
Digital Object Identifier (DOI) 10.1007/s10107-004-0553-4

Math. Program., Ser. A 102: 407–456 (2005)

Aharon Ben-Tal ·Arkadi Nemirovski

Non-euclidean restricted memory level method
for large-scale convex optimization�

Received: January 27, 2003 / Accepted: July 26, 2004
Published online: December 29, 2004 – © Springer-Verlag 2004

Abstract. We propose a new subgradient-type method for minimizing extremely large-scale nonsmooth con-
vex functions over “simple” domains. The characteristic features of the method are (a) the possibility to adjust
the scheme to the geometry of the feasible set, thus allowing to get (nearly) dimension-independent (and
nearly optimal in the large-scale case) rate-of-convergence results for minimization of a convex Lipschitz
continuous function over a Euclidean ball, a standard simplex, and a spectahedron (the set of positive semi-
definite symmetric matrices, of given size, with unit trace); (b) flexible handling of accumulated information,
allowing for tradeoff between the level of utilizing this information and iteration’s complexity. We present
extensions of the scheme for the cases of minimizing non-Lipschitzian convex objectives, finding saddle points
of convex-concave functions and solving variational inequalities with monotone operators. Finally, we report
on encouraging numerical results of experiments with test problems of dimensions up to 66,000.

1 Introduction

With the success of Interior Point Methods (IPMs) to solve nonlinear convex optimiza-
tion problems came also the realization that these methods have their limitations when
encountering problems with design dimension n of order 104 – 105 or more. Indeed,
when n is of this size, the arithmetic cost of an iteration of an IPM, being at least qua-
dratic in n, becomes prohibitively large. The unavoidable conclusion is that for very
large-scale problems, we can only use simple methods with linear in n arithmetic cost
of an iteration. It follows also that we cannot utilize anymore our a priori knowledge
of the analytical structure of the problem since, for the time being, all known ways
to utilize this knowledge result in at least quadratic in n arithmetic cost of an itera-
tion. This observation implies the second unavoidable conclusion: we are enforced to
restrict ourselves to “black-box-oriented” methods – those using at each iteration func-
tion values and (sub)gradients only. In Convex Optimization, just two types of “cheap”
black-box-oriented optimization techniques are known:

• techniques for unconstrained minimization of smooth convex functions (Gradi-
ent Descent, Conjugate Gradients, quasi-Newton methods with restricted memory,
etc.);

• various subgradient-type techniques for constrained and/or nonsmooth convex pro-
grams.

A. Ben-Tal, A. Nemirovski: MINERVA Optimization Center, Faculty of IE&M, Technion – Israel Institute of
Technology, Israel. e-mail: abental@ie.technion.ac.il; nemirovs@ie.technion.ac.il

� This research was supported by the Technion Fund for Promotion of Research

408 A. Ben-Tal, A. Nemirovski

In this paper we propose a new subgradient-type method – Non-Euclidean restricted
Memory Level (NERML) – adhering to the above restrictions, and aimed at solving very
large-scale convex nonsmooth optimization problems in the form

min
x
{f (x) : x ∈ X} , (1)

where X is a convex compact set in Rn and f is a Lipschitz continuous convex function
with X ⊆ Dom f . To get an impression of the performance of NERML, we list some of
the results obtained later in this paper:

A. For X = Bn (the unit Euclidean ball in Rn) and when f is Lipschitz continuous,
with constant L w.r.t. the Euclidean norm ‖ · ‖2, for every ε > 0 NERML finds an
ε-solution of (1) (i.e., a point xε ∈ X such that f (xε) − min

X
f ≤ ε) in no more than

O(1)L2

ε2 iterations1), with a single computation of the value and a subgradient of f and
O(1)n additional arithmetic operations per iteration.

B. For X = �n ≡ {x ∈ Rn+ :
∑

i

xi = 1} and when f is Lipschitz continuous, with

constant L w.r.t. the norm ‖x‖1 =
∑

i

|xi |, for every ε > 0 NERML finds an ε-solution

to (1) in no more than O(1)
L2 ln(n)

ε2 iterations of the same complexity as in A.
In the context of extremely large-scale optimization, the good news reported by these

results is that the NERML algorithm is simple and its rate of convergence is (nearly)
independent of the dimension n of the problem.A bad news is that the rate of convergence
is rather slow – sublinear. The latter fact, however, is a “law of nature” rather than a short-
coming of the algorithm. Indeed, it is known [10, 1] that in the “large-scale case”, specifi-
cally, n ≥ L2

ε2 , in every one of the situations A, B, no “black-box-oriented” optimization

method2) is capable to minimize within accuracy ε all convex objectives from the corre-
sponding family in less than O(1)L2

ε2 steps. It follows that in large-scale cases of A and
B, the NERML algorithm possesses the best possible (or nearly so) rate of convergence.

By itself, the outlined optimality of the NERML algorithm, being an attractive the-
oretical property, should not be overestimated. First, this property is shared by many
well-known simple optimization techniques. For example, in the case ofA it is possessed
by the simple Subgradient Descent method ([13, 12]; for a comprehensive overview, see
[5]), by bundle-Level and many other bundle algorithms (see [6, 9, 3, 7, 14, 8, 4] and ref-
erences therein), and by several analytic center cutting plane methods [11]. In the case
of B, the corresponding nearly dimension-independent rate of convergence is shared
by the ‖ · ‖1-Mirror Descent ([10]; for a more comprehensive presentation, see [1])3).

1) From now on, all O(1)’s are appropriate positive absolute constants.
2) A method which collects information on a particular objective f by computing values and subgradients

of f at subsequent search points, with the next search point being built solely on the basis of information
collected at the previous points.

3) In fact, there exists a natural spectrum of cases “linking” A and B and sharing the properties of the
“endpoints”, specifically the case when X = {x ∈ Rn : ‖x‖p ≤ 1} for certain p ∈ [1, 2], and f is convex and
Lipschitz continuous with constant L w.r.t. ‖ · ‖p , where ‖x‖p = (

∑
i |xi |p)1/p . In these cases, appropriate

versions of Mirror Descent [10] find ε-solution in no more than O(1)
L2 min[p

p−1 ,ln n]

ε2 steps, and no black-

box-oriented method can solve all problems under consideration in less than O(1) L2

ε2 steps, provided that

n > L2

ε2 .

Non-euclidean restricted memory level method for large-scale convex optimization 409

Second, the above “optimal” rate of convergence is very poor, so that by itself it promises
nearly nothing good. What we would like to have, is a method with rate of convergence
which is guaranteed never to be worse, and “typically” is much better than the afore-
mentioned “optimal” rate. How much can be achieved in this direction, this is clearly
demonstrated by comparing bundle methods to the Subgradient Descent. In the case of
A, all these methods share the same theoretical rate of convergence – inaccuracy after
t steps is at most O(1)L/

√
t . However, in practice the bundle methods outperform the

Subgradient Descent by far. The reason is that the Subgradient Descent is “memoryless”
– at every step t , the method operates with a linear “model” f (xt) + (x − xt)

T f ′(xt)

of the objective, with all previous information “compressed” in the current search point
xt . In contrast to this, at a step t in a bundle method one operates with a richer model
f t (x) = max

τ∈I (t)
[f (xτ) + (x − xτ)

T f ′(xτ)] of the objective, where I (t) is a certain

(perhaps, “large”) set of indices τ ≤ t ; better utilization of accumulated information
usually results in better convergence. Apart from the difference in the use of “memory”,
bundle methods and Subgradient Descent are of the same kind, in the sense that they are
intrinsically “linked” to the specific “Euclidean ball” geometry of case A. For problems
with essentially different geometry (e.g., in the case of B), no dimension-independent
rate-of-convergence results for these methods are known, and in fact the practical behav-
iour of bundle methods in the large-scale case may become pretty poor.

The NERML algorithms we are about to develop are in the same relation to the
Mirror Descent as the bundle methods are to Subgradient Descent. Same as the Mirror
Descent algorithms, the NERML scheme can be adjusted, to some extent, to the geom-
etry of the domain X of a convex minimization problem (1); same as a bundle method,
the NERML is a method “with memory”. The essence of the difference between the
usual bundle method and NERML can be seen from the following rough description of
a step:

• In a bundle method, the next search point xt+1 is given by

xt+1 = argmin
x

{
1

2
‖x − pt‖2

2 : x ∈ X, Atx ≤ bt

}

(2)

where pt is the current prox-center, and the linear inequalities Atx ≤ bt ([At, bt]
is the current bundle) are such that outside of the set Xt = {x ∈ X, Atx ≤ bt } the
objective f is≥ �t , where �t is the current level. Various versions of bundle methods
differ from each other by rules, explicit or implicit, for updating the prox-center,
the bundle and the level.

• In a NERML method, xt+1 is given by

xt+1 = argmin
x

{
ω(x)− xT∇ω(pt) : x ∈ X, Atx ≤ bt

}
(3)

where ω(x) is a continuously differentiable strongly convex function on X, and pt ,
[At, bt] (and the “implicitly present” level �t) are similar to those in (2). Various
versions of the NERML methods differ from each other mainly by the choice of
ω(·), as well as by rules for updating the prox-center, the bundle and the level.

410 A. Ben-Tal, A. Nemirovski

It is immediately seen that (2) is a particular case of (3) corresponding to ω(x) = 1
2xT x.

What allows to adjust NERML to the geometry of X, is the freedom in the choice of
ω. For example, it turns out that in the case of A a good choice of this function is
ω(x) = 1

2xT x, so that in this case NERML becomes a usual bundle method. In contrast
to this, in the case of B the latter “Euclidean” choice of ω does not result in a nearly
dimension-independent rate of convergence and does not exhibit good practical perfor-
mance in the large-scale case. A good choice of ω in the case of B here is, e.g., the

regularized entropy ω(x) =
n∑

i=1
(xi + δn−1) ln(xi + δn−1) with, say, δ =1.e-16. Other

elements of the NERML, that is, the rules for updating the prox-center, the bundle and
the level, are, essentially, the same as in the Restricted Memory Prox-Level method of
Kiwiel [4] (which, in turn, is a significant improvement of the Prox-Level method pro-
posed in [8]). In particular, the NERML scheme allows for full control of the cardinality
of the bundle (the column size of the matrix [At, bt]); this control (essentially the same
as the one in Kiwiel’s method) allows for tradeoff between the complexity of solving
the auxiliary problems (3) and the utilization of the information accumulated so far.

The rest of the paper is organized as follows. In Section 2, we present the generic
NERML algorithm for solving problems (1) with compact convex domain X and Lips-
chitz continuous convex objective f and carry out the complexity analysis of the algo-
rithm. Further, we explain how to adjust the algorithm to the aforementioned cases A,
B and the “semidefinite analogy” of case B – the case C where the domain X of (1) is a
spectahedron (the part of the positive semidefinite cone in the space of symmetric matri-
ces of a given dimension cut off the cone by the constraint Tr(x) = 1), and the convex
objective f is Lipschitz continuous with constant L w.r.t. the norm |x|1 = ‖λ(x)‖1 (x
is symmetric matrix, λ(x) is the vector of eigenvalues of x). It turns out that as far as
NERML scheme is concerned, the geometry of the spectahedron is completely similar
to the one of the simplex, so that the complexity results in the case C are exactly the
same as in the case of B. In Section 3, we explain how to solve the auxiliary problems
(3) and address several other implementation issues. Section 4 is devoted to several
extensions of the NERML scheme, specifically, to problems (1) with non-Lipschitzian
convex objectives, to finding saddle points of convex-concave functions and to solv-
ing variational inequalities with monotone operators. In the concluding Section 5, we
report on a number of preliminary numerical experiments with the NERML algorithm
as applied to large-scale problems (1) of various dimensions reaching up to 66,000.
The applications we are considering are the relaxations of Uncapacitated Facility Loca-
tion problems (3,000 and 6,000 variables), and 2D Tomography Image Reconstruction
problems (16,641 and 66,049 variables). To the best of our judgement, the results we
have obtained are quite encouraging and, in particular, demonstrate the importance of
adjusting the method to problem’s geometry.

Notation. •Bn = {x ∈ Rn : ‖x‖2 ≤ 1} is the unit Euclidean ball, �n = {x ∈ Rn : x ≥
0,
∑

i

xi = 1} is the standard “flat” simplex in Rn, �+n = {x ∈ Rn : x ≥ 0,
∑

i

xi ≤ 1},
is the standard full-dimensional simplex.
• Sn is the space of n × n symmetric matrices equipped with the Frobenius inner

product 〈A, B〉 = Tr(AB). For A ∈ Sn, λ(A) is the vector of eigenvalues of A (taken
with their multiplicities and arranged in the non-ascending order), and the relation A � 0

Non-euclidean restricted memory level method for large-scale convex optimization 411

(A
 0) means that A is positive (semi)definite. 	n = {x ∈ Sn : x
 0, Tr(x) = 1} and
	+n = {x ∈ Sn : x
 0, Tr(x) ≤ 1} are the “flat” and the full-dimensional spectahe-
drons, respectively.
• For a convex lower semicontinuous function f , its subgradient mapping x �→

∂f (x) is defined as follows: at a point x from the relative interior of the domain X of f ,
∂f (x) is comprised of all subgradients g of f at x which are in the linear span of X−X.
For a point x ∈ X\rint X, the set ∂f (x) is comprised of all vectors g, if any, such that
there exist xi ∈ rint X and gi ∈ ∂f (xi), i = 1, 2, ... with x = lim

i→∞
xi , g = lim

i→∞
gi .

Finally, ∂f (x) = ∅ for x �∈ X. Note that with this definition for a convex function f

which is Lipschitz continuous, with constant L w.r.t. a norm ‖ · ‖, on X = Dom f , for
every x ∈ X the set ∂f (x) is nonempty, and

ξ ∈ ∂f (x)⇒ |ξT h| ≤ L‖h‖ ∀h ∈ Lin(X −X). (4)

In other words, if int X �= ∅ and ξ ∈ ∂f (x), then ‖ξ‖∗ ≤ L, where

‖ξ‖∗ = max
x

{
ξT x : ‖x‖ ≤ 1

}
(5)

is the norm conjugate to ‖ · ‖. If X is “flat” (Lin(X − X) �= Rn) and ξ ∈ ∂f (x), then
‖ξ + δ‖∗ ≤ L for a proper “correction” δ ∈ [Lin(X −X)]⊥.

To streamline the exposition, all proofs are moved to Appendix.

2 The basic NERML algorithm

2.1 The algorithm

The purpose. The basic NERML method is aimed at solving optimization problem
(1) which is assumed to possess the following properties:

(P.1): X is a nonempty convex compact subset of Rn;
(P.2): f is convex and Lipschitz continuous on X.
To quantify assumption (P.2), we fix a norm ‖ · ‖ on Rn and associate with f the

Lipschitz constant of f
∣
∣
X

w.r.t. the norm ‖ · ‖:

L‖·‖(f) = min {L : |f (x)− f (y)| ≤ L‖x − y‖ ∀x, y ∈ X} .

Finally, we assume that
(P.3) We have access to a First Order oracle which, given as input a point x ∈ X,

returns the value f (x) and a subgradient f ′(x) ∈ ∂f (x) of f at x.
Note that

|hT f ′(x)| ≤ L‖·‖(f)‖h‖ ∀h ∈ Lin(X −X), (6)

see (4).

412 A. Ben-Tal, A. Nemirovski

The setup for the generic NERML method is given by the following triplet: the set X,
a norm ‖ · ‖ and a continuously differentiable function ω(x) : X → R which is strongly
convex on X, with parameter κ > 0, w.r.t. the norm ‖ · ‖:

ω(y) ≥ ω(x)+ (y − x)T∇ω(x)+ κ

2
‖y − x‖2 ∀x, y ∈ X. (7)

To make the NERML algorithm implementable, the pair (X, ω(·)) should be simple
enough to allow for rapid solving of auxiliary problems of the form

x[p] = argmin
x∈X

[ω(x)+ pT x] (8)

We will be especially interested in the following standard setups:

1. “Ball setup”: X is a convex compact subset of the unit Euclidean ball Bn, ‖·‖ = ‖·‖2,

ω(x) = 1
2xT x;

2. “Simplex setup”: X is a convex compact subset of the standard “full-dimensional”
simplex

�+n = {x ∈ Rn : x ≥ 0,
∑

i

xi ≤ 1},

‖ · ‖ = ‖ · ‖1, and ω(x) is the “regularized entropy”

ω(x) =
n∑

i=1

(xi + δn−1) ln(xi + δn−1) : �+n → R, (9)

where δ ∈ (0, 1) is a fixed “regularization parameter”;
3. “Spectahedron setup”: this setup deals with the special case when the underlying “uni-

verse” is the space Sn of n × n symmetric matrices rather than Rn; Sn is equipped
with the Frobenius inner product 〈A, B〉 = Tr(AB). The spectahedron is the set in
Sn defined as

	+n = {x ∈ Sn : x
 0, Tr(x) ≤ 1}
(we are using lowercase notation for the elements of Sn in order to be consistent with
the rest of the text). In the spectahedron setup, X is a convex compact subset of 	+n ,
‖ · ‖ is the norm

|x|1 ≡ ‖λ(x)‖1

on Sn, where λ(x) stands for the vector of eigenvalues of a symmetric matrix x, and
the function ω(x) is the “regularized matrix entropy”

ω(x) = Tr((x + δn−1In) ln(x + δn−1In)) : 	+n → R, (10)

where δ ∈ (0, 1) is a fixed regularization parameter.
Note that the simplex setup is, in fact, a particular case of the Spectahedron one

corresponding to the case when X is comprised of diagonal positive semidefinite
matrices.

Non-euclidean restricted memory level method for large-scale convex optimization 413

One can verify that for these setups, ω(·) is indeed continuously differentiable on X and
satisfies (7) with κ = O(1). More specifically, one has

κ =






1, ball setup

(1+ δ)−1, simplex setup

0.5(1+ δ)−1, spectahedron setup,

(11)

see Appendix.

The generic algorithm NERML works as follows.
A. The algorithm generates a sequence of search points, all belonging to X, where

the First Order oracle is called, and at every step builds the following entities:

1. the best value of f found so far, along with the corresponding search point; the latter
is treated as the current approximate solution built by the method;

2. a (valid) lower bound on the optimal value of the problem.

B. The execution is split in subsequent phases. Phase s, s = 1, 2, . . . , is associated
with a prox-center cs ∈ X and a level �s ∈ R such that

• when starting the phase, we already know f (cs), f ′(cs);
• �s = fs + λ(f s − fs), where

– f s is the best value of the objective known at the time when the phase starts;
– fs is the lower bound on f∗ we have at our disposal when the phase starts;
– λ ∈ (0, 1) is a parameter of the method.

The prox-center c1 corresponding to the very first phase can be chosen in X in an
arbitrary fashion. We start the entire process with computing f , f ′ at this prox-center,
which results in

f 1 = f (c1)

and set

f1 = min
x∈X

[f (c1)+ (x − c1)
T f ′(c1)],

thus getting the initial lower bound on f∗.
C. The description of a particular phase s is as follows. Let

ωs(x) = ω(x)− (x − cs)
T∇ω(cs);

note that (7) implies that

ωs(y) ≥ ωs(x)+ (y − x)T∇ωs(x)+ κ

2
‖y − x‖2 ∀x, y ∈ X. (12)

Note also that cs = argminx∈X ωs(·).
At phase s, the search points xt = xt,s , t = 1, 2, ... are generated according to the

following rules:

414 A. Ben-Tal, A. Nemirovski

1. When generating xt , we already have in our disposal xt−1, a valid lower bound
f̃t = f̃s,t on f∗ and a localizer Xt−1 – a convex compact set Xt−1 ⊆ X such that

(at−1) x ∈ X\Xt−1 ⇒ f (x) > �s;
(bt−1) xt−1 ∈ argmin

Xt−1

ωs. (13)

Here x0 = cs , f̃0 = fs and, say, X0 = X, which ensures (13.a0–b0).
2. To update (xt−1, Xt−1) into (xt , Xt), we solve the auxiliary problem

f̃ = min
x

{
gt−1(x) ≡ f (xt−1)+ (x − xt−1)

T f ′(xt−1) : x ∈ Xt−1

}
. (Lt−1)

Observe that the quantity

f̂ = min[f̃ , �s]

is a lower bound on f∗. Indeed, in X\Xt−1 we have f (x) > �s by (13.at−1),
while on Xt−1 we have f (x) ≥ f̃ due to the inequality f (x) ≥ gt−1(x) given
by the convexity of f . Thus, f (x) ≥ min[�s, f̃] everywhere on X, so that
the quantity

f̃t = max[f̃t−1, min[�s, f̃]]

is a lower bound on f∗.
Our subsequent actions depend on the results obtained when solving (Lt−1), specifi-
cally:
(a) In the case of “significant progress in the lower bound”, specifically,

f̃t ≥ �s − θ(�s − fs), (14)

where θ ∈ (0, 1) is a parameter of the method, we terminate phase s, set

f s+1 = min[f s, min
0≤τ≤t−1

f (xτ)], fs+1 = f̃t

and pass to phase s + 1. The prox-center cs+1 for the new phase can be chosen
in X in an arbitrary fashion.

(b) In the case of no significant progress in the lower bound, we solve the optimiza-
tion problem

min
x
{ωs(x) : x ∈ Xt−1, gt−1(x) ≤ �s} . (Pt−1).

This problem is feasible, since otherwise f̃ = ∞, whence f̃t = �s , and there-
fore (14) would take place, which in the case of (b) is impossible. When solving
(Pt−1), we get the optimal solution xt of this problem and compute f (xt), f ′(xt).
It is possible that
• (b.1) We get a “significant” progress in the objective, specifically,

f (xt)− �s ≤ θ(f s − �s). (15)

In this case, we again terminate the phase, set

f s+1 = min[f s, min
0≤τ≤t

f (xt)], fs+1 = f̃t

and pass to phase s + 1. The prox-center cs+1 for the new phase, same as
above, can be chosen in X in an arbitrary fashion.

Non-euclidean restricted memory level method for large-scale convex optimization 415

• (b.2) When (Pt−1) is feasible and (15) is not valid, we continue the phase s,
choosing as Xt an arbitrary convex compact set such that

Xt ≡ {x ∈ Xt−1 : gt−1(x) ≤ �s} ⊆ Xt ⊆ Xt

≡ {x ∈ X : (x − xt)
T∇ωs(xt) ≥ 0}, (16)

see Fig. 2.1.

Note that in the case of (b.2) problem (Pt−1) is feasible and xt is its optimal solution;
it follows that

∅ �= Xt ⊆ Xt,

so that (16) indeed allows to choose Xt . Moreover, every choice of Xt compatible with
(16) ensures (13.at) and (13.bt); the first relation is clearly ensured by the left inclusion
in (16) combined with (13.at−1) and the fact that f (x) ≥ gt−1(x), while the second
relation (13.bt) follows from the right inclusion in (16) due to the convexity of ωs(·).

The summary of the NERML algorithm is as follows:

NERML algorithm

Parameters: λ ∈ (0, 1), θ ∈ (0, 1), ε > 0.

Initialization: Choose c1 ∈ X, compute f (c1) and f ′(c1) ∈ ∂f (c1) and set

f 1 = f (c1), f1 = min
x∈X

[f (c1)+ (x − c1)
T f ′(c1).

Phase s (s = 1, 2, ...): If f s − fs ≤ ε (required tolerance), terminate. Otherwise set
�s = fs + λ(f s − fs), start inner iterations:

b

c

a

d

xt−1

xt

e

f

p q
g

∇ωs(xt)

f ′(xt−1)

Fig. 1. Geometry of a step. X:abc; Xt−1: dxt−1efc; {x : gt (x) = �s}: gxt ; {x : (x − xt)
T∇ws(xt) = 0}: pq;

Xt : dgxt efc; Xt : pqc. Xt should be in-between Xt and Xt , e.g., dgxt qc.

416 A. Ben-Tal, A. Nemirovski

Initialization: x0 = cs , f̃0 = fs , X0 = X;
Inner iteration t (t = 1, 2, ...):

Compute

f̃ = min
x∈Xt−1

[
f (xt−1)+ (x − xt−1)

T f ′(xt−1)
]
,

f̃t = max[f̃t−1, min[�s, f̃]].

If f̃t ≥ �s − θ(�s − fs),

set
f s+1 = min{f s, min

0≤τ≤t−
f (xτ)}, fs+1 = f̃t ,

choose cs+1 ∈ X and pass to phase s + 1,
else

compute

xt=argmin
x∈Xt−1

{
ω(x)−(x−cs)

T∇ω(cs) : f (xt−1+(x−xt−1)
T f ′(xt−1)≤�s

}

and f (xt), f ′(xt) ∈ ∂f (xt).
If f (xt)− �s ≤ θ(f s − �s),

choose cs+1 ∈ X and pass to phase s + 1,
else

choose Xt as any convex compact set satisfying (16)
and pass to step t + 1 of phase s.

2.2 Convergence Analysis

Let us define s-th gap as the quantity

εs = f s − fs

By its origin, the gap is nonnegative, nonincreasing in s, and is a valid upper bound on
the inaccuracy, in terms of the objective, of the approximate solution zs we have at the
beginning of phase s (i.e., f (zs) is the smallest value of the objective found so far).

The convergence and the complexity properties of the NERML algorithm are given
by the following result. (The proof is given in the Appendix.)

Theorem 2.1 (i) The number Ns of oracle calls at a phase s is bounded from above as
follows:

Ns ≤
4�L2

‖·‖(f)

θ2(1− λ)2κε2
s

, (17)

where

� = max
x,y∈X

[ω(y)− ω(x)− (y − x)T∇ω(x)]. (18)

Non-euclidean restricted memory level method for large-scale convex optimization 417

(ii) Consequently, for every ε > 0, the total number of oracle calls, before the first
phase s for which εs ≤ ε is started (i.e., before an ε-solution to the problem is built)
does not exceed

N(ε) = c(θ, λ)
�L2

‖·‖(f)

κε2 (19)

with an appropriate c(θ, λ) depending solely and continuously on θ, λ ∈ (0, 1)4).

2.3 Optimality of NERML in the case of standard setups

Let us look what the complexity analysis says in the case of the standard setups.

Ball setup and optimization over the ball. We recall that for the case of the ball setup
the parameter of strong convexity of ω(·) is κ = 1. Also, it is immediately seen that here

� = 1

2
D2
‖·‖2

(X),

where D‖·‖2(X) = max
x,y∈X

‖x − y‖2 if the ‖ · ‖2-diameter of X. Since with the ball setup

X is a subset of the unit Euclidean ball, we conclude that � ≤ 2. Thus, (19) becomes

N(ε) ≤ 2c(θ, λ)
L2
‖·‖2

(f)

ε2 . (20)

Now let L > 0, and let P‖·‖2,L(X) be the family of all convex problems (CP) with
objective functions which are Lipschitz continuous on X with constant L w.r.t. ‖ · ‖2. It
is known [10] that if X is the unit n-dimensional Euclidean ball and n ≥ L2

ε2 , then the
information-based complexity of the family P‖·‖2,L(X) (the minimal number of calls to
the First Order oracle in which a black-box-oriented method can solve every problem

from the family within accuracy ε) is at least O(1)L2

ε2 . Comparing this result with (20),
we arrive at the following conclusion on the optimality of NERML with the ball setup:

If X is the unit n-dimensional Euclidean ball, then the complexity of the family
P‖·‖2,L(X) w.r.t. the NERML algorithm with the ball setup in the “large-scale

case” (the one of n ≥ L2

ε2) coincides (within a factor depending solely on θ, λ)
with the information-based complexity of the family.

Simplex setup and minimization over the simplex. Here one has κ = (1 + δ)−1,
where δ ∈ (0, 1) is the regularization parameter for the entropy, and

� ≤ (1+ δ)

[

1+ ln

(
n(1+ δ)

δ

)]

. (21)

(see Appendix).

4) The specific formula of c(θ, λ) is given at the end of the proof of Theorem 2.1 in the Appendix.

418 A. Ben-Tal, A. Nemirovski

We see that for the simplex setup, � is of order of ln n, provided that δ is not extremely
small. E.g., when δ =1.e-16 is the “machine zero” (so that for all computational pur-
poses, our regularized entropy is, essentially, the same as the usual entropy), we have
� ≤ 37+ ln n, whence � ≤ 6 ln n, provided that n ≥ 1000.

With the above bounds for κ and �, the complexity bound (19) becomes

N(ε) ≤ ĉ(θ, λ)
L2
‖·‖1

(f) ln n

ε2 (22)

(provided that δ ≥ 1.e-16). On the other hand, for the family P‖·‖1,L(X) of all convex
problems (CP) with objective functions which are Lipschitz continuous, with constant
L w.r.t. ‖ · ‖1. It is known that if X is the n-dimensional simplex �n (or the full-dimen-

sional simplex �+n) and n ≥ L2

ε2 , then the information-based complexity of the family

P‖·‖1,L(X) is at least O(1)L2

ε2 (see [1]). Comparing this result with (20), we conclude
that

If X is the n-dimensional simplex �n (or the full-dimensional simplex �+n), then
the complexity of the family P‖·‖1,L(X) w.r.t. the NERML algorithm with the

simplex setup, in the “large-scale case” n ≥ L2

ε2 , coincides within a factor of
order of ln n with the information-based complexity of the family.

Spectahedron setup and large-scale semidefinite optimization. All the conclusions
we have made for the case of the simplex setup and X = �n (or X = �+n) remain valid
in the case of the spectahedron setup and X defined as the set of all block-diagonal matri-
ces of a given block-diagonal structure contained in 	+n = {x ∈ Sn : x
 0, Tr(x) ≤ 1}
(or contained in 	n).

We see that with every one of our standard setups, the NERML algorithm under
appropriate conditions possesses dimension independent (or nearly dimension indepen-
dent) complexity bound and, moreover, is nearly optimal in the sense of Information-
based complexity theory, provided that the dimension is large.

Why the standard setups? “The contribution” of ω(·) to the performance estimate
(19) is in the factor � = �

κ
; the smaller it is, the better. In principle, given X and ‖ · ‖,

we could adjust ω(·) so as to minimize �. The standard setups are given by a kind of
such optimization for the cases when X is the ball and ‖ · ‖ = ‖ · ‖2 (“the ball case”),
when X is the simplex and ‖ · ‖ = ‖ · ‖1 (“the simplex case”), and when X is the
spectahedron and ‖ · ‖ = | · |1 (“the spectahedron case”), respectively. We did not try to
solve the corresponding variational problems exactly; however, it can be proved in all
three cases that the value of � we have reached (i.e., O(1) in the ball case and O(ln n)

in the simplex and the spectahedron cases) cannot be reduced by more than an absolute
constant factor. Note that in the simplex case the (regularized) entropy is not the only
reasonable choice; similar complexity results can be obtained for, say, ω(x) =∑

i

x
p(n)
i

or ω(x) = ‖x‖2
p(n) with p(n) = 1+O

(1
ln n

)
.

Non-euclidean restricted memory level method for large-scale convex optimization 419

3 Implementation issues

3.1 Solving auxiliary problems (Lt), (Pt).

The major issue in the implementation of the NERML algorithm is how to solve effi-
ciently the auxiliary problems (Lt), (Pt). Formally, these problems are of the same design
dimension as the problem of interest; what then is gained by reducing the solution of a
single large-scale problem (CP) to a long series of auxiliary problems of the same dimen-
sion? To answer this crucial question, observe first that we have control on the complexity
of the domain Xt which, up to a single linear constraint, is the feasible domain of (Lt),
(Pt). Indeed, assume that Xt−1 is a part of X given by a finite list of linear inequalities.
Then the sets Xt and Xt in (16) are also cut off X by finitely many linear inequalities,
so that we may enforce Xt to be cut off X by finitely many linear inequalities as well.
Moreover, we have full control of the number of inequalities in the list. Indeed,

A. Setting all the time Xt = Xt , we ensure that Xt is cut off X by a single linear
inequality;

B. Setting all the time Xt = Xt , we ensure that Xt is cut off X by t linear inequalities
(so that the larger is t , the “more complicated” is the description of Xt);

C. We can choose something in-between the above extremes. Assume that we have
chosen a positive integer m and we want to work with Xt ’s cut off X by at most m

linear inequalities. In this case, we could use the policy B at the initial steps of a
phase, until the number of linear inequalities in the description of Xt−1 reaches the
maximum allowed value m, so that

Xt−1 = {x ∈ X : ht−1
j (x) ≤ 0, j = 1, . . . , m}.

At step t , we should choose Xt in-between the two sets Xt , Xt , where

Xt = {x ∈ X : ht−1
1 (x) ≤ 0, . . . , ht−1

m (x) ≤ 0, ht−1
m+1(x) ≤ 0},

Xt = {x ∈ X : ht
m(x) ≤ 0},

ht−1
m+1(x) ≡ gt−1(x)− �s,

(∗) ht
m(x) ≡ (xt − x)T∇ωs(xt). (23)

To this end, we can set

Xt = {x ∈ X : ht
j (x) ≤ 0, j = 1, . . . , m},

where ht
m(x) is given by (23.(∗)), and every one of the inequalities ht

j (x) ≤
0, j = 1, . . . , m − 1, is a convex combination of the inequalities ht−1

1 (x) ≤
0, . . . , .ht−1

m+1(x) ≤ 0, ht
m(x) ≤ 0.

The bottom line is: we can always ensure that Xt−1 is cut off X by at most m linear
inequalities ht−1

j (x) ≤ 0, j = 1, . . . , m, where m ≥ 1 is a desirable bound. Conse-
quently, we may assume that the feasible set of (Pt−1) is cut off X by m + 1 linear
inequalities hj (x) ≤ 0, j = 1, . . . , m+ 1. The crucial point is that with this approach,

420 A. Ben-Tal, A. Nemirovski

we can reduce (Lt−1), (Pt−1) to convex programs with at most m+1 decision variables.
Indeed, let us start with problem (Pt−1) and assume that it is strictly feasible:

∃(x̄ ∈ rint X) : hj (x̄) ≤ 0, j = 1, . . . , m+ 1 (⇔ Xt ∩ rint X �= ∅).
By standard Lagrange Duality, the optimal value in (Pt−1) is equal to the one in its dual
problem

max
λ≥0

L(λ), L(λ) ≡ min
x∈X

[ωs(x)+
m+1∑

j=1

λjhj (x)]. (Dt−1)

Note that the objective in (Dt−1) is concave and “computable” at every given λ. Indeed,
to compute the value L(λ) and a supergradient L′(λ) of L at a given λ is the same as to
find the optimal solution xλ to the optimization program

min
x∈X

[ωs(x)+
m+1∑

j=1

λjhj (x)]; (D[λ])

after xλ is found, we set

L(λ) = ωs(xλ)+
m+1∑

j=1

λjhj (xλ), L′(λ) = (h1(xλ), . . . , hm+1(xλ))
T .

It remains to note that to solve (D[λ]) means to minimize over X a sum of ω(·) and
a linear function, and we have assumed that (X, ω(·)) is simple enough for problems of
this type to be rapidly solved.

The summary of our observations is that (D[λ]) is a convex optimization program
with m+ 1 decision variables, and we have in our disposal a First Order oracle for this
problem, so that we can solve it efficiently, provided that m is not too large, e.g., by
the Ellipsoid method. We can indeed enforce the latter requirement – m is in our full
control!

After (Dt−1) is solved to high accuracy and we have in our disposal the correspond-
ing maximizer λ∗, we can choose, as xt , the point xλ∗ , since by the Lagrange Duality
theorem the optimal solution xt of (Pt−1) is among the optimal solutions to (D[λ∗]), and
the set of the optimal solutions to the latter problem is a singleton, since ωs is strongly
convex.

It remains to understand how to solve (Lt−1) and how to ensure the strict feasibility
of (Pt−1) (the latter is a sufficient condition for the above construction to work). Here
again we can apply the Lagrange Duality. Indeed, assuming that (Lt−1) is strictly feasible
(e.g., Xt−1 ∩ rint X �= ∅), we have

min
x

{
gt−1(x) : x ∈ Xt−1 = {x ∈ X : hj (x) ≤ 0, j = 1, . . . , m}}

= max
λ





L(λ) ≡ min

x∈X



gt−1(x)+
m∑

j=1

λjhj (x)



 : λ ≥ 0





.

Same as above, we have in our disposal a First Order oracle for L(·) and can therefore
minimize the (low-dimensional) function L by the Ellipsoid or the bundle methods.

Non-euclidean restricted memory level method for large-scale convex optimization 421

Now, what we want is just the optimal value, not an optimal solution, hence the fact
that the objective in (Lt−1) is not strongly convex does not cause any difficulties. If the
optimal value in (Lt−1) is ≥ �s , we must terminate the phase and hence do not need to
solve (Pt−1) at all, otherwise the set Xt = {x ∈ Xt−1 : gt−1(x) ≤ �s} clearly intersects
rint X (since Xt−1 is assumed to possess this property) and we are in a good position
to solve (Pt−1) via duality. Note also that in the latter case the set Xt ⊃ Xt intersects
rint X (since Xt does so). Assuming that X0 intersects rint X (which is for sure so when
X0 = X), we conclude that all the auxiliary problems to be solved are strictly feasible,
and thus can be processed via duality.

When are the standard setups implementable? As we have seen, the possibility to
implement the NERML algorithm depends on the ability to solve rapidly optimization
problems of the form (8). Let us look at several important cases when this indeed is
possible.

Ball setup. Here problem (8) becomes min
x∈X

[1
2xT x − pT x

]
, or, equivalently, min

s∈X[1
2‖x − p‖2

2

]
. We see that to solve (8) is the same as to project on X – to find the

point in X which is as close as possible, in the usual ‖ · ‖2-norm, to a given point p. This
problem is easy to solve for several simple solids X, e.g.,

• a ball {x : ‖x − a‖2 ≤ r},
• a box {x : a ≤ x ≤ b},
• the simplex �n = {x : x ≥ 0,

∑

i

xi = 1}.

In the first two cases, it takes O(n) operations to compute the solution which is given
by explicit formulas. The third case is a bit more involved: the projection is given by the
relations xi = xi(λ∗), where xi(λ) = max[0, pi − λ] and λ∗ is the unique root of the
equation ∑

i

xi(λ) = 1.

The left hand side of this equation is nonincreasing and continuous in λ and, as it is
immediately seen, its value varies from something ≥ 1 when λ = min

i
pi − 1 to 0 when

λ = max
i

pi . It follows that one can easily approximate λ∗ by bisection, and that it takes

a moderate absolute constant number of bisection steps to compute λ∗ (and thus – the
projection) within the machine precision. The arithmetic cost of a bisection step is O(n),
and so the overall arithmetic complexity of finding the projection is also O(n).

Simplex setup. Consider the two simplest cases:

S.A: X is the standard simplex �n;
S.B: X is the standard full-dimensional simplex �+n .

Case S.A. When X = �n, problem (8) becomes

min

{
∑

i

(xi + σ) ln(xi + σ)− pT x : x ≥ 0,
∑

i

xi = 1

}

[σ = δn−1] (24)

422 A. Ben-Tal, A. Nemirovski

It can be worked out that the solution to (24) is xi = xi(λ∗), where

xi(λ) = max[exp{p̂i − λ} − σ, 0] [p̂i = pi −min
j

pj] (25)

and λ∗ is the solution to the equation

∑

i

xi(λ) = 1.

Here again the left hand side of the equation is nonincreasing and continuous in λ and
its value varies from something which is ≥ 1 when λ = −σ to something which is
< 1 when λ = ln n, hence we again can compute λ∗ (and thus x(λ∗)) within machine
precision in a moderate absolute constant number of bisection steps. As a result, the
arithmetic cost of solving (24) is again O(n).

“Numerically speaking”, we should not be concerned about bisection at all. Indeed,
let us set δ to something really small, say, δ = 1.e-16. Then σ = δn−1 << 1.e-16,
while (at least some of) xi(λ∗) should be of order of 1/n (since their sum should be 1).
It follows that with actual (i.e., finite precision) computations, the quantity σ in (25) is
negligible. Omitting σ in (24) (i.e., replacing in (8) the regularized entropy by the usual
one), we can explicitly write down the solution x∗ to (24):

xi = exp{−p̂i}
∑

j

exp{−p̂j } , i = 1, . . . , n.

Case S.B. The case of X = �+n is very close to the one of X = �n. The only difference
is that now we first should check whether

∑

i

max
[
exp{−1− pi} − δn−1, 0

]
≤ 1;

if it is the case, then the optimal solution to (8) is given by

xi = max
[
exp{−1− pi} − δn−1, 0

]
, i = 1, . . . , n,

otherwise the optimal solution to (8) is exactly the optimal solution to (24).

Spectahedron setup. Consider two simple cases of the spectahedron setup:

Sp.A: X is comprised of all block-diagonal matrices of a given block-diagonal structure
belonging to 	n,
or

Sp.B: X is comprised of all block-diagonal matrices of a given block-diagonal structure
belonging to 	+n .

Case Sp.A. Here the problem (8) becomes

min
x∈X

{Tr((x + σIn) ln(x + σIn))+ Tr(px)} [σ = δn−1]

Non-euclidean restricted memory level method for large-scale convex optimization 423

We lose nothing by assuming that p is a symmetric block-diagonal matrix of the same
block-diagonal structure as the one of matrices from X. Let p = UπUT be the eigen-
value decomposition of p with orthogonal U and diagonal π of the same block-diag-
onal structure as that of p. Passing from x to the new matrix variable ξ according to
x = UξUT , we convert our problem to the problem

min
ξ∈X

{Tr((ξ + σIn) ln(ξ + σIn))+ Tr(πξ)} (26)

We claim that the unique (due to strong convexity of the function ω) optimal solution
ξ∗ to the latter problem is a diagonal matrix. Indeed, for every diagonal matrix D with
diagonal entries±1 and for every feasible solution ξ to our problem, the matrix DξD is
again a feasible solution with the same value of the objective (recall that π is diagonal).
It follows that the optimal set {ξ∗} of our problem is invariant w.r.t. the aforementioned
transformations ξ �→ DξD, which is possible if and only if ξ∗ is a diagonal matrix. Thus,
when solving (26), we may from the very beginning restrict ourselves with diagonal ξ ,
and with this restriction the problem becomes

min
ξ∈Rn

{
∑

i

(ξi + σ) ln(ξi + σ)+ πT ξ : ξ ≥ 0,
∑

i

ξi = 1

}

, (27)

which is exactly the problem we have considered in the case of the simplex setup with
X = �n. We see that the only extra work needed in the case of the spectahedron setup,
as compared to the simplex one, is in the necessity to find the eigenvalue decomposition
of p. The latter task is easy, provided that the diagonal blocks in the matrices in question
are of small sizes. Note that this favourable situation does occur in several important
applications, e.g., in Structural Design.
Case Sp.B. This case is completely similar to the previous one; the only difference is
that the role of (27) is now played by the problem

min
ξ∈Rn

{
∑

i

(ξi + σ) ln(ξi + σ)+ πT ξ : ξ ≥ 0,
∑

i

ξi ≤ 1

}

,

which we have already considered discussing the simplex setup.

Updating prox-centers. The complexity results stated in Theorem 2.1 are indepen-
dent of how the prox-centers are updated, so that in this respect one, in principle, is
completely free. It is reasonable, however, to choose as the prox-center at every stage
the best (with the smallest value of f) solution obtained up to the current stage.

Accumulating information. The set Xt summarizes, in a sense, all the information
on f accumulated so far and to be used in the sequel. Relation (16) allows for a tradeoff
between the quality (and the volume) of this information and the computational effort
required to solve the auxiliary problems (Pt−1). With no restrictions on this effort, the
most promising policy for updating Xt ’s would be to set Xt = Xt (“collecting infor-
mation without compressing it”). With this policy the NERML algorithm with the ball
setup is basically identical to the Prox-Level Algorithm of Lemarechal, Nemirovski and
Nesterov [8]; the “restricted memory” version of the latter method (that is, the generic
NERML algorithm with ball setup) was proposed by Kiwiel [4].

424 A. Ben-Tal, A. Nemirovski

4 Extensions

The NERML algorithm and the results presented so far are limited to the case of Lips-
chitz continuous objective, and what is worse, the complexity bound (19) is proportional
to the squared Lipschitz constant of the objective, and thus becomes very bad for “rap-
idly varying” objectives. To some extent, this is “a law of nature”, as it follows from
the optimality results mentioned in Section 2.3. However, if X possesses symmetry, the
complexity bounds can be improved. For example, assume that X is the unit Euclidean
ball. It is known [10] that in this case an appropriate version of the usual Subgradient
Descent method guarantees that the inaccuracy, in terms of the objective, after N steps
does not exceed O(1)

V [f]√
N

, where V [f] = max
X

f −min
X

f is the variation of the objec-

tive (assumed to be convex continuous, but not necessarily Lipschitz continuous) on the
feasible domain. In other words, the number of steps sufficient to minimize f within

accuracy ε does not exceed M(ε) = O(1)
V 2[f]

ε2 . In the case of Lipschitz continuous f

we have V [f] ≤ 2L‖·‖2(f) (since X = Bn), so that M(ε) is, up to an absolute constant
factor, less than the complexity bound N(ε) given by (19), and the ratio N(ε)/M(ε) can
be arbitrarily large (look at the case of f (x) = −√1+ δ − xT x).

We are about to demonstrate that the NERML method can be modified to ensure
improved, as compared to (19), complexity bounds. Furthermore, we extend the algo-
rithm from convex optimization problems in the form of (1) to other problems “with
convex structure”, including finding saddle points of convex-concave functions and
solving variational inequalities with monotone operators.

4.1 Semi-bounded monotone mappings

We start with developing an appropriate general framework. Let X be a Euclidean space
with inner product 〈·, ·〉 and associated norm ‖ · ‖X .

Definition 4.1 Let X ⊆ X be a nonempty convex set, let c ∈ X, and let � ∈ (0, 1].
Let F be a multi-valued monotone mapping on X (i.e., F(x) is a subset in X , the set
Dom F = {x : F(x) �= ∅} is nonempty and convex, and 〈ξ − η, x − y〉 ≥ 0 for all
x, y ∈ Dom F and all ξ ∈ F(x), η ∈ F(y)). We say that F is semi-bounded w.r.t.
(X, c, �) (notation: VX,c,�[F] <∞), if X ⊆ Dom F and the quantity

VX,c,�[F] = sup
x,y∈X,ζ∈F(x),κ=±1

〈ζ, c + κ�(c − y)− x〉 (28)

is finite.

Note that the functional VX,c,�[·] clearly is nonnegative on its domain (set x = y = c

in the right hand side of (28)).

Example 4.1 [Bounded monotone mapping/Subgradient of Lipschitz continuous func-
tion] Let F be a bounded monotone mapping (i.e., sup

x∈Dom F
ζ∈F(x)

‖ζ‖X <∞) and X be a con-

vex set such that X ⊆ Dom F . Then for every norm ‖·‖ on X and every c ∈ X, � ∈ (0, 1]
one has

VX,c,�[F] ≤ 2D‖·‖(X)V‖·‖,X[F] (29)

Non-euclidean restricted memory level method for large-scale convex optimization 425

where

• D‖·‖(X) = max
x,y∈X

‖x − y‖ is the diameter of X w.r.t. ‖ · ‖;
• V‖·‖,X[F] = sup

x∈X,ζ∈F(x)

‖ζ‖∗, (as always, ‖ · ‖∗ is the norm conjugate to ‖ · ‖).

In particular, if function f is convex Lipschitz continuous, with constant L‖·‖(f) w.r.t. a
norm ‖·‖, F(x) = ∂f (x) is the corresponding subdifferential mapping, and X ⊆ Dom f

is a convex set, then for all c ∈ X and all � ∈ (0, 1] one has

VX,c,�[F] ≤ 2D‖·‖(X)L‖·‖(f). (30)

Example 4.2 [Semi-bounded monotone mapping/Subgradient of a bounded function in
a “nearly symmetric” domain] Let F be a monotone mapping with convex domain X.
Assume that F can be extended from X to a monotone mapping � with convex domain
Y = Dom � (so that F(x) = �(x) for x ∈ X) in such a way that

1. The quantity
VY [�] = sup

x,y∈Y
z∈∂�(x)

〈y − x, z〉

is finite;
2. For certain � ∈ (0, 1], the set Y is �-symmetric w.r.t. a certain point c ∈ X, i.e.,

c +�(c − Y) ⊆ Y

(geometrically: the point c splits every segment passing through c and with endpoints
on the boundary of Y in the ratio not exceeding 1 : �).

Then

VX,c,�[F] ≤ VY [�]. (31)

In particular, if a convex function f : X → R can be extended to a lower semicontinu-
ous convex function φ with X ⊆ Y ⊆ rint Dom φ and the convex set Y is �-symmetric
w.r.t. certain point c ∈ X, then

VX,c,�[∂f] ≤ VY [∂φ] ≡ sup
x,y∈Y,z∈∂φ(x)

〈y − x, z〉 ≤ sup
Y

φ − inf
Y

φ. (32)

Indeed, given x, y ∈ X, we have z± ≡ c ±�(y − c) ∈ Y due to X ⊆ Y and to �-symmetry of Y

w.r.t. c. By the definition of VY [�] we have

sup
ζ∈∂F (x)

〈ζ, z± − x〉 ≤ VY [�],

i.e., for all x, y ∈ X and all ζ ∈ F(x) one has

〈ζ, c ±�(c − y)− x〉 ≤ VY [�],

as claimed in (31). To get (32), if suffices to apply (31) to the monotone mapping �(x) = ∂φ(x)

restricted to the domain Y and to note that since φ is a convex function on Y , we have

sup
x,y∈Y

ζ∈∂φ(x)

〈y − x, ζ 〉 ≤ sup
x,y∈Y

[φ(y)− φ(x)] = sup
Y

φ − inf
Y

φ.

426 A. Ben-Tal, A. Nemirovski

Many additional examples of semi-bounded monotone mappings can be generated
due to the fact that the functional VX,c,�[·] is “well-behaved” under operations preserv-
ing monotonicity:

Proposition 4.1 Let X ⊆ X be a nonempty convex set, let c ∈ X, and let � ∈ (0, 1].
Then

1. [Homogeneity and sublinearity] If Fi are semi-bounded w.r.t. (X, c, �) and λi ≥ 0,
i = 1, . . . , m, then

VX,c,�

[
∑

i

λiFi

]

≤
∑

i

λiVX,c,�[Fi];

2. [Stability w.r.t. affine substitutions of argument] Let y �→ Ay + b : F → X be an
affine mapping such that c = Ad + b for certain d, let F be semi-bounded w.r.t.
(X, c, �), and let

Y = {y : Ay + b ∈ X}, G(y) = A∗F(Ay + b).

Then
VY,d,�[G] ≤ VX,c,�[F].

3. [Monotonicity w.r.t. �] Whenever �′ ∈ (0, �] and F is semi-bounded w.r.t. X, c, �,
one has

VX,c,�′ [F] ≤ VX,c,�[F].

4. [Monotonicity w.r.t. X] Whenever c ∈ X′ ⊆ X with convex X′, one has

VX′,c,�[F] ≤ VX,c,�[F].

5. [Stability w.r.t. c] Let c′ ∈ X be such that

πc(c
′ − c) ≡ inf{t > 0 : c ± t−1(c′ − c) ∈ X} < �,

and let

�′ = �− πc(c
′ − c)

1− πc(c′ − c)
.

Then
VX,c′,�′ [F] ≤ VX,c,�[F].

We are about to demonstrate that the NERML scheme can be extended from the
case when the objective in (1) has a bounded subgradient mapping to the case of a
semibounded gradient mapping.

4.2 The general NERML scheme

Setup for the general NERML scheme (GNERML) is given by:

1. A solid (convex compact set with a nonempty interior) X ⊆ X ,
2. A strongly convex and continuously differentiable function ω(·) on X.

We set
�[ω(·)] = max

x,y∈X

[
ω(y)− ω(x)− 〈ω′(x), y − x〉] .

Non-euclidean restricted memory level method for large-scale convex optimization 427

The data for the GNERML scheme are given by a bounded vector field

g(x) : X �→ X .

Given a nonempty finite subset S of X, we set

FS(y) = max
x∈S
〈g(x), y − x〉, g∗[S] = min

y∈X
FS(y).

The goal is, given δ > 0, to build a set S such that

g∗[S] > −δ.

To give a (preliminary) motivation to our goal, consider the case when we are
interested to minimize over X a Lipschitz continuous convex function f (x).
Setting g(x) = f ′(x), observe that the relation g∗[S] ≥ −ε means that for every
y ∈ X there exists x ∈ S such that 〈f ′(x), y−x〉 ≥ −ε, whence f (x)−f (y) ≤ ε

by convexity of f . Thus, min
x∈S

f (x) − f (y) ≤ ε for all y ∈ X, so that the best

(with the smallest value of f) of the points from S is an ε-minimizer of f on X.

The GNERML scheme is as follows. We build a search sequence x0, x1, ..., thus
defining finite sets St = {x0, x1, . . . , xt } ⊆ X. The search sequence is built according
to the following rules.

A.We choose an arbitrary x0 ∈ X and set f1 = min
x∈X
〈g(x0), x− x0〉. We clearly have

f1 ≤ 0; the case when f1 = 0 is trivial, since here g∗[{x0}] = 0, which is even more
than we need.

Our subsequent actions are split into phases enumerated 1, 2,... Let us describe a
particular phase s.

B. Phase s starts at a certain moment ts (t1 = 1). Let us set Ss = {x0, . . . , xts−1}, and
let fs < 0 be a valid lower bound, available at the beginning of phase s, on the quantity
g∗[Ss]. We set

�s = (1− λ)fs

(λ ∈ (0, 1) is a once forever fixed parameter); note that �s < 0 along with fs .
To save notation, we denote the subsequent search points generated at phase s as

u1, u2, ..., so that xts+τ = uτ+1, τ = 0, 1, We choose u1 ∈ X in an arbitrary fashion,
set

ωs(x) = ω(x)− 〈ω′(u1), x〉
and use finitely many linear inequalities to cut off X a localizer X1 such that u1 ∈ X1
and

x ∈ X\X1 ⇒ FSs (x) > �s.

C. The situation at the beginning of step τ of phase s is as follows: we have uτ ∈ X

and Xτ ⊆ X (Xτ is cut off X by finitely many linear inequalities) such that

x ∈ X\Xτ ⇒ F
Sτ−1

s
(x) > �s (aτ)

uτ = argmin
x∈Xτ

ωs(x) (bτ)

where Sτ−1
s = Ss ∪ {u1, . . . , uτ−1}, τ > 1, and S0

s = Ss .

428 A. Ben-Tal, A. Nemirovski

D. At step τ , we act as follows:

1. compute g(uτ) and set hτ (x) = 〈g(uτ), x − uτ 〉,
2. solve the auxiliary problem

f̃ = min
x∈Xτ

hτ (x), (33)

and compute the quantity

fs,τ = max
[
fs,τ−1, min

[
f̃ , �s

]]

where fs,0 = fs .
Note: fs,τ is a valid lower bound on g∗[Sτ

s] along with fs,τ−1, since in X\Xτ one
has

FSτ
s
(x) ≥ F

Sτ−1
s

(x) > �s,

while on Xτ one has

FSτ
s
(x) ≥ hτ (x) ≥ f̃ = min

x∈Xτ

hτ (x),

so that everywhere on X one has

FSτ
s
(x) ≥ min

[
f̃ , �s

]

and, besides this, everywhere on X one has

FSτ
s
(x) ≥ F

Sτ−1
s

(x) ≥ fs,τ−1.

3. We check whether
�s − fs,τ ≤ θ(�s − fs)

where θ ∈ (0, 1). If this is the case, phase s is terminated, and we set

fs+1 = fs,τ .

4. If phase s is not terminated yet, the set {x ∈ Xτ : hτ (x) ≤ �s} is nonempty (since
otherwise we would have min

Xτ

hτ (·) ≥ �s ≥ (1+θ)�s and therefore fs,τ ≥ �s , which

is impossible, since phase s was not terminated yet). We set

uτ+1 = argmin{ωs(x) : x ∈ Xτ , hτ (x) ≤ �s}
and choose as Xτ+1 an arbitrary set (cut off X by finitely many linear inequalities)
such that

{x ∈ X : 〈ω′s(uτ+1), x − uτ+1〉 ≥ 0} ⊆ Xτ+1 ⊆ {x ∈ Xτ : hτ (x) ≤ �s}. (34)

With this approach, we clearly satisfy the requirements (aτ+1), (bτ+1).

The summary of the General NERML scheme is as follows:

Non-euclidean restricted memory level method for large-scale convex optimization 429

General NERML scheme

Parameters: λ ∈ (0, 1), θ ∈ (0, 1), ε > 0.

Initialization: Choose x0 ∈ X, compute g(x0) and set f1 = min
x∈X
〈g(x0), x − x0〉,

t1 = 1.

Phase s (s = 1, 2, ...): If fs ≥ −ε (required tolerance) terminate; otherwise set Ss =
{x0, . . . , xts−1}, �s = (1− λ)(fs), choose an arbitrary u1 ≡ xts ∈ X, and set

ωs(x) = ω(x)− 〈ω′(u1), x〉,
fs,0 = fs.

Choose a subset X1 ⊆ X cut off X by finitely many linear inequalities such that u1 ∈ X1
and

x ∈ X\Xs ⇒ FSs (x) > �s.

Start inner iterations:

Inner iteration τ (τ = 1, 2, ...):
Compute g(uτ) and set

hτ (x) = 〈g(uτ), x − uτ 〉,
F̃ = min

x∈Xτ

hτ (x),

fs,τ = max
[
fs,τ−1, min[F̃ , �s[

]
.

If �s − fs,τ ≤ θ(�s − fs),
set fs+1 = fs,τ and pass to phase s + 1,

else
set

xts+τ ≡ uτ+1 = argmin
x∈Xτ

{ωs(x) : hτ (x) ≤ �s} ,

choose Xτ+1 cut off X by finitely many linear inequalities and
satisfying (34), and pass to step τ + 1 of phase s.

Implementation issues for the GNERML scheme can be resolved in the same way
as for the basic NERML algorithm, see Section 3.

Convergence properties of the outlined scheme are described in the following state-
ment:

Theorem 4.1 Let a field g(·) be processed by a GNERML scheme associated with
(X, ω(·)), let ‖ · ‖ be a norm on X , and let κ > 0 be such that ω(·) is κ-strongly
convex w.r.t. ‖ · ‖:

∀(x, y ∈ X) : ω(y) ≥ ω(x)+ 〈ω′(x), y − x〉 + κ

2
‖y − x‖2. (35)

430 A. Ben-Tal, A. Nemirovski

Finally, let M <∞ be such that

‖g(xt)‖∗ ≤ M ∀t, (36)

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖. Then
(i) The number Ns of steps at a phase s is bounded above as follows:

Ns ≤ 4�[ω(·)]M2

θ2(1− λ)2κδ2
s

,

δs ≡ −fs. (37)

(ii) Consequently, for every ε > 0, the total number of steps, before the phase s for
which δs ≤ ε is started does not exceed

N(ε) = c(θ, λ)
�[ω(·)]M2

κε2 (38)

with an appropriate c(θ, λ) depending solely and continuously on θ, λ ∈ (0, 1).

We conclude this section with the following result which is important for the sequel:

Proposition 4.2 Let X ⊆ X be a solid, let F(·) be semi-bounded on X:

VX,c,�[F] ≤ L <∞, (39)

and let a field g(·) be given by

g(x) = [‖h(x)‖∗X]−1h(x), h(x) ∈ F(x), (40)

where ‖ · ‖X is the norm on X with the unit ball 1
2 [X −X]:

‖x‖X = inf

{

t > 0 : t−1x ∈ 1

2
[X −X]

}

and ‖ · ‖∗X is the norm conjugate to ‖ · ‖X:

‖ξ‖∗X = max {〈ξ, x〉 : ‖x‖X ≤ 1} = 1

2

[

max
x∈X

〈ξ, x〉 −min
x∈X
〈ξ, x〉

]

.

Whenever points x0, . . . , xT ∈ X are such that

g∗[{x0, . . . , xT }] ≥ −δ, (41)

where
ε ≡ δ/� < 1,

one has

min
x∈X

max
t≤T

〈h(xt), x − xt 〉 ≥ − ε

1− ε
L. (42)

Non-euclidean restricted memory level method for large-scale convex optimization 431

In particular, there exist (and can be efficiently found) weights λt ≥ 0,
T∑

t=0
λt = 1 such

that

min
x∈X

T∑

t=0

λt 〈h(xt), x − xt 〉 ≥ − ε

1− ε
L; (43)

moreover, defining

x̃T =
T∑

t=0

λtxt (44)

one has

∀(x ∈ X, ζ ∈ F(x)) : 〈ζ, x − x̃T 〉 ≥ − ε

1− ε
L. (45)

4.3 Applications in nonsmooth convex minimization

We show, first, that the GNERML scheme, as applied to the problem of minimizing a
Lipschitz continuous convex function, yields the same efficiency guarantees as the basic
NERML method:

Proposition 4.3 Let f be a convex function, int Dom f ⊃ X, which is Lipschitz contin-
uous with constant L‖·‖(f) w.r.t. a norm ‖ · ‖ on Dom f , and let the field g(x) = f ′(x)

be processed by the GNERML scheme associated with (X, ω(·)). Then
(i) For every T and ε > 0, the relation

g∗[{x0, . . . , xT }] ≥ −ε (46)

implies that

f (xT) ≤ min
x∈X

f (x)+ ε, xT = argmin
x=x0,...,xT

f (x). (47)

(ii) For every ε > 0 the number of steps until (46) is satisfied does not exceed the
quantity

N(ε) = c(θ, λ)
�[ω(·)]L2

‖·‖(f)

κε2 ,

where κ is the constant of strong convexity of ω(·) w.r.t. ‖ · ‖.
We are about to demonstrate that in fact the GNERML scheme yields stronger effi-

ciency guarantees, those which were mentioned in the beginning of Section 4.

Proposition 4.4 Let X ⊆ X be a solid, let f be a convex function, X ⊆ int Dom f , and
let F(x) = ∂f (x). Let, finally,

g(x) = [‖f ′(x)‖∗X]−1f ′(x), f ′(x) ∈ F(x) for x ∈ X. (48)

(i) Let ε ∈ (0, 1), � ∈ (0, 1) and c ∈ X be given, and let the points x0, . . . , xT ∈ X

be such that

432 A. Ben-Tal, A. Nemirovski

g∗[x0, . . . , xT] ≥ −ε�, (49)

one has

f (xT) ≤ min
X

f + ε

1− ε
VX,c,�[F],

where xT is the best (with the smallest value of f) of the points x0, . . . , xT .
(ii) When applying to g(·) the GNERML scheme associated with (X, ω(·)), we get

a sequence x0, x1, ... such that

∀(ε ∈ (0, 1), � > 0) :

T ≥ b(λ, θ)
�[ω(·)]

κ[X, ω(·)]
(

1

�ε

)2

⇒ g∗[x0, . . . , xT] ≥ −ε�, (50)

where
• κ[X, ω(·)] is the constant of strong convexity of ω(·) w.r.t. the norm ‖ · ‖X,

and
• b depends solely on the parameters λ and θ of the GNERML scheme.

4.3.1 Discussion To get an impression of the power of Proposition 4.4, consider several
implications of this statement. In the discussion to follow, the parameters λ, θ ∈ (0, 1)

of the GNERML scheme are treated as once for ever fixed absolute constants.

4.3.2 Optimization over “nearly ‖ · ‖2-balls” Let a solid X ⊆ X = Rn be such that

• X is contained in the unit Euclidean ball Bn and is �1-symmetric for certain �1 ∈
(0, 1];

• the set 1
2 [X−X] (which clearly is contained in Bn) contains, for certain �2 ∈ (0, 1],

the ball �2Bn.
E.g., when X ⊆ Bn contains ρBn with certain ρ > 0, one can take �1 = �2 = ρ.
Also, when X contains the nonnegative part {x ≥ 0, ‖x‖2 ≤ 1} of the unit ball, one
can take �2 = 1

2 .

Let, further, f be a convex function, X ⊆ int Dom f , and let

VX[f] ≡ max
x,y∈X,f ′(x)∈∂f (x)

〈f ′(x), y − x〉.

Note that the quantity VX[F] is seemingly the smallest measure compared to some other
choices measuring the “magnitude” of f

∣
∣
X

. For example,

VX[f] ≤ max
X

f −min
X

f ≤ 2L‖·‖2(f
∣
∣
X
)

(the first inequality is valid for all solids X, the second follows from X ⊆ Bn). In fact
VX[f] can be much less than the variation max

X
f − min

X
f . E.g., for f (x) = − ln(1+

δ − xT x), δ > 0, one has VBn [f] ≤ 1, while the variation of f on Bn tends to ∞ as
δ →+0.

Non-euclidean restricted memory level method for large-scale convex optimization 433

Now assume that f is minimized over X by the GNERML scheme associated with
(X, ω(x) = 1

2xT x) and applied to the vector field

g(x) = [‖f ′(x)‖∗X]−1f ′(x) : X → Rn.

By (32) (where one should take Y = X), one has

VX,c,�1 [∂f] ≤ VX[f], (51)

while by Proposition 4.4 one has

∀ε ∈ (0, 1) : T ≥ b(θ, λ)
�[ω(·)]

κ[X, ω(·)]
1

�2
1ε

2
⇒ f (xT) ≤ min

X
f + ε

1− ε
VX,c,�[∂f].

(52)

Now, since X ⊆ Bn, one clearly has �[ω(·)] ≤ O(1), while from the fact that 1
2 [X−X]

is contained in Bn and contains �2Bn it follows that ‖x‖X ≤ �−1
2 ‖x‖2 for all x, whence

κ[X, ω(·)] ≥ �2
2. Combining these observations with (51), (52), we arrive at

∀ε ∈ (0, 1) : T ≥ O(1)
1

(�1�2)2ε2 ⇒ f (xT) ≤ min
X

f + ε

1− ε
VX[f].

When �1 and �2 are of order of 1 (as in the case of X = Bn), the resulting efficiency
estimate

ε < 1, T ≥ O(1)ε−2 ⇒ f (xT) ≤ min
X

f + ε

1− ε
VX[f]

is even better than the one mentioned in the beginning of Section 4.

4.3.3 Optimization over “nearly ‖ · ‖1-balls” Let U be a solid in Rn such that

• U contains the origin, is contained in the set Dn = {u ∈ Rn : ‖u‖1 ≤ 1} and is
�1-symmetric for certain �1 ∈ (0, 1];

• the set 1
2 [U−U] (which clearly is contained in Dn) contains, for certain �2 ∈ (0, 1],

the set �2Dn.
E.g., when U ⊆ Dn contains ρDn for certain ρ > 0, one can take �1 = �2 = ρ.
Also, when U contains the simplex �n (or the simplex �+n), one can take ρ = 1

2 .

Assume that we are interested to minimize overU a convex functionh(·),U ⊆ int Dom h.
To this end, let us set

X = {x ∈ R2n = Rn
u × Rn

v : ‖x‖1 ≤ 1, x ≥ 0, P x ∈ U}, P

[
u

v

]

= u− v

f (u, v) = h(u− v),

thus arriving at a convex solid X ⊆ R2n and a convex function f , X ⊆ int Dom f , such
that the problem of minimizing f over X is equivalent to the problem of minimizing
h over U . In order to minimize f over X, let us use the GNERML scheme with the
simplex setup as applied to the vector field

g(x) = [‖f ′(x)‖∗X]−1f ′(x) : X → R2n.

434 A. Ben-Tal, A. Nemirovski

Note that by items 2 and 4 of Proposition 4.1, one has

VX,0,�1 [∂f] ≤ VU,0,�1 [∂h] ≤ VU [h], (53)

the concluding inequality being given by (32) (where one should set Y = X = U).
By Proposition 4.4 combined with (53) one has

∀ε ∈ (0, 1) : T ≥ b(θ, λ)
�[ω(·)]

κ[X, ω(·)]
1

�2
1ε

2
⇒ f (xT) ≤ min

X
f + ε

1− ε
VU [h].

(54)

Now, the set D = 1
2 [X − X] is contained in D2n (since X ⊆ D2n). We claim that D

contains (�2/6)D2n.

Indeed, since 0 ∈ U , we have 0 ∈ X. Assume that D does not contain (�2/6)D2n. Then there exists
φ = (φu, φv) ∈ R2n such that ‖(φu, φv)‖∞ = 1 and

|φT
u u+ φT

v v| < �2/3 ∀(u, v) ∈ X. (55)

Since all vectors of the form (u, u) with u ≥ 0, ‖u‖1 ≤ 1/2, belong to X, it follows from (55) that
|(φu + φv)u| < �2/3 for all u ≥ 0, ‖u‖1 ≤ 1

2 , whence

‖φu + φv‖∞ ≤ 2�2/3. (56)

Since ‖(φu, φv)‖∞ = 1, we have ‖φu‖∞ = 1, or ‖φv‖∞ = 1. Assume that ‖φu‖∞ = 1, and let
(u, v) ∈ X. We have

|φT
u (u− v)| ≤ |φT

u u+ φT
v v| + ‖φu + φv‖∞‖v‖1

< �2/3+ 2�2/3 [by (55), (56)]

= �2

⇒ |φT
u u| < �2 ∀u ∈ U.

Since ‖φu‖∞ = 1, the concluding relation contradicts the assumption that 1
2 [U−U] contains �2Dn.

The case of ‖φv‖∞ = 1 is completely similar. ��

Since X is contained in �+2n, we have �[ω(·)] ≤ O(1) ln n, while from �2
6 D2n ⊆

1
2 [X − X] ⊆ D2n it follows that ‖x‖∗X ≤ O(1)�−1

2 ‖x‖1 for all x. Since the constant
of strong convexity of ω(·) w.r.t. ‖ · ‖1 is O(1), we arrive at κ[X, ω(·)] ≥ O(1)�−2

2 ;
consequently, (54) implies that

∀ε ∈ (0, 1) : T ≥ O(1)
ln n

(�1�2)2ε2 ⇒ f (xT) ≤ min
X

f + ε

1− ε
VU [h]. (57)

When �1 and �2 are of order of 1 (as in the case of U = Dn), the resulting efficiency
estimate is better than the one yielded by Theorem 2.1 for the case of simplex setup
(recall that Vu[h] ≤ 2L‖·‖1(h) due to U ⊆ Dn).

Non-euclidean restricted memory level method for large-scale convex optimization 435

3. Optimization over “matrix balls”. Finally, consider the case when U is a solid in
the space Mn of n× n symmetric matrices of a given block-diagonal structure such that

• U contains the origin, is contained in the set Dn = {x ∈ Mn : |x|1 ≤ 1}, where
|x|1 = ‖λ(x)‖1, and is �1-symmetric for certain �1 ∈ (0, 1];

• the set 1
2 [U−U] (which clearly is contained in Dn) contains, for certain �2 ∈ (0, 1],

the set �2Dn.
E.g., when X ⊆ Bn contains ρBn with certain ρ > 0, one can take �1 = �2 = ρ.
Also, when X contains the nonnegative part {x ≥ 0, ‖x‖2 ≤ 1} of the unit ball, one
can take �2 = 1

2 .

Assume that we are interested to minimize overU a convex functionh(·),U ⊆ int Dom h.
To this end, let us set

X = {x ∈ M2n = Mn
u ×Mn

v : |x|1 ≤ 1, x
 0, P x ∈ U}, P

[
cu

v

]

= u− v

f (u, v) = h(u− v),

thus arriving at a convex solid X ⊆ M2n and a convex function f , X ⊆ int Dom f , such
that the problem of minimizing f over X is equivalent to the problem of minimizing
h over U . In order to minimize f over X, we can use the GNERML scheme with the
spectahedron setup as applied to the vector field

g(x) = [‖f ′(x)‖∗X]−1f ′(x) : X → M2n.

The same reasoning as in the previous case results in the efficiency results as follows:

∀ε ∈ (0, 1) : T ≥ O(1)
ln n

(�1�2)2ε2 ⇒ f (xT) ≤ min
X

f + ε

1− ε
VU [h]. (58)

4.4 Approximating saddle points

The GNERML scheme can be applied to approximating saddle points of convex-concave
functions. The basic result here is as follows:

Proposition 4.5 Let X = U × V ⊆ X ≡ U × V , where U and V are solids in the
Euclidean spaces U and V . Let the function f (u, v) be convex in u and concave in v,
X ⊆ int Dom f , and let F(u, v) = (∂uf (u, v))× (−∂vf (u, v)). Let, finally,

g(u, v) = [‖(f ′u(u, v),−f ′v(u, v))‖∗X]−1(f ′u(u, v),−f ′v(u, v)),

(f ′u(u, v),−f ′v(u, v)) ∈ F(u, v) for (u, v) ∈ X.

(i) Let ε ∈ (0, 1), � ∈ (0, 1) and c ∈ X be given, and let the points {xt = (ut , vt) ∈
X}Tt=0 be such that (49) is valid. Then

ε(̃uT , ṽT) ≤ ε

1− ε
VX,c,�[F],

436 A. Ben-Tal, A. Nemirovski

where

• x̃T = (̃uT , ṽT) is the point defined in Proposition 4.2,

• ε(u, v) =
[

f (u)−min
U

f

]

+
[

max
V

f − f

]

, with

f (u) = max
v∈V

f (u, v), f (v) = min
u∈U

f (u, v).

(ii) When applying to g(·) the GNERML scheme associated with (X, ω(·)), we get a
sequence x0 = (u0, v0), x1 = (u1, v1), ... such that

∀(ε ∈ (0, 1), � > 0) :

T ≥ b(λ, θ)
�[ω(·)]

κ[X, ω(·)]
(

1

�ε

)2

⇒ g∗[x0, . . . , xT] ≥ −ε�, (59)

where

• κ[X, ω(·)] is the constant of strong convexity of ω(·) w.r.t. the norm ‖ · ‖X, and
• b depends solely on the parameters λ and θ of the GNERML scheme.

Assuming that the convex-concave function in question is Lipschitz continuous on
its domain, Proposition 4.4 can be modified as follows (cf. Proposition 4.3):

Proposition 4.6 Let X = U × V ⊆ X ≡ U × V , where U and V are solids in the
Euclidean spaces U and V , let the function f (u, v) be convex in u and concave in v,
X ⊂ int Dom f , and let F(u, v) = (∂uf (u, v))× (−∂vf (u, v)). Let

g(u, v) = (f ′u(u, v),−f ′v(u, v)),

(f ′u(u, v),−f ′v(u, v)) ∈ F(u, v) for (u, v) ∈ X,

Further, let ‖ · ‖ be a norm on X and

L‖·‖(f) = max
(u,x)∈X

max
ξ∈F(u,v)

‖ξ‖∗,

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖.
(i) For all T and ε > 0 the relation

g∗[{x0, . . . , xT }] ≥ −ε (60)

implies that

ε(̃uT , ṽT) ≤ ε, (61)

where ε(u, v) and ũT , ṽT are defined as in Proposition 4.5.
(ii) For every ε > 0 the number of steps until (60) is satisfied does not exceed the

quantity

N(ε) = c(θ, λ)
�[ω(·)]L2

‖·‖(f)

κε2 ,

where κ is the constant of strong convexity of ω(·) w.r.t. ‖ · ‖.

Non-euclidean restricted memory level method for large-scale convex optimization 437

5 Numerical results

Test problems. To test the performance of the NERML and the GNERML algorithms
as applied to problems (1), we carried out 2 groups of numerical experiments:

• UFL problems (relaxations of the Uncapacitated Facility Location problems),
• TOMO problems (2D Image Reconstruction problems arising in Positron Emission

Tomography).
More details on the test problems are given in the relevant sections below.

The algorithms. The domains X we dealt with were either standard simplexes �n,
�+n , or the boxes {x ∈ Rn : a ≤ x ≤ b}. For simplex-type domains, we used both the
ball and the simplex setups, while for boxes only the ball setups were used.

The “degrees of freedom” in the NERML algorithms, specifically, the policies for
updating the prox-centers and the localizers, were resolved as follows:

1. The prox-center cs for phase s was the best (in terms of the objective) solution we
have at our disposal at the beginning of the phase.

2. The localizers Xt were cut off X by at most a given number m of linear inequali-
ties. The policy for handling these inequalities was as follows. Let u1, u2, ... be the
subsequent search points generated by the algorithm, and let qi(x) = f (ui)+ (x −
ui)

T f ′(ui).
(a) Before qm(·) is built, localizer Xt−1 = Xs

t−1 (where s is the phase #, t is the #
of a step within phase s) is {x ∈ X : hi(x) ≡ qi(x)− �s ≤ 0, i ∈ I s

t−1}, where
I s
t−1 is the set of indices of qi(·)’s we have built till the beginning of the step t of

phase s.
(b) After qm(·) is built, Xs

t−1 = {x ∈ X : hi(x) ≡ gi(x)− �s ≤ 0, i ∈ I s
t−1, h(x) ≡

(xt−1 − x)T ω′s(xt−1) ≤ 0}, where I s
t−1 is the set of indices of the m − 1 latest

qi(·)’s built till the beginning of the step t of phase s.
Note that this policy clearly satisfies (16). Moreover, it is immediately seen that with
this policy one can replace the auxiliary problem

f̃ = min
x

{
gt−1(x) ≡ f (xt−1)+ (x − xt−1)

T f ′(xt−1) : x ∈ Xt−1

}
, (Lt−1)

responsible for updating the lower bounds on the optimal value in (1), with the prob-
lem

f̃ = min
x

{

max[max
i∈I s

t−1

qi(x), gt−1(x)] : x ∈ Xt−1

}

,

thus improving the bounding of f∗ from below. We have used this option on our
experiments.

Two “polar” policies were tested – the “memoryless” one (m = 1), and the “long
memory” policy m = 30. With the former policy, the algorithms were allowed to run
100 iterations (i.e., to compute f and f ′ at 100 points), with the latter one – only 40
iterations.

438 A. Ben-Tal, A. Nemirovski

The auxiliary problems (Lt−1), (Pt−1) were solved by the Level method [8] 5).

Control parameters. In all our experiments, the parameter θ was set to 0.5. The value
of the remaining control parameter λ was somehow adjusted to the type of test prob-
lems and never changed in the sequel. Specifically, we used λ = 0.9 for the UFL test
problems, and λ = 0.95 for the Tomography ones.

Notation in the tables. In the tables, the versions of the algorithms are encoded as
XYYZ, where

• X is either B (for ball setup), or S (for simplex setup),
• YY is the “memory depth” m (either 30, or 01),
• Z is either b (for NERML), or g (for GNERML).

For example, B01g denotes the GNERML scheme with the ball setup and no memory.
For every experiment, we display the best values of the objective found at the first

iteration (i.e., the value at the starting point), and iterations ## 10, 20, 30, 40 (for the
versions with memory depth 30, where 40 iterations were run), or ## 10, 20, 30, 40,
100 (for the versions with no memory, where 100 iterations were run). These values are
displayed in the row where the name of the method stands; the values in the subsequent
row are the gaps (i.e., the differences between the best value of the objective found so
far and the current lower bound on the optimal value, for the basic version, and minus
the lower bounds for the quantities εT = g∗[{x0, . . . , xT }] for the GNERML scheme).
Besides these data, we present

• The progress in the gap – the ratio PrgG= Gapini
Gapfin

of the initial and the final gaps;

• The progress in the accuracy PrgA= f ini−ffin
f fin−ffin

, where f ini is the value of the

objective at the starting point, f fin is the best value of the objective found in course
the run, and ffin is the largest – the last – lower bound on the optimal value found
in course of the run. Progress in accuracy is reported for the basic version of the
NERML algorithm only (since in the GNERML scheme, no explicit lower bounds
on the optimal value are built).

• The CPU time.

All experiments were carried out on Pentium IV 1.3 GHz PC with 256 Mb RAM.

5.1 UFL problems

An Uncapacitated Facility Location problem is the Boolean Programming program as
follows:

5) Although theoretically slow (with the complexity bound O(ε−2)), the Level method, as many other
bundle algorithms with “full memory”, in practice exhibits nice polynomial time convergence: empirically,
inaccuracy in terms of the objective goes to 0 at least as fast as exp{−k/m}, where m is the design dimension
of the problem and k is the number of steps. As a result, in practice the Level method significantly outperforms
its “theoretically superior” alternatives, like the Ellipsoid algorithm, provided that the design dimension of the
problem is about 5 or more.

Non-euclidean restricted memory level method for large-scale convex optimization 439

min
x,y






∑

i,j≤n

d(i, j)xij +
∑

j≤n

cj yj : xij , yj ∈ {0; 1},
∑

j

xij = 1, xij ≤ yij





, (62)

where cj > 0 and d(i, j) is a metric on the n-point set {1, . . . , n}. Informally, there are
n locations of clients to be served. At a location j , a service facility can be installed at
the cost cj . Given the locations of the installed facilities, the clients assign themselves
to exactly one facility each. The goal is to decide where to install facilities (yj = 1 iff at
the location j a facility is installed) and how to assign the clients to the facilities (xij = 1
iff client i is served by the facility at the location j) in order to minimize the sum of
the installation cost

∑

j

cj yj plus the total service cost
∑

i,j

d(i, j)xij . UFL is an NP-hard

problem. The UFL test problems we dealt with are LP relaxations of (62), specifically,
the problems

min
x,y






∑

i,j≤n

d(i, j)xij +
∑

j≤n

cj yj : 0 ≤ xij ≤ yj ≤ 1,
∑

j

xij = 1, i = 1, . . . , n





.(63)

It is shown in [2] that the optimal value of the relaxation (63) coincides, within the factor
1+ 2/3, with the optimal value of the combinatorial problem.

(63) is just a Linear Programming program with n2 + n variables; however, when n

is few thousands, this program becomes too large (tens of millions of variables) to be
solved straightforwardly by the usual LP solvers. Fortunately, the design dimension of
(63) can be reduced dramatically by eliminating the xij -variables: for fixed yj ≥ 0 with∑

j

yj ≥ 1 one has

min
xij






∑

i,j

d(i, j)xij : 0 ≤ xij ≤ yj ,
∑

j

xij = 1





=
∑

i

φi(y),

where φi(y) is the easily computable optimal value in the continuous knapsack problem:

φi(y) = min
u






∑

j

d(i, j)uj : 0 ≤ uj ≤ yj ,
∑

j

uj = 1





.

Eliminating xij , we convert (63) into a nonsmooth convex program

min
y






∑

i

φi(y)+
∑

j

cj yj : 0 ≤ yj ≤ 1,
∑

j

yj ≥ 1





. (64)

with “only” n variables. We may further extend the feasible domain of (65) to the entire
box {y : 0 ≤ yj ≤ 1} via “penalizing” the constraint

∑

j

yj ≥ 1, thus arriving at the

problem

440 A. Ben-Tal, A. Nemirovski

min
y






∑

i

φ̂i (y)+
∑

j

cj yj : 0 ≤ yj ≤ 1





,

φ̂i(y) = min
u,v






n∑

j=1

d(i, j)uj +Div : 0 ≤ uj ≤ yj , j

= 1, . . . , n, 0 ≤ v,
∑

j

uj + v = 1





(65)

where Di are “big” penalties (it suffices to take Di = max
j

(dij + cj)).

Problems (65) were exactly the ULF test problems we used. Following the experi-
ments reported in [2], the data for these problems were generated as follows:

• the n locations 1, . . . , n were chosen at random according to the uniform distribution
in the unit square, with the usual Euclidean metric in the role of d(i, j);

• all installation costs cj were set to 0.1
√

n.

Note that with this setup, it is easy to get a “nontrivial” a priori upper bound on the
quantity

∑

j

y∗j at an optimal solution y∗ to (65). For example, the objective at the fea-

sible solution y1 = 1, y2 = ... = yn = 0 is at most
√

2n, therefore we should have
0.1
√

n
∑

j

y∗j =
∑

j

cj y
∗
j ≤ n

√
2, whence

∑

j

y∗j ≤ 10
√

2n, and the resulting upper

bound on
∑

j

y∗j , for large n, is much less than the trivial bound
∑

j

y∗j ≤ n. Now, if � is

a valid upper bound on
∑

j

y∗j , then the problem

min
y






∑

i

φ̂i (y)+
∑

j

cj yj : 0 ≤ yj ,
∑

j

yj ≤ �





(66)

is equivalent to (65). Thus, the UFL problems can be treated as problems of minimizing
both over the box {0 ≤ yi ≤ 1} and over the simplex {y ≥ 0 :

∑

j

yj ≤ �}. We used

this possibility (with a bit more sophisticated policy for bounding
∑

j

y∗j than the one we

have outlined) to test the NERML methods with both ball setup (for problems (65)) and
simplex setup (for problems (66)). The starting point for the methods with ball setup
was the vector of ones, and for the methods with simplex setup – the vector with the
coordinates �/n.

The results of our experiments with the UFL problems at two randomly generated
problems, with n = 3000 and n = 6000 design variables, respectively, are presented in
Table 1. The conclusions from the UFL experiments are as follows:

• The basic NERML method with ball setup does not work at all even at the smaller
problem (see the “B30b” row in Table 1). All remaining versions (i.e., those imple-
menting the GNERML scheme with ball setup and all versions with the simplex
setup) produce approximate solutions of nearly the same quality. Bearing in mind

Non-euclidean restricted memory level method for large-scale convex optimization 441

Table 1. UFL problems.

Size Method Itr#1 Itr#10 Itr#20 Itr#30 Itr#40 Itr#100 PrgG PrgA CPU
B30b 16431.68 16431.68 16431.68 16431.68 16431.68 1.0 1.0 4′57′′

1.6e4 1.6e4 1.6e4 1.6e4 1.6e4
B30g 16431.68 632.65 420.75 367.17 363.90 180.1 1′54′′

1.0e0 1.6e-2 8.7e-3 7.1e-3 5.6e-3
B01g 16431.68 758.29 377.81 364.98 364.27 361.52 171.1 0′25′′

1.0e0 4.0e-2 9.9e-3 9.9e-3 9.9e-3 5.8e-3
3000 S30b 525.88 374.19 363.30 361.66 361.04 124.5 65.1 2′35′′

3.2e2 3.5e1 7.3e0 3.9e0 2.6e0
S30g 525.88 369.59 364.86 363.76 362.55 43.7 2′47′′

9.1e-1 1.5e-1 3.5e-2 2.9e-2 2.1e-2
S01b 525.88 374.08 363.54 362.26 361.30 361.05 15.3 8.9 0′27′′

3.2e2 3.4e1 2.3e1 2.2e1 2.1e1 2.1e1
S01g 525.88 410.91 366.11 364.53 364.53 362.16 10.9 0′26′′

9.1e-1 4.0e-1 1.7e-1 1.7e-1 1.7e-1 8.3e-2
B30g 46475.80 1626.12 971.38 695.81 652.22 295.1 3′3′′

1.0e0 1.6e-2 8.3e-3 4.7e-3 3.4e-3
B01g 46475.80 2000.16 763.89 653.13 650.47 646.29 382.0 1′4′′

1.0e0 4.0e-2 1.0e-2 6.0e-3 6.0e-3 2.6e-3
6000 S30b 950.94 667.65 648.57 646.52 645.94 179.1 94.3 4′51′′

5.9e2 6.8e1 1.1e1 4.7e0 3.3e0
S30g 950.94 659.37 650.73 647.90 646.96 72.5 4′37′′

9.2e-1 1.5e-1 3.1e-2 1.7e-2 1.3e-2
S01b 950.94 668.26 651.03 647.82 647.55 646.02 15.0 8.8 1′16′′

5.9e2 7.2e1 5.4e1 5.1e1 5.1e1 3.9e1
S01g 950.94 725.50 653.12 649.20 649.20 646.29 16.7 1′14′′

9.2e-1 3.8e-1 1.2e-1 1.2e-1 1.2e-1 5.5e-2

that we are executing at most 100 iterations of a first-order method to solve non-
smooth convex programs with 3,000 – 6,000 variables coming from LPs with
9,000,000 – 36,000,000 variables, this quality should be qualified as quite satis-
factory.

• Among the methods which did work, the clear winner was the NERML with mem-
ory depth 30 and simplex setup: it produced the best approximations to the optimal
values and the best accuracy guarantees (the smallest gaps in terms of the objec-
tive6)).

• As far as the proximity to the optimal value is concerned, the 100-iteration basic
memoryless methods with simplex setup were nearly as good as their 40-iteration
counterparts with memory depth 30, while being approximately 4 times faster in
terms of CPU time. As a compensation, the methods with memory were capable
“to realize” that they are close to the optimal value. For example, S30b, as applied
to the UFL instance with 6,000 locations, reaches in 40 iterations objective’s value
645.94 and “knows” that it is within 0.5% of the true optimal value (the final opti-
mality gap reported by the method is 3.3). In contrast to this, S01b on the same
instance ends up with nearly the same value 646.02 of the objective, but reports an
optimality gap as large as 39.0 (6% of the optimal value).

6) To avoid misunderstandings, recall that the gaps reported for the GNERML scheme are minus lower
bounds on the “artificial” quantities g∗[{x0, . . . , xT }], and not the actual upper bounds on the difference
between the best found so far value of the objective and a lower bound on its optimal value. When converted
to gaps in terms of the objective according to the recipe from Proposition 4.4.(i), the “g–gaps” become pretty
large, like 15-30% of the optimal value

442 A. Ben-Tal, A. Nemirovski

5.2 TOMO problems

The 2D PET (Positron Emission Tomography) imaging problems are as follows. Con-
sider a square plate on the 2D plane partitioned into n = k × k small squares – pixels,
filled with a radio-active tracer; let λj be the density of the tracer in pixel j . When
disintegrating, the tracer emits positrons; every positron annihilates a nearby electron
to produce a pair of photons flying at the speed of light in opposite directions along a
line (“line of response”) with completely random orientation passing through the dis-
integration point. The plate is encircled by a ring of detectors; when two detectors are
(nearly) simultaneously hit by photons, this event is registered, meaning that along cer-
tain line crossing both the detectors a disintegration event occurred. The data collected
in a tomography study is the collection of the events registered by each bin (a pair of
detectors), and the problem is to recover from this data the density λ of the tracer at each
pixel.

Mathematically speaking, the number yi of events registered during time t in a bin
#i is a realization of the Poisson random variable with the expectation t (Pλ)i , where
P is a known matrix with nonnegative entries pij (the probability for a line of response
originating in pixel j to be registered in bin i); the random variables yi with different
i’s are independent of each other. Estimating λ by the Maximum Likelihood estimator,
one ends up with the optimization problem

min
λ≥0






∑

i

pjλj −
∑

i

yi ln




∑

j

pij λj









, pj =

∑

i

pi .

From the KKT optimality conditions it follows that every optimal solution λ must sat-
isfy the relation

∑

j

pjλj = B ≡∑

i

yi ; we lose nothing by adding this constraint, thus

arriving at a problem

min
λ≥0,

∑

j

pj λj=B






∑

i

pjλj −
∑

i

yi ln




∑

j

pij λj









;

passing to the scaled variables xj = pjλj /B and new parameters qij = pijBp−1
j , we

end up with the problem

f∗ = min
x∈�n





f (x) ≡ −

m∑

i=1

yi ln




∑

j

qij xj









. (67)

In our experiments, we have simulated the tomography data according to the outlined
model of the tomography device and then solved the associated problems (67). Below
we present the results of two experiments of this type:

• “129 × 360” – 129×129 pixel grid and 360 detectors, which corresponds to n =
16, 641 design variables and m = 360·359

2 = 64, 630 log-terms in the objective;
• “257 × 360” – 257×257 pixel grid and 360 detectors (design dimension n =

66, 049, with m = 64, 630 log-terms in the objective).

Non-euclidean restricted memory level method for large-scale convex optimization 443

Table 2. TOMO problems.

Size Method Itr#1 Itr#10 Itr#20 Itr#30 Itr#40 Itr#100 PrgG PrgA CPU
S30b 10.2478 10.0025 9.8920 9.8429 9.8267 99.7 45.0 6′57′′

9.6e-1 2.9e-1 1.5e-1 5.4e-2 9.6e-3
S30g 10.247763 9.9663 9.8613 9.8269 9.8258 134.8 7′21′′

4.9e-1 1.9e-1 7.9e-2 1.5e-2 3.6e-3
S01b 10.2478 10.0026 9.8915 9.8368 9.8262 9.8257 170.2 76.2 3′23′′

9.6e-1 2.9e-1 1.5e-1 8.0e-2 2.6e-2 5.6e-3
129x360 S01g 10.2478 9.9664 9.8614 9.8265 9.8258 9.8258 85.0 3′24′′

4.9e-1 1.9e-1 7.9e-2 3.7e-2 1.9e-2 5.7e-3
f∗ = 9.8256 B30b 10.2478 9.9256 9.8811 9.8811 9.8811 6.7 3.6 11′11′′
n = 16, 641 9.6e-1 2.0e-1 1.4e-1 1.4e-1 1.4e-1

B30g 10.2478 9.9229 9.8322 9.8257 9.8257 313.8 8′41′′
4.9e-1 1.7e-1 4.8e-2 3.2e-3 1.6e-3

B01b 10.2478 9.9256 9.8937 9.8937 9.8937 9.8937 6.2 3.3 3′38′′
9.6e-1 2.0e-1 1.6e-1 1.6e-1 1.6e-1 1.6e-1

B01g 10.2478 9.9314 9.8355 9.8259 9.8259 9.8259 26.0 4′59′′
4.9e-1 1.8e-1 5.5e-2 2.7e-2 2.1e-2 1.9e-2

S30b 10.2442 10.0001 9.8899 9.8406 9.8256 128.7 57.5 26′39′′
9.5e-1 2.9e-1 1.5e-1 5.4e-2 7.4e-3

S30g 10.2442 9.9638 9.8593 9.8258 9.8254 149.8 27′12′′
4.9e-1 1.9e-1 8.0e-2 1.3e-2 3.3e-3

S01b 10.2442 10.0000 9.8893 9.8346 9.8256 9.8254 72.4 32.8 11′53′′
9.5e-1 2.9e-1 1.5e-1 8.1e-2 2.3e-2 1.3e-2

257x360 S01g 10.2442 9.9638 9.8593 9.8238 9.8255 9.8253 42.0 11′28′′
4.9e-1 1.9e-1 8.0e-2 2.3e-2 2.3e-2 1.2e-2

f∗ < 9.8254 B30b 10.2442 10.0385 10.0385 10.0385 10.0385 2.3 1.5 15′26′′
n = 66, 049 9.5e-1 4.1e-1 4.1e-1 4.1e-1 4.1e-1

B30g 10.2442 9.9899 9.9899 9.9899 9.9899 2.0 7′9′′
4.9e-1 2.5e-1 2.5e-1 2.5e-1 2.5e-1

B01b 10.2442 10.0385 10.0385 10.0385 10.0385 10.0385 2.3 1.5 9′51′′
9.5e-1 4.1e-1 4.1e-1 4.1e-1 4.1e-1 4.1e-1

B01g 10.2442 9.9899 9.9899 9.9899 9.9899 9.9899 2.0 9′42′′
4.9e-1 2.5e-1 2.5e-1 2.5e-1 2.5e-1 2.5e-1

The first of the above experiments corresponds to “infinite” observation time – to the
noiseless case when yi = (Pλ)i . In this case, the optimal value of the objective is known
in advance, provided that we know the true image λ∗ (which we do know in our simu-
lated experiments); indeed, it is immediately seen that with noiseless observations, the
true image is an optimal solution to (67). In the second experiment, the observation time
was such that every pixel with unit density of the tracer emitted, in course of the mea-
surements, 40 positrons on the average. For this experiment, the true image λ∗ provides
us with no more than an upper bound on the optimal value.

Note that the objective in (67) is undefined at a part of the relative boundary of �n

and is not Lipschitz continuous on �n
7). In order to avoid potential numerical difficul-

ties, we have replaced the terms ln(
∑

j

qij xj) in the objective with their “regularizations”

ln(10−16+∑
j

qij xj). The starting point for all methods was the barycenter of the simplex

�n.
The results of our experiments are reported in Table 2; Fig. 2, 3 display the true

image and its reconstructions as produced by the methods (the higher is the density, the
brighter is the image). The conclusions from the TOMO experiments are as follows:

7) It should be mentioned that f is semi-bounded on rint �n: Vrint �n,c, 1
n

[∂f] ≤ mn; this fact, however, is

of no practical importance, since the right-hand side in this inequality, although finite, is really huge.

444 A. Ben-Tal, A. Nemirovski

• The versions with simplex setup clearly outperform those with ball setup. Among
the methods of the latter group, only g-ones (i.e., the GNERML algorithms) were
working properly on the smaller problem, and none was working well on the larger
problem. This is clearly seen from the data in Table 2 and especially from the pic-
tures on Fig. 2, 3. In contrast to this, all versions with the simplex setup performed
pretty well on both problems, reaching inaccuracy in terms of the objective varying
from 1.0e-4 (S01b as applied to the smaller problem) to 7.3e-3. The advantages
of the methods with simplex setup are in full accordance with our theoretical com-
plexity analysis and demonstrate the importance of “adjusting” subgradient-type
methods to the geometry of problems to be solved.

• Among the methods with simplex setup, the clear winner on the smaller problem
was the basic memoryless method S01b – it arrives at the best value of the objec-
tive, reports the smallest optimality gap and is the fastest in terms of the CPU time.
On a larger problem, this method essentially keeps its superiority in terms of the
value of the objective and the CPU time, but reports a relatively big optimality gap,
namely, 1.3e-2 vs. the gap 7.4e-3 for S30b, thus sharing the “top quality place”
with the basic NERML method with memory.

We believe that the numerical results we have presented demonstrate the significant
potential of properly adjusted “simple” optimization techniques, such as NERML and
GNERML, to solve very large-scale convex programs.

Non-euclidean restricted memory level method for large-scale convex optimization 445

Fig. 2. TOMO 129×360.

446 A. Ben-Tal, A. Nemirovski

Fig. 3. TOMO 257×360.

References

1. Ben-Tal, A., Margalit, T., Nemirovski, A.: The Ordered Subsets Mirror Descent Optimization Method
with Applications to Tomography. SIAM Journal on Optimization 12, 79–108 (2001)

2. Chudak, F.A.: Improved approximation algorithms for uncapacitated facility location. Lecture Notes on
Computer Science 1412, 180–192 (1998)

3. Kiwiel, K.: An aggregate subgradient method for nonsmooth convex minimization. Mathematical Pro-
gramming 27, 320–341 (1983)

4. Kiwiel, K.: Proximal level bundle method for convex nondifferentable optimization, saddle point prob-
lems and variational inequalities. Mathematical Programming Series B 69, 89–109 (1995)

5. Kiwiel K.C., Larson, T., Lindberg, P.O.: The efficiency of ballstep subgradient level methods for convex
optimization. Mathematics of Operations Research 24, 237–254 (1999).

6. Lemaréchal, C.: Nonsmooth optimization and descent methods. Research Report 78–4, IIASA, Laxen-
burg, Austria, 1978

7. Lemaréchal, C., Strodiot, J.J., Bihain, A.: On a bundle algorithm for nonsmooth optimization. In: O.L.
Mangasarian, R.R. Meyer, S.M. Robinson, (eds.), Nonlinear Programming 4 (Academic Press, NY,
1981), pp. 245–282

8. Lemaréchal, C., Nemirovski, A., Nesterov, Yu.: New variants of bundle methods. Mathematical Pro-
gramming Series B 69, 111–148 (1995)

Non-euclidean restricted memory level method for large-scale convex optimization 447

9. Mifflin, R.: A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization.
Mathematical Programming Study 17, 77–90 (1982)

10. Nemirovski, A.,Yudin, D.: Problem complexity and method efficiency in optimization, J. Wiley & Sons,
1983

11. Nesterov, Yu.: Cutting plane algorithms from analytic centers: complexity estimate. Mathematical Pro-
gramming 65, 149–176 (1995)

12. Polyak, B.T.: A general method for solving extremal problems. Soviet Math. Doklady 174, 33–36 (1967)
13. Shor, N.Z.: Generalized gradient descent with application to block programming. Kibernetika No. 3

(1967) (in Russian)
14. Schramm, H., Zowe, J.: A version of bundle idea for minimizing a non-smooth function: conceptual

idea, convergence analysis, numerical results. SIAM Journal on Optimization 2, 121–152 (1992)

6 Appendix: Proofs

6.1 Proof of Theorem 2.1

(i): Assume that phase s did not terminate in course of N steps. Observe that then

‖xt − xt−1‖ ≥ θ(1− λ)εs

L‖·‖(f)
, 1 ≤ t ≤ N. (68)

Indeed, we have gt−1(xt) ≤ �s by construction of xt and gt−1(xt−1) = f (xt−1) >

�s + θ(f s − �s), since otherwise the phase would be terminated at the step t − 1. It
follows that gt−1(xt−1) − gt−1(xt) > θ(f s − �s) = θ(1 − λ)εs . Taking into account
that gt−1(·), due to (6), is Lipschitz continuous on X w.r.t. ‖ · ‖ with constant L‖·‖(f),
(68) follows.

Now observe that xt−1 is the minimizer of ωs on Xt−1 by (13.at−1), and the latter
set, by construction, contains xt , whence (xt − xt−1)

T∇ωs(xt−1) ≥ 0. Applying (12),
we get

ωs(xt) ≥ ωs(xt−1)+ κ

2

(
θ(1− λ)εs

L‖·‖(f)

)2

, t = 1, . . . , N,

whence

ωs(xN)− ωs(x0) ≥ Nκ

2

(
θ(1− λ)εs

L‖·‖(f)

)2

.

The latter relation, due to the evident inequality max
X

ωs(x)−min
X

ωs ≤ � (readily given

by the definition of � and ωs) implies that

N ≤
2�L2

‖·‖(f)

θ2(1− λ)2κε2
s

.

Recalling the origin of N , we conclude that

Ns ≤
2�L2

‖·‖(f)

θ2(1− λ)2κε2
s

+ 1.

In order to get from this inequality the required relation (17), all we need is to demonstrate
that

1 ≤
2�L2

‖·‖(f)

θ2(1− λ)2κε2
s

. (69)

448 A. Ben-Tal, A. Nemirovski

To this end, let R = max
x∈X

‖x − c1‖ = ‖x̄ − c1‖, where x̄ ∈ X. We have εs ≤ ε1 =
f (c1)−min

x∈X
[f (c1)+ (x − c1)

T f ′(c1)] ≤ RL‖·‖(f), where the last inequality is due to

(6). On the other hand, by the definition of � and the strong convexity of ω we have

� ≥ ω(x̄)− [ω(c1)+ (x̄ − c1)
T∇ω(c1)] ≥ κ

2
‖x̄ − c1‖2 = κR2

2
.

Thus, � ≥ κR2

2 and εs ≤ RL‖·‖(f), and (69) follows. (i) is proved.

(ii): Assume that εs > ε at phases s = 1, 2, . . . , S, and let us bound from above the
total number of oracle calls at these S phases. Observe, first, that two subsequent gaps
εs , εs+1 are linked by the relation

εs+1 ≤ γ εs, γ = γ (θ, λ) ≡ max[1− θλ, 1− (1− θ)(1− λ)] < 1. (70)

Indeed, if phase s was terminated according to the rule 2, then

εs+1 = f s+1 − fs+1 ≤ f s − [�s − θ(�s − fs)] = (1− θλ)εs,

as required in (70). Otherwise phase s was terminated when relation (15) took place. In
this case,

εs+1 = f s+1 − fs+1 ≤ f s+1 − fs ≤ �s + θ(f s − �s)− fs = λεs + θ(1− λ)εs

= (1− (1− θ)(1− λ))εs,

and we again arrive at (70).
>From (70) it follows that εs ≥ εγ s−S , s = 1, . . . , S, since εS > ε by the origin of

S. We now have

S∑

s=1

Ns ≤
S∑

s=1

4�L2
‖·‖(f)

θ2(1− λ)2κε2
s

≤
S∑

s=1

4�L2
‖·‖(f)γ 2(S−s)

θ2(1− λ)2κε2 ≤
4�L2

‖·‖(f)

θ2(1− λ)2κε2

∞∑

t=0

γ 2t

≡
[

4

θ2(1− λ)2(1− γ 2)

]

︸ ︷︷ ︸
c(θ,λ)

�L2
‖·‖(f)

κε2

and (19) follows. ��

6.2 Strong convexity of ω(·) for standard setups

The case of the ball setup is trivial.

Non-euclidean restricted memory level method for large-scale convex optimization 449

The case of the simplex setup: For a C2 function ω(·), a sufficient condition for (7)
is the relation

hT ω′′(x)h ≥ κ‖h‖2 ∀(x, h : x, x + h ∈ X). (71)

For the simplex setup, we have

‖h‖2
1 =

[
∑

i

|hi |
]2

=
[
∑

i

|hi |
√

xi + δn−1

√
xi + δn−1

]2

≤
[
∑

i

(xi + δn−1)

][
∑

i

h2
i

xi + δn−1

]

≤ (1+ δ)hT ω′′(x)h,

and (71) indeed is satisfied with κ = (1+ δ)−1.
To prove (21), note that for all x, y ∈ �+n ⊃ X, setting x̄ = x + δn−1(1, . . . , 1)T ,

ȳ = y + δn−1(1, . . . , 1)T , one has

ω(y)− ω(x)− (y − x)T∇ω(x)

=
∑

i

[ȳi ln(ȳi)− x̄i ln(x̄i)− (ȳi − x̄i)(1+ ln(x̄i))]

= −
∑

i

(ȳi − x̄i)+
∑

i

ȳi ln(
ȳi

x̄i

)

≤ 1+ δ +
∑

i

ȳi ln(
ȳi

x̄i

) [since ȳi ≥ 0 and
∑

i

x̄i ≤ 1+ δ]

≤ 1+ δ +
∑

i

ȳi ln(
ȳi

δn−1) [since x̄i ≥ δn−1]

≤ 1+δc+max
z

{
∑

i

zi ln(nzi/δ) : z ≥ 0,
∑

i

zi ≤ 1+ δ

}

[since
∑

i

ȳi ≤ 1+ δ]

= (1+ δ)

[

1+ ln

(
n(1+ δ)

δ

)]

,

and (21) follows.

The case of the spectahedron setup: We again intend to use the sufficient condition
(71) for strong convexity, but now it is a bit more involved. First of all, let us compute
the second derivative of the regularized matrix entropy

ω(x) = Tr((x + σIn) ln(x + σIn)) : 	+n → R [σ = δn−1]

Setting y[x] = x + σIn,

f (z) = z ln z

450 A. Ben-Tal, A. Nemirovski

(z is a complex variable restricted to belong to the open right half-plane, and ln z is the
principal branch of the logarithm in this half-plane), in a neighbourhood of a given point
x̄ ∈ 	+n we have, by Cauchy’s integral formula,

Y (x) ≡ y[x] ln(y[x]) = 1

2πi

∮

γ

f (z)(zIn − y[x])−1dz, (72)

where γ is a closed contour in the right half-plane with all the eigenvalues of y[x̄] inside
the contour. Consequently,

DY(x)[h] = 1

2πi

∮

γ

f (z)(zIn − y[x])−1h(zIn − y[x])−1dz,

D2Y (x)[h, h] = 1

πi

∮

γ

f (z)(zIn−y[x])−1h(zIn − y[x])−1h(zIn − y[x])−1dz,

(73)

whence

D2ω(x̄)[h, h]=Tr



 1

πi

∮

γ

f (z)(zIn − y[x])−1h(zIn − y[x])−1h(zIn − y[x])−1dz



 .

Passing to the eigenbasis of y[x̄], we may assume that y[x̄] is diagonal with positive
diagonal entries µ1 ≤ µ2 ≤ ... ≤ µn. In this case the formula above reads

D2ω(x̄)[h, h] = 1

πi

n∑

p,q=1

∮

γ

h2
pq

f (z)

(z− µp)2(z− µq)
dz. (74)

Computing the residuals of the integrands at their poles, we get

D2ω(x̄)[h, h] =
n∑

p,q=1

ln(µp)− ln(µq)

µp − µq

h2
pq, (75)

where, by convention, the expression ln(µp)−ln(µq)

µp−µq
with µp = µq is assigned the value

1
µp

. Since ln(·) is concave, we have ln(µp)−ln(µq)

µp−µq
≥ 1

max[µp,µq] , so that

D2ω(x̄)[h, h] ≥
n∑

p,q=1

1

max[µp, µq]
h2

pq =
n∑

p=1

1

µp



h2
pp + 2

p−1∑

q=1

h2
pq



 . (76)

Non-euclidean restricted memory level method for large-scale convex optimization 451

It follows that






n∑

p=1

√
√
√
√
√h2

pp + 2
p−1∑

q=1

h2
pq






2

=









n∑

p=1

√

h2
pp + 2

p−1∑

q=1
h2

pq

√
µp

√
µp









2

≤









n∑

p=1

h2
pp + 2

p−1∑

q=1
h2

pq

µp












n∑

p=1

µp





≤ D2ω(x̄)[h, h]Tr(y[x̄]) [see (76)]

≤ (1+ δ)D2ω(x̄)[h, h]. (77)

Note that we have

h =
n∑

p=1

hp, (hp)rs =
{

hrs, (r ≤ p & s = p) or (r = p &s ≤ p)

0, otherwise.

Every matrix hp is of the form hppepeT
p + rpeT

p + eprT
p , where rp = (h1p, . . . , hp−1,p,

0, . . . , 0)T and ep are the standard basic orths. From this representation it is immediately
seen that

|hp|1 =
√

h2
pp + 4‖rp‖2

2 ≤
√

2

√
√
√
√
√h2

pp + 2
p−1∑

q=1

h2
pq,

whence

|h|1 ≤
n∑

p=1

|hp|1 ≤
√

2
n∑

p=1

√
√
√
√
√h2

pp + 2
p−1∑

q=1

h2
pq.

Combining this relation with (77), we get

D2ω(x̄)[h, h] ≥ 1

2(1+ δ)
|h|21,

so that (71) is satisfied with κ = 0.5(1+ δ)−1.
Now let us bound �. Let x, y ∈ 	+n , let x̄ = x + σIn, ȳ = y + σIn, σ = δn−1, and

let ξp, ηp be the eigenvalues of x̄ and ȳ, respectively. For a contour γ in the open right
half-plane such that all ξp are inside γ we have (cf. (72) – (73)):

Dω(x)[h] = Tr



 1

2πi

∮

γ

f (z)(zIn − x̄)−1h(zIn − x̄)−1dz



 .

452 A. Ben-Tal, A. Nemirovski

We lose nothing by assuming that x̄ is a diagonal matrix; in this case, the latter equality
implies that

Dω(x)[h] =
n∑

p=1

1

2πi

∮

γ

f (z)(z− ξp)−2hppdz,

whence, computing the residuals of the integrands,

Dω(x)[h] =
∑

p

(1+ ln(ξp))hpp.

It follows that

ω(y)− ω(x)−Dω(x)[y − x]

= ω(y)−
∑

p

ξp ln ξp −
∑

p

(1+ ln(ξp))(ȳpp − ξp)

= ω(y)−
∑

p

ȳpp ln(ξp)+
∑

p

(ξp − ȳpp)

≤ 1+ δ + ω(y)−
∑

p

ȳpp ln(ξp) [since Tr(x̄) ≤ 1+ δ, Tr(ȳ) ≥ 0]

= 1+ δ +
∑

p

ηp ln(ηp)+
∑

p

ȳpp ln(1/ξp)

≤ 1+ δ + (1+ δ) ln(1+ δ)+ ln(1/σ)
∑

p

ȳpp

[since η ≥ 0,
∑

p

ηp = Tr(ȳ) ≤ 1+ δ and 1/ξp ≤ 1/σ]

= 1+ δ + (1+ δ) ln(1+ δ)+ (1+ δ) ln(n/δ) = (1+ δ)

[

1+ ln

(
n(1+ δ)

δ

)]

.

The resulting inequality implies (21).

6.3 Proof of Proposition 4.1

All statements, except for stability w.r.t. c, are straightforward consequences of defini-
tions. Here is the verification of 4.1. Let L = VX,c,�[F]. Clearly, it suffices to prove
that if c′ − c = γ (z+ − c), c− c′ = γ (z− − c) with z+, z− ∈ X, and �′′ = �−γ

1−γ
, then

VX,c′,�′′ [F] ≤ L. (78)

Indeed, let x, y ∈ X. We have

c′ −�′′(c′ − y) = c + γ (z+ − c)−�′′(c − y)−�′′γ (z+ − c)

= c −�(c − w+),

w+ =
(

1− γ (1−�′′)
�

+ �′′

�

)

c + γ (1−�′′)
�

z+ + �′′

�
y.

Non-euclidean restricted memory level method for large-scale convex optimization 453

With our �′′, w+ is a convex combination of the points c, z+, y from X and is therefore
a point of X, so that

∀(ζ ∈ F(x)) : 〈ζ, c′ −�′′(c′ − y)− x〉 = 〈ζ, c −�(c − w+)− x〉 ≤ L.

We also have

c′ +�′′(c′ − y) = c − γ (z− − c)+�′′(c − y)−�′′γ (z− − c)

= c +�(c − w−),

w− =
(

1− γ (1−�′′)
�

− �′′

�

)

c + γ (1−�′′)
�

z− + �′′

�
y,

whence, same as above, w− ∈ X and therefore

∀(ζ ∈ F(x)) : 〈ζ, c′ +�′′(c′ − y)− x〉 = 〈ζ, c +�(c − w−)− x〉 ≤ L.

Thus, (78) is true. ��

6.4 Proof of Theorem 4.1

Assume that phase s did not terminate in course of N steps. Observe that then

‖uτ+1 − uτ‖ ≥ (1− λ)δs

M
, 1 ≤ τ ≤ N. (79)

Indeed, by construction we have hτ (uτ) = 0 and hτ (uτ+1) ≤ �s ≡ −(1−λ)δs . Besides
this, in view of (36) hτ (·) is Lipschitz continuous, with constant M , w.r.t. ‖ · ‖, and (79)
follows. Besides this, we have

δs+1 ≤ (1− λ(1− θ))δs . (80)

Indeed, from the rule for terminating a phase it follows that

�s + δs+1 ≡ �s − fs+1 ≤ θ(�s − fs) = θ(�s + δs);
since �s = (1− λ)fs = −(1− λ)δs , (80) follows. The rest of the proof repeats word by
word the proof of Theorem 2.1, with (79) and (80) in the roles of (68), (70), respectively.
��

6.5 Proof of Proposition 4.2

Assume that (41) holds true. Let x̂ ∈ X, and let

x̄ = (1− ε)x̂ + εc.

Since g∗[{x0, . . . , xT }] ≥ −δ, there exists t ≤ T such that

〈g(xt), x̄ − xt 〉 ≥ −δ,

454 A. Ben-Tal, A. Nemirovski

or, which is the same,
〈h(xt), x̄ − xt 〉 ≥ −δ‖h(xt)‖∗X.

At the same time,

〈h(xt), c ±�(y − c) −xt 〉 ≤ L ∀y ∈ X

⇓
〈h(xt),±(y − c)〉 ≤ �−1 [L+ 〈h(xt), xt − c〉] ∀y ∈ X

⇓
‖h(xt)‖∗X ≤ �−1 [L+ 〈h(xt), xt − c〉]

whence
〈h(xt), x̄ − xt 〉 ≥ − δ�−1

︸ ︷︷ ︸
ε<1

[L+ 〈h(xt), xt − c〉] ,

or
〈h(xt), [x̄ − εc]− (1− ε)xt 〉 ≥ −εL,

or, recalling that x̄ = (1− ε)x̂ + εc,

〈h(xt), x̂ − xt 〉 ≥ − ε

1− ε
L.

Since x̂ ∈ X is arbitrary, (42) follows.
Now, from (42) it follows that certain convex combination

T∑

t=0

λt 〈h(xt), x − xt 〉

of the functions 〈h(xt), x − xt 〉 is ≥ − ε
1−ε

L everywhere on X. Defining x̃T according
to (44) and taking into account that F is monotone, we have

(x ∈ X, ζ ∈ F(x)) ⇒

− ε

1− ε
L ≤

T∑

t=0

λt 〈h(xt), x − xt 〉 ≤
T∑

t=0

λt 〈ζ, x − xt 〉

= 〈ζ, x − x̃T 〉,

as required in (45). ��

6.6 Proof of Proposition 4.3

(i): Let x∗ be a minimizer of f on X. From (46) it follows that there exists t ≤ T

such that 〈f ′(xt), x
∗ −xt 〉 = 〈g(xt), x

∗ −xt 〉 ≥ −ε, whence f (x∗) ≥ f (xt)− ε,
and (47) follows. (ii) is readily given by (38) (note that we are in the situation of
M = L‖·‖(f)). ��

Non-euclidean restricted memory level method for large-scale convex optimization 455

6.7 Proof of Proposition 4.4

(i): Taking into account (42), we get

∀ε ∈ (0, 1) : max
0≤t≤T

〈f ′(xt), x − xt 〉 ≥ − ε

1− ε
VX,c,�[F]

for all x ∈ X. It remains to note that

min
x∈X

f (x) ≥ min
x∈X

max
0≤t≤T

[
f (xt)+ 〈f ′(xt), x − xt 〉

]

≥ f (xT)+min
x∈X

max
0≤t≤T

〈f ′(xt), x − xt 〉.

(ii): Specifying the norm ‖ · ‖ as ‖ · ‖X, we can apply Theorem 4.1 with M = 1 and
κ = κ[X, ω(·)] to get the implication

∀
(

ε ∈ (0, 1), � > 0, T ≥ b(λ, θ)
�[ω(·)]

κ[X, ω(·)]
1

ε2�2

)

: g∗[x0, . . . , xT] ≥ −ε�.

��

6.8 Proof of Proposition 4.5

(i): Under the premise of (i), taking into account Proposition 4.2, we get

inf
(u,v)∈X

T∑

t=0

λt [〈ξt , u− ut 〉 − 〈ηt , v − vt 〉] ≥ − ε

1− ε
VX,c,�[F], (81)

where λt = λt (T) are as in Proposition 4.2, and ξt = f ′u(ut , vt), ηt = f ′v(ut , vt). We
have

∀(u, v) ∈ X :
∑

t

λt

[

〈ξt , u− ut 〉︸ ︷︷ ︸
≤f (u,vt)−f (ut ,vt)

− 〈ηt , v − vt 〉︸ ︷︷ ︸
≥f (ut ,v)−f (ut ,vt)

]

≥ − ε

1− ε
VX,c,�[F]

⇓
∀(u, v) ∈ X :

∑

t

λtf (u, vt)

︸ ︷︷ ︸

≤f

(

u,
∑

t
λt vt

)

−
∑

t

λtf (ut , v)

︸ ︷︷ ︸

≥f

(
∑

t
λt ut ,v

)

≥ − ε

1− ε
VX,c,�[F]

⇓
∀(u, v) ∈ X : f (u, ṽT) − f (̃uT , v) ≥ − ε

1− ε
VX,c,�[F]

"
f (̃vT)− f (̃uT) ≥ − ε

1− ε
VX,c,�[F]

"
f (̃uT)− f (̃vT) ≤ ε

1− ε
VX,c,�[F]

"
ε(̃ut , ṽT) ≤ ε

1− ε
VX,c,�[F],

456 A. Ben-Tal, A. Nemirovski: Non-euclidean restricted memory level method

where the concluding " is given by the relation min
U

f = max
V

f .

(ii): Specifying the norm ‖ · ‖ as ‖ · ‖X, we can apply Theorem 4.1 with M = 1 and
κ = κ[X, ω(·)] to get the implication

∀
(

ε ∈ (0, 1), � > 0, T ≥ b(λ, θ)
�[ω(·)]

κ[X, ω(·)]
1

ε2�2

)

: g∗[x0, . . . , xT] ≥ −ε�.

��

6.9 Proof of Proposition 4.6

The proof is similar to the one of Proposition 4.4.

(i): Under the premise of (i), we have

inf
(u,v)∈X

T∑

t=0

λt [〈ξt , u− ut 〉 − 〈ηt , v − vt 〉] ≥ −ε, (82)

where λt = λt (T) are as in Proposition 4.2, and ξt = f ′u(ut , vt), ηt = f ′v(ut , vt).
Exactly the same computations as in the proof of Proposition 4.5, with (82) in the role
of (81), result in the (61).

(ii): This is an immediate consequence of Theorem 4.1, where one should set
M = L‖·‖(f). ��

