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Abstract. We demonstrate that&4, ..., Am are symmetric positive semidefinitex n matrices with positive
definite sum and\ is an arbitrary symmetrin x n matrix, then the relative accuracy, in terms of the optimal
value, of the semidefinite relaxation

m)?x{Tr(AX) | Tr(AX) <1, i=1...m X>0} (SDP)

of the optimization program

X" Ax — max | xTAixgl, i=1..m P)

is not worse than + m—) It is shown that this bound is sharp in order, as far as the dependemeéson

concerned, and that a feasible solutioto (P) with

xT Ax > 7Opt(SDF§

~ 2In(2m?) )

can be found efficiently. This somehow improves one of the results of Nesterov [4] where bound similar to
(x) is established for the case when Ajl are of rank 1.

Key words. semidefinite relaxations — quadratic programming

1. Introduction

Let Aj,i =1, ..., m, be positive semidefinite x n matrices with positive definite sum,
andA be an x n symmetric matrix. Consider the optimization problem

xTAx — max| xTAix<1, i=1,..m (P)

This problem, in general, is NP-hard (take, ey~ nandA; = eieIT, whereg are the
standard basic orths R"; then (P) becomes the problem of maximizing a homogeneous
guadratic form over the unit cube, which is known to be NP-hard even in the case of
positive semidefinited).
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In view of NP-hardness of (P), it makes sense to look at the standard semidefinite
relaxation of the problem. To get this relaxation, we rewritex@ll\ x as Ti(Ajxx"),
thus coming to the equivalent problem

Tr(AX) - max| Tr(AIX) <1, i=1 ... m X >0, RankX) =1,
and then discard the rank restriction, thus coming to the relaxation
Tr(AX) — max| Tr(AIX) <1l i=1,...m X>0. (SDP)

By its origin, the optimal value in the relaxation is not less that the one in the original
problem:

Opt(SDP = Opt(P) 1)

The main goal of this note is to demonstrate that the “gap”in (1) is “not too big”, namely,
that

Opt(SDP

Opt(P) > 2N’

w = min[m; maxRank(A;)]. (2)

|
In the standard terminology (2) says that (SDP) approximates (P) within the relative
accuracyd = 1 — Wlmu) i.e.,, 0 < Opt(SDP — Opt(P) < #OptSDP. This re-
sult complements, in a sense, stronger results known from literature and dealing with
maximization of a quadratic form over the unit cube and cube-like sets:

A) It was shown by Goemans and Williamson [2] thatif=n, Aj = ae,-T andAis
positive semidefinite matrix with nonpositive non-diagonal entries and row sums 0
(which corresponds to the Maximum Cut problem), then

9Pt 4.87856..
Opt(SDP
(approximation of the relative accuracy 0.12143...).
B) Nesterov[3]shows thati; are asin A), and\is an arbitrary positive semidefinite
matrix, then

Opt(P) 2
OptSDP > —= 0.6366.. 3
(approximation of the relative accuracy 0.3633...). For closely related results, see
Ye [5] and Bertsimas and Ye [1].
C) Itis known that
C.1) (3) holds ifA; commute with each other arl = 0 (Ye [5], Nesterov [4]);
C2)If A = aia1-T are of rank 1, then, for certain efficiently solvable convex

optimization program (Cnv) (different from (SDP)) it holds
1
OptCny) > Opt(P) = — —OptCnv). (4)

(approximation of the relative accuracy—lﬁ, Nesterov [4]).
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The bounds mentioned in A), B), C.1) are significantly better than (2) — the quality of
semidefinite relaxation there is independent of problem’s dimensions. We shall prove
that this phenomenon is possible only in the “special cases” of (P); specifically, we
demonstrate that for every positive integethere exists an instance of (P) with=
O(Inm) and positive definitéA such that

Opt(P) 1
7Opt(SDB = O(l)m (®)

with a positive absolute consta®(1).

As compared to (4), the progress in (2) is that in our setifpg~ 0 may have
arbitrary ranks, and, more essentially, that every feasible solXida (SDP) with
Tr(AX) > 0 for everya > W%mu) can be efficiently converted to a feasible solution
of (P) with the value of the objective at least! Tr(AX), which is not exactly so for the
construction leading to (4) (quite different from the one we use).

The rest of the note is organized as follows. Inequality (2) is proved in Sect. 2, where
we present a simple randomized algorithm which allows to pass from a feasible solution
X of (SDP) to a feasible solutiaxof (P) such that

Tr(AX)
-

AX> —————.
XAX= 2In(2mpu)

In Sect. 3, we demonstrate that the r EFD’) indeed can be of order q% In

Sect. 4, we use the standard derandomization technique to get a simple polynomial time
deterministic algorithm with the same properties as those of the randomized algorithm

from Sect. 2. In the concluding Sect. 5, we extend our main result to the case when the
objective is an inhomogeneous quadratic form.

2. Main result

We restrict ourselves with the only nontrivial case whieis not negative semidefinite
(otherwise the optimal values in (SDP) and (P) both are equal to 0, and (2) is trivially
true). Note that our “nontrivial” case can be efficiently recognized, and that in this case
the optimal values in (P) and (SDP) are positive.

We start with presenting a randomized algoritRmvhich, given on input a feasible
solution X to (SDP) with positive value of the objective, generates random feasible
solutions to (P), namely, as follows.

Preprocessingl) Observe thatX can be efficiently converted to a feasible
solution X’ of (SDP) with at least the same value of the objective a% and
with rank not exceeding. Indeed, sinceX > 0, we can efficiently represent
as

n
X=Ygjg] I[gjeR".
i=1
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Now let us look at the polyhedral set
n
X = {x eRY|TrA Y ajgigh <Li=1.. m}.
j=1

This set is nonempty (it contains the poift= (1, ..., 1)T), and the linear form
n
c'h= Tr(AZAjgjng)
j=1

is bounded above on the set (because (SDP) is above boundeddpéio- 0).
Applying the usual purification technique, we can efficiently pass fidnto
an extreme point* of X such thac™2* > c¢"A%; in other words, the matrix
X' = Z'jn:l )Jj*gj gjT is a feasible solution to (SDP) with the value of the objective
at least as aK. It remains to note that since" is an extreme point oft, the
number of nonzero weighps{ is at mosim, so thatX’ is of rank< m.

In view of the outlined construction, we may without loss of generality
assume that our input feasible solutidno (SDP) is of rank< m.

2) We can efficiently decompogéasX = AT A with RankA) < m. Let
us set

Bi=AAAT, B=AAAT,

SinceX is feasible for (SDP), we have

(a) Bi>0 i=1 .. m
by Tr(B)=Tr(AX)<1 i=1...m 6
() RankBj) < u, i=1,..,m; 6)

d  Tr(B) = Tr(AX).

3) Finally, we can efficiently pass to the orthonormal basis wtigrs
diagonal. Thus, we may assume that an orthogonal mafrend matriceds;,
i =1,...,m, B are available such that

Bi=UBUT,B=UBUT
andB is diagonal.

Generation of feasible solutioms (P) after preprocessing is extremely simple.
We generate at random a vectowith independent entries taking with equal
probabilities the valuet1 and convert the realizedinto a feasible solutiox

of (P) according to

X = x(8) = 2 ATUE. 7)

ymax £TBi&

1 In fact, of course, we cannot find this basis exactly in finite, not saying polynomialrin time. We
can, however, find in time polynomial imand In1/¢) (for everye € (0, 1)) an orthonormal basis where
an e-perturbationA’ of A (|A — A'|| < €| Al) is diagonal, which, in our context, is essentially the same
as the possibility to find an orthonormal eigenbasishofNote also that to prove (2) — i.e., to establish the
“existence” part of our result — we should not bother at all whether this eigenbasis can or cannot be found
efficiently; all which is important for us is that such a basis exists.
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Proposition 1. For the outlined randomized algorithm as applied to a feasible solution
X of (SDP)with positive value of the objectivealways is well-defined and is feasible
for (P). Moreover, for everg > 0 one has

Prob{xTAx > ETr(AX)} > 1-—2muexg—a/2}, wu = min[m, maxRankA;].
o |
(8)

Corollary 1. One has
Opt(SDP)
OptP) = 2In2mp)”

Proposition=-Corollary: Problem (SDP) has a nonempty and bounded (Sijo& > 0)
feasible set and is therefore solvable. Let us a@ply the optimal solutiorX,. of the
problem and specify in (8) asa, = 2In(2mu). According to (8),R with posi-

tive probability generates a feasible solution to (P) with the value of the objective
> LTr(AX,) = 2 Opt(SDP), whence OpP) > Z-Opt(SDP.

O

Proof of Proposition1°. First let us prove thak(¢) always is well-defined, i.e., that
max £TBi& > O for every vectog with coordinatestl. Indeed, assuming opposite,
there exists a vect@rwith coordinatest1 such thaET§i§ = Oforalli (recall that the

matricesB; = UTB;jU = UTAA; ATU are positive semidefinite). On the other hand,

Tr(B) = Tr(B) = Tr(AX) > 0 [by (6d)]
and since is with coordinates-1 andB is diagonal, we have
£"Be =Tr(B) > 0. (9)
Now let
%(&) = ATUE.
We have
X" (&) AXE) =TUTAAATUE = TUTBUE = £T Big,
oT (1 A% T T T R (10)
XTEOAXE) ="' U AAATUE =¢"U ' BUE = &' BE.
Thus, assuming thatTﬁig = Oforalli =1, ..., mand a vecto& with coordinates:1,
we conclude that for = %(&) it holdsz' Aiz = 0,i = 1,...,m, z' Az > 0, which

contradicts the assump/t\ion that;, Aj > 0.

We see that max " Bié > 0 for all realizationst, so thatx(é) is always well-
defined; combining (7) and (10), we conclude that for all realizations tbe vector
X (&) is feasible for (P), and

xT(®AxE) = —L_—Tr(eTBy
max §TBi&
1 ~
=—=Tr(B
max &7 Bi& ®)
=—1__Tr(B)
max §TBi&

=—21 Tr(AX).
max &7 Bj&

(11)
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20. It remains to prove (8); in view of (11), all we should prove is that
Prob{m.angﬁig > a} < 2mpexp—a/2} Va > 0. (12)
|

20.a) Since the matriceB; are positive semidefinite of the same rank®as.e., of
ranks=< u (see (6c)), we have

n
B =3 f(FT.
j=1

with certain vectors'l € R". Givena > 0, consider the events

Aij =& | 1ET 1] > o £172},
.A=UAij, (13)
ij

|| fil2=+/fT f being the standard Euclidean norm.
20.b) Note that ifA doesnot take place, then

ETf] < Val fi]2 Vi, |
= YT T (DT <a YT | £1]2 = aTr(B)
=aTr(B) <a Vi [by (6.b)]

ie., mangﬁig < a. We see that in order to prove (12) it suffices to demonstrate that
for everyi, j it holds

Prob{|§T fll] > Vo £ ||2} < 2expg—a/2). (14)

20.¢) (14) is readily given by Bernstein’s theorem on large deviations. For our further
purposes, let us reproduce the proof.
Whenevep > 0, we have

Probis™ 11 > Val 17]12) < £ {expto 0y i) ) | expl—0/@l 1112}
= (]‘[ cosr(ef;‘d) exp{—0/al 1112}

k=1
n
< (]‘[ explo?(f,! >2/2}> expl—6./al f1|2}
= exp(3602]| T 13 — 0. /all f1]2}.
Settingd = /a/|| fil |2, we get

Proie™ 1 > | 2} < exp(—a/2). (15)



On maximization of quadratic form over intersection of ellipsoids 469

Similarly, if & < 0, then
Probis™ £l < — /@l {1112} < & {expto iy 6t} expto vl 112}
- <]‘[ coshof,! )) explo./al fl |2}
k=1
(1‘[ explo?(fy! )2/2}> explo/al {1 2}

= exp( 362 113 + 0. /a| T |2}

IA

Settingd = —/a/|| fil |2, we get
Probs™ 11 < —a| 1|2} < expi—a/2). (16)
Combining (15), (16), we come to (14).

3. Sharpness of (2)

Here we demonstrate that

Proposition 2. For every positive integen > 3, there exists problertiP) with positive
definiteA andn = O(In m) such that

Opt(SDP

with positive absolute constant(for large m, one can take = 0.55).

Proof. Let us fix¢ € (0, 7/2), and let, for positive integer, I'y be a maximal, with
respect to inclusion, set of unit vectors frgefl such that the angle between every two
distinct vectors from the set is ¢. DenotingM(n, ¢) the cardinality ofl"y and taking
into account that the “spherical hat§; = {x € R" | |Ix|l2 = 1, x"v > cog¢/2)}
associated with distinat € I'y have no points in common, we get

M, $)on(S?) < on (Ix e R" | X2 = 1}), (18)

whereon(-) is the(n — 1)-dimensional area of a set on the unit spherRtrand S’ is
the spherical hat
{xeR"| [Xll2 = 1. x"e > cos¢/2)}.

e being a once for ever fixed unit vector R'. Rough estimation of the areas in (18)
implies the upper bound

IN(M(n, ¢)) < [nln < )} (14 04(1)), (29)

1
sin(¢/2)

whereog(1) — 0 asn — oo.
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On the other hand4 clearly possesses the property that for every R" with
IX|l2 = 1 there exist® € T4 such thax"v > cos¢) (otherwise we could extenid,
by addingx, thus increasing the cardinality of the set without violating the property
vTu < cog) for all distinctv, u e I'y). Now let us look at the following instance of
(P) withm = M(n, ¢):

xTIx — max| x"[w'x<1 VYveTly. (Pn.g)

The matrixX = | clearly is a feasible solution for the associated (SDP), and for this
solution TGAX) = Tr(12) = n, so that OptSDP) > n. On the other hand, the feasible
set of (R ) is contained in the Euclidean bdk | [|x|2 < Fiw)}' Indeed, ifx # O is

feasible for (R 4) ande = ||x||51x, then there exists € I'y with vTe > cogg), i.e.,
with vTx > ||x||2 cog¢), and sincév’ x| < 1 by constraints of (Ry), we conclude that

IXll2 < z525;- It follows that
Opt(Pyy) < ——
P = God@)
whence
Opt(SDP) cos(¢)
Opi(Png) — ncos() = s iz LT oL InM(. 9)

(we have used (19)). Specifyirg= 1—3671, we get

Opt(SDP
m > 0.55InM(n, ¢)

for all large enough values of and the statement follows.

4. Derandomization

Here we demonstrate that given a feasible soludo (SDP) with certain valug > 0
of the objective and a real > 2In(2mu), one can explicitly point out, in an efficient
deterministic fashion, a feasible solutior to (P) with the value of the objective at
leasty/a.

Indeed, in view of the proof of Proposition 1, we can reduce the situation to the
following one:

(*) Givenmpu vectorsy’ e R", find a vectog with coordinates-1 such that

017 €] < Vallghllz € = 1, ..., mp; (20)
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in our contextg’ are the vectorg'l from item 2.a) of the aforementioned proof, and
a vectorg satisfying (20) produces a feasible solutialg) of (P) with the value of the
objective> y/a.

To build&, let us apply the standard derandomization technique. Namely, let

0;F = £/a/ld" 2,

and let
mu k n
Fi(X1, ... Xk) = ZeXD{GEngxv} [ [] coshe; gt ]exp{—é’;\/&nglIz]
=1 v=1 v=k+1
mu k n
+Zexp{e,Z Zg‘;’xu} [ I cosr(e,gg’b} exp{e;ﬁng"uz].
(=1 v=1 v=k+1

Now let & be a random vector with independent coordinates taking vatiesiith
probabilities ¥2. Same as in item®) of the proof of Proposition 1, for ever;
0 < k < n, and every collectiomy, ..., Xk of +1's we have

Z Prob= > &d!

v=1
At the same time, we have

> Jalg'll2

El_x:l.’""gk Xk} S Fk(xl7"7xk)

Fo<1 (22)

by origin of« and

1
Fk(X1, ooy Xk) = 5 [Frr1 (X1, oo Xk D) + Fipr (X1, o Xk, =D (22)

From (22) it follows that given a collectiory, ..., xx of +1's with k < n such that
Fk(X1, ..., X) < 1 and computing two explicitly given quantitid&1(X1, ..., Xk, 1)
andFy41(X1, ..., Xk, —1), we can extendxy, ..., Xk) by settingxk,1 eitherto 1 or to—1

in order to ensuréy1(X1, ..., Xk+-1) < 1. By (21), we may start our construction with
k = 0, and aften steps will end up with a collectiofxy, ..., Xn) of £1’s such that

1> Fa(X1, ..., Xp)

—Zexp{@*Zguxv}exp{ -0 Vallg* IIz]

v=1

ZGXP{ Zgﬁxv}exp{9@ﬁ||gfnz].

v=1
In particular, for every we have

exp{0 >0_1 gtx.} exp{—6) vallgilz} <1
U
0 Y0_1gtxy < 0 Vallg 2
U

d_195% < Vel
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and
exp{; >0_1 9yx | exp{o; vallg'llz} < 1
U

0, Y0 glxy < —6; Valld 2
[l

Yr_1 gix = —allgtll2
as required in (20).

5. Extensions

We are about to extend our results in two directions.
“Combined” problems. Consider the case when (P) is replaced with a more general
problem

xTAx — max| xTAx <ti,1, i=1..mt= (.. tm)' €T, (PH)

whereT is closed and bounded convex set contained in the nonnegative orthant, and
A; are positive semidefinite matrices with positive definite sum. The natural convex
relaxation of (P) is the problem

Tr(AX) — max| Tr(AIX) <tj, i=1,..mteT ©
Applying the technique from Sects. 2, 4, we immediately conclude that
Opt(C)
OptP*) > — -~
PP = 2In(2mpu)

and that every feasible solution of (C) with positive vajuef the objective for every
a > 2In(2mp) can be efficiently converted into a feasible solution of Y®vith the
value of the objectives y/a.

Inhomogeneous case Now consider the case when (P) is replaced with the problem
fx) =Xx"Px+2b"x - max| X' Px <1, i=1,..,m, (P)
P > 0,Y; P > 0. The problem clearly is equivalent to

92 =2"Az— max| zZ'Aiz<1, i=1..m+1,

_(x _(PDby , (RO . _ _(00\; (P
() A= (50) A= (30): =1 A= (09

note thatA; > O,Z A; > 0. From the results of Sects. 2, 4 it follows that for the optimal

|
value of the semidefinite relaxation (SDP) associated vﬁiﬁt(holds

Opt(SDP
OptP) > —————
P = S inem+ Dy
and that a feasible solutioK to (SDP) with a positive value of the objectiye for

everya > 2In(2(m+ 1)u), can be efficiently converted, in a deterministic fashion, into
a feasible solution to (Pwith the value of the objective y/a.

L =min [m + 1, m.axRankPl} , (23)
|
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