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Abstract

We study semi-infinite systems of Linear Matrix Inequalities which are generically
NP-hard. For these systems, we introduce computationally tractable approxima-
tions and derive quantitative guarantees of their quality. As applications, we discuss
the problem of maximizing a Hermitian quadratic form over the complex unit cube
and the problem of bounding the complex structured singular value. With the help
of our complex Matrix Cube Theorem we demonstrate that the standard scaling
upper bound on µ(M) is a tight upper bound on the largest level of structured
perturbations of the matrix M for which all perturbed matrices share a common
Lyapunov certificate for the (discrete time) stability.

1 Introduction

Numerous applications of Semidefinite Programming, especially those in Robust Opti-
mization (see, e.g., [1, 7, 8, 5, 2] and references therein) require processing of semi-infinite
systems of Linear Matrix Inequalities (LMIs) of the form

A[x,∆] � 0 ∀∆ ∈ γ∆, (1)

where x is the vector of design variables, ∆ ∈ RN represents perturbations of the data,
A[x,∆] is a symmetric m × m matrix which is “bi-affine”, i.e., affine in x for ∆ fixed,
and affine in ∆ for x fixed, ∆ ⊂ RN is the set of “data perturbations of magnitude not
exceeding 1”, and γ ≥ 0 is the “uncertainty level”. As a simple and instructive example
of this type, consider the following Lyapunov Stability Analysis problem. We are given a
“nominal” linear dynamical system

ż(t) = S?z(t). (2)
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The m×m matrix S? of the system is partitioned into rectangular blocks Sp? , p = 1, ..., k, of
sizes `p×rp. In “real life”, the blocks are affected by perturbations Sp? 7→ Sp?+∆p which we
assume to be norm-bounded: ‖∆p‖ ≤ γ, where ‖·‖ is the standard matrix norm (maximal
singular value). Except for this norm-boundedness assumption, the perturbations are
“completely free” and may even depend on time. With this uncertainty model, the actual
description of the dynamical system becomes

ż(t) =


S? +

k∑

p=1

LTp ∆p(t)Rp


 z(t), (3)

(the matrices Rp ∈ Rrp×m, Lp ∈ R`r×m are readily given by the positions of the blocks);
all we know about the perturbations ∆p(t) ∈ R`p×rp is that they are measurable functions
of t such that ‖∆p(t)‖ ≤ γ for all t.

A basic question pertaining to a dynamical system is whether it is stable, i.e., whether
all its trajectories tend to 0 as t → ∞. The standard sufficient stability condition is
that all matrices S we can get from S? by the perturbations in question share a common
Lyapunov stability certificate, which is a positive definite matrix X such that

SX +XST ≺ 0.

By homogeneity reasons, the existence of such a common Lyapunov stability certificate
is equivalent to the existence of a positive definite solution to the semi-infinite LMI

A[X,∆] ≡ −I − [S?X +XST? ] +
k∑
p=1

[
LHp ∆p[RpX] + [RpX]T∆T

pLp
]
� 0

∀∆p ∈ R`p×rp , ‖∆p‖ ≤ γ, p = 1, ..., k,
(4)

which is of the generic form (1).
The Lyapunov Stability Analysis example is instructive in two ways: it demonstrates

the importance of semi-infinite LMIs and suggests specific ways of representing the per-
turbations ∆, the set ∆ and the matrix-valued function A[x,∆] appearing in (1). Namely,
in this example

1) A perturbation ∆ is a collection of “perturbation blocks” – matrices ∆p of given
sizes `p × rp, p = 1, ..., k;

2) The mapping A[x,∆] is of the form

A[x,∆] = A[x] +
k∑

p=1

[
LTp ∆pRp[x] +RT

p [x]∆T
pLp

]
, (5)

where A[x] is a symmetric m × m matrix, Lp ∈ R`p×m, Rp[x] ∈ Rrp×m and A[x],
Rp[x] are affine in x;

3) The set ∆ of “perturbations of magnitude ≤ 1” is comprised of all collections
(∆1, ...,∆k) such that ∆p ∈ R`p×rp , ‖∆p‖ ≤ 1 and, besides this, matrices ∆p, for
prescribed values of p, are restricted to be scalar (i.e., of the form δpIrp ; of course,
`p = rp for indices p in question).
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In fact, in our motivating example there was no need for scalar perturbations; nevertheless,
there are many reasons to introduce them rather than to allow all perturbations to be of
“full size”. The simplest of these reasons is that with scalar perturbations, the outlined
perturbation model allows to represent in the form of (5) every (affine in x and in ∆)
function A[x,∆] with symmetric matrix values; to this end it suffices to treat every
entry ∆p in ∆ ∈ RN as a scalar matrix perturbation ∆pIm. We see that when scalar
perturbations are allowed, items 1) and 2) above do not restrict the “expressive abilities”
of the perturbation model (provided that we restrict ourselves to affine perturbations).
What does restrict generality, is the part of item 3) which says that the only restriction on
∆ = (∆1, ...,∆k) ∈∆, except for the requirement for some of the perturbation blocks ∆p

to be scalar matrices, is the common norm bound ‖∆p‖ ≤ 1 on all perturbation blocks.
This assumption provides (1) with a specific structure which, as we shall see, allows for a
productive processing of (1).

It makes sense to assume once for ever that the matrices ∆p are square. This does not
restrict generality, since we can always enforce `p = rp by adding to Lp or to Rp a number
of zero rows; it is easily seen that this modification does not affect anything except for
simplifying notation. From now on, we denote the common value of `p and rp by dp.

Typical problems associated with a semi-infinite LMI of the form (1) are to find a
point in the feasible set of the LMI and to minimize a linear objective over this feasible
set. These are convex problems with “implicitly defined” feasible set; basically all we
need in order to solve such a problem efficiently is a feasibility oracle capable to solve
efficiently the analysis problem as follows: Given x, check whether x is feasible for (1) (for
details on relations between “analysis and synthesis” in Convex Optimization, see [9] or
[3], Chapter 5). Note that with model 1) – 3), the analysis problem for (1) is the “Matrix
Cube” problem as follows:

Given a symmetric m×m matrix A, dp×m matrices Lp, Rp, p = 1, ..., k, and
γ ≥ 0, check whether all matrices of the form

A+ γ
k∑

p=1

[LTp ∆pRp +RT
p ∆T

pLp],

where ‖∆p‖ ≤ 1 for all p and ∆p = δpIdp for prescribed values of p, are positive
semidefinite.

Unfortunately, the Matrix Cube problem, same as the majority of other semi-infinite
LMIs known from the literature, in general is NP-hard. However, it was found in [4]
that when all perturbations are scalar, the problem admits a computationally tractable
approximation which is tight within a factor of ϑ = O(1)

√
max
p
dp. Specifically,

Given a Matrix Cube problem with scalar perturbation blocks, one can build
an explicit system S of LMIs in variables u of size polynomial in m and

∑
p
dp

with the following property: if S is feasible, the answer in the Matrix Cube
problem is affirmative; if S is infeasible, then the answer in the Matrix Cube
problem with the perturbation level γ replaced by ϑγ is negative. Besides
this, if the data A, R1, ..., Rk in the Matrix Cube problem depend affinely on
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a decision vector x, while L1, ..., Lk are independent of x (cf. (5)), then S is a
system of LMIs in x, u.

As it is shown in [4], this result allows to build tight approximations of several important
NP-hard problems of the form (1).

The goal of this paper is to extend the approach and the results of [4] from the case of
purely scalar perturbations onto the more general perturbation model 1) – 3). We consider
both the outlined model of real perturbations and its complex-valued counterpart (which
is important for some of control applications); in both real and complex cases, we build
computationally tractable approximations of the respective Matrix Cube problems and
demonstrate that these approximations are tight within a factor O(1)

√
ds, where ds is

the maximum of sizes dp of scalar perturbation blocks in ∆; surprisingly, the “full size”
perturbation blocks, however large they are, do not affect the quality of the approximation.

The rest of the paper is organized as follows. In the remaining part of Introduction,
we fix the notation to be used. Section 2 deals with the technically slightly more diffi-
cult complex case version of the Matrix Cube problem; the real case of the problem is
considered in Section 3. In concluding sections 4, 5 we illustrate our main results by
their applications to the problem of maximizing a positive definite quadratic form over
the “complex cube” {z ∈ Cm : |zp| ≤ 1, p = 1, ...,m}, and to the problem of bounding
from above an important Control entity – the complex structured singular value.

Notation we use is as follows:
• Cm×n, Rm×n stand for the spaces of complex, respectively, real m× n matrices. As

always, we write Cn and Rn as shorthands for Cn×1, Rn×1, respectively.
For A ∈ Cm×n, AT stands for the transpose, and AH for the conjugate transpose of

A:
(AH)rs = A∗sr,

where z∗ is the conjugate of z ∈ C.
Both Cm×n, Rm×n are equipped with the inner product

〈A,B〉 = Tr(ABH) =
∑
r,s

ArsB
∗
rs.

The norm associated with this inner product is denoted by ‖ · ‖2.
We use the notation Im, Om×n for the unit m×m, respectively, the zero m×n matrices.
• Hm, Sm are real vector spaces of m × m Hermitian, respectively, real symmetric

matrices. Both are Euclidean spaces w.r.t. the inner product 〈·, ·〉.
For a Hermitian/real symmetric m × m matrix A, λ(A) is the vector of eigenvalues

λr(A) of A taken with their multiplicities in the non-ascending order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A).

For a m × n matrix A, σ(A) = (σ1(A), ..., σn(A))T is the vector of singular values of
A:

σr(A) = λ1/2
r (AHA),
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and
‖A‖ = σ1(A) = max {‖Ax‖2 : x ∈ Cn, ‖x‖2 ≤ 1}

(by evident reasons, when A is real, one can replace Cn in the right hand side with Rn).
For Hermitian/real symmetric matrices A, B, we write A � B (A � B) to express

that A− B is positive semidefinite (resp., positive definite). We denote by Hn
+ (Sn+) the

cones of positive semidefinite Hermitian (resp., positive semidefinite real symmetric) n×n
matrices.

For X � 0, X1/2 denotes the positive semidefinite square root of X (uniquely defined
by the relations X1/2 � 0, (X1/2)2 = X).
• On many occasions in this paper we use the term “efficient computability” of various

quantities. An appropriate definition of this notion does exist1), but for our purposes
here it suffices to agree that all “LMI-representable” quantities – those which can be
represented as optimal values in semidefinite programs

min
x

{
cTx : A(x) ≡ A0 +

N∑

i=1

xiAi � 0

}
, [Ai ∈ SK ]

or generalized eigenvalue problems

min
x,ω

{
ω : A(x) ≡ A0 +

N∑
i=1

xiAi � 0, B(x) ≡ B0 +
N∑
i=1

xiBi � ωA(x)
}

[Ai, Bi ∈ SK ]

are efficiently computable functions of the data c, A0, ..., AN , resp., A0, ..., AN , B0, ..., BN .

2 Matrix Cube Theorem, Complex case

The “Complex Matrix Cube” problem is as follows:

CMC: Let m, d1,...,dk be positive integers, and A ∈ Hm
+ , Lp, Rp ∈ Cdp×m be

given matrices, Lp 6= 0. Let also a partition {1, 2, ..., k} = Ir
s ∪ Ic

s ∪ Ic
f of the

index set {1, ..., k} into three non-overlapping sets be given. With these data,
we associate a parametric family of “matrix boxes”

U [γ] =



A+ γ

k∑

p=1

[LHp ∆pRp +RH
p ∆H

p Lp] :
∆p ∈∆p, ‖∆p‖ ≤ 1,

p = 1, ..., k



 ⊂ Hm,

(6)
where γ ≥ 0 is the parameter and

∆p =





{δIdp : δ ∈ R}, p ∈ Ir
s [“real scalar perturbations”]

{δIdp : δ ∈ C}, p ∈ Ic
s [“complex scalar perturbations”]

Cdp×dp , p ∈ Ic
f [“full size complex perturbations”]

. (7)

Given γ ≥ 0, check whether
U [γ] ⊂ Hm

+ (I[γ])

1)For a definition which fits best of all the contents of the paper, see [3], Chapter 5.
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Remark 2.1 In the sequel, we always assume that dp > 1 for p ∈ Ic
s . Indeed,

one-dimensional complex scalar perturbations can always be regarded as full
size complex perturbations.

It is well-known that the CMC problem is, in general, NP-hard. Our goal is to build
a “computationally tractable” sufficient condition for the validity of (I[γ]) and to under-
stand how “conservative” is this condition.

Consider, along with predicate (I[γ]), the predicate

∃Yp ∈ Hm, p = 1, ..., k such that :
(a) Yp � LHp ∆pRp +RH

p ∆H
p Lp ∀(∆p ∈∆p, ‖∆p‖ ≤ 1), p = 1, ..., k,

(b) A− γ k∑
p=1

Yp � 0.

(II[γ])
Our main result is as follows:

Theorem 2.1 [The Complex Matrix Cube Theorem] One has:
(i) Predicate (II[γ]) is stronger than (I[γ]) – the validity of the former predicate

implies the validity of the latter one.
(ii) (II[γ]) is computationally tractable – the validity of the predicate is equivalent to

the solvability of the system of LMIs

(s.R) Yp ±
[
LHp Rp +RH

p Lp
]
� 0, p ∈ Ir

s ,

(s.C)

[
Yp − Vp LHp Rp

RH
p Lp Vp

]
� 0, p ∈ Ic

s ,

(f.C)

[
Yp − λpLHp Lp RH

p

Rp λpIdp

]
� 0, p ∈ Ic

f

(∗) A− γ k∑
p=1

Yp � 0.

(8)

in the matrix variables Yp ∈ Hm, p = 1, ..., k, Vp ∈ Hm, p ∈ Ic
s , and the real variables λp,

p ∈ Ic
f .

(iii) “The gap” between (I[γ]) and (II[γ]) can be bounded solely in terms of the max-
imal size

ds = max {dp : p ∈ Ir
s ∪ Ic

s } (9)

of the scalar perturbations (here the maximum over an empty set by definition is 0).
Specifically, there exists a universal function ϑC(·) such that

ϑC(ν) ≤ 4π
√
ν, ν ≥ 1, (10)

and
if (II[γ]) is not valid, then (I[ϑC(ds)γ]) is not valid. (11)
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Corollary 2.1 The efficiently computable supremum γ̂ of those γ ≥ 0 for which the
system of LMIs (8) is solvable is a lower bound on the supremum γ? of those γ ≥ 0 for
which U [γ] ⊂ Hm

+ , and this lower bound is tight within the factor ϑC(ds):

γ̂ ≤ γ? ≤ ϑC(ds)γ̂. (12)

Remark 2.2 From the proof of Theorem 2.1 it follows that ϑC(0) = 4
π

, ϑC(1) = 2. Thus,

• when there are no scalar perturbations: Ir
s = Ic

s = ∅, the factor ϑ in the implication

¬(II[γ])⇒ ¬(I[ϑγ]) (13)

can be set to 4
π

= 1.27...

• when there are no complex scalar perturbations (cf. Remark 2.1) and all real scalar
perturbations are non-repeated (Ic

s = ∅, dp = 1 for all p ∈ Ir
s ), the factor ϑ in (13)

can be set to 2.

Remark 2.3 From the proof of the Matrix Cube Theorem 2.1 it follows that its statement
remains intact when in the definition (6) of the matrix box, the restrictions ‖∆p‖ ≤ 1,
p ∈ Ic

f , on the norms of full size perturbations are replaced with the restrictions ‖∆p‖(p) ≤
1, where ‖ · ‖(p) are norms on Cdp×dp such that ‖∆p‖ ≤ ‖∆p‖(p) for all ∆p ∈ Cdp×dp

and ‖∆p‖ = ‖∆p‖(p) whenever ∆p is a rank 1 matrix (e.g., one can set ‖ · ‖(p) to be the
Frobenius norm ‖ · ‖2 of a matrix).

The following simple observation is crucial when applying Theorem 2.1 in the context of
semi-infinite bi-affine LMIs of the form (1).

Remark 2.4 Assume that the data A, R1, ..., Rk of the Matrix Cube problem are affine
in a vector of parameters x, while the data L1, ..., Lk are independent of x (cf. (5)). Then
(8) is a system of LMIs in the variables Yp, Vp, λp and x.

2.1 Proof of Theorem 2.1

Item (i) is evident. We prove item (ii); item (iii) is proved in Section 2.1.2.

2.1.1 Proof of Theorem 2.1.(ii)

The equivalence between the validity of (II[γ]) and the solvability of (8) is readily given
by the following facts (the first of them is perhaps new):

Lemma 2.1 Let B ∈ Cm×m and Y ∈ Hm. Then the relation

Y � δB + δ∗BH ∀(δ ∈ C, |δ| ≤ 1) (14)

is satisfied if and only if

∃V ∈ Hm :

[
Y − V BH

B V

]
� 0. (15)
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Lemma 2.2 [see [6]] Let L ∈ C`×m and R ∈ Cr×m.
(i) Assume that L,R are nonzero. A matrix Y ∈ Hm satisfies the relation

Y � LHUR +RHUHL ∀(U ∈ C`×r : ‖U‖ ≤ 1) (16)

if and only if there exists a positive real λ such that

Y � λLHL+ λ−1RHR. (17)

(ii) Assume that L is nonzero. A matrix Y ∈ Hm satisfies (16) if and only if there
exists λ ∈ R such that [

Y − λLHL RH

R λIr

]
� 0. (18)

Lemmas 2.1, 2.2 ⇒ Theorem 2.1.(ii). All we need to prove is that a collection of
matrices Yp satisfies the constraints in (II[γ]) if and only if it can be extended by properly
chosen Vp, p ∈ Ic

f , and λp, p ∈ Ic
s , to a feasible solution of (8). This is immediate, since

matrices Yp, p ∈ Ic
f , satisfy the corresponding constraints (II[γ].a) if and only if these

matrices along with some matrices Vp satisfy (8.s.C)) (Lemma 2.1), while matrices Yp,
p ∈ Ic

s , satisfy the corresponding constraints (II[γ].a) if and only if these matrices along
with some reals λp satisfy (8.f.C) (Lemma 2.2.(ii)).

Proof of Lemma 2.1. ”if” part: Assume that V is such that

[
Y − V BH

B V

]
� 0.

Then, for every ξ ∈ Cn and every δ ∈ C, |δ| = 1, we have

0 ≤
[

ξ
−δ∗ξ

]H [
Y − V BH

B V

] [
ξ
−δ∗ξ

]
= ξH(Y − V )ξ + ξHV ξ − ξH [δB + δ∗BH ]ξ,

so that Y � δB+δ∗BH for all δ ∈ C, |δ| = 1, which, by evident convexity reasons, implies
(14).

”only if” part: Let Y ∈ Hm satisfy (14). Assume, on the contrary to what should

be proved, that there does not exist V ∈ Hm such that

[
Y − V BH

B V

]
� 0, and let us

lead this assumption to a contradiction. Observe that our assumption means that the
optimization program

min
t,V

{
t :

[
tIm + Y − V BH

B V

]
� 0

}
(19)

has no feasible solutions with t ≤ 0; since problem (19) is clearly solvable, its optimal
value is therefore positive. Now, our problem is a conic problem2) on the (self-dual) cone
of positive semidefinite Hermitian matrices; since the problem clearly is strictly feasible,
the Conic Duality Theorem says that dual problem

max
Z∈Hm,W∈Cm×m




−2<

{
Tr(WHB)

}
− Tr(ZY ) :

[
Z WH

W Z

]
� 0, (a)

Tr(Z) = 1 (b)





(20)

2)For background on conic problems and conic duality, see [10], Chapter 4, or [3], Chapter 2.
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is solvable with the same – positive – optimal value as the one of (19). In (20), we can eas-
ily eliminate the W -variable; indeed, constraint (20.a), as it is well-known, is equivalent
to the fact that Z � 0 and W = Z1/2XZ1/2 with X ∈ Cm×m, ‖X‖ ≤ 1. With this param-
eterization of W , the W -term in the objective of (20) becomes −2<{Tr(XHZ1/2BZ1/2)};
as it is well-known, the maximum of the latter expression in X, ‖X‖ ≤ 1, equals to
2‖σ(Z1/2BZ1/2)‖1. Since the optimal value in (20) is positive, we arrive at the following
intermediate conclusion:

(*) There exists Z ∈ Hm, Z � 0, such that

2‖σ(Z1/2BZ1/2)‖1 > Tr(ZY ) = Tr(Z1/2Y Z1/2). (21)

The desired contradiction is now readily given by the following simple observation:

Lemma 2.3 Let S ∈ Hm, C ∈ Cm×m be such that

S � δC + δ∗CH ∀(δ ∈ C, |δ| = 1). (22)

Then 2‖σ(C)‖1 ≤ Tr(S).

To see that Lemma 2.3 yields the desired contradiction, note that the matrices S =
Z1/2Y Z1/2, C = Z1/2BZ1/2 satisfy the premise of the lemma by (14), and for these
matrices the conclusion of the lemma contradicts (21).

Proof of Lemma 2.3: As it was already mentioned,

‖σ(C)‖1 = max
X

{
<{Tr(XCH)} : ‖X‖ ≤ 1

}
.

Since the extreme points of the set {X ∈ Cm×m : ‖X‖ ≤ 1} are unitary matrices, the
maximizer X∗ in the right hand side can be chosen to be unitary: XH

∗ = X−1
∗ ; thus, X∗

is a unitary similarity transformation of a diagonal unitary matrix. Applying appropriate
unitary rotation A 7→ UHAU , UH = U−1, to all matrices involved, we may assume that
X∗ itself is diagonal. Now we are in the situation as follows: we are given matrices C, S
satisfying (22) and a diagonal unitary matrix X∗ such that ‖σ(C)‖1 = <{Tr(X∗CH)}. In
other words,

‖σ(C)‖1 = <
{

m∑

`=1

(X∗)``C∗``

}
≤

m∑

`=1

|C``| (23)

(the concluding inequality comes from the fact that X∗ is unitary). On the other hand,
let e` be the standard basic orths in Cm. By (22), we have

δC`` + δ∗C∗`` = eH` [δC + δ∗CH ]e` ≤ eH` Se` = S`` ∀(δ ∈ C, |δ| = 1),

whence, maximizing in δ, 2|C``| ≤ S``, ` = 1, ...,m, which combines with (23) to imply
that 2‖σ(C)‖1 ≤ Tr(S).
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Proof of Lemma 2.2. (i), “if” part: Let (17) be valid for certain λ > 0. Then for every
ξ ∈ Cm one has

ξHY ξ ≥ λξHLHLξ + λ−1ξHRHRξ ≥ 2
√
ξHLHLξ

√
ξHRHRξ = 2‖Lξ‖2‖Rξ‖2

⇓
∀(U, ‖U‖ ≤ 1) :
ξHY ξ ≥ 2|[Lξ]HU [Rξ]| ≥ 2<{[Lξ]HU [Rξ]} = ξH [LHUR +RHUHL]ξ,

as claimed.
(i), “only if” part: Assume that Y satisfies (16) and L,R are nonzero; we prove that

then there exists λ > 0 such that (17) holds true. First, observe that w.l.o.g. we may
assume that L and R are of the same sizes r × n (to reduce the general case to this
particular one, it suffices to add several zero rows either to L (when ` < r), or to R (when
` > r)). We have the following chain of equivalences:

(16)
m

∀ξ ∈ Cm : ξHY ξ ≥ 2‖Lξ‖2‖Rξ‖2

m
∀(ξ ∈ Cn, η ∈ Cr) : ‖η‖2 ≤ ‖Lξ‖2 ⇒ ξHY ξ − ηHRξ − ξHRHη ≥ 0

m
∀(ξ ∈ Cm, η ∈ Cr) : ξHLHLξ − ηHη ≥ 0⇒ ξHY ξ − ηHRξ − ξHRHη ≥ 0

m
∃(λ ≥ 0) :

[
Y RH

R

]
− λ

[
LHL

−Ir

]
� 0 [S-Lemma]

m
(a)

[
Y − λLHL RH

R λIr

]
� 0

(24)

Recall that S-Lemma we have referred to is the following extremely useful statement:

Let P,Q be real symmetric matrices of the same size such that x̄TPx̄ > 0 for
certain x̄. Then the implication

xTPx ≥ 0⇒ xTQx ≥ 0

holds true if and only if there exists λ ≥ 0 such that Q � λP .

From this “real symmetric case” statement one can immediately derive its “Hermitian”
analogy (the one we have actually used), since Hermitian quadratic forms on Cm can be
treated as real quadratic forms on R2m.

Condition (24.a), in view of R 6= 0, clearly implies that λ > 0. Therefore, by the Schur
Complement Lemma (SCL), (24.a) is equivalent to

Y − λLHL− λ−1RHR � 0,

as claimed.
(ii): When R 6= 0, (ii) is clearly equivalent to (i) and thus is already proved. When

R = 0, it is evident that (18) can be satisfied by properly chosen λ ∈ R if and only if
Y � 0, which is exactly what is stated by (16) when R = 0.
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2.1.2 Proof of Theorem 2.1.(iii)

In order to prove (iii), it suffices to prove the following statement:

Claim 2.1 Assume that γ ≥ 0 is such that the predicate (II[γ]) is not valid. Then the
predicate (I[ϑC(ds)γ]), with appropriately defined function ϑC(·) satisfying (10), is also
not valid.

We are about to prove Claim 2.1. The case of γ = 0 is trivial, so that from now on we
assume that γ > 0 and that all matrices Lp, Rp are nonzero (the latter assumption, of
course, does not restrict generality). From now till the end of Section 2.1, we assume that
we are under the premise of Claim 2.1, i.e., the predicate (II[γ]) is not valid.

2.1.3 First step: duality

Consider the optimization program

min
t,{Yp∈Hm}p∈Irs
{Up,Vp∈Hm}p∈Ics

,

{λp,νp∈R}p∈Ic
f





t :

Yp ± [LHp Rp +RH
p Lp]︸ ︷︷ ︸

2Ap,Ap=AHp

� 0, p ∈ Ir
s , (a)

[
Up RH

p Lp
LHp Rp Vp

]
� 0, p ∈ Ic

s , (b)

[
λp 1
1 νp

]
� 0, p ∈ Ic

f , (c)

tI + A− γ
[ ∑
p∈Ir

s

Yp +
∑
p∈Ic

s

[Up + Vp]

+
∑
p∈Ic

f

[λpL
H
p Lp + νpR

H
p Rp]

]
� 0 (d)





. (25)

Introducing “bounds” Yp = Up +Vp for p ∈ Ic
s and Yp � λpL

H
p Lp + νpR

H
p Rp for p ∈ Ic

f and
then eliminating the variables Up, p ∈ Ic

s , νp, p ∈ Ic
f , we convert (25) into the equivalent

problem

min
t,{Yp∈Hm}k

p=1
{Vp∈Hm}p∈Ics

,

{λp∈R}p∈Ic
f





t :

Yp ± [LHp Rp +RH
p Lp] � 0, p ∈ Ir

s ,

[
Yp − Vp RH

p Lp
LHp Rp Vp

]
� 0, p ∈ Ic

s ,

[
Yp − λpLHp Lp RH

p

Rp λpIdp

]
� 0, p ∈ Ic

f ,

tI + A− γ k∑
p=1

Yp � 0





.

By (already proved) item (ii) of Theorem 2.1, predicate (II[γ]) is valid if and only if
the latter problem, and thus problem (25), admits a feasible solution with t ≤ 0. We
are in the situation when (II[γ]) is not valid; consequently, (25) does not admit feasible
solutions with t ≤ 0. Since the problem clearly is solvable, it means that the optimal value
in the problem is positive. Problem (25) is a conic problem on the product of cones of
Hermitian and real symmetric positive semidefinite matrices. Since (25) is strictly feasible
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and bounded below, the Conic Duality Theorem implies that the conic dual problem of
(25) is solvable with the same positive optimal value. Taking into account that the cones
associated with (25) are self-dual, the dual problem, after straightforward simplifications,
becomes the conic problem

maximize −2γ

[
∑
p∈Ir

s

Tr([Pp −Qp]Ap) +
∑
p∈Ic

s

<{Tr
(
SpR

H
p Lp

)
}+

∑
p∈Ic

f

wp

]
− Tr(ZA)

s.t.
(a.1) Pp, Qp � 0, p ∈ Ir

s ,
(a.2) Pp +Qp = Z, p ∈ Ir

s ;

(b)

[
Z SHp
Sp Z

]
� 0, p ∈ Ic

s ;

(c)

[
Tr(LpZL

H
p ) wp

wp Tr(RpZR
H
p )

]
� 0, p ∈ Ic

f ;

(d) Z � 0,Tr(Z) = 1.
(26)

in matrix variables Z ∈ Hm
+ , Pp, Qp ∈ Hm, p ∈ Ir

s , Sp ∈ Cm×m, p ∈ Ic
s , and real variables

wp, p ∈ Ic
f . Using (26.c), we can eliminate the variables wp, thus coming the following

equivalent reformulation of the dual problem:

maximize 2γ
[
− ∑

p∈Ir
s

Tr([Pp −Qp]Ap)− ∑
p∈Ic

s

<{Tr
(
SpR

H
p Lp

)
}

+
∑
p∈Ic

f

√
Tr(LpZLHp )

︸ ︷︷ ︸
‖LpZ1/2‖2

√
Tr(RpZRH

p )
︸ ︷︷ ︸
‖RpZ1/2‖2

]
− Tr(ZA)

s.t.
(a.1) Pp, Qp � 0, p ∈ Ir

s ,
(a.2) Pp +Qp = Z, p ∈ Ir

s ;

(b)

[
Z SHp
Sp Z

]
� 0, p ∈ Ic

s ;

(c) Z � 0,Tr(Z) = 1.

(27)

Next we eliminate the variables Sp, Qp, Rp. It is clear that

1. (27.a) is equivalent to the fact that Pp = Z1/2P̂pZ
1/2, Qp = Z1/2Q̂pZ

1/2 with
P̂p, Q̂p � 0, P̂p + Q̂p = Im. With this parameterization of Pp, Qp, the correspond-
ing terms in the objective become −2γ Tr([P̂p − Q̂p](Z

1/2ApZ
1/2)). Note that the

matrices Ap are Hermitian (see (25)), and observe that if A ∈ Hm, then

max
P,Q∈Hm

{Tr([P −Q]A) : 0 � P,Q, P +Q = Im} = ‖λ(A)‖1 ≡
∑

`

|λ`(A)|

(w.l.o.g., we may assume that A is Hermitian and diagonal, in which case the relation
becomes evident). In view of this observation, partial optimization in Pp, Qp in (27)
allows to replace in the objective of the problem the terms −2γ Tr([Pp − Qp]Ap)
with 2γ‖λ(Z1/2ApZ

1/2)‖1 and to eliminate the constraints (27.a).

12



2. Same as in the proof of Lemma 2.1, constraints (27.b) are equivalent to the fact that
Sp = −Z1/2UpZ

1/2 with ‖Up‖ ≤ 1. With this parameterization, the corresponding
terms in the objective become 2γ<{Tr(Up(Z

1/2RH
p LpZ

1/2))}, and the maximum

of this expression in Up, ‖Up‖ ≤ 1, equals to 2γ‖σ(Z1/2RH
p LpZ

1/2)‖1. With this
observation, partial optimization in Sp in (27) allows to replace in the objective
of the problem the terms −2γ<{Tr(SpR

H
p Lp)} with 2γ‖σ(Z1/2RH

p LpZ
1/2)‖1 and to

eliminate the constraints (27.b).

After the above reductions, problem (27) becomes

maximize 2γ
[ ∑
p∈Ir

s

‖λ(Z1/2ApZ
1/2)‖1 +

∑
p∈Ic

s

‖σ(Z1/2RH
p LpZ

1/2)‖1

+
∑
p∈Ic

f

‖LpZ1/2‖2‖RpZ
1/2‖2

]
− Tr(ZA)

s.t. Z � 0,Tr(Z) = 1.

(28)

Recall that we are in the situation when the optimal value in problem (26), and thus in
problem (28), is positive. Thus, we arrive at an intermediate conclusion as follows.

Lemma 2.4 Under the premise of Claim 1, there exists Z ∈ Hm, Z � 0, such that

2γ
[ ∑
p∈Ir

s

‖λ(Z1/2ApZ
1/2)‖1 +

∑
p∈Ic

s

‖σ(Z1/2RH
p LpZ

1/2)‖1

+
∑
p∈Ic

f

‖LpZ1/2‖2‖RpZ
1/2‖2

]
> Tr(Z1/2AZ1/2).

(29)

Here the Hermitian matrices Ap are given by

2Ap = LHp Rp +RH
p Lp, p ∈ Ir

s . (30)

2.1.4 Second step: probabilistic interpretation of (29)

The major step in completing the proof of Theorem 2.1.(iii) is based on a probabilistic
interpretation of (29). This step is described next.

Preliminaries. Let us define a standard Gaussian vector ξ in Rn (notation: ξ ∈ N n
R)

as a real Gaussian random n-dimensional vector with zero mean and unit covariance
matrix; in other words, ξ` are independent Gaussian random variables with zero mean
and unit variance, ` = 1, ..., n. Similarly, we define a standard Gaussian vector ξ in Cn

(notation: ξ ∈ N n
C) as a complex Gaussian random n-dimensional vector with zero mean

and unit (complex) covariance matrix. In other words, ξ` = α` + iαn+`, where α1, ..., α2n

are independent real Gaussian random variables with zero means and variances 1
2
, and i

is the imaginary unit.
We shall use the facts established in the next three propositions.

Proposition 2.1 Let ν be a positive integer, and let ϑS(ν), ϑH(ν) be given by the relations

ϑ−1
S (ν) = min

α

{
Eξ

{
| ν∑
`=1

α`ξ
2
` |
}

: α ∈ Rν , ‖α‖1 = 1
}

[ξ ∈ N ν
R],

ϑ−1
H (ν) = min

α

{
Eζ

{
| ν∑
`=1

α`|ζ`|2|
}

: α ∈ Rν , ‖α‖1 = 1
}

[ζ ∈ N ν
C].

(31)
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Then
(i) Both ϑS(·), ϑH(·) are nondecreasing functions such that

(a.1) ϑS(1) = 1, ϑS(2) = π
2
,

(a.2) ϑS(ν) ≤ π
2

√
ν, ν ≥ 1;

(b.1) ϑH(1) = 1, ϑH(2) = 2,

(b.2) ϑH(ν) ≤ ϑS(2ν) ≤ π
√
ν/2, ν ≥ 1.

(32)

(ii) For every A ∈ Sn, one has

Eξ

{
|ξTAξ|

}
≥ ‖λ(A)‖1ϑ

−1
S (Rank(A)) [ξ ∈ N n

R], (33)

and for every A ∈ Hn one has

Eζ

{
|ζTAζ|

}
≥ ‖λ(A)‖1ϑ

−1
H (Rank(A)) [ζ ∈ N n

C]. (34)

Proof. The function ϑS(·) was introduced in [4], where (32.a) and (33) were proved
as well. From the definition of ϑH(·) it is clear that this function is nondecreasing. To
establish (34), note that the distribution of a random complex Gaussian vector is invariant
under unitary transformations of Cn, hence it suffices to verify (34) in the particular
case when A is a diagonal Hermitian matrix with Rank(A) nonzero diagonal entries (the
nonzero eigenvalues of A), and the remaining diagonal entries equal to 0. But in this case
(34) is readily given by the definition of ϑH(·).

It remains to verify (32.b). The relation ϑH(1) = 1 is evident. Further, we clearly have

ϑ−1
H (2) = min

β∈[0,1]
ψ(β), ψ(β) = Eζ

{
|β|ζ1|2 − (1− β)|ζ2|2|

}
, ζ ∈ N 2

C.

The function ψ(β) is convex in β ∈ [0, 1] and is symmetric: ψ(1−β) = ψ(β). It follows that
its minimum is achieved at β = 1

2
; direct computation demonstrates that ψ(1/2) = 1/2,

which completes the proof of (32.b.1).
It remains to prove the first inequality in (32.b.2). Given α ∈ Rν , ‖α‖1 = 1, let

α̃ = (αT , αT )T ∈ R2ν . Now, if ζ = η + iω is a standard Gaussian vector in Cν , then the
vector ξ = 21/2(ηT , ωT )T is a standard Gaussian vector in R2ν . We now have

Eζ

{
| ν∑
`=1

α`|ζ`|2|
}

= Eζ

{
| ν∑
`=1

α`[η
2
` + ω2

` ]|
}

= 1
2
Eξ

{
| 2ν∑
`=1

α̃`ξ
2
` |
}
≥ 1

2
‖α̃‖1ϑ

−1
S (2ν)

= ϑ−1
S (2ν),

whence ϑ−1
H (ν) ≥ ϑ−1

S (2ν), and the desired inequality follows.

Proposition 2.2 For every A ∈ Cn×n one has

Eζ

{
|ζHAζ|

}
≥ ‖σ(A)‖1

1

4
ϑ−1

H (2 Rank(A)) [ζ ∈ N n
C]. (35)

Proof. Let Â =

[
A

AH

]
, so that Â ∈ H2n, Rank(Â) = 2 Rank(A) and the eigenvalues

of Â are ±σ`(A), ` = 1, ..., n. Let also ζ = (ηT , ωT )T be a standard Gaussian vector in
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C2n partitioned into two n-dimensional blocks, so that η, ω are independent standard
Gaussian vectors in Cn. We have

ζHÂζ = 2<{ηHAω}
= <

{
[(η + ω)HA(η + ω)− ηHAη − ωHAω]

+i[(η − iω)HA(η − iω)− ηHAη − ωHAω]
}

[polarization identity]

⇒ Eζ

{
|ζHÂζ|

}
≤ Eη,ω

{
|(η + ω)HA(η + ω)|

}
+ Eη,ω

{
|(η − iω)HA(η − iω)|

}

+2Eη

{
|ηHAη|

}
+ 2Eω{|ζHAζ|}.

(36)

Since η, ω are independent standard Gaussian vectors in Cn, the vectors 2−1/2(η+ω) and
2−1/2(η − iω) also are standard Gaussian. Therefore (36) implies that

Eζ

{
|ζHÂζ|

}
≤ 8Eη

{
|ηHAη|

}
. (37)

Since Â is a Hermitian matrix of rank 2 Rank(A) and ‖λ(Â)‖1 = 2‖σ(A)‖1, the left hand
side in (37) is at least 2‖σ(A)‖1ϑ

−1
H (2 Rank(A)), and (37) implies (35).

Proposition 2.3 (i) Let L,R ∈ Cd×n, and let ζ be a standard Gaussian vector in Cn.
Then

Eζ {‖Lζ‖2‖Rζ‖2} ≥ π

4
‖L‖2‖R‖2. (38)

(ii) Let L,R ∈ Rd×n, and let ξ be a standard Gaussian vector in Rn. Then

Eξ {‖Lξ‖2‖Rξ‖2} ≥ 2

π
‖L‖2‖R‖2. (39)

Proof. (i): There is nothing to prove when L or R are zero matrices; thus, assume that
both L and R are nonzero.

Let us demonstrate first that it suffices to verify (38) in the case when both L and R
are rank 1 matrices. Let LHL = UH Diag{λ}U be the eigenvalue decomposition of LHL,
so that U is a unitary matrix and λ ≥ 0. We have

E {‖Lξ‖2‖Rξ‖2} = E
{√

ξHLHLξ‖Rξ‖2

}

= E
{

((Uξ)H Diag{λ} (Uξ)︸ ︷︷ ︸
ζ

)1/2 ‖RUHζ‖2︸ ︷︷ ︸
φ(ζ)≥0

}

= E

{
φ(ζ)

√
n∑
`=1

λ`|ζ`|2
}

= Φ(λ),

Φ(x) = E

{
φ(ζ)

√
n∑
`=1

x`|ζ`|2
}
.

(40)

The function Φ(x) of x ∈ Rn
+ is concave; therefore its minimum on the simplex

S = {x ∈ Rn
+ :

∑

`

x` =
∑

`

λ`}
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is achieved at a vertex, let it be e. Now let L̂ ∈ Cd×n be such that L̂HL̂ = UH Diag{e}U .
Note that L̂ is a rank 1 matrix (since e is a vertex of S) and that

[‖L̂‖2
2 =] Tr(L̂HL̂) =

∑

`

e` =
∑

`

λ` = Tr(LHL) [= ‖L‖2
2].

Since the unitary factor in the eigenvalue decomposition of L̂HL̂ is U , (40) holds true
when L is replaced with L̂ and λ with e, so that

E
{
‖L̂ζ‖2‖Rζ‖2

}
= Φ(e) ≤ Φ(λ) = E {‖Lζ‖2‖Rζ‖2} .

Applying the same reasoning to the quantity

E
{
‖L̂ζ‖2‖Rζ‖2

}

with R playing the role of L, we conclude that there exists a rank 1 matrix R̂ such that

‖R̂‖2 = ‖R‖2

and
E
{
‖L̂ζ‖2‖R̂ζ‖2

}
≤ E

{
‖L̂ζ‖2‖Rζ‖2

}
.

Thus, replacing L and R with the rank 1 matrices L̂, R̂, we do not increase the left hand
side in (38) and do not vary the right hand side, so that it indeed suffices to establish
(38) in the case when L, R are rank 1 matrices. Note that so far our reasoning did not
use the fact that ζ is standard Gaussian.

Now let us look what inequality (38) says in the case of rank 1 matrices L, R. By
homogeneity, we can further assume that ‖L‖2 = ‖R‖2 = 1. With this normalization, for
rank 1 matrices L, R we clearly have Lζ = z` and Rζ = wr for unit deterministic vectors
`, r and a Gaussian random vector (z, w) ∈ C2 = R4 such that E {|z|2} = E {|w|2} = 1
(both z and w are just linear combinations, with appropriate deterministic coefficients,
of the entries in ζ). Since E {|z|2} = E {|w|2} = 1, we can express (z, w) in terms of a
standard Gaussian vector (η, ξ) ∈ C2 as z = η, w = cos(θ)η + sin(θ)ξ, where θ ∈ [0, π

2
] is

such that cos(θ) is the absolute value of the correlation E {zw∗} between z and w. With
this representation, inequality (38) becomes

φ(θ) ≡
∫

C×C

|η|| cos(θ)η + sin(θ)ξ|dG(η, ξ) ≥ π

4
≡ φ(

π

2
), (41)

where G(η, ξ) is the distribution of (η, ξ). We should prove (41) in the range [0, π
2
] of

values of θ; in fact we shall prove this inequality in the larger range θ ∈ [0, π]. Given
θ ∈ [0, π], we set

u = cos(θ/2)η + sin(θ/2)ξ, v = − sin(θ/2)η + cos(θ/2)ξ;

it is immediately seen that the distribution of (u, v) is exactly G. At the same time,

η = cos(θ/2)u− sin(θ/2)v, cos(θ)η + sin(θ)ξ = cos(θ/2)u+ sin(θ/2)v,
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whence

φ(θ) =
∫

C×C

| cos(θ/2)u− sin(θ/2)v|| cos(θ/2)u+ sin(θ/2)v|dG(u, v)

=
∫

C×C

| cos2(θ/2)u2 − sin2(θ/2)v2|dG(u, v).

We see that

min
θ∈[0,π]

φ(θ) = min
0≤α≤1

ψ(α), ψ(α) =
∫

C×C

|αu2 − (1− α)v2|dG(u, v).

The function ψ(α) clearly is convex and ψ(1− α) = ψ(α) (since the distribution of (u, v)
is symmetric in u, v). Consequently, ψ attains its minimum when α = 1/2, and φ attains
its minimum when cos2(θ/2) = 1/2, i.e., when θ = π/2, which is exactly what is stated
in (41).

(ii): Applying exactly the same reasoning as in the proof of (i), we conclude that it
suffices to verify (39) in the case when L,R are real rank 1 matrices. In this case, the
same argument as above demonstrates that (39) is equivalent to the fact that that if ξ, η
are independent real standard Gaussian variables and G(ξ, η) is the distribution of (ξ, η),
then the function

φ(θ) =
∫

R×R

|ξ|| cos(θ)ξ + sin(θ)η|dG(ξ, η) (42)

of θ ∈ [0, π] achieves its minimum when θ = π
2
. To prove this statement, one can repeat

word by word, with evident modifications, the reasoning we have used in the complex
case.

2.1.5 Completing the proof of Theorem 2.1.(iii)

We are now in a position to complete the proof of Theorem 2.1.(iii). Let us set

ds
R = 2 max {dp : p ∈ Ir

s} ,
ds

C = 2 max {dp : p ∈ Ic
s } ,

ϑ = max
[
ϑH(ds

R), 4ϑH(ds
C), 4

π

]
;

(43)

here by definition the maximum over an empty set is 0, and ϑH(0) = 0. Note that by
(32) one has

ϑ ≤ 4π
√
ds

(cf. (9), (10)).
Let ζ be a standard Gaussian vector in Cn. Invoking Propositions 2.1 – 2.3, we have
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(for notation, see Lemma 2.4):

‖λ(Z1/2ApZ
1/2)‖1 ≤ ϑH(Rank(Z1/2ApZ

1/2))Eζ

{
|ζHZ1/2ApZ

1/2ζ|
}

≤ ϑEζ

{
|ζHZ1/2ApZ

1/2ζ|
}
, p ∈ Ir

s

[by Proposition 2.1 since Ap = AHp and Rank(Ap) = Rank([LHp Rp +RH
p Lp]) ≤ 2dp]

‖σ(Z1/2RH
p LpZ

1/2)‖1 ≤ 4ϑH(2 Rank(Z1/2RH
p LpZ

1/2))Eζ

{
|ζHZ1/2RH

p LpZ
1/2ζ|

}

≤ ϑEζ

{
|ζHZ1/2RH

p LpZ
1/2ζ|

}
, p ∈ Ic

s

[by Proposition 2.2 since Rank(RH
p Lp) ≤ dp]

‖LpZ1/2‖2‖RpZ
1/2‖2 ≤ 4

π
Eζ

{
‖LpZ1/2ζ‖2‖RpZ

1/2ζ‖2

}

≤ ϑEζ

{
‖LpZ1/2ζ‖2‖RpZ

1/2ζ‖2

}

[by Proposition 2.3.(i)]

and, of course,
Eζ

{
ζHZ1/2AZ1/2ζ

}
= Tr(Z1/2AZ1/2).

In view of these observations, (29) implies that

γϑ
[ ∑
p∈Ir

s

Eζ

{
|ζHZ1/2[LHp Rp +RH

p Lp]Z
1/2ζ|

}
+
∑
p∈Ic

s

Eζ

{
2|ζHZ1/2RH

p LpZ
1/2ζ|

}

+
∑
p∈Ic

f

Eζ

{
2‖LpZ1/2ζ‖2‖RpZ

1/2ζ‖2

} ]
> Eζ

{
ζHZ1/2AZ1/2ζ

}

(we have substituted the expressions for Ap, see (30)). It follows that there exists a

realization ζ̂ of ζ such that with ξ = Z1/2ζ̂ one has

γϑ


∑

p∈Ir
s

|ξH [LHp Rp +RH
p Lp]ξ|+

∑

p∈Ic
s

2|ξHRH
p Lpξ|+

∑

p∈Ic
f

2‖Lpξ‖2‖Rpξ‖2


 > ξHAξ. (44)

Observe that

• The quantities ξH [LHp Rp+RH
p Lp]ξ are real; we therefore can choose δp = ±1, p ∈ Ir

s ,
in such a way that with ∆p = δpIdp one has

ξH [LHp ∆pRp +RH
p ∆H

p Lp]ξ = |ξH [LHp Rp +RH
p Lp]ξ|, p ∈ Ir

s ;

• For p ∈ Ic
s , we can choose δp ∈ C, |δp| = 1, in such a way that with ∆p = δpIdp one

has
ξH [LHp ∆pRp +RH

p ∆H
p Lp]ξ = 2|ξHRH

p Lpξ|, p ∈ Ic
s ;

• For p ∈ Ic
f , we can choose ∆p ∈ Cdp×dp , ‖∆p‖ ≤ 1, in such a way that

ξH [LHp ∆pRp +RH
p ∆H

p Lp]ξ = 2‖Lpξ‖2‖Rpξ‖2, p ∈ Ic
f .

With ∆p’s we have defined, (44) reads

ξH
[
A− γϑ

k∑

p=1

[LHp ∆pRp +RH
p ∆H

p Lp]

︸ ︷︷ ︸
C

]
ξ < 0,

so that C is not positive semidefinite; on the other hand, by construction C ∈ U [ϑγ].
Thus, the predicate (I[ϑγ]) is not valid; recalling the definition of ϑ, this completes the
proof of Claim 2.1 and thus the proof of Theorem 2.1.(iii).
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3 Matrix Cube Theorem, Real case

The Real Matrix Cube problem is as follows:

RMC: Let m, d1,...,dk be positive integers, and A ∈ Sm+ , Lp, Rp ∈ Rdp×m be
given matrices, Lp 6= 0. Let also a partition {1, 2, ..., k} = Ir

s ∪ Ir
f of the index

set {1, ..., k} into two non-overlapping sets be given. With these data, we
associate a parametric family of “matrix boxes”

U [γ] =



A+ γ

k∑

p=1

[LTp ∆pRp +RT
p ∆T

pLp] :
∆p ∈∆R

p , ‖∆p‖ ≤ 1,
p = 1, ..., k



 ⊂ Sm,

(45)
where γ ≥ 0 is the parameter and

∆R
p =

{ {δIdp : δ ∈ R}, p ∈ Ir
s [“scalar perturbations”]

Rdp×dp , p ∈ Ir
f [“full size perturbations”]

. (46)

Given γ ≥ 0, check whether
U [γ] ⊂ Sm+ (IR[γ])

Remark 3.1 In the sequel, we always assume that dp > 1 for p ∈ Ir
s . Indeed,

non-repeated (dp = 1) scalar perturbations always can be regarded as full size
perturbations.

The RMC problem, same as the CMC one, is, in general, NP-hard; similar to the
complex case, we intend to build a “computationally tractable” sufficient condition for
the validity of (IR[γ]) and to understand how “conservative” is this condition.

Consider, along with predicate (IR[γ]), the predicate

∃Yp ∈ Sm, p = 1, ..., k :
(a) Yp � LTp ∆pRp +RT

p ∆T
pLp ∀(∆p ∈∆R

p , ‖∆p‖ ≤ 1), p = 1, ..., k,

(b) A− γ k∑
p=1

Yp � 0.

(IIR[γ])
The Real case version of Theorem 2.1 is as follows:

Theorem 3.1 [The Real Matrix Cube Theorem] One has:
(i) Predicate (IIR[γ]) is stronger than (IR[γ]) – the validity of the former predicate

implies the validity of the latter one.
(ii) (IIR[γ]) is computationally tractable – the validity of the predicate is equivalent

to the solvability of the system of LMIs

(s) Yp ±
[
LTpRp +RT

p Lp
]
� 0, p ∈ Ir

s ,

(f)

[
Yp − λpLTpLp RT

p

Rp λpIdp

]
� 0, p ∈ Ir

f

(∗) A− γ k∑
p=1

Yp � 0.

(47)
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in matrix variables Yp ∈ Sm, p = 1, ..., k, and real variables λp, p ∈ Ir
f .

(iii) “The gap” between (IR[γ]) and (IIR[γ]) can be bounded solely in terms of the
maximal size

ds = max {dp : p ∈ Ir
s}

of the scalar perturbations (here the maximum over an empty set by definition is 0).

Specifically, there exists a universal function ϑR(ν) ≤ π
√
ν/2, ν ≥ 1, such that

if (IIR[γ]) is not valid, then (IR[ϑR(ds)γ]) is not valid. (48)

Corollary 3.1 The efficiently computable supremum γ̂ of those γ ≥ 0 for which the
system of LMIs (47) is solvable is a lower bound on the supremum γ? of those γ ≥ 0 for
which U [γ] ⊂ Sm+ , and this lower bound is tight within the factor ϑR(ds):

γ̂ ≤ γ? ≤ ϑR(ds)γ̂. (49)

Remark 3.2 From the proof of Theorem 3.1 it follows that ϑR(0) = π
2
, ϑR(2) = 2. Thus,

• when there are no scalar perturbations: Ir
s = ∅ (cf. Remark 3.1), the factor ϑ in the

implication
¬(IIR[γ])⇒ ¬(IR[ϑγ]) (50)

can be set to π
2

= 1.57...

• when all scalar perturbations are repeated twice (ds = 2), the factor ϑ in (50) can be
set to 2.

The proof of the Real Matrix Cube Theorem repeats word by word, with evident
simplifications, the proof of its complex case counterpart and is therefore omitted. Note
that the difference in absolute constant factors in bounds on ϑ(ν) in Theorems 2.1 and
3.1 (which is “in favour” of the real case) comes mainly from the absolute constants in
(32) which are different for the real and the complex cases. The difference between the
absolute constants in Remarks 2.2 and 3.2, which is in favour of the complex case, comes
from the difference between (38) and (39). Note also that Remarks 2.3, 2.4 remain valid
in the real case.

Matrix Cube theorems and known results on tractable approximations of semi-
infinite LMIs. The results we have established compare favourably with known results
on the quality of tractable approximations of semi-infinite LMIs (1). Aside of the Matrix
Cube theorem of [4] (this result, which is the prototype of all our developments here,
was already discussed in Introduction), there is, to the best of our knowledge, a single
relevant result, specifically, Theorem 6.2.2 in [2]. This theorem is of the same spirit as
Theorem 3.1, specifically, it deals with a bi-affine real LMI (1) where real perturbations
∆ are diagonal matrices, and the set ∆ in (1) is

∆ = {Diag{(δ1, ..., δk)} : δp ∈ Rdp , ‖δp‖2 ≤ 1, p = 1, ..., k} (51)

(the “structure” d1, ..., dk is fixed). The theorem associates with (1) an explicit system
Sγ of LMIs in x and additional variables u in such a way that
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(a) if x can be extended to a feasible solution of Sγ, then x is feasible for the semi-
infinite LMI (1), the level of perturbations being γ;

(b) if x cannot be extended to a feasible solution to Sγ, then x is not feasible for (1)
when the perturbation level is increased from γ to χγ.
The “tightness factor” χ (which plays the same role as the factor ϑ in the Matrix Cube
theorems) is shown to be

χ = min[
√
mk,

√√√√√
k∑

p=1

dp], (52)

(m is the row size of the LMI (1), k is the number of blocks δp,and dp = dim δp). When
comparing this result with those given by Theorem 3.1, it makes sense to restrict ourselves
with the case when dp = 1, p = 1, ..., k – this is the only case where the statements under
considerations speak about the same perturbation set ∆. Note that in the case in question
(1) becomes the semi-infinite LMI

A[x] +
k∑

p=1

δpAp[x] � 0 ∀(δ = (δ1, ..., δk) ∈ Rk : ‖δ‖∞ ≤ γ), (53)

where A[x], Ap[x] are symmetric matrices affinely depending on x. On a closest inspection,
it turns out that in the case of dp = 1, p = 1, ..., k, both tractable approximations of (1)
– the one built in [2] and the one given in Theorem 3.1 – are identical to each other and
are given by the system of LMIs

Yp � ±Ap[x], p = 1, ..., k, A[x]− γ
k∑

p=1

Yp � 0 (54)

in the original variables x and additional matrix variables Y1,...,Yp. Although both The-
orem 6.2.2 from [2] and our Theorem 3.1 speak about the same pair of entities (53),
(54), the tightness factors provided by these two statements are different: in the case of
d1 = ... = dk = 1, (52) results in the tightness factor χ =

√
k, while Theorem 3.1 says

that the factor is at most ϑ ≤ π
√

max
1≤p≤k

max
x

Rank(Ap[x])/2. Formally speaking, these

two upper bounds are in “general position” – no one of them dominates the other one.
However, in typical applications (e.g., those considered in [4] or to be considered below)
the second bound is by far better than the first one.

We are about to illustrate the use of the Matrix Cube Theorems by two application
examples. The first example (Section 4) is a complex-case version of the π

2
-Theorem of

Yu. Nesterov [11]. The second example (Section 5) deals with an important Control
entity – the structured singular value.
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4 Maximizing Hermitian quadratic form over the com-

plex unit cube

Let S ∈ Hm, S � 0. Consider the problem of maximizing the quadratic form xHSx over
the complex unit cube:

ω?(S) = max
{
zHSz : ‖z‖∞ ≡ max

r
|zr| ≤ 1

}
. (55)

It is well-known that the real case version of the problem (S is real symmetric, and the
complex unit cube is replaced with the real one) is NP-hard; the same can be shown to
be true for the complex case (55). It is also known that in the real case the standard
semidefinite relaxation bound

ω̂(S) = min

{
m∑

r=1

λr : λ ∈ Rm
+ ,Diag{λ} � S

}
(56)

is an upper bound on ω?(S) tight within the factor π
2

(“π
2
-Theorem” of Yu. Nesterov,

[11]). It is immediate to see that ω̂(S) is an upper bound on ω?(S) in the complex case
as well. Indeed, if λ ∈ Rm

+ is such that Diag{λ} � S, and ‖z‖∞ ≤ 1, then

zHSz ≤ zH Diag{λ}z =
∑
r

λr|zr|2 ≤
∑
r

λr.

We are about to demonstrate that in the complex case ω̂(S) coincides with ω?(S) within
the factor 4

π
:

ω?(S) ≤ ω̂(S) ≤ 4

π
ω?(S). (57)

The proof follows the lines of an alternative proof of the π
2
-Theorem given in [4]. Observe

that ω?(S) is the minimum of those ω ∈ R for which the ellipsoid {z ∈ Cm : zHSz ≤ ω}
contains the complex unit cube {z ∈ Cm : ‖z‖∞ ≤ 1}. This inclusion is equivalent to the
fact that the polar of the ellipsoid (which is the ellipsoid {ζ ∈ Cm : ζHS−1ζ ≤ ω−1}) is
contained in the polar of the unit cube (which is the set {ζ ∈ Cm : ‖ζ‖1 ≡ ∑

r
|zr| ≤ 1}).

In turn, the inclusion {ζ ∈ Cm : ζHS−1ζ ≤ ω−1} ⊂ {ζ ∈ Cm : ‖ζ‖1 ≡ ∑
r
|zr| ≤ 1} is,

by homogeneity, equivalent to the fact ωζHS−1ζ ≥ ‖ζ‖2
1 for all ζ ∈ Cm. Combining our

observations, we arrive at the equality

ω−1
? (S) = max

{
γ ∈ R+ : ζHS−1ζ ≥ γ‖ζ‖2

1 ∀ζ
}
.

Further, by evident reasons one has

‖ζ‖2
1 = max

{
ζHBζ : B ∈ Hm, |Brs| ≤ 1, 1 ≤ r ≤ s ≤ m

}
.

Indeed, when B = BH , |Brs| ≤ 1, the quantity |ζHBζ| clearly is ≤ ‖ζ‖2
1 and is equal

to ‖ζ‖2
1 when H = ζ̂ ζ̂H , where ζ̂r = ζr/|ζr| (when ζr = 0, one can set ζ̂r = 0 as well).

Combining our observations, we arrive at the relation

ω−1
? (S) = max

{
γ ∈ R+ : ζHS−1ζ ≥ γζHBζ ∀(B ∈ Hm : |Brs| ≤ 1)

}

= max {γ ∈ R+ : S−1 − γB � 0 ∀(B ∈ Hm : |Brs| ≤ 1)} . (58)
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Denoting by er the standard basic orths in Cm and specifying the data of a Complex
Matrix Cube problem as

drs = 1, 1 ≤ r ≤ s ≤ m,
Rrs = eHr , 1 ≤ r ≤ s ≤ m,

Lrs =

{
1
2
eHr , r = s
eHs , r < s

, 1 ≤ r ≤ s ≤ m,

A = S−1,
Ic

f = {(r, s) : 1 ≤ r ≤ s ≤ m},
Ir

s = Ic
s = ∅

(59)

(here it is convenient to index the perturbations by pairs of integers rather than by single
integer), we see that (58) says exactly that ω−1

? (S) is the largest γ = γ? for which the
complex matrix box given by the data (59) is contained in Hm

+ .
Applying the Complex case Matrix Cube Theorem, we arrive at an explicit Generalized

Eigenvalue problem such that its optimal value, let it be γ̂, is a lower bound, tight within
the factor 4

π
, for γ? = ω−1

? (S) (note that we are in the case when there are no scalar
perturbations). Consequently, γ̂−1 is an upper bound, tight within the same factor 4

π
, for

ω?(S). Exactly in the same way as in the real case (see [4], Section 4), it can be further
verified that γ̂−1 is nothing but the semidefinite relaxation bound ω̂(S).

5 Lyapunov stability radius and Structured singular

value

5.1 Preliminaries

When a problem of the form CMC comes from applications, its “structure” m, k, d1, ..., dk,
Ir

s , Ic
s , Ic

f is usually fixed, while “the data” A, {Lp, Rp}kp=1 may depend on a vector of design
variables x of a certain “master problem” of the generic form

γ? = max
γ,x
{γ ≥ 0 : x ∈ X & (Ix[γ]) is valid} (P)

where (Ix[γ]) is the predicate (I[γ]) associated with the data A = A[x], Lp = Lp[x],
Rp = Rp[x] (cf. the Lyapunov Stability Analysis example presented in Introduction). In
these cases, the following observation allows to build a tractable approximation of the
master problem (P):

Proposition 5.1 Assume that A[x], Rp[x] are affine in x and Lp are independent of x,
and let the set X in (P) be semidefinite-representable:

x ∈ X ⇔ ∃u : C[x, u] � 0, (60)

where C[x, u] is a symmetric matrix affinely depending on (x, u). Under these assumptions,
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the problem

γ̂ = max





γ ≥ 0 :

C[x, u] � 0;

Yp ±
[
LHp Rp[x] +RH

p [x]Lp
]
� 0, p ∈ Ir

s[
Yp − Vp LHp Rp[x]
RH
p [x]Lp Vp

]
� 0, p ∈ Ic

s

[
Yp − λpLHp Lp RH

p [x]
Rp[x] λpIdp

]
� 0, p ∈ Ic

f

A[x]− γ k∑
p=1

Yp � 0





(A)

in matrix variables Yp ∈ Hm, p = 1, ..., k, Vp ∈ Hm, p ∈ Ic
s , λp ∈ R, p ∈ Ic

f , x, u is
an explicit Generalized Eigenvalue problem which is a conservative approximation of (P):
whenever (γ, x, u) can be extended to a feasible solution of (A), then (γ, x, u) is feasible
for (P). The quality of this approximation can be quantified as follows: if (P) is feasible,
then so is (A), and

γ̂ ≤ γ? ≤ ϑC(ds)γ̂, (61)

(cf. Theorem 2.1). Note that γ̂ is the optimal value in an explicit Generalized Eigenvalue
problem and is therefore efficiently computable.

This statement is readily given by Theorem 2.1 and admits a straightforward real case
analogy implied by Theorem 3.1.

We are about to consider an instructive application example for Proposition 5.1.

5.2 Estimating Lyapunov stability radius for an uncertain dis-
crete time dynamical system

Consider a discrete time dynamical system with states zt ∈ Cm obeying the dynamics

zt+1 = Atzt, t = 0, 1, ... (62)

We assume that the system is uncertain, in the sense that the matrices At are not known
in advance; all we know is that they vary in a given uncertainty set:

∀t : At ∈ Aγ = {A = A∗ + γ
k∑

p=1

CH
p ∆pDp : ∆p ∈∆p}, (63)

where γ is the perturbation level and ∆p are given by (7).
We are interested to certify the stability of (62) – the fact that all trajectories {zt}

of all “realizations” {At ∈ Aγ}∞t=0 of the system converge to 0 as t → ∞. The standard
sufficient condition for stability is that all matrices A ∈ At share a common discrete-time
Lyapunov stability certificate Y , i.e., there exists Y � 0 such that AHY A ≺ Y for all
A ∈ Aγ. Setting X = Y −1 and applying the SCL, it is easily seen that the existence of
a common Lyapunov stability certificate is equivalent to the solvability of the following
semi-infinite system of LMIs in matrix variable X:

[
X XAH

AX X

]
� 0 ∀A ∈ Aγ; X � I.
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Recalling the description of Aγ, we can rewrite this system equivalently as

[
X XAH∗
A∗X X

]

︸ ︷︷ ︸
A[X]

+γ
k∑

p=1

[
XDH

p ∆H
p Cp

CH
p ∆pDpX

]

︸ ︷︷ ︸
LHp ∆pRp[X] +RHp [X]∆H

p Lp[
Lp =

[
0dp×m, Cp

]
,

Rp[X] =
[
DpX, 0dp×m

]
]

� 0 ∀(∆p ∈∆p, p = 1, ..., k)

(64)
The Lyapunov stability radius γ∗ of uncertain system (62) – (63) is the supremum of those
uncertainty levels γ for which the system admits a Lyapunov stability certificate, or, which
is the same, for which the semi-infinite system of LMIs (64) is solvable. Assuming that
the “nominal” matrix A∗ defines a stable system (i.e., the spectral radius ρ(A∗) of A∗ is
less than 1), it is immediately seen that

γ∗ = sup
γ>0,X




γ :

X � I

A[X] + γ
∑
p

[LHp ∆pRp[X] +RH
p [X]∆H

p Lp] � 0∀
(

∆p ∈∆p,
p = 1, ..., k

)




(65)

We see that the problem of computing the Lyapunov stability radius is of the generic form
(P) (with X playing the role of x and X = {X : X � I}). Applying Proposition 5.1, we
arrive at the following conclusion.

Corollary 5.1 The Lyapunov stability radius γ∗ of (62) – (63) (which by itself is, in
general, NP-hard to compute) admits an efficiently computable lower bound γ̂ which coni-
sides with γ∗ up to a factor not exceeding O(1)

√
ds, where ds is the maximum of row sizes

of scalar perturbation blocks ∆p. When there are no scalar perturbation blocks, one has
γ∗

γ̂
≤ 4

π
.

The results similar to Corollary 5.1 hold true for the Lyapunov stability radius of contin-
uous time uncertain system (see Introduction); besides this, we could consider the case of
real systems and perturbations (in both the discrete- and the continuous-time settings).
The particular setup we dealt with is motivated by the desire to link our considerations
with an important Control entity – the complex structured singular value.

5.2.1 Bounding the complex structured singular value

The complex structured singular value of a matrix is an important Control entity (for an
overview of the corresponding µ-theory, see, e.g., [12]) which is defined as follows.
• A (complex) block structure on Cm is an ordered collection of positive integers

d1, ..., dk,
k∑
p=1

dk = m, along with a partitioning of the index set {1, ..., k} into two non-

overlapping sets Ic
s , Ic

f . Same as in the description of the CMC problem, such a structure
defines the sets ∆p ⊂ Cdp×dp of “scalar complex” and “full complex” perturbation blocks,
p = 1, ..., k. We set

∆ = {∆ = Diag{∆1, ...,∆k} : ∆p ∈∆p, p = 1, ..., k} ⊂ Cm×m.
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• Given a block structure, the corresponding structured singular value µ∆(M) of a
matrix M ∈ Cm×m is defined as

µ∆(M) = max {ρ(∆M) : ∆ ∈∆, ‖∆‖ ≤ 1} , (66)

where ρ(S) is the spectral radius of a square matrix S. Recalling that the spectral radius
of a matrix A is < 1 if and only if A admits a discrete time Lyapunov stability certificate

(i.e., there exists X � 0 such that

[
X XAH

AX X

]
� 0), an equivalent definition of µ∆(M)

is as follows:

(!) The quantity 1
µ∆(M)

is the supremum of those γ ≥ 0 for which every
one of the matrices γM∆, ∆ ∈ ∆, admits discrete time Lyapunov stability
certificate.

In general, it is NP-hard to compute the quantity µ∆(·), this is why an important
role in µ-theory is played by computable bounds on µ∆. As far as upper bounds are
concerned, the standard one (and, to the best of our knowledge, the only one) is the
scaling upper bound µ̂∆(M) defined as follows. Let D be the set of all Hermitian m×m
matrices D � Im which commute with all matrices from ∆; in other words, D ∈ D if and
only if D = Diag{D1, ..., Dk}, where Dp ∈ Hdp are � Idp and, besides this, Dp = λpIdp
for p ∈ Ic

f . The bound µ̂∆(M) is defined as

µ̂∆(M) =
1

γ̂
, (67)

where

γ̂ = sup
γ≥0,D∈D

{
γ :

[
D γDMH

γMD D

]
� 0

}
(68)

(note that by homogeneity reasons, the optimal value in the latter problem remains un-
changed when the normalization constraint D � I in the definition of D is relaxed to
D � 0). The fact that µ̂∆(M) is an upper bound on µ∆(M) is immediate. Indeed, taking
into account the definitions of µ∆ and µ̂∆, we observe that to prove that µ̂∆(M) ≥ µ∆(M)

is the same as to verify that if γ and D ∈ D are such that

[
D γDMH

γMD D

]
� 0 (or,

which is the same, γ2MHD−1M ≺ D−1), then ρ(t∆M) < 1 for all ∆ ∈∆ and 0 ≤ t < γ.
To verify the latter claim, note that

γ2MHD−1M ≺ D−1 ⇒ t2(M∆)HD−1(M∆) � (t/γ)2∆HD−1∆ �︸︷︷︸
(∗)

(t/γ)2D−1 ≺ D−1,

where (∗) is readily given by the fact that ∆ commutes with D ∈ D and ‖∆‖ ≤ 1. We
see that the matrix tM∆ admits a discrete time Lyapunov stability certificate, or, which
is exactly the same, ρ(t∆M) = ρ(tM∆) < 1, as required.

As defined above (and as arising in the Control literature), the scaling upper bound
µ̂∆(M) looks as a very useful “ad hoc” invention. Could we build a computable upper

26



bound on µ∆(M) in a more systematic way? The answer is affirmative. Indeed, consider
the set of matrices

Aγ = γ{∆M : ∆ ∈∆}; (69)

note that this set is of the form (63) with A∗ = 0m×m. By (!), 1
µ∆(M)

is the supremum of
those γ for which every A ∈ Aγ admits discrete time Lyapunov stability certificate. This
property, of course, is weaker than the existence a common Lyapunov stability certificate
for all matrices from Aγ; it follows that

1

µ∆(M)
≥ γ∗ ≥ γ̂,

where γ∗ is the Lyapunov stability radius of uncertain dynamical system with uncertainty
set (69), and γ̂ is the computable lower bound for this radius mentioned in Corollary
5.1. We have arrived at a computable upper bound on µ∆(M), specifically, the quantity
ω̂∆(M) = [γ̂]−1. An explicit description of ω̂∆(M) is given by the optimization problem
(A), the data of the problem coming from the description (69) of the underlying uncer-
tainty set. Skipping the purely “mechanical” derivation, here is the resulting description
of ω̂∆(M):

1
ω̂∆(M)

= max
γ∈R,X∈Hm,

Yp,Vp∈H2m,λp∈R





γ :

X � Im (a)[
Yp − Vp LHp Rp[X]
RH
p [X]Lp Vp

]
� 0, p ∈ Ic

s (b)

[
Yp − λpLHp Lp RH

p [X]
Rp[X] λpIdp

]
� 0, p ∈ Ic

f (c)

A[X]− γ k∑
p=1

Yp � 0 (d)








Pp =
[
0dp×d1+...+dp−1 , Idp , 0dp×dp+1+...+dk

]
∈ Cdp×m,

Rp[X] =
[
PpMX, 0dp×m

]
, Lp =

[
0dp×m, Pp

]
, A[X] =

[
X

X

]



(70)

Now a natural question arises: there are two efficiently computable upper bounds on
the “computationally intractable” structured singular value µ∆(M) – the usual scaling
bound µ̂∆(M) (67) – (68) and the bound ω̂∆(M) given by (70). What is the relation
between these bounds? Here is the answer:

Proposition 5.2 One always has

ω̂∆(M) = µ̂∆(M). (71)

Proof. The proof decomposes into two parts.

1. Let us first prove that ω̂∆(M) ≤ µ̂∆(M). Recalling the origins of µ̂∆(M) and ω̂∆(M),
in order to verify this inequality we should prove that if (γ > 0, D) is feasible for (68),
then γ can be extended to a feasible solution of problem (70). Let (γ > 0, D) be feasible
for (68), so that D = Diag{D1, ..., Dk} with positive definite Hermitian dp× dp blocks Dp
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which are scalar matrices λpIdp for p ∈ Ic
f . By homogeneity of the LMI in (68) w.r.t. D

we may assume that γD � Im. Let us set

X = γD,
Yp = LHp DpLp +RH

p [γD]D−1
p Rp[γD], p = 1, ..., k.

(72)

It suffices to demonstrate that the matrices we have defined can be extended by properly
chosen Vp, p ∈ Ic

s , and λp, p ∈ Ic
f , to a feasible solution of (70). Here is the demonstration:

10. (70.a) immediately follows from the definition of X due to our normalization
γD � Im of D.

20. To prove (70.b), we first need

Lemma 5.1 Let L,R ∈ Cd×n and W ∈ Hd, W � 0. Then the matrix

Y = LHWL+RHW−1R

satisfies the relation

Y � [δLHR + δ∗RHL] ∀(δ ∈ C, |δ| ≤ 1). (73)

Proof. Let ξ ∈ Cn. Then

ξHY ξ = ξHLHWLξ + ξHRHW−1Rξ = ‖W 1/2Lξ‖2
2 + ‖W−1/2Rξ‖2

2

≥ 2‖W 1/2Lξ‖2‖W−1/2Rξ‖2 ≥ 2|[W 1/2Lξ]H [W−1/2Rξ]|
= 2|ξHLHRξ| ≥ |ξH [δLHR + δ∗RHL]ξ| ∀(δ, |δ| ≤ 1).

Combining Lemmas 5.1 and 2.1, we conclude that for every one of the matrices Yp,
p ∈ Ic

s , one can find a matrix Vp in such a way that relations (70.b) are satisfied.
30. In fact, we already have in our disposal the λp’s required in (70.c) (recall that

for p ∈ Ic
f one has Dp = λpIdp with λp > 0). When p ∈ Ic

f , (72) says that Yp =
λpL

H
p Lp + λ−1

p RH
p [X]Rp[X], which, by the SCL, implies the validity of (70.c).

40. It remains to verify (70.d), which is immediate. Observe, first, that by construction
of the matrices Pp (see (70)) one has

∆ = Diag{∆1, ...,∆k} ∈∆⇒ ∆ =
k∑

p=1

PH
p ∆pPp, (74)

whence

∀∆ = Diag{∆1, ...,∆k} ∈∆ :[
X γXMH∆H

γ∆MX X

]
= A[X] + γ

k∑
p=1

[
LHp ∆pRp[X] +RH

p [X]∆H
p Lp

] (75)

with A[X], Lp, Rp[X] given by (70). Since both D and D−1 are block-diagonal with the
sizes of the diagonal blocks d1, ..., dk, (74) implies that

D =
k∑
p=1

PH
p DpPp, D−1 =

k∑
p=1

PH
p D

−1
p Pp. (76)
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Consequently,

A[X]− γ k∑
p=1

Yp = A[γD]− γ k∑
p=1

[
LHp DpLp +RH

p [γD]D−1
p Rp[γD]

]

=



γD − γ k∑

p=1
[γD]MHPH

p D
−1
p PpM [γD]

γD − γ k∑
p=1

PH
p DpPp


 [see (75) and (72)]

=

[
γD − γ3DMHD−1MD

γD − γD
]

[see (76)]

=

[
γ[D − γ2DMHD−1MD]

]

.

To see that the resulting matrix is � 0 (which means the validity of (70.d)), note that
D � γ2DMHD−1MD since (γ,D) is feasible for (68).

2. Now let us prove that µ̂∆(M) ≤ ω̂∆(M). This is exactly the same as to prove that,
given a feasible solution (γ > 0, X, {Yp}, {Vp}, {λp}) of (70) and γ′ ∈ (0, γ), we can build
D ∈ D such that (γ′, D) is feasible for (68).

For ε > 0, let us set

λp,ε = λp + ε, p ∈ Ic
f ,

Yp,ε = λp,εL
H
p Lp + λ−1

p,εR
H
p [X]Rp[X], p ∈ Ic

f ,
Wp,ε = Rp[X][Vp + εI︸ ︷︷ ︸

Vp,ε

]−1RH
p [X] + εIdp , p ∈ Ic

s ,

Yp,ε = LHp Wp,εLp +RH
p [X]W−1

p,ε Rp[X], p ∈ Ic
s .

(77)

In view of (70.c), for p ∈ Ic
f one has

[
Yp − λpLHp Lp RH

p [X]
Rp[X] λp,εIdp

]
� 0⇒ Yp � λpL

H
p Lp + λ−1

p,εR
H
p [X]Rp[H]⇒ Yp,ε � Yp + εLHp Lp.

(78)
In view of (70.b), for p ∈ Ic

s one has

[
Yp − Vp LHp Rp[X]
RH
p [X]Lp Vp,ε

]
� 0⇒ Yp � Vp + LHp

[
Rp[X]V −1

p,ε R
H
p [X]

]
Lp

⇒ Vp + LHp Wp,εLp � Yp + εLHp Lp.
(79)

Moreover,

[
Vp,ε I2m

I2m V −1
p,ε

]
� 0⇒

[
I2m 02m×dp

0dp×2m Rp[X]

] [
Vp,ε I2m

I2m V −1
p,ε

] [
I2m 02m×dp

0dp×2m Rp[X]

]H
� 0

⇒
[

Vp,ε RH
p [X]

Rp[X] Rp[X]V −1
p,ε R

H
p [X]

]
� 0⇒

[
Vp,ε RH

p [X]
Rp[X] Wp,ε

]
� 0

⇒ Vp,ε � RH
p [X]W−1

p,ε Rp[X].

(80)
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Combining the latter matrix inequality with the concluding relation in (79), we get for
p ∈ Ic

s :
Yp,ε = LHp Wp,εLp +RH

p [X]W−1
p,ε Rp[X] � Yp + ε(LHp Lp + I). (81)

Taking into account (78), (81), the validity of (70.d), and the fact that A[X] � 0 due to
(70.a), we arrive at the following intermediate conclusion: there exist positive reals λ̄p,
p ∈ Ic

f , and positive definite dp × dp matrices W̄p, p ∈ Ic
s , such that

γ′

∑

p∈Ic
f

[
λ̄pL

H
p Lp + λ̄−1

p RH
p [X]Rp[X]

]
+
∑

p∈Ic
s

[
LHp W̄pLp +RH

p [X]W̄−1
p Rp[X]

]

 ≺ A[X].

(82)
Setting Dp = λ̄pIdp , p ∈ Ic

f , Dp = W̄p, p ∈ Ic
s , D = Diag{D1, ..., Dk}, we see that D, up to

multiplication by a positive scalar, belongs to D. Recalling the origin of Lp, Rp[X] and
A[X] (see (75)), (82) reads

[
X − γ′XMHD−1MX

X − γ′D
]
� 0, (83)

whence γ′MHD−1M ≺ X−1 ≺ (γ′)−1D−1, which by the SCL yields

[
D γ′DMH

γ′MD D

]
�

0. Multiplying, if necessary, D by positive real to satisfy the requirement D � I, we get
a feasible solution (γ′, D) of (68).
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