalent to each other:
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

Indeed, by origin of Opt(P ), the inequality

cTx ≥ Opt(P )

is a consequence of the (solvable!) system of inequalities

Ax ≥ b.

By Principle B, the inequality is a linear consequence of the system:

∃λ ≥ 0 : ATλ = c & bTλ ≥ Opt(P ).

Thus, the dual problem has a feasible solution with the value of the dual objective
≥ Opt(P ). By Weak Duality, this solution is dual optimal, and Opt(D) = Opt(P ).
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♢ The following properties are equivalent to each other:
(D) is solvable (iv)

⇓
(D) is feasible and bounded above (ii)

Evident
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♢ The following 5 properties are equivalent to each other:
(D) is feasible and bounded above (ii)

⇓
(P ) is solvable (iii)

Implied by already proved relation
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

in view of primal-dual symmetry
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♢ The following 5 properties are equivalent to each other:
(P ) is solvable (iii)

⇓
(P ) is feasible and bounded below (i)

Evident
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We proved that

(i) ⇔ (ii) ⇔ (iii) ⇔ (iv)

and that when these 4 equivalent properties take place, one has

Opt(P ) = Opt(D)

It remains to prove that properties (i) – (iv) are equivalent to

both (P ) and (D) are feasible (v)

♢ In the case of (v), (P ) is feasible and below bounded (Weak Duality), so that (v)⇒(i)
♢ in the case of (i)≡(ii), both (P ) and (D) are feasible, so that (i)⇒(v)
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Optimality Conditions in LP

Theorem: Consider a primal-dual pair of feasible LP programs

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

and let x, λ be feasible solutions to the respective programs. These solutions are optimal
for the respective problems
♢ iff cTx− bTλ = 0 [“zero duality gap”]
as well as
♢ iff [Ax− b]i · λi = 0 for all i [“complementary slackness”]
Proof: Under Theorem’s premise, Opt(P ) = Opt(D), so that

cTx− bTλ = cTx−Opt(P )︸ ︷︷ ︸
≥0

+Opt(D)− bTλ︸ ︷︷ ︸
≥0

Thus, duality gap cTx− bTλ is always nonnegative and is zero iff x, λ are optimal for the
respective problems.
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The complementary slackness condition is given by the identity

cTx− bTλ = (ATλ)Tx− bTλ = [Ax− b]Tλ

Since both [Ax − b] and λ are nonnegative, duality gap is zero iff the complementary
slackness

[Ax− b]iλi = 0 ∀i
holds true.
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Lecture 4:
Separation and Extreme Points



Separation Theorem

♣ Every linear form f(x) on Rn is representable via inner product:

f(x) = fTx

for appropriate vector f ∈ Rn uniquely defined by the form. Nontrivial (not identically
zero) forms correspond to nonzero vectors f .
♣ A level set

M =
{
x : fTx = a

}
(∗)

of a nontrivial linear form on Rn is affine subspace of affine dimension n−1; vice versa,
every affine subspace M of affine dimension n− 1 in Rn can be represented by (∗) with
appropriately chosen f ̸= 0 and a; f and a are defined by M up to multiplication by a
common nonzero factor.
(n− 1)-dimensional affine subspaces in Rn are called hyperplanes.
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M =
{
x : fTx = a

}
(∗)

♣ Level set (∗) of nontrivial linear form splits Rn into two parts:

M+ = {x : fTx ≥ a}
M− = {x : fTx ≤ a}

called closed half-spaces given by (f, a); the hyperplane M is the common boundary of
these half-spaces. The interiors M++ of M+ and M−− of M− are given by

M++ = {x : fTx > a}
M−− = {x : fTx < a}

and are called open half-spaces given by (f, a). We have

Rn =M−
⋃
M+ [M−

⋂
M+ =M ]

and

Rn =M−−
⋃
M
⋃
M++
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♣ Definition. Let T, S be two nonempty sets in Rn.
(i) We say that a hyperplane

M = {x : fTx = a} (∗)
separates S and T , if
♢ S ⊂M−, T ⊂M+ (“S does not go above M , and T does not go below M”)
and
♢ S ∪ T ̸⊂M .
(ii) We say that a nontrivial linear form fTx separates S and T if, for properly chosen a,
the hyperplane (∗) separates S and T .

S

T

Red hyperplane 2x1 +3x2 = 6 separates cyan set S and green set T
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Examples: The linear form x1 on R2

1) separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} :

T

S

{x1 = 0}
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The linear form x1 on R2...
2) separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 + x2 ≥ 0, x2 ≤ 0} :

TS

{x1 = 0}
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The linear form x1 on R2...
3) does not separate the sets

S = {x ∈ R2 : x1 = 0,1 ≤ x2 ≤ 2},
T = {x ∈ R2 : x1 = 0,−2 ≤ x2 ≤ −1} :

S

T

x =01
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The linear form x1 on R2...
4) separates the sets

S = {x ∈ R2 : x1 = 0,0 ≤ x2 ≤ 2},
T = {x ∈ R2 : 0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 1} :

S

T

x =01
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Observation: A linear form fTx separates nonempty sets S, T iff

sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy
(∗)

In the case of (∗), the associated with f hyperplanes separating S and T are exactly
the hyperplanes

{x : fTx = a} with sup
x∈S

fTx ≤ a ≤ inf
y∈T

fTy.
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♣ Separation Theorem: Two nonempty convex sets S, T can be separated iff their
relative interiors do not intersect.
Note: In this statement, convexity of both S and T is crucial!

.S

T
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Proof, ⇒: (!) If nonempty convex sets S, T can be separated, then rint S
⋂

rint T = ∅
Lemma. Let X be a convex set, f(x) = fTx be a linear form and a ∈ rintX. Then

fTa = max
x∈X

fTx⇔ f(·)
∣∣∣∣
X

= const.

♣ Lemma ⇒ (!): Let a ∈ rint S∩rint T . Assume, on contrary to what should be proved,

that fTx separates S, T , so that

sup
x∈S

fTx ≤ inf
y∈T

fTy.

♢ Since a ∈ T , we get fTa ≥ sup
x∈S

fTx, that is, fTa = max
x∈S

fTx. By Lemma, fTx = fTa for

all x ∈ S.
♢ Since a ∈ S, we get fTa ≤ inf

y∈T
fTy, that is, fTa = min

y∈T
fTy. By Lemma, fTy = fTa for

all y ∈ T .
Thus,

z ∈ S ∪ T ⇒ fTz ≡ fTa,

so that f does not separate S and T , which is a contradiction.
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Lemma. Let X be a convex set, f(x) = fTx be a linear form and a ∈ rintX. Then

fTa = max
x∈X

fTx⇔ f(·)
∣∣∣∣
X

= const.

Proof. Shifting X, we may assume a = 0. Let, on the contrary to what should be
proved, fTx be non-constant on X, so that there exists y ∈ X with fTy ̸= fTa = 0.
The case of fTy > 0 is impossible, since fTa = 0 is the maximum of fTx on X. Thus,
fTy < 0. The line {ty : t ∈ R} passing through 0 and through y belongs to Aff(X);
since 0 ∈ rintX, all points z = −ϵy on this line belong to X, provided that ϵ > 0 is
small enough. At every point of this type, fTz > 0, which contradicts the fact that
max
x∈X

fTx = fTa = 0.
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Proof, ⇐: Assume that S, T are nonempty convex sets such that rint S ∩ rint T = ∅,
and let us prove that S, T can be separated.
Step 1: Separating a point and a convex hull of a finite set. Let S =
Conv({b1, ..., bm}) and T = {b} with b ̸∈ S, and let us prove that S and T can be
separated.
Indeed,

S = Conv(b1, ..., bm) =

{
x : ∃λ :

λ ≥ 0,
∑

i λi = 1
x =

∑
i λibi

}
is polyhedrally representable and thus is polyhedral:

S = {x : aTℓ x ≤ αℓ, ℓ ≤ L}.
Since b ̸∈ S, for some ℓ̄ we have

aTℓ̄ b > αℓ̄ ≥ sup
x∈S

aTℓ̄ x

which is the desired separation.
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Step 2: Separating a point and a convex set which does not contain the point.
Let S be a nonempty convex set and T = {b} with b ̸∈ S, and let us prove that S and T
can be separated.
10. Shifting S and T by −b (which clearly does not affect the possibility of separating
the sets), we can assume that T = {0} ̸⊂ S.
20. Replacing, if necessary, Rn with Lin(S), we may further assume that Rn = Lin(S).
Lemma: Every nonempty subset S in Rn is separable: one can find a sequence {xi} of
points from S which is dense in S, i.e., is such that every point x ∈ S is the limit of an
appropriate subsequence of the sequence.
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Lemma ⇒ Separation: Let {xi ∈ S} be a sequence which is dense in S. Since S is
convex and does not contain 0, we have

0 ̸∈ Conv({x1, ..., xi}) ∀i
whence

∃fi : 0 = fTi 0 > max
1≤j≤i

fTi xj. (∗)

By scaling, we may assume that ∥fi∥2 = 1.
The sequence {fi} of unit vectors possesses a converging subsequence {fis}∞s=1; the limit
f of this subsequence is, of course, a unit vector. By (∗), for every fixed j and all large
enough s we have fTis xj < 0, whence

fTxj ≤ 0 ∀j. (∗∗)
Since {xj} is dense in S, (∗∗) implies that fTx ≤ 0 for all x ∈ S, whence

sup
x∈S

fTx ≤ 0 = fT0.
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Situation: (a) Lin(S) = Rn
(b) T = {0}
(c) We have built a unit vector f such that

sup
x∈S

fTx ≤ 0 = fT0. (!)

By (!), all we need to prove that f separates T = {0} and S is to verify that

inf
x∈S

fTx < fT0 = 0.

Assuming the opposite, (!) would say that fTx = 0 for all x ∈ S, which is impossible,
since Lin(S) = Rn and f is nonzero.
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Lemma: Every nonempty subset S in Rn is separable: one can find a sequence {xi} of
points from S which is dense in S, i.e., is such that every point x ∈ S is the limit of an
appropriate subsequence of the sequence.
Definition: A set X is called countable, if one can arrange all its elements into a (finite
or infinite) sequence:

X = {x1, x2, x3, ...}
First preliminary fact: The set Qn of vectors r ∈ Rn with rational coordinates is
countable: one can arrange all these vectors in a sequence r1, r2, .... Indeed, representing
rational numbers as fractions with numerator and denominator without common factors,
for every integer N ≥ 0 there are finitely many rational n-dimensional vectors with
the total sum of magnitudes of numerators and denominators in the coordinates not
exceeding N , let the set of these vectors be RN . We have

R0 ⊂ R1 ⊂ R2 ⊂ ..

Now let us arrange all rational vectors from Rn into a single sequence as follows:
• first, we write down, in a whatever order, all vectors from the (finite!) set R0

• next, we add to the resulting finite sequence all vectors from the (finite) set R1\R0,
again in a whatever order
• next, we add to the finite sequence we have built so far all vectors from the (finite!)
set R2\R1, and so on.

As a result, all rational n-dimensional vectors will be arranged into a sequence r1, r2, ...
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Second preliminary fact: The union X =
⋃

i=1,2,...
Xi of countably many countable sets

Xi = {xij}j=1,2,... is countable.
Indeed, X = {xij : i, j = 1,2, ..}, and we can arrange all the elements xij into a single
sequence writing down,
• first, all xij with i+ j ≤ 1 (in a whatever order),
• next, all xij with 1 < i+ j ≤ 2 (in a whatever order),
• next, all xij with 2 < i+ j ≤ 3, and so on.
If the element we are about to write down was already written down (it was met, with
different pair of indexes, before), we skip writing it down.

As a result, all xij’s will be arranged into a (finite or infinite) sequence, complying
countability of X.
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Lemma: Every nonempty subset S in Rn is separable: one can find a sequence {xi} of
points from S which is dense in S, i.e., is such that every point x ∈ S is the limit of an
appropriate subsequence of the sequence.
Proof. Let r1, r2, ... be the sequence comprised of all rational vectors in Rn. For every
positive integer t, let Xt ⊂ S be the countable set given by the following construction:

We look, one after another, at the points r1, r2, ... and for every point rs check
whether there is a point z in S which is at most at the distance 1/t away from
rs. If points z with this property exist, we take one of them and add it to Xt

and then pass to rs+1, otherwise directly pass to rs+1.

Is is clear that

(*) Every point x ∈ S is at the distance at most 2/t from certain point of Xt.

Indeed, since the rational vectors are dense in Rn, there exists s such that rs is at the
distance ≤ 1

t
from x. Therefore, when processing rs, we definitely add to Xt a point z

which is at the distance ≤ 1/t from rs and thus is at the distance ≤ 2/t from x.

• The countable union
∞⋃
t=1

Xt of countable sets Xt ⊂ S is a countable set in S, and by

(*) this set is dense in S.
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Step 3: Separating two non-intersecting nonempty convex sets. Let S, T be
nonempty convex sets which do not intersect; let us prove that S, T can be separated.
Let Ŝ = S − T and T̂ = {0}. The set Ŝ clearly is convex and does not contain 0 (since

S ∩ T = ∅). By Step 2, Ŝ and {0} = T̂ can be separated: there exists f such that

sup
x∈S

f Ts−inf
y∈T

f Ty︷ ︸︸ ︷
sup

x∈S,y∈T
[fTx− fTy] ≤ 0 = inf

z∈{0}
fTz

inf
x∈S,y∈T

[fTx− fTy]︸ ︷︷ ︸
inf
x∈S

f Tx−sup
y∈T

f Ty

< 0 = sup
z∈{0}

fTz

whence
sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy
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Step 4: Completing the proof of Separation Theorem. Finally, let S, T be nonempty
convex sets with non-intersecting relative interiors, and let us prove that S, T can be
separated.
As we know, the sets S′ = rint S and T ′ = rint T are convex and nonempty; we are in
the situation when these sets do not intersect. By Step 3, S′ and T ′ can be separated:
for properly chosen f , one has

sup
x∈S ′

fTx ≤ inf
y∈T ′

fTy

inf
x∈S ′

fTx < sup
y∈T ′

fTy
(∗)

Since S′ is dense in S and T ′ is dense in T , inf’s and sup’s in (∗) remain the same when
replacing S′ with S and T ′ with T . Thus, f separates S and T .
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♣ Alternative proof of Separation Theorem starts with separating a point T = {a} and
a closed convex set S, a ̸∈ S, and is based on the following fact:

Let S be a nonempty closed convex set and let a ̸∈ S. There exists a unique
closest to a point in S:

ProjS(a) = argmin
x∈S

∥a− x∥2

and the vector e = a− ProjS(a) separates a and S:

max
x∈S

eTx = eTProjS(a) = eTa− ∥e∥22 < eTa.

4.21





Proof: 10. The closest to a point in S does exist. Indeed, let xi ∈ S be a sequence
such that

∥a− xi∥2 → inf
x∈S

∥a− x∥2, , i→ ∞

The sequence {xi} clearly is bounded; passing to a subsequence, we may assume that
xi → x̄ as i→ ∞. Since S is closed, we have x̄ ∈ S, and

∥a− x̄∥2 = lim
i→∞

∥a− xi∥2 = inf
x∈S

∥a− x∥2.

20. The closest to a point in S is unique. Indeed, let x, y be two closest to a points in
S, so that ∥a− x∥2 = ∥a− y∥2 = d. Since S is convex, the point z = 1

2
(x+ y) belongs to

S; therefore ∥a− z∥2 ≥ d. We now have

=∥2(a−z)∥2
2≥4d2︷ ︸︸ ︷

∥[a− x] + [a− y]∥22+
=∥x−y∥2︷ ︸︸ ︷

∥[a− x]− [a− y]∥22
= 2∥a− x∥22 +2∥a− y∥22︸ ︷︷ ︸

4d2

whence ∥x− y∥2 = 0.
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30. Thus, the closest to a point b = ProjS(a) in S exists, is unique and differs from a
(since a ̸∈ S). The hyperplane passing through b and orthogonal to a − b separates a
and S:

a

b

b'p

S

Indeed, if there were a point b′ ∈ S “above” the hyperplane, the entire segment [b, b′]
would be contained in S by convexity of S. Since the angle ∠abb′ is < π/2, performing a
small step from b towards b′ we stay in S and become closer to a, which is impossible!
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With e = a− ProjS(a), we have

x ∈ S, f = x− ProjS(a)
⇓

ϕ(t) ≡ ∥e− tf∥22
= ∥a− [ProjS(a) + t(x− ProjS(a))]∥22
≥ ∥a− ProjS(a)∥22
= ϕ(0),0 ≤ t ≤ 1

⇓
0 ≤ ϕ′(0) = −2eT(x− ProjS(a))

⇓
∀x ∈ S : eTx ≤ eTProjS(a) = eTa− ∥e∥22.
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♣ Separation of sets S, T by linear form fTx is called strict, if

sup
x∈S

fTx < inf
y∈T

fTy

Geometrically: For properly selected δ > 0 and a, S and T are separated by the stripe
{x : a− δ ≤ fTx ≤ a+ δ}:

sup
x∈S

fTx ≤ a− δ < a+ δ ≤ inf
y∈T

fTy

Theorem: Let S, T be nonempty convex sets. These sets can be strictly separated iff
they are at positive distance:

dist(S, T ) = inf
x∈S,y∈T

∥x− y∥2 > 0.
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♣ Separation of sets S, T by linear form fTx is called strict, if

sup
x∈S

fTx < inf
y∈T

fTy

Claim: Two nonempty convex sets S, T can be strictly separated iff they are at positive
distance:

dist(S, T ) = inf
x∈S,y∈T

∥x− y∥2 > 0.

Proof, ⇒: Let f strictly separate S, T ; let us prove that S, T are at positive distance.
Otherwise we could find sequences xi ∈ S, yi ∈ T with ∥xi − yi∥2 → 0 as i → ∞, whence
fT(yi − xi) → 0 as i→ ∞. It follows that the sets on the axis

Ŝ = {a = fTx : x ∈ S}, T̂ = {b = fTy : y ∈ T}
are at zero distance, which is a contradiction with

sup
a∈Ŝ

a < inf
b∈T̂

b.
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Proof, ⇐: Let T , S be nonempty convex sets which are at positive distance 2δ:

2δ = inf
x∈S,y∈T

∥x− y∥2 > 0.

Let

S+ = S + {z : ∥z∥2 ≤ δ}
The sets S+ and T are convex and do not intersect, and thus can be separated:

sup
x+∈S+

fTx+ ≤ inf
y∈T

fTy [f ̸= 0]

Since
sup
x+∈S+

fTx+ = sup
x∈S,∥z∥2≤δ

[fTx+ fTz]

= [sup
x∈S

fTx] + δ∥f∥2,

we arrive at

sup
x∈S

fTx < inf
y∈T

fTy

4.27



Exercise Below S is a nonempty convex set and T = {a}.

Statement True?

If T and S can be separated
then a ̸∈ S
If a ̸∈ S, then T and S can be
separated
If T and S can be strictly
separated, then a ̸∈ S
If a ̸∈ S, then T and S can be
strictly separated
If S is closed and a ̸∈ S, then T
and S can be strictly separated
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Supporting Planes and Extreme Points

♣ Definition. Let Q be a closed convex set in Rn and x̄ be a point from

the relative boundary of Q. A hyperplane

Π = {x : fTx = a} [f ̸= 0]

is called supporting to Q at the point x̄, if the hyperplane separates Q

and {x̄}:

sup
x∈Q

fTx ≤ a ≤ fT x̄ [⇔ supx∈Q f
Tx = a = fT x̄ due to x̄ ∈ Q]

inf
x∈Q

fTx < fT x̄

Equivalently: Hyperplane Π = {x : fTx = a} supports Q at x̄ iff the

linear form fTx attains its maximum on Q, equal to a, at the point x̄ and

the form is non-constant on Q.
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cyan: supporting hyperplane cyan and green: supporting hyperplanes

cyan: supporting hyperplane cyan: NOT a supporting hyperplane

Q: blue set in 2D; a: red point
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Proposition: Let Q be a convex closed set in Rn and x̄ be a point from

the relative boundary of Q. Then

♢ There exist at least one hyperplane Π which supports Q at x̄;

♢ For every such hyperplane Π, the set Q∩Π has dimension less than the

one of Q.

Proof: Existence of supporting plane is given by Separation Theorem.

This theorem is applicable since

x̄ ̸∈ rintQ⇒ {x̄} ≡ rint {x̄} ∩ rintQ = ∅.

Further,

Q ̸⊂ Π ⇒ Aff(Q) ̸⊂ Π ⇒ Aff(Π ∩Q) ⊂ Aff(Q) ∩Π ⫋ Aff(Q),

and if two distinct affine subspaces (in our case, Aff(Π ∩Q) and Aff(Q))

are embedded one into another, then the dimension of the embedded

subspace is strictly less than the dimension of the embedding one.
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Extreme Points

♣ Definition. Let Q be a convex set in Rn and x̄ be a point of Q. The

point is called extreme, if it is not a convex combination, with positive

weights, of two points of X distinct from x̄:

x̄ ∈ Ext(Q)
⇕

{x̄ ∈ Q} &

{
u, v ∈ Q,λ ∈ (0,1)
x̄ = λu+ (1− λ)v

}
⇒ u = v = x̄

}

Equivalently: A point x̄ ∈ Q is extreme iff it is not the midpoint of a

nontrivial segment in Q:

x̄± h ∈ Q⇒ h = 0.

Equivalently: A point x̄ ∈ Q is extreme iff the set Q\{x̄} is convex.
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Examples:

1. Extreme points of [x, y] are ... x

y

z

2. Extreme points of △ABC are ... A B

C

3. Extreme points of the ball {x : ∥x∥2 ≤ 1} are ...
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Examples:

1. Extreme points of [x, y] are the endpoints x and y

2. Extreme points of △ABC are the vertices A, B, C

3. Extreme points of the ball {x : ∥x∥2 ≤ 1} are the points {x : ∥x∥2 = 1}
on the boundary of the ball.
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Theorem [Krein-Milman] Let Q be a closed convex and nonempty set in

Rn. Then

♢ Q possesses extreme points iff Q does not contain lines;

♢ If Q is bounded, then Q is the convex hull of its extreme points:

Q = Conv(Ext(Q))

so that every point of Q is convex combination of extreme points of Q.

Note: If Q = Conv(A), then Ext(Q) ⊂ A. Thus, extreme points of a

closed convex bounded set Q give the minimal representation of Q as

Conv(...).
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Proof. 10: If closed convex set Q does not contain lines, then Ext(Q) ̸= ∅
Important lemma: Let S be a closed convex set and Π = {x : fTx = a}
be a hyperplane which supports S at certain point. Then

Ext(Π ∩ S) ⊂ Ext(S).

Proof of Lemma. Let x̄ ∈ Ext(Π∩ S); we should prove that x̄ ∈ Ext(S).

Assume, on the contrary, that x̄ is a midpoint of a nontrivial segment

[u, v] ⊂ S. Then fT x̄ = a = max
x∈S

fTx, whence fT x̄ = max
x∈[u,v]

fTx. A linear

form can attain its maximum on a segment at the midpoint of the segment

iff the form is constant on the segment; thus, a = fT x̄ = fTu = fTv, that

is, [u, v] ⊂ Π ∩ S. But x̄ is an extreme point of Π ∩ S – contradiction!
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Let Q be a nonempty closed convex set which does not contain lines. In

order to build an extreme point of Q, apply the Purification algorithm.

It generates a sequence Q = S0 ⊃ S1 ⊃ S2 ⊃ ... of shrinking closed convex

nonempty sets which starts from S0 = Q, along with points xt ∈ St, and

is such that

A: all extreme points of St, if any, are extreme points of St−1 (and there-

fore are extreme points of S0 = Q), and

B: whenever St is not a singleton, St+1 is well defined and is of dimension

strictly less than the dimension of St.

Taking for granted that there is an algorithm capable to produce sequence

with these properties, observe that the sequence S0 ⊃ St ⊃ ... is finite by

B (dimension of St strictly decreases when passing from St to St+1, and

this cannot last indefinitely) and the concluding set SK in this sequence

is a singleton (again by B). In particular, SK has extreme point:

SK = {x̄} ⇒ Ext(SK) = {x̄}

and by A this extreme point is an extreme point of Q ⇒Ext(Q) ̸= ∅,
Q.E.D.
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♠ This is how Purification works:

• We start with S0 = Q and select as x0 an arbitrary point of S0
• Given St, and xt ∈ St we check whether St is a singleton; if yes, we

terminate, otherwise we

— find a point xt+1 on the relative boundary of St
— build a hyperplane Πt supporting St at xt+1, and set St+1 = St ∩Πt
Note: By construction, St+1, when defined, is a nonempty closed convex

subset of St, with dim(St+1) < dim(St) (by Proposition on Supporting

Plane) and Ext(St+1) ⊂ Ext(St) (by Important Lemma), so that we do

ensure A and B.
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• To find a point xt+1 on the relative boundary of a non-singleton closed

convex set St ∋ xt, we take a direction h ̸= 0 parallel to Aff(St).

Since St ⊂ Q, St does not contain lines

⇒ replacing if necessary h with −h, we can assume that the ray

{xt+ sh : s ≥ 0}

is not contained in St, which combines with closedness of St to imply that

the largest s = s̄ such that xt+ sh ∈ St is well defined

⇒xt+1 = xt+ s̄h is a point from the relative boundary of St
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Note: Assume you are given a linear form gTx which is bounded from

above on Q. Then in the Purification algorithm one can easily ensure

that gTxt+1 ≥ gTxt. Thus,

If Q is a nonempty convex closed set in Rn which does not contain lines

and gTx is a linear form which is bounded above on Q, then for every point

x0 ∈ Q there exists (and can be found by Purification) a point x̄ ∈ Ext(Q)

such that gT x̄ ≥ gTx0. In particular, if gTx attains its maximum on Q,

then a maximizer can be found among extreme points of Q.
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Proof, 20 If a closed convex set Q contains lines, it has no extreme

points.

Another Important Lemma: Let S be a closed convex set and h be

such that for some x ∈ S the ray {x+ th : t ≥ 0} belongs to S. Then

{y+ th : t ≥ 0} ⊂ S ∀y ∈ S.

Note: The set of all directions h ∈ Rn such that {x+ th : t ≥ 0} ⊂ S

for some (and then, for all) x ∈ S, is called the recessive cone Rec(S) of

closed convex set S. Rec(S) indeed is a cone, and

S +Rec(S) = S.

Geometrically: Nonzero recessive directions of S are exactly the direc-

tions of rays contained in S.

Corollary: If a closed convex set Q contains a line ℓ, then the parallel

lines, passing through points of Q, also belong to Q. In particular, Q

possesses no extreme points.
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Proof of Another Important Lemma: For every s > 0 and y ∈ S we
have y+ sh = lim

i→∞
[(1− s/i)y+ (s/i)[x+ (i/s)h]]︸ ︷︷ ︸

∈S
. □

x

y

z

u

u

u

S

Geometrically: Given that S contains blue ray and point y, we want to prove that S

contains the red ray.

Let z be a point on the red ray, and let variable point u run to ∞ along the blue ray.

The segments [y, u] belong to S by convexity, and the points on these segments which

are at the distance ∥z − y∥2 from y (points ⋄) converge to z. Since S is closed, z ∈ S.
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Proof, 30: If a nonempty closed convex set Q is bounded, then Q =

Conv(Ext(Q)).

The inclusion Conv(Ext(Q)) ⊂ Q is evident. Let us prove the opposite

inclusion, i.e., prove that every point of Q is a convex combination of

extreme points of Q.

Induction in k = dimQ. Base k = 0 (Q is a singleton) is evident.

Step k 7→ k+1: Given (k+1)-dimensional closed and bounded convex set

Q and a point x ∈ Q, we can use the construction for finding a relative

boundary point from the Purification algorithm to represent x as a convex

combination of two points x+ and x− from the relative boundary of Q.

Let Π+ be a hyperplane which supports Q at x+, and let Q+ = Π+ ∩Q.

As we know, Q+ is a closed convex set such that

dimQ+ < dimQ, Ext(Q+) ⊂ Ext(Q), x+ ∈ Q+.

Invoking inductive hypothesis,

x+ ∈ Conv(Ext(Q+)) ⊂ Conv(Ext(Q)).

Similarly, x− ∈ Conv(Ext(Q)). Since x ∈ [x−, x+], we get x ∈
Conv(Ext(Q)).
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x+

x-
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Structure of Polyhedral Sets

♣ Definition: A polyhedral set Q in Rn is a subset in Rn which is a solution

set of a finite system of nonstrict linear inequalities:

Q is polyhedral ⇔ Q = {x : Ax ≥ b}.

♠ Every polyhedral set is convex and closed.

In the sequel, the polyhedral sets in question are assumed to be nonempty.
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Question: When a polyhedral set Q = {x : Ax ≥ b} contains lines? What
are these lines, if any?
Answer: Q contains lines iff A has a nontrivial nullspace:

Null(A) ≡ {h : Ah = 0} ̸= {0}.

Indeed, a line ℓ = {x = x̄+ th : t ∈ R}, h ̸= 0, belongs to Q iff

∀t : A(x̄+ th) ≥ b
⇔ ∀t : tAh ≥ b−Ax̄
⇔ Ah = 0 & x̄ ∈ Q.

Fact: A polyhedral set Q = {x : Ax ≥ b} always can be represented as

Q = Q∗ + L,

where Q∗ is a polyhedral set which does not contain lines and L is a linear
subspace. In this representation,
♢ L is uniquely defined by Q and coincides with Null(A),
♢ Q∗ can be chosen, e.g., as

Q∗ = Q ∩ L⊥
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• Red stripe Q: polyhedral set containing lines

• red line L: the recessive subspace of Q

• Blue segment: Q∗ = Q ∩ L⊥

♠ Red stripe Q = blue segment Q∗ + red subspace L

♠ Blue segment Q∗: polyhedral set not containing lines

4.47



Structure of polyhedral set which does not contain lines

♣ Theorem: Let

Q = {x : Ax ≥ b} ̸= ∅

be a polyhedral set which does not contain lines (or, which is the same,
Null(A) = {0}). Then the set Ext(Q) of extreme points of Q is nonempty
and finite, and

Q = Conv(Ext(Q)) + Cone {r1, ..., rS}
= Conv{v1, ..., vT}+Cone {r1, ..., rS}

=

{
x =

∑
r λtvt+

∑
s µsrs :

λt ≥ 0,
∑
t λt = 1

µs ≥ 0

} (∗)

for properly chosen vectors r1, ..., rS.
Note: Cone {r1, ..., rs} is exactly the recessive cone of Q:

Cone {r1, ..., rS}
= {r : x+ tr ∈ Q ∀(x ∈ Q, t ≥ 0)}
= {r : Ar ≥ 0}.

This cone is the trivial cone {0} iff Q is a bounded polyhedral set (called
polytope).
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a)

b)

c)

d)

a): a polyhedral set
b): {

∑3
i=1 λivi : λi ≥ 0,

∑3
i=1 λi = 1}

c): {
∑2
j=1 µjrj : µj ≥ 0}

d): The set a) is the sum of sets b) and c)
Note: shown are the boundaries of the sets.
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♣ Combining the above theorems, we come to the following results:

A (nonempty) polyhedral set Q always can be represented in the form

Q =

x =
I∑

i=1

λivi+
J∑

j=1

µjwj :
λ ≥ 0, µ ≥ 0∑
i
λi = 1

 (!)

where I, J are positive integers and v1, ..., vI, w1, ..., wJ are appropriately

chosen points and directions.

Vice versa, every set Q of the form (!) is a polyhedral set.

Note: Polytopes (nonempty bounded polyhedral sets) are exactly the sets

of form (!) with “trivial w-part”: w1 = ... = wJ = 0.
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Q ̸= ∅, & ∃A, b : Q = {x : Ax ≥ b}
⇕

∃(I, J, v1, ..., vI , w1, ..., wJ) :

Q =

x =
I∑

i=1
λivi+

J∑
j=1

µjwj :
λ ≥ 0, µ ≥ 0∑
i
λi = 1


Exercise 1: Is it true that the intersection of two polyhedral sets is a

polyhedral set?

Exercise 2: Is it true that the affine image {y = Px+ p : x ∈ Q} of a

polyhedral set Q is a polyhedral set?
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Applications to Linear Programming

♣ Consider a feasible Linear Programming program

min
x
cTx s.t. x ∈ Q = {x : Ax ≥ b} (LP)

Observation: We lose nothing when assuming that Null(A) = {0}.
Indeed, we have

Q = Q∗ +Null(A),

where Q∗ is a polyhedral set not containing lines. If c is not orthogonal to Null(A), then
(LP) clearly is unbounded. If c is orthogonal to Null(A), then (LP) is equivalent to the
LP program

min
x
cTx s.t. x ∈ Q∗,

and now the matrix in a representation Q∗ = {x : Ãx ≥ b̃} has trivial nullspace.

Assuming Null(A) = {0}, let (LP) be bounded (and thus solvable). Since

Q is convex, closed and does not contain lines, in the (nonempty!) set of

minimizers of the objective on Q there is an extreme point of Q.

4.52



min
x
cTx s.t. x ∈ Q = {x : Ax ≥ b} (LP)

We have proved

Proposition: Assume that (LP) is feasible and bounded (and thus is

solvable) and that Null(A) = {0}. Then among optimal solutions to (LP)

there exists at least one which is an extreme point of Q.

Question: How to characterize extreme points of the set

Q = {x ∈ Rn : Ax ≥ b} ?

Answer [Algebraic Characterization of Extreme Points of Polyhedral Set]:

Extreme points x̄ of Q are fully characterized by the following two prop-

erties:

♢ x̄ ∈ Q, that is, Ax̄ ≥ b

♢ Among constraints Ax ≥ b which are active at x̄ (i.e., are satisfied as

equalities), there are n linearly independent (i.e., with linearly independent

vectors of coefficients).
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Justification of the answer, ⇒: If x̄ is an extreme point of Q, then

among the constraints Ax ≥ b active at x̄ there are n linearly independent.

W.l.o.g., assume that the constraints active at x̄ are the first k constraints

aTi x ≥ bi, i = 1, ..., k.

We should prove that among n-dimensional vectors a1, ..., ak, there are n

linearly independent. Assuming otherwise, there exists a nonzero vector

h such that aTi h = 0, i = 1, ..., k, that is,

aTi [x̄± ϵh] = aTi x̄ = bi, i = 1, ..., k

for all ϵ > 0. Since the remaining constraints aTi x ≥ bi, i > k, are strictly

satisfied at x̄, we conclude that

aTi [x̄± ϵh] ≥ bi, i = k+1, ...,m

for all small enough values of ϵ > 0.

We conclude that x̄ ± ϵh ∈ Q = {x : Ax ≥ b} for all small enough ϵ > 0.

Since h ̸= 0 and x̄ is an extreme point of Q, we get a contradiction.
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Justification of the answer, ⇐: If x̄ ∈ Q makes equalities n of the

constraints aTi x ≥ bi with linearly independent vectors of coefficients, then

x̄ ∈ Ext(Q).

W.l.o.g., assume that n active at x̄ constraints with linearly independent

vectors of coefficients are the first n constraints

aTi x ≥ bi, i = 1, ..., n.

We should prove that if h is such that x̄± h ∈ Q, then h = 0. Indeed, we

have

x̄± h ∈ Q⇒ aTi [x̄± h] ≥ bi, i = 1, ..., n;

since aTi x̄ = bi for i ≤ n, we get

aTi x̄± aTi h = aTi [x̄± h] ≥ aTi x̄, i = 1, ..., n,

whence

aTi h = 0, i = 1, ..., n. (∗)

Since n-dimensional vectors a1, ..., an are linearly independent, (∗) implies

that h = 0, Q.E.D.
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Example: Given integer k ≤ n, let us list extreme point of the set

∆k,n = {x ∈ Rn : 0 ≤ xi ≤ 1∀i,
∑
i

xi = k}

• At an extreme point v, n of the constraints should become active.

One of these constraints is
∑
i xi = k, and n − 1 of the remaining active

constraints should be among the bounds 1 ≥ xi ≥ 0

⇒ at least n− 1 of entries in v are zeros and ones

⇒ all entries in v are integers (since all but one are so, and the sum of all

entries is integer)

⇒ all entries are zeros and ones

⇒ all nonzero entries are equal to 1, and there are k of them.

• Reasoning can be reversed, implying that every 0/1 vector with exactly

k entries equal to 1 is an extreme point of ∆k,n.

Question: What are extreme points of the set

{x ∈ Rn : 0 ≤ xi ≤ 1 ∀i,
∑
i

xi = 2.5} ?
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Polyhedral sets with MUST TO KNOW extreme points

A. Let k ≤ n be positive integers.

A.1. The extreme points of the set{
x ∈ Rn : 0 ≤ xi ≤ 1∀i,

∑
i
xi = k

}
are exactly Boolean vectors from the set, that is, 0/1 vectors with exactly

k entries equal to 1.

In particular, the extreme points of the “flat (a.k.a. probabilistic) simplex”

{x ∈ Rn : x ≥ 0,
∑

i xi = 1}
are the standard basic orths (set k = 1).
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A.2. The extreme points of the set{
x ∈ Rn : 0 ≤ xi ≤ 1∀i,

∑
i
xi ≤ k

}
are exactly Boolean vectors from the set, that is, 0/1 vectors with at

most k entries equal to 1.

In particular, the extreme points of the “full-dimensional simplex”

{x ∈ Rn : x ≥ 0,
∑

i xi ≤ 1}
are the standard basic orths and the origin (set k = 1).
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A.3. The extreme points of the set{
x ∈ Rn : |xi| ≤ 1∀i,

∑
i
|xi| ≤ k

}
are exactly the vectors with k nonzero entries equal to ±1 each.
In particular,

• the extreme points of the unit ℓ1-ball

{x ∈ Rn : ∥x∥1 ≤ 1} = {x ∈ Rn :
∑

i |xi| ≤ 1}
are the plus-minus standard basic orths (set k = 1).

• the extreme points of the unit ℓ∞-ball

{x ∈ Rn : ∥x∥∞ ≤ 1} = {x ∈ Rn : −1 ≤ xi ≤ 1∀i}
are ±1 vectors (set k = n).
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Proof of A.3;

Q =
{
x ∈ Rn : |xi| ≤ 1 ∀i,

∑
i
|xi| ≤ k

}
• The only nontrivial part of the claim is that every extreme point of Q is vector with
entries 0, ±1 and exactly k entries equal to ±1. If you do not see that the inverse is
evident, look at the end of this insert.

Proof by bare hands: Let x̄ be an extreme point of Q. Then

1) x̄ has at most one “fractional entry” - entry of positive magnitude less than 1.
Indeed, assuming that there are at least two fractional entries, say, x̄1 and x̄2, let us set
h = [ϵ;−ϵ; 0; ...; 0] when these entries are of the same sign, and h = [ϵ; ϵ; 0; ...; 0], when
these entries are of different signs. When ϵ > 0 is small enough, all entries in x̄±h are of
magnitude ≤ 1, and the sum of their magnitudes is the same as the sum of magnitudes
of entries in x̄, that is, x̄± h ∈ Q for these ϵ, which is impossible, since h ̸= 0.

2) x̄ has no fractional entries at all. Indeed, by 1) if there is a fractional entry, say, x1,
all other entries are of magnitude 0 or 1, and the sum of magnitudes of all entries is not
integer. Consequently, the constraint

∑
i |xi| ≤ k at x̄ is satisfied strictly, and therefore

the vectors x̄ ± h with h = [ϵ; 0; ...; 0] belong to Q for small positive ϵ, which again is
impossible.

3) The bottom line is that all entries in x̄ are 0,±1, and it remains to see that the
number of ±1 entries, which we know to be ≤ k due to x̄ ∈ Q, is exactly k. In the
opposite case, x̄ has a zero entry (since k ≤ n), say, x1, and x̄± [ϵ; 0; ...; 0] belongs to Q
for all small positive ϵ, which again is impossible □



More intelligent proof: Let x̄ be an extreme point of Q. Multiplications by diagonal
matrices with ±1 diagonal entries are symmetries of Q – they map Q onto itself and
therefore map extreme points onto extreme points. As a result, we can assume w.l.o.g.
that x̄ ≥ 0, and all we need to prove is that x̄ has k entries equal to 1 and all remaining
entries equal to 0. The set Q+ = {x ∈ Q : x ≥ 0} = {x : 0 ≤ xi ≤ 1,

∑
i xi ≤ k} is

contained in Q and contains x̄, so that x̄ is an extreme point of Q+

I have used the following evident fact: if P ⊂ Q are convex sets and x̄ ∈ P is
extreme point of Q, then it is extreme point of P (otherwise x̄ would be the
midpoint of a nontrivial segment contained in P and therefore contained in Q).

By A.2, x̄ has only 0 and 1 entries with at most k entries equal to k. In fact the number
of nonzero entries is equal to k, since otherwise x̄ would not be an extreme point of Q
(last item in the previous proof). □

Finally every vector x̄ with k entries of magnitude 1 and zero remaining entries is an

extreme point of Q. By symmetry, it suffices to verify that the vector x̄ with the first
k entries of magnitude 1 and zero remaining entries is an extreme point of Q. Indeed,
x̄ ∈ Q, and assuming that x̄±h ∈ Q for some h, we conclude that h1 = ... = hk = 0, since
otherwise some of the first k entries either in x̄+ h, or in x̄− h would be of magnitude
> 1. We see that the total of magnitudes of entries in x̄+ h is

∑k
i=1 |x̄|i+

∑n
i=k+1 |hi| =

k+
∑n

i=k+1 |hi|, and since this total should be ≤ k, we conclude that
∑n

i=k+1 |hi| = 0, the
bottom line being that h = 0. □



B. A double-stochastic matrix is a square matrix with nonnegative entries

and all row and column sums equal to 1. n×n double-stochastic matrices

form a polytope Pn in the space Rn×n of n× n matrices:

Pn = {[xij] ∈ Rn×n : xij ≥ 0 ∀(i, j),
∑
j

xij = 1 ∀i,
∑
i

xij = 1 ∀j}

Birkhoff’s Theorem: The extreme points of Pn are exactly the Boolean

matrices from the set, that is, permutation matrices – those with exactly

one nonzero entry, equal to 1, in every row and in every column.

Note: Permutation matrices P are exactly the matrices of linear transformations

x 7→ Px which permute the entries in the argument. Such a matrix is specified by the

corresponding permutation, and there are n! of them.

Essence of the proof is in the following fact: If x is an extreme point

of P, then matrix x has an entry equal to 1

⇒ all other entries in the row and the column of the unit entry are zeros

⇒ eliminating from x the row and the column of the unit entry, we get

an (n− 1)× (n− 1) double-stochastic matrix.
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Claim: If x is an extreme point of the polytope P of double stochastic
matrices, then matrix x has an entry equal to 1
Proof: “As is”, P is given by 2n linear equalities stating that all row and
all column sums in matrix x are equal to 1 plus n2 inequalities xij ≥ 0.

• In fact, we can drop one of the equalities without changing P: if all
column sums and all but one row sums are equal to 1, then all row and
column sums are equal to 1.
Indeed, the total of all n row sums is equal to the total of all n column sums – both

these totals are the sums of all entries in the matrix, and “In fact” follows.

⇒We lose nothing when assuming that P is given by n2 inequalities xij ≥ 0
and 2n− 1 linear equalities.
• By algebraic characterization of extreme points, at an extreme point x̄
of P n2 of the above constraints should become active
⇒ at least n2 − 2n+1 entries in x̄ are zeros
⇒ there is a column in x̄ with at least n− 1 zero entries, since otherwise
the total # of zero entries would be at most n(n− 2) < n2 − 2n+1
In the column with at least n − 1 zero entries the sum of entries is 1,
implying that in this column there is exactly one nonzero entry, and this
entry is equal to 1.

4.61



Lecture 5:

Convex Functions



Convex Functions

Definition: Let f be a real-valued function defined on a nonempty subset

Domf in Rn. f is called convex, if

♢Domf is a convex set

♢ for all x, y ∈ Domf and λ ∈ [0,1] one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Equivalent definition: Let f be a real-valued function defined on a

nonempty subset Domf in Rn. The function is called convex, if its epi-

graph – the set

Epi{f} = {(x, t) ∈ Rn+1 : f(x) ≤ t}

is a convex set in Rn+1.

5.1



convex function: graph on
[x; y] is below secant
z = λx+ (1− λ)y

f(z) ≤ h = λf(x) + (1− λ)f(y)

nonconvex function: graph on
[x; y] is not entirely below secant

z = λx+ (1− λ)y
f(z)>h = λf(x) + (1− λ)f(y)

epigraph of convex function
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What does the definition of convexity actually mean?

The inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (∗)

where x, y ∈ Domf and λ ∈ [0,1] is automatically satisfied when x = y

or when λ = 0/1. Thus, it says something only when the points x, y are
distinct from each other and the point z = λx+ (1 − λ)y is a (relative)
interior point of the segment [x, y]. What does (∗) say in this case?
♢Observe that z = λx+ (1− λ)y = x+ (1− λ)(y − x), whence

∥y − x∥ : ∥y − z∥ : ∥z − x∥ = 1 : λ : (1− λ)

Therefore

f(z) ≤ λf(x) + (1− λ)f(y) (∗)
⇕

f(z)− f(x) ≤ (1− λ)︸ ︷︷ ︸
∥z−x∥
∥y−x∥

(f(y)− f(x))

⇕
f(z)−f(x)

∥z−x∥ ≤ f(y)−f(x)
∥y−x∥
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Similarly,

f(z) ≤ λf(x) + (1− λ)f(y) (∗)
⇕

λ︸︷︷︸
∥y−z∥
∥y−x∥

(f(y)− f(x)) ≤ f(y)− f(z)

⇕
f(y)−f(x)

∥y−x∥ ≤ f(y)−f(z)
∥y−z∥
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Conclusion: f is convex iff for every three distinct points x, y, z such that
x, y ∈ Domf and z ∈ [x, y], we have z ∈ Domf and

f(z)− f(x)

∥z − x∥
≤
f(y)− f(x)

∥y − x∥
≤
f(y)− f(z)

∥y − z∥
(∗)

Note: From 3 inequalities in (∗):
f(z)−f(x)

∥z−x∥ ≤ f(y)−f(x)
∥y−x∥ , f(y)−f(x)

∥y−x∥ ≤ f(y)−f(z)
∥y−z∥ , f(z)−f(x)

∥z−x∥ ≤ f(y)−f(z)
∥y−z∥

every single one implies the other two.

x yz
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Jensen’s Inequality: Let f(x) be a convex function. Then

xi ∈ Domf, λi ≥ 0,
∑
i
λi = 1 ⇒

f(
∑
i
λixi) ≤

∑
i
λif(xi)

Proof: The points (xi, f(xi)) belong to Epi{f}. Since this set is convex,
the point

(
∑
i

λixi,
∑
i

λif(xi)) ∈ Epi{f}.

By definition of the epigraph, it follows that

f(
∑
i

λixi) ≤
∑
i

λif(xi).

Extension: Let f be convex, Domf be closed and f be continuous on
Domf . Consider a probability distribution π(dx) supported on Domf .
Then

f(Eπ{x}) ≤ Eπ{f(x)}.
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Examples:

♢Functions convex on R:

•

x2, x4, x6, ...

•

exp{x}
♢Nonconvex functions on R:

•

x3

•

sin(x)
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♢Functions convex on R+:

•

xp, p ≥ 1

•

−xp, 0 ≤ p ≤ 1

•

x lnx

♢Functions convex on R++ = intR+ = {x > 0}:

•

1/xp, p > 0
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♢Functions convex on Rn:
• affine function f(x) = fTx

• A norm ∥ · ∥ on Rn is a convex function:

∥λx+ (1− λ)y∥ ≤ ∥λx∥+ ∥(1− λ)y∥
[Triangle inequality]

= λ∥x∥+ (1− λ)∥y∥
[homogeneity]
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Application of Jensen’s Inequality: Let p = {pi > 0}ni=1, q = {qi >
0}ni=1 be two discrete probability distributions.

Claim: The Kullback-Liebler distance∑
i

pi ln
pi
qi

between the distributions is ≥ 0.

Indeed, the function f(x) = − lnx, Domf = {x > 0}, is convex. Setting

xi = qi/pi, λi = pi we have

0 = − ln

(∑
i
qi

)
= f(

∑
i
pixi)

≤
∑
i
pif(xi) =

∑
i
pi(− ln qi/pi)

=
∑
i
pi ln(pi/qi)
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What is the value of a convex function outside its domain?

Convention. To save words, it is convenient to think that a convex

function f is defined everywhere on Rn and takes real values and value

+∞. With this interpretation, f “remembers” its domain:

Domf = {x : f(x) ∈ R}
x ̸∈ Domf ⇒ f(x) = +∞

and the definition of convexity becomes

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀ x, y ∈ Rn
λ ∈ [0,1]

where the arithmetics of +∞ and reals is given by the rules

+∞ ≤ +∞
a ∈ R ⇒ a+ (+∞) = (+∞) + (+∞) = +∞
0 · (+∞) = 0
λ > 0 ⇒ λ · (+∞) = +∞

Note: Operations like (+∞)− (+∞) or (−5) · (+∞) are undefined!
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♣ Convexity-preserving operations:

♢Taking conic combinations: If fi(x) are convex function on Rn and

λi ≥ 0, then the function
∑
i
λifi(x) is convex

♢Affine substitution of argument: If f(x) is convex function on Rn

and x = Ay + b is an affine mapping from Rk to Rn, then the function

g(y) = f(Ay+ b) is convex on Rk

♢Taking supremum: If fα(x), α ∈ A, is a family of convex function on

Rn, then the function sup
α∈A

fα(x) is convex.

Proof: Epi{sup
α
fα(·)} =

⋂
α
Epi{fα(·)}, and intersections of convex sets are

convex.

♢Superposition Theorem: Let fi(x) be convex functions on Rn, i =
1, ...,m, and F (y1, ..., ym) be a convex and monotone function on Rm.

Then the function

g(x) =

{
F (f1(x), ..., fm(x)) , x ∈ Domfi, ∀i
+∞ ,otherwise

is convex.
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♢Projective transformation: Let f(x) be a convex function of x ∈
Rn. Then the function F (α, x) = αf(x/α) : {α > 0} × Rn → R ∪ {+∞} is
convex.
Indeed, we need to verify that if x, x′ ∈ Rn, α, α′ > 0 and λ ∈ (0,1), then

[λα+ (1− λ)α′]f([λx+ (1− λ)x′]/[λα+ (1− λ)α′]) ≤ λαf(x/α) + (1− λ)α′f(x/α′),

or, which is the same,

f

(
λx+ (1− λ)x′

λα+ (1− λ)α′

)
≤
[

λα

λα+ (1− λ)α′

]
︸ ︷︷ ︸

p

f(x/α) +

[
(1− λ)α′

λα+ (1− λ)α′

]
︸ ︷︷ ︸

q

f(x′/α′) (??)

Note that p, q > 0 and p+ q = 1, so that by convexity of f we have

pf(x/α) + qf(x′/α′) ≥ f(px/α+ qx′/α′︸ ︷︷ ︸
=λx+(1−λ)x′
λα+(1−λ)α′

),

as required in (??).
Illustration: The function α ln(α/β) is convex in the quadrant {α > 0, β >
0}.
Indeed, the function is projective transformation of the convex function

f(β) =

{
− ln(β) , β > 0
+∞ , β ≤ 0
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♢Partial minimization: Let f(x, y) be a convex function of z = (x, y) ∈
Rn, and let

g(x) = inf
y
f(x, y).

Then the function g(x) is convex on every convex set Q on which g does
not take value −∞.
Proof: Let Q be a convex set such that g does not take value −∞ on Q. Let us check
the Convexity Inequality

g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′) [λ ∈ [0,1], x′, x′′ ∈ Q]

There is nothing to check when λ = 0 or λ = 1, so let 0 < λ < 1. In this case, there
is nothing to check when g(x′) or g(x′′) is +∞, so let g(x′) < +∞, g(x′′) < +∞. Since
g(x′) < +∞, for every ϵ > 0 there exists y′ such that f(x′, y′) ≤ g(x′)+ ϵ. Similarly, there
exists y′′ such that f(x′′, y′′) ≤ g(x′′) + ϵ. Now,

g(λx′ + (1− λ)x′′)
≤ f(λx′ + (1− λ)x′′, λy′ + (1− λ)y′′)
≤ λf(x′, y′) + (1− λ)f(x′′, y′′)
≤ λ(g(x′) + ϵ) + (1− λ)(g(x′′) + ϵ)
= λg(x′) + (1− λ)g(x′′) + ϵ

Since ϵ > 0 is arbitrary, we get

g(λx′ + (1− λ)x′′) ≤ λg(x′) + (1− λ)g(x′′).
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How to detect convexity?

Convexity is one-dimensional property:

• A set X ⊂ Rn is convex iff the set

{t : a+ th ∈ X}

is, for every (a, h), a convex set on the axis

• A function f on Rn is convex iff the function

ϕ(t) = f(a+ th)

is, for every (a, h), a convex function on the axis.
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♣ When a function ϕ on the axis is convex?

Let ϕ be convex and finite on (a, b). This is exactly the same as

ϕ(z)− ϕ(x)

z − x
≤
ϕ(y)− ϕ(x)

y − x
≤
ϕ(y)− ϕ(z)

y − z

when a < x < z < y < b. Assuming that ϕ′(x) and ϕ′(y) exist and passing

to limits as z → x+0 and z → y − 0, we get

ϕ′(x) ≤
ϕ(y)− ϕ(x)

y − x
≤ ϕ′(y)

that is, ϕ′(x) is nondecreasing on the set of points from (a, b) where it

exists.
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The following conditions are necessary and sufficient for convexity of a

univariate function:

♢The domain of the function ϕ should be an open interval ∆ = (a, b),

possibly with added endpoint(s) (provided that the corresponding end-

point(s) is/are finite)

♢ ϕ should be continuous on (a, b) and differentiable everywhere, except,

perhaps, a countable set, and the derivative should be monotonically non-

decreasing

♢ at an endpoint of (a, b) which belongs to Domϕ, ϕ is allowed to “jump

up”, but not to jump down:

a ∈ Domf ⇒ f(a) ≥ lim
x→a+0

f(x); b ∈ Domf ⇒ f(b) ≥ lim
x→b−0

f(x)
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♣ Sufficient condition for convexity of a univariate function ϕ: Domϕ

is convex, ϕ is continuous on Domϕ and is twice continuously differen-

tiable, with nonnegative ϕ′′, on intDomϕ.

Indeed, we should prove that under the condition, if x < z < y are in

Domϕ, then

ϕ(z)− ϕ(x)

z − x
≤
ϕ(y)− ϕ(z)

y − z

By Lagrange Theorem, the left ratio is ϕ′(ξ) for certain ξ ∈ (x, z), and

the right ratio is ϕ′(η) for certain η ∈ (z, y). Since ϕ′′(·) ≥ 0 and η > ξ, we

have ϕ′(η) ≥ ϕ′(ξ), Q.E.D.
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♣ Sufficient condition for convexity of a multivariate function f :

Domf is convex and with a nonempty interior, f is continuous on Domf

and is twice continuously differentiable, with positive semidefinite Hessian

matrix f ′′, on intDomf .

Recall: A symmetric matrix H is called positive semidefinite, if hTHh ≥ 0

for all h. Positive semidefiniteness of f ′′ on intDomf is the same as

nonnegativity of the second order directional derivative of f taken at any

point x ∈ intDomf along every direction h ∈ Rn

d2

dt2

∣∣∣
t=0

f(x+ th)≥ 0
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Instructive example: The function

f(x) = ln(
n∑
i=1

exp{xi})

is convex on Rn.
Indeed,

d
dt

∣∣∣
t=0

f(x+ th) = hTf ′(x) =

∑
i
exp{xi}hi∑
i
exp{xi}

d2

dt2

∣∣∣
t=0

f(x+ th) = hTf ′′(x)h = −

(∑
i
exp{xi}hi

)2

(∑
i
exp{xi}

)2 +

∑
i
exp{xi}h2i∑
i
exp{xi}
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d2

dt2

∣∣
t=0

f(x+ th) = hTf ′′(x)h = −


∑
i

exp{xi}hi∑
i

exp{xi}


2

+

∑
i

exp{xi}h2i∑
i

exp{xi}

Setting pi =
exp{xi}∑
j
exp{xj}

, we have

hTf ′′(x)h =
∑
i
pih

2
i −

(∑
i
pihi

)2
=

∑
i
pih

2
i −

(∑
i

√
pi(

√
pihi)

)2
≥

∑
i
pih

2
i −

(∑
i
(
√
pi)

2

)(∑
i
(
√
pihi)

2

)

=
∑
i
pih

2
i −

(∑
i
pih

2
i

)
= 0

(note that
∑
i
pi = 1)
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Note: For many years I thought that ln(
∑
i exp{xi}) is one of very small

family of multi-dimensional functions for which convexity is established

“by bare hands” – by checking positive semidefiniteness of the Hessian.

Recently I realized that convexity of this function can be established by

“Convexity Calculus” with no computations:

s > 0 ⇒ ln(s) = minz [s exp{z} − z − 1] [straightforward computation]

⇒ ln(
∑
i exp{xi}) = minz

[∑
i

exp{z} exp{xi} − z − 1︸ ︷︷ ︸
convex function of [x; z]

]

and it remains to use the rule on preserving convexity by partial minimiza-

tion.
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Corollary: When ci > 0, the function

g(y) = ln

∑
i

ci exp{aTi y}


is convex.

Indeed,

g(y) = ln

∑
i

exp{ln ci+ aTi y}


is obtained from the convex function

ln

∑
i

exp{xi}


by affine substitution of argument.
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Gradient Inequality

Proposition: Let f be a function, x be a point of the domain Domf of f

and Q, x ∈ Q, be a convex set such that f is convex on Q. Assume that

f is differentiable at x: there exists a vector f ′(x) such that

∀ϵ > 0∃δ > 0 : y ∈ Domf & ∥y − x∥ ≤ δ ⇒ |f(y)− f(x)− (y − x)Tf ′(x)| ≤ ϵ∥y − x∥.
Then

∀y ∈ Q : f(y) ≥ f(x) + (y − x)Tf ′(x). (∗)
Proof. Let y ∈ Q. There is nothing to prove when y = x or f(y) = +∞, thus, assume
that f(y) < ∞ and y ̸= x. Let is set zϵ = x+ ϵ(y − x), 0 < ϵ < 1. Then zϵ is an interior
point of the segment [x, y]. Since f is convex, we have

f(y)− f(x)

∥y − x∥
≥
f(zϵ)− f(x)

∥zϵ − x∥
=
f(x+ ϵ(y − x))− f(x)

ϵ︸ ︷︷ ︸
→(y−x)Tf ′(x) as ϵ→ +0

·
1

∥y − x∥

Passing to limit as ϵ→ +0, we arrive at

f(y)− f(x)

∥y − x∥
≥

(y − x)Tf ′(x)

∥y − x∥
,

as required by (∗).
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Lipschitz continuity of a convex function

Proposition: Let f be a convex function, and let K be a closed and

bounded set belonging to relative interior of the domain of f . Then f is

Lipschitz continuous on K, that is, there exists a constant L < ∞ such

that

|f(x)− f(y)| ≤ L∥x− y∥2 ∀x, y ∈ K.

Note: All three assumptions on K are essential, as is shown by the fol-

lowing examples:

♢ f(x) = −
√
x, Domf = {x ≥ 0}, K = [0,1]. Here K ⊂ Domf is closed

and bounded, but is not contained in the relative interior of Domf , and

f is not Lipschitz continuous on K

♢ f(x) = x2, Domf = K = R. Here K is closed and belongs to rint Domf ,

but is unbounded, and f is not Lipschitz continuous on K

♢ f(x) = 1
x, Domf = {x > 0}, K = (0,1]. Here K is bounded and belongs

to rintDomf , but is not closed, and f is not Lipschitz continuous on K
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Maxima and Minima of Convex Functions

(!) Proposition [“unimodality”] Let f be a convex function and x∗ be a

local minimizer of f :

x∗ ∈ Domf & ∃r > 0 : f(x) ≥ f(x∗) ∀(x : ∥x− x∗∥ ≤ r).

Then x∗ is a global minimizer of f :

f(x) ≥ f(x∗) ∀x.

Proof: All we need to prove is that if x ̸= x∗ and x ∈ Domf , then

f(x) ≥ f(x∗). To this end let z ∈ (x∗, x). By convexity we have

f(z)− f(x∗)

∥z − x∗∥
≤
f(x)− f(x∗)

∥x− x∗∥
.

When z ∈ (x∗, x) is close enough to x∗, we have f(z)−f(x∗)
∥z−x∗∥ ≥ 0, whence

f(x)−f(x∗)
∥x−x∗∥ ≥ 0, that is, f(x) ≥ f(x∗).
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Proposition Let f be a convex function. The set of X∗ of global mini-

mizers is convex.

Proof: This is an immediate corollary of important

Lemma: Let f be a convex function. Then the sublevel (a.k.a. ”level”,

or ”Lebesgue”) sets of f , that is, the sets

Xa = {x : f(x) ≤ a}

where a is a real, are convex.

Proof of Lemma: If x, y ∈ Xa and λ ∈ [0,1], then

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
≤ λa+ (1− λ)a = a.

Thus, [x, y] ⊂ Xa.

Illustration: Convexity of ln(
∑
i e
xi) revisited:

Epi{ln(
∑
i e
xi)} = {[x; t] : t ≥ ln(

∑
i e
xi)} = {[x; t] : et ≥

∑
i e
xi}

= {[x; t] :
convex function︷ ︸︸ ︷∑

i
exi−t ≤ 1}︸ ︷︷ ︸

convex set
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♣ When the minimizer of a convex function is unique?

Definition: A convex function is called strictly convex, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

whenever x ̸= y and λ ∈ (0,1).

Note: If a convex function f has open domain and is twice continuously

differentiable on this domain with

hTf ′′(x)h > 0 ∀(x ∈ Domf, h ̸= 0),

then f is strictly convex.

Proposition: For a strictly convex function f a minimizer, if it exists, is

unique.

Proof. Assume that X∗ = Argmin f contains two distinct points x′, x′′.
By strong convexity,

f(
1

2
x′ +

1

2
x′′) <

1

2

[
f(x′) + f(x′′)

]
= inf

x
f,

which is impossible.
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Theorem [Optimality conditions in convex minimization] Let f be a func-

tion which is differentiable at a point x∗ and is convex on a convex set

Q ⊂ Domf which contains x∗. A necessary and sufficient condition for f

to attain its minimum on Q at x∗ is

(x− x∗)Tf ′(x∗) ≥ 0 ∀x ∈ Q. (∗)

Proof, ⇐: Assume that (∗) is valid. Applying Gradient inequality, for

x ∈ Q we have

f(x) ≥ f(x∗) + (x− x∗)Tf ′(x∗),

and (x−x∗)Tf ′(x∗) ≥ 0 by (∗), implying that f(x) ≥ f(x∗) whenever x ∈ Q.
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“Let f be a function which is differentiable at a point x∗ and is

convex on a convex set Q ⊂ Domf which contains x∗. A necessary

and sufficient condition for f to attain its minimum on Q at x∗ is

(x− x∗)Tf ′(x∗) ≥ 0 ∀x ∈ Q.′′

Proof, ⇒: Given that x∗ ∈ Argminy∈Q f(y), let x ∈ Q. Then

0 ≤
f(x∗ + λ[x− x∗])− f(x∗)

λ
∀λ ∈ (0,1),

whence (x− x∗)Tf ′(x∗) ≥ 0.
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♣ Equivalent reformulation: Let f be a function which is differentiable
at a point x∗ and is convex on a convex set Q ⊂ Domf , x∗ ∈ Q. Consider
the radial cone of Q at x∗:

TQ(x∗) = {h : ∃t > 0 : x∗ + th ∈ Q}
Note: TQ(x∗) is indeed a cone which is comprised of all vectors of the
form s(x− x∗), where x ∈ Q and s ≥ 0.
f attains its minimum on Q at x∗ iff

hTf ′(x∗) ≥ 0 ∀h ∈ TQ(x∗),

or, which is the same, iff

f ′(x∗) ∈ NQ(x∗) = {g : gTh ≥ 0∀h ∈ TQ(x∗)}︸ ︷︷ ︸
normal cone of Q at x∗

. (∗)

Example I: x∗ ∈ intQ. Here TQ(x∗) = Rn, whence NQ(x∗) = {0}, and (∗)
becomes the Fermat equation

f ′(x∗) = 0
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Example II: x∗ ∈ rintQ. Let Aff(Q) = x∗+L, where L is a linear subspace

in Rn. Here TQ(x∗) = L, whence NQ(x∗) = L⊥. (∗) becomes the condition

f ′(x∗) is orthogonal to L.

Equivalently: Let Aff(Q) = {x : Ax = b}. Then L = {x : Ax = 0},
L⊥ = {y = ATλ}, and the optimality condition becomes

∃λ∗ :

∇
∣∣∣
x=x∗

[f(x) + (λ∗)T (Ax− b)] = 0

⇕
f ′(x∗) +

∑
i
λ∗i∇(aTi x− bi) = 0

[A =

 aT1...
aTm

]

5.32



Example III: Q = {x : Ax− b ≤ 0} is polyhedral. Here

TQ(x∗) =
{
h : aTi h ≤ 0 ∀i ∈ I(x∗) = {i : aTi x∗ − bi = 0}

}
.

By Homogeneous Farkas Lemma,

NQ(x∗) ≡ {y : aTi h ≤ 0, i ∈ I(x∗) ⇒ yTh ≥ 0}
= {y = −

∑
i∈I(x∗)

λiai : λi ≥ 0}

and the optimality condition becomes

∃(λ∗i ≥ 0, i ∈ I(x∗)) : f ′(x∗) +
∑

i∈I(x∗)
λ∗iai = 0

or, which is the same:

∃λ∗ ≥ 0 :

 f ′(x∗) +
m∑
i=1

λ∗iai = 0

λ∗i (a
T
i x∗ − bi) = 0, i = 1, ...,m

The point is that in the convex case these conditions are necessary and

sufficient for x∗ to be a minimizer of f on Q.
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Example: Let us solve the problem

min
x

cTx+
m∑
i=1

xi lnxi : x ≥ 0,
∑
i

xi = 1

 .
The objective is convex, the domain Q = {x ≥ 0,

∑
i
xi = 1} is convex (and

even polyhedral). Assuming that the minimum is achieved at a point
x∗ ∈ rintQ, the optimality condition becomes

∇
[
cTx+

∑
i
xi lnxi+ λ[

∑
i
xi − 1]

]
= 0

⇕
lnxi = −ci − λ− 1 ∀i

⇕
xi = exp{1− λ} exp{−ci}

Since
∑
i
xi should be 1, we arrive at

xi =
exp{−ci}∑
j
exp{−cj}

.

At this point, the optimality condition is satisfied, so that the point indeed
is a minimizer.
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Maxima of convex functions

Proposition. Let f be a convex function. Then
♢ If f attains its maximum over Domf at a point x∗ ∈ rint Domf , then f
is constant on Domf
Indeed, assuming that f(x) < f(x∗) for some x ∈ Domf , y = x∗ + α[x∗ − x] ∈ Domf for

small α > 0 ⇒x∗ is in the relative interior of segment [x, y] ⊂ Domf

⇒ f(x∗) ≤ λ f(x)︸ ︷︷ ︸
<f(x∗)

+(1− λ)f(y) for some λ ∈ (0,1) ⇒ f(y) > f(x∗) – contradiction!

♢ If Domf is closed and does not contain lines and f attains its maximum
on Domf , then among the maximizers there is an extreme point of Domf
♢ If Domf is polyhedral and f is bounded from above on Domf , then f
attains its maximum on Domf .
• Good news: Maximizing convex function f over a bounded polyhedral
set X ̸= ∅ reduces to computing the function at finitely many extreme
points of the set. For example, problem maxx{f(x) : ∥x∥1 ≤ 1} is easy
• Bad news: For a bounded polyhedral X, the number of extreme points
usually is astronomically large, as is the case for the box X = {x : ∥x∥∞ ≤
1}, making maximizing over extreme points by looking at them one by one
intractable. In general, maximizing convex function is a computationally
intractable task.
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Subgradients of convex functions

♣ Let f be a convex function and x̄ ∈ intDomf . If f differentiable at x̄,

then, by Gradient Inequality, there exists an affine function, specifically,

h(x) = f(x̄) + [∇f(x̄)]T (x− x̄),

which underestimates f everywhere and coincides with f at x̄:

f(x) ≥ h(x)∀x & f(x̄) = h(x̄) (∗)

Affine function with property (∗) may exist also in the case when f is

not differentiable at x̄ ∈ Domf . (∗) implies that

h(x) = f(x̄) + gT (x− x̄) (∗∗)

for certain g. Function (∗∗) indeed satisfies (∗) if and only if g is such

that

f(x) ≥ f(x̄) + gT (x− x̄) ∀x (!)
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Definition. Let f be a convex function and x̄ ∈ Domf . Every vector g

satisfying

f(x) ≥ f(x̄) + gT (x− x̄) ∀x (!)

is called a subgradient of f at x̄. The set of all subgradients, if any, of f

at x̄ is called subdifferential ∂f(x̄) of f at x̄.
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a b

A

B

Geometrically: A hyperplane supporting the epigraph Epi{f} of f at a

point (x̄, f(x̄)) is, at least for x̄ ∈ intDomf , the graph of an affine function

h(x) = f(x̄) + gT (x− x̄) which underestimates f everywhere and is equal

to f at the point x = x̄.

The slope g of this affine function is a subgradient of f at x.
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Definition. Let f be a convex function and x̄ ∈ Domf . Every vector g satisfying

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x (!)

is called a subgradient of f at x̄. The set of all subgradients, if any, of f at x̄ is called

subdifferential ∂f(x̄) of f at x̄.

Example I: By Gradient Inequality, if convex function f is differentiable

at x̄, then ∇f(x̄) ∈ ∂f(x̄). If, in addition, x̄ ∈ intDomf , then ∇f(x̄) is the

unique element of ∂f(x̄).
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Example II: Let f(x) = |x| (x ∈ R). When x̄ ̸= 0, f is differentiable at x̄,

whence ∂f(x̄) = f ′(x̄). When x̄ = 0, subgradients g are given by

|x| ≥ 0+ gx = gx ∀x,

that is, ∂f(0) = [−1,1].

Note: In the case in question, f has directional derivative

Df(x)[h] = lim
t→+0

f(x+ th)− f(x)

t

at every point x ∈ R along every direction h ∈ R, and this derivative is

nothing but

Df(x)[h] = max
g∈∂f(x)

gTh
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Proposition: Let f be convex, Domf be nonempty, and let L =
Aff(Domf) − Aff(Domf) be the linear subspace parallel to Aff(Domf).
Then
♢For every x ∈ Domf , the subdifferential ∂f(x) is a closed convex set
♢ If x ∈ rint Domf , then ∂f(x) is nonempty.
♢ If x ∈ rint Domf , then, for every h ∈ L,

∃Df(x)[h] ≡ lim
t→+0

f(x+ th)− f(x)

t
= max

g∈∂f(x)
gTh.

♢Assume that x̄ ∈ Domf is represented as lim
i→∞

xi with xi ∈ Domf and

that

f(x̄) ≤ lim inf
i→∞

f(xi)

If a sequence gi ∈ ∂f(xi) converges to certain vector g, then g ∈ ∂f(x̄).
♢The multi-valued mapping x 7→ ∂f(x) is locally bounded at every point
x̄ ∈ intDomf , that is, whenever x̄ ∈ intDomf , there exist r > 0 and R <∞
such that

∥x− x̄∥2 ≤ r, g ∈ ∂f(x) ⇒ ∥g∥2 ≤ R.
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Selected proof: “If x̄ ∈ rint Domf , then ∂f(x̄) is nonempty.”
W.l.o.g. let Domf be full-dimensional, so that x̄ ∈ intDomf . Consider the convex set

T = Epi{f} = {(x, t) : t ≥ f(x)}.
Since f is convex, it is continuous on intDomf , whence T has a nonempty interior. The
point (x̄, f(x̄)) clearly does not belong to this interior, whence S = {(x̄, f(x̄))} can be
separated from T : there exists (α, β) ̸= 0 such that

αT x̄+ βf(x̄) ≤ αTx+ βt ∀(x, t ≥ f(x)) (∗)
Clearly β ≥ 0 (otherwise (∗) will be impossible when x = x̄ and t > f(x̄) is large).

Claim: β > 0. Indeed, with β = 0, (*) implies

αT x̄ ≤ αTx ∀x ∈ Domf (∗∗)
Since (α, β) ̸= 0 and β = 0, we have α ̸= 0; but then (∗∗) contradicts x̄ ∈ intDomf .
♢Since β > 0, (∗) implies that if g = −β−1α, then

−gT x̄+ f(x̄) ≤ −gTx+ f(x) ∀x ∈ Domf,

that is,

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x.
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Elementary Calculus of Subgradients

♢ If gi ∈ ∂fi(x) and λi ≥ 0, then∑
i

λigi ∈ ∂(
∑
i

λifi)(x)

♢ If gα ∈ ∂fα(x), α ∈ A,

f(·) = sup
α∈A

fα(·)

and

f(x) = fα(x), α ∈ A∗(x) ̸= ∅,

then every convex combination of vectors gα, α ∈ A∗(x), is a subgradient

of f at x

♢ If gi ∈ ∂fi(x), i = 1, ...,m, and F (y1, ..., ym) is convex and monotone and

0 ≤ d ∈ ∂F (f1(x), ..., fm(x)), then the vector∑
i

digi

is a subgradient of F (f1(·), ..., fm(·)) at x.
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Convex Programming

Lagrange Duality

Saddle Points



Convex Programming

Lagrange Duality

Saddle Points

♣ Mathematical Programming program is

f∗ = min
x

f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X

 (P )

♢x is the design vector. Values of x are called solutions to (P )

♢ f(x) is the objective

♢ g(x) ≡ (g1(x), ..., gm(x))T ≤ 0 – inequality constraints

♢h(x) = (h1(x), ..., hk(x))
T = 0 – equality constraints

♢X ⊂ Rn – domain. We always assume that the objective and the con-

straints are well-defined on X.
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f∗ = min
x

f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X

 (P )

♣ Solution x is called feasible, if it satisfies all the constraints. Problem

which has feasible solutions is called feasible.

♣ If the objective is (below) bounded on the set of feasible solutions, (P )

is called bounded.

♣ The optimal value f∗ is

f∗ =

{
inf
x

{f(x) : x is feasible} , (P ) is feasible

+∞, otherwise

f∗ is a real for feasible and bounded problem, is −∞ for feasible unbounded

problem, and is +∞ for infeasible problem.

♣ Optimal solution of (P ) is a feasible solution x∗ such that f(x∗) = f∗.
Problem which has optimal solutions is called solvable.
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f∗ = min
x

f(x) :
g(x) ≡ (g1(x), ..., gm(x))T ≤ 0
h(x) = (h1(x), ..., hk(x))

T = 0
x ∈ X

 (P )

♣ Problem (P ) is called convex, if

♢X is a convex subset of Rn

♢ f(·), g1(·),...,gm(·) are convex real-valued functions on X

♢There are no equality constraints

[we could allow linear equality constraints, but this does not add gener-

ality]
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Preparing tools for Lagrange Duality:

Convex Theorem on Alternative

♣ Question: How to certify insolvability of the system

f(x) < c
gj(x) ≤ 0, j = 1, ...,m

x ∈ X
(I)

♣ Answer: Assume that there exist nonnegative weights λj, j = 1, ...,m,

such that the inequality

f(x) +
m∑
j=1

λjgj(x) < c

has no solutions in X:

∃λj ≥ 0 : inf
x∈X

[f(x) +
m∑
j=1

λjgj(x)] ≥ c.

Then (I) is insolvable.
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♣ Convex Theorem on Alternative: Consider a system of constraints

on x

f(x) < c
gj(x) ≤ 0, j = 1, ...,m

x ∈ X
(I)

along with system of constraints on λ:

inf
x∈X

[f(x) +
m∑
j=1

λjgj(x)] ≥ c

λj ≥ 0, j = 1, ...,m
(II)

♢ [Trivial part] If (II) is solvable, then (I) is insolvable

♢ [Nontrivial part] If (I) is insolvable and system (I) is convex:

— X is convex set

— f , g1, ..., gm are real-valued convex functions on X

and the subsystem

gj(x) < 0, j = 1, ...,m,
x ∈ X

is solvable [Slater condition], then (II) is solvable.
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♢ [Nontrivial part] If (I) is insolvable and system (I) is convex:

— X is convex set

— f , g1, ..., gm are real-valued convex functions on X

and the subsystem

gj(x) < 0, j = 1, ...,m,
x ∈ X

is solvable [Slater condition], then the system of constraints on λ

inf
x∈X

[f(x) +
m∑
j=1

λjgj(x)] ≥ c

λj ≥ 0, j = 1, ...,m
(II)

is solvable.

Fact: Nontrivial part remains valid when Slater condition is replaced with

Relaxed Slater Condition: There exists x̄ ∈ rintX such that gi(x̄)≤0 for

all i and gi(x̄) < 0 for those i for which gi(·) are not affine functions.
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f(x) < c
gj(x) ≤ 0, j = 1, ...,m

x ∈ X
(I)

Proof of Nontrivial part (under Slater condition): Assume that (I) has

no solutions. Consider two sets in Rm+1:
T︷ ︸︸ ︷u ∈ Rm+1 : ∃x ∈ X :

f(x) ≤ u0
g1(x) ≤ u1

..........
gm(x) ≤ um


{
u ∈ Rm+1 : u0 < c, u1 ≤ 0, ..., um ≤ 0

}
︸ ︷︷ ︸

S
Observations: ♢S, T are convex (since X, f , and gi are so) and nonempty

♢S, T do not intersect (otherwise (I) would have a solution)

Conclusion: S and T can be separated:

∃(a0, ..., am) ̸= 0 : inf
u∈T

aTu ≥ sup
u∈S

aTu
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T︷ ︸︸ ︷u ∈ Rm+1 : ∃x ∈ X :

f(x) ≤ u0
g1(x) ≤ u1

..........
gm(x) ≤ um


{
u ∈ Rm+1 : u0 < c, u1 ≤ 0, ..., um ≤ 0

}︸ ︷︷ ︸
S

∃(a0, ..., am) ̸= 0 :
inf
x∈X

inf
u0 ≥ f(x)
ui ≥ gi(x), i ≤ m

[a0u0 + a1u1 + ...+ amum]

≥ sup
u0 < c, ui ≤ 0, i ≤ m

[a0u0 + a1u1 + ...+ amum]

Conclusion: a ≥ 0, whence

inf
x∈X

[a0f(x) + a1g1(x) + ...+ amgm(x)] ≥ a0c.
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Summary:

∃a ≥ 0, a ̸= 0 :
inf
x∈X

[a0f(x) + a1g1(x) + ...+ amgm(x)] ≥ a0c

Observation: a0 > 0.

Indeed, otherwise 0 ̸= (a1, ..., am) ≥ 0 and

inf
x∈X

[a1g1(x) + ...+ amgm(x)] ≥ 0,

while ∃x̄ ∈ X : gj(x̄) < 0 for all j.

Conclusion: a0 > 0, whence

inf
x∈X

[
f(x) +

m∑
j=1

[
aj

a0

]
︸ ︷︷ ︸
λj≥0

gj(x)
]
≥ c.
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Lagrange Function

♣ Consider optimization program

Opt(P ) = min
{
f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X

}
. (P )

and associate with it Lagrange function

L(x, λ) = f(x) +
m∑
j=1

λjgj(x)

along with the Lagrange Dual problem

Opt(D) = max
λ≥0

L(λ), L(λ) = inf
x∈X

L(x, λ) (D)

♣ Convex Programming Duality Theorem:
♢ [Weak Duality] For every λ ≥ 0, L(λ) ≤ Opt(P ). In particular,

Opt(D) ≤ Opt(P )

♢ [Strong Duality] If (P ) is convex and below bounded and satisfies Re-
laxed Slater condition, then (D) is solvable, and

Opt(D) = Opt(P ).
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Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇓

L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓

Opt(D) = max
λ≥0

[
inf
x∈X

L(x, λ)

]
︸ ︷︷ ︸

L(λ)

(D)

Weak Duality: “Opt(D) ≤ Opt(P )”: There is nothing to prove when

(P ) is infeasible, that is, when Opt(P ) = ∞. If x is feasible for (P ) and

λ ≥ 0, then L(x, λ) ≤ f(x), whence

λ ≥ 0 ⇒ L(λ) ≡ inf
x∈X

L(x, λ)

≤ inf
x∈X is feasible

L(x, λ)

≤ inf
x∈X is feasible

f(x)

= Opt(P )
⇒ Opt(D) = sup

λ≥0
L(λ) ≤ Opt(P ).
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Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇒ L(x, λ) = f(x) +

∑
j

λjgj(x)

⇒ Opt(D) = max
λ≥0

[
inf
x∈X

L(x, λ)

]
︸ ︷︷ ︸

L(λ)

(D)

Strong Duality: “If (P ) is convex and below bounded and satisfies Relaxed Slater
condition, then (D) is solvable and Opt(D) = Opt(P )”:
The system

f(x) < Opt(P ), gj(x) ≤ 0, j = 1, ...,m, x ∈ X

has no solutions. Since the Relaxed Slater condition holds true, we can apply CTA. By
CTA,

∃λ∗ ≥ 0 : f(x) +
∑
j

λ∗jgj(x) ≥ Opt(P ) ∀x ∈ X,

whence

L(λ∗) ≥ Opt(P ). (∗)
Combined with Weak Duality, (∗) says that

Opt(D) = L(λ∗) = Opt(P ).
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Opt(P ) = min {f(x) : gj(x) ≤ 0, j ≤ m, x ∈ X} (P )
⇓

L(x, λ) = f(x) +
∑
j

λjgj(x)

⇓

Opt(D) = max
λ≥0

[
inf
x∈X

L(x, λ)

]
︸ ︷︷ ︸

L(λ)

(D)

Note: The Lagrange function “remembers”, up to equivalence, both (P )
and (D).
Indeed,

Opt(D) = sup
λ≥0

inf
x∈X

L(x, λ)

is given by the Lagrange function. Now consider the function

L(x) = sup
λ≥0

L(x, λ) =

{
f(x), gj(x) ≤ 0, j ≤ m
+∞, otherwise

(P ) clearly is equivalent to the problem of minimizing L(x) over x ∈ X:

Opt(P ) = inf
x∈X

sup
λ≥0

L(x, λ)
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Saddle Points

♣ Let X ⊂ Rn, Λ ⊂ Rm be nonempty sets, and let F (x, λ) be a real-valued

function on X ×Λ. This function gives rise to two optimization problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Game interpretation: Player I chooses x ∈ X, player II chooses λ ∈ Λ.

With choices of the players x, λ, player I pays to player II the sum of

F (x, λ). What should the players do to optimize their wealth?

♢ If Player I chooses x first, and Player II knows this choice when choosing

λ, II will maximize his profit, and the loss of I will be F (x). To minimize

his loss, I should solve (P ), thus ensuring himself loss Opt(P ) or less.

♢ If Player II chooses λ first, and Player I knows this choice when choosing

x, I will minimize his loss, and the profit of II will be F(λ). To maximize

his profit, II should solve (D), thus ensuring himself profit Opt(D) or more.
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Observation: For Player I, second situation seems better, so that it
is natural to guess that his anticipated loss in this situation is ≤ his
anticipated loss in the first situation:

Opt(D) ≡ sup
λ∈Λ

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ) ≡ Opt(P ).

This indeed is true: assuming Opt(P ) < ∞ (otherwise the inequality is
evident),

∀(ϵ > 0) : ∃xϵ ∈ X : sup
λ∈Λ

F (xϵ, λ) ≤ Opt(P ) + ϵ

⇒ ∀λ ∈ Λ : F(λ) = inf
x∈X

F (x, λ) ≤ F (xϵ, λ) ≤ Opt(P ) + ϵ

⇒ Opt(D) ≡ sup
λ∈Λ

F(λ) ≤ Opt(P ) + ϵ

⇒ Opt(D) ≤ Opt(P ).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

♣ What should the players do when making their choices simultaneously?
A “good case” when we can answer this question – F has a saddle point.
Definition: We call a point (x∗, λ∗) ∈ X × Λ a saddle point of F , if

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ).
In game terms, a saddle point is an equilibrium – no one of the players can
improve his wealth, provided the adversary keeps his choice unchanged.

F (x, λ) = −xλ F (x, λ) = x2 − λ2 + xλ
In both cases, F (x,0) ≥ F (0,0) ≥ F (0, λ) ⇒ (0,0) is a saddle point
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Definition: We call a point (x∗, λ∗) ∈ X × Λ a saddle point of F (x, λ) :

X × Λ → R, if

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ).

Proposition [Existence and Structure of saddle points]: F has a sad-

dle point if and only if both (P ) and (D) are solvable with equal optimal

values. In this case, the saddle points of F are exactly the pairs (x∗, λ∗),
where x∗ is an optimal solution to (P ), and λ∗ is an optimal solution to

(D).

At every saddle point, (x∗, λ∗), F (x∗, λ∗) equals to the common value of

Opt(P ) and Opt(D).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Proof, ⇒: Assume that (x∗, λ∗) is a saddle point of F , and let us prove
that x∗ solves (P ), λ∗ solves (D), and Opt(P ) = Opt(D).
Indeed, we have

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ)

whence

Opt(P ) ≤ F (x∗) = sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗)

Opt(D) ≥ F(λ∗) = inf
x∈X

F (x, λ∗) = F (x∗, λ∗)

Since Opt(P ) ≥ Opt(D), we see that all inequalities in the chain

Opt(P ) ≤ F (x∗) = F (x∗, λ∗) = F(λ∗) ≤ Opt(D)

are equalities. Thus, x∗ solves (P ), λ∗ solves (D) and Opt(P ) = Opt(D).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F(λ)

(D)

Proof, ⇐. Assume that (P ), (D) have optimal solutions x∗, λ∗ and

Opt(P ) = Opt(D), and let us prove that (x∗, λ∗) is a saddle point. We

have

Opt(P ) = F (x∗) = sup
λ∈Λ

F (x∗, λ) ≥ F (x∗, λ∗)

Opt(D) = F(λ∗) = inf
x∈X

F (x, λ∗) ≤ F (x∗, λ∗)
(∗)

Since Opt(P ) = Opt(D), all inequalities in (∗) are equalities, so that

sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗) = inf
x∈X

F (x, λ∗).
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇒ L(x, λ) = f(x) +
m∑
j=1

λjgj(x)

Theorem [Saddle Point form of Optimality Conditions in Convex Pro-

gramming]

Let x∗ ∈ X.

♢ [Sufficient optimality condition] If x∗ can be extended, by a λ∗ ≥ 0, to

a saddle point of the Lagrange function on X × {λ ≥ 0}:

L(x, λ∗) ≥ L(x∗, λ∗) ≥ L(x∗, λ) ∀(x ∈ X,λ ≥ 0),

then x∗ is optimal for (P ).

♢ [Necessary optimality condition] If x∗ is optimal for (P ) and (P ) is con-

vex and satisfies the Relaxed Slater condition, then x∗ can be extended,

by a λ∗ ≥ 0, to a saddle point of the Lagrange function on X × {λ ≥ 0}.
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇒ L(x, λ) = f(x) +
m∑
j=1

λjgj(x)

Proof, ⇒: “Assume x∗ ∈ X and ∃λ∗ ≥ 0 :

L(x, λ∗) ≥ L(x∗, λ
∗) ≥ L(x∗, λ) ∀(x ∈ X,λ ≥ 0). (∗)

Then x∗ is optimal for (P ).”

Clearly, sup
λ≥0

L(x, λ) =

{
+∞, x ∈ X is infeasible
f(x), otherwise

We have λ∗ ≥ 0 & +∞ > L(x∗, λ∗) ≥ L(x∗, λ) ∀λ ≥ 0 whence

gj(x∗) ≤ 0∀j (otherwise supλ≥0L(x∗, λ) = ∞)
& L(x∗, λ∗) = f(x∗) +

∑
j λ

∗
jgj(x∗) = max

λ≥0
L(x∗, λ) = f(x∗) +max

λ≥0

∑
j λjgj(x∗),

⇒λ∗jgj(x∗) = 0 ∀j and L(x∗, λ∗) = f(x∗)
⇒ the left inequality in (∗) reads

L(x, λ∗) ≥ f(x∗) ∀x ∈ X. (!)

Since λ∗ ≥ 0, one has f(x) ≥ L(x, λ∗) for all feasible x, and therefore (!) implies that

x is feasible ⇒ f(x) ≥ f(x∗).
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇒ L(x, λ) = f(x) +
m∑
j=1

λjgj(x)

Proof, ⇐: Assume x∗ is optimal for convex problem (P ) satisfying the Relaxed Slater
condition. Then ∃λ∗ ≥ 0 :

L(x, λ∗) ≥ L(x∗, λ
∗) ≥ L(x∗, λ) ∀(x ∈ X,λ ≥ 0).

As we have already seen, the primal and the dual problems stemming from the Lagrange
function are

Opt(PLag) = minx∈X

[
L(x) =

{
f(x), x is feasible
+∞, otherwise

]
(PLag)

Opt(D) = maxλ≥0L(λ) (D)

By Lagrange Duality Theorem, in the case under consideration the dual problem has

an optimal solution λ∗ and Opt(D) = Opt(PLag). By the origin of x∗, x∗ is an optimal

solution to (PLag). Consequently, (x∗, λ∗) is a saddle point of the Lagrange function by

Proposition on Existence and Structure of saddle points.
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Theorem [Karush-Kuhn-Tucker Optimality Conditions in Convex Pro-
gramming] Let (P ) be a convex program, let x∗ be its feasible solution,
and let the functions f , g1,...,gm be differentiable at x∗. Then
♢The Karush-Kuhn-Tucker condition:
Exist Lagrange multipliers λ∗ ≥ 0 such that

∇f(x∗) +
m∑
j=1

λ∗j∇gj(x∗) ∈ N∗
X(x∗) := {g : gT (x− x∗) ≥ 0∀x ∈ X}

λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

is sufficient for x∗ to be optimal.
♢ If (P ) satisfies Relaxed Slater condition:
∃x̄ ∈ rintX : gj(x̄) ≤ 0 for all constraints and gj(x̄) < 0 for all nonlinear
constraints,
then the KKT is necessary and sufficient for x∗ to be optimal.
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇒: Let (P ) be convex, x∗ be feasible, and f , gj be differentiable at x∗. Assume
also that the KKT holds:
Exist Lagrange multipliers λ∗ ≥ 0 such that

(a) ∇f(x∗) +
m∑
j=1

λ∗j∇gj(x∗) ∈ N∗
X(x∗)

(b) λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

Then x∗ is optimal.
Indeed, complementary slackness plus λ∗ ≥ 0 ensure that

L(x∗, λ
∗) ≥ L(x∗, λ) ∀λ ≥ 0.

Further, L(x, λ∗) is convex in x ∈ X and differentiable at x∗ ∈ X, so that (a) implies that

L(x, λ∗) ≥ L(x∗, λ
∗) ∀x ∈ X.

Thus, x∗ can be extended to a saddle point of the Lagrange function and therefore is

optimal for (P ).
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Opt(P ) = min
x

{
f(x) : gj(x) ≤ 0, j ≤ m,x ∈ X

}
(P )

⇓
L(x, λ) = f(x) +

m∑
j=1

λjgj(x)

Proof, ⇐ Let (P ) be convex and satisfy the Relaxed Slater condition, let x∗ be optimal
and f , gj be differentiable at x∗. Then
Exist Lagrange multipliers λ∗ ≥ 0 such that

(a) ∇f(x∗) +
m∑
j=1

λ∗j∇gj(x∗) ∈ N∗
X(x∗)

(b) λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

By Saddle Point Optimality condition, from optimality of x∗ it follows that ∃λ∗ ≥ 0 such
that (x∗, λ∗) is a saddle point of L(x, λ) on X × {λ ≥ 0}. This is equivalent to

λ∗jgj(x∗) = 0 ∀j & min
x∈X

L(x, λ∗) = L(x∗, λ
∗)︸ ︷︷ ︸

(∗)

Since the function L(x, λ∗) is convex in x ∈ X and differentiable at x∗ ∈ X, relation (∗)
implies (a).
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♣ Application example: Assuming ai > 0, p ≥ 1, let us solve the problem

min
x

∑
i

ai
xi

: x > 0,
∑
i

x
p
i ≤ 1


Assuming x∗ > 0 is a solution such that

∑
i
(x∗i )

p = 1, the KKT conditions

read

∇x

{∑
i

ai
xi

+ λ(
∑
i
x
p
i − 1)

}
= 0 ⇔ ai

x2i
= pλx

p−1
i∑

i
x
p
i = 1

whence xi = c(λ)a
1

p+1
i . Since

∑
i
x
p
i should be 1, we get

x∗i =
a

1
p+1
i(∑

j
a

p
p+1
j

)1
p
.

This point is feasible, problem is convex, KKT at the point is satisfied

⇒ x∗ is optimal!
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Existence of Saddle Points

♣ Theorem [Sion-Kakutani] Let X ⊂ Rn, Λ ⊂ Rm be nonempty convex

closed sets and F (x, λ) : X × Λ → R be a continuous function which is

convex in x ∈ X and concave in λ ∈ Λ.

Assume that X is compact, and that there exists x̄ ∈ X such that for

every a ∈ R the set

Λa : {λ ∈ Λ : F (x̄, λ) ≥ a}

is bounded (e.g., Λ is bounded). Then F possesses a saddle point on

X × Λ.
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♠ The key role in the proof of Sion-Kakutani Theorem is played by

MiniMax Lemma: Let fi(x), i = 1, ...,m, be convex continuous functions

on a convex compact set X ⊂ Rn. Then there exists µ∗ ≥ 0 with
∑
i
µ∗i = 1

such that

min
x∈X

max
1≤i≤m

fi(x) = min
x∈X

∑
i

µ∗i fi(x)

Note: Setting ∆ = {µ ∈ Rm : µ ≥ 0,
∑

i
µi = 1}, consider the convex-concave saddle point problem

min
x∈X

max
µ∈∆

∑
i

µifi(x) ⇒


Opt(P ) = minx∈X F (x) := max

µ∈∆

∑
i

µifi(x)︸ ︷︷ ︸
≡maxi fi(x)

(P )

Opt(D) = maxµ∈∆F (µ) := minx∈X
∑

i
µif)i(x) (D)

MinMax Lemma states that Opt(D) = Opt(P ), or (since (P ) and (D) under the premise of MinMax

lemma clearly are solvable) that the convex-concave function
∑

i
µifi(x) has a saddle point on X ×∆.

⇒MinMax Lemma is a special case of Sion-Kakutani Theorem. After

this special case is proved, the general result follows easily.
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Proof of MinMax Lemma: Consider the optimization program

min
t,x

{t : fi(x)− t ≤ 0, i ≤ m, (t, x) ∈ X+} ,
X+ = {(t, x) : x ∈ X}

(P )

The optimal value in this problem clearly is

t∗ = min
x∈X

max
i
fi(x).

The program clearly is convex, solvable and satisfies the Slater condition, whence there
exists λ∗ ≥ 0 and an optimal solution (x∗, t∗) to (P ) such that (x∗, t∗;λ∗) is the saddle
point of the Lagrange function on X+ × {λ ≥ 0}:

min
x∈X,t

{
t+

∑
i

λ∗i (fi(x)− t)

}
= t∗ +

∑
i

λ∗i (fi(x∗)− t∗) (a)

max
λ≥0

{
t∗ +

∑
i

λi(fi(x∗)− t∗)

}
= t∗ +

∑
i

λ∗i (fi(x∗)− t∗) (b)

(b) implies that t∗ +
∑
i

λ∗i (fi(x∗)− t∗) = t∗.

(a) implies that
∑
i

λ∗i = 1. Thus, λ∗ ≥ 0,
∑

i λ
∗
i = 1 and

min
x∈X

∑
i

λ∗ifi(x) = min
x∈X,t

{
t+

∑
i

λ∗i (fi(x)− t)

}
= t∗ +

∑
i

λ∗i (fi(x∗)− t∗) = t∗= min
x∈X

max
i
fi(x).
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Proof of Sion-Kakutani Theorem: We should prove that problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

are solvable with equal optimal values.
10. Since X is compact and F (x, λ) is continuous on X × Λ, the function F (λ) is
continuous on Λ. Besides this, the sets

Λa = {λ ∈ Λ : F (λ) ≥ a}
are contained in the sets

Λa = {λ ∈ Λ : F (x̄, λ) ≥ a}
and therefore are bounded. Finally, Λ is closed, so that the continuous function F (·)
with bounded level sets Λa attains it maximum on a closed set Λ. Thus, (D) is solvable.
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20. Consider the sets

X(λ) = {x ∈ X : F (x, λ) ≤ Opt(D)}.
These are closed convex subsets of a compact set X. Let us prove that every finite
collection of these sets has a nonempty intersection. Indeed, assume that X(λ1) ∩ ... ∩
X(λN) = ∅, so that

maxj=1,...,NF (x, λj) > Opt(D) ∀x ∈ X

⇒ minx∈XmaxjF (x, λj) > Opt(D)

by compactness of X and continuity of F .

By MinMax Lemma, there exist weights µj ≥ 0,
∑
j

µj = 1, such that

min
x∈X

∑
j
µjF (x, λj)︸ ︷︷ ︸

≤ F (x,
∑

jµjλj)
since F is concave in λ

> Opt(D),

that is,

F (
∑

j
µjλj) := min

x∈X
F (x,

∑
j
µjλj) ≥ min

x∈X

∑
j

µjF (x, λj) > Opt(D),

which is impossible.
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30. Since every finite collection of closed convex subsets X(λ) of the compact set X
has a nonempty intersection, all those sets have a nonempty intersection:

∃x∗ ∈ X : F (x∗, λ) ≤ Opt(D) ∀λ.

Due to Opt(P ) ≥ Opt(D), this is possible iff x∗ is optimal for (P ) and Opt(P ) = Opt(D).
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Extension: Cone-Constrained
Convex Program/Lagrange Duality/Optimality Conditions

♠ Traditionally, when passing from Linear Programming problem

min
x

{cTx : [gT1x− b1; g
T
2x− b2; ...; g

T
mx− bm]≤[0; 0; ...; 0]}

to a nonlinear convex problem, one replaces linear objective cTx and linear

left hand sides gTi x−bi of the constraints with nonlinear convex functions.

♠ There exists less straightforward and in many aspects essentially better

suited for convex optimization way to introduce nonlineariy – to make

“nonlinear” the inequality ≤
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Vector Inequalities

♣ Let K ⊂ Rν be a regular cone – closed convex pointed (K∩ [−K] = {0})
cone with nonempty interior in Rν.
♠ K-ordering: K defines ordering on E = Rν: we say that a ∈ E is

K-greater than or equal to b ∈ E (synonym: b is K-less than or equal to

a, notation: a ≥K b ⇔ b ≤K a) when a− b ∈ K:

{a ≥K b⇔ b ≤K a⇔ a− b ≥K 0 ⇔ b− a ≤K 0} means that a− b ∈ K

Example: coordinate-wise ≥. When K is the nonnegative orthant Rn+
in E = Rn, ≥K (denoted just ≥) is the standard coordinate-wise vector

inequality:

[a1; ...; an] ≥ [b1; ...; bn] ⇔ ai ≥ bi, i ≤ n.

Note: When n ≥ 2, the ordering ≤K on Rn, same as coordinate-wise

≤, is partial – some pairs a, b are comparable, that is, either a ≤K b, or

b ≤K a holds true, and some pairs a, b are incomparable – neither a ≤K b,

nor b ≤K a holds true.
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K: regular(closed convex pointed with nonempty interior.

{a ≥K b⇔ b ≤K a⇔ a− b ≥K 0 ⇔ b− a ≤K 0} means that a− b ∈ K

K-ordering

♡ has all standard properties of partial ordering:

— is reflexive: a ≥K a∀a ∈ E

— is antisymmetric: a ≥K b and b ≥K a iff a = b

— is transitive: if a ≥K b and b ≥K c, then a ≥K c

♡ is compatible with linear operations on E:

— we can sum up valid K-inequalities of the same sign: if a ≥K b and

c ≥K d, then a+ c ≥K b+ d

— we can multiply both sides of valid K-inequality by a nonnegative real:

if a ≥K b and λ ≥ 0, then λa ≥K λb
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K: closed convex pointed (K ∩ [−K] = {0}) cone with nonempty interior in E = Rν,
a ≥K b⇔ b ≤K a⇔ a− b ∈ K ⇔ a− b ≥K 0 ⇔ b− a ≤K 0
♡ Closedness of K allows to pass to limits in ≥K-inequalities: if ai ≥K bi for all i and
ai → a, bi → b as i→ ∞, then a ≥K b
♡ Nonemptiness of intK allows to define strict K-inequality:

{a >K b⇔ b <K a⇔ a− b >K 0 ⇔ b− a <K 0} means that a− b ∈ intK

In contrast to ≥K, the relation >K is stable: the strict inequality a >K b is preserved by

small enough perturbations in a and b.

♡ Arithmetics of strict and nonstrict inequalities is exactly the same as in the case of

arithmetic ≥ and >; say, the sum of valid ≥ and > inequalities is a valid > inequality,

Example: The interior of Rn+ is the set of vectors with positive coordi-
nates ⇒Strict version of the coordinate-wise vector inequality is

[a1; ...; an] > [b1; ...; bn] ⇔ ai > bi, i ≤ n.

Example: The semidefinite cone Sn+ – the set of symmetric positive
semidefinite matrices in the space Sn of n×n symmetric matrices – defines
the semidefinite ordering ≥Sn+

(denoted just ⪰) on Sn:

{A ⪰ B ⇔ B ⪯ A⇔ A−B ⪰ 0 ⇔ B −A ⪯ 0} means that xTAx− xTBx ≥ 0 ∀x ∈ Rn
{A ≻ B ⇔ B ≺ A⇔ A−B ≻ 0 ⇔ B −A ≺ 0} means that xTAx− xTBx > 0 ∀x ∈ Rn\{0}
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♠ Dual cone. With a cone K ⊂ Rn one associates its dual cone K∗:

K∗ = {λ ∈ Rn : λTx ≥ 0 ∀x ∈ K}

Fact: The cone K∗ dual to a regular cone K is regular, and the cone

dual to the dual is the original cone:

[K∗]∗ = K.

Fact: Multiplying both sides of valid K-inequality a ≤K b by K∗-
nonegative λ, we get valid scalar inequality:

a ≤K b & λ ≥K∗ 0 ⇒ λTa ≤ λT b.

Example: The cone dual to the nonnegative orthant Rn+ is the same

nonnegative orthant Rn+.
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♠ K-convexity: Let K be a regular cone in E = Rν, X be a convex set

in Rn, and f(x) : X → E be a mapping. f is called K-convex on X if

∀(x, y ∈ X,λ ∈ [0,1]) : f(λx+ (1− λ)y) ≤K λf(x) + (1− λ)f(y),

or, which is the same, the K-epigraph {[x; y] : x ∈ X, y ≥K f(x)} of f is a

convex set.

Examples: • The usual – scalar – convex function f in X is exactly the

K-convex one, with K = R+ ⊂ E = R
• Rk+-convex function on X is a vector-valued function on X with k convex

scalar components

• The function f(x) = xxT : Rm×n → Sm is Sm+-convex:

∀(x, y ∈ Rm×n, λ ∈ [0,1]) : [λx+(1−λ)y][λx+(1−λ)y]T ⪯ λxxT+(1−λ)yyT

due to

λxxT+(1−λ)yyT−[λx+(1−λ)y][λx+(1−λ)y]T = λ(1−λ)[x−y][x−y]T ⪰ 0.
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♠ Convex optimization problem in cone-constrained form is

Opt(P ) = min
x∈X

{f(x) : g(x) = Ax− b ≤ 0, ĝ(x) ≤K 0} , (P )

where

• X ⊂ Rn is a nonempty convex set

• f(x) is a convex real-valued function on X

• K is a regular cone in E = Rν

• g(x) = Ax− b : Rn → Rk is affine

• ĝ(x) : X → E is K-convex mapping

Note: Convex problem in Mathematical Programming form

min
x∈X

{f(x) : gi(x) ≤ 0, i ≤ m}

with convex nonempty X and convex and real-valued on X functions

f, g1, ..., gm is a convex optimization problem in cone-constrained form,

with empty set of polyhedral constraints g(x) = Ax − b ≤ 0, ĝ(x) =

[g1(x); ...; gm(x)] and K = Rm+,
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Note: A system of J convex conic constraints

ĝj(x) ≤Kj
0, j ≤ J

is equivalent to a single convex conic constraint

ĝ(x) := [ĝ1(x); , ...; ĝJ(x)] ≤K 0

on a larger cone

K = K1 × ...×KJ :=
{
[y1; ...; yJ] : yj ∈ Kj, j ≤ J

}
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Convex optimization problem in cone-constrained form is

Opt(P ) = min
x∈X

{f(x) : g(x) = Ax− b ≤ 0, ĝ(x) ≤K 0} , (P )

where

• X ⊂ Rn is a nonempty convex set

• f(x) is a convex real-valued function on X

• K is a regular cone in E = Rν

• g(x) = Ax− b : Rn → Rk is affine

• ĝ(x) : X → E is K-convex mapping

• Cone-constrained Lagrange function of (P ) is the function

L(x;λ, λ̂) = f(x) + λ
T
g(x) + λ̂T ĝ(x)

We always restrict the Lagrange multipliers [λ; λ̂] to reside in the domain

LM = Rk+ ×K∗ where

K∗ = {λ̂ ∈ E = Rν : λ̂Tz ≥ 0∀z ∈ K}

is the cone dual to K.
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Convex optimization problem in cone-constrained form is

Opt(P ) = min
x∈X

{f(x) : g(x) = Ax− b ≤ 0, ĝ(x) ≤K 0} , (P )

Associated Cone-constrained Lagrange function is

L(x;λ, λ̂) = f(x) + λ
T
g(x) + λ̂T ĝ(x) : X × LM → R, LM = {[λ; λ̂] : λ ≥ 0, λ̂ ≥K∗ 0}.

♠ Cone-constrained Lagrange dual to (P ) is the problem

Opt(D) = max
[λ;λ̂]∈LM

{
L(λ, λ̂) := inf

x∈X
L(x;λ, λ̂)

}
(D)

Note: when [λ; λ̂] ∈ LM and x is feasible for (P ), we have

L(x;λ, λ̂) = f(x) + λ
T
g(x)︸ ︷︷ ︸
≤0

+ λ̂T ĝ(x)︸ ︷︷ ︸
≤0

≤ f(x),

implying that infx∈X L(x;λ, λ̂) ≤ Opt(P ), that is L(λ, λ̂) ≤ Opt(P ) for all

[λ; λ̂] ∈ LM, that is,

Opt(D) ≤ Opt(P ) [weak duality]
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♠ We say that convex optimization problem in cone-constrained form

Opt(P ) = min
x∈X

{f(x) : g(x) = Ax− b ≤ 0, ĝ(x) ≤K 0} , (P )

satisfies Relaxed Slater Condition, if there exists x̄ ∈ rintX such that

g(x) ≤ 0 and ĝ(x)<K0.

♠ Convex Duality Theorem, Cone-constrained Form: Consider con-

vex optimization problem in cone-constrained form (P ) (so that X is

convex, f is convex and real-valued on X, K is regular cone, and ĝ is well

defined and K-convex on X) along with its Cone-constrained Lagrange

Dual problem

Opt(D) = max
[λ;λ̂]∈LM

{
L(λ, λ̂) := inf

x∈X

[
f(x) + λ

T
g(x) + λ̂T ĝ(x)

]}
(D)

Assume that (P ) is below bounded and satisfies Relaxed Slater Condition.

Then (D) is solvable, and

Opt(P ) = Opt(D).
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♣ Conic Programming. Consider the special case of convex program-

ming problem in cone-constrained form – one where the objective is linear,

the domain X is the entire Rn and the function ĝ(x) is affine:

Opt(P ) = min
x

{
cTx : g(x) = Ax− b ≤ 0, ĝ(x) = Px− p ≤K 0

}
(P )

Optimization problem in this form is called conic.

Note: The entire structure, whatever it means, of a conic problem “sits”

in the cone K. As a matter of fact, just 3 types of cones are responsible

for nearly all applications of Convex Optimization:

• Finite direct products K of nonnegative rays — nonnegative orthants

Rn+ giving rise to Linear Programming

• Finite direct products K of Lorentz cones Ln = {x ∈ Rn : xn ≥
√∑n−1

ℓ=1x
2
ℓ }

giving rise to Conic Quadratic (a.k.a. Second Order Conic) Programming,

• Finite direct products K of semidefinite cones Sn+ = {A ∈ Sn : A ⪰ 0}
comprised of positive semidefinite n× n matrices, giving rise to Semidef-

inite Programming
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♣ As far as Convex Programming is concerned, “expressive abilities” of Linear, Conic
Quadratic and Semidefinite Programming are extremely strong.
Example: The messy problem

(o) minimize
n∑
ℓ=1

xℓ

(a) x ≥ 0;

(b) aTℓ x ≤ bℓ, ℓ = 1, ..., n;

(c) ∥Px− p∥2 ≤ cTx+ d;

(d) x
1+1/ℓ
ℓ ≤ eTℓ x+ fℓ, ℓ = 1, ..., n;

(e) x
1/(ℓ+3)
ℓ x

ℓ/(ℓ+3)
ℓ+1 ≥ x

−ℓ/2
ℓ x−ℓℓ+1 + gTℓ x+ hℓ, ℓ = 1, ..., n− 1;

(f)


x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
... ... ... . . . ...
xn xn−1 xn−2 · · · x1

 ⪰ 0 & Det



x1 x2 x3 · · · xn
x2 x1 x2 · · · xn−1

x3 x2 x1 · · · xn−2
... ... ... . . . ...
xn xn−1 xn−2 · · · x1


 ≥ 1;

(g) 1 ≤
n∑
ℓ=1

xℓ cos(ℓω) ≤ 1+ sin2(5ω)∀ω ∈
[
−π

7
,1.3

]
can be converted, in a systematic way (by compiler!), into an equivalent conic problem:

• (o–b) is just LP • (o–e) is a Conic Quadratic problem

• (o–g) is a Semidefinite problem

⇒ seemingly highly diverse constraints of the original problem allow for unified treatment.
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Opt(P ) = min
x

{
cTx : Ax− b︸ ︷︷ ︸

g(x)

≤ 0, Px− p︸ ︷︷ ︸
ĝ(x)

≤K 0
}

(P )

♠ Linear, Conic Quadratic, and Semidefinite Programming possess deep

intrinsic structural similarity allowing for unified design of theoretically and

practically efficient algorithms – Interior Point Path-Following Methods.

These are the algorithms used when high accuracy solutions to convex

problems are sought.
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Opt(P ) = min
x

{
cTx : Ax− b︸ ︷︷ ︸

g(x)

≤ 0, Px− p︸ ︷︷ ︸
ĝ(x)

≤K 0
}

(P )

♠ Cone-constrained Lagrange Dual to (P ) is the problem

Opt(D) = max
λ∈Rk+,λ̂∈K∗

{
L(λ, λ̂) = min

x

[
cTx+ λ

T
[Ax− b] + λ̂T [Px− p]

]
︸ ︷︷ ︸

min
x
xT [c+ATλ+PT λ̂]−bTλ−pT λ̂


= max

λ,λ̂

{
−bTλ− pT λ̂ : c+ATλ+ PT λ̂ = 0, λ ≥ 0, λ̂ ≥K∗ 0

}
(D)

The “red” problem is called Conic Dual of the conic problem (P ).

Fact: The dual problem is conic, and the duality is symmetric – the

problem dual to (D) is (equivalent to) (P )
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Opt(P ) = min
x

{
cTx : Ax− b ≤ 0, Px− p ≤K 0

}
(P )

Opt(D) = max
λ,λ̂

{
−bTλ− pT λ̂ : c+ATλ+ PT λ̂ = 0, λ ≥ 0, λ̂ ≥K∗ 0

}
(D)

Convex Duality Theorem in Cone-constrained Form combines with sym-

metry of Conic Duality to imply the following

Conic Duality Theorem: Let one of the conic problems in the primal-

dual pair (P ), (D) be bounded and satisfy the Relaxed Slater Condition.

Then the other problem is solvable, and Opt(P ) = Opt(D). Besides this,

we always have Opt(D) ≤ Opt(P ).
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Opt(P ) = min
x

{
cTx : Ax− b ≤ 0, Px− p ≤K 0

}
(P )

Opt(D) = max
λ,λ̂

{
−bTλ− pT λ̂ : c+ATλ+ PT λ̂ = 0, λ ≥ 0, λ̂ ≥K∗ 0

}
(D)

♠ From Conic Duality Theorem one easily extracts

Optimality Conditions in Conic Programming: Let (P ), (D) satisfy

Relaxed Slater Condition and let x∗, (λ∗, λ̂∗) be feasible solutions to (P )

and to (D). Then the solutions x∗ and (λ∗, λ̂∗) are optimal for the re-

spective problems

[“zero duality gap”] Iff cTx∗ = −bTλ∗ − pT λ̂∗
and

[“complementary slackness”] Iff λ
T
∗ [Ax∗ − b] = 0 and λ̂T∗ [Px∗ − p] = 0

and these equivalent to each other facts take place iff (x∗, [λ∗; λ̂∗]) is a

saddle point (min in x ∈ Rn, max in [λ; λ̂] ∈ LM) of the Conic Lagrange

function

L(x; [λ; λ̂]) = cTx+ λ
T
g(x) + λ̂T ĝ(x)

on the domain (x ∈ Rn, [λ; λ̂] ∈ LM).
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Geometry of Primal-dual Pair of Conic Problems

Fact: A primal-dual pair of conic problems can be equivalently reformu-
lated in the following geometric form:
https://www2.isye.gatech.edu/~nemirovs/LMCOLN2023Spring.pdf, Section 1.4.4

♠ Given are:

• a regular cone M ⊂ Rn along with its dual cone M∗
• a linear subspace L ⊂ Rn along with its orthogonal complement L⊥ ⊂ Rn

• two shift vectors e ∈ Rn, f ∈ Rn

♠ Find: a pair of vectors

ξ∗ ∈ [L+ e] ∩M, λ∗ ∈ [L⊥ + f ] ∩M∗

which are orthogonal to each other:

ξT∗ λ∗ = 0.

Fact: Under primal-dual strict feasibility:

[L+ e] ∩ intM ̸= ∅ & [L⊥ + f ] ∩ intM∗ ̸= ∅

the solution does exist.
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Find ξ∗ ∈ [L+ e] ∩M & λ∗ ∈ [L⊥ + f ] ∩M∗ : ξT∗ λ∗ = 0

Geometric form of primal-dual pair (P), (D) of conic problems
on 3D Lorentz cone M = M∗

Red: feasible set [L+ e] ∩M of (P)
Blue: feasible set [L⊥ + f ] ∩M∗ of (D)
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Lecture 7:

Optimality Conditions



Optimality Conditions in Mathematical Programming

♣ Situation: We are given a Mathematical Programming problem

min
x

f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X

 . (P )

Question of interest: Assume that we are given a feasible solution x∗
to (P ). What are the conditions (necessary, sufficient, necessary and suf-

ficient) for x∗ to be optimal?

Note: We are looking for verifiable conditions expressed in terms of taken

at x∗ values and derivatives (first, second,...) of the objective and the

constraints
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min
x

f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X

 . (P )

Fact: Except for convex programs, there are no verifiable sufficient con-

ditions for global optimality. There exist, however, verifiable conditions

for local optimality

Definition: A feasible solution x∗ to (P ) is called locally optimal, if it is

the best, in terms of f , among feasible solutions close enough to x∗, that
is,

∃r > 0 : f(x) ≥ f(x∗) whenever x is feasible and ∥x− x∗∥ ≤ r.

Fact: Existing conditions for local optimality assume that x∗ ∈ intX,

which, from the viewpoint of local optimality of x∗, is exactly the same

as to say that X = Rn.
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♣ Situation: We are given a Mathematical Programming problem

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

and a feasible solution x∗ to the problem, and are interested in neces-

sary/sufficient conditions for local optimality of x∗.
Fact: Existing optimality conditions assume that x∗ is a regular solution

to (P ) – feasible solution such that f, gj, hi are well defined and twice con-

tinuously differentiable in a neighborhood of x∗, and taken at x∗ gradients

of all active at x∗ constraints (i.e., all equality constraints and those of

inequality ones which are satisfied at x∗ as equalities) are linearly inde-

pendent.

Fact: Optimality conditions are expressed in terms of the Lagrange func-

tion

L(x;λ, µ) = f(x) +
m∑
j=1

λjgj(x) +
k∑
i=1

µihi(x)

of (P ).
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Formulating Optimality Conditions

min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

♣ Necessary Optimality condition:

Theorem Let x∗ be a regular locally optimal solution to (P ). Then

(i) [first order part] x∗ is a Karush-Kuhn-Tucker (KKT) point of (P )

meaning that for properly selected Lagrange multipliers λ∗≥ 0 and µ∗ it

holds

λ∗jgj(x∗) = 0, j ≤ m [complementary slackness]

∇xL(x∗;λ∗, µ∗) = 0 [KKT equation]

Note: λ∗, µ∗, if any exist, are uniquely defined by x∗
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min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

(ii) [second order part] The second order directional derivatives

d2

dt2

∣∣∣
t=0

L(x∗ + td;λ∗, µ∗)

of the Lagrange function (where λ, µ are set to λ∗, µ∗) should be nonneg-

ative for every direction d orthogonal to the taken at x∗ gradients of the

active at x∗ constraints:

d ∈ Tn = {d : dT∇gj(x∗) = 0 ∀(j ≤ m : gj(x∗) = 0) & dT∇hi(x∗) = 0 ∀i ≤ k}
⇒ d2

dt2

∣∣∣
t=0

L(x∗ + td;λ∗, µ∗) ≥ 0
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min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

♣ Sufficient Optimality condition:

Theorem Let x∗ be a regular solution to (P ). Assume that

(i) [first order part] x∗ is a Karush-Kuhn-Tucker (KKT) point of (P ), the

Lagrange multipliers being λ∗ ≥ 0, µ∗

(ii) [second order part] The second order directional derivatives
d2

dt2

∣∣∣
t=0

L(x∗ + td;λ∗, µ∗)
of the Lagrange function (where λ, µ are set to λ∗, µ∗) should be positive

for every nonzero direction d orthogonal to the taken at x∗ gradients of

equality constraints and all inequality constraints associated with positive

λ∗j (by complementary slackness, these inequality constraints are active

at x∗):
0 ̸= d ∈ Ts = {d : dT∇gj(x∗) = 0 ∀(j ≤ m : λ∗j > 0) & dT∇hi(x∗) = 0 ∀i ≤ k}

⇒ d2

dt2

∣∣∣
t=0

L(x∗ + td;λ∗, µ∗) > 0

Then x∗ is a locally optimal solution to (P ).

Note: Tn ⊂ Ts, with Tn = Ts if and only if λ∗ > 0.
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Justifying Optimality Conditions

♣ The key element in justifying Optimality conditions is the following

♠ Implicit Function Theorem. Let ϕ1, ..., ϕp be κ ≥ 1 continuously

differentiable in a neighbourhood of a point x∗ ∈ Rn functions such that

the vectors ∇ϕℓ(x∗), ℓ ≤ p, are linearly independent, and let ϕℓ(x∗) = 0,

ℓ ≤ p. Then there exist a neighbourhood X of x∗, a neighborhood Y

of y∗ := 0, and inverse to each other κ times continuously differentiable

one-to-one mappings y(x) of X onto Y and x(y) of Y onto X such that

y(x∗) = y∗ and in y-variables the functions ϕℓ become just the first ℓ

coordinates:

ϕℓ(x) = eTℓ y(x), x ∈ X, ℓ ≤ p [⇔ yℓ = ϕℓ(x(y)), y ∈ Y, ℓ ≤ p]

where e1, ..., en are the standard basic orths in Rn.
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min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

♠ This is how Optimality conditions are derived from the IFT:

• We are speaking about local optimality of a regular solution x∗ to (P ),

and presence of non-active at x∗ inequality constraints affects neither local

optimality of x∗, nor the optimality conditions – complementary slackness

“fully suppresses” the impact of non-active at x∗ inequality conditions on

the validity of conditions’ premises

⇒we can (and do!) assume w.l.o.g. that all inequality constraints are

active at x∗.

7.8



min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
. (P )

• Regularity of x∗ allows to apply IFT with κ = 2 to the m+ k functions
gj(·), j ≤ m, hi(·), i ≤ k. As a result, we arrive at neighbourhoods X of
x∗ and Y of y∗ = 0 and twice continuously differentiable inverse to each
other mappings y(x) of X onto Y and Y onto X such that y(x∗) = y∗ and

gj(x) = eTj y(x), i ≤ m & hi(x) = eTm+iy(x), i ≤ k.

Consequently, substitution of variables x = x(y) converts (P ) into linearly
constrained optimization problem

min
y

{
ϕ(y) := f(y(x)) : yj ≤ 0, j ≤ m & ym+i = 0, i ≤ k

}
(P )

Our strategy is as follows:
• Clearly, x∗ is locally optimal for (P ) if and only if y∗ = 0 is locally optimal
for (P )
• Problem (P ) is simple, and it is easy to verify related Optimality con-
ditions
• Finally, it is easily seen that Optimality conditions for (P ) “translate”
into our target Optimality conditions for (P ).
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min
y

{
ϕ(y) := f(y(x)) : yj ≤ 0, j ≤ m & ym+i = 0, i ≤ k

}
(P )

♣ The feasible set of (P ) is the polyhedral cone

F = {y ∈ Rn : yj ≡ eTj y ≤ 0, j ≤ m, ym+i ≡ eTm+iy = 0, i ≤ k}

♣ An evident necessary condition for 0 ∈ R+ to be a locally optimal

solution to the problem of minimizing twice continuously differentiable in

a neighborhood of 0 univariate function ψ(·) over the nonnegative ray is

ψ′(0) ≥ 0 & ψ′′(0) ≥ 0 when ψ′(0) = 0

Consequently,

♠ Condition N:

dT∇ϕ(0) ≥ 0 ∀d ∈ F & dT∇2ϕ(0)d ≥ 0 ∀d ∈ K := {d ∈ F : dT∇ϕ(0) = 0}

is necessary for y∗ = 0 to be a locally optimal solution to (P ).
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min
y

{
ϕ(y) := f(y(x)) : yj ≤ 0, j ≤ m & ym+i = 0, i ≤ k

}
(P )

♣ The first part

dT∇ϕ(0) ≥ 0 ∀d ∈ F = {y ∈ Rn : eTj y ≤ 0, j ≤ m, ±eTm+iy ≤ 0, i ≤ k}

of condition N states that the homogeneous linear inequality −dT∇ϕ(0) ≤ 0

in variables d ∈ Rn is a consequence of the system

dT ej ≤ 0, j ≤ m & ± dT em+i ≤ 0, i ≤ k

of homogeneous linear inequalities in variables d. By Homogeneous Farkas

Lemma, this is the same as to say that −∇ϕ(0) is a linear combination,

with coefficients λ∗j≥ 0, j ≤ m, and µ∗i , i ≤ k of the vectors eℓ, ℓ ≤ m+ k,

or, which is again the same, that

• For properly selected λ∗ ≥ 0 and µ∗ one has

∇yL(y∗;λ∗, µ∗) = 0
[
L(y;λ, µ) = ϕ(y) +

∑m
j=1 λjyj +

∑k
i=1 µiym+i

]
that is, y∗ = 0 is a KKT point of (P ).
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min
y

{
ϕ(y) := f(x(y)) : yj ≤ 0, j ≤ m & ym+i = 0, i ≤ k

}
(P )

L(y;λ, µ) = ϕ(y) +
∑m
j=1λjyj +

∑k
i=1µiym+i

♣ The summary of our considerations is as follows:

Claim N:

The condition that y∗ is a KKT point of (P ), the Lagrange multipliers

being some λ∗ ≥ 0, µ∗, and, in addition,

dT∇2ϕ(0)d = dT∇2
y

∣∣∣
y=y∗=0

L(y;λ, µ)d ≥ 0

for all d ∈ K := {d ∈ F := {d ∈ Rn : eTj d ≤ 0, j ≤ m, eTm+id = 0, i ≤ k} :

dT∇ϕ(0) = 0}

=
{
d :

eTj d = 0 ∀(j ≤ m : λ∗j > 0)

eTj d ≤ 0∀(j ≤ m : λ∗j = 0)

eTm+id = 0, i ≤ k

}

is necessary for y∗ = 0 to be a locally optimal solution to (P ).
Note: the teal equality above is due to

∇ϕ(0) = [−λ∗1 ≤ 0; ...;−λ∗m ≤ 0;−µ∗
1; ...;−µ∗

k; 0 ; ...; 0 ]
d ∈ F ⇒ d = [ d1 ≤ 0; ...; dm ≤ 0; 0; ...; 0; dm+k+1; ...; dn]



min
y

{ϕ(y) := f(x(y)) : yj ≤ 0, j ≤ m & ym+i = 0, i ≤ k} (P )

L(y;λ, µ) = ϕ(y) +
∑m

j=1λjyj +
∑k

i=1µiym+i

♣ Further, an evident sufficient condition for 0 ∈ R+ to be a locally optimal solution
to the problem of minimizing twice continuously differentiable in a neighborhood of 0
univariate function ψ(·) over R+ is

ψ′(0) ≥ 0 & ψ′′(0) > 0 when ψ′(0) = 0

This suggest an educated guess (on a closest inspection, indeed true) that
Condition S:

dT∇ϕ(0) ≥ 0 ∀d ∈ F & dT∇2ϕ(0)d > 0 ∀0 ̸= d ∈ K := {d ∈ F : dT∇ϕ(0) = 0}
is sufficient for y∗ = 0 to be a locally optimal solution to (P ).
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♣ Processing condition S in the same fashion as condition N above, we arrive at
Claim S:
The condition that y∗ = 0 is a KKT point of (P ) , the Lagrange multipliers being λ∗ ≥ 0,
µ∗, and, in addition,

dT∇2ϕ(0)d = dT∇2
y

∣∣
y=y∗=0

L(y;λ, µ)d > 0

for all 0 ̸= d ∈ K := {d ∈ F := {d ∈ Rn : eTj d ≤ 0, j ≤ m, eTm+id = 0, i ≤ k} :
dT∇ϕ(0) = 0}

=
{
d :

eTj d = 0 ∀(j ≤ m : λ∗j > 0)
eTj d ≤ 0 ∀(j ≤ m : λ∗j = 0)
eTm+id = 0, i ≤ k

}
is sufficient for y∗ = 0 to be a locally optimal solution to (P ).

♣ We have arrived at Claims N, S providing pretty close to each other necessary and
sufficient conditions for y∗ = 0 to be a locally optimal solution to problem (P ).
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♣ Difficulty: Resulting optimality conditions require checking nonnegativity/strict pos-
itivity of a quadratic function on the “nonzero part” K\{0} of a polyhedral cone. Unless
K is a linear subspace, such a check can be computationally intractable, as is the case
when K is nonnegative orthant. Thus, the conditions we have designed so far are not
verifiable in general.
Remedy: let us “spoil” the conditions, replacing
• in the necessary optimality condition given by Claim N — nonnegativity of the quadratic
form dT∇2

y

∣∣
y=0

L(y;λ∗, µ∗)d with nonnegativity of the form on the largest linear subspace

contained in K; on the closest inspection this is the linear subspace
Tn = {d ∈ Rn : eTℓ d = 0 ∀ℓ ≤ m+ k};

• in the sufficient optimality condition given by Claim S — positivity of the quadratic
form dT∇2

y

∣∣
y=0

L(y;λ∗, µ∗)d on the nonzero part of K with positivity of the form on the

nonzero part of the smallest linear subspace containing K; on the closest inspection this
is the linear subspace

T s = {d ∈ Rn : eTj d = 0 ∀(j ≤ m : λ∗j > 0) & eTm+id = 0 ∀i ≤ k}
♣ The spoiled necessary (sufficient) optimality condition remains necessary (resp, suf-
ficient) for local optimality and becomes verifiable. The resulting verifiable optimality
conditions are nothing but the classical Necessary/Sufficient optimality conditions as
applied to the regular solution y∗ = 0 of problem (P ).
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♣ “Translation” of classical necessary/sufficient conditions for y∗ = 0 to be locally opti-
mal solution to (P ) into conditions for x∗ to be locally optimal solution to (P ) is readily
given by the following immediate
Observation: Let x∗, y∗ ∈ Rn, let Φ be a twice continuously differentiable in a neigh-
borhood of y∗ function, and x 7→ y(x) ∈ Rn be a twice continuously differentiable in a
neighborhood of x∗ ∈ Rn mapping with y∗ = y(x∗) and with the taken at x∗ Jacobian
being nonsingular. Setting Φ(x) = Φ(y(x)),
• the first order directional derivative of Φ taken at x∗ along a direction h is the same
as the first order directional derivative of Φ taken at y∗ along the direction Jh
• in the case of ∇Φ(y∗) = 0, the second order directional derivative of Φ taken at x∗
along a direction h is the same as the second order directional derivative of Φ taken at
y∗ along the direction Jh.
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min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

}
(P )

♣ Definition. A solution x∗ to (p) is called nondegenerate, if
• x∗ is a regular solution to the problem
• x∗ satisfies the premise of Sufficient Optimality condition and as such is a KKT point
of the problem, with the Lagrange multipliers λ∗ ≥ 0, µ∗ uniquely defined by x∗,
and
• λ∗j > 0 whenever the inequality constraint gj(x) ≤ 0 is active at x∗.
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Theorem Let x∗ be a nondegenerate solution to (P ). Let us embed (P ) into the
parametric family of problems

min
x

{
f(x) :

g1(x) ≤ a1, ..., gm(x) ≤ am
h1(x) = b1, ..., hk(x) = bk

}
(P [a, b])

so that (P ) is (P [0,0]). There exists a neighborhood Vx of x∗ and a neighborhood Va,b
of the point a = 0, b = 0 in the space of parameters a, b such that
♢∀(a, b) ∈ Va,b, in Vx there exists a unique KKT point x∗(a, b) of (P [a, b]), and this point is
a nondegenerate solution to (P [a, b]). Besides this, x∗(a, b) is the unique optimal solution
to the optimization problem

Optloc(a, b) = min
x

f(x) :
g1(x) ≤ a1, ..., gm(x) ≤ am
h1(x) = b1, ..., hk(x) = bk

x ∈ Vx

 (Ploc[a, b])

♢x∗(a, b) and the corresponding Lagrange multipliers λ∗(a, b), µ∗(a, b) are continuously
differentiable functions of (a, b) ∈ Va,b, and

∂Optloc(a,b)
∂aj

= ∂f(x∗(a,b))
∂aj

= −λ∗j(a, b)
∂Optloc(a,b)

∂bi
= ∂f(x∗(a,b))

∂bi
= −µ∗

i (a, b)
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Simple example: Existence of Eigenvalue

♣ Consider optimization problem

Opt = min
x∈Rn

{
f(x) = xTAx : h(x) := 1− xTx = 0

}
(P )

where A = AT is an n×n matrix. The problem clearly is solvable. Let x∗ be its optimal
solution. What can we say about x∗?
Claim: x∗ is a regular solution to (P ).
Indeed, we should prove that the gradients of active at x∗ constraints are linearly inde-
pendent. There is only one constraint, and its gradient at the feasible set is nonzero.
• Since x∗ is a regular globally (and therefore locally) optimal solution, at x∗ the Neces-
sary Optimality condition should hold: ∃µ∗:

∇x

L(x;µ∗)︷ ︸︸ ︷[
xTAx+ µ∗(1− xTx)

]
= 0 ⇔ 2(A− µ∗I)x∗ = 0

dT∇xh(x∗) = 0︸ ︷︷ ︸
⇔dTx∗=0

⇒ dT∇2
xL(x∗;µ

∗)d ≥ 0︸ ︷︷ ︸
⇔dT(A−µ∗I)d≥0
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Opt = min
x∈Rn

{
f(x) = xTAx : h(x) := 1− xTx = 0

}
(P )

Situation: If x∗ is optimal, then ∃µ∗:

Ax∗ = µ∗x∗ (A)
dTx∗ = 0 ⇒ dT(A− µ∗I)d ≥ 0 (B)

♣ (A) says that x∗ ̸= 0 is an eigenvector of A with eigenvalue µ∗; in particular, we see
that a symmetric matrix always has a real eigenvector
♣ (B) along with (A) says that yT(A− µ∗I)y ≥ 0 for all y.
Indeed, every y ∈ Rn can be represented as y = tx∗ + d with dTx∗ = 0. We now have

yT [A− µ∗I]y = (tx∗ + d)T [A− µ∗I](tx∗ + d)
= t2xT∗ [A− µ∗I]x∗︸ ︷︷ ︸

=0

+2tdT [A− µ∗I]x∗︸ ︷︷ ︸
=0

+ dT [A− µ∗I]d︸ ︷︷ ︸
≥0

≥ 0
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Opt = min
x∈Rn

{
f(x) = xTAx : h(x) := 1− xTx = 0

}
(P )

Note: In the case in question, Necessary Optimality condition can be rewritten equiv-
alently as ∃µ∗:

[A− µ∗I]x∗ = 0
yT [A− µ∗I]y ≥ 0 ∀y (∗)

and is not only necessary, but also sufficient for feasible solution x∗ to be globally
optimal.
To prove sufficiency, let x∗ be feasible, and µ∗ be such that (∗) holds true. For every
feasible solution x, one has

0 ≤ xT [A− µ∗I]x = xTAx− µ∗xTx = xTAx− µ∗,

whence xTAx ≥ µ∗. For x = x∗, we have

0 = xT∗ [A− µ∗I]x∗ = xT∗Ax∗ − µ∗xT∗ x∗ = xT∗Ax∗ − µ∗,

whence xT∗Ax∗ = µ∗. Thus, x∗ is globally optimal for (P ), and µ∗ is the optimal value in
(P ).
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Extension: S-Lemma. Let A,B be symmetric matrices, and let B be such that

∃x̄ : x̄TBx̄ > 0. (∗)
Then the inequality

xTAx ≥ 0 (A)

is a consequence of the inequality

xTBx ≥ 0 (B)

iff (A) is a “linear consequence” of (B): there exists λ ≥ 0 such that

xT [A− λB]x ≥ 0∀x [⇔ A ⪰ λB] (C)

that is, (A) is a weighted sum of (B) (weight λ ≥ 0) and identically true inequality (C).
Sketch of the proof: The only nontrivial statement is that “If (A) is a consequence of
(B), then there exists λ ≥ 0 such that ...”. To prove this statement, assume that (A)
is a consequence of (B).

7.21



Situation:

∃x̄ : x̄TBx̄ > 0; xTBx ≥ 0︸ ︷︷ ︸
(B)

⇒ xTAx ≥ 0︸ ︷︷ ︸
(A)

Consider optimization problem

Opt = min
x

{
xTAx : h(x) ≡ 1− xTBx = 0

}
.

Problem is feasible by (∗), and Opt ≥ 0. Assume that an optimal solution x∗ exists.
Then, same as above, x∗ is regular, and at x∗ the Necessary Optimality condition holds
true: ∃µ∗:

∇x

∣∣
x=x∗

[
xTAx+ µ∗[1− xTBx]

]
= 0 ⇔ [A− µ∗B]x∗ = 0

dT∇x

∣∣
x=x∗

h(x) = 0︸ ︷︷ ︸
⇔dTBx∗=0

⇒ dT [A− µ∗B]d ≥ 0

We have 0 = xT∗ [A− µ∗B]x∗, that is, µ∗ = Opt ≥ 0. Representing y ∈ Rn as tx∗ + d with
dTBx∗ = 0 (that is, t = xT∗By), we get

yT [A− µ∗B]y = t2xT∗ [A− µ∗B]x∗︸ ︷︷ ︸
=0

+2tdT [A− µ∗B]x∗︸ ︷︷ ︸
=0

+ dT [A− µ∗B]d︸ ︷︷ ︸
≥0

≥ 0,

Thus, µ∗ ≥ 0 and yT [A− µ∗B]y ≥ 0 for all y, Q.E.D.
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Part II

Continuous Optimization: Basic
Algorithms



Lecture 8:

Introduction to Optimization
Algorithms



Introduction to Optimization Algorithms

♣ Goal: Approximate numerically solutions to Mathematical Programming problems

min
x

{
f(x) :

gj(x) ≤ 0, j = 1, ...,m
hi(x) = 0, i = 1, ..., k

}
(P )

♣ Traditional MP algorithms to be considered in the Course do not assume the ana-
lytic structure of (P ) to be known in advance (and do not know how to use the structure
when it is known). These algorithms are black-box-oriented: when solving (P ), method
generates a sequence of iterates x1, x2,... in such a way that xt+1 depends solely on
local information of (P ) gathered along the preceding iterates x1, ..., xt.
Information on (P ) obtained at xt usually is comprised of the values and the first and
the second derivatives of the objective and the constraints at xt.
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How difficult it is to find a needle in haystack?

♣ In some cases, local information, available to black-box-oriented algorithms, is really
poor, so that approximating global solution to the problem becomes seeking needle in
multidimensional haystack.
♣ Let us look at a 3D haystack with 2 m edges, and let a needle be a cylinder of height
20 mm and radius of cross-section 1 mm;

Haystack and the needle

How to find the needle in the haystack?
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♣ Optimization setting: We want to minimize a smooth function f which is zero “out-
side of the needle” and negative inside it.
Note: When only local information on the function is available, we get trivial information
until the sequence of iterates we are generating hits the needle.
⇒As a result, it is easy to show that the number of iterations needed to hit the needle
with a reasonable confidence cannot be much smaller than when generating the iterates
at random. In this case, the probability for an iterate to hit a needle is as small as
7.8 · 10−9, that is, to find the needle with a reasonable confidence, we need to generate
hundreds of millions of iterates.
♠ As the dimension of the problem grows, the indicated difficulties are dramatically
amplified. For example, preserving the linear sizes of the haystack and the needle and
increasing the dimension of the haystack from 3 to 20, the probability for an iterate to
hit the needle becomes as small as 8.9 · 10−67 !
♣ In the “needle in the haystack” problem it is easy to find a locally optimal solu-
tion. However, slightly modifying the problem, we can make the latter task disastrously
difficult as well.
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• In unconstrained minimization, it is not too difficult to find a point where the gradient
of the objective becomes small, i.e., where the First Order Necessary Optimality condi-
tion is “nearly” satisfied.
• In constrained minimization, it could be disastrously difficult to find just a feasible
solution....
♠ However: The classical algorithms of Continuous Optimization, while providing no
meaningful guarantees in the worst case, are capable to process quite efficiently typical
optimization problems arising in applications.
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♠ Note: In optimization, there exist algorithms which do exploit problem’s structure and
allow to approximate the global solution in a reasonable time. Traditional methods of
this type – Simplex method and its variations – do not go beyond Linear Programming
and Linearly Constrained Convex Quadratic Programming.
In 1990’s, new efficient ways to exploit problem’s structure were discovered (Interior
Point methods). The resulting algorithms, however, do not go beyond Convex Pro-
gramming.
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♣ Except for very specific and relatively simple problem classes, like Linear Programming
or Linearly Constrained Quadratic Programming, optimization algorithms cannot guar-
antee finding exact solution – local or global – in finite time. The best we can expect
from these algorithms is convergence of approximate solutions generated by algorithms
to the exact solutions.
♠ Even in the case when “finite” solution methods do exist (Simplex method in Linear
Programming), no reasonable complexity bounds for these methods are known, there-
fore in reality the ability of a method to generate the exact solution in finitely many
steps is neither necessary, nor sufficient to justify the method.

8.6



♣ Aside of Convex Programming, traditional optimization methods are unable to guar-
antee convergence to a globally optimal solution. Indeed, in the non-convex case there
is no way to conclude from local information whether a given point is/is not globally
optimal:

a b

“looking” at problem around a, we get absolutely no hint that the true global optimal
solution is b.
♠ In order to guarantee approximating global solution, it seems unavoidable to “scan” a
dense set of the values of x in order to be sure that the globally optimal solution is not
missed. Theoretically, such a possibility exists; however, the complexity of “exhaustive
search” methods blows up exponentially with the dimension of the decision vector, which
makes these methods completely impractical.
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♣ Traditional optimization methods do not incorporate exhaustive search and, as a
result, cannot guarantee convergence to a global solution.
♠ A typical theoretical result on a traditional optimization method as applied to a general
(not necessary convex) problem sounds like:

Assume that problem (P ) possesses the following properties:
...
...
Then the sequence of approximate solutions generated by method X is bounded,
and all its limiting points are KKT points of the problem.

or

Assume that x∗ is a nondegenerate local solution to (P ). Then method X,
started close enough to x∗, converges to x∗.
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Classification of MP Algorithms

♣ There are two major traditional classifications of MP algorithms:
♢Classification by application fields, primarily into
• algorithms for unconstrained optimization
• algorithms for constrained optimization
♢Classification by information used by the algorithms, primarily into
• zero order methods which use only the values of the objective and the constraints
• first order methods (use both values and first order derivatives)
• second order methods (use values, first- and second order derivatives).
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Rate of Convergence of MP Algorithm

min
x

{
f(x) :

gj(x) ≤ 0, j = 1, ...,m
hi(x) = 0, i = 1, ..., k

}
(P )

♣ There is a necessity to quantify the convergence properties of MP algorithms. Tra-
ditionally, this is done via asymptotical rate of convergence defined as follows:
Step 1. We introduce an appropriate error measure of a candidate solution x – a non-
negative function ErrorP(x) which is zero exactly at the set X∗ of solutions to (P ) we
intend to approximate.
Examples: (i) Distance to the set X∗:

ErrorP(x) = inf
x∗∈X∗

∥x− x∗∥2
(ii) Residual in terms of the objective and the constraints

ErrorP(x) = max

[
f(x)−Opt(P ), [g1(x)]+, ..., [gm(x)]+, |h1(x)|, ..., |hk(x)|

]
[a∗ = max[a,0]]
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Step 2. Assume that we have established convergence of our method, that is, we know
that if x∗t are approximate solutions generated in t steps by the method as applied to a
problem (P ) from a given family, then

ErrorP(t) ≡ ErrorP(x
∗
t) → 0, t→ ∞

We then roughly quantify the rate at which the sequence ErrorP(t) of nonnegative reals
converges to 0. Specifically, we say that
♢ the method converges sublinearly, if the error goes to zero less rapidly than a geometric
progression, e.g., as 1/t or 1/t2;
♢ the method converges linearly, if there exist C <∞ and q ∈ (0,1) such that

Error(P )(t) ≤ Cqt

q is called the convergence ratio. E.g.,

ErrorP(t) ≍ e−at

exhibits linear convergence with ratio e−a.
Sufficient condition for linear convergence with ratio q ∈ (0,1) is that

lim
t→∞

ErrorP(t+1)

ErrorP(t)
< q
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♢ the method converges superlinearly, if the sequence of errors converges to 0 faster
than every geometric progression:

∀q ∈ (0,1)∃C : ErrorP(t) ≤ Cqt

For example,

ErrorP(t) ≍ e−at
2

corresponds to superlinear convergence.
Sufficient condition for superlinear convergence is

lim
t→∞

ErrorP(t+1)

ErrorP(t)
= 0

♢ the method exhibits convergence of order p > 1, if

∃C : ErrorP(t+1) ≤ C (ErrorP(t))
p

Convergence of order 2 is called quadratic. For example,

ErrorP(t) ≍ e−ap
t

converges to 0 with order p.
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Informal explanation: When the method converges, ErrorP(t) goes to 0 as t → ∞,
that is, eventually the decimal representation of ErrorP(t) has zero before the decimal
dot and more and more zeros after the dot; the number of zeros following the decimal
dot is called the number of accuracy digits in the corresponding approximate solution.
Traditional classification of rates of convergence is based on how many steps, asymp-
totically, is required to add a new accuracy digit to the existing ones.
♢With sublinear convergence, the “price” of accuracy digit grows with the position of
the digit. For example, with rate of convergence O(1/t) every new accuracy digit is 10
times more expensive, in terms of # of steps, than its predecessor.
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♢With linear convergence, every accuracy digit has the same price, proportional to
1

ln

(
1

convergence ratio

). Equivalently: every step of the method adds a fixed number r

of accuracy digits (for q not too close to 0, r ≈ 1− q);
♢With superlinear convergence, every subsequent accuracy digit eventually becomes
cheaper than its predecessor – the price of accuracy digit goes to 0 as the position of
the digit grows. Equivalently, every additional step adds more and more accuracy digits.
♢With convergence of order p > 1, the price of accuracy digit not only goes to 0 as the
position k of the digit grows, but does it rapidly enough – in a geometric progression.
Equivalently, eventually every additional step of the method multiplies by p the number
of accuracy digits.
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♣ With the traditional approach, the convergence properties of a method are the better
the higher is the “rank” of the method in the above classification. Given a family of
problems, traditionally it is thought that linearly converging on every problem of the
family method is faster than a sublinearly converging, superlinearly converging method
is faster than a linearly converging one, etc.
♣ Note: Usually we are able to prove existence of parameters C and q quantifying linear
convergence:

ErrorP(t) ≤ Cqt

or convergence of order p > 1:

ErrorP(t+1) ≤ C(ErrorP(t))
p,

but are unable to find numerical values of these parameters – they may depend on
“unobservable” characteristics of a particular problem we are solving. As a result,
traditional “quantification” of convergence properties is qualitative and asymptotical.

8.15



Solvable Case of MP – Convex Programming

♣ We have seen that as applied to general MP programs, optimization methods have a
number of severe theoretical limitations, including the following major ones:
♢Unless exhaustive search (completely unrealistic in high-dimensional optimization) is
used, there are no guarantees of approaching global solution
♢Quantification of convergence properties is of asymptotical and qualitative character.
As a result, the most natural questions like:

We should solve problems of such and such structure with such and such sizes
and the data varying in such and such ranges. How many steps of method X
are sufficient to solve problems within such and such accuracy?

usually do not admit theoretically valid answers.
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♣ In spite of their theoretical limitations, in reality traditional MP algorithms allow to
solve many, if not all, MP problems of real-world origin, including those with many
thousands of variables and constraints.
♣ Moreover, there exists a “solvable case” when practical efficiency admits solid theo-
retical guarantees – the case of Convex Programming.
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• Here is a typical “Convex Programming” result:
Assume we are solving a Convex Programming program

Opt = min
x

{f(x) : gj(x) ≤ 0, j ≤ m, |xi| ≤ 1, i ≤ n} .

where the objective and the constraints are normalized by the requirement

|xi| ≤ 1, i ≤ n⇒ |f(x)| ≤ 1, |gj(x)| ≤ 1, j ≤ m

Given ϵ ∈ (0,1), one can find an ϵ-solution xϵ to the problem:

|xϵi| ≤ 1︸ ︷︷ ︸
∀i≤n

& gj(x
ϵ) ≤ ϵ︸ ︷︷ ︸

∀j≤m

& f(xϵ)−Opt < ϵ

in no more than

2n2 ln

(
2n

ϵ

)
steps, with a single computation of the values and the first order derivatives of f, g1, ..., gm
at a point and 100(m+ n)n additional arithmetic operations per step.
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Line Search

♣ Line Search is a common name for techniques for one-dimensional “simply con-
strained” optimization, specifically, for problems

min
x

{f(x) : a ≤ x ≤ b} ,

where [a, b] is a given segment on the axis (sometimes, we shall allow for b = +∞),
and f is a function which is at least once continuously differentiable on (a, b) and is
continuous at the segment [a, b] (on the ray [a,∞), if b = ∞).
♣ Line search is used, as a subroutine, in many algorithms for multi-dimensional opti-
mization.
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min
a≤x≤b

f(x) (P )

♣ Zero-order line search. In zero-order line search one uses the values of the objective
f in (P ) and does not use its derivatives.
♠ To ensure well-posedness of the problem, assume that the objective is unimodal, that
is, possesses a unique local minimizer x∗ on [a, b].
Equivalently: There exists a unique point x∗ ∈ [a, b] such that f(x) strictly decreases on
[a, x∗] and strictly increases on [x∗, b]:
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Main observation: Let f be unimodal on [a, b], and assume we know f(x′), f(x′′) for
certain x′, x′′ with

a < x′ < x′′ < b.

♢ If f(x′′) ≥ f(x′), then f(x) > f(x′′) for x > x′′, so that the minimizer belongs to [a, x′′]:
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♢Similarly, if f(x′′) < f(x′), then f(x) > f(x′) when x < x′, so that the minimizer belongs
to [x′, b].
♠ In both cases, two computations of f at x′, x′′ allow to reduce the initial “search
domain” to a smaller one ([a, x′′] or [x′, b]).
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♣ Choosing x′, x′′ so that they split [a0, b0] = [a, b] into three equal segments, computing
f(x′), f(x′′) and comparing them to each other, we can build a new segment [a1, b1] ⊂
[a0, b0] such that
♢ the new segment is a localizer – it contains the solution x∗
♢ the length of the new localizer is 2/3 of the length of the initial localizer [a0, b0] = [a, b].
♠ On the new localizer, same as on the original one, the objective is unimodal, and we
can iterate our construction.
♠ In N ≥ 1 steps (2N computations of f), we shall reduce the size of localizer by factor
(2/3)N , that is, we get linearly converging, in terms of the argument, algorithm with
the convergence ratio

q =
√

2/3 = 0.8165...

Can we do better ? - YES!
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[at−1, bt−1]
x′t < x′′t

}
⇒ f(x′t), f(x

′′
t ) ⇒

{
[at, bt] = [at−1, x′′t ]
[at, bt] = [x′t, bt−1]

♣ Observe that one of two points at which we compute f at a step becomes the
endpoint of the new localizer, while the other one is an interior point of this localizer,
and therefore we can use it as the one of two points where f should be computed at
the next step!
With this approach, only the very first step costs 2 function evaluations, while the
subsequent steps cost just 1 evaluation each!
♠ Let us implement the idea in such a way that all search points will divide respective
localizers in a fixed proportion:

x′ − a = b− x′′ = θ(b− a)

The proportion is given by the equation

θ ≡
x′ − a

b− a
=
x′′ − x′

b− x′
≡

1− 2θ

1− θ
⇒ θ =

3−
√
5

2
.
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red
red+red+blue = blue

red+blue

Golden Search
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♣ We have arrived at golden search, where the search points xt−1, xt of step t are placed
in the current localizer [at−1, bt−1] according to

x′ − a

b− a
=
b− x′′

b− a
=

3−
√
5

2

In this method, a step reduces the error (the length of localizer) by factor 1−3−
√
5

2
=

√
5−1
2

.
The convergence ratio is about

√
5− 1

2
≈ 0.6180...
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min
x

{f(x) : a ≤ x ≤ b} ,

♣ First order line search: Bisection. Assume that f is differentiable on (a, b) and
strictly unimodal, that is, it is unimodal, x∗ ∈ (a, b) and f ′(x) < 0 for a < x < x∗,
f ′(x) > 0 for x∗ < x < b.
Let both f and f ′ be available. In this case the method of choice in Bisection.
♠ Main observation: Given x1 ∈ [a, b] ≡ [a0, b0], let us compute f ′(x1).
♢ If f ′(x1) > 0, then, from strict unimodality, f(x) > f(x1) to the right of x1, thus, x∗
belongs to [a, x1]:
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♢Similarly, if f ′(x1) ≤ 0, then f(x) > f(x1) for x < x1, and x∗ belongs to [a, x1].
♠ In both cases, we can replace the original localizer [a, b] = [a0, b0] with a smaller
localizer [a1, b1] and then iterate the process.
In Bisection, the point xt where at step t f ′(xt) is computed, is the midpoint of [at−1, bt−1],
so that every step reduces localizer’s length by factor 2.
♣ Clearly, Bisection converges linearly in terms of argument with convergence ratio 0.5:

at − x∗ ≤ 2−t(b0 − a0).
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Inexact Line Search

♣ Many algorithms for multi-dimensional minimization use Line Search as a subroutine,
in the following way:
♢given current iterate xt ∈ Rn, the algorithm defines a search direction dt ∈ Rn which is
a direction of decrease of f :

dTt ∇f(xt) < 0.

Then Line Search is invoked to minimize the one-dimensional function

ϕ(γ) = f(xt + γdt)

over γ ≥ 0; the resulting γ = γt defines the stepsize along the direction dt, so that the
new iterate of the outer algorithm is

xt+1 = xt + γtdt.

♠ In many situations of this type, there is no necessity in exact minimization in γ; an
“essential” reduction in ϕ is sufficient.
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♣ Standard way to define (and to achieve) “essential reduction” is given by Armijo’s
rule:
Let ϕ(γ) be continuously differentiable function of γ ≥ 0 such that ϕ′(0) < 0, and let
ϵ ∈ (0,1), η > 1 be parameters (popular choice is ϵ = 0.2 and η = 2 or η = 10). We say
that a stepsize γ > 0 is appropriate, if

ϕ(γ) ≤ ϕ(0) + ϵγϕ′(0), (∗)
and is nearly maximal, if η times larger step is not appropriate:

ϕ(ηγ) > ϕ(0) + ϵηγϕ′(0). (∗∗)

A stepsize γ > 0 passes Armijo test (reduces ϕ “essentially”), if it is both appropriate
and nearly maximal.
♠ Fact: Assume that ϕ is bounded below on the ray γ > 0. Then a stepsize passing
Armijo rule does exist and can be found efficiently.
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♣ Armijo-acceptable step γ > 0:

ϕ(γ) ≤ ϕ(0) + ϵγϕ′(0) (∗)
ϕ(ηγ) > ϕ(0) + ϵηγϕ′(0) (∗∗)

♣ Algorithm for finding Armijo-acceptable step:
Start: Choose γ0 > 0 and check whether it passes (*). If YES, go to Branch A, other-
wise go to Branch B.
Branch A: γ0 satisfies (∗). Testing subsequently the values ηγ0, η2γ0, η3γ0,... of γ,
stop when the current value for the first time violates (∗); the preceding value of γ
passes the Armijo test.
Branch B: γ0 does not satisfy (∗). Testing subsequently the values η−1γ0, η−2γ0,

η−3γ0,... of γ, stop when the current value for the first time satisfies (∗); this value
of γ passes the Armijo test.
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♣ Validation of the algorithm: It is clear that if the algorithm terminates, then the
result indeed passes the Armijo test. Thus, all we need to verify is that the algorithm
eventually terminates.
♢Branch A clearly is finite: here we test the inequality

ϕ(γ) > ϕ(0) + ϵγϕ′(0)

along the sequence γi = ηiγ0 → ∞, and terminate when this inequality is satisfied for the
first time. Since ϕ′(0) < 0 and ϕ is below bounded, this indeed will eventually happen.
♢Branch B clearly is finite: here we test the inequality

ϕ(γ) ≤ ϕ(0) + ϵγϕ′(0) (∗)
along a sequence γi = η−iγ0 → +0 of values of γ and terminate when this inequality is
satisfied for the first time. Since ϵ ∈ (0,1) and ϕ′(0) < 0, this inequality is satisfied for
all small enough positive values of γ, since

ϕ(γ) = ϕ(0) + γ
[
ϕ′(0) + R(γ)︸ ︷︷ ︸

→0,γ→+0

]
.

For large i, γi definitely will be “small enough”, thus, Branch B is finite.
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Lecture 9:

Methods for Unconstrained
Minimization



Methods for Unconstrained Minimization

♣ Unconstrained minimization problem is

f∗ = min
x
f(x),

where f well-defined and continuously differentiable on the entire Rn.
Note: Most of the constructions to be presented can be straightforwardly extended
onto “essentially unconstrained case” where f is continuously differentiable on an open
domain D in Rn and is such that the level sets {x ∈ D : f(x) ≤ a} are closed.
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f∗ = min
x
f(x) (P )

Gradient Descent

♣ Gradient Descent is the simplest first order method for unconstrained minimization.
The idea: Let x be a current iterate which is not a critical point of f : f ′(x) ̸= 0. We
have

f(x+ th) = f(x) + thTf ′(x) + t∥h∥2Rx(th)
[Rx(s) → 0 as s→ 0]

Since f ′(x) ̸= 0, the unit antigradient direction g = −f ′(x)/∥f ′(x)∥2 is a direction of
decrease of f :

d
dt

∣∣
t=0

f(x+ tg) = gTf ′(x) = −∥f ′(x)∥2
so that shift x 7→ x+ tg along the direction g locally decreases f “at the rate” ∥f ′(x)∥2.
♠ Note: As far as local rate of decrease is concerned, g is the best possible direction of
decrease: for any other unit direction h, we have

d

dt

∣∣
t=0

f(x+ th) = hTf ′(x) > −∥f ′(x)∥2.
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♣ In generic Gradient Descent, we update the current iterate x by a step from x in the
antigradient direction which reduces the objective:

xt = xt−1 − γtf
′(xt−1),

where γt are positive stepsizes such that

f ′(xt−1) ̸= 0 ⇒ f(xt) < f(xt−1).

♠ Standard implementations:
♢Steepest GD:

γt = argmin
γ≥0

f(xt−1 − γf ′(xt−1))

(slight idealization, except for the case of quadratic f)
♢Armijo GD: γt > 0 is such that

f(xt−1 − γtf ′(xt−1)) ≤ f(xt−1)− ϵγt∥f ′(xt−1)∥22︸ ︷︷ ︸
f(xt−1) + ϵγt

d
dγ

∣∣
γ=0

f(xt−1 − γf ′(xt−1))

f(xt−1 − ηγtf ′(xt−1)) > f(xt−1)− ϵηγt∥f ′(xt−1)∥22
[ϵ ∈ (0,1), η > 1 : fixed parameters]

(implementable, provided that f ′(xt−1) ̸= 0 and f(xt−1 − γf ′(xt−1)) is below bounded
when γ ≥ 0)

9.3



Note: By construction, GD is unable to leave a critical point:

f ′(xt−1) = 0 ⇒ xt = xt−1.

♣ Global Convergence Theorem: Assume that the level set of f corresponding to the
starting point x0:

G = {x : f(x) ≤ f(x0)}
is compact, and f is continuously differentiable in a neighbourhood of G. Then for both
SGD and AGD:
♢ the trajectory x0, x1, ... of the method, started at x0, is well-defined and never leaves
G (and thus is bounded);
♢ the method is monotone:

f(x0) ≥ f(x1) ≥ ...

and inequalities are strict, unless method reaches a critical point xt, so that xt = xt+1 =
xt+2 = ...
♢Every limiting point of the trajectory is a critical point of f .
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Sketch of the proof: 10. If f ′(x0) = 0, the method never leaves x0, and the statements
are evident. Now assume that f ′(x0) ̸= 0. Then the function ϕ0(γ) = f(x0 − γf ′(x0)) is
below bounded, and the set {γ ≥ 0 : ϕ0(γ) ≤ ϕ0(0)} is compact along with G, so that
ϕ0(γ) achieves its minimum on the ray γ ≥ 0, and ϕ′

0(0) < 0. It follows that the first step
of GD is well-defined and f(x1) < f(x0). The set {x : f(x) ≤ f(x1)} is a closed subset
of G and thus is compact, and we can repeat our reasoning with x1 in the role of x0,
etc. We conclude that the trajectory is well-defined, never leaves G and the objective is
strictly decreased, unless a critical point is reached.
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20. “all limiting points of the trajectory are critical points of f”:
Fact: Let x ∈ G and f ′(x) ̸= 0. Then there exists ϵ > 0 and a neighbourhood U of x
such that for every x′ ∈ U the step x′ → x′+ of the method from x′ reduces f by at least
ϵ.
Given Fact, let x be a limiting point of {xi}; assume that f ′(x) ̸= 0, and let us lead this
assumption to contradiction. By Fact, there exists a neighbourhood U of x such that

xi ∈ U ⇒ f(xi+1) ≤ f(xi)− ϵ.

Since the trajectory visits U infinitely many times and the method is monotone, we
conclude that f(xi) → −∞, i→ ∞, which is impossible, since G is compact, so that f is
below bounded on G.
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Limiting points of Gradient Descent

♣ Under assumptions of Global Convergence Theorem, limiting points of GD exist, and
all of them are critical points of f . What kind of limiting points could they be?
♢A nondegenerate maximizer of f cannot be a limiting point of GD, unless the
method is started at this maximizer.
♢A saddle point of f is “highly unlikely” candidate to the role of a limiting point.
Practical experience says that limiting points are local minimizers of f .
♢A nondegenerate global minimizer x∗ of f , if any, is an “attraction point” of GD:
when starting close enough to this minimizer, the method converges to x∗.
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Rates of convergence

♣ In general, we cannot guarantee more than convergence to the set of critical points
of f . A natural error measure associated with this set is

δ2(x) = ∥f ′(x)∥22.
♠ Definition: Let U be an open subset of Rn, L ≥ 0 and f be a function defined on
U . We say that f is C1,1(L) on U , if f is continuously differentiable in U with locally
Lipschitz continuous, with constant L, gradient:

[x, y] ∈ U ⇒ ∥f ′(x)− f ′(y)∥2 ≤ L∥x− y∥2.
We say that f is C1,1(L) on a set Q ⊂ Rn, if there exists an open set U ⊃ Q such that f
is C1,1(L) on U .
Note: Assume that f is twice continuously differentiable on U . Then f is C1,1(L) on U
iff the norm of the Hessian of f does not exceed L:

∀(x ∈ U, d ∈ Rn) : |dTf ′′(x)d| ≤ L∥d∥22.
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Theorem: In addition to assumptions of Global Convergence Theorem, assume that f
is C1,1(L) on G = {x : f(x) ≤ f(x0)}. Then
♢For SGD, one has

min
0≤τ≤t

δ2(xτ) ≤
2[f(x0)− f∗]L

t+1
, t = 0,1,2, ...

♢For AGD, one has

min
0≤τ≤t

δ2(xτ) ≤
η

2ϵ(1− ϵ)
·
[f(x0)− f∗]L

t+1
, t = 0,1,2, ...
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Lemma: For x ∈ G, 0 ≤ s ≤ 2/L one has

x− sf ′(x) ∈ G (1)

f(x− sf ′(x)) ≤ f(x)− δ2(x)s+ Lδ2(x)
2

s2, (2)

There is nothing to prove when g ≡ −f ′(x) = 0. Let g ̸= 0, s∗ = max{s ≥ 0 : x+sg ∈ G},
δ2 = δ2(x) = gTg. The function

ϕ(s) = f(x− sf ′(x)) : [0, s∗] → R
is continuously differentiable and satisfies

(a) ϕ′(0) = −gTg ≡ −δ2; (b) ϕ(s∗) = f(x0)
(c) |ϕ′(s)− ϕ′(0)| = |gT [f ′(x+ sg)− f ′(x)]| ≤ Lsδ2

Therefore ϕ(s) ≤ ϕ(0)− δ2s+ Lδ2

2
s2 (∗)

which is (2). Indeed, setting

θ(s) = ϕ(s)− [ϕ(0)− δ2s+
Lδ2

2
s2],

we have

θ(0) = 0, θ′(s) = ϕ′(s)− ϕ′(0)− Lsδ2 ≤︸︷︷︸
by (c)

0.

By (∗) and (b), we have

f(x0) ≤ ϕ(0)− δ2s∗ + Lδ2

2
s2∗ ≤ f(x0)− δ2s∗ + Lδ2

2
s2∗

⇒ s∗ ≥ 2/L
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Lemma ⇒ Theorem: SGD: By Lemma, we have

f(xt)− f(xt+1) = f(xt)−min
γ≥0

f(xt − γf ′(xt))

≥ f(xt)− min
0≤s≤2/L

[
f(xt)− δ2(xt)s+

Lδ2(xt)
2

s2
]

= δ2(xt)
2L

⇒ f(x0)− f∗ ≥
t∑

τ=0
[f(xτ)− f(xτ+1)] ≥

t∑
τ=0

δ2(xτ)
2L

≥ t+1
2L

min
0≤τ≤t

δ2(xτ)

⇒ min
0≤τ≤t

δ2(xτ) ≤ 2L(f(x0)−f∗)
t+1
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Lemma ⇒ Theorem: AGD: Claim: γt+1 >
2(1−ϵ)
Lη

. Indeed, otherwise by Lemma

f(xt − γtηf ′(xt)) ≤ f(xt)− γt+1ηδ
2(xt) +

Lδ2(xt)
2

η2γ2t+1

= f(xt)−
[
1−

L

2
ηγt+1

]
︸ ︷︷ ︸

≥ϵ

ηγt+1δ
2(xt)

≤ f(xt)− ϵηγt+1δ
2(xt)

which is impossible.
• We have seen that γt+1 >

2(1−ϵ)
Lη

. By Armijo rule,

f(xt)− f(xt+1) ≥ ϵγt+1δ
2(xt) ≥

2ϵ(1− ϵ)

Lη
δ2(xt);

the rest of the proof is as for SGD.
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♣ Convex case. In addition to assumptions of Global Convergence Theorem, assume
that f is convex.
♠ All critical points of a convex function are its global minimizers
⇒ In Convex case, SGD and AGD converge to the set of global minimizers of f : f(xt) →
f∗ as t→ ∞, and all limiting points of the trajectory are global minimizers of f .
♠ In Convex C1,1(L) case, one can quantify the global rate of convergence in terms of
the residual f(xt)− f∗:
Theorem. Assume that the set G = {x : f(x) ≤ f(x0)} is convex compact, f is convex
on G and C1,1(L) on this set:

∥f ′(x)− f ′(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ G.

Consider AGD, and let ϵ ≥ 0.5. Then the trajectory of the method converges to a global
minimizer x∗ of f , and

f(xt)− f∗ ≤
ηL∥x0 − x∗∥22
4(1− ϵ)t

, t = 1,2, ...
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♣ Definition: Let M be a convex set in Rn and 0 < ℓ ≤ L < ∞. A function f is called
strongly convex, with parameters ℓ, L, on M , if
♢ f is C1,1(L) on M
♢ for x, y ∈M , one has

[x− y]T [f ′(x)− f ′(y)] ≥ ℓ∥x− y∥22. (∗)
The ratio Qf = L/ℓ is called condition number of f .
♠ Comment: If f is C1,1(L) on a convex set M , then

x, y ∈M ⇒ |f(y)− [f(x) + (y − x)Tf ′(x)]| ≤ L
2
∥x− y∥22.

If f satisfies (∗) on a convex set M , then

∀x, y ∈M : f(y) ≥ f(x) + (y − x)Tf ′(x) +
ℓ

2
∥y − x∥22.

In particular, f is convex on M .
⇒ A strongly convex, with parameters ℓ, L, function f on a convex set M satisfies the
relation

∀x, y ∈M : f(x) + (y − x)Tf ′(x) + ℓ
2
∥y − x∥22

≤ f(y) ≤ f(x) + (y − x)Tf ′(x) + L
2
∥y − x∥22
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Note: Assume that f is twice continuously differentiable in a neighbourhood of a convex
set M . Then f is (ℓ, L)-strongly convex on M iff for all x ∈M and all d ∈ Rn one has

ℓ∥d∥22 ≤ dTf ′′(x)d ≤ L∥d∥22
⇕

λmin(f ′′(x)) ≥ ℓ, λmax(f ′′(x)) ≤ L.

In particular,
♠ A quadratic function

f(x) =
1

2
xTAx− bTx+ c

with positive definite symmetric matrix A is strongly convex with the parameters ℓ =
λmin(A), L = λmax(A) on the entire space.
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♣ GD in strongly convex case.
Theorem. In the strongly convex case, AGD exhibits linear global rate of convergence.
Specifically, let the set G = {x : f(x) ≤ f(x0)} be closed and convex and f be strongly
convex, with parameters ℓ, L, on G. Then
♢G is compact, and the global minimizer x∗ of f exists and is unique;
♢AGD with ϵ ≥ 1/2 converges linearly to x∗:

∥xt − x∗∥2 ≤ θt∥x0 − x∗∥2

θ =
√

Qf−(2−ϵ−1)(1−ϵ)η−1

Qf+(ϵ−1−1)η−1 = 1−O(Q−1
f ).

Besides this,

f(xt)− f∗ ≤ θ2tQf [f(x0)− f∗].
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♣ SGD in Strongly convex quadratic case.
Assume that f(x) = 1

2
xTAx−bTx+c is a strongly convex quadratic function: A = AT ≻ 0.

In this case, SGD becomes implementable and is given by the recurrence

gt = f ′(xt) = Axt − b

γt+1 = gTt gt
gTt Agt

xt+1 = xt − γt+1gt

and guarantees that

f(xt+1)− f∗︸ ︷︷ ︸
Et+1

≤
[
1− (gTt gt)

2

[gTt Agt][g
T
t A

−1gt]

]
Et ≤

(
Qf−1
Qf+1

)2
Et

whence

f(xt)− f∗ ≤
(
Qf − 1

Qf +1

)2t

[f(x0)− f∗], t = 1,2, ...
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Note: If we know that SGD converges to a nondegenerate local minimizer x∗ of f , then,
under mild regularity assumptions, the asymptotical behaviour of the method will be as
if f were the strongly convex quadratic form

f(x) = const +
1

2
(x− x∗)

Tf ′′(x∗)(x− x∗).
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xt+1 = xt − γtf ′(xt)

♣ Summary on Gradient Descent:
♢Under mild regularity and boundedness assumptions, both SGD and AGD converge
the set of critical points of the objective.
In the case of C1,1(L)-smooth objective, the methods exhibit non-asymptotical O(1/t)-
rate of convergence in terms of the error measure δ2(x) = ∥f ′(x)∥22.
♢Under the same regularity assumptions, in Convex case the methods converge to the
set of global minimizers of the objective.
In convex C1,1(L)-case, AGD exhibits non-asymptotical O(1/t) rate of convergence in
terms of the residual in the objective f(x)− f∗
♢ In Strongly convex case, AGD exhibits non-asymptotical linear convergence in both
the residual in terms of the objective f(x)−f∗ and the distance in the argument ∥x−x∗∥2.
The convergence ratio is 1−O(1/Qf), where Qf is the condition number of the objective.
In other words, to get extra accuracy digit, it takes O(Qf) steps.
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♣ Good news on GD:
♠ Simplicity
♠ Reasonable global convergence properties under mild assumptions on the function to
be minimized.
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♣ Drawbacks of GD:
♠ “Frame-dependence”: The method is not affine invariant!
♢You are solving the problem min

x
f(x) by GD, starting with x0 = 0, Your first search

point will be

x1 = −γ1f ′(0).
♢ I solve the same problem, but in new variables y: x = Ay. My problem is min

y
g(y),

g(y) = f(Ay), and I start with y0 = 0. My first search point will be

y1 = −γ̂1g′(0) = −γ̂1ATf ′(0).
In x-variables, my search point will be

x̂1 = Ay1 = −γ̂1AATf ′(0)
If AAT is not proportional to the unit matrix, my search point will, in general, be different
from yours!
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SGD as applied to f(x) = 1
2
xTx – exact solution in 1 step!
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Substituting x1 = y1, x2 = y2/3, the problem becomes

min
y
g(y) =

1

2

[
y21 +

1

9
y22

]

Left: SGD as applied to g
Right: The same trajectory in x-coordinates
t 1 3 5 7 9

g(yt) 0.5000 0.0761 0.0116 0.0018 0.0003
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♠ “Frame-dependence” is common drawback of nearly all first order optimization meth-
ods, and this is what makes their rate of convergence, even under the most favourable
case of strongly convex objective, sensitive to the condition number of the problem.
GD is “hyper-sensitive” to the condition number: When minimizing strongly convex
function f , the convergence ratio of GD is 1 − O(1/Qf), while for better methods it is

1−O(1/Q1/2
f ).
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The Newton Method

♣ Consider unconstrained problem

min
x
f(x)

with twice continuously differentiable objective. Assuming second order information
available, we approximate f around a current iterate x by the second order Taylor
expansion:

f(y) ≈ f(x) + (y − x)Tf ′(x) +
(y − x)Tf ′′(x)(y − x)

2
In the Newton method, the new iterate is the minimizer of this quadratic approximation.
If exists, the minimizer is given by

∇y[f(x) + (y − x)Tf ′(x) + (y−x)Tf ′′(x)(y−x)
2

] = 0 ⇔ f ′′(x)(y − x) = −f ′(x)
⇔ y = x− [f ′′(x)]−1f ′(x)

We have arrived at the Basic Newton method

xt+1 = xt − [f ′′(xt)]
−1f ′(xt)

(step t is undefined when the matrix f ′′(xt) is singular).
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xt+1 = xt − [f ′′(xt)]
−1f ′(xt)

♠ Alternative motivation: We seek for a solution to the Fermat equation

f ′(x) = 0;

given current approximate xt to the solution, we linearize the left hand side around xt,
thus arriving at the linearized Fermat equation

f ′(xt) + f ′′(xt)[x− xt] = 0

and take the solution to this equation, that is, xt − [f ′′(xt)]−1f ′(xt), as our new iterate.
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xt+1 = xt − [f ′′(xt)]
−1f ′(xt) (Nwt)

Theorem on Local Quadratic Convergence: Let x∗ be a nondegenerate local min-
imizer of f , so that f ′′(x∗) ≻ 0, and let f be three times continuously differentiable
in a neighbourhood of x∗. Then the recurrence (Nwt), started close enough to x∗, is
well-defined and converges to x∗ quadratically:

∥xt − x∗∥2 → 0, t→ ∞ & ∥xt+1 − x∗∥2 ≤ C∥xt − x∗∥22.

Proof: 10. Let U be a ball centered at x∗ where the third derivatives of f are bounded.
For y ∈ U and appropriate constant β1 one has

∥∇f(y) +∇2f(y)(x∗ − y)∥2 ≡ ∥∇f(y)− [∇2f(y)(y − x∗) +∇f(x∗)︸ ︷︷ ︸
=0

]∥2

≤ β1∥y − x∗∥22
(1)

20. Since f ′′(x) is continuous at x = x∗ and f ′′(x∗) is nonsingular, there exists a ball
U ′ ⊂ U centered at x∗ and a constant β2 such that

y ∈ U ′ ⇒ ∥[f ′′(y)]−1∥ ≤ β2. (2)
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Situation: There exists a r > 0 and positive constants β1, β2 such that

∥y − x∗∥ < r ⇒
{

(a) ∥∇f(y) +∇2f(y)(x∗ − y)∥2 ≤ β1∥y − x∗∥22
(b) ∥[f ′′(y)]−1∥ ≤ β2

30. Let an iterate xt of the method be close to x∗:

xt ∈ V = {x : ∥x− x∗∥2 ≤ ρ ≡ min[
1

2β1β2
, r]}.

We have
∥xt+1 − x∗∥ = ∥xt − x∗ − [f ′′(xt)]−1f ′(xt)∥2

= ∥
[
[f ′′(xt)]−1[−f ′′(xt)(x∗ − xt)− f ′(xt)]

]
∥2

≤ β1β2∥xt − x∗∥22 ≤ 0.5∥xt − x∗∥2
We conclude that the method remains well-defined after step t, and converges to x∗
quadratically.
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♣ Illustration: computing
√
a.

When a > 0,
√
a = argminx>0 [fa(x) = a/x+ x]

⇒
√
a can be computed via Newton recurrence:

x0 > 0, xt+1 = xt − f ′a(xt)/f
′′
a (xt) = xt + 1

2
[xt − x3t /a].

provided x0 is “reasonable,” e.g., <
√
a. This is how it works, a=17.5:

t= 0 x =0.001
t= 1 x =0.0014999999714285 x2 − 17.5=-1.750e+01

...................................................
t= 21 x =3.6072719622189853 x2 − 17.5=-4.488e+00
t= 22 x =4.0697849320393722 x2 − 17.5=-9.369e-01
t= 23 x =4.1787215172884533 x2 − 17.5=-3.829e-02
t= 24 x =4.1832926184818549 x2 − 17.5=-6.287e-05
t= 25 x =4.1833001326501318 x2 − 17.5=-1.694e-10
t= 26 x =4.1833001326703769 x2 − 17.5=-7.105e-15
t= 27 x =4.1833001326703778 x2 − 17.5=0.000e+00
t= 0 x =5
t= 1 x =3.9285714285714284 x2 − 17.5=-2.066e+00
t= 2 x =4.1605060391503539 x2 − 17.5=-1.902e-01
t= 3 x =4.1831141693165472 x2 − 17.5=-1.556e-03
t= 4 x =4.1833001202704096 x2 − 17.5=-1.037e-07
t= 5 x =4.1833001326703778 x2 − 17.5=0.000e+00
t= 0 x =10
t= 1 x =-1.3571428571428573e+01 x2 − 17.5=1.667e+02
t= 2 x =5.1061016243232004e+01 x2 − 17.5=2.590e+03

................................................
t= 6 x =2.2593416145409303e+76 x2 − 17.5=5.105e+152
t= 7 x =-3.2951687514110151e+227 x2 − 17.5=Inf
t= 8 x = Inf x2 − 17.5=Inf
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♠ Finding
√
a by Newton minimization of f(x) = x+ a/x is the same as finding the root

of f ′(x) = 0 by Newton root finding:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-70

-60

-50

-40

-30

-20

-10

0

10

Magenta: f ′(x) Green: root
√
a of Fermat equation f ′(x) = 0 Red: Newton iterates

9.32



♣ A remarkable property of Newton method is affine invariance (”frame independence”):
Let x = Ay+ b be invertible affine change of variables. Then

f(x) ⇔ g(y) = f(Ay+ b)
x̄ = Aȳ+ b ⇔ ȳ

ȳ+ = ȳ − [g′′(ȳ)]−1g′(ȳ)=ȳ − [ATf ′′(x̄)A]−1[ATf ′(x̄)]
= ȳ −A−1[f ′′(x̄)]−1f ′(x̄)

⇒ Aȳ+ + b = [Aȳ+ b]−[f ′′(x̄)]−1f ′(x̄)
= x̄− [f ′′(x̄)]−1f ′(x̄)
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♣ Difficulties with Basic Newton method.
The Basic Newton method

xt+1 = xt − [f ′′(xt)]
−1f ′(xt),

started close enough to nondegenerate local minimizer x∗ of f , converges to x∗ quadrat-
ically. However,
♢Even for a nice strongly convex f , the method, started not too close to the (unique)
local≡global minimizer of f , may diverge:

f(x) =
√

1+ x2 ⇒ xt+1 = −x3t .
⇒ when |x0| < 1, the method converges quadratically (even at order 3) to x∗ = 0; when
|x0| > 1, the method rapidly diverges...
♢When f is not strongly convex, the Newton direction

−[f ′′(x)]−1f ′(x)

can be undefined or fail to be a direction of decrease of f ...
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♣ As a result of these drawbacks, one needs to modify the Basic Newton method in
order to ensure global convergence. Modifications include:
♢ Incorporating line search
♢Correcting Newton direction when it is undefined or is not a direction of decrease of f .
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♣ Incorporating linesearch: Assume that the level set G = {x : f(x) ≤ f(x0)} is closed
and convex, and f is strongly convex on G. Then for x ∈ G the Newton direction

e(x) = −[f ′′(x)]−1f ′(x)

is a direction of decrease of f , except for the case when x is a critical point (or, which
is the same in the strongly convex case, global minimizer) of f :

f ′(x) ̸= 0 ⇒ eT(x)f ′(x) = −[f ′(x)]T [f ′′(x)]−1︸ ︷︷ ︸
≻0

f ′(x) < 0.

In Line Search version of Newton method, one uses e(x) as a search direction rather
than the displacement:

xt+1 = xt + γt+1e(xt) = xt − γt+1[f
′′(xt)]

−1f ′(xt),

where γt+1 > 0 is the stepsize given by exact minimization of f in the Newton direction
or by Armijo linesearch.
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Theorem: Let the level set G = {x : f(x) ≤ f(x0)} be convex and compact, and f be
strongly convex on G. Then Newton method with the Steepest Descent or with the
Armijo linesearch converges to the unique global minimizer of f .
With proper implementation of the linesearch, convergence is quadratic.
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♣ Newton method: Summary
♢Good news: Quadratic asymptotical convergence, provided we manage to bring the
trajectory close to a nondegenerate local minimizer
♢Bad news:
— relatively high computational cost, coming from the necessity to compute and to
invert the Hessian matrix
— necessity to “cure” the method in the non-strongly-convex case, where the Newton
direction can be undefined or fail to be a direction of decrease...
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Modifications of the Newton method

♣ Modifications of the Newton method are aimed at overcoming its shortcomings (dif-
ficulties with nonconvex objectives, relatively high computational cost) while preserving
its major advantage – rapid asymptotical convergence. There are four major groups of
modifications:
♢Newton method with Cubic Regularization
♢Modified Newton methods based on second-order information
♢Modifications based on first order information:
— conjugate gradient methods
— quasi-Newton methods

9.39



Newton Method with Cubic Regularization

♣ Problem of interest:

min
x∈X

f(x),

where
— X ⊂ Rn is a closed convex set with a nonempty interior
— f is three times continuously differentiable on X
♠ Assumption: We are given starting point x0 ∈ intX such that the set

X0 = {x ∈ X : f(x) ≤ f(x0)}
is bounded and is contained in the interior of X.
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♠ The idea: To get the idea of the method, consider the case when X = Rn and the
third derivative of f is bounded on X, so that the third order directional derivative of
f taken at any point along any unit direction does not exceed some L ∈ (0,∞). In this
case one has

∀x, h :
f(x+ h) ≤ fx(h),

fx(h) = f(x) + hT∇f(x) + 1
2
hT∇2f(x)h+L

6
∥h∥3.

Note: For small h, fx(h) approximates f(x+ h) basically as well as the second order
Taylor expansion of f taken at x, with the advantage that fx(h) upper-bounds f(x+ h)
for all h.
⇒When passing from x to x+ = x+h∗, with h∗ ∈ Argminh fx(h), we ensure that f(x+) ≤
fx(h∗) ≤ fx(0) = f(x), the inequality being strict unless h∗ = 0 is a global minimizer of
fx(·).
The latter takes place if and only if x satisfies the second order necessary optimality
conditions for unconstrained smooth optimization:

∇f(x) = 0,∇2f(x) ⪰ 0.
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min
x∈Rn

f(x)

Assumption: We are given starting point x0 such that the set X0 = {x ∈ Rn : f(x) ≤
f(x0)} is compact. Besides this, there exists a convex compact set X such that X0 ⊂
intX and f is three times continuously differentiable on X.
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♣ Generic Newton method with Cubic Regularization works as follows.
At step t, given previous iterate xt, we select Lt > 0 which is good – is such that the
displacement

ht ∈ Argminh f(h),
f(h) = f(xt) + hT∇f(xt) + 1

2
hT∇2f(xt)h+ Lt

6
∥h∥3

results in f(xt + ht) ≤ f(ht) and set

xt+1 = xt + ht.

Facts: ♢Whenever xt ∈ X0, all large enough values of Lt, specifically, those with

Lt ≥MX(f) = maxx∈X,h∈Rn:∥h∥≤1
d3

dt3

∣∣∣∣
t=0

f(x+ th)

are good.
♢The algorithm is well defined and ensures that f(x0) ≥ f(x1) ≥ ..., all inequalities being
strict, unless the algorithm arrives at a point x where second order necessary optimality
conditions ∇f(x) = 0, ∇2f(x) ⪰ 0 take place – at such a point, the algorithm gets stuck.
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♢Boundedness and goodness of Lt’s is easy to maintain via line search:

• Given t ≥ 0, xt and Lt−1 (with, say, L−1 = 1), check one by one whether the
candidate values L(k) = 2kLt−1 of Lt are good (k = 0,±1,±2, ...).
• Start with k = 0.
— If L(0) is good, try L(−1), L(−2),..., until either goodness is lost, or a small
threshold (say, 10−6) is achieved, and use the last good candidate value L(k) of
Lt as the actual value of Lt.
— If L(0) is bad, try L(1), L(2),..., until goodness is recovered, and use the first
good candidate value L(k) of Lt as the actual value of Lt.

This policy ensures that Lt ≤ 2max[MX(f), L−1].
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♢With a policy maintaining boundedness of Lt, the algorithm ensures that
• All limiting points of the trajectory (they do exist – the trajectory belongs to a
bounded set X0) satisfy necessary second order optimality conditions in unconstrained
minimization;
• Whenever a nondegenerate local minimizer of f is a limiting point of the trajectory,
the trajectory converges to this minimizer quadratically.
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♣ Implementing step of algorithm requires solving unconstrained minimization prob-
lem

min
h

[
pTh+ hTPh+ c∥h∥3

]
[P = P T , c > 0] (∗)

• Computing eigenvalue decomposition P = UDiag{β}UT and passing from variables h
to variables g = UTh, the problem becomes

min
g

{
qTg+

∑
i

βig
2
i + c(

∑
i

g2i )
3

2

}
[q = UTp]

• At optimum, sign(gi) = −sign(qi) ⇒ the problem reduces to

min
g

{
−
∑

i
|qi||gi|+

∑
i
βig

2
i + c(

∑
i
g2i )

3

2

}
• Passing to variables si = g2i , the problem becomes convex:

min
s≥0

{
−
∑

i
|qi|

√
si +

∑
i
βisi + c(

∑
i
si)

3

2

}
. (!)

Optimal solution s∗ to (!) gives rise to optimal solution h∗ to (∗):

h∗ = Ug∗, g∗i = −sign(qi)
√
s∗i .
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min
s≥0

{
−
∑

i
|qi|

√
si +

∑
i
βisi + c(

∑
i
si)

3

2

}
. (!)

• The simplest way to solve (!) is to rewrite (!) as

min
s,r

{∑
i
[βisi − |qi|

√
si] + cr

3

2 : s ≥ 0,
∑

i
si ≤ r

}
and to pass to the Lagrange dual

max
λ≥0

{
L(λ) := min

s≥0,r≥0

[
cr

3

2 − λr+
∑

i
[(βi + λ)si − |qi|

√
si]
]}

(D)

L(·) is easy to compute ⇒ (D) can be solved by Bisection. Assuming |qi| > 0 (achievable
by small perturbation of qi’s), optimal solution λ∗ to the dual problem gives rise to the
optimal solution

(s∗, r∗) ∈ Argmin
s≥0,r≥0

[
cr

3

2 − λ∗r+
∑

i
[[βi + λ∗]si − |qi|

√
si

]
to (!).
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Traditional modifications: Variable Metric Scheme

♣ All traditional modifications of Newton method exploit a natural Variable Metric idea.

♠ When speaking about GD, it was mentioned that the method

xt+1 = xt − γt+1BB
T︸ ︷︷ ︸

A−1≻0

f ′(xt) (∗)

with nonsingular matrix B has the same “right to exist” as the Gradient Descent

xt+1 = xt − γt+1f
′(xt);

the former method is nothing but the GD as applied to

g(y) = f(By).

and then “translated” to x = By:

xt = Byt 7→ xt+1 = Byt+1, yt+1 = yt − γt+1g
′(yt) = yt − γt+1B

Tf ′(xt)
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xt+1 = xt − γt+1A
−1f ′(xt) (∗)

Equivalently: Let A be a positive definite symmetric matrix. We have exactly the same
reason to measure the “local directional rate of decrease” of f by the quantity

dTf ′(x)√
dTd

(a)

as by the quantity

dTf ′(x)√
dTAd

(b)

♢When choosing, as the current search direction, the direction of steepest decrease
in terms of (a), we get the anti-gradient direction −f ′(x) (and all its positive multiples)
and arrive at GD.
♢When choosing, as the current search direction, the direction of steepest decrease in
terms of (b), we get the “scaled anti-gradient direction” −A−1f ′(x) (and all its positive
multiples) and arrive at “scaled” GD (∗).
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♣ We have motivated the scaled GD

xt+1 = xt − γt+1A
−1f ′(xt) (∗)

Why not to take one step ahead by considering a generic Variable Metric algorithm

xt+1 = xt − γt+1A
−1
t+1f

′(xt) (VM)

with “scaling matrix” At+1 ≻ 0 varying from step to step?
♠ Note: When At+1 ≡ I, (VM) becomes the generic Gradient Descent;
When f is strongly convex and At+1 = f ′′(xt), (VM) becomes the generic Newton
method...
♠ Note: When xt is not a critical point of f , the search direction dt+1 = −A−1

t+1f
′(xt) is

a direction of decrease of f :

dTt+1f
′(xt) = −[f ′(xt)]

TA−1
t+1f

′(xt) < 0.

Thus, we have no conceptual difficulties with monotone linesearch versions of (VM)...
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xt+1 = xt − γt+1A
−1
t+1f

′(xt) (VM)

♣ It turns out that Variable Metric methods possess good global convergence properties:
Theorem: Let the level set G = {x : f(x) ≤ f(x0)} be closed and bounded, and let f be
twice continuously differentiable in a neighbourhood of G.
Assume, further, that the policy of updating the matrices At ensures their uniform
positive definiteness and boundedness:

∃0 < ℓ ≤ L <∞ : ℓI ⪯ At ⪯ LI ∀t.
Then for both the Steepest Descent and the Armijo versions of (VM) started at x0, the
trajectory is well-defined, belongs to G (and thus is bounded), and f strictly decreases
along the trajectory unless a critical point of f is reached. Moreover, all limiting points
of the trajectory are critical points of f .
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♣ Implementation via Spectral Decomposition:
♢Given xt, compute Ht = f ′′(xt) and then find spectral decomposition of Ht:

Ht = VtDiag{λ1, ..., λn}V T
t

♢Given once for ever chosen tolerance δ > 0, set

λ̂i = max[λi, δ]

and

At+1 = VtDiag{λ̂1, ..., λ̂n}V T
t

Note: The construction ensures uniform positive definiteness and boundedness of {At}t,
provided the level set G = {x : f(x) ≤ f(x0)} is compact and f is twice continuously
differentiable in a neighbourhood of G.
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♣ Levenberg-Marquard implementation:

At+1 = ϵtI +Ht,

where ϵt ≥ 0 is chosen to ensure that At+1 ⪰ δI with once for ever chosen δ > 0.
♢ ϵt is found by Bisection as applied to the problem

min {ϵ : ϵ ≥ 0, Ht + ϵI ⪰ δI}

♢Bisection requires to check whether the condition

Ht + ϵI ≻ δI ⇔ Ht + (ϵ− δ)I ≻ 0

holds true for a given value of ϵ, and the underlying test comes from Choleski decom-
position.

9.53



♣ Choleski Decomposition. By Linear Algebra, a symmetric matrix P is ≻ 0 iff

P = DDT (∗)
for some lower triangular matrix D with positive diagonal entries. When Choleski

Decomposition (∗) exists, it can be found by a simple algorithm.
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Choleski Decomposition Algorithm

♠ In Choleski Decomposition P = DDT lower triangular D is filled column by column.

Pik = RowiRowT
k

[Rowi: i-th row of D]
?
? ?
? ? ?
... ... ... . . .
? ? ? . . . ?

 ⇒


D11

? ?
? ? ?
... ... ... . . .
? ? ? . . . ?

 ⇒


D11

D21 ?
D31 ? ?
... ... ... . . .

Dn1 ? ? . . . ?


D2

11 = Row1RowT
1 = P11 Di1D11 = RowiRowT

1 = Pi1


D11

D21 ?
D31 ? ?
... ... ... . . .

Dn1 ? ? . . . ?

 ⇒


D11

D21 D22

D31 ? ?
... ... ... . . .

Dn1 ? ? . . . ?

 ⇒


D11

D21 D22

D31 D32 ?
... ... ... . . .

Dn1 Dn2 ? . . . ?


D2

21 +D2
22 = Row2RowT

2 = P22 Di1D21 +Di2D22 = RowiRowT
2 = Pi2
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Pik = RowiRowT
k

[Rowi: i-th row of D]
D11

D21 D22

D31 D32 ?
... ... ... . . .

Dn1 Dn2 ? . . . ?



D11

D21 D22

D31 D32 D33
... ... ... . . .

Dn1 Dn2 ? . . . ?



D11

D21 D22

D31 D32 D33
... ... ... . . .

Dn1 Dn2 Dn3 . . . ?


D2

31 +D2
32 +D2

33 Di1D31 +Di2D32 +Di3D33

= Row3RowT
3 = P33 = RowiRowT

3 = Pi3
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Illustration

• P =

 1 −1 1
−1 2 −2
1 −2 3

 =

 D1,1

D2,1 D2,2

D3,1 D3,2 D3,3

 D1,1 D2,1 D3,1

D2,2 D3,2

D3,3


Step 1: 1 = P1,1 = D2

1,1⇒D1,1 = 1
−1 = P2,1 = D2,1 ·D1,1⇒D2,1 = −1
1 = P3,1 = D3,1 ·D1,1⇒D3,1 = 1

• P =

 1 −1 1
−1 2 −2
1 −2 3

 =

 1
−1 D2,2

1 D3,2 D3,3

 1 −1 1
D2,2 D3,2

D3,3


Step 2: 2 = P2,2 = (−1)2 +D2

2,2⇒D2,2 = 1
−2 = P3,2 = 1 · (−1) +D3,2 ·D2,2⇒D3,2 = −1

• P =

 1 −1 1
−1 2 −2
1 −2 3

 =

 1
−1 1
1 −1 D3,3

 1 −1 1
1 −1

D3,3


Step 3: 3 = P3,3 = 12 + (−1)2 +D2

3,3⇒D3,3 = 1

⇒D =

 1
−1 1
1 −1 1
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P = DDT (∗)
The general algorithm is as follows:
♢Representation (∗) means that

i ≤ j ⇒ pij = did
T
j ,

where
di = (di1, di2, ..., dii,0,0,0,0, ...,0)
dj = (dj1, dj2, ..., dji, ..., djj,0, ...,0)

are the rows of D.
♢ In particular, pi1 = d11di1, and we can set d11 =

√
p11, di1 = pi1/d11, thus specifying the

first column of D.
♢Further, p22 = d221 + d222, whence d22 =

√
p22 − d221. After we know d22, we can find all

remaining entries in the second column of D from the relations

pi2 = di1d21 + di2d22 ⇒ di2 =
pi2 − di1d21

d22
, i > 2.

9.58



♢We proceed in this way: after the first (k−1) columns in D are found, we fill the k-th
column according to

dkk =
√
pkk − d2k1 − d2k2 − ...− d2k,k−1

dik = pik−di1dk1−...−di,k−1dk,k−1

dkk
, i > k.

♠ The outlined process either results in the required D, or terminates when you cannot
carry out current pivot, that is, when

pkk − d2k1 − d2k2 − ...− d2k,k−1 ≤ 0

This “bad termination” indicates that P is not positive definite.
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The outlined Choleski Algorithm allows to find the Choleski decomposition, if any, in
≈ n3

6
a.o. It is used routinely to solve linear systems

Px = b (S)

with P ≻ 0. To solve the system, one first computes the Choleski decomposition

P = DDT

and then solves (S) by two back-substitutions

b 7→ y : Dy = b, y 7→ x : DTx = y,

that is, by solving two triangular systems of equations (which takes just O(n2) a.o.).
Another application of the algorithm (e.g., in Levenberg-Marquardt method) is to check
positive definiteness of a symmetric matrix.
Note: The Levenberg-Marquardt method produces uniformly positive definite bounded
sequence {At}, provided that the set G = {x : f(x) ≤ f(x0)} is compact and f is twice
continuously differentiable in a neighbourhood of G.
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♣ The “most practical” implementation of Modified Newton Method is based on running
the Choleski decomposition as applied to Ht = f ′′(xt). When in course of this process
the current pivot (that is, specifying dkk) becomes impossible or results in dkk < δ, one
increases the corresponding diagonal entry in Ht until the condition dkk = δ is met.
With this approach, one finds a diagonal correction of Ht which makes the matrix “well
positive definite” and ensures uniform positive definiteness and boundedness of the re-
sulting sequence {At}, provided that the set G = {x : f(x) ≤ f(x0)} is compact and f is
twice continuously differentiable in a neighbourhood of G.
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Conjugate Gradient methods

♣ Consider a problem of minimizing a positive definite quadratic form

f(x) =
1

2
xTHx− bTx+ c

Here is a “conceptual algorithm” for minimizing f , or, which is the same, for solving
the system

Hx = b :

Given starting point x0, let g0 = f ′(x0) = Hx0 − b, and let us define Krylov’s subspaces

Et = Lin{g0, Hg0, H2g0, ..., Ht−1g0}
= {y = p(H)g0 : p(H) = ct−1Ht−1 + ct−2Ht−2 + ...+ c1H + c0I

— polynomial of degree ≤ t− 1}, t = 0,1, ...
[E0 = {0}, E1 = Lin{g0} = R · g0, E2 = Lin{g0, Hg0} = R · g0 + R ·Hg0, ...]

and set

xt = argmin
x∈x0+Et

f(x).
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f(x) = 1
2
xTHx− bTx+ c

Given starting point x0, let g0 = f ′(x0) = Hx0 − b, and let

Et = Lin{g0, Hg0, H2g0, ..., H
t−1g0},

and

xt = argmin
x∈x0+Et

f(x).

Fact I: {0} = E0 ⊆ E1 ⊆ E2 ⊆ E3... Let t∗ be the smallest integer t such that Et+1 = Et.
Then t∗ ≤ n, and xt∗ is the unique minimizer of f on Rn
Fact II: One has

f(xt)−min
x
f(x) ≤ 4

[√
Qf − 1√
Qf +1

]2t
[f(x0)−min

x
f(x)] (∗)

where Qf is the condition number of f – the ratio of the largest and the smallest
eigenvalues of H.
Note: Every

√
Qf new iterations decrease the right hand side in (∗) by absolute constant

factor. For Steepest decent similar improvement requires Qf new iterations...
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Fact III: The trajectory {xt} is given by explicit recurrence generating iterates xt, search
directions dt, and gradients gt = f ′(xt) according to:
♢ Initialization: Set

d0 = −g0 ≡ −f ′(x0) = b−Hx0;

♢Step t: if gt−1 ≡ f ′(xt−1) = 0, terminate, xt−1 being the result. Otherwise set

γt = − gTt−1dt−1

dTt−1Hdt−1

xt = xt−1 + γtdt−1

gt = f ′(xt) = Hxt − b = gt−1 + γtHdt−1

βt = gTt Hdt−1

dTt−1Hdt−1

dt = −gt + βtdt−1

and loop to step t+1.
• Note: A step costs a single matrix-vector multiplication to compute Hdt−1 plus linear
in n number of arithmetic operations.
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Note: In the above process,
♢The gradients g0, ..., gt∗−1, gt∗ = 0 are mutually orthogonal
♢The search directions d0, d1, ..., dt∗−1 are H-orthogonal:

i ̸= j ⇒ dTi Hdj = 0

♢One has

γt = argmin
γ

f(xt−1 + γdt−1)

βt = gTt gt
gTt−1gt−1

Note: With this representation of γt and βt, the algorithm does not involve explicit
multiplications of vectors by H, only computing gradients of f at iterates and linesearch!
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♣ Conjugate Gradient method as applied to a strongly convex quadratic form f can be
viewed as an iterative algorithm for solving the linear system

Hx = b.

As compared to “direct solvers”, like Choleski Decomposition or Gauss elimination, the
advantages of CG are:
♢Ability, in the case of exact arithmetic, to find solution in at most n steps, with a
single matrix-vector multiplication and O(n) additional operations per step.
⇒ The cost of finding the solution is at most O(n)L, where L is the arithmetic price of
matrix-vector multiplication.
Note: When H is sparse, L << n2, and the price of the solution becomes much smaller
than the price O(n3) for the direct LA methods.
♢ In principle, there is no necessity to assemble H – all we need is the possibility to
multiply by H

♢The non-asymptotic error bound f(xt)−min
x
f(x) ≤ 4

[√
Qf−1√
Qf+1

]2t
[f(x0)−min

x
f(x)] in-

dicates rate of convergence completely independent of the dimension and depending
only on the condition number of H.
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♠ Illustrations:
♢System 1000× 1000, Qf = 1.e2:

Itr f − f∗ ∥x− x∗∥2
1 2.297e+03 2.353e+01
11 1.707e+01 4.265e+00
21 3.624e-01 6.167e-01
31 6.319e-03 8.028e-02
41 1.150e-04 1.076e-02
51 2.016e-06 1.434e-03
61 3.178e-08 1.776e-04
71 5.946e-10 2.468e-05
81 9.668e-12 3.096e-06
91 1.692e-13 4.028e-07
94 4.507e-14 2.062e-07
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♢System 1000× 1000, Qf = 1.e4:

Itr f − f∗ ∥x− x∗∥2
1 1.471e+05 2.850e+01
51 1.542e+02 1.048e+01
101 1.924e+01 4.344e+00
151 2.267e+00 1.477e+00
201 2.248e-01 4.658e-01
251 2.874e-02 1.779e-01
301 3.480e-03 6.103e-02
351 4.154e-04 2.054e-02
401 4.785e-05 6.846e-03
451 4.863e-06 2.136e-03
501 4.537e-07 6.413e-04
551 4.776e-08 2.109e-04
601 4.954e-09 7.105e-05
651 5.666e-10 2.420e-05
701 6.208e-11 8.144e-06
751 7.162e-12 2.707e-06
801 7.850e-13 8.901e-07
851 8.076e-14 2.745e-07
901 7.436e-15 8.559e-08
902 7.152e-15 8.412e-08
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♢System 1000× 1000, Qf = 1.e6:

Itr f − f∗ ∥x− x∗∥2
1 9.916e+06 2.849e+01

1000 7.190e+00 2.683e+00
2000 4.839e-02 2.207e-01
3000 4.091e-04 1.999e-02
4000 2.593e-06 1.602e-03
5000 1.526e-08 1.160e-04
6000 1.159e-10 1.102e-05
7000 6.022e-13 7.883e-07
8000 3.386e-15 5.595e-08
8103 1.923e-15 4.236e-08
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♢System 1000× 1000, Qf = 1.e12:

Itr f − f∗ ∥x− x∗∥2
1 5.117e+12 3.078e+01

1000 1.114e+07 2.223e+01
2000 2.658e+06 2.056e+01
3000 1.043e+06 1.964e+01
4000 5.497e+05 1.899e+01
5000 3.444e+05 1.851e+01
6000 2.343e+05 1.808e+01
7000 1.760e+05 1.775e+01
8000 1.346e+05 1.741e+01
9000 1.045e+05 1.709e+01
10000 8.226e+04 1.679e+01
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♣ Non-Quadratic Extensions: CG in the form

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1

gt = f ′(xt)

βt = gTt gt
gTt−1gt−1

dt = −gt + βtdt−1

can be applied to whatever function f , not necessarily quadratic one (Fletcher-Reevs
CG), and similarly for another equivalent in the quadratic case form:

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1

gt = f ′(xt)

βt = (gt−gt−1)Tgt
gTt−1gt−1

dt = −gt + βtdt−1

(Polak-Ribiere CG).
♠ Being equivalent in the quadratic case, these (and other) forms of CG become differ-
ent in the non-quadratic case!
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♠ Non-quadratic extensions of CG can be used with and without restarts.
♢ In quadratic case CG, modulo rounding errors, terminates in at most n steps with
exact solution. In non-quadratic case this is not so.
♢ In non-quadratic CG with restarts, execution is split into n-step cycles, and cycle t+1
starts from the last iterate xt of the previous cycle as from the starting point (that is,
set search direction to be minus the current gradient)
In contrast to this, with no restarts the recurrence like

d0 = −g0 = −f ′(x0)
γt = argmin

γ
f(xt−1 + γdt−1)

xt = xt−1 + γtdt−1

gt = f ′(xt)

βt = (gt−gt−1)Tgt
gTt−1gt−1

dt = −gt + βtdt−1

is never “refreshed”.
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Theorem: Let the level set {x : f(x) ≤ f(x0)} of f be compact and f be twice continu-
ously differentiable in a neighbourhood of G. When minimizing f by Fletcher-Reevs or
Polak-Ribiere Conjugate Gradients with exact linesearch and restarts,
♢ the trajectory is well-defined and bounded
♢ f never increases
♢ all limiting points of the sequence xt of concluding iterates of the subsequent cycles
are critical points of f .
♢ If, in addition, xt converge to a nondegenerate local minimizer x∗ of f and f is 3 times
continuously differentiable around x∗, then xt converge to x∗ quadratically.
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Quasi-Newton Methods

♣ Quasi-Newton methods are variable metric methods of the generic form

xt+1 = xt − γt+1 St+1︸︷︷︸
=A−1

t+1

f ′(xt)

where St+1 ≻ 0 and γt+1 is given by linesearch.
♠ In contrast to Modified Newton methods, in Quasi-Newton algorithms one operates
directly on matrix St+1, with the ultimate goal to ensure, under favourable circumstances,
that

St+1 − [f ′′(xt)]
−1 → 0, t→ ∞. (∗)

♠ In order to achieve (∗), in Quasi-Newton methods one updates St into St+1 in a way
which ensures that
♢St+1 is ≻ 0
♢St+1(gt − gt−1) = xt − xt−1, where gτ = f ′(xτ) [secant equation]
Note: The second relation is motivated by what happens when f = 1

2
xTHx− bTx+ c is

quadratic strongly convex and St+1 = H−1
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♣ Generic Quasi-Newton method:
Initialization: Choose somehow starting point x0, matrix S1 ≻ 0, compute g0 = f ′(x0).
Step t: given xt−1, gt−1 = f ′(xt−1) and St ≻ 0, terminate when gt−1 = 0, otherwise
♢Set dt = −Stgt−1 and perform exact line search from xt−1 in the direction dt, thus
getting new iterate

xt = xt−1 + γtdt;

♢ compute gt = f ′(xt) and set

pt = xt − xt−1, qt = gt − gt−1;

♢update St into positive definite symmetric matrix St+1 in such a way that

St+1qt = pt

and loop.
Note: gTt−1dt < 0 (since gt−1 ̸= 0 and St ≻ 0) and gTt dt = 0 (since xt is a minimizer of f
on the ray {xt−1 + γdt : γ > 0})
⇒ pTt qt > 0. This fact is instrumental when justifying positive definiteness of St’s in the
standard Quasi-Newton methods.
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♠ Davidon-Fletcher-Powell method:

St+1 = St +
1

pTt qt
ptp

T
t −

1

qTt Stqt
Stqtq

T
t St.

♠ The Davidon-Fletcher-Powell method, as applied to a strongly convex quadratic form,
finds exact solution in no more than n steps. The trajectory generated by the method
initialized with S1 = I is exactly the one of the Conjugate Gradient method, so that the
DFP (Davidon-Fletcher-Powell) method with the indicated initialization is a Conjugate
Gradient method.
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♣ The Broyden family.
Broyden-Fletcher-Goldfarb-Shanno updating formula:

SBFGSt+1 = St +
1+ qTt Stqt

(pTt qt)
2
ptp

T
t −

1

pTt qt

[
ptq

T
t St + Stqtp

T
t

]
can be combined with the Davidon-Fletcher-Powell formula

SDFPt+1 = St +
1

qTt pt
ptp

T
t −

1

qTt Stqt
Stqtq

T
t St.

to yield a single-parametric Broyden family of updating formulas

Sϕt+1 = (1− ϕ)SDFPt+1 + ϕSBFGSt+1

where ϕ ∈ [0,1] is parameter.
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• “Mixing”

St 7→ Sϕt+1 = (1− ϕ)S(a)
t+1 + ϕS(b)

t+1 [0 ≤ ϕ ≤ 1]

of two legitimate updating policies is legitimate policy as well: if

{S(a)
t+1 ≻ 0 & S(a)

t+1qt = pt} & {S(b)
t+1 ≻ 0 & S(b)

t+1qt = pt}
then clearly

Sϕt+1 ≻ 0 & Sϕt+1qt = pt
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SBFGSt+1 = St +
1+ qTt Stqt

(pTt qt)
2
ptp

T
t −

1

pTt qt

[
ptq

T
t St + Stqtp

T
t

]
(BFGS)

♠ (BFGS) “mirrors” the Davidon-Fletcher-Powell updating:
• We are looking for a policy for updating St ≻ 0 into St+1 ≻ 0 while ensuring St+1qt = pt.
In terms of the inverses H of the S-matrices, this is a policy for updating Ht = S−1

t ≻ 0
into Ht+1 = S−1

t+1 ≻ 0 while ensuring Ht+1pt = qt.
• Using DFP (with pt and qt swapped!) as the policy for updating H-matrices and
looking what this policy yields for S-matrices, one arrives at (BFGS).
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♣ Facts:
♢As applied to a strongly convex quadratic form f , the Broyden method minimizes the
form exactly in no more than n steps, n being the dimension of the design vector. If S1

is proportional to the unit matrix, then the trajectory of the method on f is exactly the
one of the Conjugate Gradient method.
♢ all Broyden methods, independently of the choice of the parameter ϕ, being started
from the same pair (x0, S1) and equipped with the same exact line search and applied
to the same problem, generate the same sequence of iterates (although not the same
sequence of matrices St!).
♣ Broyden methods are thought to be the most efficient in practice versions of the
Conjugate Gradient and quasi-Newton methods, with the pure BFGS method (ϕ = 1)
seemingly being the best.
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Convergence of Quasi-Newton methods

♣ Global convergence of Quasi-Newton methods without restarts is proved only for
certain versions of the methods and only under strong assumptions on f .
• For methods with restarts, where the updating formulas are “refreshed” every m steps
by setting S = S1, one can easily prove that under our standard assumption that the
level set G = {x : f(x) ≤ f(x0)} is compact and f is continuously differentiable in a
neighbourhood of G, the trajectory of starting points of the cycles is bounded, and all
its limiting points are critical points of f .
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♣ Local convergence:
♢For scheme with restarts, one can prove that if m = n and S1 = I, then the trajectory
of starting points xt of cycles, if it converges to a nondegenerate local minimizer x∗ of f
such that f is 3 times continuously differentiable around x∗, converges to x∗ quadratically.
♢Theorem [Powell, 1976] Consider the BFGS method without restarts and assume
that the method converges to a nondegenerate local minimizer x∗ of a three times
continuously differentiable function f . Then the method converges to x∗ superlinearly.
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Lecture 10:

Efficient Solvability of Convex
Problems



Solving Convex Problems: Ellipsoid Algorithm

♣ There is a wide spectrum of algorithms capable to approximate global solutions of
convex problems to high accuracy in “reasonable” time.
We will present one of the “universal” algorithms of this type – the Ellipsoid method
imposing only minimal additional to convexity requirements on the problem.
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♣ The Ellipsoid method is aimed at solving convex problem in the form
Opt = minx∈X⊂Rn f(x)

where
• f is a real-valued continuous convex function on X which admits subgradients at every
point of X.
f is given by First Order oracle – a procedure (“black box”) which, given on input a
point x ∈ X, returns the value f(x) and a subgradient f ′(x) of f at x.
For example, when f is differentiable, it is enough to be able to compute the value and
the gradient of f at a point from X.
• X is a closed and bounded convex set in Rn with nonempty interior.
X is given by Separation oracle – a procedure SepX which, given on input a point x ∈ Rn,
reports whether x ∈ X, and if it is not the case, returns a separator – a nonzero vector
e ∈ Rn such that

maxy∈X eTy ≤ eTx.
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Opt = minx∈X⊂Rn f(x)

♠ Usually, the original description of the feasible domain X of the problem is as follows:
X = {x ∈ Y : gi(x) ≤ 0, 1 ≤ i ≤ m}

where
A Y is a nonempty convex set admitting a simple Separation oracle SepY .
Example: Let Y be nonempty and given by a list of linear inequalities aTk x ≤ bk,
1 ≤ k ≤ K. Here SepY is as follows:
Given a query point x, we check validity of the inequalities aTk x ≤ bk. If all of them are
satisfied, we claim that x ∈ Y , otherwise claim that x ̸∈ Y , take a violated inequality –
one with aTk x > bk – and return ak as the required separator e.
Note: We have maxy∈Y aTk y ≤ bk < aTk x, implying that e := ak separates x and Y and is
nonzero (since Y ̸= ∅).
B. gi : Y → R are convex functions on Y given by First Order oracles and such that
given x ∈ Y , we can check whether gi(x) ≤ 0 for all i, and if it is not the case, we can
find i∗ = i∗(x) such that gi∗(x) > 0.
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♠ Under assumptions A, B, assuming X nonempty, it is easy to build a Separation oracle
SepX for X, namely, as follows:
Given query point x ∈ Rn, we
— call SepY to check whether x ∈ Y . If it is not the case, x ̸∈ X, and the separator of
x and Y separates x and X as well. Thus, when SepY reports that x ̸∈ Y , we are done.
— when SepY reports that x ∈ Y , we check whether gi(x) ≤ 0 for all i. If it is the case,
x ∈ X, and we are done. Otherwise we claim that x ̸∈ X, find a constraint gi∗(·) ≤ 0
violated at x: gi∗(x) > 0, call First Oracle to compute a subgradient e of gi∗(·) at x and
return this e as the separator of x and X.
Note: In the latter case, e is nonzero and separates x and X: since gi∗(y) ≥ gi∗(x) +
eT(y − x) > eT(y − x) and gi∗(y) ≤ 0 when y ∈ X, we have

y ∈ X ⇒ eT(y − x) < 0
It follows that e ̸= 0 (X is nonempty!) and maxy∈X eTy ≤ eTx.
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Opt = minx∈X⊂Rn f(x) (P )

Assumptions:
• X is convex, closed and bounded set with intX ̸= ∅ given by Separation oracle SepX.
• f is convex and continuous function on X given by First Order oracle Of .
• [new] We have an “upper bound” on X – we know R < ∞ such that the ball B of
radius R centered at the origin contains X,
(?) How to solve (P ) ?
To get an idea, let us start with univariate case.
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Univariate Case: Bisection

♣ When solving a problem
min
x

{f(x) : x ∈ X = [a, b] ⊂ [−R,R]} ,
by bisection, we recursively update localizers – segments ∆t = [at−1, bt−1] containing the
optimal set Xopt.
• Initialization: Set ∆1 = [−R,R] [⊃ Xopt]
• Step t: Given ∆t ⊃ Xopt let ct be the midpoint of ∆t. Calling Separation and First
Order oracles at ct, we replace ∆t by twice smaller localizer ∆t+1.
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1) SepX says that ct ̸∈ X and reports, via separator e,
on which side of ct X is.
1.a): ∆t+1 = [at, ct]; 1.b): ∆t+1 = [ct, bt]

2) SepX says that ct ∈ X, and Of reports, via signf ′(ct),
on which side of ct Xopt is.
2.a): ∆t+1 = [at, ct]; 2.b): ∆t+1 = [ct, bt]; 2.c): ct ∈ Xopt



♠ Since the localizers rapidly shrink and X is of positive length, eventually some of
search points will become feasible, and the nonoptimality of the best found so far fea-
sible search point will rapidly converge to 0 as process goes on.
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♠ Bisection admits multidimensional extension, called Generic Cutting Plane Algorithm,
where one builds a sequence of “shrinking” localisers Gt – closed and bounded convex
domains containing the optimal set Xopt of (P ).
Generic Cutting Plane Algorithm is as follows:
♠ Initialization Select as G1 a closed and bounded convex set containing X and thus
being a localizer.

10.8



♠ Step t = 1,2, ...: Given current localizer Gt,
• Select current search point ct ∈ Gt and call Separation and First Order oracles to form
a cut – to find et ̸= 0 such that

Xopt ⊂ Ĝt := {x ∈ Gt : eTt x ≤ eTt ct}

c
 

X

Gt
ct

X

Gt
ct

Left: ct ̸∈ X (case A); right: ct ∈ X (case B). Yellow polygon: Ĝt.
— call SepX, ct being the input. If SepX says that ct ̸∈ X and returns a separator, take
it as et (case A on the picture).
Note: ct ̸∈ X ⇒ all points from Gt\Ĝt are infeasible
— if ct ∈ Xt, call Of to compute f(ct), f ′(ct). If f ′(ct) = 0, terminate, otherwise set
et = f ′(ct) (case B on the picture).
Note: When f ′(ct) = 0, ct is optimal for (P ), otherwise f(x) > f(ct) at all feasible points
from Gt\Ĝt

• By the two “Note” above, Ĝt is a localizer along with Gt. Select a closed and bounded
convex set Gt+1 ⊃ Ĝt (it also will be a localizer) and pass to step t+1.
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Opt = minx∈X⊂Rn f(x) (P )

♠ Approximate solution xt built in course of t = 1,2, ... steps is the best – with the
smallest value of f – of the feasible search points c1, ..., ct built so far.
If in course of the first t steps no feasible search points were built, xt is undefined.
♣ Analysing Cutting Plane algorithm
• Let Vol(G) be the n-dimensional volume of a closed and bounded convex set G ⊂ Rn.
Note: For convenience, we use, as the unit of volume, the volume of n-dimensional unit
ball {x ∈ Rn : ∥x∥2 ≤ 1}, and not the volume of n-dimensional unit box.
• Let us call the quantity ρ(G) = [Vol(G)]1/n the radius of G. ρ(G) is the radius of
n-dimensional ball with the same volume as G, and this quantity can be thought of as
the average linear size of G.
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Theorem. Let convex problem (P ) satisfying our standing assumptions be solved by
Generic Cutting Plane Algorithm generating localizers G1, G2,... and ensuring that
ρ(Gt) → 0 as t → ∞. Let t̄ be the first step where ρ(Gt+1) < ρ(X). Starting with this
step, approximate solution xt is well defined and obeys the “error bound”

f(xt)−Opt ≤ min
τ≤t

[
ρ(Gτ+1)
ρ(X)

] [
max
X

f −min
X

f
]
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Opt(P ) = minx∈X⊂Rn f(x) (P )

Explanation: Since intX ̸= ∅, ρ(X) is positive, and since X is closed and bounded, (P )
is solvable. Let x∗ be an optimal solution to (P ).
• Let us fix ϵ ∈ (0,1) and set Xϵ = x∗ + ϵ(X − x∗).
Xϵ is obtained X by similarity transformation which keeps x∗ intact and “shrinks” X
towards x∗ by factor ϵ. This transformation multiplies volumes by ϵn ⇒ ρ(Xϵ) = ϵρ(X).
• Let t be such that ρ(Gt+1) < ϵρ(X) = ρ(Xϵ). Then Vol(Gt+1) < Vol(Xϵ) ⇒ the set
Xϵ\Gt+1 is nonempty ⇒ for some z ∈ X, the point

y = x∗ + ϵ(z − x∗) = (1− ϵ)x∗ + ϵz
does not belong to Gt+1.

↙X

↙Xϵ

G
↗

t+1

x∗

y

z

10.12



↙X

↙Xϵ

G
↗

t+1

x∗

y

z

• G1 contains X and thus y, and Gt+1 does not contain y, implying that for some τ ≤ t,
it holds

eTτ y > eTτ cτ (!)

• We definitely have cτ ∈ X – otherwise eτ separates cτ and X ∋ y, and (!) witnesses
otherwise.
⇒ cτ ∈ X ⇒ eτ = f ′(cτ) ⇒ f(cτ) + eTτ (y − cτ) ≤ f(y)
⇒ [by (!)]
f(cτ) ≤ f(y) = f((1− ϵ)x∗ + ϵz) ≤ (1− ϵ)f(x∗) + ϵf(z)

⇒ f(cτ)− f(x∗) ≤ϵ[f(z)− f(x∗)] ≤ ϵ
[
max
X

f −min
X

f
]
.

Bottom line: If 0 < ϵ < 1 and ρ(Gt+1) < ϵρ(X), then xt is well defined (since τ ≤ t and

cτ is feasible) and f(xt)−Opt(P ) ≤ ϵ
[
max
X

f −min
X

f
]
.
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Opt(P ) = minx∈X⊂Rn f(x) (P )

“Starting with the first step t̄ where ρ(Gt+1) < ρ(X), xt is well defined, and

f(xt)−Opt ≤ min
τ≤t

[
ρ(Gτ+1)

ρ(X)

]
︸ ︷︷ ︸

ϵt

[
max
X

f −min
X

f
]

︸ ︷︷ ︸
V

”

♣ We are done. Let t ≥ t̄, so that ϵt < 1, and let ϵ ∈ (ϵt,1). Then for some t′ ≤ t we
have

ρ(Gt′+1) < ϵρ(X)
⇒ [by bottom line] xt

′
is well defined and

f(xt
′
)−Opt(P ) ≤ ϵV

⇒ [since f(xt) ≤ f(xt
′
) due to t ≥ t′] xt is well defined and f(xt)−Opt(P ) ≤ ϵV

⇒ [passing to limit as ϵ→ ϵt +0] xt is well defined and f(xt)−Opt(P ) ≤ ϵtV □
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Opt = minx∈X⊂Rn f(x) (P )

♠ Corollary: Let (P ) be solved by cutting Plane Algorithm which ensures, for some
ϑ ∈ (0,1), that

ρ(Gt+1) ≤ ϑρ(Gt)
Then, for every desired accuracy ϵ > 0, finding feasible ϵ-optimal solution xϵ to (P ) (i.e.,
a feasible solution xϵ satisfying f(xϵ)−Opt ≤ ϵ) takes at most

N = 1
ln(1/ϑ)

ln
(
R
[
1+ V

ϵ

])
+1

steps of the algorithm. Here
R = ρ(G1)

ρ(X)
says how well, in terms of volume, the initial localizer G1 approximates X, and

V = max
X

f −min
X

f

is the variation of f on X.
Note: R, and V/ϵ are under log, implying that high accuracy and poor approximation
of X by G1 cost “nearly nothing.”
What matters, is the factor at the log which is the larger the closer ϑ < 1 is to 1.
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“Academic” Implementation: Centers of Gravity

♠ Volumes in high dimensions exhibit counter-intuitive behavior. For example:
• High-dimensional water-mellon with thickness of skin just 1% of the radius is “nearly
skin only:”

dimension 3 10 100 750 1000
fraction of watermellon’s volume in the skin 0.0297 0.0956 0.6340 0.9995 1.0000

• Large in linear sizes spherical hat {x : ∥x∥2 ≤ 1, x1 ≥ 0.1} of n-dimensional unit ball
{x ∈ Rn : ∥x∥2 ≤ 1} in volume is, for large n, negligibly small part of the ball:

dimension 3 10 100 1000 10000
fraction of ball’s volume in the hat 0.4253 0.3727 0.1528 8.06 · 10−4 1.07 · 10−23

⇒ In high dimensions, to ensure progress in volumes of subsequent localizers in a Cutting
Plane algorithm is not an easy task: we do not know how the cut through ct will pass,
and thus should select ct in Gt in such a way that whatever be the cut, it cuts off the
current localizer Gt a “meaningful” part of its volume.
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♠ The most natural choice of ct in Gt is the center of gravity:

ct =

[∫
Gt

xdx

]
/

[∫
Gt

1dx

]
,

the expectation of the random vector uniformly distributed on Gt.
Good news: The Center of Gravity policy with Gt+1 = Ĝt results in

ϑ =
(
1−

[
n

n+1

]n)1/n
≤ [0.632...]1/n (∗)

This results in the complexity bound (# of steps needed to build ϵ-solution)
N = 2.2n ln

(
R
[
1+ V

ϵ

])
+1

Note: It can be proved that within absolute constant factor, like 4, this is the best
complexity bound achievable by whatever algorithm for convex minimization which can
“learn” the objective via First Order oracle only.
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♣ Reason for (*): Brunn-Minkowski Symmeterization Principle:

Let Y be a convex compact set in Rn, e be a unit direction and Z be “equi-cross-
sectional” to X body symmetric w.r.t. e, so that
• Z is rotationally symmetric w.r.t. the axis e
• for every hyperplane H = {x : eTx = const}, one has

Voln−1(X ∩H) = Voln−1(Z ∩H)

Then Z is a convex compact set.

Equivalently: Let U, V be convex compact nonempty sets in Rn. Then

Vol1/n(U + V ) ≥ Vol1/n(U) + Vol1/n(V ).

In fact, convexity of U , V is redundant!
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Disastrously bad news: Centers of Gravity are not implementable, unless the dimen-
sion n of the problem is like 2 or 3.
Reason: In the method, we have no control on the shape of localizers. Perhaps the
best we can say is that if we started with a polytope G1 given by M linear inequalities,
even as simple as a box, then Gt, for meaningful t’s, is a more or less arbitrary polytope
given by at most M + t − 1 linear inequalities. And computing center of gravity of a
general-type high-dimensional polytope is a computationally intractable task – it requires
astronomically many computations already in the dimensions like 5 – 10.
Remedy: Maintain the shape of Gt simple and convenient for computing centers of
gravity, sacrificing, if necessary, the value of ϑ.
The most natural implementation of this remedy is enforcing Gt to be ellipsoids. As a
result,
• ct becomes computable in O(n2) operations (nice!)
• ϑ = [0.632...]1/n ≈ exp{−0.367/n} increases to ϑ ≈ exp{−0.5/n2}, spoiling the com-
plexity bound

N = 2.2n ln
(
R
[
1+ V

ϵ

])
+1

to
N = 4n2 ln

(
R
[
1+ V

ϵ

])
+1

(unpleasant, but survivable...)
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Practical Implementation - Ellipsoid Method

♠ Ellipsoid in Rn is the image of the unit n-dimensional ball under one-to-one affine
mapping:

E = E(B, c) = {x = Bu+ c : uTu ≤ 1}
where B is n× n nonsingular matrix, and c ∈ Rn.
• c is the center of ellipsoid E = E(B, c): when c+ h ∈ E, c− h ∈ E as well
• When multiplying by n×n matrix B, n-dimensional volumes are multiplied by |Det(B)|
⇒Vol(E(B, c)) = |Det(B)|, ρ(E(B, c)) = |Det(B)|1/n.
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Simple fact: Let E(B, c) be ellipsoid in Rn and e ∈ Rn be a nonzero vector. The “half-
ellipsoid”

Ê = {x ∈ E(B, c) : eTx ≤ eTc}
is covered by the ellipsoid E+ = E(B+, c+) given by

c+ = c− 1
n+1

Bp, p = BTe/
√
eTBBTe

B+ = n√
n2−1

B+
(

n
n+1

− n√
n2−1

)
(Bp)pT ,

• E(B+, c+) is the ellipsoid of the smallest volume containing the half-ellipsoid Ê, and
the volume of E(B+, c+) is strictly smaller than the one of E(B, c):

ϑ := ρ(E(B+,c+))
ρ(E(B,c))

≤ exp{− 1
2n2}.

• Given B, c, e, computing B+, c+ costs O(n2) arithmetic operations.
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Opt = minx∈X⊂Rn f(x) (P )

♣ Ellipsoid method is the Cutting Plane Algorithm where
• all localizers Gt are ellipsoids:

Gt = E(Bt, ct) = {x = ct +Btu : uTu ≤ 1},
• the search point at step t is ct, and
• Gt+1 is the smallest volume ellipsoid containing the half-ellipsoid

Ĝt = {x ∈ Gt : eTt x ≤ eTt ct}
Computationally, at every step of the algorithm we once call the Separation oracle
SepX, (at most) once call the First Order oracle Of and spend O(n2) operations to
update (Bt, ct) into (Bt+1, ct+1) by explicit formulas.
♠ Complexity bound of the Ellipsoid algorithm is

N = 4n2 ln
(
R
[
1+ V

ϵ

])
+1

R = ρ(G1)
ρ(X)

, V = max
x∈X

f(x)−min
x∈X

f(x)

Pay attention:
• R, V, ϵ are under log ⇒ large magnitudes in data entries and high accuracy are not
issues
• the factor at the log depends only on the structural parameter of the problem (its
design dimension n) and is independent of the remaining data.
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What is Inside Simple Fact

♠ Messy formulas describing the updating
(Bt, ct) → (Bt+1, ct+1)

in fact are easy to get.
• Ellipsoid E is the image of the unit ball U under affine transformation u 7→ c+Bu.
Affine transformation preserves ratio of volumes
⇒Finding the smallest volume ellipsoid containing a given half-ellipsoid Ê reduces to
finding the smallest volume ellipsoid U+ containing a given half-ball Û :

⇔
x=c+Bu

E, Ê and E+ U , Û and U+

• The “ball” problem is highly symmetric, and solving it reduces to a simple exercise in
elementary Calculus.
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Why Ellipsoids?

(?) When enforcing the localizers to be of “simple and stable” shape, why we make
them ellipsoids (i.e., affine images of the unit Euclidean ball), and not something else,
say parallelotopes (affine images of the unit box)?

Answer: In a “simple stable shape” version of Cutting Plane Scheme all localizers are
affine images of some fixed n-dimensional solid C (closed and bounded convex set in Rn
with a nonempty interior). To allow for reducing step by step volumes of localizers, C
cannot be arbitrary. What we need is the following property of C:
One can fix a point c in C in such a way that whatever be a cut

Ĉ = {x ∈ C : eTx ≤ eTc} [e ̸= 0]
this cut can be covered by the affine image of C of volume less than the one of C:

∃B, b : Ĉ ⊂ BC+ b & |Det(B)| < 1 (!)
♠ In the Ellipsoid algorithm, C is the unit Euclidean ball ⇒|Det(B)| ≤ exp{− 1

2n
}.

• Solids C with the above property are “rare commodity.” For example, n-dimensional
box does not possess it.
• Another “good” solid is n-dimensional simplex (this is not that easy to see!). Here (!)
can be satisfied with |Det(B)| ≤ exp{−O(1/n2)}, finally yielding ϑ = (1−O(1/n3)).
⇒From the complexity viewpoint, “simplex” Cutting Plane algorithm is worse than the
Ellipsoid method.
The same is true for handful of other known so far (and quite exotic) ”good solids.”
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Ellipsoid Method: pro’s & con’s

♣ Academically speaking, Ellipsoid method is an indispensable tool underlying basi-
cally all results on efficient solvability of generic convex problems, most notably, the
famous theorem of L. Khachiyan (1978) on efficient (scientifically: polynomial time,
whatever it means) solvability of Linear Programming with rational data – the first ever
mathematical result which made the C2 page of New York Times (Nov 27, 1979).
♠ What matters from theoretical perspective, is “universality” of the algorithm (nearly
no assumptions on the problem except for convexity) and complexity bound of the form
“structural parameter outside of log, all else, including required accuracy, under the
log.”
♠ Another theoretical (and to some extent, also practical) advantage of the Ellipsoid
algorithm is that as far as the representation of the feasible set X is concerned, all we
need is a Separation oracle, and not the list of constraints describing X. The number
of these constraints can be astronomically large, making impossible to check feasibility
by looking at the constraints one by one; however, in many important situations the
constraints are “well organized,” allowing to implement Separation oracle efficiently.
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♠ Theoretically, the only (and minor!) drawback of the algorithm is the necessity for
the feasible set X to be bounded, with known “upper bound,” and to possess nonempty
interior.
As of now, there is not way to cure the first drawback without sacrificing universality.
The second “drawback” is artifact: given nonempty set

X = {x : gi(x) ≤ 0,1 ≤ i ≤ m},
we can extend it to

Xϵ = {x : gi(x) ≤ ϵ,1 ≤ i ≤ m},
thus making the interior nonempty, and minimize the objective within accuracy ϵ on
this larger set, seeking for ϵ-optimal ϵ-feasible solution instead of ϵ-optimal and exactly
feasible one.
This is quite natural: to find a feasible solution is, in general, not easier than to find an
optimal one. Thus, either ask for exactly feasible and exactly optimal solution (which be-
yond LO is unrealistic), or allow for controlled violation in both feasibility and optimality!

10.26



♠ From practical perspective, theoretical drawbacks of the Ellipsoid method become
irrelevant: for all practical purposes, bounds on the magnitude of variables like 10100 is
the same as no bounds at all, and infeasibility like 10−10 is the same as feasibility. And
since the bounds on the variables and the infeasibility are under log in the complexity
estimate, 10100 and 10−10 are not a disaster.
♠ Practical limitations (rather severe!) of Ellipsoid algorithm stem from method’s
sensitivity to problem’s design dimension n. Theoretically, with ϵ, V,R fixed, the number
of steps grows with n as n2, and the effort per step is at least O(n2) a.o.
⇒Theoretically, computational effort grows with n at least as O(n4),
⇒n like 1000 and more is beyond the “practical grasp” of the algorithm.
Note: Nearly all modern applications of Convex Optimization deal with n in the range
of tens and hundreds of thousands!
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♠ By itself, growth of theoretical complexity with n as n4 is not a big deal: for Simplex
method, this growth is exponential rather than polynomial, and nobody dies – in reality,
Simplex does not work according to its disastrous theoretical complexity bound.
Ellipsoid algorithm, unfortunately, works more or less according to its complexity bound.
⇒Practical scope of Ellipsoid algorithm is restricted to convex problems with few tens
of variables.
However: Low-dimensional convex problems from time to time do arise in applications.
More importantly, these problems arise “on a permanent basis” as auxiliary problems
within some modern algorithms aimed at solving extremely large-scale convex problems.
⇒The scope of practical applications of Ellipsoid algorithm is nonempty, and within
this scope, the algorithm, due to its ability to produce high-accuracy solutions (and
surprising stability to rounding errors) can be considered as the method of choice.
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How It Works
Opt = min

x
f(x), X = {x ∈ Rn : aTi x− bi ≤ 0, 1 ≤ i ≤ m}

♠ Real-life problem with n = 10 variables and m = 81,963,927 “well-organized” linear
constraints:

CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)
0.01 1 0.000000 6.7e4 1.0e0
0.53 63 0.000000 6.7e3 4.2e-1
0.60 176 0.000000 6.7e2 8.9e-2
0.61 280 0.000000 6.6e1 1.5e-2
0.63 436 0.000000 6.6e0 2.5e-3
1.17 895 -1.615642 6.3e-1 4.2e-5
1.45 1250 -1.983631 6.1e-2 4.7e-6
1.68 1628 -2.020759 5.9e-3 4.5e-7
1.88 1992 -2.024579 5.9e-4 4.5e-8
2.08 2364 -2.024957 5.9e-5 4.5e-9
2.42 2755 -2.024996 5.7e-6 4.1e-10
2.66 3033 -2.024999 9.4e-7 7.6e-11

Note: My implementation of Ellipsoid algorithm utilizes several simple tricks, including
on-line upper bounding of “optimality gaps” f(xt)−Opt.
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♠ Similar problem with n = 30 variables and
m = 1,462,753,730 “well-organized” linear constraints:

CPU, sec t f(xt) f(xt)−Opt≤ ρ(Gt)/ρ(G1)
0.02 1 0.000000 5.9e5 1.0e0
1.56 649 0.000000 5.9e4 5.0e-1
1.95 2258 0.000000 5.9e3 8.1e-2
2.23 4130 0.000000 5.9e2 8.5e-3
5.28 7080 -19.044887 5.9e1 8.6e-4
10.13 10100 -46.339639 5.7e0 1.1e-4
15.42 13308 -49.683777 5.6e-1 1.1e-5
19.65 16627 -50.034527 5.5e-2 1.0e-6
25.12 19817 -50.071008 5.4e-3 1.1e-7
31.03 23040 -50.074601 5.4e-4 1.1e-8
37.84 26434 -50.074959 5.4e-5 1.0e-9
45.61 29447 -50.074996 5.3e-6 1.2e-10
52.35 31983 -50.074999 1.0e-6 2.0e-11
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Lecture 11:

Algorithms for Constrained

Optimization, I:
Penalty/Barrier Methods



Algorithms for Constrained Optimization

♣ Traditional methods for general constrained problems

min
x

{
f(x) :

gj(x) ≤ 0, j = 1, ...,m
hi(x) = 0, i = 1, ..., k

}
(P )

can be partitioned into
♢Primal methods, where one mimics unconstrained approach, travelling along the fea-
sible set in a way which ensures progress in objective at every step
♢Penalty/Barrier methods, which reduce constrained minimization to solving a se-
quence of essentially unconstrained problems
♢Lagrange Multiplier methods, where one focuses on dual problem associated with
(P ). A posteriori the Lagrange multiplier methods, similarly to the penalty/barrier ones,
reduce (P ) to a sequence of unconstrained problems, but in a “smart” manner different
from the penalty/barrier scheme
♢Sequential Quadratic Programming methods,
where one directly solves the KKT system associated with (P ) by a kind of Newton
method.
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Penalty/Barrier Methods

♣ Penalty Scheme, Equality Constraints. Consider equality constrained problem

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and let us “approximate” it by unconstrained problem

min
x
fρ(x) = f(x) +

ρ

2

k∑
i=1

h2i (x)︸ ︷︷ ︸
penalty
term

(P [ρ])

ρ > 0 is penalty parameter.
Note: (A) On the feasible set, the penalty term vanishes, thus fρ ≡ f ;
(B) When ρ is large and x is infeasible, fρ(x) is large:

lim
ρ→∞

fρ(x) =

{
f(x), x is feasible
+∞, otherwise

⇒ It is natural to expect that solution of (P [ρ]) approaches, as ρ→ ∞, the optimal set
of (P ).
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♣ Penalty Scheme, General Constraints. In the case of general constrained problem

min
x

{
f(x) :

hi(x) = 0, i = 1, ..., k
gj(x) ≤ 0, j = 1, ...,m

}
, (P )

the same idea of penalizing the constraint violations results in approximating (P ) by
unconstrained problem

min
x
fρ(x) = f(x) +

ρ

2

 k∑
i=1

h2i (x) +
m∑
j=1

[gj(x)
+]2


︸ ︷︷ ︸

penalty
term

(P [ρ])

where

g+j (x) = max[gj(x),0]

and ρ > 0 is penalty parameter. Here again

lim
ρ→∞

fρ(x) =

{
f(x), x is feasible
+∞, otherwise

and we again may expect that the solutions of (P [ρ]) approach, as ρ→ ∞, the optimal
set of (P ).
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♣ Barrier scheme normally is used for inequality constrained problems

min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

satisfying “Slater condition”: the feasible set

G = {x : gj(x) ≤ 0, j ≤ m}
of (P ) possesses a nonempty interior intG which is dense in G, and gj(x) < 0 for
x ∈ intG.
♠ Given (P ), one builds a barrier (≡interior penalty) for G – a function F which is
well-defined and smooth on intG and blows up to +∞ along every sequence of points
xi ∈ intG converging to a boundary point of G:

xi ∈ intG, lim
i→∞

xi = x ̸∈ intG⇒ F (xi) → ∞, i→ ∞.

Examples:
♢Log-barrier F (x) = −

∑
j

ln(−gj(x))

♢Carrol Barrier F (x) = −
∑
j

1
gj(x)
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

♠ After interior penalty F for the feasible domain of (P ) is chosen, the problem is
approximated by the “essentially unconstrained” problem

min
x∈intG

F ρ(x) = f(x) +
1

ρ
F (x) (P [ρ])

When penalty parameter ρ is large, the function F ρ is close to f everywhere in G, except
for a thin stripe around the boundary.
⇒ It is natural to expect that solutions of (P [ρ]) approach the optimal set of (P ) as
ρ→ ∞,
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Investigating Penalty Scheme

♣ Let us focus on equality constrained problem

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and associated penalized problems

min
x
fρ(x) = f(x) +

ρ

2
∥h(x)∥22 (P [ρ])

(results for general case are similar).
♠ Questions of interest:
♢Whether indeed unconstrained minimizers of the penalized objective fρ converge, as
ρ→ ∞, to the optimal set of (P )?
♢What are our possibilities to minimize the penalized objective?
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min
x
fρ(x) = f(x) + ρ

2
∥h(x)∥22 (P [ρ])

Simple fact: Let (P ) be feasible, the objective and the constraints in (P ) be continuous
and let f possess bounded level sets {x : f(x) ≤ a}. Let, further X∗ be the set of global
solutions to (P ). Then X∗ is nonempty, approximations problems (P [ρ]) are solvable,
and their global solutions approach X∗ as ρ→ ∞:

∀ϵ > 0∃ρ(ϵ) : ρ ≥ ρ(ϵ), x∗(ρ) solves (P [ρ])
⇒ dist(x∗(ρ), X∗) ≡ min

x∗∈X∗

∥x∗(ρ)− x∗∥2 ≤ ϵ
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min
x
fρ(x) = f(x) + ρ

2
∥h(x)∥22 (P [ρ])

Proof. 10. By assumption, the feasible set of (P ) is nonempty and closed, f is contin-
uous and f(x) → ∞ as ∥x∥2 → ∞. It follows that f attains its minimum on the feasible
set, and the set X∗ of global minimizers of f on the feasible set is bounded and closed.

20. The objective in (P [ρ]) is continuous and goes to +∞ as ∥x∥2 → ∞; consequently,
(P [ρ]) is solvable.
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min
x
fρ(x) = f(x) + ρ

2
∥h(x)∥22 (P [ρ])

30. It remains to prove that, for every ϵ > 0, the solutions of (P [ρ]) with large enough
value of ρ belong to ϵ-neighbourhood of X∗. Assume, on the contrary, that for certain
ϵ > 0 there exists a sequence ρi → ∞ such that an optimal solution xi to (P [ρi]) is at
the distance > ϵ from X∗, and let us lead this assumption to contradiction.
♢Let f∗ be the optimal value of (P ). We clearly have

f(xi) ≤ fρi(xi) ≤ f∗, (1)

whence {xi} is bounded. Passing to a subsequence, we may assume that xi → x̄ as
i→ ∞.
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min
x
fρ(x) = f(x) + ρ

2
∥h(x)∥22 (P [ρ])

xi ∈ Argmin
x

fρi(x), xi → x̄ ̸∈ X∗

⇒ f(xi) ≤ fρi(xi) ≤ f∗ (1)

♢We claim that x̄ ∈ X∗, which gives the desired contradiction. Indeed,
— x̄ is feasible, since otherwise

lim
i→∞

[f(xi) +
ρi

2
∥h(xi)∥22]︸ ︷︷ ︸

fρi(xi)

= f(x̄) + lim
i→∞

ρi
2
∥h(xi)∥22︸ ︷︷ ︸
→∥h(x̄)∥2

2>0

= +∞,

in contradiction to (1);
— f(x̄) = lim

i→∞
f(xi) ≤ f∗ by (1); since x̄ is feasible for (P ), we conclude that x̄ ∈ X∗.
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♠ Shortcoming of Simple Fact: In non-convex case, we cannot
find/approximate global minimizers of the penalized objective, so that Simple Fact is
“unsubstantial”...
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇓
min
x
fρ(x) = f(x) + ρ

2
∥h(x)∥22 (P [ρ])

Theorem. Let x∗ be a nondegenerate locally optimal solution to (P ), i.e., a feasible
solution such that
♢ f , hi are twice continuously differentiable in a neighbourhood of x∗,
♢ the gradients of the constraints taken at x∗ are linearly independent,
♢ at x∗, the Second Order Sufficient Optimality condition is satisfied, so that x∗ is the
best, in terms of the objective, among nearby feasible solutions.
Then there exists a neighbourhood V of x∗ and ρ̄ > 0 such that
♢ for every ρ ≥ ρ̄, fρ possesses in V exactly one critical point x∗(ρ);
♢x∗(ρ) is a nondegenerate local minimizer of fρ and global minimizer of fρ on V ;
♢x∗(ρ) → x∗ as ρ→ ∞.
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In addition,
• The local “penalized optimal value”

fρ(x∗(ρ)) = min
x∈V

fρ(x)

is nondecreasing in ρ
Indeed, fρ(·) = f(·) + ρ

2
∥h(·)∥22 grows with ρ

• The constraint violation ∥h(x∗(ρ))∥2 monotonically goes to 0 as ρ→ ∞
Indeed, let ρ′′ > ρ′, and let x′ = x∗(ρ′), x′′ = x∗(ρ′′). Then

f(x′) + ρ′′

2
∥h(x′)∥22 ≥ f(x′′) + ρ′′

2
∥h(x′′)∥22

f(x′′) + ρ′

2
∥h(x′′)∥22 ≥ f(x′) + ρ′

2
∥h(x′)∥22

⇒ f(x′) + f(x′′) + ρ′′

2
∥h(x′)∥22 + ρ′

2
∥h(x′′)∥22

≥ f(x′) + f(x′′) + ρ′′

2
∥h(x′′)∥22 + ρ′

2
∥h(x′)∥22

⇒ ρ′′−ρ′

2
∥h(x′)∥22 ≥ ρ′′−ρ′

2
∥h(x′′)∥22

• The true value of the objective f(x∗(ρ)) at x∗(ρ) is nondecreasing in ρ
Explanation: x∗(ρ) is “super-optimal:” f(x∗(ρ)) ≤ f(x∗), with super-optimality achieved
at the price of violating the constraints. As the penalty ρ goes to ∞, the constraint
violation ∥h(x∗(ρ))∥2 and “super-optimality” f(x∗)− f(x∗(ρ)) monotonically go to 0.
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

• The quantities ρhi(x∗(ρ)) converge to optimal Lagrange multipliers µ∗
i associated locally

optimal solution x∗.
Indeed,

0 = f ′ρ(x∗(ρ)) = f ′(x∗(ρ)) +
∑
i

(ρhi(x∗(ρ)))h
′
i(x∗(ρ)).

while

0 = f ′(x∗) +
∑
i

µ∗
ih

′
i(x∗) & lim

ρ→∞
x∗(ρ) = x∗

⇒ If not all optimal Lagrange multipliers µ∗
i for x∗ are zeros, the violations of (some of)

constraints at x∗(ρ) are of order of 1/ρ
⇒To get small constraint violations, we must work with large penalties ρ !
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♣ Solving penalized problem

min
x
fρ(x) ≡ f(x) +

ρ

2
∥h(x)∥22 (P [ρ])

♢ In principle, one can solve (P [ρ]) by whatever method for unconstrained minimization.
♢However: The conditioning of f deteriorates as ρ→ ∞.
Indeed, as ρ→ ∞, we have

dTf ′′ρ (x∗(ρ)︸ ︷︷ ︸
x

)d = dT

[
f ′′(x) +

∑
i

ρhi(x)h
′′
i (x)

]
︸ ︷︷ ︸

→∇2
xL(x∗,µ∗)

d

+ ρ
∑
i

(dTh′i(x))
2

︸ ︷︷ ︸
→ ∞, ρ→ ∞

except for dTh′(x∗) = 0

⇒ slowing down the convergence and/or severe numerical difficulties when working with
large penalties...
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Barrier Methods

min
x

{f(x) : x ∈ G ≡ {x : gj(x) ≤ 0, j = 1, ...,m}} (P )

⇓
min

x∈intG
F ρ(x) ≡ f(x) + 1

ρ
F (x) (P [ρ])

F is interior penalty for G = cl(intG):
♢F is smooth on intG
♢F tends to ∞ along every sequence xi ∈ intG converging to a boundary point of G.
Theorem. Assume that G = cl(intG) is bounded and f, gj are continuous on G. Then
the set X∗ of optimal solutions to (P ) and the set X∗(ρ) of optimal solutions to (P [ρ])
are nonempty, and the second set converges to the first one as ρ→ ∞: for every ϵ > 0,
there exists ρ = ρ(ϵ) such that

ρ ≥ ρ(ϵ), x∗(ρ) ∈ X∗(ρ) ⇒ dist(x∗(ρ), X∗) ≤ ϵ.

11.16



♣ In the case of convex program

min
x∈G

f(x) (P )

with closed and bounded convex G and convex objective f , the domain G can be in
many ways equipped with a twice continuously differentiable strongly convex penalty
F (x).
♠ Assuming f twice continuously differentiable on intG, the aggregate

Fρ(x) = ρf(x) + F (x)

is strongly convex on intG and therefore attains its minimum at a single point

x∗(ρ) = argmin
x∈intG

Fρ(x) [= argmin
x∈intG

F ρ(x) := f(x) + 1
ρ
F (x)]

♠ It is easily seen that the path x∗(ρ) is continuously differentiable and converges, as
ρ→ ∞, to the optimal set of (P ).
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min
x∈G

f(x) (P )

⇓
min

x∈intG
Fρ(x) = ρf(x) + F (x) (P [ρ])

⇓
x∗(ρ) = argmin

x∈intG
Fρ(x) →

ρ→∞
Argmin

G
f

♣ In classical path-following scheme (Fiacco and McCormic, 1967), one traces the path
x∗(ρ) as ρ→ ∞ according to the following generic scheme:
♢Given (xi ∈ intG, ρi > 0) with xi close to x∗(ρi),
— update ρi into a larger value ρi+1 of the penalty
— minimize Fρi+1(·), xi being the starting point, until a new iterate xi+1 close to

x∗(ρi+1) = argmin
x∈intG

Fρi+1(x)

is built, and loop.
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f(x) F (x) F10(x) = 10f(x) + F (x)
blue dot: x∗ = argmin

x∈G
f(x) red dot: x∗(10) = argmin

x∈int G
F10(x)

G : black 2D rectangle
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♠ To update a tight approximation xi of argminFρi(x) into a tight approximation xi+1

of argminFρi+1(x), one can apply to Fρi+1(·) a method for “essentially unconstrained”
minimization, preferably, the Newton method
♠ When Newton method is used, one can try to increase penalty at a “safe” rate,
keeping xi in the domain of quadratic convergence of the Newton method as applied to
Fρi+1(·) and thus making use of fast local convergence of the method.

Tracing path

black rectangle feasible domain G
bullet • optimal solution

dashed line path x∗(ρ) = argminintG[ρf(x) + F (x)]
pluses + “target” points x∗(ρi) on the path

austericks ∗ approximations xi to x∗(ρi) built by path tracing
dots . iterates of Newton minimization of Fρi(·) updating

xi−1 into xi
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♠ To update a tight approximation xi of argminFρi(x) into a tight approximation xi+1

of argminFρi+1(x), one can apply to Fρi+1(·) a method for “essentially unconstrained”
minimization, preferably, the Newton method
♠ When Newton method is used, one can try to increase penalty at a “safe” rate,
keeping xi in the domain of quadratic convergence of the Newton method as applied to
Fρi+1(·) and thus making use of fast local convergence of the method.
Questions: • How to choose F?
• How to measure closeness to the path?
• How to ensure “safe” penalty updating without slowing the method down?
Note: As ρ→ ∞, the condition number of F ′′

ρ (x∗(ρ)) may blow up to ∞, which, according
to the traditional theory of the Newton method, makes the problems of updating xi into
xi+1 more and more difficult. Thus, slowing down seems to be unavoidable...
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♣ In late 80’s, it was discovered that the classical path-following scheme, associated
with properly chosen barriers, admits “safe” implementation without slowing down. This
discovery led to invention of Polynomial Time Interior Point methods for convex pro-
grams.
♣ Majority of Polynomial Time Interior Point methods heavily exploit the classical path-
following scheme; the novelty is in what are the underlying barriers – these are specific
self-concordant functions especially well suited for Newton minimization.
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♠ When speaking about Newton method as applied to a strongly convex smooth function
f , we saw that
— the algorithm, started close to the global minimizer x∗, converges to x∗ quadratically
— the algorithm is affine invariant: passing from f(x) to g(y) = f(Ay+b), with invertible
A, applying the Newton algorithm to g(y), and translating the resulting trajectory yt
into x-coordinates: yt 7→ xt = Ayt + b, we get exactly the trajectory we would get when
applying the Newton method to f(x) directly.
♠ In spite of the affine invariance of the algorithm, the classical description of the region
of quadratic convergence of Newton method as applied to smooth strongly convex f(x)
is frame-dependent. It is expressed in terms of the largest and the smallest eigenvalues
of f ′′(x∗) and the magnitude of Lipschitz constant of f ′′(x) and is not affine invariant
– if A is not orthogonal, it may happen that this description when translated from x-
variables to y-variables specifies domain much larger, or much smaller, than the same
description as applied to g(y) directly.
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♠ Question: Where to take “good coordinates” (scientifically: good Euclidean struc-
ture) to describe qualitatively in affine invariant fashion the behaviour of the Newton
method as applied to strongly convex smooth function f ?
♠ Answer: The Hessian of f at a point x defines Euclidean structure ⟨g, h⟩x = gTf ′′(x)h
and Euclidean norm

∥h∥x =

√
hTf ′′(x)h =

√
d2

dt2

∣∣∣∣
t=0

f(x+ th).

In coordinates orthonormal in this Euclidean structure f ′′(x) becomes as good as it could
be – just the unit matrix. Imposing an upper bound on the third directional derivative
of f , taken at x, in terms of the ∥ · ∥x-norm of the direction, we arrive at a family
of strongly convex smooth objectives perfectly well suited for Newton minimization.
On this family, the behavior of Newton method, including description of its domain of
quadratic convergence, becomes quite transparent and frame-independent!
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♣ Let G ⊂ Rn be a closed convex domain with nonempty interior which does not contain
lines. A 3 times continuously differentiable convex function

F (x) : intG→ R

is called self-concordant, if
♢F is an interior penalty for G: xi ∈ intG, xi → x ∈ ∂G⇒ F (xi) → ∞
♢F satisfies the relation

∀(x ∈ intG, h ∈ Rn) :

∣∣∣∣ d3dt3∣∣t=0
F (x+ th)

∣∣∣∣ ≤ 2

(
d2

dt2

∣∣
t=0

F (x+ th)

)3/2

︸ ︷︷ ︸
∥h∥3

x

(∗)

Equivalently: The third order directional derivative taken at x ∈ intG along any
direction h of unit ∥ · ∥x-length, i.e., such that d2

dt2

∣∣
t=0

F (x+ th) = 1, does not exceed 2.
Standard example: F (x) = − ln(x) is self-concordant on G = R+. In this case (∗)
becomes identity.
Extension: Assume domain G = cl{x ∈ Rn : aTi x < bi, i ≤ m} is nonempty and does not
contain lines. Then the function F (x) = −

∑m
i=1 ln(bi − aTi x) is self-concordant on G.
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∀(x ∈ intG, h ∈ Rn) :

∣∣∣∣ d3dt3∣∣t=0
F (x+ th)

∣∣∣∣ ≤ 2

(
d2

dt2

∣∣
t=0

F (x+ th)

)3/2

︸ ︷︷ ︸
∥h∥3

x

(∗)

Note: 3/2 in (∗) is a must — both sides in (∗) should be of the same degree of
homogeneity in h.
Note: There is nothing special in factor 2 in front of (...)3/2 in the right hand side of
(∗) – it is just a convenient normalization.
Indeed, the sides of (∗) are of different degree of homogeneity w.r.t. F , so that scaling
F , we can make this factor whatever we want (or, equivalently, can convert factor 2
into whatever constant factor we want, same as can convert whatever constant factor
in front of (...)3/2 into factor 2).
Note: Convenience of constant 2 stems from the fact that with this constant in (*)
the important barriers
• − ln(x) for R+, and −

∑
i ln(bi − aTi x) for polytope {x : aTi x ≤ bi, i ≤ m},

• − ln(x2m − x21 − x22 − ...− x2m−1) for the Lorentz cone Lm = {x ∈ Rm : xm ≥
√∑m−1

i=1 x2i },
• − lnDetX for the cone Sm+ of positive semidefinite m×m matrices X
become self-concordant “as is,” without scaling.
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Newton Method on Self-Concordant functions

♠ Let G. intG ̸= ∅, be a closed convex domain not containing lines, and F (x) : intG→ R
be self-concordant. Then F ′′(x) ≻ 0, x ∈ intG. Defining the Newton decrement of F at
a point x ∈ intG as

λ(x, F ) = maxh

{
d
dt

∣∣∣∣
t=0

F (x+ th) : ∥h∥x ≤ 1

} [
=
√
F ′(x)[F ′′(x)]−1F ′(x)

]
and Damped Newton iterate of x as the point

x+ = x+(x) = x− 1
1+λ(x,F )

[F ′′(x)]−1F ′(x)

one has:
• x+ ∈ intG and F (x+) ≤ F (x)− [λ− ln(1 + λ)] ≤ F (x)− λ2

2(1+λ)
, λ = λ(x, F );

• F attains its minimum on intG iff λ(x, F ) < 1 for some x, and
λ := λ(x, F ) < 1 ⇒ F (x)−minintG F ≤ −log(1− λ)− λ ≤ λ2

2(1−λ)
• Region of fast convergence of Damped Newton method xt 7→ xt+1 = x+(xt) is given by
λ0 := λ(x0, F ) < 1. When λ0 < 1, it takes T ≤ O(1)/(1− λ0) steps to get λ(xT , F ) < 0.1,

and t ≥ T ⇒λ(xt+1, F ) ≤ 2λ2(xt, F ) ≤ λ(xt,F )
2

& ∥xt+1−x∗∥x∗ ≤ 2∥xt−x∗∥2x∗
≤ ∥xt−x∗∥x∗

2
, where

x∗ = ArgminintG F .
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♠ Let ϑ ≥ 1. F is called ϑ-self-concordant barrier for G, if, in addition to being self-
concordant on G, F satisfies the relation∣∣∣∣ ddt∣∣t=0

F (x+ th)

∣∣∣∣ ≤ √
ϑ

(
d2

dt2

∣∣
t=0

F (x+ th)

)1/2

or, equivalently,

λ(x, F ) ≤
√
ϑ ∀x ∈ intG.

ϑ is called the parameter of s.-c.b. F .
Examples:
• Assume domain G = cl{x ∈ Rn : aTi x < bi, i ≤ m} is nonempty and does not contain
lines. Then the function F (x) = −

∑m
i=1 ln(bi − aTi x) is m-self-concordant barrier for G.

• The function F (x) = − ln(x2m − x21 − x22 − ...− x2m−1) is 2-self-concordant barrier for the
Lorentz cone Lm

• The function F (X) = − lnDetX is m-self-concordant barrier for the positive semidefi-
nite cone Sm+
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♣ Every convex program

min
x∈G

f(x)

can be converted into a convex program with linear objective, namely,

min
t,x

{t : x ∈ G, f(x) ≤ t} .

Assuming that this transformation has been done at the very beginning, we can w.l.o.g.
focus on convex program with linear objective

min
x∈G

cTx (P )
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Opt = min
x∈G

cTx (P )

♣ Assume that G is a closed and bounded convex set with a nonempty interior, and let
F be a ϑ-s.c.b. barrier for G.
♢Fact I: The path

x∗(ρ) = argmin
x∈intG

[
Fρ(x) = ρcTx+ F (x)

]
, ρ > 0

is well defined, and λ(x∗(ρ), Fρ) = 0 ⇒λ(x, Fρ) can be thought of as a measure of prox-
imity of x ∈ intG to x∗(ρ).
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Opt = min
x∈G

cTx (P )

♣ Assume that G is a closed and bounded convex set with a nonempty interior, and let
F be a ϑ-s.c.b. barrier for G and

Fρ(x) = ρcTx+ F (x)

♢Fact II: Assuming λ(x0, Fρ0) ≤ 0.1, consider path-following algorithm where

• penalty updating rule is ρt−1 7→ ρt =
(
1+ γ√

ϑ

)
ρt−1

• xt is obtained from xt−1 by running on Fρt(·) Damped Newton method, started at xt−1,
until an iterate with Newton decrement ≤ 0.1 is built; this iterate is taken as xt.
For this algorithm,
— the number of Damped Newton steps in updating xt−1 7→ xt depends solely on γ and
is just one when γ = 0.1;
— for all t, one has cTxt −Opt ≤ 2ϑ

ρt
≤ 2ϑ

ρ0
exp{−γt/

√
ϑ}

⇒ It takes O(
√
ϑ) Newton steps to increase ρ by absolute constant factor and reduce

inaccuracy cTx−Opt by absolute constant factor!
No slow down as ρ→ ∞!
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♣ Fact III: Every convex domain G ⊂ Rn admits O(n)-s.-c.b. For typical feasible domains
arising in Convex Programming, one can point out explicit “computable” s.-c.b.’s. For
example,
♠ Let G be given by m convex quadratic constraints:

G = {x : xTATj Ajx+2bTj x+ cj︸ ︷︷ ︸
gj(x)

≤ 0, 1 ≤ j ≤ m}

satisfying the Slater condition. When G does not contain lines, the logarithmic barrier

F (x) = −
m∑
j=1

ln(−gj(x)) is m-s.-c.b. for G.

♠ Let Ai be m×m symmetric matrices and G be given by Linear Matrix Inequality

G = {x : A0 + x1A1 + ...+ xnAn︸ ︷︷ ︸
A(x)

⪰ 0}

satisfying the Slater condition: A(x̄) ≻ 0 for some x̄. When G does not contain lines,
the log-det barrier F (x) = − lnDet(A(x)) is m-s.-c.b. for G.
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Primal-Dual Path Following Methods for LP

♣ Preliminaries
♠ m-self-concordant log-barrier F (z) = −

∑m
i=1 ln(a

T
i z − b) for polytope {z : Az − b ≥ 0}

(A = [aT1 ; ...; a
T
m], Null(A) = {0}, Az − b ≥ 0 strictly feasible) is

F (z) = Φ(Az − b), Φ(x) = −
m∑
i=1

ln(xi)

♠ Facts:
• Φ(x) is m-self-concordant barrier for Rm+
• When t > 0 and x > 0, we have

Φ′(x) = −[1/x1; ...; 1/xm], Φ
′(tx) = t−1Φ′(x), xTΦ′(x) ≡ −m

• Nonlinear mapping x 7→ −Φ′(x) = [1/x1; ...; 1/xm] is a one-to-one smooth mapping of
intRm+ onto intRm+. This mapping is self-inverse:

x > 0, y = −Φ′(x) ⇔ y > 0, x = −Φ′(y) ⇔ x > 0, y > 0, xsys = 1, s ≤ m
and
ρ > 0 & x > 0 & y = −Φ′(x)/ρ ⇔ ρ > 0 & y > 0 & x = −Φ′(y)/ρ
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♣ Consider an LP

min
z

{
cTz : Az − b ≥ 0

}
(P )

with m× n matrix A, Null(A) = {0}, along with the dual problem

max
y

{
bTy : ATy = c, y ≥ 0

}
(D)

and assume that both problems are strictly feasible:

∃z̄ : Az̄ − b > 0 & ∃ȳ > 0 : AT ȳ = c

Note: Passing from z to “primal slack” x = Az − b, we can rewrite (P ) as

min
x

{
eTx : x ≥ 0, x ∈ L = ImA− b

}
(P ′)

where e is a vector satisfying ATe = c, so that

eTx = eT(Az − b) = (ATe)Tz − const = cTz − const
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min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x+ b ∈ ImA, x ≥ 0

}
(P ′)

⇓
max
y

{
bTy : ATy = c ≡ ATe︸ ︷︷ ︸

⇔y − e ∈ (ImA)⊥

, y ≥ 0
}

(D)

♠ Let Φ(x) = −
m∑
i=1

lnxi. Equipping the domain of (P ) with m-s.c.b. F (z) = Φ(Az − b),

consider

z∗(ρ) = argmin
z

[ρcTz+ F (z)] = argmin
z

[ρeT(Az − b) +Φ(Az − b)]

Observation: The point x∗ = x∗(ρ) := Az∗(ρ)−b minimizes ρeTx+Φ(x) over the feasible
set of (P ′), i.e.,

x∗ > 0, x∗ + b ∈ ImA, ρe+Φ′(x∗) ∈ (ImA)⊥.

⇒ The point y∗ := y∗(ρ) := −ρ−1Φ′(x∗(ρ)) satisfies
y∗ > 0, y∗ − e︸ ︷︷ ︸

=−[ρe+Φ′(x∗)]/ρ

∈ (ImA)⊥, −ρb+Φ′(y∗)︸ ︷︷ ︸
=−ρ(x∗+b)

∈ ImA

[Note: as we know, y∗ = −Φ′(x∗)/ρ⇔ x∗ = −Φ′(y∗)/ρ]
i.e., the point y∗(ρ) minimizes −ρbTy+Φ(y) over the feasible set of (D).
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♣ We arrive at a nice symmetric picture:
♣ The primal central path x∗ = x∗(ρ) minimizing the primal aggregate

ρeTx+Φ(x) [Φ(x) = −
∑
i

lnxi]

over the primal feasible set is given by
x∗ > 0, x∗ + b ∈ ImA, ρe+Φ′(x∗) ∈ (ImA)⊥

♣ The dual central path y∗ = y∗(ρ) minimizing the dual aggregate
−ρbTy+Φ(y)

over the dual feasible set is given by
y∗ > 0, y∗ − e ∈ (ImA)⊥,−ρb+Φ′(y∗) ∈ ImA

♣ The paths (together called the primal-dual central path (x∗(ρ), y∗(ρ))) are linked by

y∗(ρ) = −ρ−1Φ′(x∗(ρ)) ⇔ x∗(ρ) = −ρ−1Φ′(y∗(ρ)) ⇔ [x∗(ρ)]s[y∗(ρ)]s = 1
ρ
∀s ≤ m.

⇒On the primal-dual path x = x∗(ρ), y = y∗(ρ), setting z = z∗(ρ), so that x = Az − b,
we have

DualityGap(x, y) := [cTz −Opt(P )] + [Opt(D)− bTy] = xTy = m/ρ[
x = Az − b,whence xTy = [ATy]Tz − bTy = cTz − bTy

]
— we know exactly how the sum of non-optimalities of strictly feasible primal and dual
solutions x∗(ρ), y∗(ρ) in the respective problems (P ′), (D) goes to 0 as ρ→ ∞ !
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min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x+ b ∈ ImA, x ≥ 0

}
(P ′)

⇓
max
y

{
bTy : ATy = c ≡ ATe︸ ︷︷ ︸

≡y−e∈(ImA)⊥

}
(D)

♣ Generic Primal-Dual Interior Point Method for LP is obtained by tracing the
primal-dual central path:
♢Given current iterate — primal-dual strictly feasible pair xi, yi and value ρi of penalty,
update it into new iterate xi+1, yi+1, ρi+1 by
♢Updating ρi 7→ ρi+1 ≥ ρi
♢Applying a Newton step to the system

x > 0, x+ b ∈ ImA; y > 0, y − e ∈ (ImA)⊥

Diag{x}y = 1
ρi+1

(1, ...,1)T︸ ︷︷ ︸
e

[
⇔ xsys = 1

ρi+1
, 1 ≤ s ≤ m

]
defining the primal-dual central path, i.e., linearizing at xi, yi the nonlinear constraints
xsys = 1

ρi+1
and passing to the solution of the resulting linear system.
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x > 0, x+ b ∈ ImA; y > 0, y − e ∈ (ImA)⊥

Diag{x}y = 1
ρi+1

[1; ...; 1]︸ ︷︷ ︸
e

[
⇔ xsys = 1

ρi+1
, 1 ≤ s ≤ m

]
• Newton step as applied to the system results in

xi+1 = xi +∆x, yi+1 = yi +∆y

where ∆x,∆y solve the linear system

∆x ∈ ImA, ∆y ∈ (ImA)⊥,
Diag{xi}yi +Diag{xi}∆y+Diag{yi}∆x = e

ρi+1[
⇔ xisy

i
s + xis · [∆y]s + yis · [∆x]s =

1

ρi+1
, 1 ≤ s ≤ m

]
︸ ︷︷ ︸

linearization of the nonlinear system [xi +∆x]s[yi +∆y]s = 1
ρi+1

, s ≤ m, in ∆x, ∆y
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min
z

{
cTz : Az − b ≥ 0

}
(P )

⇔ min
x

{
eTx : x+ b ∈ ImA, x ≥ 0

}
(P ′)

⇓
max
y

{
bTy : ATy = c ≡ ATe︸ ︷︷ ︸

≡y−e∈(ImA)⊥

}
(D)

♣ The classical path-following scheme as applied to (P ) and the m-s.c.b. F (z) = Φ(Az−
b) allows to trace the path z∗(ρ) (and thus the primal central path x∗(ρ) = Az∗(ρ)− b).
More advanced primal-dual path-following methods simultaneously trace the primal and
the dual central paths, staying close (in certain precise sense) to it, which results in
algorithmic schemes with better practical performance than the one of the “purely pri-
mal” scheme.
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♣ Both approaches, with proper implementation, result in the best known so far theo-
retical complexity bounds for LP. According to these bounds, the “arithmetic cost” of
generating ϵ-solution to a primal-dual pair of strictly feasible LP’s with m× n matrix A
is

O(1)mn2 ln

(
mnΘ

ϵ

)
operations, where O(1) is an absolute constant and Θ is a data-dependent constant.
♣ In practice, properly implemented primal-dual methods by far outperform the purely
primal ones and solve in few tens of Newton iterations real-world LPs with tens and
hundreds of thousands of variables and constraints. In modern commercial LP solvers,
primal-dual path-following is the default choice...
♣ Primal-dual path-following methods are developed and routinely used for general
conic problems on “nice” cones, e.g., Second Order Conic programs and Semidefinite
programs (whatever it means...)
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Lecture 12:

Algorithms for Constrained

Optimization, II:
Augmented Lagrangians



Augmented Lagrangian methods

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♣ Shortcoming of penalty scheme: in order to solve (P ) to high accuracy, one should
work with large values of penalty, which makes the penalized objective

fρ(x) = f(x) +
ρ

2
∥h(x)∥22

difficult to minimize.
♠ Augmented Lagrangian methods use the penalty mechanism in a “smart way,”
which allows to avoid the necessity to work with very large values of ρ.
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Local Lagrange Duality

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♣ Let x∗ be a nondegenerate local solution to (P ), so that there exists µ∗ such that

(a) ∇xL(x∗, µ∗) = 0
(b) dT∇2

xL(x∗, µ
∗)d > 0 ∀d ∈ Tx∗\{0}[

L(x, µ) = f(x) +
∑
i

µihi(x)

Tx∗ = {d : dTh′i(x∗) = 0, i = 1, ..., k}

]
♠ Assume for the time being that instead of (b), a stronger condition hods true:

(!) the entire matrix ∇2
xL(x∗, µ

∗) is positive definite

♣ Under assumption (!), x∗ is a nondegenerate unconstrained local minimizer of the
smooth function L(x, µ∗) of x and as such can be found by methods for unconstrained
minimization.
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

♠ Intermediate Summary: If
♢ (a) we are clever enough to guess the vector µ∗ of Lagrange multipliers,
♢ (b) we are lucky to have ∇2

xL(x∗, µ
∗) ≻ 0,

then x∗ can be found by unconstrained optimization technique.
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♠ How to become smart when being lucky: Local Lagrange Duality.
Situation: x∗ is a nondegenerate locally optimal solution to

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

and we are lucky:

∃µ∗ : ∇xL(x∗, µ
∗) = 0, ∇2

xL(x∗, µ
∗) ≻ 0 (!)

Fact: Under assumption (!), there exist an open convex neighbourhood V of x∗ and an
open convex neighbourhood M of µ∗ such that
(i) For every µ ∈ M, function L(x, µ) is strongly convex in x ∈ V and possesses uniquely
defined critical point x∗(µ) in V which is continuously differentiable in µ ∈ M. x∗(µ) is
a nondegenerate local minimizer of L(·, µ);
(ii) The function

L(µ) = L(x∗(µ), µ) = min
x∈V

L(x, µ)

is C2-smooth and concave in M,

L′(µ) = h(x∗(µ)),

and µ∗ is a nondegenerate maximizer of L(µ) on M.
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇒ L(x, µ) = f(x) +
∑
i

µihi(x)

Situation: ∇xL(x∗, µ∗) = 0, ∇2
xL(x∗, µ

∗) ≻ 0

µ∗ = argmaxµ∈M

[
L(µ) := min

x∈V
L(x, µ)

]
x∗ = argminx∈V L(x, µ

∗)

⇒ We can solve (P ) by maximizing L(µ) over µ ∈ M by a first order method for
“essentially unconstrained” minimization.
The first order information on L(µ) required by the method can be obtained by solving
auxiliary “essentially unconstrained” problems

x∗(µ) = argmin
x∈V

L(x, µ)

via
L(µ) = L(x∗(µ), µ)
L′(µ) = h(x∗(µ))

Note: In this scheme, there are no “large parameters”!
However: How to ensure luck?
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♣ How to ensure luck: convexification by penalization
Observe that the problem of interest

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

for every ρ ≥ 0 is exactly equivalent to

min
x

{
fρ(x) = f(x) +

ρ

2
∥h(x)∥22 : hi(x) = 0, i ≤ k

}
(Pρ)

It turns out that
(!) If x∗ is a nondegenerate locally optimal solution of (P ) and ρ is large enough, then
x∗ is a locally optimal and “lucky” solution to (Pρ).
⇒ We can solve (P ) by applying the outlined “primal-dual” scheme to (Pρ), provided
that ρ is appropriately large!
Note: Although in our new scheme we do have penalty parameter which should be
“large enough”, we still have an advantage over the straightforward penalty scheme: in
the latter, ρ should go to ∞ as O(1/ϵ) as required inaccuracy ϵ of solving (P ) goes to
0, while in our new scheme a single “large enough” value of ρ will do!
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Problem

min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

or every ρ ≥ 0 is exactly equivalent to

min
x

{
fρ(x) = f(x) +

ρ

2
∥h(x)∥22 : hi(x) = 0, i ≤ k

}
(Pρ)

(!) If x∗ is a nondegenerate locally optimal solution of (P ) and ρ is large enough, then
x∗ is a locally optimal and “lucky” solution to (Pρ).
Verification of (!) boils down to verifying he following fact:
• We are given a positive definite m ×m matrix ∆ and a symmetric n × n matrix split

into blocks: A =

[
P S
ST R

]
with m×m block P . We want to find a positive ρ such that

the matrix A[ρ] =

[
P + ρ∆ S
ST R

]
is positive definite.

Note: If A[ρ] ≻ 0, then clearly A[ρ′] ≻ 0 when ρ′ ≥ ρ, due to A[ρ′] ⪰ A[ρ].
Question: When our goal is achievable?
Answer: Our goal is achievable if and only if R is positive definite.
Necessity: All principal submatrices in a positive definite matrix are positive definite.
R is a principal submatrix of every one of ther matrices A[ρ], so that if our goal is
achievable, R must be positive definite.
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• We are given a positive definite m ×m matrix ∆ and a symmetric n × n matrix split

into blocks: A =

[
P S
ST R

]
with m×m block P . We want to find a positive ρ such that

the matrix A[ρ] =

[
P + ρ∆ S
ST R

]
is positive definite.

Claim: Our goal is achievable if and only if R is positive definite.
Sufficiency follows from extremely important by its own right

Schur Complement Lemma: Symmetric block matrix

B =

[
E S
ST R

]
with positive definite R is positive (semi)definite if and only if the matrix

E − SR−1ST (∗)
is positive (semi)definite.
SCL⇒Sufficiency: When R ≻ 0 and B = A[ρ], matrix (∗) becomes

P + ρ∆− SR−1ST . (#)

Since ∆ ≻ 0, matrix (#) is positive definite for all large enough values of ρ, implying
by SCL that A[ρ] ≻ 0 for large ρ.
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Schur Complement Lemma: Symmetric block matrix

B =

[
E S
ST R

]
with positive definite R is positive (semi)definite if and only if the matrix

E − SR−1ST (∗)
is positive (semi)definite.
Proof. B is positive semidefinite if and only if the quadratic form

[u; v]TB[u; v] = uTEu+2uTSv+ vTRv

of [u; v] ∈ Rm × Rn−m is everywhere nonnegative, or, which is the same, if

min
v

[uTEu+2uTSv+ vTRv] ≥ 0 ∀u.

Since R ≻ 0, minv is achieved when 0 = ∇v[uTEu + 2uTSv + vTRv] = 2[STu + Rv],
resulting in v = −R−1STu and

min
v

[uTEu+2uTSv+ vTRv] = uTEu− 2uTSR−1STu+ uTSR−1STu = uT [E − SR−1ST ]u.

Thus, the minimum in question is ≥ 0 for all u if and only if the matrix E − SR−1ST is
positive semidefinite.
The same reasoning (where one should replace “nonnegative” with “positive whenever
u ̸= 0”) shows that B is positive definite if and only if E − SR−1ST is so. □
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min
x

{f(x) : hi(x) = 0, i = 1, ..., k} (P )

⇕

min
x

{
fρ(x) = f(x) + ρ

2
∥h(x)∥22 :

hi(x) = 0,
i ≤ k

}
(Pρ)

Let

Lρ(x, µ) = f(x) +
ρ

2
∥h(x)∥22 +

∑
i

µihi(x)

be the Lagrange function of (Pρ); the Lagrange function of (P ) is then L0(x, µ). Given
nondegenerate locally optimal solution x∗ to (P ), let µ∗ be the corresponding Lagrange
multipliers.
Claim: When ρ > 0 is large enough, one has ∇2Lρ(x∗, µ∗) ≻ 0.
Justifying the claim. We have

∇xLρ(x∗, µ∗) = ∇xL0(x∗, µ∗) + ρ
∑
i

hi(x∗)h′i(x∗) = ∇xL0(x∗, µ∗)= 0

∇2
xLρ(x∗, µ

∗) = ∇2
xL(x∗, µ

∗) + ρ
∑
i

hi(x∗)h′′i (x∗) + ρ
∑
i

h′i(x∗)[h
′
i(x∗)]

T

= ∇2
xL0(x∗, ρ∗) + ρHTH,

H =

 [h′1(x∗)]
T

· · ·
[h′k(x∗)]

T
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∇2
xLρ(x∗µ

∗) = ∇2
xL0(x∗, ρ∗) + ρHTH

H =

 [h′1(x∗)]
T

· · ·
[h′k(x∗)]

T


Directions d orthogonal to h′i(x∗), i = 1, ..., k, are exactly the directions d such that
Hd = 0. Since x∗ is nondegenerate local solution to (P ), we have

Hd = 0 & d ̸= 0 ⇒ dT ∇2
xL(x∗, µ

∗)︸ ︷︷ ︸
Q

d > 0

Thus,
♢For all ρ ≥ 0, at x∗ the Second Order sufficient optimality condition for (Pρ) holds
true:

Hd = 0 & d ̸= 0 ⇒ dT∇2
xLρ(x∗, µ

∗)d = dT [Q+ ρHTH]d > 0

⇒All we need in order to prove that x∗ is a “lucky” solution for large ρ, is to apply to
Q = ∇2

xL(x∗, µ
∗) and H the following Linear Algebra fact:

Let Q be a symmetric n×n matrix, and H be a k×n matrix. Assume that Q is positive
definite on the null space of H:

Hd = 0 & d ̸= 0 ⇒ dTQd > 0.

Then for all large enough values of ρ the matrix Q+ ρHTH is positive definite.
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Claim: Let Q be a symmetric n× n matrix, and H be a k× n matrix. Assume that Q is
positive definite on the null space of H:

Hd = 0 & d ̸= 0 ⇒ dTQd > 0.

Then for all large enough values of ρ the matrix Q+ ρHTH is positive definite.
Proof. Properly selecting orthonormal coordinates in Rn, we can assume w.l.o.g. that
the null space of H is spanned by the last n−m basic orths, that is,

H = [G,0k×(n−m)]

with k ×m matrix G with linearly independent columns. Representing

Q =

[
P S
ST R

]
[P : m×m]

positive definiteness of Q on the null space of H means that R ≻ 0. Next,

HTH =

[
GTG

]
with GTG ≻ 0 due to the linear independence of the columns in G. Consequently,

Qρ := Q+ ρHTH =

[
P + ρGTG S

ST R

]
.

Since R ≻ 0, positive definiteness of Qρ by Schur Complement Lemma is equivalent to

P + ρGTG ⪰ SR−1ST ,

and since GTG ≻ 0, this relation indeed takes place for all large enough ρ. □
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Let Q be a symmetric n×n matrix, and H be a k×n matrix. Assume that Q is positive
definite on the null space of H:

Hd & d ̸= 0 ⇒ dTQd > 0.

Then for all large enough values of ρ the matrix Q+ ρHTH is positive definite.
Alternative proof: Assume, on the contrary, that there exists a sequence ρi → ∞ and
di, ∥di∥2 = 1:

dTi [Q+ ρiH
TH]di ≤ 0 ∀i.

Passing to a subsequence, we may assume that di → d, i → ∞. Let di = hi + h⊥i be the
decomposition of di into the sum of its projections onto Null(H) and [Null(H)]⊥, and
similarly d = h+ h⊥. Then

dTi H
THdi = ∥Hdi∥22 = ∥Hh⊥i ∥22 → ∥Hh⊥∥22 ⇒

0 ≥ dTi [Q+ ρiHTH]di = dTi Qdi︸ ︷︷ ︸
→dTQd

+ρi ∥Hh⊥i ∥22︸ ︷︷ ︸
→∥Hh⊥∥2

2

(∗)

If h⊥ ̸= 0, then ∥Hh⊥∥2 > 0, and the right hand side in (∗) tends to +∞ as i→ ∞, which
is impossible. Thus, h⊥ = 0. But then 0 ̸= d ∈ Null(H) and therefore dTQd > 0, so that
the right hand side in (∗) is positive for large i, which again is impossible.
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Putting things together:
Augmented Lagrangian Scheme

min
x

{
f(x) + ρ

2
∥h(x)∥22 : hi(x) = 0, i ≤ k

}
(Pρ)

⇒ Lρ(x, µ) = f(x) + ρ
2
∥h(x)∥22 +

∑
i

µihi(x)

♣ Generic Augmented Lagrangian Scheme: For a given value of ρ, solve the dual
problem

max
µ

Lρ(µ)[
Lρ(µ) = min

x
Lρ(x, µ)

] (D)

by a first order method for unconstrained minimization, getting the first order informa-
tion for (D) from solving the auxiliary problems

xρ(µ) = argmin
x

Lρ(x, µ) (P µ)

via the relations
Lρ(µ) = Lρ(xρ(µ), µ), L′

ρ(µ) = h(xρ(µ))
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min
x

{
f(x) + ρ

2
∥h(x)∥22 :

hi(x) = 0
i ≤ k

}
(Pρ)

⇒ Lρ(x, µ) = f(x) + ρ
2
∥h(x)∥22 +

∑
i

µihi(x)

⇒ max
µ

{
Lρ(µ) ≡ min

x
Lρ(x, µ)︸ ︷︷ ︸

problem (P µ)

}
(D)

Note: If ρ is large enough and the optimizations in (P µ) and in (D) and are restricted
to appropriate convex neighbourhoods of nondegenerate locally optimal solution x∗ to
(Pρ) and the corresponding vector µ∗ of Lagrange multipliers, respectively, then
— the objective in (D) is concave and C2, and µ∗ is a nondegenerate solution to (D)
— the objectives in (P µ) are convex and C2, and x∗(µ) = argmin

x
Lρ(x, µ) are nondegen-

erate locally optimal solutions to (P µ)
— as the “master method” working on (D) converges to µ∗, the corresponding primal
iterates x∗(µ) converge to x∗.
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♣ Implementation issues:
♢Solving auxiliary problems

xρ(µ) = argmin
x

Lρ(x, µ) (P µ)

— the best choices are Newton method with linesearch or Modified Newton method,
provided that the second order information is available; otherwise, one can use Quasi-
Newton methods, Conjugate Gradients, etc.
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♢Solving the master problem

max
µ

{
Lρ(µ) ≡ min

x
Lρ(x, µ)

}
(D)

Surprisingly, the method of choice here is the simplest gradient ascent method with
constant step:

µt = µt−1 + ρL′
ρ(µ

t−1) = µt−1 + ρh(xt−1),

where xt−1 is (approximate) minimizer of Lρ(x, µt−1) in x.
Motivation: We have

0 ≈ ∇xLρ(xt−1, µt−1)
= f ′(xt−1) +

∑
i

[µt−1
i + ρhi(xt−1)]h′i(x

t−1)

which resembles the KKT condition

0 = f ′(x∗) +
∑
i

µ∗
ih

′
i(x∗).
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max
µ

{
Lρ(µ) ≡ min

x
Lρ(x, µ)

}
(D)

⇒
{
µt = µt−1 + ρh(xt−1), xt−1 = argminxLρ(x, µ

t−1)
}

(∗)
Justification: Direct computation shows that

Ψρ ≡ ∇2
µLρ(µ

∗) = −H[Q+ ρHTH]−1HT ,Q = ∇2
xL0(x∗, µ∗), H =

 [h′1(x∗)]
T

· · ·
[h′k(x∗)]

T


whence −ρΨρ → I as ρ→ ∞.
Consequently, when ρ is large enough and the starting point µ0 in (∗) is close enough
to µ∗, (∗) ensures linear convergence of µt to µ∗ with the ratio tending to 0 as ρ→ +∞.
Indeed, asymptotically the behaviour of (∗) is as if Lρ(µ) were the quadratic function
Φ(µ) = const + 1

2
(µ − µ∗)TΨρ(µ − µ∗), and we were maximizing this function by the

gradient ascent µ 7→ µ+ ρΦ′(µ). This recurrence is µt − µ∗ = (I + ρΨρ)︸ ︷︷ ︸
→0,ρ→∞

(µt−1 − µ∗).
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♣ Adjusting penalty parameter:{
µt = µt−1 + ρh(xt−1)

xt−1 = argminxLρ(x, µ
t−1)

(∗)

When ρ is “large enough”, so that (∗) converges linearly with reasonable convergence
ratio, ∥L′

ρ(µ
t)∥2 = ∥h(xt)∥2 should go to 0 linearly with essentially the same convergence

ratio.
⇒ We can use progress in ∥h(·)∥2 to control ρ, e.g., as follows: when

∥h(xt)∥2 ≤ 0.25∥h(xt−1)∥2,
we keep the current value of ρ intact, otherwise we increase penalty by factor 10 and
recompute xt with the new value of ρ.
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Incorporating Inequality Constraints

♣ Given a general-type constrained problem

min
x

{
f(x) :

hi = 0, i ≤ m
gj(x) ≤ 0, j ≤ m

}
we can transform it equivalently into the equality constrained problem

min
x,s

{
f(x) :

hi(x) = 0, i ≤ m
gj(x) + s2j = 0, j ≤ k

}
and apply the Augmented Lagrangian scheme to the reformulated problem, thus arriving
at Augmented Lagrangian

Lρ(x, s;µ, ν) = f(x) + ρ
2

[∑
i

h2i (x) +
∑
j

[gj(x) + s2j ]
2

]
+
∑
i

µihi(x) +
∑
j

νj[gj(x) + s2j ]

The corresponding dual problem is

max
µ,ν

{
Lρ(µ, ν) := min

x,s
Lρ(x, s;µ, ν)

}
(D)
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Lρ(x, s;µ, ν) = f(x) + ρ
2

[∑
i

h2i (x) +
∑
j

[gj(x) + s2j ]
2

]
+
∑
i

µihi(x) +
∑
j

νj[gj(x) + s2j ]

⇒ max
µ,ν

{
Lρ(µ, ν) := min

x,s
Lρ(x, s;µ, ν)

}
We can carry out the minimization in s analytically, arriving at

Lρ(µ, ν) = min
x

{
f(x) + ρ

2

[
k∑
i=1

h2i +
m∑
j=1

(
gj(x) +

νj
ρ

)2
+

]
+

k∑
i=1

µihi(x)

}
−

m∑
j=1

ν2
j

2ρ

where a+ = max[0, a].
⇒ The auxiliary problems arising in the Augmented Lagrangian Scheme are problems in
the initial design variables!
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min
x

{
f(x) :

hi(x) = 0, i ≤ k
gj(x) ≤ 0, j ≤ m

}
(P )

⇒ min
x,s

{
f(x) :

hi(x) = 0, i ≤ k
gj(x) + s2j = 0, j ≤ m

}
(P ′)

♣ Theoretical analysis of Augmented Lagrangian scheme for problems with equality
constraints was based on assumption that we are trying to approximate nondegenerate
locally optimal solution. Is it true that when reducing the inequality constrained prob-
lem to an equality constrained one, we preserve nondegeneracy of the locally optimal
solution?
Yes!
Theorem: Let x∗ be a nondegenerate locally optimal solution to (P ). Then the point

(x∗, s
∗) : s∗j =

√
−gj(x∗), j = 1, ...,m

is a nondegenerate locally optimal solution to (P ′).
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Convex case: Augmented Lagrangians

♣ Consider a convex optimization problem

min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

(f , gj are convex and C2 on Rn).
Assumption: (P ) is solvable and satisfies the Slater condition:

∃x̄ : gj(x̄) < 0 j = 1, ...,m

♠ In the convex situation, the previous local considerations can be globalized due to the
Lagrange Duality Theorem.
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

Theorem: Let (P ) be convex, solvable and satisfy the Slater condition. Then the dual
problem

max
λ≥0

{
L(λ) := min

x

f(x) +∑
j

λjgj(x)


︸ ︷︷ ︸

L(x,λ)

}
(D)

possess the following properties:
♢dual objective L is concave
♢ (D) is solvable
♢ for every optimal solution λ∗ of (D), all optimal solutions of (P ) are contained in the
set ArgminxL(x, λ

∗).
♣ Implications:
♢Sometimes we can build (D) explicitly (e.g., in Linear, Linearly Constrained Quadratic
and Geometric Programming). In these cases, we may gain a lot by solving (D) and
then recovering solutions to (P ) from solution to (D).
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

⇓

max
λ≥0

L(λ) ≡ min
x

f(x) +∑
j

λjgj(x)


︸ ︷︷ ︸

L(x,λ)

(D)

♢ In the general case one can solve (D) numerically by an appropriate first order method.
To this end we should be able to compute the first order information for L. This can
be done via solving the auxiliary problems

x∗ = x∗(λ) = min
x
L(x, λ) (Pλ)

due to

L(λ) = L(x∗(λ), λ), L′(λ) = g(x∗(λ))

Note: (Pλ) is a convex unconstrained program with smooth objective!
♣ In all cases, passing from (P ) to (D) reduces a convex problem with general convex
constraints to one with simple linear constraints.
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

⇒ max
λ≥0

L(λ) ≡ min
x

f(x) +∑
j

λjgj(x)


︸ ︷︷ ︸

L(x,λ)

(D)

♠ Potential difficulties:
♢L(·) can be −∞ at some points; how to solve (D)?
♢After λ∗ is found, how to recover optimal solution to (P )? We know that the set X∗
of optimal solutions to (P ) is contained in the set ArgminxL(x, λ

∗), but it may happen
that the latter set is much larger than the former!
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Example: LP. (P ) : min
x

{
cTx : Ax− b ≤ 0

}
. Here

L(λ) = min
x

[
cTx+ (ATλ)Tx− bTλ

]
=

{
−bTλ, ATλ+ c = 0
−∞, otherwise

— how to solve (D) ???
At the same time, for every λ the function L(x, λ) is linear in x; thus, Argmin

x
L(x, λ) is

either ∅, or Rn – how to recover x∗ given λ∗ ???
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♠ Observation: Both outlined difficulties come from possible non-existence/non-
uniqueness of solutions to the auxiliary problems

min
x
L(x, λ) ≡ min

x
[f(x) +

∑
j

λjgj(x)] (Pλ)

Indeed, if solution x∗(λ) to (Pλ) exists and is unique and continuous in λ on certain set
Λ, then L(λ) is finite and continuously differentiable on Λ due to

L(λ) = L(x∗(λ), λ)
L′(λ) = g(x∗(λ))

Besides this, if λ∗ ∈ Argmaxλ≥0L(λ) belongs to Λ, then there is no problem with recov-
ering an optimal solution to (P ) from λ∗.
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Example: Assume that the function

r(x) = f(x) +
m∑
j=1

gj(x)

is locally strongly convex (r′′(x) ≻ 0 ∀x) and is such that

r(x)/∥x∥2 → ∞, ∥x∥2 → ∞.

Then x∗(λ) exists, is unique and is continuous in λ on the set Λ = {λ > 0}.

When f itself is locally strongly convex and f(x)/∥x∥2 → ∞ as ∥x∥2 → ∞, the conclusion
holds true with Λ = {λ ≥ 0}.
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♣ In Augmented Lagrangian scheme, we ensure local strong convexity of

r(·) = f(x) + sum of constraints

by passing from the original problem

min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

to the equivalent problem

min
x

{f(x) : θj(gj(x)) ≤ 0, j = 1, ...,m} (P ′)

where θj(·) are increasing strongly convex smooth functions satisfying the normalization

θj(0) = 0, θ′j(0) = 1,

e.g.,

θj(t) = et − 1

or

θj(t) = 2 ln(1 + et)− 2 ln 2.
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

⇓
min
x

{f(x) : θj(gj(x)) ≤ 0, j = 1, ...,m} (P ′)[
θj(0) = 0, θ′j(0) = 1

]
Facts:
♢ (P ′) is convex and equivalent to (P )
♢optimal Lagrange multipliers for (P ) and (P ′) are the same: if λ∗ is the vector of
Lagrange multipliers justifying that x∗ is optimal for (P ), the same λ∗ justifies that x∗ is
optimal for (P ′) (due to θ′j(0) = 1):

λ∗ ≥ 0 &

f ′(x∗) +
∑

j
λ∗jg

′(x∗)︷ ︸︸ ︷
∇x

∣∣
x=x∗

[f(x) +
∑
j

λ∗jgj(x)] = 0 & λ∗jgj(x∗) = 0 ∀j

⇕
λ∗ ≥ 0 & ∇x

∣∣
x=x∗

[f(x) +
∑
j

λ∗jθj(gj(x))]︸ ︷︷ ︸
f ′(x∗) +

∑
j
λ∗jθ

′
j(gj(x∗))g

′(x∗)

= 0 & λ∗jθj(gj(x∗)) = 0 ∀j

♢under mild regularity assumptions,
r(x) = f(x) +

∑
j

θj(gj(x))

is locally strongly convex and r(x)/∥x∥2 → ∞ as ∥x∥2 → ∞.
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min
x

{f(x) : gj(x) ≤ 0, j = 1, ...,m} (P )

⇓
min
x

{f(x) : θj(gj(x)) ≤ 0, j = 1, ...,m} (P ′)[
θj(0) = 0, θ′j(0) = 1

]
♣ With the outlined scheme, one passes from the classical Lagrange function of (P )

L(x, λ) = f(x) +
∑
j

λjgj(x)

to the augmented Lagrange function

L̃(x, λ) = f(x) +
∑
j

λjθj(gj(x))

of the problem, which yields the dual problem

max
λ≥0

L̃(λ) ≡ max
λ≥0

min
x
L̃(x, λ)

better suited for numerical solution and recovering a solution to (P ) than the usual
Lagrange dual of (P ).
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L(x, λ) = f(x) +
∑
j

λjgj(x)

⇒ L̃(x, λ) = f(x) +
∑
j

λjθj(gj(x))

⇒ max
λ≥0

[
min
x
L̃(x, λ)

]
(D̃)

♠ Further flexibility is added by penalty mechanism:

L̃(x, λ) ⇒ f(x) +
∑
j

λjρ
−1θj(ρgj(x))

equivalent to “rescaling”

θj(s) ⇒ θj,ρ(s) = ρ−1θj(ρs) ⇒ [θ′j,ρ(0) = 1]

When ρ > 1, this rescaling increases “the curvature” of the rescaled constraint at a
point where the constraint is active:

gj(x) = 0 ⇒ ∇2
x[θj,ρ(gj(x))] = ρθ′′j (0) · ∇xgj(x)[∇xgj(x)]

T +∇2
xgj(x).

As a result, the larger is ρ, the faster is convergence of the first order methods as applied
to (D̃) and the more difficult become the auxiliary problems

min
x

f(x) +∑
j

λjρ
−1θj(ρgj(x))
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Lecture 13:

Algorithms for Constrained

Optimization, III:
Sequential Quadratic Programming



Sequential Quadratic Programming

♣ SQP is thought of to be the most efficient technique for solving general-type opti-
mization problems with smooth objective and constraints.
♣ SQP methods directly solve the KKT system of the problem by a Newton-type iter-
ative process.
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♣ Consider an equality constrained problem

min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))T = 0

}
(P )

⇒ L(x, µ) = f(x) + hT(x)µ

The KKT system of the problem is

∇xL(x, µ) ≡ f ′(x) + [h′(x)]Tµ = 0
∇µL(x, µ) ≡ h(x) = 0h′(x) =

 [∇h1(x)]T
..........

[∇hk(x)]T

 (KKT)

Every locally optimal solution x∗ of (P ) which is regular (that is, the gradients {h′i(x∗)}ki=1
are linearly independent) can be extended by properly chosen µ = µ∗ to a solution of
(KKT).
♠ (KKT) is a system of nonlinear equations with n+ k equations and n+ k unknowns,
where n is the dimension of x. We can try to solve this system by Newton method.
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Newton method for solving nonlinear systems of equations

♣ To solve a system of N nonlinear equations with N unknowns

P (u) ≡ (p1(u), ..., pN(u))
T = 0,

with C1 real-valued functions pi, we act as follows:
Given current iterate ū, we linearize the system at the iterate, thus arriving at the
linearized system

P (ū) + P ′(ū)(u− ū) ≡

 p1(ū) + [p′1(ū)]
T(u− ū)

...
pN(ū) + [p′N(ū)]

T(u− ū)

 = 0.

Assuming the N ×N matrix

P ′(ū) =


[p′1(x)]

T

[p′2(x)]
T

· · ·
[p′N(x)]

T


nonsingular, we solve the linearized system, thus getting the new iterate

ū+ = ū−[P ′(ū)]−1P (ū)︸ ︷︷ ︸
Newton

displacement

;
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ū 7→ ū+ = ū− [P ′(ū)]−1P (ū) (N)

Note: The Basic Newton method for unconstrained minimization is nothing but the
outlined process as applied to the Fermat equation

P (x) ≡ ∇f(x) = 0.

♣ Same as in the optimization case, the Newton method possesses fast local conver-
gence:
Theorem. Let u∗ ∈ RN be a solution to the square system of nonlinear equations

P (u) = 0

with components of P being C1 in a neighbourhood of u∗. Assuming that u∗ is nonde-
generate (i.e., Det(P ′(u∗)) ̸= 0), the Newton method (N), started close enough to u∗,
is well defined and converges to u∗ superlinearly.
If, in addition, the components of P are C2 in a neighbourhood of u∗, then the above
convergence is quadratic.
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♣ Applying the outlined scheme to the KKT system

∇xL(x, µ) ≡ f ′(x) + [h′(x)]Tµ = 0
∇µL(x, µ) ≡ h(x) = 0

(KKT)

we should answer first of all the following crucial question:
(?) When a KKT point (x∗, µ∗) is a nondegenerate solution to (KKT)?
Let us set

P (x, µ) = ∇x,µL(x, µ) =

[
∇xL(x, µ) ≡ f ′(x) + [h′(x)]Tµ

∇µL(x, µ) ≡ h(x)

]
Note that

P ′(x, µ) =

[
∇2
xL(x, µ) [h′(x)]T

h′(x) 0

]
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min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))T = 0

}
(P )

⇒ L(x, µ) = f(x) + hT(x)µ

⇒ P (x, µ) = ∇x,µL(x, µ) =

[
∇xL(x, µ) ≡ f ′(x) + [h′(x)]Tµ

∇µL(x, µ) ≡ h(x)

]
⇒ P ′(x, µ) =

[
∇2
xL(x, µ) [h′(x)]T

h′(x) 0

]
Theorem. Let x∗ be a nondegenerate locally optimal solution to (P ) and µ∗ be the
corresponding vector of Lagrange multipliers. Then (x∗, µ∗) is a nondegenerate solution
to the KKT system

P (x, µ) = 0,

that is, the matrix P ′ ≡ P ′(x∗, µ∗) is nonsingular.
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min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))T = 0

}
(P )

⇒ L(x, µ) = f(x) + hT(x)µ

⇒ P (x, µ) = ∇x,µL(x, µ) =

[
∇xL(x, µ) ≡ f ′(x) + [h′(x)]Tµ

∇µL(x, µ) ≡ h(x)

]
h′(x) =

 [∇h1(x)]T
.......

[∇hk(x)]T


⇒ P ′(x, µ) =

[
∇2
xL(x, µ) [h′(x)]T

h′(x) 0

]
Claim: Let x∗ be a nondegenerate locally optimal solution to (P ) and µ∗ be the corre-
sponding vector of Lagrange multipliers. Then (x∗, µ∗) is a nondegenerate solution to
the KKT system P (x, µ) = 0, that is, the matrix P ′ ≡ P ′(x∗, µ∗) is nonsingular.
Proof. Setting Q = ∇2

xL(x∗, µ
∗), H = h′(x∗), we have

P ′ =

[
Q HT

H 0

]
.

We know that d ̸= 0, Hd = 0 ⇒ dTQd > 0 and that rows of H are linearly independent.
We should prove that if

0 = P ′
[
d
g

]
≡
[
Qd+HTg

Hd

]
,

then d = 0, g = 0.
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Given that the rows of H are linearly independent and dTQd > 0 whenever d ̸= 0 and
Hd = 0, we should prove that

0 = P ′
[
d
g

]
≡
[
Qd+HTg

Hd

]
︸ ︷︷ ︸

⇔Qd+HTg=0,Hd=0

⇒ d = 0, g = 0

We have Hd = 0 and

0 = Qd+HTg ⇒ 0 = dT [Qd+HTg] = dTQd+ (Hd︸︷︷︸
0

)Tg= dTQd,

which, as we know, for d satisfying Hd = 0 is possible iff d = 0.
We now have HTg = Qd + HTg= 0; since the rows of H are linearly independent, it
follows that g = 0. □
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Structure and interpretation of the Newton displacement

♣ In our case the Newton system

P ′(u)∆ = −P (u) [∆ = u+ − u]

becomes
[∇2

xL(x̄, µ̄)]∆x + [h′(x̄)]T∆µ = −f ′(x̄)− [h′(x̄)]T µ̄
[h′(x̄)]∆x = −h(x̄) ,

where (x̄, µ̄) is the current iterate.
Passing to the variables ∆x, µ+ = µ̄+∆µ, the system becomes

[∇2
xL(x̄, µ̄)]∆x + [h′(x̄)]Tµ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄)
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[∇2
xL(x̄, µ̄)]∆x+ [h′(x̄)]Tµ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄)
(x̄, µ̄) 7→ (x̄+∆x, µ+)

Interpretation:
♣ Let x∗ be a nondegenerate locally optimal solution to

min
x

{
f(x) : h(x) = (h1(x), ..., hk(x))

T = 0
}

(P )

Assume for a moment that we know the optimal Lagrange multipliers µ∗ and the
tangent plane T to the feasible surface at x∗:

T = {y = x∗ +∆x : h′(x∗)∆x+ h(x∗) = 0}.
Since ∇2

xL(x∗, µ
∗) is positive definite on T −x∗ and ∇xL(x∗, µ∗) = 0, x∗ is a nondegenerate

local minimizer of L(x, µ∗) over x ∈ T , and we could find x∗ by applying the Newton
minimization method to the function L(x, µ∗) restricted onto T , the iterations being

x̄ 7→ x̄+ argmin∆x:x̄+∆x∈T

[
L(x̄, µ∗) +∆xT∇xL(x̄, µ∗) + 1

2
∆xT∇2

xL(x̄, µ
∗)∆x

]
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♣ In reality we do not know µ∗ and T , we know only current approximations x̄, µ̄ of x∗
and µ∗. We can use these approximations to approximate the outlined scheme:
• Given x̄, we approximate T by the plane

T = {y = x̄+∆x : h′(x̄)∆x+ h(x̄) = 0}
• We apply the outlined step with µ∗, T replaced with µ̄ and T :

x̄ 7→ x̄+ argmin∆x:x̄+∆x∈T

[
L(x̄, µ̄) +∆xT∇xL(x̄, µ̄) + 1

2
∆xT∇2

xL(x̄, µ̄)∆x

]
(A)

Note: Step can be simplified to

x̄ 7→ x̄+ argmin∆x:x̄+∆x∈T

[
f(x̄) +∆xTf ′(x̄) + 1

2
∆xT∇2

xL(x̄, µ̄)∆x

]
(B)

due to the fact that for x̄+∆x ∈ T one has

∆xT∇xL(x̄, µ̄) = ∆xTf ′(x̄) +∆xT [h′(x̄)]T µ̄
= ∆xTf ′(x̄) + µ̄Th′(x̄)∆x
= ∆xTf ′(x̄)− µ̄Th(x̄)

⇒When x̄+∆x ∈ T , the functions of ∆x we are minimizing in (A) and in (B) differ by
a constant.
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♣ We have arrived at the following scheme:
Given approximation (x̄, µ̄) to a nondegenerate KKT point (x∗, µ∗) of equality constrained
problem

min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P)

solve the auxiliary quadratic program

∆x∗ = argmin
∆x

{
f(x̄) +∆xTf ′(x̄) + 1

2
∆xT∇2

xL(x̄, µ̄)∆x :

h(x̄) + h′(x̄)∆x = 0

} (QP)

and replace x̄ with x̄+∆x∗.
Note: (QP) is a nice Linear Algebra problem, provided that ∇2

xL(x̄, µ̄) is positive definite
on the linear subspace {∆x : h′(x̄)∆x = 0} parallel to the feasible plane of (QP) (which
indeed is the case when (x̄, µ̄) is close enough to (x∗, µ∗)).
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min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P )

♣ Step of the Newton method as applied to the KKT system of (P ):

(x̄, µ̄) 7→ (x̄+ = x̄+∆x, µ+) :[
[∇2

xL(x̄, µ̄)]∆x + [h′(x̄)]Tµ+ = −f ′(x̄)
h′(x̄)∆x = −h(x̄)

]
(N)

♣ Associated quadratic program:

min
∆x

{
f(x̄) +∆xTf ′(x̄) + 1

2
∆xT∇2

xL(x̄, µ̄)∆x : h(x̄) + h′(x̄)∆x = 0

}
(QP)

Crucial observation: Let the Newton system underlying (N) be a system with non-
singular matrix. Then the Newton displacement ∆x given by (N) is the unique KKT
point of the quadratic program (QP), and µ+ is the corresponding vector of Lagrange
multipliers.
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[∇2
xL(x̄, µ̄)]∆x + [h′(x̄)]Tµ+ = −f ′(x̄)

h′(x̄)∆x = −h(x̄) (N)

min
∆x

{
f(x̄) +∆xTf ′(x̄) + 1

2
∆xT∇2

xL(x̄, µ̄)∆x : h′(x̄)∆x = −h(x̄)
}

(QP)

Proof of Crucial Observation: Let z be a KKT point of (QP), and µ be the correspond-
ing vector of Lagrange multipliers. The KKT system for (QP) reads

f ′(x̄) +∇2
xL(x̄, µ̄)z + [h′(x̄)]Tµ = 0

h′(x̄)z = −h(x̄)

which are exactly the equations in (N). Since the matrix of system (N) is nonsingular,
we have z = ∆x and µ = µ+.
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min
x

{
f(x) : h(x) ≡ (h1(x), ..., hk(x))

T = 0
}

(P )

♣ The Newton method as applied to the KKT system of (P ) works as follows:
Given current iterate (x̄, µ̄), we linearize the constraints, thus getting “approximate
tangent plane to the feasible set”

T = {x̄+∆x : h′(x̄)∆x = −h(x̄)},
and minimize over this set the quadratic function

f(x̄) + (x− x̄)Tf ′(x̄) +
1

2
(x− x̄)T∇2

xL(x̄, µ̄)(x− x̄).

The solution of the resulting quadratic problem with linear equality constraints is the
new x-iterate, and the vector of Lagrange multipliers associated with this solution is the
new µ-iterate.
Note: The quadratic part in the auxiliary quadratic objective comes from the Lagrange
function of (P ), and not from the objective of (P )!
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General constrained case

♣ “Optimization-based” interpretation of the Newton method as applied to the KKT
system of equality constrained problem can be extended onto the case of general con-
strained problem

min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))T = 0
g(x) = (g1(x), ..., gm(x))T ≤ 0

}
(P )

and results in the Basic SQP scheme:
Given current approximations xt, µt, λt ≥ 0 to a nondegenerate locally optimal solution
x∗ of (P ) and corresponding optimal Lagrange multipliers µ∗, λ∗, we solve auxiliary lin-
early constrained quadratic problem

∆x∗ = argmin
∆x

{
f(xt) +∆xTf ′(xt) + 1

2
∆xT∇2

xL(xt;µt, λt)∆x :

h′(xt)∆x = −h(xt)
g′(xt)∆x ≤ −g(xt)

}
L(x;µ, λ) = f(x) + hT(x)µ+ gT(x)λ

(QPt)

set xt+1 = xt +∆x∗ and define µt+1, λt+1 as the optimal Lagrange multipliers of (QPt).
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Theorem. Let (x∗;µ∗, λ∗) be a nondegenerate locally optimal solution to (P ) and the
corresponding optimal Lagrange multipliers. The Basic SQP method, started close
enough to (x∗;µ∗, λ∗), and restricted to work with appropriately small ∆x, is well defined
and converges to (x∗;µ∗, λ∗) quadratically.
♣ Difficulty: From the “global” viewpoint, the auxiliary quadratic problem to be solved
may be bad (e.g., infeasible or below unbounded). In the equality constrained case,
this never happens when we are close to the nondegenerate locally optimal solution; in
the general case, bad things may happen even close to a nondegenerate locally optimal
solution.
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min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))T = 0
g(x) = (g1(x), ..., gm(x))T ≤ 0

}
(P )

min
∆x

{
f(xt) +∆xTf ′(xt) + 1

2
∆xT∇2

xL(xt;µt, λt)∆x :
h′(xt)∆x = −h(xt)
g′(xt)∆x ≤ −g(xt)

}
♣ Cure: replace the matrix ∇2

xL(xt;µt, λt) when it is not positive definite on the entire
space by a positive definite matrix Bt, thus arriving at the method where the auxiliary
quadratic problem is

min
∆x

{
f(xt) +∆xTf ′(xt) + 1

2
∆xTBt∆x :

h′(xt)∆x = −h(xt)
g′(xt)∆x ≤ −g(xt)

}
(QPt)

With this modification, the auxiliary problems are convex and solvable with unique
optimal solution (provided they are feasible, which indeed is the case when xt is close
to a nondegenerate solution to (P )).
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Ensuring global convergence

♣ “Cured” Basic SQP scheme possesses nice local convergence properties; however, it
in general is not globally converging.
Indeed, in the simplest unconstrained case SQP becomes the basic/modified Newton
method, which is not necessarily globally converging, unless linesearch is incorporated.
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♠ To ensure global convergence of SQP, we incorporate linesearch. In the scheme with
linesearch, the optimal solution ∆x∗ to the auxiliary quadratic problem

∆x∗ = argmin
∆x

{
f(xt) +∆xTf ′(xt) + 1

2
∆xTBt∆x :

h′(xt)∆x = −h(xt)
g′(xt)∆x ≤ −g(xt)

}
(QPt)

and the associated Lagrange multipliers µ+, λ+ are used as search direction rather than
as a new iterate. The new iterate is

xt+1 = xt + γt+1∆x∗
µt+1 = µt + γt+1(µ+ − µt)
λt+1 = λt + γt+1(λ+ − λt)

where γt+1 > 0 is the stepsize given by linesearch.
Note: In (QPt), we do not see µt and λt. They, however, could present in this problem
implicitly – as the data utilized when building Bt.
Question: What should be minimized by the linesearch?
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♣ In the constrained case, the auxiliary objective to be minimized by the linesearch
cannot be chosen as the objective of the problem of interest. In the case of SQP, a
good auxiliary objective (“merit function”) is

M(x) = f(x) + θ

[
k∑
i=1

|hi(x)|+
m∑
j=1

g+j (x)

]
[
g+j (x) = max[0, gj(x)]

]
where θ > 0 is parameter.
Fact: Let xt be current iterate, Bt be a positive definite matrix used in the auxiliary
quadratic problem, ∆x be a solution to this problem and µ ≡ µt+1, λ ≡ λt+1 be the
corresponding Lagrange multipliers. Assume that θ is large enough:

θ ≥ max{|µ1|, ..., |µk|, λ1, λ2, ..., λm}
Then either ∆x = 0, and then xt is a KKT point of the original problem, or ∆x ̸= 0,
and then ∆x is a direction of decrease of M(·), that is,

M(x+ γ∆x) < M(x)

for all small enough γ > 0.
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SQP Algorithm with Merit Function

♣ Generic SQP algorithm with merit function is as follows:
♢ Initialization: Choose θ1 > 0 and starting point x1
♢Step t: Given current iterate xt,
— choose a matrix Bt ≻ 0 and form and solve auxiliary problem

min
∆x

{
f(xt) +∆xTf ′(xt) + 1

2
∆xTBt∆x :

h′(xt)∆x = −h(xt)
g′(xt)∆x ≤ −g(xt)

}
(QPt)

thus getting the optimal ∆x along with associated Lagrange multipliers µ, λ.
— if ∆x = 0, terminate: xt is a KKT point of the original problem, otherwise proceed
as follows:
— check whether

θt ≥ θ̄t ≡ max{|µ1|, ..., |µk|, λ1, ..., λm}.
if it is the case, set θt+1 = θt, otherwise set

θt+1 = max[θ̄t,2θt];

— Find the new iterate

xt+1 = xt + γt+1∆x

by linesearch aimed to minimize the merit function

Mt+1(x) = f(x) + θt+1

 k∑
i=1

|hi(x)|+
m∑
j=1

g+j (x)


on the search ray {xt + γ∆x | γ ≥ 0}. Replace t with t+1 and loop.
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min
x

{
f(x) :

h(x) = (h1(x), ..., hk(x))T = 0
g(x) = (g1(x), ..., gm(x))T ≤ 0

}
(P )

Theorem: Let general constrained problem be solved by SQP algorithm with merit
function. Assume that
• there exists a compact Ω ⊂ Rn such that for x ∈ Ω the solution set D(x) of the system
of linear inequality constraints

S(x) : h′(x)∆x = −h(x), g′(x)∆x ≤ −g(x)
with unknowns ∆x is nonempty, and each vector ∆x ∈ D(x) is a regular solution of
system S(x);
• the trajectory {xt} of the algorithm belongs to Ω and is infinite (i.e., the method does
not terminate with exact KKT point);
• the matrices Bt used in the method are uniformly bounded and uniformly positive
definite: cI ⪯ Bt ⪯ CI for all t, with some 0 < c ≤ C <∞.
Then all accumulation points of the trajectory of the method are KKT points of (P ).
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Lecture 14:

Frontiers, Challenges, Perspectives



Methods for Nonlinear Optimization:
Frontiers, Challenges and Perspectives

♣ Disclaimer: All opinions to follow (in contrast to facts) are personal and do not
pretend to be ultimate truth !
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♣ Apology: Some of you are ISyE students who are obliged to take the 6663 course.
However, I suspect than many of you took the course due to extreme today popularity
of Optimization beyond Optimization/Operations Research Communities per se.
• I suspect that today popularity of Nonlinear Optimization stems from unprecedented
interest in and successes of Machine Learning where Continuous Optimization is an
important, to say the least, element of “computational toolbox.”
• Students who took 6663 because of the role of Optimization in Machine Learning can
think that they were cheated and should “request their money back:” instead of Deep
Learning, Stochastic Gradient Descent, and other “hot” ML-related issues they were
taught
— in the “theoretical” part – things like Caratheodory Theorem, Separation of convex
sets, Optimality Conditions known, for something in-between 150 and 50 years;
— in the “algorithmic” part – algorithms of “age” in-between 15 (Newton method with
cubic regularization) and 60+ (gradient descent) years.
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♠ It would take too much time to explain why you were taught what you were taught.
Short explanation is: because I believe that the concepts and results you were taught,
especially in the theoretical part of the course, are everlasting components of Optimiza-
tion and will serve your Optimization-related needs for tens of years to come.
The “value” of Pythagoras Theorem today is as high as it was 2300+ years ago when
Theorem was discovered. Farkas Lemma, Theorem on Alternative, Separation of convex
sets, KKT conditions, etc., albeit younger, are in the same category of eternal ultimate
truths, and I believe truths of this type should be the primary focus of a basic graduate
university course.

14.3



♠ It is easy to explain why you were not taught Deep Learning, Stochastic Subgradient
Descent, and other hot topics. The reason is that I believe that the fantastic real life
successes of today Machine Learning technologies are brilliant engineering achievements
which do not have much to do with Math in general and Nonlinear Optimization in
particular.
My beliefs are no more than my beliefs, but I am not the only one with these beliefs. I
strongly recommend you YouTube lecture of an outstanding Stanford statistician Prof.
David Donoho
https://www.youtube.com/watch?v=1-cAT73NRwM&feature=youtu.be
The lecture is Intro to Stanford STATS 285 course and is fantastic, definitely worthy
of viewing from the very beginning to the very end; the part on Deep Learning starts at
about min 45 of the video.
♠ As about Stochastic Subgradient Descent, to present its nearly complete theory to
you would require something like half an hour. However, this theory does not explain
when and why this algorithm as applied to training Deep Neural Nets produces useful
results, and these “when and why” questions go far beyond my (and not only my!)
understanding...
End of Apology
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♣ In the last decade or so, the traditional Mathematical Programming paradigm of what
is an MP program and what is a solutions algorithm was essentially extended in at least
two directions:
• On-Line Optimization
• Distributed Optimization
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♣ On-Line Optimization: In traditional MP, a solution algorithm is an off-line process:
all we want is to learn the optimization program of interest in order to get as fast as
possible a good approximate solution; this solution is what actually will be used “in real
life.”
Since the search points generated in the learning process are not used in “real life”, we
pay nothing for their “heavy infeasibility” or “heavy nonoptimality.”
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On-Line Optimization is about “learning in real time,” where the search points are
the subsequent “real life” decisions we make, so that their quality matters. A typical
setting is as follows:
• at time t, 1 ≤ t ≤ T , we select search point xt ∈ X ⊂ Rn, and the nature (or an
adversary) selects current objective ft(·) ∈ F, where X is a known in advance (usually,
convex) subset of Rn, and F is a known in advance family of functions (usually, convex)
on X.
• At step t, our loss is ft(xt), and this loss (or its unbiased stochastic estimate gt(xt))
and perhaps some additional information on ft (e.g., subgradient of ft at xt, or unbiased
stochastic estimate of this subgradient) become known. We can select xt+1 ∈ X as we
want, based on information accumulated so far.
• The standard goal is to find a policy of generating x1, x2,...,xT which results in as
small as possible regret

1
T
E
{∑T

t=1 gt(xt)
}
− 1

T
minx∈X E

{∑T
t=1 ft(x)

}
In other words, we do pay for nonoptimality of search points xt and want to make our
average payment close to the one of “clairvoyant” who knows the future but “cannot
move” – sticks to time-invariant solution.
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Fact: In the convex case with (unbiased stochastic estimates of) subgradients of ft
at xt available, online regret minimization can be handled by standard tools of Convex
Optimization (Stochastic Subgradient/Mirror Descent). The “bandit” setting where the
only on-line available information is given by (unbiased stochastic estimates of) ft(xt) is
much more difficult and is subject of intensive research.
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♣ Distributed Optimization: Traditional solution algorithms in MP are “black box ori-
ented” and sequential — the next search point is specified in terms of local information
on objective and constraints acquired at the preceding search points.
Moreover, for typical classes of MP problems possibility of “parallelization” – generating
at a step M search points instead of just one and acquiring local information at all
these points in parallel – does not allow to accelerate the learning process, unless M is
unrealistically large (an exponent of the number of variables).
⇒ as far as learning is concerned, access to several processors instead of a single one
usually does not help.
Note: Such an access can be useful when implementing a step (by parallelizing matrix-
vector multiplications, matrix inversions, etc.)
♠ Distributed Optimization is inspired by modern Cloud storage of data and compu-
tations and is about solving optimization problems (usually, convex and well-structured)
in distributed setting, where there are several interacting processors (“agents”) and
• problem’s data is somehow distributed among the processors
• we should take into account the cost of communicating information between the
agents.
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Example: We want to minimize f(x) =
∑N

i=1 fi(x) in the situation when
— i-th agent, i = 1, ..., N , has direct access to information on i-th term fi only (say, can
call First Order oracle reporting the values and the subgradients of fi at query points)
— the agents form nodes in a graph, and in a single interchange act (which takes unit
time) an agent i can forward information to agent j iff the nodes i and j are adjacent.

♠ The necessity to account for communication costs results in significant and highly
novel challenges in design and analysis of optimization algorithms, and these challenges
are the subject of intensive ongoing research.
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Disclaimer: In what follows, I restrict myself with the traditional MP paradigm.
♣ Claim: Algorithmic and computational toolbox for solving general-type Mathematical
Programming problems

min
x

{
f(x) :

g1(x) ≤ 0, ..., gm(x) ≤ 0
h1(x) = 0, ..., hk(x) = 0

}
is essentially complete, and its further development seems to be a relatively dead re-
search area.
At least, I am not aware of any essential progress in this area during the last 15 years,
except for Newton method with cubic regularization for smooth unconstrained mini-
mization (Yu. Nesterov, B. Polyak, 2005) and primal-dual interior point method(s) for
smooth nonconvex constrained minimization (software IPOPT, A. Waechter et al.).
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min
x

{
f(x) :

g1(x) ≤ 0, ..., gm(x) ≤ 0
h1(x) = 0, ..., hk(x) = 0

}
(∗)

Note:
• Generality means that all we intend to use when building an algorithm is that

— the objective is called f , the constraints are called g1, ..., gm, h1, ..., hk, and
these functions are smooth;
— we can compute the values and the derivatives (first, second,...) of the
objective and the constraints at any point.

• Stagnation in the area comes from the fact that optimizers ran out of novel ideas,
and not from the fact that the existing algorithms satisfy all our needs.

However: Never say “never”!
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Note: What seems to be dead, is creating novel general-purpose algorithms for Mathe-
matical Programming problems, not developing new software and application of existing
MP algorithms (perhaps properly adjusted) to novel optimization models arising in ap-
plications.

♡ Modeling real-world situations as optimization problems in many cases poses highly
challenging theoretical questions, and thus is a quite respectful and rapidly developing
research area.

♡ Good modeling seems to be the key to successful application of Mathematical
Programming techniques.
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♣ A model is good, when

• it reflects reasonably well the most important dependencies, design specifi-
cations and tradeoffs of the situation we intend to model.

To achieve this goal, you should understand well the application area in ques-
tion.

• it allows for subsequent efficient numerical processing of the resulting opti-
mization model.

To achieve this goal, you should know what can be expected from existing
optimization techniques as applied to optimization problems of various types.
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Note: The outlined requirements somehow contradict each other – usually, the more
adequate is a model, the more difficult it is for numerical processing. Finding reasonable
tradeoff here requires a lot of knowledge (both in the relevant subject area and in
Optimization) and some luck...

Both half a laptop and half a truck are nonexisting entities. However,

— it would be counter-productive to model planning laptop production as an
optimization problem with integrality constraints on the outcome;

— it would be equally counter-productive to ignore integrality constraints when
modelling vehicle routing problem for a small delivery firm with a fleet of 5 –
10 trucks...
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♣ It seems that one of the major problems with applications of Mathematical Program-
ming comes from the fact that

More often than not, potential clients are completely unaware of what Opti-
mization can do well and what is problematic, and as a result arrive with “dirty”
models badly suited for numerical processing (if they arrive at all – in many
cases they simply do not know that Optimization exists and/or can be of use
for them).

Responsibility for this is partly on optimizers who do not care enough to educate potential
clients...
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A man searches for a lost wallet at the
place where the wallet was lost.

A wise man searches at a place with
enough light...

♣ Where should we search for a wallet? Where is “enough light” – what Optimization
can do well?

The most straightforward answer is: we can solve well convex optimization problems.

The very existence of what is called Mathematical Programming stemmed from discov-
ery of Linear Programming (George Dantzig, late 1940’s) – a modelling methodology
accompanied by extremely powerful in practice (although “theoretically bad”) compu-
tational tool – Simplex Method. Linear Programming still underlies the majority of real
life applications of Optimization, especially large-scale ones.
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♣ Around mid-1970’s, it was shown that

• Linear and, more generally, Convex Programming problems are efficiently solvable –
under mild computability and boundedness assumptions, generic Convex Programming
problems admit polynomial time solution algorithms.
As applied to an instance of a generic problem, a polynomial time algorithm solves it to
a whatever high accuracy ϵ in the number of steps which is polynomial in the size of the
instance (the number of data entries specifying the instance) and the number ln(1/ϵ)
of required accuracy digits.
⇒ Theoretical (and to some extent – also practical) possibility to solve convex programs
of reasonable size to high accuracy in reasonable time
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• No polynomial time algorithms for general-type nonconvex problems are known, and
there are strong reasons to believe that no such methods exist.
⇒ Solving general nonconvex problems of not too small sizes is usually a highly unpre-
dictable process: with luck, we can improve somehow the solution we start with, but
we usually do not know how far from global optimality we terminate.
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Polynomial-Time Solvability of Convex Programming

♣ From purely academical viewpoint, polynomial time solvability of Convex Programming
is a straightforward consequence of the following statement:

Theorem [circa 1976] Consider a convex problem

Opt = min
x∈Rn

{
f(x) :

gi(x) ≤ 0, 1 ≤ i ≤ m
|xj| ≤ 1, 1 ≤ j ≤ n

}
normalized by the restriction

|f(x)| ≤ 1, |gj(x)| ≤ 1 ∀x ∈ B = {|xj| ≤ 1 ∀j}.
For every ϵ ∈ (0,1), one can find an ϵ-solution

xϵ ∈ B : f(xϵ)−Opt ≤ ϵ, gi(xϵ) ≤ ϵ

or to conclude correctly that the problem is infeasible at the cost of at most

3n2 ln

(
2n

ϵ

)
computations of the objective and the constraints, along with their (sub)gradients, at
subsequently generated points of intB, with n(n+m) additional arithmetic operations
per every such computation.
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♣ The outlined Theorem is sufficient to establish theoretical solvability of generic Con-
vex Programming problems. In particular, it underlies the famous result (Leo Khachiyan,
1979) on polynomial time solvability of LP – the first ever mathematical result which
made the C2 page of New York Times (Nov 27, 1979).
♣ From practical perspective, however, polynomial type algorithms suggested by Theo-
rem are too slow: the arithmetic cost of an accuracy digit is at least

O(n2n(m+ n)) ≥ O(n4),

which, even with modern computers, allows to solve in reasonable time problems with
hardly more than 100 – 200 design variables.
♣ The low (although polynomial time) performance of the algorithms in question stems
from the black box oriented nature of the algorithms – they do not adjust themselves
to the structure of the problem and use a priori knowledge of this structure solely to
mimic First Order oracle.
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Note: A convex program always has a lot of structure – otherwise how could we know
that the problem is convex?
A good algorithm should utilize a priori knowledge of problem’s structure in order to
accelerate the solution process.

Example: The LP Simplex Method is fully adjusted to the particular structure
of an LP problem. Although not a polynomial time one, this algorithm in reality
is capable to solve LP’s with tens and hundreds of thousands of variables and
constraints – a task which is by far out of reach of the theoretically efficient
“universal” black box oriented algorithms underlying the Theorem.
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♣ Since mid-1970’s, Convex Programming is the most rapidly developing area in Opti-
mization, with intensive and successful research primarily focusing on

• discovery and investigation of novel well-structured generic Convex Programming
problems (“Conic Programming,” especially Conic Quadratic and Semidefinite)

• developing theoretically efficient and powerful in practice algorithms for solving well-
structured convex programs, including large-scale nonlinear ones

• building Convex Programming models for a wide spectrum of problems arising in
Engineering, Management, Medicine, etc.

• extending modeling methodologies in order to capture factors like data uncertainty
typical for real world situations

• “on-line optimization,” where our losses to be minimized can rapidly and unpre-
dictably vary in time, and we are interested to make small the quantity

1

T

T∑
t=1

ft(xt)−min
x

1

T

T∑
t=1

ft(x)

• ft(·): unknown in advance convex loss function at time t = 1, ..., T
• xt: our decision at time t which should be based solely on the past observations
fτ(xτ), f ′τ(xτ), τ < t

• “distributed optimization,” where several agents are trying to minimize f(x) by
updating in parallel prescribed blocks in the decision vector x under restrictions on
how the agents can exchange information

• software implementation of novel optimization techniques at academic and industry
levels
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“Structure-Revealing” Representation of Convex Problem: Conic Programming

♣ When passing from a Linear Programming problem

min
x

{
cTx : Ax− b ≥ 0

}
(∗)

to a nonlinear convex one, the traditional wisdom is to replace linear inequality con-
straints

aTi x− bi ≥ 0

with nonlinear convex ones:

gi(x) ≥ 0.

♠ There exists, however, another way to introduce nonlinearity, namely, to replace the
coordinate-wise vector inequality

y ≥ z ⇔ y − z ∈ Rm+ = {u ∈ Rm : ui ≥ 0 ∀i} [y, z ∈ Rm]

with another vector inequality

y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]

where K is a closed, pointed and convex cone with a nonempty interior in RM .
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y ≥K z ⇔ y − z ∈ K [y, z ∈ Rm]
K: closed, pointed and convex cone in Rm with a nonempty interior.

Requirements on K ensure that ≥K obeys the usual rules for inequalities:

• ≥K is a partial order:

y ≥K y ∀y
(y ≥K z & z ≥K y) ⇒ y = z
(x ≥K y, y ≥K z) ⇒ x ≥K z

• ≥K is compatible with linear operations: the validity of ≥K inequality is preserved
when we multiply both sides by the same nonnegative real and add to it another
valid ≥K-inequality;

• in a sequence of ≥K-inequalities, one can pass to limits:

ai ≥K bi, i = 1,2, ... & ai → a &bi → b
⇓

a ≥K b
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• one can define the strict version >K of ≥K:

a >K b⇔ a− b ∈ intK.

Arithmetics of >K and ≥K inequalities is completely similar to the arithmetics of
the usual coordinate-wise ≥ and >.

14.26



♣ LP problem:

min
x

{
cTx : Ax− b ≥ 0

}
⇔ min

x

{
cTx : Ax− b ∈ Rm+

}
♣ General Conic problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
• (A, b) – data of conic problem

• K - structure of conic problem

♠ Note: Every convex problem admits equivalent conic reformulation
♠ Note: With conic formulation, convexity is “built in”; with the standard MP formu-
lation convexity should be kept in mind as an additional property.

♣ (??) A general convex cone has no more structure than a general convex function.
Why conic reformulation is “structure-revealing”?

♣ (!!) As a matter of fact, just 3 types of cones allow to represent an extremely wide
spectrum (“essentially all”) convex problems!
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min
x

{
cTx : Ax− b ≥K

}
⇔ min

x

{
cTx : Ax− b ∈ K

}
♠ Three Magic Families of cones:

• Direct products Rm+ of nonnegative rays R+ = {s ∈ R : s ≥ 0} (nonnegative orthants)
giving rise to Linear Programming programs

min
s

{
cTx : aTℓ x− bℓ ≥ 0,1 ≤ ℓ ≤ q

}
.

• Direct products of Lorentz cones Lp+ = {u ∈ Rp : up ≥
(∑p−1

i=1 u
2
i

)1/2
} giving rise to

Conic Quadratic programs

min
x

{
cTx : ∥Aℓx− bℓ∥2 ≤ cTℓ x− dℓ,1 ≤ ℓ ≤ q

}
.

• Direct products of Semidefinite cones
Sp+ = {M ∈ Sp :M ⪰ 0} giving rise to Semidefinite programs

min
x

{
cTx : λmin(Aℓ(x)) ≥ 0, 1 ≤ ℓ ≤ q

}
.

where Aℓ(x) are symmetric matrices affine in x and λmin(S) is the minimal eigenvalue
of a symmetric matrix S.
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♣ Conic Programming admits nice Duality Theory completely similar to LP Duality.
Primal problem:

min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

ξ

{
eTξ : ξ ∈ [L − b] ∩K

}
[L = ImA, ATe = c, KerA = {0}]

Dual problem:

max
λ

{
bTλ : λ ∈

[
L⊥ + e

]
∩K∗

}
⇔ max

λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
[K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K}]

Note: K∗ is a closed pointed convex cone with a nonempty interior (called the cone dual
to K), and (K∗)∗ = K. Thus,

• the dual problem is conic along with the primal
• the duality is completely symmetric

Note: Cones from Magic Families are self-dual, so that the dual of a Linear/Conic
Quadratic/Semidefinite program is of exactly the same type.
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min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

ξ

{
eTξ : ξ ∈ [L − b] ∩K

}
(P )

max
λ

{
bTλ : λ ∈ [L⊥ + e] ∩K∗

}
⇔ max

λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
(D)[

L = ImA, ATe = c,K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K}
]

Conic Programming Duality Theorem:

• [Symmetry] Conic Duality is fully symmetric: the dual problem is conic, and its dual
is (equivalent to) the primal

• [Weak Duality] Opt(D) ≤ Opt(P )

• [Strong Duality] If one of the problems is strictly feasible (i.e., the corresponding
affine plane intersects the interior of the underlying cone) and bounded, then the
other problem is solvable, and Opt(D) = Opt(P ). In particular, if both problems
are strictly feasible, both are solvable with equal optimal values.
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min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

ξ

{
eTξ : ξ ∈ [L − b] ∩K

}
(P )

max
λ

{
bTλ : λ ∈ [L⊥ + e] ∩K∗

}
⇔ max

λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
(D)[

L = ImA, ATe = c,K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K}
]

Conic Programming Optimality Conditions:
Let both (P ) and (D) be strictly feasible. Then a pair (x, λ) of primal and dual feasible
solutions is comprised of optimal solutions to the respective problems if and only if

• [Zero Duality Gap]

cTx− bTλ = 0,

and if and only if
• [Complementary Slackness]

[Ax− b]Tλ = 0.
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min
x

{
cTx : Ax− b ≥K 0

}
⇔ min

ξ

{
eTξ : ξ ∈ [L − b] ∩K

}
(P )

max
λ

{
bTλ : λ ∈ [L⊥ + e] ∩K∗

}
⇔ max

λ

{
bTλ : ATλ = c, λ ≥K∗ 0

}
(D)

♣ Conic Duality, same as the LP one, is

• fully algorithmic: to write down the dual, given the primal, is a purely mechanical
process

• fully symmetric: the dual problem “remembers” the primal one
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♡ Cf. Lagrange Duality:

min
x

{f(x) : gi(x) ≤ 0, i = 1, ...,m} (P )

⇓
max
λ≥0

L(λ) (D)[
L(λ) = min

x

{
f(x) +

∑
i

λigi(x)

}]
• Dual “exists in the nature,” but is given implicitly; its objective, typically, is not

available in a closed form

• Duality is asymmetric: given L(·), we, typically, cannot recover f and gi...
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♣ Conic Duality in the case of Magic cones:

• powerful tool to process problem, to some extent, “on paper,” which in many cases
provides extremely valuable insight and/or allows to end up with a reformulation
much better suited for numerical processing

• is heavily exploited by efficient polynomial time algorithms for Magic conic problems
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Example: Truss Topology Design

♣ A truss is a mechanical construction, like electric mast, railroad bridge, or Eiffel Tower,
comprised of thin elastic bars linked with each other at nodes:

A console
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♡ When a truss is subject to external load (collection of forces acting at the nodes), it
deforms until the reaction forces caused by elongations/contractions of bars compensate
the external force:

Loaded console

♡ At the equilibrium, the deformed truss capacitates certain potential energy – compli-
ance of the truss w.r.t. the load.
♡ Compliance is a natural measure of the rigidity of the truss w.r.t. the load – the less

is the compliance, the better.
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♠ Mathematically:

• Displacements of a truss are identified with long vectors comprised of “physical”
2D/3D displacements of the nodes; these displacements form a linear space V = RM ,
where M is the total number of degrees of freedom of the nodes.

• An external load acting at a truss is identified with a long vector f ∈ V comprised
of “physical” 2D/3D forces acting at the nodes

• Assuming deformation small, the reaction forces caused by the deformation form
the long vector

A(t)v
• v : displacement

• A(t) =
N∑
i=1

tibibTi : stiffness matrix

ti : volume of bar i
bi : readily given by

geometry of nodal set
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• Equilibrium displacement v solves

A(t)v = f

and the compliance is

Complf(t) = 1
2
fTv

= 1
2
vTA(t)v

= 1
2
fTA−1(t)f

♣ In the simplest Truss topology Design problem one is given

• Ground Structure:
— the 2D/3D set of tentative nodes along with boundary conditions fully or partially
restricting displacements of some nodes
— the set of tentative bars

• load of interest f

and seeks for the truss of a given total weight with minimum possible compliance w.r.t.
f .
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f f

9×9 nodal grid and load N = 2,039 tentative bars

⇓

min
t∈RN ,τ

τ :

 2τ fT

f
N∑
i=1

tibibTi

 ⪰ 0

t ≥ 0,
∑
i

ti ≤W


⇓
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Optimal console
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♣ When solving a TTD problem, one starts with a dense nodal grid and allows for all
pair connections of nodes by tentative bars.
At the optimal solution, most of these tentative bars get zero volume, and the design
reveals optimal topology, not merely optimal sizing!

♠ However: To reveal optimal topology, one needs to work with dense nodal grids (M
like few thousands, especially in 3D) and to allow for all tentative bars (N ≈ M2

8
in 2D

and M ≈ N2

18
in 3D), which results in really huge semidefinite problems – millions of

variables!
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♠ Remedy: Conic Duality.

Applying Conic Duality to the semidefinite TTD program (this is a purely mechanical
process!) one ends up with another semidefinite program. This program admits analyt-
ical elimination of most of the variables and is equivalent to the semidefinite program

min
v,γ

{
−2fTv+Wγ :

[
1/2 bTi v
bTi v γ

]
⪰ 0, 1 ≤ i ≤ N

}
♡ The dimension of this program is just M+1 – incomparably less than the dimension
N = O(M2) of the primal TTD problem!
♡ In addition, the primal TTD has a single “big” LMI, while the dual one has N small
2× 2 LMI’s.
♣ When solving the primal TTD by the best known optimization methods, the price of
accuracy digit is as large as O(M1/2N3) = O(M6.5) operations, which for real life values
of M is by far beyond our computational abilities.
♣ For the (transformed) dual problem, the price of accuracy digit is O(N1/2M3) = O(M4)
operations, which is tolerable...
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min
t∈RN ,τ

τ :

 2τ fT

f
N∑
i=1

tibibTi

 ⪰ 0

t ≥ 0,
∑
i

ti ≤W

 (TTD)

⇓

min
v,γ

{
−2fTv+Wγ :

[
1/2 bTi v
bTi v γ

]
⪰ 0, 1 ≤ i ≤ N

}
(D)

♡ Semidefinite problem (D) is not exactly the dual of (TTD) – it is obtained from the
dual by analytical partial optimization w.r.t. part of the variables.
If we were taking the problem dual to dual, we would recover (TTD). What happens
when we pass from (D) to its dual?

Answer: We will get a highly nontrivial and instructive equivalent reformulation of
(TTD):

min
q,t

∑
i

q2i
ti

:

∑
i

qibi = f∑
i

ti ≤W, t ≥ 0
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min
t∈RN ,τ

τ :

 2τ fT

f
N∑
i=1

tibibTi

 ⪰ 0

t ≥ 0,
∑
i

ti ≤W

 (TTD)

⇕

min
q,t

∑i q2i
ti
:

∑
i

qibi = f∑
i

ti ≤W, t ≥ 0

 (TTD+)

♡ On a closest inspection, (TTD+) is just a Linear Programming problem! (This mir-
acle happens only in the simplest single-load TTD problem. It does not survive even
nontrivial upper and lower bounds on bar volumes...)
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♡ Up to the LP miracle, the above story can be repeated for pretty general Structural
Design problems (Truss and Shape Design with several loading scenarios, bounds on
variables, obstacles,...) In all these problems

• The problem of interest can be posed as SDP

• Applying Conic Duality, one can simplify the dual problem analytically to end up
with a semidefinite problem much better suited for numerical processing than the
original formulation

• Passing from the transformed dual to its dual, one gets a nontrivial and instructive
equivalent reformulation of the original problem
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min
q,t

∑i q2i
ti
:

∑
i

qibi = f∑
i

ti ≤W, t ≥ 0

 (TTD+)

♣ (TTD+) has a transparent mechanical interpretation:
— qi is can be thought of as the product of the tension caused by deformation of i-th
bar and the cross-sectional area of the bar;
— constraint

∑
i

qibi = f says exactly that reaction forces coming from the tensions

should compensate the external forces.
♣ However: you cannot just write down (TTD+) from purely mechanical considera-
tions: in reality, N tensions of the bars come from M << N displacements of the nodes,
and (TTD+) does not include such a constraint!
Explanation: At the optimum, qi indeed come from M displacements (which, mathe-
matically, are the Lagrange multipliers of the equality constraints

∑
i

qibi = f)!
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♣ While post factum you can explain (TTD+) from purely mechanical perspective (also
in the multi-load case, with obstacles, etc.) nobody was smart enough to discover this
formulation from scratch. It was discovered exactly as explained – via twice used Conic
Duality!

Morality: Conic Formulation of a convex program and Conic Duality is much more than
a tool for number-crunching!
Other known to me important results stemming from Conic Duality include

• tightness results for tractable approximations of various intractable problems

• stability analysis of uncertain linear dynamical systems

• synthesis of near-optimal linear controllers for disturbance-affected linear dynamical
systems

• computationally efficient robust – immunized against data uncertainty – decision
making

• computationally efficient statistically near-optimal recovery of signals x from their
indirect noisy observations

y = Ax+ ξ
[A: known sensing matrix, ξ: observation noise]
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Polynomial Time Algorithms for Well-Structured Convex Programs

♣ The first polynomial time algorithm capable to utilize the structure of a convex
problem (namely, a LP one) was discovered by Narendra Karmarkar (1984).
While Karmarkar’s algorithm did not improve much the already known polynomial time
LP complexity bounds, it was completely novel and turned out to be competitive with
Simplex Method.
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♣ A real shock caused by Karmarkar’s algorithm opened what is now called “Interior
Point Revolution” (mid-1980’s – late 1990’s). In course of this revolution effort of many
tens of first-rate researchers led to

• improving theoretical complexity bounds for LP and developing new theoretically
and practically efficient polynomial time algorithms for LP

• developing general theory of interior point polynomial methods capable to under-
stand intrinsic nature of the IP LP algorithms and to extend them on the nonlinear
well-structured convex problems, most notably the conic problems of Magic cones

• industry-level software implementation of IP algorithms for LP/CQP (CPLEX) and
LP/CQP/SDP (latest version of MOSEK - MOSEK 7.0).
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♣ As a result of Interior Point Revolution,

• essentially, the entire Convex Programming is within the reach of powerful IP poly-
nomial time methods

• practical performance of Convex Optimization techniques was improved by factor
about 106, with nearly equal contributions of progress in software and progress in
algorithms

Challenge: extremely large-scale nonlinear convex programs, primarily SDP’s.
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♣ IPM’s are Newton-type algorithms – at every step they solve n× n systems of linear
equations, n being the design dimension of the problem.

Due to polynomial-time convergence, it takes a moderate number (10 – 40) Newton
steps to solve the problem to high accuracy.
♠ However: To solve in a realistic time a system of linear equations with n ∼ 105 or
more variables is possible only when the system is highly sparse. This indeed happens
with typical LP’s (and to some extent - CQP’s) of real life origin, but almost never
happens with SDP’s.
⇒ Really large-scale SDP’s (and many other nonlinear convex problems) are beyond
the grasp of IPM’s – fast convergence does not help when the very first iteration lasts
forever...
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♣ With design dimension n ∼ 105–106, the only realistic option is to use simple methods
with (nearly) linear in n cost of an iteration. At the present level of our knowledge, the
only methods meeting this requirement are simple gradient-type algorithms.

♠ Gradient-type algorithms are black-box oriented and in the large-scale case cannot
exhibit linear convergence, only a sublinear one.
♣ However: For problems with favorable geometry, the rate of convergence of smart
gradient-type algorithms is (nearly) dimension-independent, which makes these algo-
rithms well-suited for finding medium-accuracy solutions of extremely large-scale convex
problems. Could we further improve these algorithms by utilizing problem’s structure?
Yes! Such a possibility was discovered (Yuri Nesterov, 2003), and the resulting fast
gradient algorithms form an extremely popular and rapidly developing research area with
high (and partly already realized) applied potential.
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Novel Applied Convex Optimization Models

♣ Dramatic methodological (discovery of Conic Optimization, especially CQP and SDP)
and algorithmic (IPM’s) progress in Convex Optimization has inspired (and was inspired
by) huge activity in building of well-structured convex optimization models in various
applications, including, but not reduced to,

• Control

• Communications

• Design of mechanical structures

• Design of circuits and chips

• Signal Processing, in particular, Medical Imaging

• Machine Learning and Data Mining

• ....................................................
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♣ Along with constantly extending applications outside of Optimization, Convex Pro-
gramming, and primarily SDP, is extensively used within Optimization, most notably as
the working horse for processing difficult combinatorial problems.
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(Relatively) Novel Optimization Approaches and Methodologies

Let us present just two examples:

♣ Systematic search for approximation algorithms – polynomial time algorithms for
building suboptimal solutions for difficult (e.g., combinatorial) problems.

Approximation algorithm for a generic difficult optimization problem must be

— efficient – a polynomial time one

— as applied to every instance of the problem, produce a feasible approximate solution
x which is within an absolute constant factor of the optimal solution in terms of the
objective:

Objective at x

True optimal value
≤ O(1)

Algorithms of this type are known for many NP-hard optimization problems...
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♣ Attention to data uncertainty – Robust Optimization.

Example: TTD revisited. When designing the console, we took care about the only
load – the one we are actually interested in. In reality, however, the console will be
subject to other loads, perhaps small, but it still should be capable to carry them.

Equivalently: The data f in the TTD problem

min
t∈RN ,τ

τ :

 2τ fT

f
N∑
i=1

tibibTi

 ⪰ 0

t ≥ 0,
∑
i

ti ≤W


is uncertain – running in a “massive set” F (containing at least the load of interest f∗
and all small enough occasional loads), and a meaningful candidate solution should be
robust feasible – it should remain feasible for all realizations of the data from F.
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How robust is the nominally optimal design?

Deformation under the load
of interest (10,000 kg)
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Deformation under “badly placed”
load 108 times less than

the load of interest (0.1 g)



♣ In Optimization, there exists a necessity to “immunize” solutions against data uncer-
tainty.

Robust Optimization is a relatively novel and rapidly developing methodology which
takes data uncertainty into account from the very beginning and looks for solutions
which are “immunized” against this uncertainty.

Development of RO poses highly challenging research questions and possesses huge
practical potential.
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Example (continued). Applying RO to the TTD problem, we end up with robust design

⇒

which carries the load of interest by just 2.5% worse than the nominal design, and is
capable equally well withstand all occasional loads as large as 36% of the load of interest!
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Nodal displacements of robust console,
sample of 100 occasional loads
10% of the load of interest
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Lecture 15:

First Order Methods

for

Large-Scale Convex Minimization
For details, see Lecture 5 in
http://www.isye.gatech.edu/~nemirovs/LMCOLN2021WithSol.pdf



Simple methods for extremely large-scale problems

♣ The arithmetic complexity of a step in all known Convex Programming algorithms
capable to solve convex problems to high accuracy, like Ellipsoid Algorithms or Path-
Following Interior Point methods, grows up nonlinearly with the design dimension n of
the problem – at least as O(n2), if not as O(n3) (the only exception are extremely sparse
real-world LPs with favourable sparsity patterns).
What to do when the design dimension is of order of tens and hundreds of thousands,
and the problem is not a “very sparse LP”?
Nonlinear convex problems of huge design dimension do arise in numerous applications,
e.g., in
• Structural Design (especially for 3D structures),
• Signal Processing, High-dimensional Statistics, Machine Learning
• 3D Medical imaging problems
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Example of Medical Imaging problem: PET Image Reconstruction

♣ PET (Positron Emission Tomography) is a powerful, non-invasive, medical diagnostic
imaging technique for measuring the metabolic activity of cells in the human body. It
has been in clinical use since the early 1990s. PET imaging is unique in that it shows
the chemical functioning of organs and tissues, while other imaging techniques - such as
X-ray, computerized tomography (CT) and magnetic resonance imaging (MRI) - show
anatomic structures.
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♣ Physics of PET. A PET scan uses radioactive tracer – a biologically active fluid
with a radio-active component capable of emitting positrons. When administered to
a patient, the tracer distributes within the body and, with properly chosen biologically
active “carrier”, concentrates in desired locations, e.g., in the areas of high metabolic
activity where cancer tumors can be expected.
• The tracer disintegrates, emitting positrons.
• A positron immediately annihilates with a near-by electron, giving rise to two photons
flying at the speed of light off the point of annihilation in nearly opposite directions.
They are registered outside the patient by cylindrical PET scanner consisting of several
rings of detectors.
• When two detectors “simultaneously” (within ∼ 10−8 sec time window) are hit by
photons, this event is registered, indicating that somewhere on the line linking the
detectors (LOR – “Line of Response”) a disintegration act took place.
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• The measured data is the collection of numbers of LOR’s counted by different pairs
of detectors (“bins”), and the problem is to recover from these measurements the 3D
density of the tracer.

♣ Mathematically, the PET Image Reconstruction problem, after appropriate discretiza-
tion, becomes the problem of recovering a vector λ ≥ 0 from a noisy observation y of
the vector Pλ:

λ 7→ y = Pλ+noise ? 7→? estimate of λ.

Specifically,
• entries of λ are indexed by voxels – small cubes into which we partition the field of
view; λj is the average density of the tracer in voxel j;
• entries of y are indexed by bins (pairs of detectors); yi is the number of LORs registered
by bin i;
• P = [pij] is a given matrix; pij is the probability for a LOR originating in voxel j to be
registered by bin i.
Statistical model of PET states that the entries yi in y are realizations of independent
Poisson random variables with the expectations (Pλ)i.
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♡ In the PET Reconstruction problem, we are interested, given observations y, to find
the Maximum Likelihood estimate λ∗ of tracer’s density:

λ∗ = argmin
λ≥0

 n∑
j=1

pjλj −
m∑
i=1

yi ln(
∑
j

pijλj)

 [pj =
∑
i

pij] (PET)

(PET) is a nicely structured constrained convex program; the only difficulty – a true
one! – is in huge sizes of (PET): for problems of actual interest,
• the design dimension n varies from 300,000 to 3,000,000
• the number m of log-terms in the objective varies from 6,000,000 to 25,000,000
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♣ As far as nonlinear programs are concerned, design dimension n ∼ 104 − 105 − 106

makes it necessary to use “cheap” algorithms – those with nearly linear in n arithmetic
cost of a step (otherwise you never will finish the very first iteration). This requirement
rules out all “advanced” polynomial time optimization techniques and leaves us with,
essentially, just two options:
I. Traditional tools of smooth unconstrained minimization: gradient descent, conjugate
gradients, quasi-Newton methods, etc.
II. Simple subgradient-type techniques for solving convex nonsmooth constrained opti-
mization problems:
subgradient descent, restricted memory bundle methods, etc.
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• We are interested in extremely large-scale constrained convex problems, and thus
intend to focus on cheap subgradient-type techniques. The question of primary impor-
tance here is:
(?) What are the limits of performance of cheap optimization techniques?

• When answering (?), we shall restrict ourselves with the black-box-represented convex
programs. As a matter of fact, this is exactly the “working environment” for cheap
optimization algorithms.
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Black-box-represented convex programs
and Information-based complexity

♣ Let us fix a family P(X) of convex programs

min
x

{f(x) : x ∈ X} ; (CP)

where X ⊂ Rn is a given instance-independent convex compact set, and f : Rn → R is
convex.
• Formally, P(X) is some family of convex objectives f : X → R.
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min
x

{f(x) : x ∈ X} ; (CP)

♣ A black-box-oriented solution method B for P(X) is as follows:
• When starting to solve (CP), B is given an accuracy ϵ > 0, knows what is X, and
knows that f belongs to a given family P(X). However, B does not know in advance
what is the particular f it deals with and must “learn” f to solve the problem.
• When solving the problem, B has access to the First Order oracle for f . Given on
input x ∈ Rn, the oracle returns f(x) and a subgradient f ′(x) of f at x. B generates
a sequence of search points x1, x2, ... and calls the First Order oracle to get values and
subgradients of f at these points. The rules for building xt can be arbitrary, except for
the fact that they should be non-anticipative: xt can depend only on the information
f(x1), f ′(x1), ..., f(xt−1), f ′(xt−1) on f accumulated by B at the first t− 1 steps.
• After a number T = TB(f, ϵ) of calls to the oracle, B terminates and outputs a result
zB(f, ϵ) which should depend solely on the information on f accumulated by B at the T
search steps, and must be an ϵ-solution to (CP):

zB(f, ϵ) ∈ X & f(zB(f, ϵ))−minX f ≤ ϵ.
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♣ The complexity of P(X) w.r.t. a solution method B is

ComplB(ϵ) = max
f∈P(X)

TB(f, ϵ)

which is the minimal number of steps sufficient for B to solve within accuracy ϵ every
instance of P(X).
♣ The Information-based complexity of a family P(X) of problems is

Compl(ϵ) = min
B

ComplB(ϵ),

the minimum being taken over all solution methods. Relation
Compl(ϵ) = N

means that
• there exists a solution method B capable to solve within accuracy ϵ every instance of
P(X) in no more than N calls to the First Order oracle;
• for every solution method B, there exists an instance of P(X) such that B solves the
instance within the accuracy ϵ in at least N steps.

♣ The information-based complexity Compl(ϵ) of a family P(X) is a lower bound on
“actual” computational effort, whatever it means, sufficient to find ϵ-solution to every
instance of the family.
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Main results on Information-based complexity
of Convex Programming

♣ Let

X ⊂ Rn – a convex compact set, intX ̸= ∅

P(X) =

{{
min
x∈X

f(x)

}
: f is convex on Rn and is normalized by max

X
f −min

X
f ≤ 1.

}
For the family P(X),
I. Complexity of finding high-accuracy solutions in fixed dimension is independent of the
geometry of X. Specifically,

∀(ϵ ≤ ϵ(X)) : O(1)n ln
(
2+ 1

ϵ

)
≤ Compl(ϵ);

∀(ϵ > 0) : Compl(ϵ) ≤ O(1)n ln
(
2+ 1

ϵ

)
,

where
O(1) are appropriately chosen positive absolute constants,
ϵ(X) depends on the geometry of X, but never is less than 1

n2.
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X ⊂ Rn – a convex compact set, intX ̸= ∅

P(X) =

{
{minx∈X f(x)} : f is convex on Rn and normalized by maxX f −minX f ≤ 1.

}
II. Complexity of finding solutions of fixed accuracy in high dimensions does depend on
the geometry of X. Here are 3 typical results:
Let X = {x ∈ Rn : ∥x∥∞ ≤ 1}. Then

ϵ ≤ 1
2
⇒ O(1)n ln(1

ϵ
) ≤ Compl(ϵ) ≤ O(1)n ln(1

ϵ
). (∥ · ∥∞-Ball)

Let X = {x ∈ Rn : ∥x∥2 ≤ 1}. Then

n ≥
1

ϵ2
⇒

O(1)

ϵ2
≤ Compl(ϵ) ≤

O(1)

ϵ2
. (∥ · ∥2-Ball)

Let X = {x ∈ Rn : ∥x∥1 ≤ 1}. Then

n ≥
1

ϵ2
⇒

O(1)

ϵ2
≤ Compl(ϵ) ≤

O(lnn)

ϵ2
. (∥ · ∥1-Ball)

(O(1) in the lower bound can be replaced with O(lnn), provided that n≫ 1
ϵ2
).
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Compl(ϵ) ≥ O(1)n ln (2 + 1/ϵ) ∀(ϵ ≤ ϵ(X)) (I)

X = {x ∈ Rn : ∥x∥2 ≤ 1} ⇒ Compl(ϵ) ≤ O(1)
ϵ2

∀(ϵ > 0) : (II)

♣ Consequences for large-scale convex minimization:
Bad news: I says that we have no hope to guarantee high-accuracy solutions (like
ϵ = 10−6) when solving large-scale problems with black-box-oriented methods: it would
require at least O(n) calls to the first order oracle with at least O(n) a.o. per call, i.e.,
totally at least O(n2) a.o. (with known methods – even O(n4) a.o.), which is too much
for large n...

Good news: II says that there exist cases when medium accuracy solutions can be
found in (nearly) dimension-independent number of oracle calls...
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♣ Good news: There exist cases when medium accuracy solutions of convex programs

min
x∈X

f(x), max
X

f −min
X

f ≤ 1 (∗)

can be found in (nearly) dimension-independent number of oracle calls, e.g., the cases
of

X = B2
n ≡ {x ∈ Rn : ∥x∥2 ≤ 1} (∥ · ∥2-Ball)

or

X = B1
n ≡ {x ∈ Rn : ∥x∥1 ≤ 1} (∥ · ∥1-Ball)

(but, unfortunately, not the case when X is a box).
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min
x∈X

f(x), max
X

f −min
X

f ≤ 1 (∗)

♣ Problems of minimizing over a ∥ · ∥p-ball, p = 1,2, are not that typical. Fortunately,
the corresponding (nearly) dimension-independent complexity bounds remain valid when
X in (∗) is a subset of a “good” set Bp

n, p = 1,2, and the normalization condition on f
in (∗) is strengthened to

|f(x)− f(y)| ≤ ∥x− y∥p ∀x, y ∈ X.

In particular, O( lnn
ϵ2
) oracle calls are sufficient to minimize, within accuracy ϵ, a convex

function f over the standard simplex

∆n = {x ∈ Rn : x ≥ 0,
∑
i

xi = 1},

provided that f is Lipschitz continuous, with constant 1, w.r.t. ∥ · ∥1 (i.e., that the
magnitudes of all first order partial derivatives of f are ≤ 1).
♣ More good news: The nearly dimension independent complexity bounds for mini-
mization over ball and simplex are given by cheap minimization methods!
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Convention: From now on, speaking about optimization problem

min
x∈X

f(x), (∗)

we assume by default that
• X is nonempty closed and bounded convex subset of Euclidean space E (by default,
E = Rn)
• f(x) : X → R is convex and Lipschitz continuous:

∀(x, y ∈ X) : |f(x)− f(y)| ≤ L∥x− y∥ [L <∞]

Note: The property of f to be Lipschitz continuous is independent of the choice of
norm ∥ · ∥ on E; in contrast, the allowed values of the Lipschitz constant L do depend
on ∥ · ∥. In the sequel,

L∥·∥(f) = sup
x̸=y,x,y∈X

|f(x)− f(y)|
∥x− y∥

stands for the best – the smallest – of the Lipschitz constants, taken w.r.t. ∥ · ∥, of a
Lipschitz continuous function f : X → R.
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min
x∈X

f(x), (∗)

♠ Recall that a subgradient f ′(x) of a convex function f : X → R at a point x ∈ X is the
slope of a linear function which underestimates f everywhere on X and coincides with
f at x:

f(y) ≥ f(x) + ⟨y − x, f ′(x)⟩ ∀y ∈ X.

For Lipschitz continuous convex f , a norm ∥ · ∥ on E, and every x ∈ X there exists a
subgradient f ′(x) of f at x satisfying the norm bound

∥f ′(x)∥∗ ≤ L∥·∥(f) (!)[
∥z∥∗ = maxu:∥u∥≤1⟨z, u⟩

]
When x ∈ intX, the above relation holds true for every subgradient of f at x.
Convention: In the sequel, when speaking about First Order oracles for Lipschitz
continuous convex functions f , we always assume that the subgradients f ′(x) reported
by the oracles satisfy (!).
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The simplest of the cheapest – Subgradient Descent
(N. Shor, 1967)

♣ The Subgradient Descent method (SD) for solving a convex program

min
x∈X

f(x) (P )

• X – convex compact set in Rn
• f – Lipschitz continuous on X convex function

is the recurrence

xt+1 = ΠX(xt − γtf
′(xt)) [x1 ∈ X] (SD)

where
• γt > 0 are stepsizes
• ΠX(x) = argminy∈X ∥x− y∥22 is the standard projector on X,
• f ′(x) is a subgradient of f at x:

f(y) ≥ f(x) + (y − x)Tf ′(x) ∀y ∈ X.
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When, why and how SD converges?

xt+1 = ΠX(xt − γtf
′(xt)) (SD)

♣ We start with a simple geometric fact:
(!) Let X ⊂ Rn be a closed convex set, x ∈ Rn, and z = ΠX(x). Then the vector

e = x− z forms an obtuse angle with every vector of the form y − z, y ∈ X:
(x− z)T(y − z) ≤ 0 ∀y ∈ X.

In particular, y ∈ X ⇒ ∥y −ΠX(x)∥22 ≤ ∥y − x∥22 − ∥x−ΠX(x)∥22

x

y

z

In words: When projecting a point x onto a closed convex set X, the squared ∥ · ∥2
distance to any point from X is decreased by at least the squared ∥ · ∥2-distance from
the point x to its projection onto X.
Indeed, when y ∈ X and 0 ≤ t ≤ 1, one has

ϕ(t) = ∥ [ΠX(x) + t(y −ΠX(x))]︸ ︷︷ ︸
yt∈X

−x∥22 ≥ ∥ΠX(x)− x∥22 = ϕ(0),

whence 0 ≤ ϕ′(0) = 2(ΠX(x)− x)T(y −ΠX(x)). Consequently,

∥y − x∥22 = ∥y −ΠX(x)∥22 + ∥ΠX(x)− x∥22 +2(y −ΠX(x))T(ΠX(x)− x) ≥ ∥y −ΠX(x)∥22 + ∥ΠX(x)− x∥22.
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xt+1 = ΠX(xt − γtf
′(xt)) (SD)

♠ By Simple Geometric Fact, for every u ∈ X one has

∥xt+1 − u∥22 = ∥ΠX(xt − γtf ′(xt))− u∥22
≤ ∥xt − γtf ′(xt)− u∥22 = ∥xt − u∥22 − 2γt(xt − u)Tf ′(xt) + γ2t ∥f ′(xt)∥22

and we arrive at

Corollary: For every u ∈ X one has

γt(xt − u)Tf ′(xt) ≤
1

2
∥xt − u∥22︸ ︷︷ ︸

dt

−
1

2
∥xt+1 − u∥22︸ ︷︷ ︸

dt+1

+1
2
γ2t ∥f ′(xt)∥22

Note: Since f is convex, one has (xt − u)Tf ′(xt) ≥ f(xt) − f(u), which combines with
Corollary to yield

γt[f(xt)− f(u)] ≤
1

2
∥xt − u∥22︸ ︷︷ ︸

dt

−
1

2
∥xt+1 − u∥22︸ ︷︷ ︸

dt+1

+1
2
γ2t ∥f ′(xt)∥22
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f∗ = minx∈X f(x) (1)
xt+1 = ΠX(xt − γtf ′(xt)) (2)

γt[f(xt)− f(u)] ≤
1

2
∥xt − u∥22︸ ︷︷ ︸

dt

−
1

2
∥xt+1 − u∥22︸ ︷︷ ︸

dt+1

+1
2
γ2t ∥f ′(xt)∥22 ∀u ∈ X (3)

Summing up inequalities (3) over t = T0, T0 +1, ..., T , we get∑T
t=T0

γt(f(xt)− f(u)) ≤ dT0
− dT+1︸ ︷︷ ︸
≤Θ

+
∑T

t=T0

1
2
γ2t ∥f ′(xt)∥22[

Θ = maxx,y∈X
1
2
∥x− y∥22

]
Setting u = x∗ ≡ argminX f , we arrive at the bound

∀(T, T0, T ≥ T0 ≥ 1) : ϵT ≡ min
t≤T

f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ∥f ′(xt)∥2

2∑T

t=T0
γt
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∀(T, T0, T ≥ T0 ≥ 1) : ϵT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ∥f ′(xt)∥2

2∑T

t=T0
γt

♣ The resulting relation leads to various convergence results.
Example 1: “Divergent Series”. Let γt → 0 as t→ ∞, while

∑
t γt = ∞. Then

lim
T→∞

ϵT = 0.

Proof. Set T0 = 1 and note that∑T
t=1 γ

2
t ∥f ′(xt)∥22∑T
t=1 γt

≤ L2
∥·∥2

(f)

∑T
t=1 γ

2
t∑T

t=1 γt
→ 0, T → ∞.
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f∗ = minx∈X f(x)
⇓

∀(T, T0, T ≥ T0 ≥ 1) : ϵT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ∥f ′(xt)∥2

2∑T

t=T0
γt[

Θ = 1
2
maxx,y∈X ∥x− y∥22

]
Example 2: “Optimal stepsizes”:

γt =

√
2Θ

∥f ′(xt)∥2
√
t
⇒ ϵT ≡ mint≤T f(xt)− f∗ ≤ O(1)L∥·∥2(f)

√
Θ√

T
, T ≥ 1

Proof. Setting T0 =⌋T/2⌊, we get

ϵT ≤
[
Θ+Θ

∑T
t=T0

t−1
] [∑T

t=T0

√
2Θ√

t∥f ′(xt)∥2

]−1
≤
[
Θ+Θ

∑T
t=T0

t−1
] [∑T

t=T0

√
2Θ√

tL∥·∥2(f)

]−1

≤ L∥·∥2
(f)

√
Θ1+O(1)

O(1)
√
T
= O(1)L∥·∥2(f)

√
Θ√

T

[note that with T0 =⌋T/2⌊ we have
∑T

T0
t−1 = O(1) and

∑T
T0

1√
t
= O(1)

√
T ].
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f∗ = minx∈X f(x)

⇒ xt+1 = ΠX(xt − γtf ′(x(t))), γt =
maxx,y∈X ∥x−y∥2√

t∥f ′(xt)∥2

⇒ ϵT ≡ min1≤t≤T f(xt)− f∗ ≤ O(1)

Var∥·∥2,X(f)︷ ︸︸ ︷
L∥·∥2

(f) max
x,y∈X

∥x− y∥2 /
√
T

Good news: We have arrived at efficiency estimate which is dimension-independent,
provided that the “∥ · ∥2-variation” of the objective on the feasible domain

Var∥·∥2,X(f) = L∥·∥2
(f) max

x,y∈X
∥x− y∥2

is fixed. Moreover, when X is a Euclidean ball in Rn, this efficiency estimate “is as good
as an efficiency estimate of a black-box-oriented method can be”, provided that the
dimension is large:

n ≥
(
Var∥·∥2,X(f)/ϵ

)2
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ϵT ≡ min1≤t≤T f(xt)− f∗ ≤ O(1)Var∥·∥2,X(f)/
√
T[

Var∥·∥2,X(f) = L∥·∥2
(f)maxx,y∈X ∥x− y∥2

]
Bad news: Our “dimension-independent” efficiency estimate
• is pretty slow
• is indeed dimension-independent only for problems with “Euclidean geometry” – those
with moderate ∥ · ∥2-variation. As a matter of fact, in some (but not all!) important
applications problems of this type are pretty rare.
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SD as applied to min∥x∥2≤1 ∥Ax− b∥1, A : 50× 50

[red: efficiency estimate; blue: actual error]
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xt+1 = ΠX(xt − γtf
′(x(t)))

♣ An evident drawback of SD is that all information on the objective accumulated so
far is “summarized” in the current iterate, and this “summary” is very incomplete. With
better usage of past information, one arrives at bundle methods which outperform SD
significantly in practice, while preserving the most attractive theoretical property of SD
– dimension-independent and optimal, in favourable circumstances, rate of convergence.
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Bundle-Level method for solving f∗ = minx∈X f(x)

♣ At the beginning of step t of BL, we have at our disposal
— the first-order information {f(xτ), f ′(xτ)}1≤τ<t on f along the previous search points
xτ ∈ X, τ < t;
— current iterate xt ∈ X.
♣ At step t we
— compute f(xt), f ′(xt); this information, along with the past first-order information on
f , provides is with the current model of the objective

ft(x) = max
τ≤t

[f(xτ) + (x− xτ)
Tf ′(xτ)]

This model underestimates the objective and is exact at the points x1, ..., xt;
— define the best found so far value f t = minτ≤t f(xτ) of f
— define the current lower bound ft on f∗ by solving the auxiliary problem

ft = min
x∈X

ft(x) (LPt)

Note: current gap ∆t = f t − ft upper-bounds the inaccuracy of the best found so far
solution;
• compute the current level ℓt = ft + λ∆t (λ ∈ (0,1) is a parameter)
• build a new search point by solving the auxiliary problem

xt+1 = argmin
x

{∥x− xt∥22 : x ∈ X, ft(x) ≤ ℓt} (QPt)

and loop to step t+1.
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t

• blue: the objective f
• ∗: x1, x2, x3
• magenta: current piecewise linear model f3(·) of f
• cyan horizontal lines: t = mini≤3 f(xi) and t = minx f3(x)
• red horizontal line: t = ℓ3
• red circle: new iterate x4
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t

Note: It seems to be more intuitive to “fully trust” in model and take, as the next
iterate, the minimizer of the model or, which is the same, to set the level ℓt equal to ft
rather than to

ℓt = ft + λ∆t ∆t = min
τ≤t

f(xτ)− ft. [λ ∈ (0,1), usually λ = 0.5]

Unfortunately, the resulting Kelley method has disastrously bad theoretical complexity
(and from time to time exhibits disastrously bad actual performance).
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How BL converges?

Claim: For every ϵ, 0 < ϵ < ∆1, the number N of steps before a gap ≤ ϵ is obtained
(i.e., before an ϵ-solution is found) does not exceed the bound

N(ϵ) =
Var2∥·∥2,X

(f)

λ(1− λ)2(2− λ)ϵ2
,

⇒ Inaccuracy after T = 1,2, ... steps is upper-bounded by

C(λ)
Var∥·∥2,X(f)√

T

— the same efficiency estimate as for SD with optimal stepsizes.
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♣ We have seen that Bundle-Level shares the dimension-independent (and optimal in
the “favourable” large-scale case) theoretical complexity bound
For every ϵ > 0, the number of steps before an ϵ-solution to convex program minx∈X f(x)
is found, does not exceed

O(1)
(
Var∥·∥2,X(f)

ϵ

)2
.

♣ There exists quite convincing experimental evidence that Bundle-Level obeys the
optimal in fixed dimension “polynomial time” complexity bound:
For every ϵ ∈ (0,VarX(f) ≡ maxX f −minX f), the number of steps before an ϵ-solution

to convex program minx∈X f(x) with X ⊂ Rn is found, does not exceed n ln
(
VarX(f)

ϵ

)
+1.

♠ Experimental rule: When solving convex program with n variables by BL, every n
steps add new accuracy digit.
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Illustration: minx:∥x∥2≤1 f(x) ≡ ∥Ax− b∥1, dimx = 50 (f(0) = 2.61, f∗ = 0)
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SD, accuracy vs. iteration count. blue: errors; red: efficiency estimate 3
Var∥·∥2,X(f)√

t
;ϵ10000 = 0.084

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

BL, accuracy vs. iteration count. blue: errors; red: efficiency estimate e−t/nVarX(f); ϵ233 < 1.e− 4
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♣ In BL, the number of linear constraints in the auxiliary problems

ft = minx∈X ft(x) (LPt)
xt+1 = argminx

{
∥xt − x∥22 : x ∈ X, ft(x) ≤ ℓt

}
(QPt)

is equal to the size t of the current bundle – the collection of affine forms gτ(x) =
f(xτ) + (x − xτ)Tf ′(xτ) participating in the model ft(·). Thus, the complexity of an
iteration in BL grows with the iteration number. In order to suppress this phenomenon,
one needs a mechanism for shrinking the bundle (and thus – simplifying the models of
f).
♠ The simplest way of shrinking the bundle is to initialize d as ∆1 and to run plain BL
until an iteration t with ∆t ≤ d/2 is met. At such an iteration, we
— shrink the current bundle, keeping in it the minimum number of the forms gτ sufficient
to ensure that

ft ≡ min
x∈X

max
1≤τ≤t

gτ(x) = min
x∈X

max
selected τ

gτ(x)

(this number is at most n),
— reset d as ∆t,
and proceed with plain BL until the gap is again reduced by factor 2, etc.
♣ Computational experience demonstrates that the outlined approach does not slow BL
down, while keeping the size of the bundle below the level of about 2n.
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Stochastic Subgradient Descent (Stochastic Approximation)

♣ Consider the case when solving a convex program

f∗ = min
x∈X

f(x)

[• X ⊂ Rn: convex compact • f : X → R convex and Lipschitz]

no precise first order information is available. Specifically, we have at our disposal

• Stochastic Oracle (SO) for f as follows: at t-th call to the oracle, xt being the input,
the oracle returns

g(xt, ξt) ∈ R, G(xt, ξt) ∈ Rn

as random estimates of f(xt) and f ′(xt), where ξ1, ξ2, ... is a sequence of independent
realizations of a random variable ξ (”oracle’s noise”).
♠ We assume that the SO is unbiased:

E{g(x, ξ)} = f(x), f ′(x) := E{G(x, ξ)} ∈ ∂f(x).

In addition, we assume that

E{∥G(x, ξ)∥22} ≤ L2 <∞ ∀x ∈ X
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Example: Our f is given as expectation:

f(x) =

∫
Ξ
F (x, ξ)dP (ξ),

where F is convex in x and efficiently computable.
When we cannot compute the expectation in a closed analytic form, but can instead
sample from the distribution P , we, under mild regularity assumptions on F , have at our
disposal unbiased Stochastic Oracle

g(x, ξ) = F (x, ξ), G(x, ξ) = F ′
x(x, ξ)
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f∗ = min
x∈X

f(x)

E{g(x, ξ)} = f(x), f ′(x) := E{G(x, ξ)} ∈ ∂f(x),E{∥G(x, ξ)∥22} ≤ L2 <∞ ∀x ∈ X
ΠX(z) = argminu∈X ∥z − u∥22[

∀u ∈ X,x ∈ Rn : ∥ΠX(x)− u∥22 ≤ ∥x− u∥22 − ∥x−ΠX(x)∥22
]

♣ We can solve the problem with Stochastic Subgradient Descent (a.k.a. Stochastic
Approximation) which is completely similar to deterministic Subgradient Descent:

x1 ∈ X;xt+1 = ΠX (xt − γtG(xt, ξt)) ,1 ≤ t ≤ T ;

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Here γt > 0 are deterministic stepsizes, and (deterministic) total number of steps T and
T0 are such that 1 ≤ T0 ≤ T .
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x1 ∈ X;xt+1 = ΠX(xt − γtG(xt, ξt)), 1 ≤ t ≤ N ;

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Fact: For Stochastic Subgradient Descent one has

E{f(xTT0
)− f(x∗)} ≤

Θ+ 1
2

∑T
t=T0

γ2t L
2∑T

t=T0
γt

,

Θ = max
x,y∈X

1
2
∥x− y∥22

that is, we get exactly the same efficiency estimate as in the case of precise First Or-
der oracle, but now – for the expected inaccuracy of the approximate solutions xTT0

–
the weighted sums of the search points we have generated in course of T = 1,2, ... steps.
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x1 ∈ X;xt+1 = ΠX(xt − γtG(xt, ξt)), 1 ≤ t ≤ T ;xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Convergence Analysis of Stochastic Subgradient Descent
♠ Let us carry out convergence analysis of the algorithm. Denoting by x∗ a minimizer
of f over X, we, as always, have

γt⟨G(xt, ξt), xt − x∗⟩ ≤ 1
2
∥xt − x∗∥22 − 1

2
∥xt+1 − x∗∥22 + 1

2
γ2t ∥G(xt, ξt)∥22

⇒
∑T

t=T0
γt⟨G(xt, ξt), xt − x∗⟩ ≤ Θ+ 1

2

∑T
t=T0

γ2t ∥G(xt, ξt)∥22 (∗)

Taking expectations of both sides in (∗) and taking into account that xt is a deterministic
function of ξ1, ..., ξt−1 and the conditional, ξ1, ..., ξt−1 given, expectation of G(xt, ξt) is f ′(xt)
(since ξ1, ξ2, ... are i.i.d.), we get∑T

t=T0

γtE{⟨f ′(xt), xt − x∗⟩} ≤ Θ+
1

2

∑T

t=T0

γ2t L
2,

whence also

E{
∑T

t=T0

γt[f(xt)− f(x∗)]} ≤ Θ+
1

2

∑T

t=T0

γ2t L
2

Setting λt = γt/
∑T

s=T0
γs, T0 ≤ t ≤ T , we get

E

{
T∑

t=T0

λtf(xt)

}
− f(x∗) = E

{
T∑

t=T0

λt[f(xt)− f(x∗)]

}
≤

Θ+ 1
2

∑T
t=T0

γ2t L
2∑T

t=T0
γt
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E
{∑T

t=T0
λtf(xt)

}
− f(x∗) = E

{∑T
t=T0

λt[f(xt)− f(x∗)]
}
≤

Θ+1

2

∑T

t=T0
γ2
t L

2∑T

t=T0
γt

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt =
∑T

t=T 0 λtxt[
λt = γt/

∑T
s=T0

γs

]
By convexity, f(xTT0

) ≤
∑T

t=T0
λtf(xt), whence

E{f(xTT0
)− f(x∗)} = E{f(xTT0

)} − f(x∗) ≤ E
{∑T

t=T0
λtf(xt)

}
− f(x∗) ≤

Θ+ 1
2

∑T
t=T0

γ2t L
2∑T

t=T0
γt

,

as claimed. □
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Stochastic Subgradient Descent (Stochastic Approximation)

♣ Consider the case when solving a convex program

f∗ = min
x∈X

f(x)

[• X ⊂ Rn: convex compact • f : X → R convex and Lipschitz]

no precise first order information is available. Specifically, we have at our disposal

• Stochastic Oracle (SO) for f as follows: at t-th call to the oracle, xt being the input,
the oracle returns

g(xt, ξt) ∈ R, G(xt, ξt) ∈ Rn

as random estimates of f(xt) and f ′(xt), where ξ1, ξ2, ... is a sequence of independent
realizations of a random variable ξ (”oracle’s noise”).
♠ We assume that the SO is unbiased:

E{g(x, ξ)} = f(x), E{G(x, ξ)} ∈ ∂f(x).

In addition, we assume that

E{∥G(x, ξ)∥22} ≤ L2 <∞ ∀x ∈ X
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Example: Our f is given as expectation:

f(x) =

∫
Ξ
F (x, ξ)dP (ξ),

where F is convex in x and efficiently computable.
When we cannot compute the expectation in a closed analytic form, but can instead
sample from the distribution P , we, under mild regularity assumptions on F , have at our
disposal unbiased Stochastic Oracle

g(x, ξ) = F (x, ξ), G(x, ξ) = F ′
x(x, ξ)

15.41



f∗ = min
x∈X

f(x)

E{g(x, ξ)} = f(x),E{G(x, ξ)} ∈ ∂f(x),E{∥G(x, ξ)∥22} ≤ L2 <∞ ∀x ∈ X
Πx(ξ) = argminu∈X ∥ξ − u∥22[

∀u ∈ X,x ∈ Rn : ∥ΠX(x)− u∥22 ≤ ∥x− u∥22 − ∥x−ΠX(x)∥22
]

♣ We can solve the problem with Stochastic Subgradient Descent (a.k.a. Stochastic
Approximation) which is completely similar to deterministic Subgradient Descent:

x1 ∈ X;xt+1 = ΠX (xt − γtG(xt, ξt)) ,1 ≤ t ≤ T ;

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Here γt > 0 are deterministic stepsizes, and (deterministic) total number of steps T and
T0 are such that 1 ≤ T0 ≤ T .
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x1 ∈ X;xt+1 = ΠX(xt − γtG(xt, ξt)), 1 ≤ t ≤ N ;

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Fact: For Stochastic Subgradient Descent one has

E{f(xTT0
)− f(x∗)} ≤ [

∑T
t=T0

γt]−1E{
∑T

t=T0
γt[f(xt)− f∗]} ≤

Θ+ 1
2

∑T
t=T0

γ2t L
2∑T

t=T0
γt

,

Θ = max
x,y∈X

1
2
∥x− y∥22

that is, we get exactly the same efficiency estimate as in the case of precise First Or-
der oracle, but now – for the expected inaccuracy of the approximate solutions xTT0

–
the weighted sums of the search points we have generated in course of T = 1,2, ... steps.
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x1 ∈ X;xt+1 = ΠX(xt − γtG(xt, ξt)), 1 ≤ t ≤ T ;xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt.

Convergence Analysis of Stochastic Subgradient Descent
♠ Let us carry out convergence analysis of the algorithm. Denoting by x∗ a minimizer
of f over X, we, as always, have

γt⟨G(xt, ξt), xt − x∗⟩ ≤ 1
2
∥xt − x∗∥22 − 1

2
∥xt+1 − x∗∥22 + 1

2
γ2t ∥G(xt, ξt)∥22

⇒
∑T

t=T0
γt⟨G(xt, ξt), xt − x∗⟩ ≤ Θ+ 1

2

∑T
t=T0

γ2t ∥G(xt, ξt)∥22 (∗)

Taking expectations of both sides in (∗) and taking into account that xt is a deterministic
function of ξ1, ..., ξt−1, while ξ1, ..., ξT are independent and the conditional, ξ1, ..., ξt−1 given,
expectation of G(xt, ξt) is f ′(xt), we get∑T

t=T0

γtE{⟨f ′(xt), xt − x∗⟩} ≤ Θ+
1

2

∑T

t=T0

γ2t L
2,

whence also

E{
∑T

t=T0

γt[f(xt)− f(x∗)]} ≤ Θ+
1

2

∑T

t=T0

γ2t L
2

Setting λt = γt/
∑T

s=T0
γs, T0 ≤ t ≤ T , we get

E

{
T∑

t=T0

λtf(xt)

}
− f(x∗) = E

{
T∑

t=T0

λt[f(xt)− f(x∗)]

}
≤

Θ+ 1
2

∑T
t=t0

γ2t L
2∑T

t=T0
γt
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E
{∑T

t=T0
λtf(xt)

}
− f(x∗) = E

{∑T
t=T0

λt[f(xt)− f(x∗)]
}
≤

Θ+1

2

∑T

t=t0
γ2
t L

2∑T

t=T0
γt

xTT0
= 1∑T

t=T0
γt

∑T
t=T0

γtxt =
∑T

t=T 0 λtxt[
λt = γt/

∑T
s=T0

γs

]
By convexity, f(xTT0

) ≤
∑T

t=T0
λtf(xt), whence

E{f(xTT0
)− f(x∗)} = E{f(xTT0

)} − f(x∗) ≤ E
{∑T

t=T0
λtf(xt)

}
− f(x∗) ≤

Θ+ 1
2

∑T
t=T0

γ2t L
2∑T

t=T0
γt

,

as claimed. □
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f∗ = min
x∈X

f(x) (∗)

From Gradient to Mirror Descent
♣ Subgradient Descent method and its bundle versions are “intrinsically adjusted” to
problems with Euclidean geometry; this is where the role of the ∥ · ∥2-variation of the
objective

Var∥·∥2,X(f) = L∥·∥2
(f) max

x,x′∈X
∥x− x′∥2

in the efficiency estimate

min
t≤T

f(xt)− f∗ ≤ O(1)
Var∥·∥2,X(f)√

T

comes from.
♣ An extension of SD and its bundle versions onto problems with “nice non-Euclidean
geometry” is offered by the Mirror Descent scheme.

15.46



Mirror Descent – Building Blocks

♣ Building block #1: Distance-Generating Function.
♠ A SD step

x 7→ x+ = ΠX(x− γf ′(x)) (1)

can be viewed as follows: given an iterate x ∈ X, we
1) Compute f ′(x)
2) Perform the prox-step x 7→ x+ = Proxx(γf ′(x))

Proxx(ξ) := argmin
u∈X

[⟨ξ, u⟩+ Vx(u)]︸ ︷︷ ︸
ξ 7→ Proxx(ξ): prox-mapping with prox-center x

Vx(u) = ω(u)− ω(x)− ⟨u− x,∇ω(x)⟩

where

ω(u) =
1

2
∥u∥22 (2)

is a specific “distance-generating function.”
Indeed, with the above ω(·), we have

Vx(u) := 1
2
uTu− xT(u− x)− 1

2
xTx = 1

2
∥u− x∥22

⇓
Proxx(ξ) = argmin

u∈X

[
ξTu+ 1

2
(u− x)T(u− x)

]
= argmin

u∈X

1
2
∥u− (x− ξ)∥22 = Πx(x− ξ)
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Proxx(ξ) = argminu∈X [⟨ξ, u⟩+ Vx(u)]
Vx(u) = ω(u)− ω(x)− ⟨∇ω(x), u− x⟩

♠ The “Main Inequality”

x+ = ΠX(x− γf ′(x)) ⇒ ∀u ∈ X : γ⟨f ′(x), x− u⟩ ≤ 1
2
∥x− u∥22 − 1

2
∥x+ − u∥22 + 1

2
γ2∥f ′(x)∥22

underlying all our convergence and rate-of-convergence results is an immediate corollary
of the following “Magic Inequality:”
(!) With convex and continuously differentiable ω(·) : X → R for all x ∈ X, ξ ∈ Rn

one has:

x+ = Proxx(ξ) ⇒ ∀u ∈ X : ⟨ξ, x+ − u⟩ ≤ Vx(u)− Vx+(u)− Vx(x+)

where Vx(u) = ω(u)− [ω(x) + ⟨u− x,∇ω(x)⟩] is the generated by ω(·) Bregman
distance from u to x, u, x ∈ X.

as applied to ω(u) ≡ 1
2
uTu.
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• Justifying Magic Inequality:

x+ = argminu∈X [⟨ξ, u⟩+ Vx(u)] ⇒ ∀u ∈ X : ⟨ξ −∇ω(x) +∇ω(x+), u− x+⟩ ≥ 0
[optimality conditions]

⇔ ∀u ∈ X : ⟨ξ, x+ − u⟩ ≤ ⟨∇ω(x+)−∇ω(x), u− x+⟩
= [ω(u)− ω(x)− ⟨∇ω(x), u− x⟩]

−[ω(u)− ω(x+)− ⟨∇ω(x+), u− x+⟩]
−[ω(x+)− ω(x)− ⟨∇ω(x), x+ − x]

= Vx(u)− Vx+(u)− Vx(x+)

• Magic Inequality ⇒ Main Inequality: As we know, with ω(u) = 1
2
∥u∥22 we have

ΠX(x− ξ) = Proxx(ξ). Thus,

x+ = ΠX(x− γf ′(x)) ⇒ x+ = Proxx(γf ′(x))
⇒ ∀u ∈ X : ⟨γf ′(x), x+ − u⟩ ≤ Vx(u)− Vx+(u)− Vx(x+)
⇒ ∀u ∈ X : ⟨γf ′(x), x− u⟩ ≤ Vx(u)− Vx+(u) + [⟨γf ′(x), x− x+⟩ − Vx(x+)]︸ ︷︷ ︸

δ

With our ω(·), Vx(x+) = 1
2
∥x− x+∥22, whence

δ = ⟨γf ′(x), x− x+⟩ −
1

2
∥x− x+∥22 ≤

1

2
∥γf ′(x)∥22,

and we arrive at the Main Inequality.
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Distance-Generating Functions

♣ Let ∥ · ∥ be a norm on Rn. A function ω(·) : X → R is called Distance-Generating
Function (DGF) for X compatible with ∥ · ∥, if
— ω(·) : X → R is convex and continuously differentiable
— ω(·) is strongly convex, modulus 1, w.r.t. ∥ · ∥, that is,

∀x, y ∈ X : ⟨∇ω(x)−∇ω(y), x− y⟩ ≥ ∥y − x∥2

or, equivalently,

∀(x ∈ X,u ∈ X) : Vx(u) := ω(u)− ω(x)− ⟨u− x,∇ω(x), ⟩ ≥ 1
2
∥u− x∥2.

Note: For every convex compact set X ⊂ Rn, the function ω(u) = 1
2
∥u∥22 restricted to

X is a DGF compatible with ∥ · ∥ = ∥ · ∥2. For this DGF, Vx(y) = 1
2
∥y − x∥22.
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∀(x ∈ X,u ∈ X) : Vx(u) := ω(u)− ω(x)− ⟨∇ω(x), u− x⟩ ≥ 1
2
∥u− x∥2.

Fact: Whenever ω(·) is a DGF for X compatible with ∥ · ∥,
for x ∈ X, ξ ∈ Rn, the prox-mapping

x+ = Proxx(ξ) := argminu∈X [⟨ξ, u⟩+ Vx(u)]

is well-defined, takes values in X, and ensures that

∀(u ∈ X) : ⟨ξ, x+ − u⟩ ≤ Vx(u)− Vx+(u)− Vx(x+), (1)

whence also

∀(u ∈ X) : ⟨ξ, x− u⟩ ≤ Vx(u)− Vx+(u) +
1

2
∥ξ∥2∗ , (2)

where ∥ · ∥∗ is the norm conjugate to ∥ · ∥:

∥ξ∥∗ = max
x

{⟨ξ, x⟩ : ∥x∥ ≤ 1} .
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Vx(u) = ω(u)− ω(x)− ⟨u− x,∇ω(x)⟩ ≥ 1
2
∥u− x∥2

x+ = Proxx(ξ) := argminu∈X [⟨ξ, u⟩+ Vx(u)]

Claims:

∀(u ∈ X) : ⟨ξ, x+ − u⟩ ≤ Vx(u)− Vx+(u)− Vx(x+) (1)
∀(u ∈ X) : ⟨ξ, x− u⟩ ≤ Vx(u)− Vx+(u) +

1
2
∥ξ∥2∗ (2)

Indeed, as we have seen, (1) follows from optimality conditions as applied to the problem
defining x+. To derive (2) from (1), we need to show that

⟨ξ, x− x+⟩ − Vx(x+) ≤ 1
2
∥ξ∥2∗,

which is immediate due to

⟨ξ, x− x+⟩ ≤ ∥ξ∥∗∥x− x+∥ & Vx(x+) ≥
1

2
∥x− x+∥2.
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♣ Conclusion: Subgradient Descent step

x 7→ x+ = ΠX(x− γf ′(x)) (1)

is nothing but the prox-step

x 7→ x+ = argmin
y∈X

[⟨γf ′(x), y⟩+ Vx(y)]

Vx(y) = ω(y)− [ω(x) + ⟨y − x,∇ω(x)⟩]
(∗)

associated with the specific distance-generating function

ω(u) =
1

2
uTu (2)
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X ∋ x 7→ x+ = argminy∈X [⟨ξ, y⟩+ Vx(y)] (∗)
⇒ ∀(u ∈ X) : ⟨ξ, x− u⟩ ≤ Vx(u)− Vx+(u) +

1
2
∥ξ∥2∗ (2)[

Vx(u) = ω(u)− [⟨u− x,∇ω(x)⟩+ ω(x)]
ω(z) : X → R : continuously differentiable & ⟨∇ω(x)−∇ω(y), x− y⟩ ≥ ∥x− y∥2

]
♣ Building block #2: the potential. Convergence analysis of SD was based on the
ensured by SD step inequality

∀u ∈ X : γ⟨f ′(x), x− u⟩ ≤
1

2
∥x− u∥22 −

1

2
∥x+ − u∥22︸ ︷︷ ︸

= [1
2
xTx− xTu]− [1

2
xT+x+ − xT+u]

= Vx(u)− Vx+(u)

+1
2
∥γf ′(x)∥22

(3)

where Vx stems from ω(·) = 1
2
∥ · ∥22. This inequality states that when ω(·) = 1

2
∥ · ∥22, a SD

iteration x 7→ x+ reduces the “potential” – the Bregman distance
Vx(u) = ω(u)− [ω(x) + ⟨u− x∇ω(x)⟩] = 1

2
(u− x)T(u− x)

from u ∈ X to the iterate by at least γ⟨f ′(x), x− u⟩ −O(γ2).
♠ (2) says that when ω(·) is continuously differentiable and strongly convex, modulus 1
w.r.t. ∥ · ∥, on X:

⟨∇ω(u)−∇ω(v), u− v⟩ ≥ ∥u− v∥2 ∀u, v ∈ X

prox-step x 7→ x+ = argminy∈X [⟨γf ′(x), y⟩+ Vx(y)] ensures inequality similar to (3):

∀u ∈ X : γ⟨f ′(x), x− u⟩ ≤ Vx(u)− Vx+(u) +
1
2
γ2∥f ′(x)∥2∗

[∥ξ∥∗ = maxu {⟨ξ, u⟩ : ∥u∥ ≤ 1}] (!)
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Non-Euclidean SD – Mirror Descent

min
x∈X

f(x) (P )

• X: convex compact set in Euclidean space E
• f : Lipschitz continuous convex function on X
♣ Setup for MD (”Proximal Setup”) is given by
— norm ∥ · ∥ on E
— DGF (Distance-Generating Function) ω(·) : X → R which should be continuously

differentiable and strongly convex, modulus 1 w.r.t. ∥ · ∥, function on X:
⟨∇ω(u)−∇ω(v), u− v⟩ ≥ ∥u− v∥2 ∀u, v ∈ X

♠ ω(·) and ∥ · ∥ define the important parameter — ω-capacity of X
Θ = maxu,v∈X [Vv(u) := ω(u)− ω(v)− ⟨∇ω(v), u− v⟩]

Note: With “Ball setup” ω(u) = 1
2
⟨u, u⟩, ∥u∥ ≡ ∥u∥2 =

√
⟨u, u⟩ one has

Θ = 1
2
maxu,v∈X ∥u− v∥22 .

♣ As applied to (P ), MD generates search points xt according to

x1 ∈ X, xt+1 = Proxxt(γtf
′(xt)) := argmin

y∈X
[⟨γtf ′(xt), y⟩+ Vxt(y)] ,

Vx(y) = ω(y)− [ω(x) + ⟨y − x,∇ω(x)⟩]
(MD)

where γt > 0 are stepsizes.
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xt+1 = Proxxt(γtf
′(xt)) := argmin

y∈X

[
⟨γtf ′(xt), y⟩+ Vxt(y)

]
(MD)

Note:
• With Ball setup, (MD) becomes exactly the SD recurrence

xt+1 = ΠX(xt − γtf ′(xt))
• In order for (MD) to be practical, a step should be easy to implement. Thus, X and
ω(·) should fit each other, meaning that auxiliary problems

min
y∈X

[⟨ζ, y⟩+ ω(y)]

should be easy to solve.
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Why and how MD converges?

{minx∈X f(x), ω(·)} ⇒ xt+1 = argminy∈X [⟨γtf ′(xt), y⟩+ Vxt(y)]
Vx(y) = ω(y)− [ω(x) + ⟨y − x,∇ω(x)⟩]

We have seen that MD step ensures inequality

∀u ∈ X : γt⟨f ′(xt), xt − u⟩ ≤ Vxt(u)− Vxt+1(u) +
1
2
γ2t ∥f ′(xt)∥2∗

It follows that for positive integers T0 ≤ T one has

T∑
t=T0

γt ⟨f ′(xt), xt − u⟩︸ ︷︷ ︸
≥f(xt)−f(u)

≤ VxT0(u)− VxT+1(u) +
1
2

T∑
t=T0

γ2t ∥f ′(xt)∥2∗ ≤ Θ+ 1
2

T∑
t=T0

γ2t ∥f ′(xt)∥2∗[
Θ = maxu,v∈X Vu(v)

] (!)

For MD, relation (!) plays the same crucial role that the inequality∑T

t=T0

γt⟨f ′(xt), xt − u⟩ ≤
1

2
max
x,y∈X

∥x− y∥22 +
1

2

∑T

t=T0

γ2t ∥f ′(xt)∥22

played for SD.
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f∗ = minx∈X f(x)
⇓

xt+1 = argminy∈X [⟨γtf ′(xt)−∇ω(xt), y⟩+ ω(y)]
⇓

∑T
t=T0

γt⟨f ′(xt), xt − u⟩ ≤ Θ+ 1
2

∑T
t=T0

γ2t ∥f ′(xt)∥2∗ (!)

For MD, relation (!) plays the same crucial role as the inequality

T∑
t=T0

γt⟨f ′(xt), xt − u⟩ ≤
1

2
max
x,y∈X

∥x− y∥22 +
1

2

T∑
t=T0

γ2t ∥f ′(xt)∥22

played for SD. Specifically, (!) implies that

ϵT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ∥f ′(xt)∥2

∗∑T

t=T0
γt
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ϵT ≡ mint≤T f(xt)− f∗ ≤
Θ+1

2

∑T

t=T0
γ2
t ∥f ′(xt)∥2

∗∑T

t=T0
γt

As a result,
♣ [Convergence with “divergent series” stepsizes] Whenever 0 < γt → 0 as t → ∞ in
such a way that

∑
t γt = ∞, one has ϵT → 0 as T → ∞

♣ [Optimal stepsize policy] With stepsizes γt =
√
2Θ

∥f ′(xt)∥∗
√
t
, one has

ϵT ≡ min
t≤T

f(xt)− f∗ ≤ O(1)

√
ΘL∥·∥(f)√

T

where L∥·∥(f) is the Lipschitz constant of f w.r.t. the norm ∥ · ∥.
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{f∗ = minx∈X f(x), ω(·) : X → R,Θ = maxu,v∈X [ω(u)− ω(v)− ⟨∇ω(v), u− v⟩]}
⇒ xt+1 = argminy∈X [⟨γtf ′(xt), y⟩+ Vxt(y)] , γt =

√
Θ

∥f ′(xt)∥∗
√
t

⇒ mint≤T f(xt)− f∗ ≤ O(1)
√
ΘL∥·∥(f)√

T

♠ To get the usual SD, one uses
♣ Ball setup ω(u) = 1

2
∥u∥22, ∥ · ∥ = ∥ · ∥2 [X ⊂ {x : ∥x∥2 ≤ R} ⇒ Θ ≤ 1

2
R2]

♠ There are several other important setups:
♣ Simplex setup: ∥ · ∥ = ∥ · ∥1, X ⊂ ∆n = {x ∈ Rn : x ≥ 0,

∑
i xi ≤ 1}

ω(x) = (1+ δ)
∑

i(xi + δ/n) ln(xi + δ/n), δ = 10−16

resulting in

Θ ≤ O(1) ln(n+1)
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♣ ℓ1/ℓ2 setup: X ⊂ Rk1 × Rk2 × ...× Rkn,

ω([x1; ...;xn]) = O(1)
[∑n

i=1 ∥xi∥
πn
2

]2/πn , πn = 1+ 1
n

∥[x1; ...;xn]∥ =
∑

i ∥xi∥2
resulting in

X ⊂ {x : ∥x∥ ≤ R} ⇒ Θ ≤ O(1) ln(n+1)R2

Note:
•When ki = 1 for all i, ∥ · ∥ becomes ∥ · ∥1 and ω(x) becomes strongly convex with
modulus 1, w.r.t. ∥ · ∥1, on the entire Rn.
•When n = 1, ∥ · ∥ becomes ∥ · ∥2, and ω(u) becomes 1

2
∥u∥22

♣ Nuclear norm setup: X ⊂ Rp×q,

ω(x) = O(1)
[∑n

i=1 σ
πn
i (x)

]2/πn[
n = min[p, q], πn = 1+ 1

n
, σi(x) : singular values of x

]
∥x∥ = ∥x∥nuc :=

∑
i σi(x)

resulting in
X ⊂ {x : ∥x∥ ≤ R} ⇒ Θ ≤ O(1) ln(n+1)R2
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f∗ = min
x∈X

f(x) (P )

♣ Let us compare the convergence properties of MD with Simplex setup and SD (i.e.,
MD with Ball setup).
• Observe that in order to apply MD with Simplex setup, X should be a subset of the
standard simplex. We can ensure this requirement by scaling and translating the original
feasible domain. As a result, MD with Simplex setup becomes applicable to an arbitrary
convex problem (P ) with compact feasible domain X, and the efficiency estimate for
the method becomes

ϵT [
Simplex
setup ] = min

t≤T
f(xt)− f∗ ≤ Esimplex(T ) := O(1) ln1/2(n)

Var∥·∥1,X(f)︷ ︸︸ ︷
max
x,y∈X

∥x− y∥1L∥·∥1
(f) /

√
T

(S)
while for SD the efficiency estimate is

ϵT [
Ball
setup ] = min

t≤T
f(xt)− f∗ ≤ Eball(T ) := O(1)

Var∥·∥2,X(f)︷ ︸︸ ︷
max
x,y∈X

∥x− y∥2L∥·∥2
(f) /

√
T (B)

The ratio of the right hand side bounds in the estimates is

Esimplex(T )

Eball(T )
= O(

√
lnn) ·

[
maxx,y∈X ∥x− y∥1
maxx,y∈X ∥x− y∥2

]
︸ ︷︷ ︸

A

·
[
L∥·∥1

(f)

L∥·∥2
(f)

]
︸ ︷︷ ︸

B
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Esimplex(T )

Eball(T )
= O(

√
lnn) ·

[
maxx,y∈X ∥x− y∥1
maxx,y∈X ∥x− y∥2

]
︸ ︷︷ ︸

A

·
[
L∥·∥1

(f)

L∥·∥2
(f)

]
︸ ︷︷ ︸

B

• Small (large) ratio
Esimplex(T )

Eball(T )
means that as far as theoretical accuracy guarantees are

concerned, Simplex setup is much better (worse) than Ball setup.

• The factor O(
√
lnn) is “against” Simplex setup; however, in practice this factor is just

a moderate absolute constant.
• Note that ∥u∥1

∥u∥2
is always ≥ 1 and, depending on x, can be as large as

√
n. Therefore

— factor A is always ≥ 1 (i.e., is “against” Simplex setup). Depending on the geometry
of X, it can be as small as 1 and as large as

√
n

— factor B is always ≤ 1 (i.e., is “in favour” of Simplex setup) and can be as small as
1√
n
. The actual value of B is

L∥·∥1(f)
L∥·∥2(f)

= maxx∈X ∥f ′(x)∥∞

maxx∈X ∥f ′(x)∥2

and depends on the “geometry” of f . For example,
— when all first order partial derivatives of f in X are of the same order (“f is nearly
equally sensitive to all variables”), we have

B = O
(
∥(a,...,a)T∥∞

∥(a,...,a)T∥2

)
= O(n−1/2)

— when just O(1) first order derivatives of f on X are of the same order, and the
remaining derivatives are negligible small (“f is sensitive to just O(1) variables”), we
have

B = O
(
∥(a,0,...,0)T∥∞

∥(a,0,...,0)T∥2

)
= O(1)

♣ Conclusion: The performance ratio χ depends on the geometry of X and f .
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χ =
Esimplex(T )

Eball(T )
= O(

√
lnn) ·

[
maxx,y∈X ∥x− y∥1
maxx,y∈X ∥x− y∥2

]
︸ ︷︷ ︸

A

1 ≤ A ≤
√
n

·
[
L∥·∥1

(f)

L∥·∥2
(f)

]
︸ ︷︷ ︸

B

1 ≥ B ≥ 1/
√
n

Extreme example I: X is a ball. In this case, A =
√
n, and since B ≥ 1√

n
, χ ≥ 1 –

method with Ball setup (i.e., the classical SD) outperforms the method with Simplex
setup by factor which varies from O(

√
lnn) (f is nearly equally sensitive to all variables)

to O(
√
n lnn) (f is sensitive to just O(1) variables).

Extreme example II: X is the unit simplex ∆n. In this case, A = O(1), and since
B ≤ 1 and O(

√
lnn) in practice a moderate absolute constant, χ ≤ O(1) – method

with Simplex setup outperforms the classical SD by factor which varies from O
(√

n
lnn

)
(f is nearly equally sensitive to all variables) to O

(√
1

lnn

)
(f is sensitive to just O(1)

variables).
Conclusion: Flexibility in setup allows to adjust MD, to some extent, to the geometry
of the problem to be solved. Let all flowers blossom!
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Application example:
Positron Emission Tomography Image Reconstruction

♣ The Maximum Likelihood estimate of tracer’s density in PET is

λ∗ = argminλ≥0

{∑n
j=1 pjλj −

∑m
i=1 yi ln(

∑n
j=1 pijλj)

}[
yi ≥ 0 are observations, pij ≥ 0, pj =

∑
i pij

]
The KKT optimality conditions read

λj

(
pj −

∑
i

yi
pij∑
ℓ piℓλℓ

)
= 0 ∀j,

whence, taking sum over j, ∑
j

pjλj = B ≡
∑
i

yi.

Thus, in fact (PET) is the problem of minimizing over a simplex. Passing to the variables
xj = pjB−1λj, we end up with the problem

minx
{
f(x) = −

∑
i yi ln(

∑
j qijxj) : x ∈ ∆n

}[
qij = Bpijp

−1
j

] (PET)
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♣ Illustration: “Hot Spheres” phantom (n = 515,871)

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −4.295 −4.767 −5.079 −5.189 −5.168 −5.230 −5.181 −5.227 −5.189 −5.225

[f∗ ≥ −5.283]

Simplex setup. Progress in accuracy in 10 iterations by factor 21.4
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Simplex setup (left) vs. Ball setup (right) progress in accuracy 21.4 vs. 5.26
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♣ Illustration: Brain clinical data (n = 2,763,635)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itr 1 2 3 4 5 6 7 8 9 10
f(xt) −1.463 −1.848 −2.001 −2.012 −2.015 −2.015 −2.016 −2.016 −2.016 −2.016

[f∗ ≥ −2.050]
Simplex setup. Progress in accuracy in 10 iterations by factor 17.5
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Mirror-Level Algorithm

♣ Same as SD, the general Mirror Descent admits a version with memory – Mirror Level
(ML) algorithm. The setup for ML is similar to the one of MD and is given by a norm
∥ · ∥ on E and a continuously differentiable and strongly convex, modulus 1 w.r.t. ∥ · ∥,
DGF ω(·) : X → R.
♣ At step t of ML, we
— compute f(xt), f ′(xt) and build the current model of f

ft(x) = maxτ≤t[f(xτ) + ⟨f ′(xτ), x− xτ⟩]
which underestimates the objective and is exact at the points x1, ..., xt;
— define the best found so far value of the objective f t = minτ≤t f(xτ)
— define the current lower bound ft on f∗ by solving the auxiliary problem

ft = minx∈X ft(x)
The current gap ∆t = f t − ft is an upper bound on the inaccuracy of the best found so
far approximate solution;
— compute the current level ℓt = ft + λ∆t (λ ∈ (0,1) is a parameter)
— finally, we set

Lt = {x ∈ X : ft(x) ≤ ℓt},

xt+1 = ProxLt

xt (0) := argmin
x∈Lt

[
⟨−∇ω(xt), x⟩+ ω(x)

]
and loop to step t+1.
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♠ With Ball setup,

ProxLt

xt (0) = argmin
x∈Lt

[
−xTt x+

1

2
xTx

]
= argmin

x∈Lt

1

2
∥x− xt∥22.

i.e., the method becomes exactly the BL algorithm.
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Efficiency Estimate for ML

Fact: For every ϵ, 0 < ϵ < ∆1, the number N of steps of ML before a gap ≤ ϵ is
obtained (i.e., before an ϵ-solution is found) does not exceed the bound

N(ϵ) =
4ΘL2

∥·∥(f)

λ(1−λ)2(2−λ)ϵ2 .[
Θ = maxx,y∈X {Vx(y) := ω(y)− ω(x)− ⟨y − x,∇ω(x)⟩}

]
In particular, for ℓ1/ℓ2 and Nuclear Norm setups one has

N(ϵ) = O(lnn)

(
maxx,y∈X ∥x− y∥L∥·∥(f)

)2
λ(1− λ)2(2− λ)ϵ2

.

with ∥ · ∥ and n defined in the descriptions of the setups.
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Mirror Descent Stochastic Approximation

♣ Consider the case when solving a convex program

f∗ = min
x∈X

f(x)

[• X ⊂ Rn: convex compact • f : X → R convex and Lipschitz]

no precise first order information is available. Specifically, we have at our disposal

• Proximal setup for X – norm ∥ · ∥ and DGF ω(·)
• Stochastic Oracle (SO) for f as follows: at t-th call to the oracle, xt being the input,
the oracle returns

g(xt, ξt) ∈ R, G(xt, ξt) ∈ Rn

as random estimates of f(xt) and f ′(xt), where ξ1, ξ2, ... is a sequence of independent
realizations of a random variable ξ (”oracle’s noise”).
♠ We assume that the SO is unbiased:

E{g(x, ξ)} = f(x), E{G(x, ξ)} ∈ ∂f(x).

In addition, we assume that

E{∥G(x, ξ)∥2∗} ≤ L2 <∞ ∀x ∈ X
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Example: Our f is given as expectation:

f(x) =

∫
Ξ
F (x, ξ)dP (ξ),

where F is convex in x and efficiently computable.
When we cannot compute the expectation in a closed analytic form, but can instead
sample from the distribution P , we, under mild regularity assumptions on F , have at our
disposal unbiased Stochastic Oracle

g(x, ξ) = F (x, ξ), G(x, ξ) = F ′
x(x, ξ)
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f∗ = min
x∈X

f(x)

E{g(x, ξ)} = f(x),E{G(x, ξ)} ∈ ∂f(x),E{∥G(x, ξ)∥2∗} ≤ L2 <∞ ∀x ∈ X

Proxx(ξ) = argminu∈X

[
⟨ξ, u⟩+ ω(u)− ω(x)− ⟨u− x,∇ω(x)⟩︸ ︷︷ ︸

Vx(u)

]

♣ We can solve the problem with Mirror Descent Stochastic Approximation which is
completely similar to MD:

x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;

xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Here γt > 0 are deterministic stepsizes, and ∥ · ∥ and the function ω underlying the
prox-mapping are given by Proximal setup.
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x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;

xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Fact: For the MD Stochastic Approximation one has

E{f(xN)− f(x∗)} ≤ [
∑N

t=1γt]
−1E{

∑N
t=1γt[f(xt)− f∗]} ≤

Θ+ 1
2

∑N
t=1γ

2
t L

2∑N
t=1γt

,

Θ = max
x,y∈X

Vx(y)

that is, we get exactly the same efficiency estimate as in the case of precise First Order
oracle, but now – for the expected inaccuracy of the approximate solution xN – the
weighted sum of the search points we have generated in course of N = 1,2, ... steps.

• Remark: Euclidean version

xt+1 = argmin
u∈X

∥[xt − γtG(xt, ξt)]− u∥22

of Mirror Descent Stochastic Approximation is called Stochastic Subgradient Descent
and is extremely popular in today Machine Learning.
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x1 ∈ X;xt+1 = Proxxt(γtG(xt, ξt)),1 ≤ t ≤ N ;xN = 1
γ1+...+γN

∑N
t=1 γtxt.

Convergence Analysis of Mirror Descent Stochastic Approximation
♠ Let us carry out convergence analysis of the algorithm. Denoting by x∗ a minimizer
of f over X, we, as always, have∑N

t=1
γt⟨G(xt, ξt), xt − x∗⟩ ≤ Θ+

1

2

∑N

t=1
γ2t ∥G(xt, ξt)∥2∗

Taking expectations of both sides and taking into account that xt is a deterministic
function of ξ1, ..., ξt−1, while ξ1, ..., ξN are independent, we get∑N

t=1
γtE{⟨f ′(xt), xt − x∗⟩} ≤ Θ+

1

2

∑N

t=1
γ2t L

2,

whence also

E{
∑N

t=1
γt[f(xt)− f(x∗)]} ≤ Θ+

1

2

∑N

t=1
γ2t L

2
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∑N
t=1γtE{f(xt)− f(x∗)} ≤ Θ+ 1

2

∑N
t=1γ

2
t L

2 & xN = 1
γ1+...+γN

∑T
t=1 γtxt

By convexity,

E{f(xN)− f(x∗)} ≤ [
∑N

t=1γt]
−1E{

∑N
t=1γt[f(xt)− f(x∗)]} ≤

Θ+ 1
2

∑N
t=1γ

2
t L

2∑N
t=1γt

,

as claimed. □
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Online Optimization

• Problem: Assume on time horizon 1,2, ..., T you and nature (or adversary) play game
as follows:
— at time t you are at a point xt ∈ X, where X ⊂ Rn is a once for ever fixed convex
compact set.
— at time t the nature/adversary selects a Lipschitz continuous convex function ft(x) :
X → R and enforces you to pay the random amount

ϕt(xt, ξt)

where ξt is random variable, and ϕt, ξt are such that

Eξt {ϕt(x, ξt)} = ft(x), x ∈ X.

Besides this, the nature reports stochastic subgradient Gt(xt, ξt) of ft at xt:

gt(x) := Eξt {Gt(x, ξt)} ∈ ∂ft(xt).

— you are allowed to use all accumulated so far information to select the next point
xt+1 ∈ X, and then the process continues.
Important: The random variables ξ1, ξ2, ..., ξT are mutually independent.
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• Goal: The performance of your policy for selecting x1, ..., xT is the expectation

Eξ1,...,ξT {ϕ1(x1, ξ1) + ϕ2(x2, ξ2) + ...+ ϕT(xT , ξT)}
of your total payment. In Online Optimization, this performance is compared with
the one of “ideal player” who knows the future – the sequence f1, ..., fT , but not the
realization of noices! – in advance, but cannot move - must ensure that x1 = x2 = ... =
xT . Denoting the common value of xt by x, the ideal player will select x by solving the
problem

min
x∈X

Eξ1,...,ξT

{
T∑
t=1

ϕt(x, ξt)

}
= min

x∈X

{
T∑
t=1

ft(x)

}
.

The difference

Regret = Eξ1,...,ξT

{
T∑
t=1

ϕt(xt, ξt)

}
−min

x∈X

{
T∑
t=1

ft(x)

}
is called regret; the goal of Online Minimization is to select the policy for updating xt
which makes the regret as small as possible.
Note: The paradigm of Online Minimization is different from the one of usual opti-
mization even when ft ≡ f is independent of t. With the usual approach, an algorithm
is an offline process; it does not matter how nonoptimal are the search points — the
only thing which matters is how nonoptimal is the resulting approximate solution. In
contrast, in Online Optimization with fixed f , we “pay on the fly,” and what matters is
how good at average, in terms of the objective, are the search points.
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♣ Mirror Descent Regret Minimization. Let us fix Proximal setup for X — a norm
∥ · ∥ on the embedding X linear space E, and a DGF ω(x) : X → R which is continuously
differentiable and strongly convex, modulus 1, w.r.t. ∥ · ∥. As always, we set

Θ = max
u,v∈X

[Vv(u) := ω(u)− ω(v)− ⟨∇ω(v), u− v⟩]

Assumption: Eξt

{
∥Gt(x, ξt)∥2∗

}
≤ L2 ∀(x ∈ X, t ≤ T ).

♠ Consider the recurrence

xt+1 = Proxxt[γGt(xt, ξt)] := argmin
u∈X

[⟨γGt(xt, ξt), y⟩+ Vxt(y)] , t = 1, ..., T.

with fixed stepsize γ > 0.

Let x∗ ∈ Argminx∈X
∑T

t=1 ft(x). By our standard argument, we have

T∑
t=1

γ⟨Gt(xt, ξt), xt − x∗⟩ ≤ Θ+
1

2
γ2

T∑
t=1

∥Gt(xt, ξt)∥2∗ .

Taking expectations and recalling that xt is a deterministic function of ξ1, ..., ξt−1 and
therefore

Eξt{⟨Gt(xt, ξt), xt − x∗⟩} = ⟨f ′t(xt), xt − x∗⟩,

we get
∑T

t=1E {⟨f ′t(xt), xt − x∗⟩} ≤ Θ
γ
+ γTL2

⇒Regret = E
{∑T

t=1[ϕt(xt, ξt)− ft(x∗)]
}
= E

{∑T
t=1[ft(xt)− ft(x∗)]

}
≤ E

{∑T
t=1⟨f ′t(xt), xt − x∗⟩

}
≤

Θ

γ
+
γ

2
TL2
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E

{∑T

t=1
[ft(xt)− ft(x∗)]

}
≤

Θ

γ
+
γ

2
TL2

Setting γ =
√
2Θ

L
√
T
, we get for the policy in question

1

T
Regret ≤

√
2ΘL√
T

Thus, with the MD policy the average regret per step Regret
T

for large T can be made as

small as O(1/
√
T ).

Note: In the above construction, the stepsize γ is the same for all t ≤ T and is “tuned”
to the time horizon T we are interested in. With appropriate modification, the stepsize
can be made varying in time in such a way that the average, per unit time, regrets on
time horizons T = 1,2, ... will go to zero as T → ∞ at the rate O(1/

√
T ).
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Application Example: Prediction for Deterministic Boolean Sequence
[for in-depth treatment, see A. Rakhlin, K. Sridharan, Statistical Learning and Sequential Prediction,
http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf]

Situation: We observe a deterministic Boolean sequence ξN = (ξ1, ..., ξN), ξt ∈ {0,1} on
time horizon 1, ..., N .
Goal: To build predictions ξ̂t which, given ξt−1 = (ξ1, ...ξt−1), predict (perhaps in ran-
domized fashion) ξt, t = 1, ..., N .
Performance of a collection Ξ = {ξ̂t, t ≤ N}, of predictions is quantified by average over
time expected prediction error

Err[Ξ] = E

{
1

N

N∑
t=1

χ(ξ̂t, ξt)

} [
χ(ξ, ξ′) =

{
0, ξ = ξ′

1, ξ ̸= ξ′

]
the expectation being taken over the random “driving factors,” if any, influencing ξ̂t
(these factors are present when the predictions indeed are randomized).

Note: We make no assumptions on the nature of Boolean sequence ξN !!
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Basic Predictor: We allow for ξ̂t to be randomized: the conditional, given what hap-
pened on time horizon 1, ..., t − 1, probability for ξ̂t to take value 1 is xt ∈ [0,1]. Note
that

E|t−1

{
χ(ξ̂t, ξt)

}
= xt[1− ξt] + (1− xt)ξt = ft(xt) := |xt − ξt| (!)

where E|s is the conditional, given realization of driving factors influencing ξ̂1, ..., ξ̂s,
expectation.
• To update xt, we use “online subgradient descent,” – the recurrence

xt+1 = Π∆[xt − γtf
′
t(xt)], f

′
t(x) =

 −1, x < ξt
0, x = ξt
1, x > ξt

where Π∆(s) =

 0, s < 0
s, 0 ≤ s ≤ 1
1, s > 1

is the metric projection on ∆ = [0,1], x1 ∈ [0,1] is once

for ever fixed, and γt are deterministic positive stepsizes satisfying γ1 ≥ γ2 ≥ ... ≥ γN .

Note: The resulting sequence x1, ..., xN is deterministic! ⇒Err[Ξ] = 1
N

∑N
t=1 ft(xt) by

(!).
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Performance Analysis: Let us fix x̄ ∈ [0,1] and set dt = 1
2
(xt − x̄)2. By the standard

argument, noting that ft(x) is convex, we have

γtf ′t(xt)(xt − x̄) ≤ dt − dt+1 + 1
2
γ2t

⇒ ft(xt)− ft(x̄) ≤ f ′t(xt)(xt − x̄) ≤ dt−dt+1

γt
+ 1

2
γt

⇒
∑N

t=1[ft(xt)− ft(x̄)] ≤
∑N

t=1
dt−dt+1

γt
+ 1

2

∑N
t=1 γt

= 1
2

∑N
t=1 γt +

d1

γ1
+ d2

[
1

γ2
−

1

γ1

]
︸ ︷︷ ︸

≥0

+d3

[
1

γ3
−

1

γ2

]
︸ ︷︷ ︸

≥0

+...+ dN

[
1

γN
−

1

γN−1

]
︸ ︷︷ ︸

≥0

− 1
γN
dN+1

≤ 1
2

∑N
t=1 γt +

1
2

[
1
γ1
+
[
1
γ2
− 1

γ1

]
+
[
1
γ3
− 1

γ2

]
+ ...+

[
1
γN

− 1
γN−1

]]
[since 0 ≤ dt ≤ 1/2]

= 1
2

∑N
t=1 γt +

1
2

1
γN

⇒ Err[Ξ] = 1
N

∑N
t=1 ft(xt) ≤ 1

N

∑n
t=1 ft(x̄) +

1
2N

[∑N
t=1 γt +

1
γN

]
• Let us set γt = α√

t
with some α > 0. Then

∑N
t=1 γt ≤ α

∫ N
0 s−1/2ds = 2αN1/2 and

1
γN

= α−1
√
N , and we get Err[Ξ] ≤ 1

N

∑n
t=1 ft(x̄)+

1
2

[
2α+ 1

α

]
N−1/2, which with α = 1/

√
2

yields

Err[Ξ] ≤
1

N

N∑
t=1

|x̄− ξt|+
√

2/N. (#)
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Err[Ξ] ≤
1

N

n∑
t=1

|x̄− ξt|︸ ︷︷ ︸
E(x̄)

+
√

2/N. (#)

♠ Now let λ be the fraction of ones in ξN . Note that E(1) = 1 − λ and E(0) = λ, so
that (#) (which holds true for every x̄ ∈ [0,1]) implies that

Err[Ξ] ≤ min[λ,1− λ] +
√

2/N. (!)

Conclusions: • When N is large, upper bound (!) on average, over time horizon 1, ..., N ,
expected prediction error is close to min[λ,1− λ]. The latter quantity always is ≤ 1/2.
• Bound 1/2 is not interesting: we can arrive at Err[Ξ] = 1/2 when “predicting” by
flipping a perfect coin, not using observations at all.
• However: In the “asymmetric case” min[λ,1 − λ] < 1/2, we get a nontrivial upper
bound on the average expected prediction error – and this is with no assumptions on
ξN except for asymmetry!
♠ Fact: When all we know about ξN is that the fraction of ones in the sequence is
a given λ, then, for every ϵ > 0, no prediction can guarantee average expected error
≤ min[λ,1− λ]− ϵ, provided that N is large enough!
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Mirror Descent
for

Convex-Concave Saddle Point Problems

♣ Convex-Concave Saddle Point problem is

SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

where:
• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• ϕ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♣ Solutions to (SP) are, by definition, saddle points of ϕ on X × Y , that is, points
(x∗, y∗) ∈ X × Y where ϕ achieves its minimum in x ∈ X and its maximum in y ∈ Y :

∀(x ∈ X, y ∈ Y ) : ϕ(x, y∗)≥ϕ(x∗, y∗)≥ϕ(x∗, y).
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SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

♠ Fact: (SP) gives rise to two optimization problems:

(P ) : Opt(P ) = minx∈X

[
ϕ(x) := maxy∈Y ϕ(x, y)

]
= minx∈Xmaxy∈Y ϕ(x, y)

(D) : Opt(D) = maxy∈Y

[
ϕ(y) := minx∈X ϕ(x, y)

]
= maxy∈Yminx∈Xϕ(x, y)

• We always have Öpt(P ) ≥ Opt(D) [“weak duality”]
• ϕ has saddle points on X × Y iff both (P) and (D) are solvable with equal optimal
values: Opt(P ) = Opt(D), that is,

min
x∈X

max
y∈Y

ϕ(x, y) = max
y∈Y

min
x∈X

ϕ(x, y)

[“strong duality”]. In this case the saddle points are exactly the pairs (x ∈ ArgminX ϕ, y ∈
ArgmaxY ϕ).
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(P ) : Opt(P ) = minx∈X

[
ϕ(x) := maxy∈Y ϕ(x, y)

]
= minx∈Xmaxy∈Y ϕ(x, y)

(D) : Opt(D) = maxy∈Y

[
ϕ(y) := minx∈Xϕ(x, y)

]
= maxy∈Yminx∈Xϕ(x, y)

• Under our standing assumption (X,Y are nonempty convex compacts, ϕ is Lipschitz
continuous convex-concave), both (P) and (D) are solvable with equal optimal values,
that is, saddle points do exist.

♠ It is natural to quantify the (in)accuracy of an approximate saddle point (x, y) ∈ Z :=
X × Y by its saddle point residual

ϵSad(x, y) = ϕ(x)− ϕ(y) = [ϕ(x)−Opt(P )] + [Opt(D)− ϕ(y)]

This residual always is nonnegative and is zero iff (x, y) is a saddle point of ϕ.
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♣ Vector field associated with a saddle point problem. Under our standing assump-
tions, we can associate with a convex-concave saddle point problem

min
x∈X

max
y∈Y

ϕ(x, y)

vector field

F (z = [x; y]) = [Fx(x, y);Fy(x, y)] : Z := X × Y → Ez := Ex × Ey

with

Fx(x, y) ∈ ∂xϕ(x, y), Fy(x, y) ∈ ∂y[−ϕ(x, y)]
♠ Assumption: From now on, we assume that the vector field F : Z → Ez is bounded.
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F (z = [x; y]) = [Fx(x, y);Fy(x, y)] : Z := X × Y → Ez := Ex × Ey
Fx(x, y) ∈ ∂xϕ(x, y), Fy(x, y) ∈ ∂y[−ϕ(x, y)]

♠ Facts:
• F is monotone:

∀(z, z′ ∈ Z := X × Y ) : ⟨F (z)− F (z′), z − z′⟩ ≥ 0

Indeed, setting z = (x, y), z′ = (x′, y′), we have

⟨F (z)− F (z′), z − z′⟩ = ⟨Fx(x, y)− Fx(x′, y′), x− x′⟩+ ⟨Fy(x, y)− Fy(x′, y′), y − y′⟩
≥ [ϕ(x, y)− ϕ(x′, y)] + [ϕ(x′, y′)− ϕ(x, y′)] + [(−ϕ)(x, y)− (−ϕ)(x, y′)] + [(−ϕ)(x′, y′)− (−ϕ)(x′, y)]
= 0

• Saddle points of ϕ on Z = X × Y are exactly the points z∗ ∈ Z such that

⟨F (z), z − z∗⟩ ≥ 0 ∀z ∈ Z.

♠ Note: When Y is a singleton, convex-concave saddle point problem minx∈X maxy∈Y ϕ(x, y)
becomes the problem of minimizing a convex function over X. “Convex minimiza-
tion” versions of the above facts read: For a Lipschitz continuous convex function
f(x) : X → R
• The field f ′(·) of subgradients of f is monotone: ⟨f ′(x)− f ′(y), x− y⟩ ≥ 0, x, y ∈ X
• Minimizers of f on X are exactly the points x∗ ∈ X such that ⟨f ′(x), x−x∗⟩ ≥ 0 ∀x ∈ X.
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SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• ϕ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♣ Problems (SP) arise in a wide spectrum of applications. Our major interest in these
problems stems from the fact that numerous ”complex” and nonsmooth convex func-
tions f(x) admit saddle point representation:

f(x) = max
y∈Y

ϕ(x, y)

with convex-concave and smooth functions ϕ, which allows to reduce a nonsmooth
minimization problem

min
x∈X

f(x)

to a smooth convex-concave saddle point problem

min
x∈X

max
y∈Y

ϕ(x, y)

and this “gain in smoothness” possesses dramatic potential as far as computationally
cheap First Order methods are concerned.
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Examples of saddle point reformulations:
• Maximum of smooth convex functions:

f(x) := max1≤i≤m fi(x) = maxy∈Y [ϕ(x, y) :=
∑

iyifi(x)]
[Y = {y ≥ 0,

∑
iyi = 1}]

When fi are smooth, so is ϕ; when fi are linear, ϕ is just bilinear.
• Norm-type functions:

∥Ax− b∥ = max
y:∥y∥∗≤1

[ϕ(x, y) = ⟨y,Ax− b⟩]

• Maximal eigenvalue of a symmetric matrix:

λmax(x) = max
y∈Y

[ϕ(x, y) = Tr(xy)], Y = {y ⪰ 0 : Tr(y) = 1}

Note: Smooth/bilinear saddle point representations admit fully algorithmic calculus.
For example,

General case:
fi(x) = maxyi∈Yi ϕi(x, yi), λi ≥ 0

⇒
∑

iλifi(x) = max
y=[y1;...;yk]∈Y1×...×Yk

[∑
i
λiϕi(x, yi)

]
︸ ︷︷ ︸

ϕ(x,[y1;...;yk])

Bilinear case:
fi(x) = maxyi∈Yi[⟨ai, x⟩+ ⟨bi, yi⟩+ ⟨x,Aiyi⟩], λi ≥ 0

⇒
∑

iλifi(x) = max
y=[y1;...;yk]∈Y1×...×Yk

[∑
i⟨λiai, x⟩+ ⟨λibi, yi⟩+ ⟨x, λiAiyi⟩

]
= max

y=[y1;...;yk]∈Y1×...×Yk

[
⟨
∑

iλiai, x⟩+ ⟨[λ1b1; ...;λkbk], y⟩+ ⟨x, [λ1A1, ..., λkAk]y⟩
]
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SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

⇒ F (z = [x; y]) = [Fx(x, y) ∈ ∂xϕ(x, y);Fy(x, y) ∈ ∂y[−ϕ(x, y)]].
• X ⊂ Ex, Y ⊂ Ey are nonempty closed and bounded convex sets in Euclidean spaces
Ex, Ey
• ϕ(x, y) : Z := X × Y → R is the cost function which is Lipschitz continuous, convex in
x ∈ X and concave in y ∈ Y .
♠ (SP) can be solved by MD. Indeed, let ∥ · ∥ be a norm on E = Ex × Ey and ω(·) be a
DGF for Z = X × Y which is compatible with ∥ · ∥. Consider the process

z1 ∈ Z; zt+1 = Proxzt(γtF (zt)); zt =
[∑t

τ=1γτ
]−1∑t

τ=1γτzτ
[zτ = [xτ ; yτ ]]

♣ Fact I: One has

ϵSad(x
t, yt) ≤

Θ+ 1
2

∑T
τ=1γ

2
τ ∥F (zτ)∥2∗∑T

τ=1γτ
, [Θ = maxz,z′∈Z Vz(z′)]

with all consequences related to the rate of convergence, stepsize policies, etc.
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Mirror-Prox Scheme

Saddle Point Mirror Descent for min
x∈X

max
y∈Y

ϕ(x, y):

z1 ∈ Z = X × Y ; zt+1 = Proxzt(γtF (zt)); zN = [γ1 + ...+ γN ]−1
∑N

t=1 γtzt

♣ Consider the extragradient Saddle Point MD:

z1 ∈ Z = X × Y ; zt 7→ wt = Proxzt(γtF (zt));wt 7→ zt+1 = Proxzt(γtF (wt));

zt =
[∑t

τ=1γτ
]−1∑t

τ=1
γτwτ

♣ Fact II: Let F be Lipschitz:
∥F (z)− F (z′)∥∗ ≤ L∥z − z′∥.

Then the constant stepsizes
γt ≡ γ = 1

L
ensure that

ϵSad(z
t) ≤

Θ

tγ
=

ΘL

t
, t = 1,2, ... [1/t rate!!!]
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♣ Conclusion: When the objective of a convex optimization problem

Opt = min
x∈X

f(x)

with convex compact X admits saddle point representation:

f(x) = max
y∈Y

ϕ(x, y)

with convex-concave smooth (with Lipschitz continuous gradient) ϕ and convex compact
Y , we can solve the problem at the rate O(1/t), provided we can equip X and Y with
“computationally cheap” proximal setup (i.e., with norms and DGF’s resulting in easy-
to-compute prox-mappings).
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Stochastic Saddle Point Mirror Descent
and

Acceleration by Randomization

♠ Consider a convex-concave saddle point problem

SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

⇒ F (z = (x, y)) = [Fx(x, y) ∈ ∂xϕ(x, y);Fy(x, y) ∈ ∂y[−ϕ(x, y)]]
• X ⊂ Ex, Y ⊂ Ey: nonempty closed and bounded convex sets in Euclidean spaces Ex, Ey
• ϕ : X × Y → R: Lipschitz continuous and convex-concave

♠ Z = X × Y is equipped with Proximal setup – a norm ∥ · ∥ on E = Ex × Ey and
a compatible with this norm DGF ω : Z → R.
♠ Assume that the field F is given by Stochastic Oracle:

When calling the oracle at step t, the query point being zt = (xt, yt), the oracle
returns a random estimate G(zt, ξt) of F (zt) which is unbiased and “stochasti-
cally bounded”:

∀z ∈ Z = X × Y : E{G(z, ξ)} = F (z) & E{∥G(z, ξ)∥2∗} ≤ L2.

As always, ξ1, ξ2, ... are independent realizations of a random variable ξ.
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SV = min
x∈X

max
y∈Y

ϕ(x, y) (SP)

F (x, y) = [Fx(x, y) ∈ ∂xϕ(x, y);Fy(x, y) ∈ ∂y[−ϕ(x, y)]]
G(z, ξ) : Eξ{G(z, ξ)} = F (z) & Eξ{∥G(z, ξ)∥2∗} ≤ L2 ∀z = [x; y] ∈ Z = X × Y

♠ Stochastic Saddle Point Mirror Descent for (SP) is the recurrence

z1 ∈ Z; zt+1 = Proxzt(γtG(zt, ξt)); z
t =

[∑t

τ=1
γτ

]−1∑T

τ=1
γτzτ . [γτ > 0]

Theorem: [Lecture Notes, Theorem 5.3.6] For the above recurrence one has

E {ϵSad(zt)} ≤
7

2
·
2Θ+ L2

∑t
τ=1γ

2
τ∑t

τ=1γτ
.[

Θ = maxu,v∈Z {Vu(v) := ω(v)− ω(u)− ⟨v − u,∇ω(u)⟩}
]

In particular, given a number N of iterations and setting

γt =

√
2Θ

L
√
N
, 1 ≤ t ≤ N,

we ensure that

E{ϵSad(zN)} ≤
7
√
2ΘL√
N

.

Note: Similar results hold true for Mirror Prox.
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♣ Application: Matrix Game. Matrix Game problem is as follows:

SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
Interpretation: Two players are playing an antagonistic game; the first selects a j ∈
{1, ..., n}, the second selects an i ∈ {1, ...,m}. The loss of the first player (i.e., the profit
of the second player) is Aij, where A is a given m× n matrix. Naturally, the first player
wants to reduce his losses, and the second player wants to increase his profit.
• When players make their choices simultaneously, there is no natural definition of
“equilibrium,” unless the matrix has a “saddle point” – some entry Ai∗,j∗ is minimal in
its column and is maximal in its row.
• In the general case, the concept of a solution to the game, going back to von Neumann
and Morgenstern, is to look what happens when the players repeat the matrix game many
times, drawing their choices at random independently of each other and across the time.
Denoting by x ∈ ∆n the probability distribution from which the first player draws his
choices, and by y ∈ ∆m similar distribution for the second player, the expected loss of
the first player (expected profit of the second player) will be

yTAx

Thus, (MG) can be thought of as the problem of finding the best randomized policies
of the players (called their mixed strategies); if both players are interested in their long
run losses and profits, sticking to the mixed strategies given by a saddle point of the
bilinear (and thus convex-concave) game (MG) will be optimal policies for every one of
them.
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SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
(MG) is just a primal-dual pair of LP programs:

Opt(P ) = minx∈∆n
maxiRowT

i [A]x
Opt(D) = maxy∈∆m

minj ColTj [A]y

where RowT
i [A] is i-th row, and Colj[A] is j-th column in A.

⇒ (MG) can be solved by interior point LP methods.
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SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
♠ In the large-scale case, (MG) can be solved by Mirror Prox; with appropriate setup,
MP yields the efficiency estimate

ϵSad(x
N , yN) ≤ O(1)

√
ln(n) ln(m)max

i,j
|Aij|/N

The complexity of a step is O(m+n) plus the complexity of two matrix-vector multipli-
cations:

∆n ∋ x 7→ Ax, ∆m ∋ y 7→ ATy

needed to compute the associated with (MG) vector field

F (x, y) =

[
AT

−A

] [
x
y

]
.

When A is a general-type dense matrix, the arithmetic complexity of finding an ϵ-solution
to the problem is therefore

Cdeterm(ϵ) = O(1)
√

ln(m) ln(n)mn
maxi,j |Aij|

ϵ
flop.

Can we do better?
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♣ Observation: Computing matrix-vector multiplication
Rp ∋ u 7→ Bu ∈ Rq

is easy to randomize:
— the vector v = abs[u]/∥u∥1 (abs acts coordinatewise) is a probabilistic vector (non-
negative entries summing up to 1). Treating v as a probability distribution on {1,2, ..., p},
we draw at random an index ȷ from this distribution and return

η = ∥u∥1sign(uȷ)Colȷ(B),

thus ensuring that E{η} = Bu.
— generating a realization of η is cheap:
— drawing ȷ costs O(p) flop: in O(p) flop one computes the “cumulative distribution”

Uj = ∥u∥−1
1

∑
k<j|uk|, 1 ≤ j ≤ p,

of the probabilistic vector, generates ζ ∼ Uniform[0,1] and needs O(ln(p)) comparisons
to find by Bisection ȷ such that

Uȷ−1 < ζ ≤ Uȷ

— after ȷ is generated, computing η takes just O(q) flop
⇒ arithmetic cost of computing η is O(1)(p+ q)

• Whatever be a norm ∥ · ∥, the noise of our oracle is under control:

∥η∥ ≤ ∥u∥1max
j

∥Colj[B]∥.

The situation is especially nice when ∥u∥1 can be bounded in advance.
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SV = min
x∈∆n

max
y∈∆m

yTAx (MG)[
∆p = {u ∈ Rp : u ≥ 0,

∑
iui = 1}

]
⇒ F (x, y) =

[
AT

−A

] [
x
y

]
♠ Applying the above approach to (MG), we get a cheap randomized oracle for F ; a call
to this oracle costs just O(m+ n) flop, vs. the cost O(mn) of the precise computation
of F .
⇒Utilizing the cheap stochastic oracle in MD, we get an algorithm for solving (MG)
which ensures

E
{
ϵSad(x

N , yN)
}
≤ O(1)

√
ln(m) ln(n)

(
maxi,j |Aij|√

N

)
,

with O(m+ n) flop per step.
⇒For every ϵ > 0, δ ∈ (0,1), one can build in (1 − δ)-reliable fashion an ϵ-solution to
(MG) at the cost of

Crand(ϵ) = C(δ) ln(n) ln(m)(m+ n)/χ2 flop
[χ = ϵ/maxi,j |Aij|: relative accuracy]

which for fixed δ, χ and large m,n is by orders of magnitude better than the best known
“deterministic cost”

Cdeterm(ϵ) = O(1) ·
√

ln(m) ln(n)mn/χ flop.

of ϵ-solution to (MG).
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Crand(ϵ) = C(δ) ln(n) ln(m)(m+ n)/χ2 flop
[χ = ϵ/maxi,j |Aij|: relative accuracy]

Note: Our algorithm exhibits sublinear time behavior: for fixed χ and large m,n, reliable
design of ϵ-solution requires inspection of a negligibly small, going to 0 as m,n grow,
randomly selected fraction of the data.
An “ad hoc” algorithm with this property (in retrospect, pretty similar to Stochastic
MD Approximation) was discovered in 1995 by Grigoriadis and Khachiyan.
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♣ Illustration: There are N houses in a city, i-th with wealth wi. Every evening, Burglar
selects a house i to be attacked, and Policeman selects his location at a house j. When
the burglary starts, the probability for Policeman to react to alarm and to prevent the
burglary is exp{−θd(i, j)}, where d(i, j) is the distance between locations i and j, so that
the expected profit of Burglar is Aij = wi[1− exp{−θd(i, j)}]. Our goal is to solve in
mixed strategies the resulting game

max
y∈∆N

min
x∈∆N

yTAx.

♠ Assuming an n×n equidistant grid of houses with wealth decreasing from the downtown
to outskirts, the resulting (N := n2)×N matrix game was solved by the state-of-the-art
commercial LP Interior Point Method (IPM) mosekopt, by the Deterministic Mirror Prox
and by the randomized MD seeking ϵSad < 0.001, with CPU limit of 5,300 sec. Here are
the results:

IPM DMP RMD
N Steps CPU Gap Steps CPU Gap Steps CPU Gap

1600 21 120 6.0e-9 78 6 1.0e-3 10556 264 1.0e-3
6400 21 6930 1.1e-8 80 31 1.0e-3 10408 796 1.0e-3
14400 not tested 95 171 1.0e-3 9422 1584 1.0e-3
40000 out of memory 15 5533 0.022 10216 4931 1.0e-3

Policeman vs. Burglar, N houses
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Smooth Convex Minimization:
Nesterov’s Fast Gradient Method

♣ Problem of interest: Composite minimization

Opt = min
x∈X

{ϕ(x) = Ψ(x) + f(x)}
• X: closed convex nonempty subset in Euclidean space E

(X,E) is equipped with proximal setup (ω(·), ∥ · ∥)
• Ψ : X → R: convex and continuous
• f : X → R: represented by FO oracle convex function

with Lipschitz continuous gradient:
∀x, y ∈ X : ∥∇f(x)−∇f(y)∥∗ ≤ Lf∥x− y∥

♠ Main Assumption: We are able to compute composite prox-mappings, i.e., solve
auxiliary problems

min
x∈X

{ω(x) + ⟨h, x⟩+αΨ(x)} [α ≥ 0]
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♡ Example: LASSO problem

minx∈X
{ Ψ(x)︷ ︸︸ ︷
λ∥x∥E+

f(x)︷ ︸︸ ︷
1

2
∥A(x)− b∥22

}

• ∥ · ∥E:


(a) block ℓ1/ℓ2 norm

∑n
j=1 ∥xj∥2 on

E = Rk1 × ...× Rkn (ℓ1 case)
(b) nuclear norm on the space E of block

diagonal matrices of a given block
diagonal structure (nuclear norm case)

• A(·) : E → Rm: linear mapping
• X: either the unit ∥ · ∥E-ball, or the entire E

♡ For properly chosen proximal setup, Main Assumption is satisfied: computing com-
posite prox mapping

min
x∈X

{ω(x) + ⟨h, x⟩+αΨ(x)} [α ≥ 0]

takes O(dimE) a.o. in the case of (a) and reduces to computing singular value decom-
position of a matrix from E in the case of (b).
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Example: ∥ · ∥E is ∥ · ∥1 norm on Rn (“sparse recovery”).
• With Ball setup ∥ · ∥ = ∥ · ∥2, ω(·) = 1

2
∥ · ∥22 computing composite prox-mapping reduces

to solving the problem

minx

{∑
i

[hixi + β|xi|+
1

2
x2i ] : x ∈ X

}
[β ≥ 0]

The problem is trivial when X = Rn or X is a box a ≤ x ≤ b. When X is the unit
∥ · ∥p-ball, 1 ≤ p <∞, the problem still is easy – it reduces to one-dimensional Lagrange
dual problem

max
λ≥0

[
L(λ) := min

x∈Rn

∑
i

[hixi + β|xi|+
1

2
x2i + λ|xi|p]− λ︸ ︷︷ ︸

easy to compute

]

• When X = E or X = {x ∈ E : ∥x∥E ≤ 1}, computing composite prox-mapping remains
easy when the Ball proximal setup is replaced with ℓ1/ℓ2 one.
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Nesterov’s Fast Gradient algorithm for Composite Minimization

♣ Problem:

Opt = min
x∈X⊂E

{ϕ(x) := Ψ(x) + f(x)}
• Ψ, f : convex and
∀x, y ∈ X : ∥∇f(x)−∇f(y)∥∗ ≤ Lf∥x− y∥

(CP )

♠ Assumptions: Lf is known and (CP) is solvable with an optimal solution x∗.
♠ The algorithm is described in terms of proximal setup (ω(·), ∥ · ∥) for X and auxiliary
sequence

{Lt ∈ (0, Lf ]}∞t=0
which can be adjusted on-line.
Recall that DGF ω defines Bregman distance

Vx(y) = ω(y)− ω(x)− ⟨∇ω(x), y − x⟩ [x, y ∈ X]
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Opt = min
x∈X⊂E

{ϕ(x) := Ψ(x) + f(x)}

♣ Algorithm:
♠ Initialization: Set

A0 = 0, y0 = xω = argminX ω, ψ0(x) = Vxω(x)
and select y+0 ∈ X such that ϕ(y+0 ) ≤ ϕ(y0).

♠ Step t = 0,1,2, ...: Given ψt(·) = ω(·) + αΨ(·)+ <affine form> [α ≥ 0], y+t ∈ X,
At ∈ R+, and Lt, 0 < Lt ≤ Lf ,
• Compute zt = argmin

x∈X
ψt(x) (reduces to computing composite prox-mapping)

• Find the positive root at+1 of the equation Lta2t+1 = At + at+1 and set
At+1 =At + at+1, τt = at+1/At+1 ∈ (0,1]

• Set xt+1 =τtzt + (1− τt)y
+
t and compute f(xt+1), ∇f(xt+1)

• Compute x̂t+1 = argmin
x∈X

{
⟨∇f(xt+1), x⟩+Ψ(x) + 1

at+1
Vzt(x)

}
(reduces to computing

composite prox-mapping)
• Set

yt+1 = τtx̂t+1 + (1− τt)y
+
t

ψt+1(x) = ψt(x) + at+1 [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+Ψ(x)]

and select somehow y+t+1 ∈ X such that ϕ(y+t+1) ≤ ϕ(yt+1).
• Finally, select Lt+1 ∈ (0, Lf ].

Step t is completed; go to step t+1.
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♣ Theorem [Yu. Nesterov ’83, ’07] Assume that the sequence {Lt ∈ (0, Lf ]} is such
that

Vzt(x̂t+1)
At+1

+ ⟨∇f(xt+1), yt+1 − xt+1⟩+ f(xt+1) ≥ f(yt+1)

(this for sure is the case when Lt ≡ Lf). Then

ϕ(y+t )−Opt ≤ A−1
t Vxω(x∗) ≤

4Lf
t2

Vxω(x∗), t = 1,2, ...
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♠ Illustration: As applied to a solvable LASSO problem

x∗ = argmin
x

{
ϕ(x) := λ∥x∥E +

1

2
∥A(x)− b∥22

}
with ∥ · ∥E either (a) block ℓ1/ℓ2 norm on E = Rk1 × ...× Rkn︸ ︷︷ ︸

n factors

, or (b) nuclear norm on

E = Rp×q with n = min[p, q], the Fast Gradient method with appropriate proximal setup
in t = 1,2, ... steps ensures

ϕ(y+t ) ≤ Opt+O(ln(n+1))
∥A∥2E,2
t2

∥x∗∥2E

where ∥A∥E,2 = max{∥A(x)∥2 : ∥x∥E ≤ 1}
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♣ Note: O(1/t2) rate of convergence is, seemingly, the best one can expect from oracle-
based methods in the large scale case.
The precise statement is as follows:
♡ Let n be a positive integer. Consider Least Squares problems

Opt = min
x

∥Ax− b∥22 (QP )

with n× n symmetric matrices A.
For every positive reals R,L and every number t ≤ n/4 of steps, for every t-step solution
algorithm B operating with the “multiplication oracle” u 7→ Au one can find an instance
of (QP ) such that
• the spectral norm of A does not exceed L,
• Opt = 0, and the ∥ · ∥2-norm of some optimal solution does not exceed R,
• the approximate solution y generated by B, as applied to the instance, after t calls to
the oracle, satisfies

∥Ay − b∥22 ≥ O(1)
L2R2

t2
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How it Works:
Fast Composite Minimization for LASSO

♣ Test problem:
Opt = minx

{
ϕ(x) := 0.01∥x∥1 + 1

2
∥Ax− b∥22

}
with 4096× 2048 randomly generated matrix A.

Method Setup Iterations CPU, sec Nonoptimality

IPM — 11 103.1 <1.e-12
FGr Ball setup 512 36.3 2.4e-6
FGr ℓ1/ℓ2 setup 512 36.5 1.2e-7
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t )−Opt
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0 )−Opt vs. t

Platform: 2× 3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows 7
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Beyond the Scope of Proximal Algorithms:
Conditional Gradients

Opt = minx∈X f(x)

♣ Fact: All considered so far “computationally cheap” large scale alternatives to IPM’s
were proximal type First Order methods
♠ But: In order to be computationally cheap, a proximal type method should operate
with problems on Favorable Geometry domains X (those allowing for Proximal setup
(∥ · ∥, ω(·)) with moderate ω-capacity Θ, in order to have a reasonable iteration count)
admitting easy to compute prox-mappings (“Simple Geometry,” otherwise an iteration
becomes expensive).
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♠ Both Favorable and Simple Geometry requirements can be violated. For example,
• when X is a box, Favorable Geometry is missing
• when X is a nuclear norm ball in Rn×n or a spectahedron (the set of ⪰ 0 matrices
with unit trace) in Sn, we do have Favorable Geometry, but computing the associated
prox-mapping requires singular value decomposition of n × n matrix (or the eigenvalue
decomposition of a symmetric n× n matrix), and both these computations require

O(n3) = O((dimX)3/2) a.o.
While much cheaper than the cost O((dimX)3) = O(n6) a.o. of an IPM iteration, O(n3)
a.o. prox-mapping for large n becomes prohibitively time consuming.
Note: nuclear norm balls/spectahedrons arise naturally in many important applications,
including, but not reducing to, low rank matrix recovery, multi-class classification in
Machine Learning and high dimensional Statistics (and more generally – large scale
Semidefinite programming).
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♠ Another important example of generic problem with Complex Geometry is Total Vari-
ation based Image Reconstruction

min
x∈Rm×n

{
λ ·TV(x) +

1

2
∥A(x)− b∥22

}
,

where x = [xij] ∈ Rm×n is an (m× n)-pixel image, and TV(x) is the Total Variation:

TV(x) =
m−1∑
i=1

n∑
j=1

|xi+1,j − xi,j|+
m∑
i=1

n−1∑
j=1

|xi,j+1 − xi,j|

— the ℓ1-norm of the discrete gradient of x = [xij]. Restricted to the space Mm,n
0 of

m× n images with zero mean, TV becomes a norm.
For the unit TV-ball, no DGF compatible with the TV norm and leading to easy-to-
compute prox mapping is known...
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Linear Minimization Oracle

♣ Observation: When X ⊂ E admits a proximal setup with easy-to-compute prox-
mapping, X definitely admits a computationally cheap Linear Minimization Oracle
(LMO) — a procedure which, given on input a linear form ⟨η, ·⟩, returns

x[η] ∈ Argminx∈X⟨η, x⟩
Indeed, the optimization program

min
x∈X

⟨η, x⟩

is the “limiting case,” as θ → +0, of the programs

min
x∈X

{θω(x) + ⟨η, x⟩}.

♠ Fact: Admitting a cheap LMO is a much weaker requirement than admitting proximal
setup with cheap prox-mapping, and there are important domains X with Complex
Geometry admitting relatively cheap Linear Minimization Oracle.
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Examples:
A: Nuclear Norm ball X = {x ∈ Rm×n : ∥x∥nuc ≤ 1}. Here computing x[η] reduces to
finding the left and the right leading singular vectors of η ∈ Rm×n, i.e., to solving the
problem

max
∥u∥2≤1,∥v∥2≤1

uTηv.

For large m,n, this is incomparably easier than finding full singular value decomposition
of η required to compute prox-mapping.
B: Spectahedron X = {x ∈ Sn : x ⪰ 0,Tr(x) = 1}. Here computing x[η] reduces to
finding the leading eigenvector of −η, i.e., to solving the problem

min
∥u∥2=1

uTηu.

For large n, this is incomparably easier than finding full eigenvalue decomposition of η
required to compute prox-mapping.
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Examples (continued):
C: Unit TV-ball X = {x ∈ Mm,n

0 : TV(x) ≤ 1}: For η ∈ Mm,n
0 , a point x[η] ∈

Argminx∈X Tr(ηxT) is readily given by the optimal Lagrange multipliers for the capaci-
tated network flow problem

max
t,f

{t : Γf = tη, ∥f∥∞ ≤ 1}

Γ: incidence matrix of the network with nodes (i, j),
1 ≤ i ≤ m, 1 ≤ j ≤ n, and arcs (i, j) → (i+1, j),
(i, j) → (i, j +1)

15.120



♠ Illustration:
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A B C
A: CPU ratio “full svd”/”finding leading singular

vectors” for n× n matrix vs. n
n 1024 2048 4096 8192

CPU ratio 0.5 2.6 4.5 7.5
Full svd for n = 8192 takes 475.6 sec!

B: CPU ratio “full evd”/“finding leading
eigenvector” for n× n symmetric matrix vs. n

n 1024 2048 4096 8192
CPU ratio 2.0 4.1 7.9 13.0

Full evd for n = 8192 takes 142.1 sec!
C: CPU ratio “metric projection”/“LMO

computation” for TV ball in Mn,n
0 vs. n

n 129 256 512 1024
CPU ratio 10.8 8.8 11.3 20.6

Metric projection onto TV ball for n = 1024
takes 1062.1 sec!

Platform: 2× 3.40 GHz CPU, 16.0 GB RAM, 64-bit Windows 7
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Conditional Gradient Algorithm

Opt = minx∈X f(x)
[• X ⊂ E: convex compact set • f : X → R: convex]

(CM)

W.l.o.g. we assume that X linearly spans the embedding Euclidean space E.
♣ When X is given by Linear Minimization oracle and f is smooth, (CM) can be solved
by Conditional Gradient (CndG), a.k.a. Frank-Wolfe, algorithm given by the recurrence

x1 ∈ X, xt+1 ∈ X : f(xt+1) ≤ f
(
xt + 2

t+1
(x+t − xt)

)
,[

x+t = x[∇f(xt)] ∈ Argminy∈X⟨∇f(xt), y⟩
]

f t∗ = maxτ≤t
[
f(xτ) + ⟨∇f(xτ), x+τ − xτ⟩

]
≤ Opt

♠ Theorem: Let f : X → R be convex and (κ, L)-smooth:

∀x, y ∈ X :f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
κ
∥x− y∥κX[

• L <∞, κ ∈ (1,2]: parameters
• ∥ · ∥X: norm with the unit ball 1

2
[X −X]

]
When solving (CP ) by CndG, one has for t = 2,3, ...

f(xt)−Opt ≤ f(xt)− f∗t ≤
22κ

κ(3− κ)
·

L

(t+1)κ−1
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∀x, y ∈ X :f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
κ
∥x− y∥κX[

• L <∞, κ ∈ (1,2]: parameters
] (!)

Note: A sufficient condition for (!) is Hölder continuity of ∇f(x):
∥∇f(x)−∇f(y)∥X,∗ ≤ L∥x− y∥κ−1

X ∀x, y ∈ X
For convex f and κ = 2, this condition is also necessary for (!).
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∀x, y ∈ X :f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
κ
∥x− y∥κX

♣ Typically, the CndG rate of convergence O(1/T κ−1) is not the best we can hope for.
For example, when κ = 2 and X is either
• the unit ∥ · ∥p ball in Rn with 1 ≤ p ≤ 2, or
• the unit nuclear norm ball in Rn×n,

Nesterov’s Fast Gradient method converges at the rate
O(1) ln(n+1)L2/t2,

and CndG only at the rate O(1)L/t. In fact,
♡ In Favorable Geometry case, the only, if any, disadvantage of proximal algorithms as
compared to CndG is the necessity to compute prox mappings, which could be expensive
for problems with Complex Geometry.
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♠ Beyond the case of Favorable Geometry, CndG can be optimal.
Fact: Let X be n-dimensional box:

X = {x ∈ Rn : ∥x∥∞ ≤ 1}.
Then for every t ≤ n, L < ∞, κ ∈ (1,2], and every utilizing local oracle t-step method
B for minimizing (κ, L)-smooth convex functions over X there exists a function f in the
family such that for the approximate minimizer xB of f generated by B it holds

f(xB)−min
X

f ≥
O(1)

ln(n)

L

tκ−1

⇒When minimizing smooth convex functions, represented by a local oracle, over an
n-dimensional box, t-step CndG cannot be accelerated by more than O(ln(n)) factor,
provided t ≤ n.
• The result remains true when replacing n-dimensional box X with its matrix analogy

{x ∈ Rn×n : spectral norm of x is ≤ 1}
• When minimizing (κ, L)-smooth functions over n-dimensional ∥·∥p-balls with 2 ≤ p ≤ ∞,
the rate-of-convergence advantages of proximal algorithms over CndG rapidly deteriorate
as p grows and disappears (up to O(ln(n))-factor) when p becomes as large as O(ln(n)).
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Proof of Theorem

(a) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
κ
∥y − x∥κX

(b) f(xt+1) ≤ f(xt + γt(x
+
t − xt)),

γt = 2
t+1

, x+t ∈ Argminy∈X⟨∇f(xt), y⟩
f t∗ := max

τ≤t

[
f(xτ) + ⟨∇f(xτ), x+τ − xτ⟩

]
︸ ︷︷ ︸

≤minX f

? ⇒? f(xt)− f t∗ ≤ 2κ+1L
κ(3−κ)γ

κ−1
t (!t), t ≥ 2

Let
ϵt = f(xt)− f t∗, et = ⟨∇f(xt), xt − x+t ⟩

• f t∗ ≥ f(xt) + ⟨∇f(xt), x+t − xt⟩ ⇒ et ≥ ϵt
We have

(c) ∥xt − x+t ∥X ≤ 2
⇒ f(xt+1) ≤ f(xt + γt(x

+
t − xt)) [by (b)]

≤ f(xt) + γt⟨∇f(xt), x+t − xt⟩+ L
κ
[2γt]κ

[by (a), (c)]
= f(xt)− γtet + 2κL

κ
γκt

≤ f(xt)− γtϵt + 2κL
κ
γκt [since et ≥ ϵt]

⇒ ϵt+1 = f(xt+1)− f t+1
∗ ≤ f(xt+1)− f t∗

[since f t+1
∗ ≥ f t∗]

≤ ϵt(1− γt) + 2κL
κ
γκt
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[0 ≤] ϵt+1 ≤ ϵt(1− γt) + 2κL
κ
γκt (∗t)

? ⇒? ϵt ≤ 2κ+1L
κ(3−κ)γ

κ−1
t , t ≥ 2 [γt = 2

t+1
] (!t)

• By (∗2), we have ϵ2 ≤ 2κL
κ

⇒ ϵ2 ≤ 2κ+1L
κ(3−κ)(2/3)

κ−1 due to 1 < κ ≤ 2 ⇒ (!2) holds true.

• Assuming (!t) true for some t ≥ 2, we have
ϵt+1 ≤ 2κ+1L

κ(3−κ)γ
κ−1
t (1− γt) + 2κL

κ
γκt [by (∗t) and (!t)]

= 2κ+1L
κ(3−κ)

[
γκ−1
t − κ−1

2
γκt
]

= 2κ+1L
κ(3−κ)2

κ−1
[
(t+1)1−κ + (1− κ)(t+1)−κ

]
≤ 2κ+1L

κ(3−κ)2
κ−1(t+2)1−κ [by convexity of (t+1)1−κ]

= 2κ+1L
κ(3−κ)γ

κ−1
t+1 ⇒ (!t+1) holds true.

Thus, (!t) holds true for all t, Q.E.D.
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Conditional Gradient Algorithm for Norm-regularized Smooth Convex
Minimization

Source: Harchaoui, Z., Juditsky, A., Nemirovski, A. Conditional Gradient Algorithms for Norm-

Regularized Smooth Convex Optimization. Mathematical Programming 152:1-2 (2015), 75–112. https:

//www2.isye.gatech.edu/~nemirovs/HarchaouiJudNem.pdf

♣ “As is”, CndG is applicable only to minimizing smooth convex functions on bounded
and closed convex domains.
Question: How to apply CndG to Composite Minimization problem

Opt = min
x∈K

{λ∥x∥+ f(x)}
• K: closed convex cone in Euclidean space E
• ∥ · ∥: norm on E
• λ > 0: penalty
• f : K → R: convex function with Lipshitz continuous

gradient:
∥∇f(x)−∇f(y)∥∗ ≤ Lf∥x− y∥, x, y ∈ K


♠ Main Assumption: We have at our disposal LMO oracle for the intersection of the
unit ∥ ·∥-ball with the cone K. Given on input a linear form ⟨η, ·⟩ on E, the oracle returns

x[η] ∈ Argminx{⟨η, x⟩ : x ∈ K, ∥x∥ ≤ 1}
Examples:
A. E = Rm×n, ∥ · ∥ = ∥ · ∥nuc, K = E
B. E = Sn, ∥ · ∥ = ∥ · ∥nuc, K = Sn+ = {x ∈ E : x ⪰ 0}
C. E = Mm,n

0 , ∥ · ∥ = TV(·), K = E.
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♣ We can reformulate the problem of interest as

Opt = min
[x;r]∈K+

{ϕ(x, r) := λr+ f(x)}

K+ = {[x; r] ∈ E+ := E × R : x ∈ K, ∥x∥ ≤ r}
♠ Assumption: There exists D∗ <∞ such that

y := [x; r] ∈ K+ & r > D∗ ⇒ ϕ(y) > ϕ(0),

and we are given a finite upper bound D+ on D∗.
Note: The efficiency estimate for the forthcoming method depends on D∗, and not on
D+!
♠ Algorithm:
• Initialization: Set y1 = 0 ∈ K+

• Step t = 1,2, ... Given yt = [xt; rt] ∈ K+,
• compute ∇f(xt)
• compute x+t = x[∇f(xt)] ∈ Argminx {⟨∇f(xt), x⟩ : x ∈ K, ∥x∥ ≤ 1}
• set ∆t = Conv

{
yt,0, D+[x+t ; 1]

}
⊂ K+ and find yt+1 ∈ K+ : ϕ(yt+1) ≤ min

y∈∆t

ϕ(y)

Step t is completed; pass to step t+1.
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minx∈K [λ∥x∥+ f(x)] ⇔ min[x;r]∈K+ [ϕ(x, r) = λr+ f(x)][
K+ = {[x; r] : x ∈ K, r ≥ ∥x∥}

]
♠ Algorithm:
• Initialization: Set y1 = 0 ∈ K+

• Step t = 1,2, ... Given yt = [xt; rt] ∈ K+,
• compute ∇f(xt)
• compute x+t = x[∇f(xt)] ∈ Argminx {⟨∇f(xt), x⟩ : x ∈ K, ∥x∥ ≤ 1}
• set ∆t = Conv

{
yt,0, D+[x+t ; 1]

}
⊂ K+ and find yt+1 ∈ K+ : ϕ(yt+1) ≤ min

y∈∆t

ϕ(y)

Geometry of step
• K: quadrant on the XY plane • black polygon: the set {x ∈ K : ∥x∥ ≤ 1}
• blue polygon: intersection of K+ with the hyperplane r = 1
• a: current iterate yt • b: x+t ∈ argminx∈K,∥x∥≤1⟨∇f(yt), x⟩ • c: D+ · [x+t ; 1]

• yt+1 ∈ K+: ϕ(yt+1) ≤ miny∈∆t ϕ(y), ∆t: triangle with vertices o,a,c

Note: One can set yt+1 ∈ Argminy∈∆t
ϕ(y). With this policy, a step requires minimizing

ϕ over a 2D triangle ∆t, which can be done within machine precision in O(1) steps (e.g.,
by the Ellipsoid method).
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Opt = min
[x;r]∈K+

{ϕ(x, r) := λr+ f(x)}

K+ = {[x; r] ∈ E+ := E × R : x ∈ K, ∥x∥ ≤ r}
♣ Theorem: For the outlined algorithm,

ϕ(yt)−Opt ≤
8LfD2

∗
t+14

, t = 2,3, ...

♠ Bundle Implementation: We can set

yt+1 ∈ Argminy {ϕ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+t ; 1], with

x+t ∈ Argminx {⟨∇f(xt), x⟩ : x ∈ K, ∥x∥ ≤ 1}

For example, we can comprise Yt of yt, D+[x+t ; 1] and several of the previous iterates
y1, ..., yt−1.
♡ Bundle approach is especially attractive when

f(x) = Ψ(Ax+ b)

for easy to compute Ψ, like Ψ(u) = 1
2
uTu. Here computing f , ∇f at a convex (or

linear) combination x =
∑
λixi of points xi with already computed Axi becomes cheap:

Ax =
∑

i λi(Axi).
⇒ the FO oracle for (∗) is computationally cheap
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yt+1 ∈ Argminy {ϕ(y) : y ∈ Conv{0 ∪ Yt}} (∗)
Yt ⊂ K+: finite set containing yt = [xt; rt] and D+[x+t ; 1], with

x+t ∈ Argminx {⟨∇f(xt), x⟩ : x ∈ K, ∥x∥ ≤ 1}
• For example, with f(x) = 1

2
∥Ax − b∥22, solving (∗) reduces to solving kt = Card(Yt)-

dimensional convex quadratic problem

min
λ∈Rkt

{
1
2
λTQtλ+2qTt λ : λ ≥ 0,

∑
j λj ≤ 1

}
,

Qt = [xTi A
TAxj]i,j

(!)

where xj, 1 ≤ j ≤ kt, are the x-components of the points from Yt.
⇒Assuming that Yt is a set of moderate cardinality (say, few tens) obtained from Yt−1

by discarding several “old” points and adding the new points yt = [xt; rt], D+[x+t ; 1],
updating

[Qt−1, qt−1] 7→ [Qt, qt]
basically reduces to computing matrix-vector products Axt and Ax+t . After Qt, qt are
computed, (!) can be solved “in no time” by an IPM.
Note: Axt is computed anyway when computing ∇f(xt).
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How It Works: TV-based Image Reconstruction
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image, 40% noise

Bundle CndG, 256× 256 image (65,536 variables)
Recovery in 13 CndG iterations, CPU time 50.0 sec

Error removal: 98.5%, ϕ(y13)/ϕ(0) <4.6e-5
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Bundle CndG, 512× 512 image (262,144 variables)
Recovery in 18 CndG iterations, CPU time 370.3 sec

Error removal: 98.2%, ϕ(y18)/ϕ(0) <1.3e-4
Platform: 2× 3.40 GHz CPU with 16.0 GB RAM and
64-bit operating system
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♠ Note: We used 15-element bundle, adding to it at step t the points yt =
[xt; rt], D+[x+t ; 1] and [∇f(xt);TV(∇f(xt))] and removing (up to) 3 old points accord-
ing to “first in — first out.” Adding [∇f(xt);TV(∇f(xt))] to the bundle dramatically
accelerated the algorithm.
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How It Works:
Low Rank Matrix Completion

♠ Problem:
Opt = min

x∈Rn×n

{
0.1∥x∥+ ∥x− a∥2F

}[
• ∥ · ∥: nuclear norm • ∥ · ∥F : Frobenius norm • a = x̄+ ξ

Rank(x̄) ≈
√
n, ∥x̄∥ ≈

√
2n/π, ∥ξ∥F ≈ 0.1∥x̄∥F with i.i.d. Gaussian ξij

]
• Required relative inaccuracy 0.01

n Method CPU, sec Iterations Relative inaccuracy
128 CndG 4.5 42 <1.3e-6

IPM 2675.0 31 <1.e-10
1024 CndG 44.2 31 <0.008

IPM not tested
4096 CndG 1997.7 87 <0.01

IPM not tested

8192† CndG 1364.5 36 <0.01
IPM not tested

† Rank(x̄) = 32
Platform: 2× 3.40 GHz CPU with 16.0 GB RAM and 64-bit operating system
Note: CPU time in 8192×8192 example is less than needed to compute just 3 full svd’s
of a 8192× 8192 matrix ⇒The time taken by 36 steps of CndG is less than needed to
perform just 3 steps of the simplest proximal algorithm, or just 2 steps of Nesterov’s
Fast Gradient method for Composite minimization!
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Conditional Gradients for Nonsmooth Convex Minimization

Source: Cox, B., Juditsky, A., Nemirovski, A. Dual subgradient algorithms for large-scale nonsmooth

learning problems. Mathematical Programming Series B 148:1-2 (2014), 143-180.

https://www2.isye.gatech.edu/~nemirovs/CoxJudNem.pdf

♠ Situation and goal: Given convex compact domain X represented by Linear Mini-
mization Oracle, we want to solve convex program

Opt = min
x∈X

f(x)

where f is a Lipschitz continuous convex function.
Difficulty: Since X is given by LMO, it is problematic to use proximal algorithms; and
since f can be nonsmooth, Conditional Gradient cannot be applied directly.
Remedy: Use Fenchel-type representation

f(x) = maxy∈Y
[
xT [Ay+ a]− ϕ(y)

]
[• Y : convex set • ϕ(·) : Y → R: convex function]

Note: Fenchel-type representation is a special case of what we called saddle point
representation

f(x) = max
y∈Y

ϕ(x, y) [ϕ : convex-concave]

Note: Whenever f : Rn → R∪{+∞} is a proper (i.e., with a nonempty domain) convex
lower semicontinuous function, it admits Fenchel (a.k.a. Legendre) representation

f(x) = supy∈Rn

[
xTy − f∗(y)

][
f∗(y) = supx∈Rn

[
yTx− f(x)

]
: Fenchel dual of f

f∗ is convex proper lower semicontinuous, [f∗]∗ = f

]
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f(x) = supy∈Rn

[
xTy − f∗(y)

][
f∗(y) = supx∈Rn

[
yTx− f(x)

]
: Fenchel dual of f

f∗ is convex proper lower semicontinuous along with f , and [f∗]∗ = f

]
Note: Fenchel dual “exists in the nature,” but, aside of a handful of simple cases, is
not available in closed form or in the form allowing for a cheap FO oracle.
In contrast, Fenchel type representations typically are readily available.
Example A. When f(x) = ∥Bx − b∥, computing f∗(y) reduces to solving a nontrivial
convex problem

f∗(y) = sup
x

[
yTx− ∥Bx− b∥

]
,

while Fenchel-type representation is immediate:

f(x) = max
y:∥y∥∗≤1

yT(Bx− b) = max
y:∥y∥∗≤1

[
xT [BTy]︸ ︷︷ ︸

Ay

− bTy︸︷︷︸
ϕ(y)

]
Example B. When summing up two convex functions with known Fenchel duals, the
Fenchel dual of the sum is given by difficult to compute “inf-convolution”:

[f + h]∗(y) = inf
v

[f∗(v) + h∗(y − v)]

In contrast, when summing up two convex functions with known Fenchel-type represen-
tations, a Fenchel-type representation of the sum is immediate:

fi(x) = supyi∈Yi
[
xT [Aiyi + ai]− gi(yi)

]
, 1 ≤ i ≤ m

⇒
∑

i
fi(x) = sup

y=[y1;...;ym]∈Y1 × ...× Ym︸ ︷︷ ︸
Y

[∑
i
xT [Aiyi + ai]︸ ︷︷ ︸
xT [Ay+a]

−
∑

i
gi(yi)︸ ︷︷ ︸

ϕ(y)

]
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Opt = min
x∈X

f(x) (P )

Assumption: We know Fenchel-type representation of f :

f(x) = max
y∈Y

[
xT [Ay+ a]− ϕ(y)

]
where convex compact set Y admits a computation-friendly proximal setup, and ϕ is a
Lipschitz continuous convex function given by First Order oracle.
⇒Problem of interest (P ) is the primal problem associated with the convex-concave
saddle point problem

Opt = min
x∈X

max
y∈Y

[
xT [Ay+ a]− ϕ(y)

]
.

The dual problem, in minimization form, is

[−Opt =] min
y∈Y

[
g(y) := −min

x∈X
xT [Ay+ a] + ϕ(y)

]
(D)

and LMO for X induces First Order oracle for G: given y ∈ Y and computing

xy ∈ Argmin
x∈X

xT [Ay+ a],

we have
g(y) = −xTy [Ay+ a] + ϕ(y)
g′(y) := −ATxy + ϕ′(y) is a subgradient of g at y

⇒we can solve (D) by proximal-type First Order algorithm!
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Opt = minx∈X

{
f(x) = max

y∈Y

[
xT [Ay+ a]− ϕ(y)

]}
(P )

−Opt = miny∈Y

{
g(y) = −min

x∈X
xT [Ay+ a] + ϕ(y)

}
(D)

Question: How to recover a good approximate solution to (P ) from information accu-
mulated when solving (D)?
Answer: Use accuracy certificates!
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Accuracy Certificates

Let Z be a convex compact set, F (·) be a vector field on Z. Consider an N-step
algorithm which operates with Z and F by generating sequence of search points zi ∈ Z,
i ≤ N along with the sequence F (zi), i ≤ N , of the values of F along the search points.
• Collection F = {zi ∈ Z, F (zi)}Ni=1 is called the the execution protocol of the algorithm

• An accuracy certificate for execution protocol F is an N-dimensional vector λ of
nonnegative weights λi summing up to 1

• The resolution of (F , λ) on Z is defined as

Res(F , λ|Z) = max
z∈Z

[∑N

i=1
λi⟨F (zi), zi − z⟩

]
Observation: Every one of considered so far deterministic proximal First Order algo-
rithms for convex minimization and convex-concave saddle point problems worked with
some vector field F on a convex compact set Z and in N steps generated some execution
protocol F = {zi ∈ Z, F (zi)}Ni=1 and accuracy certificate λ. When specifying approximate
solution as

zN =
∑
i

λizi,

the resolution Res(F , λ|Z) was an upper bound on inaccuracy of zN resulting in efficiency
estimates we got.
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Example: Subgradient/Mirror Descent for convex minimization problem minz∈Z f(z)
works with subgradient vector field F (z) = f ′(z) of the objective and ensures that

∀z ∈ Z :
∑N

i=1 γi⟨F (zi), zi − z⟩ ≤ Θ+
∑N

i=1 γ
2
i ∥F (zi)∥2∗

[Θ : capacity of X w.r.t. DGF in question]

⇒ Res(F , λ|Z) := max
z∈Z

∑
iλi⟨F (zi), zi − z⟩ ≤ R :=

Θ+
∑N

i=1 γ
2
i ∥F (zi)∥2∗∑N

i=1 γi[
λi = γi/

∑N
j=1 γj

] (!)

Our efficiency estimate for SD/MD was yielded by (!) combined with the relation
f(
∑

i λizi)− f(z∗) ≤
∑

i λi[f(zi)− f(z∗)] ≤
∑

i λi⟨F (zi), zi − z∗⟩ ≤ Res(F , λ|Z). (!!)

where z∗ ∈ ArgminZ f .
Note:
• SD/MD ensures (!) independently of what is the origin of the vector filed F the method
works with
• (!!) holds independently of where the execution protocol with F = f ′ and the accuracy
certificate come from.

♠ In retrospect, all we cared about when designing algorithms like SD, MD, or their
bundle versions, or Mirror Prox, etc., was generating execution protocol and accuracy
certificate with as small as possible guaranteed resolution.
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Opt = minx∈X
{
f(x) = maxy∈Y

[
xT [Ay+ a]− ϕ(y)

]}
(P )

−Opt = miny∈Y
{
g(y) = −minx∈X xT [Ay+ a] + ϕ(y)

}
(D)

♠ Fact: Assume we are solving (D) by First Order method producing in N steps
execution protocol

G = {yi ∈ Y, g′(yi) = −ATxyi + ϕ′(yi)}Ni=1
xyi ∈ Argminx∈X x

T [Ayi + a]

and accuracy certificate λ. Let us set

xN =
N∑
i=1

λixyi, y
N =

N∑
i=1

λiyi.

Then xN is feasible for (P ) and solves (P ) within accuracy Res := Res(G, λ|Y ).
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Proof of Fact: Let x ∈ X and y ∈ Y . We have

Res ≥
∑

i λi⟨−ATxyi + ϕ′(yi), yi − y⟩ =
∑

iλi⟨xyi, A[y − yi]⟩+
∑

i
λi⟨ϕ′(yi), yi − y⟩︸ ︷︷ ︸

≥
∑

i
λiϕ(yi)−ϕ(y)

≥
∑

i λi⟨xyi, Ay+ a⟩ −
∑

i λi ⟨xyi, Ayi + a⟩︸ ︷︷ ︸
≤⟨x,Ayi+a⟩

+
∑

i
λiϕ(yi)︸ ︷︷ ︸

≥ϕ(yN)

−ϕ(y)

≥
∑

i λi⟨xyi, Ay+ a⟩ −
∑

i λi⟨x,Ay+ a⟩+ ϕ(yN)− ϕ(y)
= ⟨xN , Ay+ a⟩ − ⟨x,AyN + a⟩+ ϕ(yN)− ϕ(y)
⇒ ⟨xN , Ay+ a⟩ − ϕ(y) ≤ Res + ⟨x,AyN + a⟩ − ϕ(yN)

The resulting inequality holds true for all x ∈ X and y ∈ Y , implying that

f(xN) = maxy∈Y
[
⟨xN , Ay+ a⟩ − ϕ(y)

]
≤ Res +minx∈X

[
⟨x,AyN + a⟩ − ϕ(yN)

]
≤ Res +maxy∈Y minx∈X [⟨x,Ay+ a⟩ − ϕ(y)] = Res +Opt.
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