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Abstract. We demonstrate that ifA1, ..., Am are symmetric positive semidefiniten×n matrices with positive
definite sum andA is an arbitrary symmetricn× n matrix, then the relative accuracy, in terms of the optimal
value, of the semidefinite relaxation

max
X
{Tr(AX) | Tr(Ai X) ≤ 1, i = 1, ...,m; X � 0} (SDP)

of the optimization program

xT Ax→ max | xT Ai x ≤ 1, i = 1, ...,m (P)

is not worse than 1− 1
2 ln(2m2)

. It is shown that this bound is sharp in order, as far as the dependence onm is

concerned, and that a feasible solutionx to (P) with

xT Ax≥ Opt(SDP)

2 ln(2m2)
(∗)

can be found efficiently. This somehow improves one of the results of Nesterov [4] where bound similar to
(∗) is established for the case when allAi are of rank 1.

Key words. semidefinite relaxations – quadratic programming

1. Introduction

Let Ai , i = 1, ...,m, be positive semidefiniten× n matrices with positive definite sum,
andA be an× n symmetric matrix. Consider the optimization problem

xT Ax→ max | xT Ai x ≤ 1, i = 1, ...,m. (P)

This problem, in general, is NP-hard (take, e.g.,m= n andAi = ei eT
i , whereei are the

standard basic orths inRn; then (P) becomes the problem of maximizing a homogeneous
quadratic form over the unit cube, which is known to be NP-hard even in the case of
positive semidefiniteA).
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In view of NP-hardness of (P), it makes sense to look at the standard semidefinite
relaxation of the problem. To get this relaxation, we rewrite allxT Ai x as Tr(Ai xxT),
thus coming to the equivalent problem

Tr(AX)→ max | Tr(Ai X) ≤ 1, i = 1, ...,m, X � 0,Rank(X) = 1,

and then discard the rank restriction, thus coming to the relaxation

Tr(AX)→ max | Tr(Ai X) ≤ 1, i = 1, ...,m, X � 0. (SDP)

By its origin, the optimal value in the relaxation is not less that the one in the original
problem:

Opt(SDP) ≥ Opt(P) (1)

The main goal of this note is to demonstrate that the “gap” in (1) is “not too big”, namely,
that

Opt(P) ≥ Opt(SDP)

2 ln(2mµ)
, µ = min[m;max

i
Rank(Ai )]. (2)

In the standard terminology (2) says that (SDP) approximates (P) within the relative
accuracyθ = 1 − 1

2 ln(2mµ) , i.e., 0 ≤ Opt(SDP) − Opt(P) ≤ θOpt(SDP). This re-
sult complements, in a sense, stronger results known from literature and dealing with
maximization of a quadratic form over the unit cube and cube-like sets:

A) It was shown by Goemans and Williamson [2] that ifm = n, Ai = ei eT
i and A is

positive semidefinite matrix with nonpositive non-diagonal entries and row sums 0
(which corresponds to the Maximum Cut problem), then

Opt(P)

Opt(SDP)
≥ 0.87856...

(approximation of the relative accuracy 0.12143...).
B) Nesterov [3] shows that ifAi are as in A), andA is an arbitrary positive semidefinite

matrix, then

Opt(P)

Opt(SDP)
≥ 2

π
= 0.6366... (3)

(approximation of the relative accuracy 0.3633...). For closely related results, see
Ye [5] and Bertsimas and Ye [1].

C) It is known that
C.1) (3) holds ifAi commute with each other andA � 0 (Ye [5], Nesterov [4]);
C.2) If Ai = ai aT

i are of rank 1, then, for certain efficiently solvable convex
optimization program (Cnv) (different from (SDP)) it holds

Opt(Cnv) ≥ Opt(P) ≥ 1

eln m
Opt(Cnv). (4)

(approximation of the relative accuracy 1− 1
eln m, Nesterov [4]).
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The bounds mentioned in A), B), C.1) are significantly better than (2) – the quality of
semidefinite relaxation there is independent of problem’s dimensions. We shall prove
that this phenomenon is possible only in the “special cases” of (P); specifically, we
demonstrate that for every positive integerm there exists an instance of (P) withn =
O(ln m) and positive definiteA such that

Opt(P)

Opt(SDP)
≤ O(1)

1

ln m
(5)

with a positive absolute constantO(1).
As compared to (4), the progress in (2) is that in our settingAi � 0 may have

arbitrary ranks, and, more essentially, that every feasible solutionX to (SDP) with
Tr(AX) > 0 for everyα ≥ 1

2 ln(2mµ) can be efficiently converted to a feasible solution

of (P) with the value of the objective at leastα−1Tr(AX), which is not exactly so for the
construction leading to (4) (quite different from the one we use).

The rest of the note is organized as follows. Inequality (2) is proved in Sect. 2, where
we present a simple randomized algorithm which allows to pass from a feasible solution
X of (SDP) to a feasible solutionx of (P) such that

xT Ax≥ Tr(AX)

2 ln(2mµ)
.

In Sect. 3, we demonstrate that the ratioOpt(P)
Opt(SDP) indeed can be of order of1ln m. In

Sect. 4, we use the standard derandomization technique to get a simple polynomial time
deterministic algorithm with the same properties as those of the randomized algorithm
from Sect. 2. In the concluding Sect. 5, we extend our main result to the case when the
objective is an inhomogeneous quadratic form.

2. Main result

We restrict ourselves with the only nontrivial case whenA is not negative semidefinite
(otherwise the optimal values in (SDP) and (P) both are equal to 0, and (2) is trivially
true). Note that our “nontrivial” case can be efficiently recognized, and that in this case
the optimal values in (P) and (SDP) are positive.

We start with presenting a randomized algorithmR which, given on input a feasible
solution X to (SDP) with positive value of the objective, generates random feasible
solutions to (P), namely, as follows.

Preprocessing.1) Observe thatX can be efficiently converted to a feasible
solution X′ of (SDP) with at least the same value of the objective as atX and
with rank not exceedingm. Indeed, sinceX � 0, we can efficiently representX
as

X =
n∑

j=1

gj g
T
j [gj ∈ Rn].
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Now let us look at the polyhedral set

X =
{
λ ∈ Rn+ | Tr(Ai

n∑
j=1

λ j gj g
T
j ) ≤ 1, i = 1, ...,m

}
.

This set is nonempty (it contains the pointλ0 = (1, ...,1)T), and the linear form

cTλ ≡ Tr
(

A
n∑

j=1

λ j gj g
T
j

)
is bounded above on the set (because (SDP) is above bounded due to

∑
i Ai � 0).

Applying the usual purification technique, we can efficiently pass fromλ0 to
an extreme pointλ∗ of X such thatcTλ∗ ≥ cTλ0; in other words, the matrix
X′ =∑m

j=1λ
∗
j gj gT

j is a feasible solution to (SDP) with the value of the objective
at least as atX. It remains to note that sinceλ∗ is an extreme point ofX , the
number of nonzero weightsλ∗j is at mostm, so thatX′ is of rank≤ m.

In view of the outlined construction, we may without loss of generality
assume that our input feasible solutionX to (SDP) is of rank≤ m.

2) We can efficiently decomposeX as X = 1T1 with Rank(1) ≤ m. Let
us set

Bi = 1Ai1
T , B = 1A1T .

SinceX is feasible for (SDP), we have

(a) Bi � 0, i = 1, ...,m;
(b) Tr(Bi ) = Tr(Ai X) ≤ 1, i = 1, ...,m;
(c) Rank(Bi ) ≤ µ, i = 1, ...,m;
(d) Tr(B) = Tr(AX).

(6)

3) Finally, we can efficiently pass to the orthonormal basis whereB is
diagonal1). Thus, we may assume that an orthogonal matrixU and matriceŝBi ,
i = 1, ...,m, B̂ are available such that

Bi = U B̂iU
T , B = U B̂UT

andB̂ is diagonal.

Generation of feasible solutionsto (P) after preprocessing is extremely simple.
We generate at random a vectorξ with independent entries taking with equal
probabilities the values±1 and convert the realizedξ into a feasible solutionx
of (P) according to

x = x(ξ) = 1√
maxi ξT B̂i ξ

1TUξ. (7)

1 In fact, of course, we cannot find this basis exactly in finite, not saying polynomial inn,m, time. We
can, however, find in time polynomial inn and ln(1/ε) (for everyε ∈ (0,1)) an orthonormal basis where
an ε-perturbationA′ of A (‖A− A′‖ ≤ ε‖A‖) is diagonal, which, in our context, is essentially the same
as the possibility to find an orthonormal eigenbasis ofA. Note also that to prove (2) – i.e., to establish the
“existence” part of our result – we should not bother at all whether this eigenbasis can or cannot be found
efficiently; all which is important for us is that such a basis exists.
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Proposition 1. For the outlined randomized algorithm as applied to a feasible solution
X of (SDP)with positive value of the objectivex always is well-defined and is feasible
for (P). Moreover, for everyα > 0 one has

Prob

{
xT Ax≥ 1

α
Tr(AX)

}
> 1− 2mµexp{−α/2}, µ = min[m,max

i
RankAi ].

(8)

Corollary 1. One has

Opt(P) ≥ Opt(SDP)

2 ln(2mµ)
.

Proposition⇒Corollary: Problem (SDP) has a nonempty and bounded (since
∑

i Ai �0)
feasible set and is therefore solvable. Let us applyR to the optimal solutionX∗ of the
problem and specifyα in (8) asα∗ = 2 ln(2mµ). According to (8),R with posi-
tive probability generates a feasible solution to (P) with the value of the objective
≥ 1

α∗Tr(AX∗) = 1
α∗Opt(SDP), whence Opt(P) ≥ 1

α∗Opt(SDP).
ut

Proof of Proposition.10. First let us prove thatx(ξ) always is well-defined, i.e., that
maxi ξT B̂i ξ > 0 for every vectorξ with coordinates±1. Indeed, assuming opposite,
there exists a vectorξ with coordinates±1 such thatξT B̂i ξ = 0 for all i (recall that the
matriceŝBi = UT BiU = UT1Ai1

TU are positive semidefinite). On the other hand,

Tr(B̂) = Tr(B) = Tr(AX) > 0 [by (6.d)]

and sinceξ is with coordinates±1 andB̂ is diagonal, we have

ξT B̂ξ = Tr(B̂) > 0. (9)

Now let
x̃(ξ) = 1TUξ.

We have

x̃T(ξ)Ai x̃(ξ) = ξTUT1Ai1
TUξ = ξTUT BiUξ = ξT B̂i ξ,

x̃T(ξ)Ax̃(ξ) = ξTUT1A1TUξ = ξTUT BUξ = ξT B̂ξ.
(10)

Thus, assuming thatξT B̂i ξ = 0 for all i = 1, ...,m and a vectorξ with coordinates±1,
we conclude that forz = x̃(ξ) it holds zT Ai z = 0, i = 1, ...,m, zT Az > 0, which
contradicts the assumption that

∑
i Ai � 0.

We see that maxi ξT B̂i ξ > 0 for all realizationsξ, so thatx(ξ) is always well-
defined; combining (7) and (10), we conclude that for all realizations ofξ the vector
x(ξ) is feasible for (P), and

xT(ξ)Ax(ξ) = 1

maxi ξT B̂i ξ
Tr(ξT B̂ξ)

= 1

maxi ξT B̂i ξ
Tr(B̂)

= 1

maxi ξT B̂i ξ
Tr(B)

= 1

maxi ξT B̂i ξ
Tr(AX).

(11)
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20. It remains to prove (8); in view of (11), all we should prove is that

Prob
{

max
i
ξT B̂i ξ > α

}
< 2mµexp{−α/2} ∀α > 0. (12)

20.a) Since the matriceŝBi are positive semidefinite of the same ranks asBi , i.e., of
ranks≤ µ (see (6.c)), we have

B̂i =
µ∑

j=1

f i j ( f i j )T .

with certain vectorsf i j ∈ Rn. Givenα > 0, consider the events

Ai j =
{
ξ | |ξT f i j | > √α‖ f i j ‖2

}
,

A =
⋃
i, j

Ai j , (13)

‖ f ‖2 =
√

f T f being the standard Euclidean norm.
20.b) Note that ifA doesnot take place, then

|ξT f i j | ≤ √α‖ f i j ‖2 ∀i , j

⇒∑m
j=1 ξ

T[ f i j ( f i j )T]ξ ≤ α∑m
j=1 ‖ f i j ‖22 = αTr(B̂i )

= αTr(Bi ) ≤ α ∀i [by (6.b)]

i.e., maxi ξT B̂iξ ≤ α. We see that in order to prove (12) it suffices to demonstrate that
for everyi , j it holds

Prob
{
|ξT f i j | > √α‖ f i j ‖2

}
< 2 exp{−α/2}. (14)

20.c) (14) is readily given by Bernstein’s theorem on large deviations. For our further
purposes, let us reproduce the proof.

Wheneverθ ≥ 0, we have

Prob{ξT f i j >
√
α‖ f i j ‖2} < E

{
exp{θ∑n

k=1 f i j
k ξk}

}
exp{−θ√α‖ f i j ‖2}

=
(

n∏
k=1

cosh(θ f i j
k )

)
exp{−θ√α‖ f i j ‖2}

≤
(

n∏
k=1

exp{θ2( f i j
k )

2/2}
)

exp{−θ√α‖ f i j ‖2}
= exp{12θ2‖ f i j ‖22− θ

√
α‖ f i j ‖2}.

Settingθ = √α/‖ f i j ‖2, we get

Prob{ξT f i j >
√
α‖ f i j ‖2} < exp{−α/2}. (15)
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Similarly, if θ ≤ 0, then

Prob{ξT f i j < −√α‖ f i j ‖2} < E
{

exp{θ∑n
k=1 f i j

k ξk}
}

exp{θ√α‖ f i j ‖2}

=
(

n∏
k=1

cosh(θ f i j
k )

)
exp{θ√α‖ f i j ‖2}

≤
(

n∏
k=1

exp{θ2( f i j
k )

2/2}
)

exp{θ√α‖ f i j ‖2}
= exp{12θ2‖ f i j ‖22 + θ

√
α‖ f i j ‖2}.

Settingθ = −√α/‖ f i j ‖2, we get

Prob{ξT f i j < −√α‖ f i j ‖2} < exp{−α/2}. (16)

Combining (15), (16), we come to (14).
ut

3. Sharpness of (2)

Here we demonstrate that

Proposition 2. For every positive integerm≥ 3, there exists problem(P)with positive
definiteA andn = O(ln m) such that

Opt(SDP)

Opt(P)
≥ κ ln m (17)

with positive absolute constantκ (for largem, one can takeκ = 0.55).

Proof. Let us fixφ ∈ (0, π/2), and let, for positive integern, 0φ be a maximal, with
respect to inclusion, set of unit vectors fromRn such that the angle between every two
distinct vectors from the set is> φ. DenotingM(n, φ) the cardinality of0φ and taking
into account that the “spherical hats”Sv = {x ∈ Rn | ‖x‖2 = 1, xTv ≥ cos(φ/2)}
associated with distinctv ∈ 0φ have no points in common, we get

M(n, φ)σn(S
φ) ≤ σn

({x ∈ Rn | ‖x‖2 = 1}) , (18)

whereσn(·) is the(n− 1)-dimensional area of a set on the unit sphere inRn andSφ is
the spherical hat

{x ∈ Rn | ‖x‖2 = 1, xTe≥ cos(φ/2)},
e being a once for ever fixed unit vector inRn. Rough estimation of the areas in (18)
implies the upper bound

ln(M(n, φ)) ≤
[
n ln

(
1

sin(φ/2)

)]
(1+ oφ(1)), (19)

whereoφ(1)→ 0 asn→∞.
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On the other hand,0φ clearly possesses the property that for everyx ∈ Rn with
‖x‖2 = 1 there existsv ∈ 0φ such thatxTv ≥ cos(φ) (otherwise we could extend0φ
by addingx, thus increasing the cardinality of the set without violating the property
vTu < cos(φ) for all distinctv,u ∈ 0φ). Now let us look at the following instance of
(P) with m= M(n, φ):

xT Ix → max | xT[vvT ]x ≤ 1 ∀v ∈ 0φ. (Pn,φ)

The matrixX = I clearly is a feasible solution for the associated (SDP), and for this
solution Tr(AX) = Tr(I 2) = n, so that Opt(SDP) ≥ n. On the other hand, the feasible
set of (Pn,φ) is contained in the Euclidean ball{x | ‖x‖2 ≤ 1

cos(φ) }. Indeed, ifx 6= 0 is

feasible for (Pn,φ) ande = ‖x‖−1
2 x, then there existsv ∈ 0φ with vTe≥ cos(φ), i.e.,

with vT x ≥ ‖x‖2 cos(φ), and since|vT x| ≤ 1 by constraints of (Pn,φ), we conclude that
‖x‖2 ≤ 1

cos(φ) . It follows that

Opt(Pn,φ) ≤ 1

cos2(φ)
,

whence

Opt(SDP)

Opt(Pn,φ)
≥ n cos2(φ) ≥ cos2(φ)

ln sin−1(φ/2)
(1+ o(1)) ln M(n, φ)

(we have used (19)). Specifyingφ = 3
16π, we get

Opt(SDP)

Opt(Pn,φ)
≥ 0.55 lnM(n, φ)

for all large enough values ofn, and the statement follows.
ut

4. Derandomization

Here we demonstrate that given a feasible solutionX to (SDP) with certain valueγ > 0
of the objective and a realα ≥ 2 ln(2mµ), one can explicitly point out, in an efficient
deterministic fashion, a feasible solutionx to (P) with the value of the objective at
leastγ/α.

Indeed, in view of the proof of Proposition 1, we can reduce the situation to the
following one:

(*) Given mµ vectorsg` ∈ Rn, find a vectorξ with coordinates±1 such that

|[g`]Tξ| ≤ √α‖g`‖2 ` = 1, ...,mµ; (20)
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in our context,g` are the vectorsf i j from item 20.a) of the aforementioned proof, and
a vectorξ satisfying (20) produces a feasible solutionx(ξ) of (P) with the value of the
objective≥ γ/α.

To build ξ, let us apply the standard derandomization technique. Namely, let

θ±` = ±
√
α/‖g`‖2,

and let

Fk(x1, ..., xk) =
mµ∑
`=1

exp

{
θ+`

k∑
ν=1

g`νxν

}[
n∏

ν=k+1

cosh(θ+` g`ν)

]
exp

{
−θ+`
√
α‖g`‖2

}
+

mµ∑
`=1

exp

{
θ−`

k∑
ν=1

g`νxν

}[
n∏

ν=k+1

cosh(θ−` g`ν)

]
exp

{
θ−`
√
α‖g`‖2

}
.

Now let ξ be a random vector with independent coordinates taking values±1 with
probabilities 1/2. Same as in item 20.c) of the proof of Proposition 1, for everyk,
0≤ k ≤ n, and every collectionx1, ..., xk of ±1’s we have

mµ∑
`=1

Prob

{∣∣∣∣∣
n∑
ν=1

ξνg
`
ν

∣∣∣∣∣ > √α‖g`‖2
∣∣∣∣∣ ξ1 = x1, ..., ξk = xk

}
≤ Fk(x1, ..., xk).

At the same time, we have

F0 ≤ 1 (21)

by origin ofα and

Fk(x1, ..., xk) = 1

2

[
Fk+1(x1, ..., xk,1)+ Fk+1(x1, ..., xk,−1)

]
. (22)

From (22) it follows that given a collectionx1, ..., xk of ±1’s with k < n such that
Fk(x1, ..., xk) ≤ 1 and computing two explicitly given quantitiesFk+1(x1, ..., xk,1)
andFk+1(x1, ..., xk,−1), we can extend(x1, ..., xk) by settingxk+1 either to 1 or to−1
in order to ensureFk+1(x1, ..., xk+1) ≤ 1. By (21), we may start our construction with
k = 0, and aftern steps will end up with a collection(x1, ..., xn) of ±1’s such that

1 ≥ Fn(x1, ..., xn)

=
mµ∑
`=1

exp

{
θ+`

n∑
ν=1

g`νxν

}
exp

{
−θ+`
√
α‖g`‖2

}
+

mµ∑
`=1

exp

{
θ−`

n∑
ν=1

g`νxν

}
exp

{
θ−`
√
α‖g`‖2

}
.

In particular, for everỳ we have

exp
{
θ+`
∑n
ν=1 g`νxν

}
exp

{−θ+` √α‖g`‖2} ≤ 1
⇓

θ+`
∑n
ν=1 g`νxν ≤ θ+`

√
α‖g`‖2

⇓∑n
ν=1 g`νxν ≤

√
α‖g`‖2
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and
exp

{
θ−`
∑n
ν=1 g`νxν

}
exp

{
θ−`
√
α‖g`‖2

} ≤ 1
⇓

θ−`
∑n
ν=1 g`νxν ≤ −θ−`

√
α‖g`‖2

⇓∑n
ν=1 g`νxν ≥ −

√
α‖g`‖2

as required in (20).

5. Extensions

We are about to extend our results in two directions.

“Combined” problems. Consider the case when (P) is replaced with a more general
problem

xT Ax→ max | xT Ai x ≤ ti ,1, i = 1, ...,m; t = (t1, ..., tm)T ∈ T, (P+)

whereT is closed and bounded convex set contained in the nonnegative orthant, and
Ai are positive semidefinite matrices with positive definite sum. The natural convex
relaxation of (P+) is the problem

Tr(AX)→ max | Tr(Ai X) ≤ ti , i = 1, ...,m; t ∈ T. (C)

Applying the technique from Sects. 2, 4, we immediately conclude that

Opt(P+) ≥ Opt(C)

2 ln(2mµ)

and that every feasible solution of (C) with positive valueγ of the objective for every
α ≥ 2 ln(2mµ) can be efficiently converted into a feasible solution of (P+) with the
value of the objective≤ γ/α.

Inhomogeneous case.Now consider the case when (P) is replaced with the problem

f(x) = xT Px+ 2bTx→ max | xT Pi x ≤ 1, i = 1, ...,m, (P′)

Pi � 0,
∑

i Pi � 0. The problem clearly is equivalent to

g(z) = zT Az→ max | zT Ai z≤ 1, i = 1, ...,m+ 1,

z=
(

x
τ

)
, A =

(
P b
bT 0

)
, Ai =

(
Pi 0
0 0

)
, i = 1, ...,m, Am+1 =

(
0 0
0 1

) ; (̂P)

note thatAi � 0,
∑
i

Ai � 0. From the results of Sects. 2, 4 it follows that for the optimal

value of the semidefinite relaxation (SDP) associated with (P̂) it holds

Opt(P′) ≥ Opt(SDP)

2 ln(2(m+ 1)µ)
, µ = min

[
m+ 1,max

i
RankPi

]
, (23)

and that a feasible solutionX to (SDP) with a positive value of the objectiveγ , for
everyα ≥ 2 ln(2(m+1)µ), can be efficiently converted, in a deterministic fashion, into
a feasible solution to (P′) with the value of the objective≥ γ/α.
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