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Assignment 1: LO Models

Exercise 1 1) Draw the feasible set of the LO program

max
x1,x2

x2

s.t.
x1 − 2x2 ≤ 0
2x1 − 3x2 ≤ 2
x1 − x2 ≤ 3
−x1 + 2x2 ≤ 2
−2x1 + x2 ≤ 0

and find the optimal value and an optimal solution to the problem.

2) Now assume that the objective is replaced with cos(ϕ)x1 + sin(ϕ)x2, where ϕ is chosen at
random, according to the uniform distribution on [0, 2π]. What is the probability to get, as an
optimal solution, the same point as in the original problem?

Exercise 2 [rucksack problem] There are n goods available to you; the maximal available vol-
ume of good j is vj ≥ 0, and the value of good j per unit of volume is cj ≥ 0. You have a
rucksack of volume v and want to fill it with goods to get as large total value of the rucksack
as possible. Build an LO model of the resulting problem and present an elementary scheme for
generating optimal solution.

Exercise 3 A 24/7 calling center works as follows: every agent works 5 days in a row and
has two days rest, e.g., every week works Tuesday-Saturday and rests on Sunday and Monday.
The numbers of agents working every day of a week should be at least given numbers d1, ..., d7.
The manager wants to meet this requirement with the minimal possible total number of agents
employed, by deciding what will be the days off of the agents. Assuming that di are large, so
that we can ignore integrality restrictions, formulate manager’s problem as an LO program.

Exercise 4 The water supply system in a town includes pump station, tank and a distribution
network. At every given hour, the pump station can pump the water partly into tank, and
partly – directly into the distribution network. To pump a gallon of water, it takes one unit of
electrical energy, and the cost of energy consumed in hour t is ct dollars per unit (usually, for
night hours ct is less than for day hours). The demand for water in hour t, 0 ≤ t ≤ 23, is dt
gallons, and this demand can be partly satisfied from the tank, and partly – from the station,
no matter what are the parts. At the beginning of hour 0, the tank is empty, same as it should
be empty at the end of hour 23. The capacity of the tank is C gallons. We want to decide
how much water should be pumped every hour t, 0 ≤ t ≤ 23, into the network and into the
tank in order to meet the demand at the lowest possible energy cost. Build an LO model of the
situation.

Exercise 5 Run experiment as follows:

1. Pick at random in the segment [0, 1] two “true” parameters θ∗0 and θ∗1 of the regression
model

y = θ0 + θ1x;
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2. Generate a sample of N = 1000 observation errors ξi ∼ P , where P is a given distribution,
and then generate observations yi according to

yi = θ∗0 + θ∗1xi + ξi, xi = i/N ;

3. Estimate the parameters from the observations according to the following three estimation
schemes:

uniform fit : [θ0,∞; θ1,∞] = argminθ max
1≤i≤N

|yi − [θ0 + θ1xi]|

least squares fit : [θ0,2; θ1,2] = argminθ
∑

1≤i≤N

(yi − [θ0 + θ1xi])
2

ℓ1 fit : [θ0,1; θ1,1] = argminθ
∑

1≤i≤N

|yi − [θ0 + θ1xi]|

and compare the estimates with the true values of the parameters.

Run 3 series of experiments:

• P is the uniform distribution on [−1, 1];

• P is the standard Gaussian distribution with the density 1√
2π

exp{−t2/2};

• P is the Cauchy distribution with the density 1
π(1+t2)

.

Try to explain the results you get. When doing so, you can think about a simpler problem,
where you are observing N times a scalar parameter θ∗ according to yi = θ∗ + ξi, 1 ≤ i ≤ N ,
and then use the above techniques to estimate θ∗.
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Assignment 2: What can be reduced to LO

Exercise 6 In the below list, mark by P the polyhedral sets, and by PR – the polyhedral
representations. For those polyhedral sets which in the below list are not given by polyhedral
representations, point out their polyhedral representations.

1. X = {[x1;x2] : x1 + x2 ≤ 0}

2. X = {[x1;x2] : max[x1, x2] ≤ 0}

3. X = {[x1, x2] : max[x1, x2] ≥ 0}

4. X = {[x1;x2] : min[x1, x2] ≤ 0}

5. X = {[x1;x2] : min[x1, x2] ≥ 0}

6. X = {[x1;x2] : x21 + x22 ≤ 1}

7. X = {[x1;x2] : x21 + x22 ≤ −1}

8. X = {[x1;x2] : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, x21 + x22 ≤ 1}

9. X = {[x1;x2] : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, x21 + x22 ≤ 2}

10. X = {[x1;x2] : |x1|+ |x2| ≤ 1}

11. X = {[x1;x2] : |x1| − |x2| ≤ 1}

12. X = {[x1;x2] : |x1|+ x2 ≤ 1}

13. X = {[x1;x2] : |x1| − x2 ≤ 1}

14. X = {[x1;x2] : x1 − |x2| ≤ 1}

15. X = {[x1;x2] : −x1 − |x2| ≤ 1}

Exercise 7 Represent the projection X of the polyhedral set

Y = {x ∈ R3 : −1 ≤ x1 + x2 ≤ 1,−1 ≤ x2 + x3 ≤ 1,−1 ≤ x1 + x3 ≤ 1, x1 + x2 + x3 ≤ 2}

onto the x1, x2-plane by a system of linear inequalities in the variables x1, x2.

Exercise 8 In the below list, mark by P the polyhedrally representable functions, and build
their polyhedral representations.

1. f(x1, x2) ≡ 0

2. f(x1, x2) = x1 − x2

3. f(x1, x2) = max[x1, x2]

4. f(x1, x2) = min[x1, x2]

5. f(x1, x2) = 1−max[x1, x2]

6. f(x1, x2) = 1−min[x1, x2]
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7. f(x1, x2) =

{
max[x1, x2], max[x1, x2] ≤ 1
+∞, otherwise

8. f(x1, x2) =

{
max[x1, x2], min[x1, x2] ≤ 1
+∞, otherwise

9. f(x1, x2) =

{
min[x1, x2], x2 ≥ 2, x1 ≤ 0
+∞, otherwise

10. f(x1, x2, x3) = max[x1, x2] + max[x1, x3]

11. f(x1, x2, x3) = max[x1, x2]−max[x1, x3]

12. f(x1, x2, x3) = max[x1, x2] + min[x1, x3]

13. f(x1, x2, x3) = max[x1, x2]−min[x1, x3]

14. f(x1, x2) = max[x1 +max[x2, x3], x3 +max[x1, x2]]

15. f(x1, x2) = max[|x1|, |x2|]

16. f(x1, x2) = |max[x1, x2]|

Exercise 9 In the below list, some problems can be posed as LO programs. Identify these
problems and reformulate them as LO programs.

1.
min
x1,x2

{max[|2x1 + 3x2|, |x1 − x2|] : |x1|+ 2max[x1, x2] ≤ 1}

2.
max
x1,x2

{max[|2x1 + 3x2|, |x1 − x2|] : |x1|+ 2max[x1, x2] ≤ 1}

3.
max
x1,x2

{2min[x1 + x2, 2x2]− |x1 − x2| : max[|x1 − 2x2|, |x2|]− 2x2 ≤ 1− |x1|}
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Assignment 3: Linear and Affine subspaces, Convexity

Exercise 10 In the below list, mark the sets which are linear subspaces and point out their
dimensions.

1. Rn

2. {0}

3. ∅

4. {x ∈ Rn :
n∑

i=1
ixi = 0}

5. {x ∈ Rn :
n∑

i=1
ix2i = 0}

6. {x ∈ Rn :
n∑

i=1
ixi = 1}

7. {x ∈ Rn :
n∑

i=1
ix2i = 1}

Exercise 11 Point out a linear and an affine bases in the linear subspace

{x ∈ Rn :

n∑
i=1

xi = 0}

and the orthogonal complement to this subspace.

Exercise 12 In the below list, mark sets which are affine subspaces and point out their affine
dimensions.

1. Rn

2. {a}

3. ∅

4. {x ∈ Rn :
n∑

i=1
ixi = 0}

5. {x ∈ Rn :
n∑

i=1
ix2i = 0}

6. {x ∈ Rn :
n∑

i=1
ixi = 1}

7. {x ∈ Rn :
n∑

i=1
ix2i = 1}

Exercise 13 Point out the linear subspace parallel to the affine subspace

M = {x ∈ Rn :
n∑

i=1

xi = 1} ⊂ Rn,

and an affine basis in M .
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Exercise 14 In the below list, point out the dimensions of the sets and mark those sets which
are convex.

1. Rn

2. {0}

3. {x ∈ Rn :
∑n

i=1 ixi = 0}

4. {x ∈ Rn :
∑n

i=1 ixi ≤ 0}

5. {x ∈ Rn :
∑n

i=1 ixi ≥ 0}

6. {x ∈ Rn :
∑n

i=1 ix
2
i = 1}

7. {x ∈ Rn :
∑n

i=1 ix
2
i ≤ 1}

8. {x ∈ Rn :
∑n

i=1 ix
2
i ≥ 1}

9. {x ∈ R2 : |x1|+ |x2| ≤ 1}

10. {x ∈ R2 : |x1| − |x2| ≤ 1}

11. {x ∈ R2 : −|x1| − |x2| ≤ 1}

Exercise 15 For the sets to follow, point out their linear and affine spans and their convex
hulls:

1. X = {[0; 1], [1; 1], [2; 1]}

2. X = {[0; 0]; [1; 0]; [1; 1]; [0; 1]}

3. X = {x ∈ R2 : x2 = 0, |x1| ≤ 1}

4. X = {x ∈ R2 : x2 = 1, |x1| ≤ 1}

5. X = {x ∈ R2 : |x1| − |x2| = 1}

Exercise 16 Mark by T those of the following claims which always are true:

1. The linear image Y = {y = Ax : x ∈ X} of a linear subspace X is a linear subspace

2. The linear image Y = {y = Ax : x ∈ X} of an affine subspace X is an affine subspace

3. The linear image Y = {y = Ax : x ∈ X} of a convex set X is convex

4. The affine image Y = {y = Ax+ b : x ∈ X} of a linear subspace X is a linear subspace

5. The affine image Y = {y = Ax+ b : x ∈ X} of an affine subspace X is an affine subspace

6. The affine image Y = {y = Ax+ b : x ∈ X} of a convex set X is convex

7. The intersection of two linear subspaces in Rn is a linear subspace

8. The intersection of two affine subspaces in Rn is an affine subspace
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9. The intersection of two affine subspaces in Rn, when nonempty, is an affine subspace

10. The intersection of two convex sets in Rn is a convex set

11. The intersection of two convex sets in Rn, when nonempty, is a convex set

Exercise 17 Given are n distinct from each other sets

E1 ⊂ E2 ⊂ ... ⊂ En

in R100. How large can be n, if

1. every one of Ei is a linear subspace

2. every one of Ei is an affine subspace

3. every one of Ei is a convex set
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Assignment 4: Extreme points

Exercise 18 Let X be a nonempty convex set in Rn and x ∈ X. Prove that x is an extreme
point of X

1. if and only if the set X\{x} is convex

2. if and only if for every representation x =
∑k

i=1 λixi of x as a convex combination of points
from X with positive coefficients λi it holds xi = x, i = 1, ..., k

Exercise 19 Let X = {x ∈ Rn : aTi x ≤ bi, 1 ≤ i ≤ m} be a polyhedral set. Prove that

1. If X ′ is a face of X, then there exists a linear function eTx such that

X ′ = Argmax
x∈X

eTx := {x ∈ X : eTx = sup
x′∈X

eTx′}.

2. If v is a vertex of X, then there exists a linear function eTx such that v is the unique
maximizer of this function on X.

Exercise 20 Describe all extreme points of the following convex sets:

1. X = Conv{1, 2, 3, 4, 5}

2. X = Conv{[0; 0], [1; 1], [1; 0], [0.5; 0.5]}

3. X = {x ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1 xi ≤ 3/2}

4. X = {x ∈ Rn : ∥x∥2 ≤ 1}

5. X = {x ∈ Rn : x ≥ 0,
∑n

i=1 xi = 1,
∑n

i=1 aixi = 1}, where a1 < a2 < ... < an.

Exercise 21 Point out the recessive cones and the extreme points of the polyhedral sets

1. X = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}

2. X = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2}

3. X = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2}
Think what is the general form of the result on Ext(X) you got.

4. X = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2, x3 ≥ 0}
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Assignment 5: Cones and Structure of Polyhedral Sets

Exercise 22 Prove that if a nonempty polyhedral set X is represented as

X = Conv({v1, ..., vN}) + Cone ({r1, ..., rM}),

then Rec(X) = Cone ({r1, ..., rM})
Hint: Assuming that a recessive direction e of X does not belong to Cone ({r1, ..., rM}), use the
Homogeneous Farkas Lemma to verify that there exists d such that dT e < 0 and dT rj ≥ 0 for
all j, and think of whether the linear function dTx of x is bounded below on X.

Exercise 23 Prove that if K is a polyhedral cone, then the dual cone K∗ is so, and (K∗)∗ = K.

Exercise 24 Prove that if K = {x ∈ Rn : aTi x ≥ 0, i = 1, ...,m}, then K∗ =
Cone ({a1, ..., am}).

Exercise 25 Prove that if K is a polyhedral cone and d is a generator of an extreme ray of K,
then in every representation

d = d1 + ...+ dM , di ∈ K ∀i

di are nonnegative multiples of d.

Exercise 26 Let
K = Cone ({r1, ..., rM}).

Prove that if R is an extreme ray of K, then one of rj can be chosen as a generator of R. What
is the “extreme point” analogy of this statement?

Exercise 27 Let K1, ...,Km, M1, ...,Mm be polyhedral cones in Rn. Prove that

1. M1 + ...+Mm is a polyhedral cone in Rn.

2. (K1 ∩K2 ∩ ... ∩Km)∗ = (K1)∗ + ...+ (Km)∗.

Exercise 28 For the polyhedral cones to follow, point out a base (if it exists), extreme rays (if
they exist) and a polyhedral representation of the dual cone (you may skip the derivations and
present the results only).

1. K = {0} ⊂ R

2. K = R

3. K = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 ≤ x2}

4. K = {x ∈ R3 : x1 + x2 ≥ 0, x2 + x3 ≥ 0, x1 + x3 ≥ 0}

5. K = {x ∈ R3 : x1 + x2 ≥ x3, x2 + x3 ≥ x1, x1 + x3 ≥ x2}

Exercise 29 For the polyhedral sets X to follow, find their representations in the form of

X = Conv({v1, ..., vN}) + Cone ({r1, ..., rM})

(you may skip the derivation and present the results only)
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1. X = {x ∈ Rn : x ≥ 0,
∑

i xi ≤ 1}

2. X = {x ∈ Rn : x ≥ 0,
∑

i xi ≥ 1}

3. X = {x ∈ Rn : x ≥ 0, 1 ≤
∑

i xi ≤ 2}

4. X = {x ∈ R3 : x ≥ 0, x1 + x2 − x3 ≥ 0}.

5. X = {x ∈ R3 : x ≥ 0, x1 + x2 − x3 ≥ 1}.
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Assignment 6: General Theorem on Alternative

Exercise 30 1) Prove Gordan Theorem on Alternative:

A system of strict homogeneous linear inequalities Ax < 0 in variables x has a
solution iff the system ATλ = 0, λ ≥ 0 in variables λ has only trivial solution λ = 0.

2) Prove Motzkin Theorem on Alternative:

A system Ax < 0, Bx ≤ 0 of strict and nonstrict homogeneous linear inequalities
has a solution iff the system ATλ + BTµ = 0, λ ≥ 0, µ ≥ 0 in variables λ, µ has no
solution with λ ̸= 0.

Exercise 31 For the systems of constraints to follow, write them down equivalently in the
standard form Ax < b,Cx ≤ d and point out their solvability status (“solvable – unsolvable”)
along with the corresponding certificates.

1. x ≤ 0 (x ∈ Rn)

2. x ≤ 0 &
∑n

i=1 xi > 0 (x ∈ Rn)

3. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1 xi ≥ n (x ∈ Rn)

4. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1 xi > n (x ∈ Rn)

5. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1 ixi ≥
n(n+1)

2 (x ∈ Rn)

6. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1 ixi >
n(n+1)

2 (x ∈ Rn)

7. x ∈ R2, |x1|+ x2 ≤ 1, x2 ≥ 0, x1 + x2 = 1

8. x ∈ R2, |x1|+ x2 ≤ 1, x2 ≥ 0, x1 + x2 > 1

9. x ∈ R4, x ≥ 0, sum of two largest entries in x does not exceed 2, x1 + x2 + x3 ≥ 3

10. x ∈ R4, x ≥ 0, sum of two largest entries in x does not exceed 2, x1 + x2 + x3 > 3

Exercise 32 Let (S) be the following system of linear inequalities in variables x ∈ R3:

x1 ≤ 1, x1 + x2 ≤ 1, x1 + x2 + x3 ≤ 1 (S)

In the following list, point out which inequalities are, and which are not consequences of the
system, and certify your claims as explained in examples in items 1 and 2.

1. 3x1 + 2x2 + x3 ≤ 4

2. 3x1 + 2x2 + x3 ≤ 2

3. 3x1 + 2x2 ≤ 3

4. 3x1 + 2x2 ≤ 2

5. 3x1 + 3x2 + x3 ≤ 3

6. 3x1 + 3x2 + x3 ≤ 2
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Make a generalization: prove that a linear inequality px1 + qx2 + rx3 ≤ s is a consequence of
(S) if and only if s ≥ p ≥ q ≥ r ≥ 0.

Exercise 33 Is the inequality x1 + x2 ≤ 1 a consequence of the system x1 ≤ 1, x1 ≥ 2? If yes,
can it be obtained by taking a legitimate weighted sum of inequalities from the system and the
identically true inequality 0Tx ≤ 1, as it is suggested by the Inhomogeneous Farkas Lemma?

Exercise 34 Certify the correct statements in the following list:

1. The polyhedral set X = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],
∑3

i=1 x1 ≤ 1} is nonempty.

2. The polyhedral set X = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],
∑3

i=1 x1 ≤ 0.99} is empty.

3. The linear inequality x1 + x2 + x3 ≥ 2 is violated somewhere on the polyhedral set X =
{x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1}.

4. The linear inequality x1 + x2 + x3 ≥ 2 is violated somewhere on the polyhedral set X =
{x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 0.99}.

5. The linear inequality x1+x2 ≤ 3/4 is satisfied everywhere on the polyhedral set X = {x ∈
R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1.05}.

6. The polyhedral set Y = {x ∈ R3 : x1 ≥ 1/3, x2 ≥ 1/3, x3 ≥ 1/3} is not contained in the
polyhedral set X = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1}.

7. The polyhedral set Y = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],
∑3

i=1 xi ≤ 1} is contained in the
polyhedral set X = {x ∈ R3 : x1 + x2 ≤ 2/3, x2 + x3 ≤ 2/3, x1 + x3 ≤ 2/3}.

8. The polyhedral set X = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],
∑3

i=1 xi ≤ 1} is bounded.

9. The polyhedral set X = {x ∈ R3 : x1 ≥ 1/3, x2 ≥ 1/3,
∑3

i=1 xi ≤ 1} is unbounded.

Exercise 35 Consider the LO program

Opt = max
x

{x1 : x1 ≥ 0, x2 ≥ 0, ax1 + bx2 ≤ c} (P )

where a, b, c are parameters. Answer the following questions and certify your answers:

1. Let c = 1. Is the problem feasible?

2. Let a = b = 1, c = −1. Is the problem feasible?

3. Let a = b = 1, c = −1. Is the problem bounded?

4. Let a = b = c = 1. Is the problem bounded?

5. Let a = 1, b = −1, c = 1. Is the problem bounded?

6. Let a = b = c = 1. Is it true that Opt ≥ 0.5?

7. Let a = b = 1, c = −1. Is it true that Opt ≤ 1?

8. Let a = b = c = 1. Is it true that Opt ≤ 1?

9. Let a = b = c = 1. Is it true that x∗ = [1; 1] is an optimal solution of (P )?

10. Let a = b = c = 1. Is it true that x∗ = [1/2; 1/2] is an optimal solution of (P )?

11. Let a = b = c = 1. Is it true that x∗ = [1; 0] is an optimal solution of (P )?
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Assignment 7: More on Duality
Exercise 36 Write down problems dual to the following LO programs:

1. max
x∈R3

x1 + 2x2 + 3x3 :

x1 − x2 + x3 = 0
x1 + x2 − x3 ≥ 100
x1 ≤ 0
x2 ≥ 0
x3 ≥ 0


2. max

x∈Rn

{
cTx : Ax = b, x ≥ 0

}
3. max

x∈Rn

{
cTx : Ax = b, u ≤ x ≤ u

}
4. max

x,y

{
cTx : Ax+By ≤ b, x ≤ 0, y ≥ 0

}
Exercise 37 Consider a primal-dual pair of LO programs

max
x

cTx :
Px ≤ p
Qx ≥ q
Rx = r

 (P )

min
λ=[λℓ,λg ,λe]

pTλℓ + qTλg + rTλe :
λℓ ≥ 0
λg ≤ 0
P Tλℓ +QTλg +RTλe = c

 (D)

Assume that both problems are feasible, and that the primal problem does contain inequality
constraints. Prove that the feasible set of at least one of these problems is unbounded.

Exercise 38 For positive integers k ≤ n, let sk(x) be the sum of the k largest entries in a vector
x ∈ Rn, e.g., s2([1; 1; 1]) = 1 + 1 = 2, s2([1; 2; 3]) = 2 + 3 = 5. Find a polyhedral representation
of sk(x).
Hint: Take into account that the extreme points of the set {x ∈ Rn : 0 ≤ xi ≤ 1,

∑
i xi = k} are

exactly the 0/1 vectors from this set, and derive from this that

sk(x) = max
y

{
yTx : 0 ≤ yi ≤ 1 ∀i,

∑
i

yi = k

}
.

Exercise 39 Consider scalar linear constraint

aTx ≤ b (1)

with uncertain data a ∈ Rn (b is certain) varying in the set

U = {a : |ai − a∗i |/δi ≤ 1, 1 ≤ i ≤ n,
n∑

i=1

|ai − a∗i |/δi ≤ k} (2)

where a∗i are given “nominal data,” δi > 0 are given quantities, and k ≤ n is an integer (in
literature, this is called “budgeted uncertainty”). Rewrite the Robust Counterpart

aTx ≤ b∀a ∈ U (RC)

in a tractable LO form (that is, write down an explicit system (S) of linear inequalities in
variables x and additional variables such that x satisfies (RC) if and only if x can be extended
to a feasible solution of (S)).



14

Assignment 8: Simplex Method

Exercise 40 Solve the LO program

max −6x1 − 5x2 − 2x3 − x4 − 2x5 − x6
x1 +x2 +x3 = 2

x4 +x5 +x6 = 3
x1 +x4 = 1

x2 +x5 = 2
x ≥ 0

by the Primal Simplex Method, the initial basis being {1, 2, 5, 6}.

Exercise 41 Four students were solving a maximization LO program by the Primal Simplex
Method and arrived at intermediate tableaus as follows:

A.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = −1 0 1 0 0 2 1

B.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 4 −1

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = 1 0 1 0 0 2 1

C.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = 1 0 1 0 0 2 1

D.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 −1

x4 = 3 0 1 0 1 4 0

x6 = 1 0 1 0 0 2 1
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It is known that exactly one of the students did not make a mistake. Identify the correct tableau
and complete the solution process.

Exercise 42 Four students were solving a maximization LO program by the Dual Simplex
Method and arrived at intermediate tableaus as follows:

A.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 −4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = −1 0 1 0 0 −2 1

B.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 −4 −1

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = −1 0 1 0 0 −2 1

C.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 0

x4 = 3 0 1 0 1 4 0

x6 = −1 0 1 0 0 −2 1

D.
x1 x2 x3 x4 x5 x6

16 0 −2 0 0 −4 0

x3 = 5 0 −2 1 0 5 0

x1 = 2 1 3 0 0 −6 −1

x4 = 3 0 1 0 1 4 0

x6 = −1 0 1 0 0 −2 1

It is known that exactly one of the students did not make a mistake. Identify the correct tableau
and complete the solution process.

Exercise 43 1) Consider a parametric LO program:

max
x,s

{
cTx−M

m∑
i=1

si : Ax+ s = b, x ≥ 0, s ≥ 0

}
(PM )

with b ≥ 0, along with LO program

max
x

{
cTx : Ax = b, x ≥ 0

}
(P )
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with m × n matrix A of rank m. Prove that if (P ) is solvable, then there exists M∗ > 0 such
that whenever M > M∗, problem (PM ) is solvable, the optimal values of (PM ) and (P ) are
the same, and all optimal solutions (x, s) to (PM ) are of the form (x, 0), where x is an optimal
solution to (P ).

2) The result of 1) suggests the following single-phase “Big M”-implementation of the PSM:
Given a standard from LO program (P ) with b ≥ 0 (the latter can always be achieved by
multiplying appropriate equality constraints by −1), we associate with it program (PM ) for
which we can easily point out an initial basis comprised of (indexes of) the slack variables s
along with the associated basic feasible solution (x = 0, s = b). We then solve the resulting
problem (PM ) thinking of M as about a large constant. From the description of the PSM it
follows that M will affect only the subsequent vectors of reduced costs (and the decisions we
make based on these costs) and will appear linearly in the reduced costs. Now, making decisions
based on reduced costs requires to compare them with zero, and here we think about M as
about large constant, meaning that reduced cost of the form a+ pM (a and p are known reals)
should be treated as positive when p > 0 and as negative when p < 0; when p = 0, the decision
is made based on what a is. Assuming that (P ) is solvable, by 1) the problem (PM ) for all large
enough values of M is solvable, and every optimal solution to this problem is (x, 0), where x is
an optimal solution to (P ). In other words, when (P ) is solvable, running the big M method,
modulo highly unlikely cycling, will result in arriving at a basic feasible solution with the s-
components equal to 0 and the reduced costs of the form ai + piM where for every i either
ai ≤ 0 and pi ≤ 0, or pi < 0, meaning that the current basic solution is feasible for (P ) and
optimal for all problems (PM ) with large enough values of M and therefore is optimal for (P ).

Use Big M version of the PSM to solve the problem

max −2x1 + x2 + x3 − 6x4
x1 +x2 = 2

x3 +x4 = 2
x1 +x3 = 2

x ≥ 0
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Assignment 9: Flows

Exercise 44 Recall the Transportation problem:

The is a single product, p suppliers with positive supplies a1, ..., ap of the product and
q customers with positive demands b1, ..., bq for the product, with the total supply
equal to the total demand:

p∑
i=1

ai =

q∑
j=1

bj .

The cost of shipping a unit of product from supplier i to customer j is a real cij . Find
the cheapest shipment from the suppliers to the customers, i.e., find the amounts
xij ≥ 0 of product to be shipped from supplier i to customer j in such a way that
every supplier i ships to the customers totally ai units of product, every customer
j gets totally bj units of product, and the total transportation cost

∑
i,j cijxij is as

small as possible.

1. Pose the problem as an uncapacitated Network Flow problem on an appropriate graph.

2. Show that the problem is solvable

3. Prove that there exists an optimal solution x∗ to the problem with the following properties:
a) the total number of nonzero shipments is ≤ p+ q − 1
b) if i1, i2 are two distinct suppliers and j1, j2 are two distinct customers, then among the
four shipments x∗iµ,jν , 1 ≤ µ, ν ≤ 2, at least one is equal to zero.

Exercise 45 Prove that every solvable capacitated Network Flow problem with nonzero vector
of external supplies is equivalent to a capacitated Network flow problem where the vector of
external supplies has at most 2 nonzero entries summing up to 0.

Exercise 46 Consider a transportation problem

Opt = min
xij


p∑

i=1

q∑
j=1

cijxij :

∑
j xij = ai, 1 ≤ i ≤ p∑p
i=1 xij = bj , 1 ≤ j ≤ q

xij ≥ 0


where ai ≥ 0, bi ≥ 0 and

∑
i ai =

∑
j bj .

Assume that supplies ai and the demands bj are somehow decreased (but remain nonnega-
tive), while the new total supply is equal to the new total demand. Is it true that the optimal
value in the problem cannot increase?



18

Assignment 10: Miscellaneous problems

Exercise 47 The Maximal Flow problem is as follows:

Given an oriented graph G = (N , E) with arc capacities {uγ > 0 : γ ∈ E} and two
selected nodes: source i and sink i, find the largest flow from source to sink, that
is, find the largest s such that the vector of external supplies “s at the source, −s
at the sink, zero at all remaining nodes” fits a flow f satisfying the conservation law
and obeying the bounds 0 ≤ fγ ≤ uγ for all γ ∈ E .

1. Write down the Maximal Flow problem as an LO program in variables s (external supply
at the source) and f (flow in the network) and write down the dual problem

2. Let us define a cut as a partition of the set N of nodes of G into two non-overlapping
subsets I and I = N\I such that the source is in I, and the sink is in I. For a cut (I, I),
let the capacity U(I, I) of the cut be defined as

U(I, I) =
∑

γ=(i,j)∈E:i∈I,j∈I

uγ .

Prove that is (s, f) is a feasible solution to the LO reformulation of the Maximal Flow
problem, then for every cut (I, I) one has

s ≤ U(I, I).

Prove that the inequality here is an equality if and only if the flow fγ in every arc γ which
starts in I and ends in I (“forward arc of the cut”) is equal to uγ , and the flow fγ in every
arc γ which starts in I and ends in I (“backward arc of the cut”) is zero; if it is the case,
s is the optimal value in the Maximal Flow problem.

3. ∗ Invoking the LP Duality Theorem, prove the famous Max Flow - Min Cut Theorem: If
the Max Flow problem is solvable, then its optimal value is equal to the minimum, over
all cuts, capacity of a cut.

Exercise 48 Consider the Assignment problem as follows:

There are p jobs and p workers. When job j is carrie out by worker i, we get profit cij .
We want to associate jobs with workers in such a way that every work is assigned
to exactly one worker, and no worker is assigned two or more jobs. Under these
restrictions, we seek to maximize the total profit.

1. Let G be a graph with 2p nodes, p of them representing the workers, and remaining p
representing the jobs. Every worker node i, 1 ≤ i ≤ p, is linked by an arc (i, p + j) with
every job node p + j, 1 ≤ j ≤ p, the capacity of the arc is +∞, and the transportation
cost is −ci,p+j . The vector of external supplies has entries indexed by the worker nodes
equal to 1 and entries indexed by the job nodes equal to -1.

Prove that the basic feasible solutions f = {fi,p+j}1≤i,j≤p of the resulting Network Flow
problem are exactly the assignements, that is, flows given by permutations i 7→ σ(i) of the
index set {1, 2, ..., p} according to fi,p+σ(i) = 1 and fi,p+j = 0 when j ̸= σ(i).
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2. Extract from the previous item that the Assignment problem can be reduced to a Network
Flow problem (more exactly, to finding an optimal basic feasible solution in a Network
Flow problem).

Pay attention to the following two facts:
• every spanning tree of the graph in question has 2p − 1 arcs, while every basic feasible

solution has just p nonzero entries, meaning that when p > 1, all basic feasible solutions are
degenerate.

• the flows {fi,p+j}pi,j=1 on G can be associated with p × p matrices Fij = fi,p+j , and with
this interpretation, the feasible set of the above Network Flow problem is nothing but the set of
all double stochastic p × p matrices. Thus, the fact established in the first item: “the extreme
points of the feasible set of the problem (i.e., the vertices of its feasible set) are exactly the
assignments” recoves anew the Birkhoff Theorem: “The extreme points of the set of double
stochastic matrices are exactly the permutation matrices.”

Exercise 49 Consider the following modification of Assignment problem:

(!) There are q jobs and p ≥ q workers; assigning worker i with job j, we get profit
cij . We want to assign every job with an exactly one worker in such a way that no
worker is assigned to two or more jobs (although some of the workers can be not
assigned to jobs at all) and want to maximize the total profit under this assignment.

1. Reformulate the problem as an assignment problem.

2. Assume that all cij are either 0 or 1; let us say that cij = 1 means that worker i knows
how to do job j, and cij = 0 means that worker i does not know how to do job j, and
that an assignment (“exactly one worker for every job, no worker with more than one job
assigned”) is good if every job is assigned to a worker which knows how to do this job.

Consider the network with p+q+2 nodes: the source (node 0), p worker nodes (1, 2, ..., p),
q job nodes (p+1, ..., p+ q) and the sink (node p+ q+1). The arcs, every one of capacity
1, are:
• p arcs “source 7→ worker node (i.e., arcs (0, i), 1 ≤ i ≤ p);
• the arcs “worker i 7→ “job j which the worker i knows how to do” (i.e., arcs (i, p + j),
1 ≤ i ≤ p, 1 ≤ j ≤ q, corresponding to the pairs (i, j) with cij = 1);
• q arcs “job node 7→ sink” (i.e., arcs (p+ j, p+ q + 1), 1 ≤ j ≤ q)
along with the Maximal flow problem on this network.

(a) Prove that the existence of a good assignment is equivalent to the fact that the
magnitude of the maximal flow in the above Max Flow problem is equal to q.

(b) Use the Max Flow – Min Cut Theorem to prove the following fact:

(!!) In (!) with zero/one cij , an assignment with profit q (i.e., an assign-
ment where every job j is assigned to a worker which knows how to do this
job) exists if and only if for every subset S of the set {1, ..., q} of jobs the
total number of workers which know how to do a job from S is at least the
cardinality of S.
Note: (!!) is called the Marriage Lemma, according to the following interpre-
tation: there are q young ladies and p young men, some of the ladies being
acquainted with some of the men. When it is possible to select for every one
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of the ladies a bridegroom from the above group of men in such a way that
different ladies get different bridegrooms, and every lady is acquianted with
her bridegroom? The answer is: it is possible if and only if for every set S
of the ladies, the total number of men acquainted each with at least one of
the ladies from S is at least the cardinality of S.


