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Abstract. Robust Optimization (RO) is a modeling methodology, combined with computational tools, to pro-
cess optimization problems in which the data are uncertain and is only known to belong to some uncertainty
set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefi-
nite programming. For these cases, computationally tractable robust counterparts of uncertain problems are
explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for
real-world applications. We discuss some of these applications, specifically: antenna design, truss topology
design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs
from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real
world LPs can be severely affected by small perturbations of the data and that the RO methodology can be
successfully used to overcome this phenomenon.

Key words. convex optimization – data uncertainty – robustness – linear programming – quadratic program-
ming – semidefinite programming – engineering design – Lyapunov stability synthesis

1. Introduction

A generic mathematical programming problem is of the form

min
x0∈R,x∈Rn

{x0 : f0(x, ζ) − x0 ≤ 0, fi(x, ζ) ≤ 0, i = 1, ..., m} (P[ξ])

where x is the design vector, the functions f0 (the objective function) and f1, ..., fm

are structural elements of the problem, and ζ stands for the data specifying a particular
problem instance.

For real-world optimization problems, the “decision environment” is often charac-
terized by the following facts:

F.1. The data are uncertain/inexact;
F.2. The optimal solution, even if computed very accurately, may be difficult to imple-

ment accurately;
F.3. The constraints must remain feasible for all meaningful realizations of the data;
F.4. Problems are large-scale (n or/and m are large);
F.5. “Bad” optimal solutions (those which become severely infeasible in the face of

even relatively small changes in the nominal data) are not uncommon.
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F.1 (and in fact F.2 as well) imply that in many cases we deal with uncertain optimization
problems – families of the usual (“certain”) optimization problems

{(P[ζ]) | ζ ∈ U} , (1)

where U is some “uncertainty set” in the space of the data.
Fact F.3 implies that a meaningful candidate solution (x0, x) of an uncertain problem

(1) is required to satisfy the semi-infinite system of constraints

f0(x, ζ) ≤ x0, fi(x, ζ) ≤ 0 i = 1, ..., m ∀(ζ ∈ U). (2)

Fact F.4 on the other hand imposes a severe requirement of being able to process
efficiently the semi-infinite system of constraints (2) for large-scale problems.
Robust Optimization originating from [3–5,11–13] is a modeling methodology, com-
bined with a suite of computational tools, which is aimed at accomplishing the above
requirements. The urgency of having such a methodology stems from the fact F.5, whose
validity is well illustrated in the cited papers (and in the examples to follow).

In the Robust Optimization methodology, one associates with an uncertain problem
(1) its robust counterpart, which is a usual (semi-infinite) optimization program

min
x0,x

{x0 : f0(x, ζ) ≤ x0, fi(x, ζ) ≤ 0, i = 1, ..., m ∀(ζ ∈ U)} ; (3)

fesible/optimal solutions of the robust counterpart are called robust feasible/robust
optimal solutions of the uncertain problem (1).

The major challenges associated with the Robust Optimization methodology are:
C.1. When and how can we reformulate (3) as a “computationally tractable” opti-

mization problem, or at least approximate (3) by a tractable problem.
C.2. How to specify reasonable uncertainty sets U in specific applications.
In what follows, we overview the results and the potential of the Robust Optimization

methodology in the most interesting cases of uncertain Linear, Conic Quadratic and
Semidefinite Programming. For these cases, the instances of our uncertain optimization
problems will be in the conic form

min
x0∈R,x∈Rn

{
x0 : cT x ≤ x0, Ai x + bi ∈ Ki, i = 1, ..., m,

}
, (C)

where for every i Ki is
– either a non-negative orthant Rmi+ (linear constraints),

– or the Lorentz cone Lmi =
{

y ∈ Rmi | ymi ≥
√

mi−1∑
j=1

y2
j

}
(conic quadratic con-

straints),
– or a semidefinite cone Smi+ – the cone of positive semidefinite matrices in the space

Smi of mi × mi symmetric matrices (Linear Matrix Inequality constraints).
The class of problems which can be modeled in the form of (C) is extremely wide

(see, e.g., [10,9]). It is also clear what is the structure and what are the data in (C) – the
former is the design dimension n, the number of “conic constraints” m and the list of the
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cones K1,..., Km , while the latter is the collection of matrices and vectors c, {Ai, bi}m
i=1

of appropriate sizes. Thus, an uncertain problem (C) is a collection min
x0∈R,x∈Rn


x0 : x0 − cT x︸ ︷︷ ︸

A0x+b0

∈ K0 ≡ R+, Ai x + bi ∈ Ki ,

i = 1, ..., m


∣∣∣(c, {Ai, bi}m

i=1

) ∈ U


(4)

of instances (C) of a common structure (n, m, K1, ..., Km) and data (c, {Ai, bi}m
i=1)

varying in a given set U . Note that the robust counterpart is a “constraint-wise” notion:
in the robust counterpart of (4), every one of the uncertain constraints Ai x + bi ∈ Ki ,
i = 0, ..., m, of (4) is replaced with its robust counterpart

Ai x + bi ∈ Ki ∀(Ai, bi) ∈ Ui ,

where Ui is the projection of the uncertainty set U on the space of the data of i-th
constraint. This observation allows us in the rest of the paper to focus on the “pure
cases” (all Ki’s are orthants, or all of them are Lorentz cones, or all are the semidefinite
cones) only; although the results can be readily applied to the “mixed cases” as well.

In the rest of this paper, we consider in turn uncertain Linear, Conic Quadratic and
Semidefinite programming problems; our major interest is in the relevant version of
C.1 in the case when the uncertainty set is an intersection of ellipsoids (which seems to
be a general enough model from the viewpoint of C.2). We shall illustrate our general
considerations by several examples, mainly coming from engineering (additional exam-
ples can be found, e.g., in [2,3,7,11–14]). We believe that these examples will convince
the reader that, in many applications, taking into account from the very beginning data
uncertainty, is a necessity which cannot be ignored, and that the Robust Optimization
methodology does allow one to deal with this necessity successfully.

2. Robust linear programming

2.1. Robust counterpart of uncertain LP

In [4] we showed that the robust counterpart

min
t,x

{
t : t ≥ cT x, Ax ≥ b ∀(c, A, B) ∈ U} (5)

of an uncertain LP{
min

x

{
cT x : Ax ≥ b

}∣∣(c, A, b) ∈ U ⊂ Rn × Rm×n × Rm
}

(6)

is equivalent to an explicit computationally tractable problem, provided that the un-
certainty set U itself is “computationally tractable”. To simplify our presentation, we
restrict ourselves to a sub-family of “computationally tractable” sets, and here is the
corresponding result:
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Theorem 1. [[4]] Assume that the uncertainty set U in (6) is given as the affine image
of a bounded set Z = {ζ} ⊂ RN , and Z is given
either

(i) by a system of linear inequality constraints

Pζ ≤ p

or
(ii) by a system of Conic Quadratic inequalities

‖ Piζ − pi ‖2≤ qT
i ζ − ri, i = 1, ..., M,

or
(iii) by a system of Linear Matrix Inequalities

P0 +
dim ζ∑
i=1

ζi Pi � 0.

In the cases (ii), (iii) assume also that the system of constraints defining U is strictly
feasible. Then the robust counterpart (5) of the uncertain LP (6) is equivalent to

– a Linear Programming problem in case (i),
– a Conic Quadratic problem in case (ii),
– a Semidefinite program in case (iii).

In all cases, the data of the resulting robust counterpart problem are readily given by
m, n and the data specifying the uncertainty set. Moreover, the sizes of the resulting
problem are polynomial in the size of the data specifying the uncertainty set.

��
Proof. A point y = (t, x) ∈ Rn+1 is a feasible solution of (5) if and only if y solves
a semi-infinite system of inequalities of the form

(Ci) [Biζ + βi ]T y + [cT
i ζ + di

] ≥ 0 ∀ζ ∈ Z,

i = 0, ..., m
(7)

The fact that y solves (Ci) means that the optimal value in the problem

min
ζ

{[Biζ + βi]T y + [cT
i ζ + di

] : ζ ∈ Z} (Pi [y])

is nonnegative. Now, by assumption Z is representable as

Z = {ζ | Rζ − r ∈ K}
where K is either a nonnegative orthant, or a direct product of the second-order cones,
or the semidefinite cone. Consequently, (Pi [y]) is the conic problem

min
ζ

{[
BT

i y + ci
]T

ζ + [βT
i y + di

] : Rζ − r ∈ K
}
.

Note that this conic problem is bounded (since Z is bounded). Applying either the LP
Duality Theorem or the Conic Duality Theorem [15], Chap. 4, depending on whether
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K is or is not polyhedral, we see that the optimal value in (Pi [y]) is equal to the one in
the (solvable) dual problem

max
ξ

{
rT ξ + [βT

i y + di
] : ξ ∈ K, RT ξ = BT

i y + ci
}

(Di [y])

(note that the cone K we deal with is self-dual, this is why the cone arising (Di [y])
is K). Thus, y solves (Ci) if and only if there exists ξ ∈ K such that PT ξ = BT

i y + ci

and pT ξ + [βT
i y + di] ≥ 0. We conclude that (5) is equivalent to the problem

min
y=(t,x),{ξ i}m

i=0

t :
ξ i ∈ K, i = 0, ..., m,

PT ξ i = BT
i y + ci, i = 0, ..., m,

pT ξ i + [βT
i y + di

] ≥ 0, i = 0, ..., m.


��

2.2. An example: robust antenna design

To illustrate the practical potential of Robust LP, consider a particular application – the
antenna design problem.

A monochromatic electro-magnetic antenna is characterized by its diagram, which
is a complex-valued function D(δ) of a 3D-direction δ; the sensitivity of the antenna
w.r.t. a flat wave incoming along a direction δ is proportional to |D(δ)|2.

An important property of the diagram is that the diagram of an antenna array –
a complex antenna consisting of elements with diagrams D1, ..., DN – is just the sum
of the diagrams of the elements. When amplification of the outputs of the elements is

allowed, the diagram of the resulting complex antenna becomes
N∑

j=1
x j D j(·), where x j

are (in general, complex-valued) “weights” of the elements.
A typical antenna design problem is:

(AD) Given antenna elements with diagrams D1, ..., DN , find (complex-valued)

weights x1, ..., xN such that the diagram D(·) =
N∑

j=1
x j D j(·) of the resulting

antenna array satisfies given design specifications (i.e., |D(·)| is as close as
possible to a given target function).

As a simple example, consider the following problem:

Circular Antenna. Let the antenna array consist of rings, centered at the origin, in the
XY-plane. The diagram of such a ring is real-valued and depends solely on the altitude
angle θ (the angle between a direction and the XY-plane): specifically,

Dκ(θ) = 1

2

2π∫
0

cos (2πκ cos(θ) cos(φ)) dφ

where κ is the ratio of the ring radius and the wavelength. Assume there are 40 rings in
the array, with κ j = j/10, j = 1, ..., 40. Our goal is to choose real weights x j such that
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the diagram

D(θ) =
40∑
j=1

x j Dκ j (θ)

is nearly uniform in the “angle of interest” 77◦ ≤ θ ≤ 90◦, specifically,

77◦ ≤ θ ≤ 90◦ ⇒ 0.9 ≤
40∑
j=1

x j Dκ j (θ) ≤ 1;

under this restriction, we want to minimize the “sidelobe attenuation level” max
0≤θ≤70◦|D(θ)|.

With discretization in θ , the problem can be modeled as a simple LP

min
τ,x1,...,x40

τ :
0.9 ≤

40∑
j=1

x j Dκ j (θ) ≤ 1, θ ∈ �cns

−τ ≤
40∑
j=1

x j Dκ j (θ) ≤ τ, θ ∈ �obj

 (8)

where �cns and �obj are finite grids on the segments [77◦, 90◦] and [0◦, 70◦], respec-
tively.

Solving (8), one arrives at the nominal design with a nice diagram as follows:
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Dream: Nominal design, no implementation errors
Sidelobe attenuation level 0.018 (left diagram is in polar coordinates)

In reality, the optimal weights x j correspond to characteristics of certain physical devices
and as such cannot be implemented exactly. Thus, it is important to know what happens
if the actual weights are affected by “implementation errors”, e.g.

x j �→ (1 + ξ j )x j, ξ j ∼ Uniform[−ε, ε] are independent. (9)

It turns out that even quite small implementation errors have a disastrous effect on the
designed antenna:
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Reality: Nominal design, implementation errors x j �→ (1 + ξ j )x j[
ξ j ∼ Uniform[−0.001, 0.001]]

100-diagram sample: Sidelobe level ∈ [97, 536]
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Reality: Nominal design, implementation errors x j �→ (1 + ξ j )x j[
ξ j ∼ Uniform[−0.02, 0.02]]

100-diagram sample: Sidelobe level ∈ [2469, 11552]
We see that from the practical viewpoint the nominal design is meaningless – its “opti-
mality” is completely destroyed by fairly small implementation errors!

2.2.1. From nominal to a robust design: Interval model of uncertainty. In order to “im-
munize” the design against implementation errors, one can use the Robust Counterpart
methodology. Indeed, the influence of multiplicative errors

x j �→ (1 + ξ j)x j , |ξ j | ≤ ε j

on a solution of an LP

min
x

{
cT x : Ax ≥ b

}
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is as if there were no implementation errors, but the matrix
[

cT

A

]
was known up to

multiplication from the right by a diagonal matrix D with the diagonal entries D j j
varying in the segments [1 − ε j , 1 + ε j ]. As far as the robust counterpart is concerned,
the resulting uncertainty is (equivalent to) a particular case of interval uncertainty, where
every entry in the data of an LP, independently of other entries, runs through a given
interval. Note that the robust counterpart of an uncertain LP with interval uncertaintymin

x

{
cT x : Ax ≥ b

}∣∣∣∣
∣∣c j − cn

j

∣∣ ≤ δc j , j = 1, ..., n∣∣Ai j − An
i j

∣∣ ≤ δAi j , i = 1, ..., m, j = 1, ..., n∣∣bi − bn
i

∣∣ ≤ δbi, i = 1, ..., m


is clearly equivalent to the LP

min
x,y,t

∑
j

[
cn

j x j + δc j y j
] :
∑

j

[
An

i j x j + δAi j y j
] ≤ bi − δbi, i = 1, ..., m,

−y j ≤ x j ≤ y j , j = 1, ..., n


It is worthy of mentioning that uncertain LPs with interval uncertainty and their robust
counterparts were considered by A.L. Soyster as early as in 1973.

As applied to our Circular Antenna problem affected by implementation errors, the
outlined approach leads to the Interval robust counterpart

min
τ,x,y



τ :

0.9 ≤
40∑
j=1

[
x j Dκ j (δ) − ε|Dκ j (δ)|y j

]
, θ ∈ �cns

40∑
j=1

[
x j Dκ j (δ) + ε|Dκ j (δ)|y j

] ≤ 1, θ ∈ �cns

−τ ≤
40∑
j=1

[
x j Dκ j (δ) − ε|Dκ j (δ)|y j

]
, θ ∈ �obj

40∑
j=1

[
x j Dκ j (δ) + ε|Dκ j (δ)|y j

] ≤ τ, θ ∈ �obj

−y j ≤ x j ≤ y j , j = 1, ..., 40



,

where ε is the level of implementation errors we intend to withstand.

2.2.2. From nominal to a robust design: Ellipsoidal model of uncertainty. The “worst-
case-oriented” interval model of uncertainty looks “too conservative”. Indeed, when the
perturbations in coefficients of an uncertain linear inequality are of stochastic nature, it
is “highly unprobable” that they will simultaneously take the “most dangerous” values.
This is the case, e.g., in our Antenna Design problem, where we have all reasons to
assume that the implementation errors are as in (9).

Let us look at what happens with a linear inequality

a0 +
n∑

j=1

a j x j ≤ 0 (10)
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at a given candidate solution x, when the coefficients of the constraint are affected by
random perturbations, so that the vector a = (a0, a1, ..., an)

T is random. In this case, the
left hand side of (10) is a random variable ζx with the mean and the standard deviation
given by

E {ζx} = (1, xT )T an, an = E {a} ,

StD {ζx} ≡ E1/2
{[ζx − E{ζx}]2

} = √(1, xT )V(1, xT )T ,

V = E
{
(a − an)(a − an)T

}
.

(11)

Now let us choose a “safety parameter” � and ignore the “rare event” ζx > E{ζx} +
�StD{ζx}, but, at the same time, let us take upon ourselves full responsibility to satisfy
(10) in all other events. With this approach, a “safe” version of our inequality becomes

an
0 +

n∑
j=1

an
j x j + �

√
(1, xT )V(1, xT )T ≤ 0; (12)

if this inequality is satisfied at a given x, then the “true” inequality (10) is not satisfied
at x with probability p(x,�) which approaches 0 as � grows. (For example, in the
case of normally distributed a, one has p(x,�) ≤ exp{−�2/2}, so that when choosing
� = 5.24, we are sure that if x satisfies (12), then the probability that x violates (10) is
less than 1.e-6; with � = 9.6, the probability in question is less than 1.e-20).

It remains to note that (12) is exactly the robust counterpart of the uncertain inequality
(10) corresponding to choosing as the uncertainty set the ellipsoid

U = {an + da | da = �V 1/2ζ, ζT ζ ≤ 1
}
.

We see that an ellipsoidal uncertainty is a natural way to model, in an “ε-reliable fashion”,
random perturbations of the data in uncertain LPs; usually this approach is significantly
less conservative than the worst-case-oriented interval one (interval uncertainty). Note,
however, that although “ε-reliability” with ε =1.e-20, and in many applications – with
ε =1.e-6, for all practical purposes, is the same as “complete reliability”, one can use the
above approach to modeling uncertainty only when there are strong reasons to believe
that data perturbations indeed are random with known “light tail” distribution.

As applied to our Circular Antenna problem affected by implementation errors (9),
the approach leads to the Ellipsoidal robust counterpart

min
τ,x,y



τ :

0.9 + �ε

√
40∑
j=1

x2
j D2

κ j
(θ) ≤

40∑
j=1

x j Dκ j (δ), θ ∈ �cns

40∑
j=1

x j Dκ j (δ) + �ε

√
40∑
j=1

x2
j D2

κ j
(θ) ≤ 1, θ ∈ �cns

−τ + �ε

√
40∑
j=1

x2
j D2

κ j
(θ) ≤

40∑
j=1

x j Dκ j (δ), θ ∈ �obj

40∑
j=1

x j Dκ j (δ) + �ε

√
40∑
j=1

x2
j D2

κ j
(θ) ≤ τ, θ ∈ �obj



.



462 Aharon Ben-Tal, Arkadi Nemirovski

2.2.3. Comparing the designs. Below we summarize a comparison of the designs cor-
responding to the Nominal problem and its Interval and Ellipsoidal Robust counterparts
for our Circular Antenna example.
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ε in (9)
Design ε = 0 ε = 0.001 ε = 0.02

Sidelobe
level

Constr.
viol.

Sidelobe
level1)

Constr.
viol.2)

Sidelobe
level1)

Constr.
viol.2)

Nom 0.018 0 97
536

1338
2469

11552 23756

Ell_Rob 0.065 0 0.0653
0.0657

0
0.0657
0.0712 0.009

Int_Rob 0.110 0 0.1095
0.1099

0
0.1077
0.1151 0

1) minimum and maximum in a 100-diagram sample
2) maximum in a 100-diagram sample
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Note that although the Interval and the Ellipsoidal Robust designs are built for the
implementation error ε = 0.001, both designs are capable to withstand even 20 times
larger implementation errors. We see also that in terms of the objective the Ellipsoidal
Robust design is 50% better than the Interval Robust one, although both designs possess
the same capability to withstand random implementation errors.

2.3. NETLIB case study

Consider a real-world LP program PILOT4 from the NETLIB library (1,000 variables,
410 constraints). The constraint # 372 is:

[an]T x ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829

−1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851

−0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855

−0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859

−6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870

−0.401597x871 + x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405.

(13)

Most of the coefficients are “ugly reals” like -8.598819; we have all reasons to believe
that these coefficients are characteristics of certain technological processes/devices and
as such cannot be known with high accuracy; thus, we can treat the ugly coefficients
as uncertain and coinciding with the “true” coefficients with an accuracy of, say, 3-4
digits, not more. An exception is the coefficient 1 at x880 which perhaps represents the
structure of the problem and is therefore certain. With these natural assumptions, we can
ask what happens with the constraint at the optimal solution xn, as reported by CPLEX,
when we perturb the uncertain coefficients within, say, 0.01% margin. The answer is as
follows:

• The worst (over all 0.01%-perturbations of uncertain coefficients) violation of the
constraint at xn is as large as 450% of the right hand side;

• With independent random multiplicative perturbations, distributed uniformly, of
uncertain coefficients, the constraint at xn is violated by at most 150% of the right
hand side with probability 0.18.
We see that the usual solution to a real-world LP can be highly unreliable – it
can become heavily infeasible as a result of fairly small perturbations of the un-
certain data. To realize how frequent this unpleasant phenomenon is and how
to struggle with it, we have carried out a case study as follows (for full details,
see [6]).

• We have looked through the list of NETLIB LPs and for every one of them treated
as certain the coefficients of equality constraints and “simple” (representable as
fractions with denominators ≤ 100) coefficients of the inequality constraints; all
other coefficients were treated as uncertain.
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• At the “analysis” stage of our case study, we looked at what happens with the fea-
sibility properties of the nominal solution (as reported by CPLEX 6.2) when the
uncertain coefficients are subject to small (0.01%) random perturbations.
It turned out that with these data perturbations, in 13 (of totally 90) problems the
nominal solution violates some of the constraints by more than 50% of the right
hand side!

• At the “synthesis” stage, we used the Interval and the Ellipsoidal robust counterparts
to get “uncertainty-immunized” solutions to the “bad” NETLIB LPs given by the
Analysis stage. It turned out that both approaches yield fairly close results, and that
in terms of optimality, “immunization” against ε-uncertainty is basically costless,
provided that ε is not too large. For example, passing from the nominal solutions
of NETLIB problems to the robust ones, immunized against 0.1% uncertainty, we
never lost more than 1% in the value of the objective.

We believe that the outlined case study demonstrates the high potential of the Robust
Optimization methodology in processing correctly real-world LPs.

3. Robust quadratic programming

Consider an uncertain convex quadratically constrained problem{
min

x

{
cT x : xT Ai x ≤ 2bT

i x + ci, i = 1, ..., m
}∣∣{Ai, bi, ci}m

i=1 ∈ U
}

(14)

(w.l.o.g., we may treat the objective as certain, moving, if necessary, the original ob-
jective to the list of constraints). Here, in contrast to the case of LP, uncertainty sets
even of fairly simple geometry (e.g., a box) can yield NP-hard (and thus computa-
tionally intractable) robust counterparts [5]. In these cases, the Robust Optimization
methodology recommends using an approximate robust counterpart instead of the true
one.

3.1. Approximate robust counterpart of an uncertain problem

Consider an uncertain optimization problem

P =
{

min
x

{
cT x : F(x, ζ) ≤ 0

}∣∣ζ ∈ U
}

(15)

(as above, we lose nothing when assuming the objective to be linear and certain).
Typically, the uncertainty set U is given as

U = ζn + V, (16)

where ζn stands for the nominal data, and V is a perturbation set. From now on, we
postulate this structure and assume that V is a convex compact set containing the origin.
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In the case of (16), our uncertain problem P can be treated as a member of the
parametric family of uncertain problems

Pρ =
{

min
x

{
cT x : F(x, ζ) ≤ 0

}∣∣ζ ∈ Uρ = ζn + ρV
}

, (17)

where ρ ≥ 0 is the “level of uncertainty” (which is equal to 1 for the original problem).
Let

Xρ = {x | F(x, ζ) ≤ 0 ∀ζ ∈ Uρ

}
(18)

be the robust feasible set of Pρ; these sets clearly shrink as ρ grows.
We call an optimization problem

min
x,u

{
cT x : G(x, u) ≤ 0

}
(19)

an approximate robust counterpart of P , if the projection Y of the feasible set of (19)
on the x-plane is contained in X1, and we say that the level of conservativeness of an
approximate robust counterpart (19) does not exceed α, if Xα ⊂ Y . In other words, (19)
is an approximate RC of P with the level of conservativeness ≤ α, if

1. Whenever a given x can be extended to a feasible solution of (19), x is robust feasible
for P ; an approximate RC is “more conservative” than the true RC;

2. Whenever x cannot be extended to a feasible solution of (19), it may or may not
be robust feasible for P , but it certainly loses robust feasibility when the level of
perturbations is increased by factor α.

Taking into account that the level of perturbations is usually something which is known
only “up to a factor of order of 1”, an approximate robust counterpart with an O(1) level
of conservativeness can be treated as an appropriate alternative for the true RC.

3.2. Approximate robust counterparts of uncertain convex quadratic problems with
ellipsoidal uncertainty

Assume that the uncertainty set U in (14) is ellipsoidal:

U =

{

(ci , Ai, bi) = (cn
i , An

i , bn
i

)+
L∑

�=1

ζ�

(
c�

i , A�
i , b�

i

)}m

i=1

∣∣ζT Q jζ ≤ 1, j = 1, ..., k

,

(20)

where Q j � 0,
k∑

j=1
Q j � 0. Note that this is a fairly general model of uncertainty

(including, as a particular case, the interval uncertainty).
Given an uncertain convex quadratically constrained problem (14) with the ellip-

soidal uncertainty (20), let us associate with it the semidefinite program
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minimize cT x
subject to

2xT bn
i + cn

i −
k∑

j=1
λi j

c1
i

2 + xT b1
i · · · cL

i
2 + xT bL

i

[
An

i x
]T

c1
i
2 + xT b1

i
...

cL
i
2 + xT bL

i

k∑
j=1

λi j Qi

[
A1

i x
]T

...[
AL

i x
]T

An
i x A1

i x · · · AL
i x I


� 0, i = 1, ..., m,

λi j ≥ 0, i = 1, ..., m, j = 1, ..., k
(21)

in variables x, λi j .

Theorem 2. [[8]] Problem (21) is an approximate robust counterpart of the uncertain
convex quadratically constrained problem (14) with ellipsoidal uncertainty (20), and
the level of conservativeness � of this approximation can be bounded as follows:

(i) In the case of a general-type ellipsoidal uncertainty (20), one has

� ≤

√√√√√3.6 + 2 ln

 k∑
j=1

Rank(Q j)

. (22)

Note that the right hand side in (22) is < 6.1 if, say,
k∑

j=1
Rank(Q j ) ≤ 15, 000, 000.

(ii) In the case of box uncertainty (i.e., ζT Q jζ = ζ2
j , 1 ≤ j ≤ k = L ≡ dim ζ),

� ≤ π

2
.

(iii) In the case of simple ellipsoidal uncertainty (k = 1 in (20)),

� = 1,

i.e., problem (21) is equivalent to the robust counterpart of (14), (20).
��

3.3. Approximate robust counterparts of uncertain conic quadratic problems with
ellipsoidal uncertainty

Consider an uncertain conic quadratic program{
min

x

{
cT x :‖ Ai x + bi ‖2≤ αT

i x + βi, i = 1, ..., m
}∣∣ {(Ai, bi, αi , βi)}m

i=1 ∈ U
}

(23)

affected by side-wise uncertainty:

U =
{
{Ai, bi, αi , βi}m

i=1

∣∣ {Ai, bi}m
i=1 ∈ U left,

{αi , βi}m
i=1 ∈ U right

}
(24)

and assume that
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1. The left-hand-side uncertainty set is ellipsoidal:

U left =

{

(Ai, bi) = (An
i , bn

i

)+
L∑

�=1

ζ�

(
A�

i , b�
i

)}m

i=1

∣∣ζT Q jζ ≤ 1, j = 1, ..., k


(25)

where Q j � 0, j = 1, ..., k, and
∑

j
Q j � 0;

2. The right-hand-side uncertainty setU right is bounded and semidefinite-representable:

U right =
{{

(αi , βi) = (αn
i , β

n
i

)+
R∑

r=1
ηr
(
αr

i , β
r
i

)}m

i=1

∣∣η ∈ V
}

,

V = {η∣∣∃u : P(η) + Q(u) − R � 0
}
,

(26)

where P(η) : RR → SN , Q(u) : Rp → SN are linear mappings taking values in the
space SN of symmetric N × N matrices and R ∈ SN .

Let us associate with (23)–(26) the semidefinite program

minimize cT x

subject to

τi −
k∑

j=1
λi j

[
An

i x + bn
i

]T

k∑
j=1

λi j Qi

[
A1

i x + b1
i

]T
...[

AL
i x + bL

i

]T
An

i x + bn
i A1

i x + b1
i · · · AL

i x + bL
i τi I


� 0, i = 1, ..., m,

λi j ≥ 0, i = 1, ..., m, j = 1, ..., k,

τi ≤ xT αn
i + βn

i + Tr(RVi), i = 1, ..., m,

P∗(Vi) =


xT α1

i + β1
i

...

xT αR
i + βR

i

 , i = 1, ..., m,

Q∗(Vi) = 0, i = 1, ..., m,

Vi � 0, i = 1, ..., m

(27)
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in variables x, λi j , τi , Vi ; here for a linear mapping S(y) =
q∑

i=1
yi Si : Rq → SN ,

S∗(Y ) =
Tr(YS1)

...

Tr(YSq)

 : SN → Rq is the conjugate mapping.

Theorem 3. [[8]] Assume that the semidefinite representation of V in (26) is strictly
feasible, i.e., there exist η̄, ū such that P(η̄) + Q(ū) − R � 0. Then problem (27) is
an approximate robust counterpart of the uncertain conic quadratic problem (23) with
uncertainty (24)–(26), and the level of conservativeness � of this approximation can be
bounded as follows:

(i) In the case of a general-type ellipsoidal uncertainty (25) in the left hand side
data, one has

� ≤
√√√√3.6 + 2 ln

( k∑
j=1

Rank(Q j)

)
. (28)

(ii) In the case of box uncertainty in the left hand side data (ζT Q jζ = ζ2
j , 1 ≤ j ≤

k = L ≡ dim ζ),

� ≤ π

2
.

(iii) In the case of simple ellipsoidal uncertainty in the left hand side data (k = 1 in
(25)), � = 1, so that problem (27) is equivalent to the robust counterpart of (23)–(26).

��

3.4. Example: Least Squares Antenna Design

To illustrate the potential of the Robust Optimization methodology as applied to conic
quadratic problems, consider the Circular Antenna problem from Sect. 2.2 and assume
that now our goal is to minimize the (discretized) L2-distance from the synthesized

diagram
40∑
j=1

x j Dκ j (·) to the “ideal” diagram D∗(·) which is equal to 1 in the range

77◦ ≤ θ ≤ 90◦ and is equal to 0 in the range 0◦ ≤ θ ≤ 70◦. The associated problem is
just the Least Squares problem

minτ,x

τ :

√√√√√
∑

θ∈�cns

D2
x(θ) + ∑

θ∈�obj

(Dx(θ) − 1)2

card (�cns ∪ �obj)︸ ︷︷ ︸
‖D∗−Dx‖2

≤ τ

 ,

Dx(θ) =
40∑
j=1

x j Dκ j (θ)

(29)

The Nominal Least Squares design obtained from the optimal solution to this problem
is completely unstable w.r.t. small implementation errors:
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In order to take into account implementation errors (9), we should treat (29) as an
uncertain conic quadratic problem{

min
τ,x

{τ :‖ Ax − b ‖2≤ τ}∣∣A ∈ U}
with the uncertainty set of the form

U = {A = An + An Diag(δ) | ‖ δ ‖∞≤ ε
} ;

in the results to follow, we use ε = 0.02. The corresponding approximate RC (27) yields
the Robust design as follows:
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Other examples of applications of Robust Optimization in quadratic and conic quadratic
programming can be found in [12,9].

4. Robust semidefinite programming

The robust counterpart of an uncertain semidefinite program{
min

x

{
cT x : A0 +

n∑
i=1

xi Ai � 0

} ∣∣(A0, ..., An) ∈ U
}

(30)
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is NP hard already in the simple case where the uncertainty set U is an ellipsoid. Thus,
we are forced to look for “moderately conservative” approximate robust counterparts
of uncertain SDPs. The strongest result in this direction deals with the case of box
uncertainty.

4.1. Approximate robust counterpart of uncertain semidefinite program affected by
a box uncertainty

Theorem 4. [7] Assume that the uncertain SDP (30) is affected by “box uncertainty”,
i.e.,

U =
{

(A0, ..., An) = (An
0, ..., An

n

)+
L∑

�=1

ζ�

(
A�

0, ..., A�
n

)∣∣ ‖ ζ ‖∞≤ 1

}
. (31)

Then the semidefinite program

min
x,X�


cT x :

X� � A�[x] ≡ A�
0 +

n∑
j=1

x j A�
j , � = 1, ..., L,

X� � −A�[x], � = 1, ..., L,
L∑

�=1
X� $ An

0 +
n∑

j=1
x j An

j


(32)

is an approximate robust counterpart of the uncertain semidefinite program (30)–(31),
and the level of conservativeness � of this approximation can be bounded as follows.
Let

µ = max
1≤�≤L

max
x

Rank(A�[x])
(note � ≥ 1 in the max). Then

� ≤ ϑ(µ) =
{

π
2 , µ ≤ 2
π
√

k
2 , µ ≥ 3.

(33)

��
We see that the level of conservativeness of the approximate robust counterpart (32) de-
pends solely on the ranks of the “basic perturbation matrices” A�[·] and is independent
of other sizes of the problem. This is good news, since in many applications the ranks
of the perturbation matrices are O(1). Consider an instructive example.

4.1.1. Example: Lyapunov Stability Synthesis. An LMI region is a set in the complex
plane C representable as

C = {z ∈ C | fC(z) ≡ L + Mz + MT z̄ ≺ 0},
where L = LT and M are real k × k matrices and z̄ is the complex conjugate of z. The
simplest examples of LMI regions are:
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1. Open left half-plane: fC(z) = z + z̄;

2. Open disk {z | |z + q| ≤ r}, q ∈ R, r > 0: fC(z) =
( −r z̄ + q

z + q −r

)
;

3. The interior of the sector {z | π − θ ≤ |arg(z)| ≤ π} (−π < arg(z) ≤ π,
0 < θ < π

2 ):

fC(z) =
(

(z + z̄) sin θ −(z − z̄) cos θ

(z − z̄) cos θ (z + z̄) sin θ

)
;

4. The stripe {z | h1 < '(z) < h2}: fC(z) =
(

2h1 − (z + z̄) 0
0 (z + z̄) − 2h2

)
.

It is known that

(!) The spectrum �(A) of a real n × n matrix A belongs to C if and only if there
exists Y ∈ Sn, Y � 0, such that the matrix

M[Y, A] = [L pqY + Mpq AY + MqpYAT ]
1≤p,q≤k

is negative definite.
Here and in what follows [Bpq]1≤p,q≤k denotes the block matrix with blocks

Bpq.

We can treat Y from (!) as a certificate of the inclusion �(A) ⊂ C, and by homogeneity
reasons we can normalize this certificate to satisfy the relations Y � I ,M[Y, A] $ −I .
From now on, we speak about normalized certificates only.

In many control applications, we are interested in solving the following problem:

(LSS[ρ]) Given an LMI region C and an “uncertain interval matrix”

ABρ = {(A, B) ∈ Rn×n × Rn×m |∣∣Ai j − An
i j

∣∣ ≤ ρCi j ,
∣∣Bi j − Bn

i�

∣∣ ≤ Di�, 1 ≤ i, j ≤ n, 1 ≤ � ≤ m
}

find a linear feedback K ∈ Rn×m and a matrix Y which certifies that the spectra
of all matrices of the form A + BK, (A, B) ∈ ABρ, belong to C.

For example, in the case when C is the open left half-plane, our question
becomes: find K such that all matrices of the form A + BK , (A, B) ∈
ABρ , share a common “stability certificate” Y � I :

(A + BK )Y + Y(A + BK )T $ −I ∀(A, B) ∈ ABρ.

The interpretation is as follows: given an uncertain time-varying con-
trolled linear system

d

dt
x(t) = A(t)x(t) + B(t)u(t), (A(t), B(t)) ∈ ABρ ∀t,

we are looking for a linear feedback

u(t) = Kx(t)
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such that the stability of the resulting uncertain closed loop system

d

dt
x(t) = (A(t) + B(t)K )x(t) (A(t), B(t)) ∈ ABρ ∀t,

can be certified by a quadratic Lyapunov function xT Y−1x, i.e. one for
which

d

dt
(xT (t)Y−1x(t)) < 0

for all t and all nonzero trajectories X(·) of the closed loop system.
Note that replacing in the preceding story the open left half-plane

with the open unit disk, we come to a completely similar problem for
a discrete time uncertain controlled system.

Problem (LSS[ρ]) is NP-hard. It turns out, however, that with the aid of Theorem 4 we
can build a fairly good tractable approximation of the problem. Note that Y � I and
K form a solution of (LSS[ρ]) if and only if (Y, K ) is a robust feasible solution of the
uncertain matrix inequality{{M[Y, A + BK ] $ −I}|(A, B) ∈ ABρ

}
with box uncertainty. Passing from the variables Y, K to Y, Z = KY , we convert this
uncertain matrix inequality into an uncertain Linear Matrix Inequality (LMI){[

L pqY + Mpq(AY + BZ) + Mqp(AY + BZ)T ]
1≤p,q≤k $ −I

}
(I[ρ])

in variables Y, Z . Thus, (Y, K = ZY−1) solves (LSS[ρ]) if and only if Y � I and (Y, Z)

is a robust feasible solution of the uncertain LMI (I[ρ]) with a box uncertainty. In the
notation from Theorem 4, x = (Y, Z) and the perturbation matrices A�[x], � = 1, ..., L,
are

Ci j
[
Mpq Ei j Y + MqpYE ji

]
1≤p,q≤k , i, j = 1, ..., n,

Di�
[
Mpq Fi� Z + Mqp ZT (Fi�)T

]
1≤p,q≤k , i = 1, ..., n, � = 1, ..., m,

(34)

where Ei j are the standard n × n basic matrices (“1 in the cell i j , zeros in other cells”)
and Fi� are the standard n × m basic matrices.

The approximate robust counterpart (32) of the uncertain LMI (I[ρ]) is the system
of LMI’s

Xi j � ±Ci j
[
Mpq Ei j Y + MqpYE ji

]
1≤p,q≤k , i, j = 1, ..., n,

Zi� � ±Di�
[
Mpq Fi� Z + Mqp ZT (Fi�)T

]
1≤p,q≤k , i = 1, ..., n, � = 1, ..., m,

ρ

[∑
i, j

Xi j +∑
i,�

Zi�

]
$ −I − [L pqY + Mpq(AnY + Bn Z) + Mqp(AnY + Bn Z)T

]
1≤p,q≤k ,

Y � I

(II[ρ])

Theorem 4 implies the following

Corollary 1. Let µ be the maximum, over Y, Z and the indices i, j, �, of the ranks of
matrices (34). Then:



474 Aharon Ben-Tal, Arkadi Nemirovski

(i) If the system of LMI’s (II[ρ]) is solvable, so is the problem (LSS[ρ]), and every
solution (Y, Z, ...) of the former system yields a solution (Y, K = ZY−1) of the
latter problem;

(ii) If the system of LMI’s (II[ρ]) is unsolvable, so is the problem (LSS[ϑ(µ)ρ]),
cf. (33).

��
The point is that the parameter µ in Corollary 1 is normally a small integer; specifically,
we always have µ ≤ 2k, where k is the size of the matrices L, M specifying the LMI
region C in question; for the most important cases where C is, respectively, the open
left half-plane and the open unit disk, we have µ = 2, i.e., (II[ρ]) is π

2 -conservative
approximation of (LSS[ρ]).

There are many other applications of Theorem 4 to systems of LMI’s arising in
Control and affected by an interval data uncertainty. Usually the structure of such
a system ensures that when perturbing a single data entry, the right hand side of every
LMI is perturbed by a matrix of a small rank, which is exactly the case considered in
Theorem 4.

4.2. Approximate robust counterpart of uncertain semidefinite program affected by
a ball uncertainty

Theorem 5. [11] Assume that (30) is affected by a ball uncertainty:

U =
{

(A0, ..., An) = (An
0, ..., An

n

)+ L∑
�=1

ζ�

(
A�

0, ..., A�
n

)∣∣ ‖ ζ ‖2≤ 1

}
. (35)

Then the semidefinite program

min
x,F,G


cT x :


G A1[x] A2[x] . . . AL[x]

A1[x] F
A2[x] F

...
. . .

AL[x] F

 � 0,

F + G $ 2

(
An

0 +
n∑

j=1
x j An

j

)


(36)

(cf. (32)) is an approximate robust counterpart of the uncertain semidefinite program
(30), (35), and the level of conservativeness � of this approximation does not exceed

min
[√

M,
√

L
]
,

where M is the row size of the matrices Ai in (30).
��

4.3. Uncertain semidefinite programs with tractable robust counterparts

The only known “general” geometry of the uncertainty set U in (30) which leads
to a computationally tractable robust counterpart of (30) is the trivial one, namely,



Robust optimization – methodology and applications 475

a polytope given as a convex hull of a finite set:

U = Conv
{(

A1
0, A1

1, ..., A1
n

)
, ...,

(
AL

0 , AL
1 , ..., AL

n

)} ;

in this case, the robust counterpart of (30) merely is the semidefinite program

min
x

cT x : A�
0 +

n∑
j=1

x j A�
j � 0, � = 1, ..., L

 .

There are, however, important special cases where the robust counterpart of an uncertain
semidefinite program with a “nontrivial” uncertainty set is computationally tractable.
Let us look at two most important examples.

4.3.1. Example: “Rank 2” ellipsoidal uncertainty and robust truss topology design.
Consider a “nominal” (certain) semidefinite problem

min
x

cT x : An[x] ≡ An
0 +

n∑
j=1

x j An
j � 0

 , (37)

where An
j are symmetric M × M matrices. Let d be a fixed nonzero M-dimensional

vector, and let us call a rank 2 perturbation of An[·] associated with d a perturbation of
the form

An[x] �→ An[x] + b(x)dT + dbT (x),

where b(x) is an affine function of x taking values in RM . Consider the uncertain
semidefinite problem obtained from (37) by all possible rank 2 perturbations associated
with a fixed vector d )= 0 and with b(·) varying in a (bounded) ellipsoid:{

min
x

{
cT x : An[x] + [ L∑

�=1

u�b�(x)
]
dT + d

[ L∑
�=1

u�b�(x)
]T � 0

} ∣∣uT u ≤ 1

}
, (38)

where b�(x) are given affine functions of x taking values in RM .

Proposition 1. [[5], Proposition 3.1] The robust counterpart of the uncertain semidefi-
nite problem (38) is equivalent to the following SDP problem:

min
x,λ

{
cT x :

(
λI [b1(x); b2(x); ...; bk(x)]T

[b1(x); b2(x); ...; bk(x)] An[x] − λddT

)
� 0

}
. (39)

��

Application: Robust Truss Topology Design. The situation described in Proposition 1
arises, e.g., in the truss topology design problem. In this problem, we are interested in
designing a truss – a construction comprised of thin elastic bars of a given total weight
linked with each other at nodes from a given finite 2D or 3D nodal set – in such a way
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that the resulting construction is most rigid w.r.t. a given external load (a collection of
forces distributed along the nodes). For a detailed description of the model, see, e.g., [1].
In the Truss Topology Design problem, the “nominal” program (37) can be posed as the
following SDP:

min
τ,t


τ :


τ f T

f
p∑

i=1
ti Ai

Diag(t)

 � 0,

p∑
i=1

ti = 1,


; (40)

here p is the number of tentative bars, the design variables t1, ..., tp are volumes of these
bars, Ai � 0 are matrices readily given by the geometry of the nodal set, f represents
the load of interest, and τ stands for the compliance of the truss w.r.t. f (the lower the
compliance is, the more rigid the truss is when loaded by f ). In the robust setting of
the TTD problem, we treat the load f as the uncertain data which runs through a given
ellipsoid

E = {Qu | u ∈ Rk, uT u ≤ 1}.
This is nothing but a rank 2 perturbation of the nominal problem (40) with properly
chosen b�(x) (in fact independent of x). The robust counterpart of the resulting uncertain
semidefinite problem is the semidefinite program

min
τ,t


τ :


τI QT

Q
p∑

i=1
ti Ai

Diag(t)

 � 0,

p∑
i=1

ti = 1,


; (41)

For discussing the role played by the Robust Optimization methodology in the context
of Truss Topology Design and for illustrative examples, see [3]; here we present a single
example as follows. We want to design a minimum-compliance 2D cantilever arm with
the 9 × 9 nodal set, boundary conditions and a loading scenario as follows:

9 × 9 nodal grid and the load of interest f n

[the most left nodes are fixed]
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Solving the associated problem (40), we come to the Nominal design which is completely
unstable w.r.t. small occasional loads:

Nominal Design: Dream and Reality

The compliance w.r.t. f n is 1.000

The compliance w.r.t. f with ‖ f ‖2= 0.01 ‖ f n ‖2 is 17 times larger!

In order to get a “reliable” truss, we reduce the original 9 ×9 nodal set to its 12-element
subset formed by the nodes which are present in the nominal design, and then replace
the load of interest f n with the uncertainty set chosen as the smallest volume ellipsoid
of loads F spanned by f n and all “small occasional loads” f , ‖ f ‖2≤ 0.1 ‖ f n ‖2,
distributed along the reduced nodal set. Solving the associated robust counterpart (41),
we come to the Robust design as follows

Robust Design: Dream and Reality

The compliance w.r.t. f n is 1.0024

Design Compliance w.r.t.
f n

Maximum compliance
w.r.t. f ∈ F

Nominal 1.000 >3,360
Robust 1.002 1.003

We see that the truss corresponding to the Robust design is nearly as good w.r.t. the load
of interest as the truss obtained from the Nominal design; at the same time, the robust
design is incomparably more stable w.r.t. small occasional loads distributed along the
nodes of the truss.
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4.3.2. Example: norm-bounded perturbations and Lyapunov stability analysis. Con-
sider a pair of specific uncertain LMI’s

(a)
{

RT Z P�Q + QT �T PT ZT R $ Y
∣∣ ‖ � ‖2≤ ρ

}
,

(b)
{

RT Z P�Q + QT �T PT ZT R $ Y
∣∣ ‖ � ‖≤ ρ

} ; (42)

here Y ∈ Sn and Z ∈ Rp×q are variable matrices, � ∈ Rµ×ν is a perturbation, and
Q ∈ Rν×n , P ∈ Rq×µ are constant matrices, ‖ � ‖2=

√
Tr(��T ) is the Frobenius

norm, and ‖ � ‖= max{‖ �x ‖2:‖ x ‖2≤ 1} is the spectral norm of a matrix.

Proposition 2. [10] Let Q )= 0. The sets of robust feasible solutions of the uncertain
LMI’s (42.a), (42.b) coincide with each other and with the set(Y, Z)

∣∣∃λ ∈ R :
(

Y − λQT Q ρRT Z P

ρPT ZT R λI

)
� 0︸ ︷︷ ︸

(∗)

 . (43)

Thus, the robust counterparts of both (42.a), (42.b) are equivalent to the explicit LMI
(∗) in variables Y, Z, λ.

��
As an application example, consider the Lyapunov Stability Analysis problem for an
uncertain controlled linear dynamic system

d
dt x(t) = Ax(t) + B(t)u(t) [state equations]

y(t) = Cx(t) [observer]
u(t) = K(t)y(t) [feedback]

⇓
d
dt x(t) = [A + BK(t)C]x(t) [closed loop system]

(44)

with K(t) varying in the uncertainty set

U = {K | ‖ K − Kn ‖≤ ρ}. (45)

Our goal is to find, if possible, a quadratic Lyapunov function L(x) = xT Xx for the
resulting uncertain closed loop system, i.e., to find a matrix X � 0 such that

d

dt

[
xT (t)Xx(t)

]
< 0

for all t and all nonzero trajectories of the closed loop system, whatever is a measurable
matrix-valued function K(t) taking values in U .

It is easily seen that a necessary and sufficient condition for a matrix X � 0 to
yield a quadratic Lyapunov function for the system (44)–(45) is for it to satisfy the
semi-infinite system of strict matrix inequalities

[A + BKC]T X + X[A + BKC] ≺ 0 ∀K ∈ U; (46)
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by homogeneity reasons, we lose nothing when restricting ourselves with X’s normalized
by the requirement X � I and satisfying the following normalized version of (46):

[A + BKC]T X + X[A + BKC] $ −I ∀K ∈ U . (47)

Thus, what we are looking for is a robust feasible solution of the uncertain system of
LMI’s{{

X � I,
[A + B(Kn + �)C]T X + X[A + B(Kn + �)C] $ −I

} ∣∣∣∣ ‖ � ‖≤ ρ

}
(48)

in matrix variable X. According to Proposition 2, the robust counterpart of the uncertain
system (48) is equivalent to the explicit system of LMI’s(−I − [A + BKnC]T X − X[A + BKnC] − λCT C ρX B

ρBT X λI

)
� 0,

X � I

(49)

in variables X, λ.
Note that what is important in the above construction is that as a result of the

uncertainty affecting (44), the possible values of the matrix Ã = A+ BKC of the closed
loop system form the set of the type {P + Q�R | ‖ � ‖≤ ρ}. Note that we would get
drifts of Ã of exactly this type when assuming, instead of a norm-bounded perturbation
in the feedback, that among the four matrices A, B, C, K participating in (44) three
are fixed, and the remaining matrix, let it be called S, is affected by a norm-bounded
uncertainty, specifically, S runs through the set{

Sn + U�V | ‖ � ‖≤ ρ
}

or through the set {
Sn + U�V | ‖ � ‖2≤ ρ

}
.
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