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Abstract Let Bi be deterministic real symmetric m × m matrices, and
ξi be independent random scalars with zero mean and “of order of one”
(e.g., ξi ∼ N (0, 1)). We are interested to know under what conditions “typ-

ical norm” of the random matrix SN =
N∑

i=1

ξiBi is of order of 1. An evi-

dent necessary condition is E{S2
N} ¹ O(1)I, which, essentially, translates

to
N∑

i=1

B2
i ¹ I; a natural conjecture is that the latter condition is sufficient

as well. In the paper, we prove a relaxed version of this conjecture, specifi-
cally, that under the above condition the typical norm of SN is ≤ O(1)m

1
6 :

Prob{‖SN‖ > Ωm1/6} ≤ O(1) exp{−O(1)Ω2} for all Ω > 0 We outline some
applications of this result, primarily in investigating the quality of semidef-
inite relaxations of a general quadratic optimization problem with orthogo-
nality constraints Opt = max

Xj∈Rm×m

{
F (X1, ..., Xk) : XjX

T
j = I, j = 1, ..., k

}
,

where F is quadratic in X = (X1, ..., Xk). We show that when F is con-
vex in every one of Xj , a natural semidefinite relaxation of the problem is
tight within a factor slowly growing with the size m of the matrices Xj :
Opt ≤ Opt(SDP ) ≤ O(1)[m1/3 + ln k]Opt.
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1 Introduction

In this paper, we address the following question:

(Q): Let Ξi, 1 ≤ i ≤ N , be independent random m × m symmetric
matrices with zero mean and “light-tail” distributions, and let SN =
N∑

i=1

Ξi. Under what conditions a “typical value” of ‖SN‖ is “of order of

1” so that the probability for ‖SN‖ to be ≥ Ω goes to 0 exponentially
fast as Ω > 1 grows?
Here and in what follows ‖A‖ denotes the standard spectral norm (the
largest singular value) of a matrix A.

This informal question admits various formal settings; to motivate the one
we focus on, we start with describing two applications we intend to consider:
tractable approximations of randomly perturbed Linear Matrix Inequalities
(LMI) and semidefinite relaxations of nonconvex quadratic minimization un-
der orthogonality constraints.

Randomly perturbed LMI’s. Consider a randomly perturbed LMI

A0[x]−
N∑

i=1

ξiAi[x] º 0, (1)

where A0[x], ..., AN [x] are affine functions of the decision vector x taking
values in the space Sm of symmetric m×m matrices, and ξi are independent
of each other random perturbations (which w.l.o.g. can be assumed to have
zero means). Constraints of this type arise in many applications, e.g., in
various optimization and control problems with randomly perturbed data. A
natural way to treat a randomly perturbed constraint is to pass to its chance
form, which in the case of constraint (1) is the deterministic constraint

Prob

{
ξ = (ξ1, ..., ξN ) : A0[x]−

N∑

i=1

ξiAi[x] º 0

}
≥ 1− ε, (2)

where ε > 0 is a small tolerance. The resulting chance constraint, however,
typically is “heavily computationally intractable” – usually, the probability
in the left hand side cannot be computed efficiently, and its reliable estima-
tion by Monte-Carlo techniques requires samples of order of ε−1, which is
prohibitively time-consuming when ε is small (like 1.e-6 or 1.e-8). In the rare
cases when this difficulty can be circumvented (e.g., when ε is not too small),
one still has a severe problem: chance constraint (2) defines, in general, a
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nonconvex set in the space of x-variables, and therefore it is absolutely un-
clear how to optimize under this constraint. A natural way to overcome this
difficulty is to replace “intractable” chance constraint (2) with its “tractable
approximation” – an explicit convex constraint on x such that its validity
at a point x implies that x is feasible for (2). Assuming the distribution of
ξ symmetric w.r.t. the origin and ε < 0.5, an evident necessary condition
for x to be feasible for (2) is A0[x] º 0; strengthening this necessary condi-
tion to A0[x] Â 0, x is feasible for the chance constraint if and only if the

SN =
N∑

i=1

ξiA
−1/2
0 [x]Ai[x]A−1/2

0 [x]︸ ︷︷ ︸
Ξi

¹ Im with probability ≥ 1− ε. Assuming,

as it is typically the case, that the distributions of ξi are symmetric, this
condition is essentially the same as the condition ‖SN‖ ≤ 1 with probability
≥ 1− ε. If we knew how to answer (Q), we could use this answer to build a
“tractable” sufficient condition for the relation Prob{‖SN‖ ≤ 1} ≥ 1− ε and
thus build a tractable approximation of (2).

Nonconvex quadratic optimization under orthogonality constraints. Here we
present a single example – the Procrustes problem, postponing the in-depth
considerations till section 4. In the Procrustes problem, one is given matrices
a[k], k = 1, ..., K, of the same size m × n and is looking for K orthogonal
n× n matrices x[k] minimizing the objective

∑

1≤k<k′≤K

‖a[k]x[k]− a[k′]x[k′]‖22,

where ‖a‖2 =
√

Tr(aaT ) is the Frobenius norm of a matrix. Informally speak-
ing, we are given K collections of points in Rn (s-th element of k-th collection
is the s-th row of a[k]) and are seeking for rotations which make these collec-
tions as close to each other as possible, the closeness being quantified by the
sum, over s, k, k′, of squared Euclidean distances between s-th points of k-th
and k′-th collections. For various applications of this problem, see [3,9–11].
The problem clearly is equivalent to the quadratic maximization problem

max
x[1],...,x[K]



2

∑

k<k′
Tr(a[k]x[k]xT [k′]aT [k′]) :

x[k] ∈ Rn×n;
x[k]xT [k] = In,
k = 1, ...,K



 . (P )

When K > 2, the problem is intractable (for K = 2, there is a closed form
solution); it, however, allows for a straightforward semidefinite relaxation.
Let X = X[x[1], ..., x[K]] be the symmetric matrix defined as follows: the
rows and the columns in X are indexed by triples (k, i, j), where k runs from
1 to K and i, j run from 1 to n; the entry Xkij,k′i′j′ in X is xij [k]xi′j′ [k′].
Note that X is symmetric positive semidefinite matrix of rank 1. Further, the
relation x[k]xT [k] = In is equivalent to a certain system Sk of linear equations
on the entries of X, while the relation xT [k]x[k] = In (in fact equivalent to
xT [k]x[k] = In) is equivalent to another system Tk of linear equations on the
entries of X. Finally, the objective in (P ) is a linear function Tr(AX) of X,



4 Arkadi Nemirovski

where A is an appropriate symmetric matrix of the same size Kn2×Kn2 as
X. It is immediately seen that (P ) is equivalent to the problem

max
X∈SKn2

{Tr(AX) : X º 0, X satisfies Sk, Tk, k = 1, ...,K, Rank(X) = 1} ;

removing the only troublemaking constraint Rank(X) = 1, we end up with
an explicit semidefinite program

max
X∈SKn2

{Tr(AX) : X º 0, X satisfies Sk, Tk, k = 1, ...,K} (SDP)

which is a relaxation of (P ), so that Opt(SDP) ≥ Opt(P ). We shall see in
section 4 that an appropriate answer to (Q) allows to prove that

Opt(SDP) ≤ O(1)(n
1
3 + ln K)Opt(P ), (3)

and similarly for other problems of quadratic optimization under orthogo-
nality constraints. To the best of our knowledge, (3) is the first nontrivial
bound on the quality of semidefinite relaxation for problems of this type.

Note that the result we have just mentioned heavily depends on the fact
that before passing to the semidefinite relaxation, we represent the orthogo-
nality constraint on x[k] “redundantly” – as a pair of (in fact, equivalent to
each other) constraints xT [k]x[k] = In, x[k]xT [k] = In. The importance of
such a redundant representation of an orthogonality constraint in the relax-
ation context was discovered in [1].

The outlined applications motivate our specific approach to treating (Q).
First, we are interested in the case when the size m of the random matrices
in question can be large, and pay primary attention on how this size enters
the results (as we shall see, this is the only way to get nontrivial bounds
for our second application). In this respect, our goals are similar to those
pursued in huge literature on large-scale random matrices inspired by appli-
cations in Physics. However, we cannot borrow much from this literature,
since the assumptions which are traditional there (appropriate pattern of
independence/weak dependence of entries in SN ) makes no sense for our ap-
plications. What we are interested in when answering (Q), are conditions
expressed in terms of distributions of random terms Ξi in SN . Let us try to
understand what could be the “weakest possible” condition of this type. In
the case when Prob {‖SN‖ > Ω} goes rapidly to 0 as Ω > 1 grows, we clearly
should have E

{
S2

N

} ¹ O(1)Im (since S2
N ¹ ‖SN‖2Im). Thus, the condition

[
E

{
S2

N

}
=

] N∑

i=1

E
{
Ξ2

i

} ¹ O(1)Im (4)

is necessary for ‖SN‖ to be “of order of 1”. A natural guess is that this neces-
sary condition plus appropriate “light-tail” assumptions on the distributions
of Ξi is sufficient for the property in question; we shall see in a while that if
this guess were true, it would provide us with all we need in our applications.
Unfortunately, when interpreted literally, the guess fails to be true. First, it
is immediately seen that in fact O(1)Im in the right hand side of (4) should
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be reduced to O(1) 1
ln mIm. Indeed, let Ξi be diagonal matrices with indepen-

dent (from position to position and for different i’s) diagonal entries taking
values ±αN−1/2 with probabilities 1/2, so that

Σ ≡
N∑

i=1

E
{
Ξ2

i

}
= α2Im.

Here SN is a random diagonal matrix with i.i.d. diagonal entries; by Central
Limit Theorem, the distribution of these entries approaches, as N grows, the
Gaussian distribution N (0, α2). It follows that when N is large, the typical
value of ‖SN‖ is the same as the typical value of max

i≤m
|ζi|, with indepen-

dent ζi ∼ N (0, α2); in other words, for large N the typical value of ‖SN‖ is
α
√

2 ln m. In order for this quantity to be of order of 1, α should be of order
of (ln m)−1/2, which corresponds to Σ of order of (lnm)−1Im rather than
of order of Im. In our context, the consequences of the outlined correction
are not that dramatic, since ln m, for all practical purposes, is a moderate
constant. A less pleasant observation is that the corrected guess still fails to
be true, unless we impose further restrictions on the distributions of Ξi. In-
deed, consider the case when m = 2k is even, N = 1, and the random matrix

Ξ1 = SN is
[

ηξT

ξηT

]
, where η is uniformly distributed on the unit sphere

in Rk, ξ ∼ N (0, Ik) and η, ξ are independent. In this case, direct computa-
tion demonstrates that E

{
Ξ2

1

}
= Im, while ‖Ξ1‖ = ‖SN‖ = ‖η‖2‖ξ‖2, so

that the typical value of ‖SN‖ is as large as O(
√

m). It follows that in order
to make our guess valid for the particular case we are considering, the right
hand side in (4) should be reduced to O(1)m−1Im. After such a correction,
our guess does become valid, but the correction itself turns out to be too bad
for our tentative applications. What we intend to do is to try to save the “log-
arithmically corrected” guess at the cost of restricting Ξi to be semi-scalar,
that is, to be random matrices of the form ξiBi, where Bi are deterministic
symmetric matrices and ξi are independent random scalars with zero mean
and light-tail distributions. Specifically, we make a conjecture as follows:

Conjecture 1 Let Bi, i = 1, ..., N , be deterministic symmetric m×m matrices
such that
N∑

i=1

B2
i ¹ Im, (5)

and let ξi, i = 1, ..., N , be independent random scalars with zero mean and
“of order of 1”, e.g., such that (a) |ξi| ≤ 1, or (b) ξi ∼ N (0, 1), or (c)
E

{
exp{ξ2

i }
} ≤ exp{1}. Then

Ω ≥ O(1)
√

ln m ⇒ Prob
{

ξ = (ξ1, ..., ξN ) : ‖
N∑

i=1

ξiBi‖ ≥ Ω

}

≤ O(1) exp{−O(1)Ω2}
(6)

with appropriate positive absolute constants O(1).
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It turns out that (6) would satisfy all the requirements posed by the appli-
cations we bear in mind. Unfortunately, for the time being we are unable to
prove the conjecture “as it is”. The primary goal of this paper is to prove
a weaker statement – the one where

√
ln m in the premise of (6) is replaced

with m
1
6 , and to use this weaker fact in the applications we have mentioned.

In our opinion, question (Q) in general, and its specialization as presented
in Conjecture 1, in particular are quite natural and deserve attention by
their own right. Surprisingly, the only, to the best of our knowledge, result in
this direction which makes no assumptions on how strong the entries in SN

depend on each other, is recent result announced in [6] (for proof, see [8]) as
follows:

Proposition 1 Let Ξi be independent symmetric m×m matrices with zero
mean such that

E
{
exp{‖Ξi‖2σ−2

i }} ≤ exp{1}, i = 1, ..., N

(σi > 0 are deterministic scale factors). Then

Prob



‖SN‖ ≥ t

√√√√
N∑

i=1

σ2
i



 ≤ O(1) exp{−O(1)

t2

ln m
} ∀t > 0, (7)

with positive absolute constants O(1).

From Proposition 1 it follows that when the premise (5) in Conjecture 1 is

strengthened to
N∑

i=1

‖Bi‖2 ≤ 1, the conjectured conclusion becomes “nearly

true”. Indeed, with
∑
i

‖Bi‖2 ≤ 1 and independent ξi with zero means and

of order of 1, applying Proposition 1 with Ξi = ξiBi, σi = ‖Bi‖ and t =
Ω
√

ln m, we get

Prob

{
ξ = (ξ1, ..., ξN ) : ‖

N∑

i=1

ξiBi‖ ≥ Ω
√

ln m

}
≤ O(1) exp{−O(1)Ω2},

which is nearly as good as (6). Unfortunately, in the applications we intend
to consider strengthening (5) to the scalar inequality

∑
i

‖Bi‖2 ≤ 1 is too

costly to be of actual use.
The rest of the paper is organized as follows. In section 2, we prove that

our conjecture, in its outlined weaker form, indeed is valid. In sections 3 and
4 we apply this result to approximating chance constraints associated with
randomly perturbed LMI’s, and to deriving bounds on the quality of semidef-
inite relaxations of problems of quadratic approximation under orthogonality
constraints.
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2 Main result

2.1 Preliminaries: Talagrand’s Inequality

We start with the following instrumental fact:

Theorem 1 [Talagrand’s Inequality] Let (Ei, ‖ · ‖i), i = 1, ..., N , be finite-
dimensional normed spaces and µi, i = 1, ..., N , be Borel probability measures
on the balls Vi = {xi ∈ Ei : ‖xi‖i ≤ 1/2}. Let us equip the space E = E1 ×

...× EN with the norm ‖(x1, ..., xN )‖ =

√
N∑

i=1

‖xi‖2i and with the probability

distribution µ which is the product of µ1, ... µN , and let A be a closed convex
set in E such that µ(A) > 0. Then
∫

E

exp{dist2‖·‖(x,A)
4

}µ(dx) ≤ 1
µ(A)

, (8)

where dist‖·‖(x,A) = min
z∈A

‖x− z‖.

In this form, the Talagrand Inequality is proved in [5], up to the only dif-
ference that in [5], the supports of µi are assumed to be finite subsets of Vi.
However, finiteness of the supports is of no importance, since a Borel prob-
ability measure on Vi can be weakly approximated by probability measures
with finite supports contained in Vi.

2.2 Main result

Our main result related to question (Q) is as follows:

Theorem 2 Let ξ1, ..., ξN be independent random variables with zero mean
and zero third moment taking values in [−1, 1], Bi, i = 1, ..., N , be determin-
istic symmetric m×m matrices, and Θ > 0 be a real number such that
∑

i

B2
i ¹ Θ2I. (9)

Then

Ω ≥ 7m1/4 ⇒ Prob{‖
N∑

i=1

ξiBi‖ ≥ ΩΘ} ≤ 5
4 exp{−Ω2

32 } (a)

Ω ≥ 7m1/6 ⇒ Prob{‖
N∑

i=1

ξiBi‖ ≥ ΩΘ} ≤ 22 exp{−Ω2

32 } (b)
(10)

Proof. 10. For x ∈ RN , let S(x) =
N∑

i=1

xiBi. We start with the following

simple observation:

Lemma 1 One has
∀(γ > 0, s > 1) :
Prob{‖S(ξ)‖ > 2sγΘ} ≤ 1

Pr{‖S(ξ)‖≤2γΘ} exp{− (s−1)2γ2

4 }. (11)
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Proof. Let Q = {x ∈ RN : ‖S(x)‖ ≤ Θ}. The set Q is a closed and
symmetric w.r.t. the origin convex set. We claim that it contains the unit
‖·‖2-ball centered at the origin. To prove this is exactly the same as to verify
that if ‖x‖2 ≤ 1, then |yT (

∑
i

xiBi)y| ≤ Θ for all y ∈ Rm with yT y ≤ 1, and

here is the required verification:

|yT (
∑

i

xiBi)y| ≤
∑

i

|xi|‖Biy‖2 ≤
(∑

i

x2
i

)1/2 (∑

i

yT B2
i y

)1/2

≤ Θ.

Now we are ready to prove (11). Let us fix s > 1 and γ > 0, and let A = γQ.
The set A is closed and convex and contains the ‖·‖2-ball of radius γ centered
at the origin. It follows that

x 6∈ sA ⇒ dist‖·‖2(x, A) ≥ (s− 1)γ. (12)

Indeed, since s > 1, relation x 6∈ sA implies that the set B = x − (s − 1)A
does not intersect A; since A ⊃ {z : ‖z‖2 ≤ γ}, we have B ⊃ {z : ‖x− z‖2 ≤
(s− 1)γ}, and thus dist‖·‖2(x,A) > (s− 1)γ due to B ∩A = ∅.

From (12) it follows that

Prob{ξ/2 6∈ sA} exp{ (s− 1)2γ2

4
} ≤ E

{
exp{dist2‖·‖2(ξ/2, A)

4
}
}

,

whence, applying the Talagrand Inequality (Theorem 1) to the distribution
of the random vector ζ = ξ/2,

Prob{ξ/2 6∈ sA} ≤ 1
Prob{ξ/2 ∈ A} exp{− (s− 1)2γ2

4
}. (13)

Recalling the definitions of A and Q, we clearly have

Prob{ξ/2 6∈ sA} = Prob{‖S(ξ)‖ > 2sγΘ},
Prob{ξ/2 ∈ A} = Prob{‖S(ξ)‖ ≤ 2γΘ},

so that (13) implies (11). ut
20. Our next observation is as follows:

Lemma 2 Let Θ > 0, let Bi ∈ Sm be deterministic matrices satisfying (9)
and ζi be independent random scalar variables such that

E {ζi} = 0, E
{
ζ2
i

} ≤ σ2, E
{
ζ4
i

}− (
E{ζ2

i }
)2 ≤ 2σ4.

Let, finally, Sk =
k∑

i=1

ζiBi, 1 ≤ k ≤ N . Then

1 ≤ k ≤ N ⇒ E
{
S4

k

} ¹ 3σ4Θ4I. (14)
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Proof. Setting S0 = 0, Ei = E{S4
i }, σi =

(
E{ζ2

i }
)1/2, ωi =

(
E{ζ4

i }
)1/4 and

taking into account that ζi and Si−1 are independent with zero mean, we
have

Ei = E
{
[Si−1 + ζiBi]

4
}

= E

{
S4

i−1 + σ2
i

[
Si−1BiSi−1Bi + BiSi−1BiSi−1︸ ︷︷ ︸

¹Si−1B2
i

Si−1+BiS2
i−1

Bi

due to XY T +Y XT¹XXT +Y Y T

+S2
i−1B

2
i + B2

i S2
i−1

+Si−1B
2
i Si−1 + BiS

2
i−1Bi

]
+ ω4

i B4
i

}

¹ E
{
S4

i−1 + 2σ2
i Si−1B

2
i Si−1 + 2σ2

i BiS
2
i−1Bi + S2

i−1(σ
2
i B2

i ) + (σ2
i B2

i )S2
i−1

+σ4
i B4

i + (ω4
i − σ4

i )B4
i

}

= Ei−1 + 2
i−1∑
j=1

σ2
j σ2

i BjB
2
i Bj + 2

i−1∑
j=1

σ2
i σ2

j BiB
2
j Bi

+

i−1∑
j=1

σ2
i σ2

j B2
j B2

i +

i−1∑
j=1

σ2
i σ2

j B2
i B2

j + σ4
i B4

i

︸ ︷︷ ︸
=

(
i∑

j=1

σ2
j

B2
j

)2

−

(
i−1∑
j=1

σ2
j

B2
j

)2

+[ω4
i − σ4

i ]B4
i

whence

Ek ¹ 2
k∑

i=1

i−1∑
j=1

σ2
i σ2

j BjB
2
i Bj + 2

k∑
i=1

i−1∑
j=1

σ2
i σ2

j BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

[ω4
i − σ4

i ]B4
i

= 2
∑

1≤i,j≤k
i 6=j

σ2
i σ2

j BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

[
ω4

i − σ4
i

]
︸ ︷︷ ︸

≤2σ2

B4
i

¹ 2
∑

1≤i,j≤k
i 6=j

σ4BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

+
k∑

i=1

2σ4B4
i

= 2σ4
k∑

i,j=1

BiB
2
j Bi +

(
k∑

j=1

σ2
j B2

j

)2

= 2σ4
k∑

i=1

Bi

[
k∑

j=1

B2
j

]
Bi +

(
k∑

j=1

σ2
j B2

j

)2

¹ 2σ4Θ2
k∑

i=1

B2
i +

( k∑
j=1

σ2
j B2

j

︸ ︷︷ ︸
=A,0¹A¹σ2Θ2I

)2

¹ (2σ4Θ4 + σ4Θ4)I,

as claimed. ut
Now we are ready to prove (10.a). Applying Lemma 2 to ζi = ξi (which

allows us to take σ = 1), we get

E
{‖S(ξ)‖4} ≤ E

{
Tr(S4(ξ))

} ≤ 3mΘ4,

whence by Tschebyshev inequality

γ > 0 ⇒ Prob {‖S(ξ)‖ > 2γΘ} <
3m

16γ4
. (15)
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Setting γ = m1/4 and invoking (11), we get

∀s > 1 :
Prob

{‖S(ξ)‖ > 2sm1/4Θ
} ≤ 1

Prob{‖S(ξ)‖≤2γΘ} exp{− (s−1)2m1/2

4 }
≤ 5

4 exp{− (s−1)2m1/2

4 },
(16)

where the concluding inequality is given by (15). The resulting inequality
(which is valid for all s > 1) immediately implies (10.a). Indeed, given Ω ≥
7m1/4 and setting s = Ω/(2m1/4), we have s ≥ 7/2, whence also s− 1 ≥ 5

7s.
Therefore

Prob{‖S(ξ)‖ > ΩΘ} = Prob{‖S(ξ)‖ ≥ 2sm1/4Θ} ≤ 5
4

exp{− (s− 1)2m1/2

4
}

(see (16)), and at the same time (s−1)2m1/2

4 ≥ (5/7)2s2m1/2

4 = 25Ω2

49·16 ≥ Ω2

32 , and
we arrive at

Prob{‖S(ξ)‖ > ΩΘ} ≤ 5
4

exp{−Ω2

32
},

as required in (10.a).
30. Now let us prove (10.b). We start with the following weak analogy to

Lemma 2:

Lemma 3 Let Bi, i = 1, ..., N , be deterministic symmetric matrices satis-
fying (9), and ζi, i = 1, ..., N , be independent scalar random variables with
zero mean and zero third moment such that σ2

i ≡ E{ζ2
i } ≤ σ2, ω4

i ≡ E{ζ4
i } ≤

min
[
σ4

i + 2σ4, ω4
]
, χ6

i ≡ E{ζ6
i } ≤ χ6, and let Sk =

k∑
i=1

ζiBi. Then

E
{
Tr(S6

k)
} ≤ [45σ6 + 15ω4σ2 + χ6]Θ6m. (17)

Proof. Let φi = E
{
Tr(S6

i )
}
. Given a multi-index ι = (ι1, ..., ιn) with entries

0, 1 and two symmetric matrices P, Q, let [P, Q]ι stand for the product of
n matrices, with `-th factor being P or Q depending on whether ι` = 1 or
ι` = 0 (e.g., [P,Q](0,1,1) = QP 2). Let I, J be the sets of 6-dimensional multi-
indices ι with entries 0,1 such that exactly 4, respectively, 2 of the entries
are equal to 1 (so that both I and J contain 15 multi-indices each). Taking
into account that Si−1 has zero mean and is independent of ζiBi, and that
ζi has zero first and third moments, we have

E
{
S6

i

}
= E

{
S6

i−1

}
+ σ2

i

∑

ι∈I

E {[Si−1, Bi]ι}+ ω4
i

∑

ι∈J

E {[Si−1, Bi]ι}+ χ6
i B

6
i ,

whence

φi = φi−1 + σ2
i

∑
ι∈I

E {Tr([Si−1, Bi]ι)}+ ω4
i

∑
ι∈J

E {Tr([Si−1, Bi]ι)}
+χ6

i Tr(B6
i ).

(18)

Now let us list all 15 products [Si−1, Bi]ι, ι ∈ I; we split these products into
groups, all members of the same group being of equal trace in view of the
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identities Tr(A) = Tr(AT ) and Tr(AB) = Tr(BA). Here are the groups (to
simplify notation, we skip indices of Si−1 and Bi)

BS4B, S2B2S2, (S4B2, B2S4), (S3B2S, SB2S3) (a)
SBS2BS, (S2BS2B, BS2BS2) (b)
(S3BSB, BSBS3), (SBS3B, BS3BS), (S2BSBS, SBSBS2) (c)

Let the traces of products in the respective groups be Ta = Ta,i(ζ1, ..., ζi−1),
Tb = Tb,i(ζ1, ..., ζi−1), Tc = Tc,i(ζ1, ..., ζi−1). We have

BS2︸︷︷︸
X

BS2︸︷︷︸
Y T

+ S2BS2B︸ ︷︷ ︸
Y XT

¹ BS4B︸ ︷︷ ︸
XXT

+S2B2S2︸ ︷︷ ︸
Y Y T

,

whence Tb ≤ Ta, and similarly

S2B︸︷︷︸
X

SBS︸ ︷︷ ︸
Y T

+ SBSBS2︸ ︷︷ ︸
Y XT

¹ S2B2S2︸ ︷︷ ︸
XXT

+ SBS2BS︸ ︷︷ ︸
Y Y T

,

whence 2Tc ≤ Ta +Tb ≤ 2Ta. The conclusion is that the sum
∑
ι∈I

in (18) does

not exceed the quantity

Ii = 15E
{
Tr(BiS

4
i−1Bi)

}
= 15Tr(BiE{S4

i−1}Bi) = 15Tr(BiE{S4
i−1}Bi).

Invoking Lemma 2, we get

Ii ≤ 45σ4Θ4Tr(B2
i ).

Completely similar reasoning as applied to the sum
∑
ι∈J

in (18) implies that

this sum does not exceed the quantity

Ji = 15E
{
Tr(Si−1B

4
i Si−1)

}
= 15E

{
Tr(B2

i S2
i−1B

2
i )

}

= 15Tr

(
B2

i

[
i−1∑
j=1

σ2
j B2

j

]
B2

i

)
≤ 15Θ2σ2Tr(B4

i )

(see (9)). Thus, (18) implies that

φi ≤ φi−1 + 45σ6Θ4Tr(B2
i ) + 15ω4

i Θ2σ2Tr(B4
i ) + χ6

i Tr(B6
i );

since
∑
i

B2
i ¹ Θ2I, we have Tr(B4

i ) ≤ Θ2Tr(B2
i ) and Tr(B6

i ) ≤ Θ4Tr(B2
i ).

We arrive at the relation

φi ≤ φi−1 + Θ4
[
45σ6 + 15ω4

i σ2 + χ6
i

]
Tr(B2

i ).

Taking into account that
∑
i

B2
i ¹ Θ2I, whence of course

∑
i

Tr(B2
i ) ≤ Θ2m,

we conclude that

E
{
Tr(S6

N )
} ≤ [45σ6 + 15ω4σ2 + χ6]Θ6m,

as claimed. ut
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Now we can derive (10.b) in the same fashion as (10.a). Applying Lemma
3 to ζi = ξi (which allows us to take σ = ω = χ = 1), we get

E
{‖S(ξ)‖6} ≤ E

{
Tr(S6(ξ))

} ≤ 61mΘ6,

whence by Tschebyshev inequality

γ > 0 ⇒ Prob {‖S(ξ)‖ > 2γΘ} <
61m

64γ6
. (19)

Invoking (11) with γ = m1/6, we get

s > 1 ⇒ Prob
{‖S(ξ)‖ > 2sm1/6Θ

}
= Prob {ξ/2 6∈ sA}

≤ 1

Prob{ξ∈2A} exp{− (s−1)2m1/3

4 } ≤ 22 exp{− (s−1)2m1/3

4 },

where the concluding inequality is given by (19). The resulting inequality is
valid for all s > 1, and (10.b) follows (cf. derivation of (10.a) at the end of
item 20). ut
Corollary 1 Let Ξ1,...,Ξn be independent Gaussian symmetric m×m ran-
dom matrices with zero means and Θ > 0 be such that

n∑

i=1

E
{
Ξ2

i

} ¹ Θ2Im. (20)

Then relations (10) hold true.

Proof. By evident reasons every Gaussian symmetric random matrix Ξi can

be represented as
M∑

t=1
ηitB

it with independent ηit ∼ N (0, 1) and deterministic

symmetric matrices Bit; observe that E{Ξ2
i } =

∑
t

(Bit)2. Representing in

this way every one of the matrices Ξ1, ..., Ξn and taking into account that
the resulting Gaussian random variables {ηit} are mutually independent, we
conclude that

Sn ≡
n∑

i=1

Ξi =
N∑

i=1

ξiBi

with independent ξi ∼ N (0, 1) and deterministic symmetric matrices Bi

satisfying the relation
∑
i

B2
i ¹ Θ2I. Now let {ζij} 1≤i≤N

j=1,2,...
be a collection of

independent random variables taking values ±1 with probabilities 1/2, and
let

Sn,ν =
N∑

i=1

ν∑

j=1

ζij
1√
ν

Bi.

By Theorem 2, we have

Ω ≥ 7m1/4 ⇒ Prob {‖Sn,ν‖ > ΩΘ} ≤ 5
4 exp{−Ω2

32 }, (a)
Ω ≥ 7m1/6 ⇒ Prob {‖Sn,ν‖ > ΩΘ} ≤ 22 exp{−Ω2

32 }. (b)

As ν → ∞, the distribution of Sn,ν , by Central Limit Theorem, converges
weakly to the distribution of Sn, and (10) follows. ut
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2.3 Non-symmetric case

Question (Q) makes sense for non-symmetric (and even non-square) random
matrices. In this case validity of Conjecture 1 would imply the following
statement:

(!) Let Ci be deterministic m× n matrices such that

N∑

i=1

CiC
T
i ¹ Θ2Im,

N∑

i=1

CT
i Ci ¹ Θ2In (21)

and ξi be independent random scalars with zero mean and of order of
1. Then

Ω ≥ O(1)
√

ln(m + n)

⇒ Prob
{

ξ : ‖
N∑

i=1

ξiCi‖ ≥ ΩΘ

}
≤ O(1) exp{−O(1)Ω2}. (22)

Indeed, in order to extract (!) from the assertion proposed by Conjecture 1,
it suffices to apply the assertion to our ξi’s and the deterministic symmetric
(m + n)× (m + n) matrices

Bi =
[

CT
i

Ci

]
. (23)

Utilizing in exactly the same fashion Theorem 2 and Corollary 1, we arrive
at the following

Proposition 2 Let deterministic m× n matrices Ci satisfy (21), and let ξi

be independent random scalars with zero first and third moment and such
that either |ξi| ≤ 1 for all i ≤ N , or ξi ∼ N (0, 1) for all i ≤ N .

Ω ≥ 7(m + n)1/4 ⇒ Prob{‖
N∑

i=1

ξiCi‖ ≥ ΩΘ} ≤ 5
4 exp{−Ω2

32 }, (a)

Ω ≥ 7(m + n)1/6 ⇒ Prob{‖
N∑

i=1

ξiCi‖ ≥ ΩΘ} ≤ 22 exp{−Ω2

32 }. (b)
(24)

We are about to add to Proposition 2 a simple additional statement, which
allows us to strengthen the result in the case when one of the sizes m,n is
much smaller than another:

Proposition 3 Let Ci, ξi be as in Proposition 2. Then

Ω ≥ 4
√

min[m,n] ⇒ Prob{‖
N∑

i=1

ξiCi‖ ≥ ΩΘ} ≤ 4
3

exp{−Ω2

16
}. (25)

Proof. It suffices to consider the case when |ξi| ≤ 1; the Gaussian version of
the statement can be derived from the one with |ξi| ≤ 1 in exactly the same
fashion as in the proof of Corollary 1.

Let Bi be given by (23). Same as in item 10 of the proof of Theorem 2,

setting Q = {x ∈ RN : ‖
N∑

i=1

xiBi‖ ≤ Θ}, we conclude from (21) that the
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closed convex set Q contains the unit Euclidean ball centered at the origin,
and that for every γ > 0 one has

s > 1 ⇒

Prob
{
‖

N∑
i=1

ξiBi‖ > 2sγΘ

}
≤

exp{− (s− 1)2γ2

4
}

Prob
{

ξ:‖
N∑

i=1

ξiBi‖≤2γΘ

} . (26)

Assume w.l.o.g. that min[m,n] = n. We have
N∑

i=1

CT
i Ci ¹ ΘIn, whence,

taking traces,
N∑

i=1

‖Ci‖22 ≤ nΘ2. It follows that

E

{
‖

∑

i

ξiCi‖22
}

=
∑

i

E
{
ξ2
i

} ‖Ci‖22 ≤
∑

i

‖Ci‖22 ≤ nΘ2,

whence by Tschebyshev inequality and due to ‖C‖ ≤ ‖C‖2 for all t > 0 one
has

Prob

{
‖

∑

i

ξiCi‖ ≥ tn1/2Θ

}
≤ Prob

{
‖

∑

i

ξiCi‖2 ≥ tn1/2Θ

}
≤ t−2.

Setting γ = n1/2, we conclude from the latter inequality that

Prob

{
‖

∑

i

ξiCi‖ ≥ 2γΘ

}
≤ 1/4,

whence, in view of ‖∑
i

ξiBi‖ = ‖∑
i

ξiCi‖,

Prob

{
‖

∑

i

ξiBi‖ > 2γΘ

}
= Prob {ξ 6∈ 2γQ} ≤ 1/4.

Thus, (26) with γ = n1/2 implies that

s > 1 ⇒ Prob

{
‖

N∑

i=1

ξiBi‖ > 2sn1/2Θ

}
≤ 4

3
exp{− (s− 1)2n

4
},

and (25) follows (recall that ‖∑
i

ξiCi‖ ≡ ‖∑
i

ξiBi‖). ut
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3 Application: Randomly perturbed Linear Matrix Inequality

Consider a randomly perturbed Linear Matrix Inequality (LMI)

A0[x]−
N∑

i=1

ξiAi[x] º 0, (27)

where A0[x], ..., AN [x] are symmetric matrices affinely depending on decision
vector x, ξi, i = 1, ..., N , are random real perturbations which we assume to
be independent with zero means “of order of 1” and with “light tails” (precise
formulations of these two assumptions will be given later). We are interested
to describe those x for which the randomly perturbed LMI (27) holds true
with probability ≥ 1 − ε, where ε ¿ 1. Clearly, for such an x one should
have A0[x] º 0. We will simplify a little bit our task and focus on points x

with A0[x] Â 0. For such an x, setting Bi[x] = A
−1/2
0 [x]Ai[x]A−1/2

0 [x], the
question becomes to describe those x for which

Prob

{
N∑

i=1

ξiBi[x] ¹ I

}
≥ 1− ε. (28)

Precise description seems to be completely intractable; what we are about to
present are verifiable sufficient conditions for (28) to hold true.

3.1 Condition based on Proposition 1

Proposition 4 Let m ≥ 2, let perturbations ξi be independent with zero
means and such that E

{
exp{ξ2

i }
} ≤ exp{1}. Then the condition

A0[x] Â 0 &
N∑

i=1

‖A−1/2
0 [x]Ai[x]A−1/2

0 [x]‖2 ≤ 1
450 exp{1}(ln 3

ε )(lnm)
(29)

is sufficient for (27) to be valid with probability ≥ 1− ε.

This is a straightforward corollary of Proposition 1 (we use the actual values
of absolute constants in (7) presented in [8]).

A severe shortcoming of (29) is that this condition, although verifiable,
in general defines a nonconvex set in the space of decision variables x, which
makes it problematic to optimize in x under the conditions. There are, how-
ever, two simple cases when the conditions are free of this shortcoming. The
first is when Ai[x] are independent of x (“perturbations in the constant term
of LMI”); here the “problematic” part of the conditions – the inequality

N∑

i=1

‖A−1/2
0 [x]Ai[x]A−1/2

0 [x]‖2 ≤ τ (∗)

on x, τ – can be represented by the system of convex inequalities

−A0[x] ¹ µiAi ¹ A0[x], µi > 0, i = 1, ..., N,

N∑

i=1

µ−2
i ≤ τ.
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in variables x, µi, τ . The second “good” case is the one when A0[x] ≡ A is
constant. Here (∗) can be represented by system of convex constraints

−λiA ¹ Ai[x] ¹ λiA, i = 1, ..., N,
∑

i

λ2
i ≤ τ

in variables x, λi, τ .

3.2 Conditions based on Theorem 2 and Corollary 1

With these statements in the role of Proposition 1, we arrive at the following
statement:

Proposition 5 Let perturbations ξi be independent with zero means and zero
third moments and either such that |ξi| ≤ 1, i = 1, ..., N , or such that ξi ∼
N (0, 1), i = 1, ..., N . Let, further, ε ∈ (0, 1) be such that one of the following
two conditions is satisfied:

(a) ln
(

5
4ε

) ≥ 49m1/2

32

(b) ln
(

22
ε

) ≥ 49m1/3

32

(30)

Then the condition

A0[x] Â 0 & ‖
N∑

i=1

(A−1/2
0 [x]Ai[x]A−1/2

0 [x])2‖ ≤
{ 1

32 ln( 5
4ε )

, case (30.a)
1

32 ln( 22
ε ) , case (30.b) (31)

is sufficient for (27) to be valid with probability ≥ 1− ε.

Note that condition (31), in contrast to (29), defines a convex domain in the
space of design variables. Indeed, this condition is of the form

A0[x] Â 0 &
N∑

i=1

Ai[x]A−1
0 [x]Ai[x] ¹ c(ε)A0[x],

which can be represented by system of LMI’s

A0[x] Â 0 &
[

Yi Ai[x]
Ai[x] A0[x]

]
º 0, i = 1, ..., N &

N∑

i=1

Yi ¹ c(ε)A0[x] (32)

in variables x, Yi. Note also that in Control applications (which are of primary
importance for randomly perturbed LMI) m does not exceed few tens, and
in this range of values of m the only advantage of (29) as compared with
(31), that is, ln(m) in the right hand side of (29) vs. m1/2 and m1/3 in the
right hand side of (30), becomes unimportant (in fact, (29), because of large
constant factors, in a reasonable range of values of m leads to much more
conservative conclusions than (30)).
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4 Application: semidefinite relaxation of quadratic minimization
under orthogonality constraints

4.1 Problem of interest

Consider the following optimization problem:

max
x∈Mm,n




〈x,Ax〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)
‖x‖ ≤ 1 (d)





(P )

where

– Mm,n is the space of m × n real matrices equipped with the Frobenius
inner product 〈x, y〉 = Tr(xyT ), and ‖x‖ = max

ξ
{‖xξ‖2 : ‖ξ‖2 ≤ 1} is, as

always, the spectral norm of x ∈ Mm,n,
– the mappings A, B, B` are symmetric linear mappings from Mm,n into

itself,
– B is positive semidefinite of rank 1,
– B`, ` = 1, ..., L, are positive semidefinite,
– C is a linear mapping from Mm,n into RM .

Note that (P ) covers a number of problems of quadratic optimization under
orthogonality constraints, e.g.

1. Inhomogeneous modification

max
x∈Mm,n




〈x,Ax〉+ 2〈b, x〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)
‖x‖ ≤ 1 (d)





(P+)

of (P ). Indeed, partitioning a matrix y ∈ Mn+1,m+1 as
[

y00 y01

y10 y11

]
with

scalar y00, (P+) is equivalent to the problem

max
y




〈y,A+y〉 ≡ 〈y11,Ay11〉+ 2y00〈b, y11〉 :

〈y11,By11〉 ≤ 1;
〈y11,B`y11〉 ≤ 1,

` = 1, ..., L;
Cy11 = 0, y01 = 0;
y10 = 0, ‖y‖ ≤ 1.





of the form of (P );
2. Orthogonal relaxation of the quadratic assignment problem (see [12–14]

and references therein)

max
X

{
Tr(BXAXT )− 2Tr(CX) : X ∈ Mm,m, XXT = Im

}
(QA)

with symmetric m ×m matrices A,B. Indeed, the transformation B ←
B + bIm converts (QA) into an equivalent problem, thus we can assume
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that B Â 0. Similarly, the transformation A ← A + aIm converts (QA)
into equivalent problem, thus we can assume that A Â 0. In the case when
B Â 0, A Â 0, representing B = D2 and A = E2 with symmetric D, E, we
see that the objective in (QA) is f(X) = Tr([DXE][DXE]T )+2Tr(CX),
which is a convex quadratic form of X. Consequently, the maximum of
f over the set {X ∈ Mm,m : XXT = Im} is exactly the same as the
maximum of f over the set {X ∈ Mm,m : ‖X‖ ≤ 1}, since the former
set is exactly the set of extreme points of the latter one1). Thus, (QA) is
equivalent to the problem of the form

max
X

{
Tr(B̄XĀXT )− 2Tr(CX) : ‖X‖ ≤ 1

}
,

which is of the form of (P+);
3. Procrustes problem which can be posed as (see Introduction)

max
X[·]





∑

1≤`<`′≤K

Tr(A[`]X[`]XT [`′]AT [`′]) : X[`]XT [`] = In,
` = 1, ..., K



 (Pr)

Indeed, the objective in (Pr) is linear in every one of X[`]; thus, we do not
affect the problem by relaxing the orthogonality constraints X[`]XT [`] =
In to ‖X[`]‖ ≤ 1. Indeed, such a relaxation could only increase the optimal
value. This, however, does not happen, since given a feasible solution to
the problem

max
X[·]





∑

1≤`<`′≤K

Tr(A[`]X[`]XT [`′]AT [`′]) : ‖X[`]‖ ≤ 1∀`


 (Pr+)

we can easily convert it into a feasible solution to (Pr) with the same or
larger value of the objective.

Indeed, keeping X[2], ..., X[K] fixed, we can straightforwardly replace

X[1] by an orthogonal matrix without spoiling the objective value2).

After X[1] is made orthogonal, we can repeat the outlined procedure

1 We are using the well-known fact: Extreme points P of the ‖ · ‖-unit ball B in
Mm,n are exactly the orthoprojectors, that is, P T P = In when n ≤ m and PP T =
Im when n ≥ m. Here is the derivation (w.l.o.g., we assume that m ≤ n). Let P ∈ B.
Applying Singular Value decomposition, we get P = U [Diag{λ}, 0m,n−m]V with
orthogonal m×m and n×n matrices U, V and a vector λ ∈ Rm satisfying ‖λ‖∞ ≤ 1
(the latter - due to P ∈ B). If all λj are ±1, then P is an orthoprojector; otherwise
‖λ ± e‖∞ ≤ 1 for properly chosen nonzero e ∈ Rm, whence P = 1

2
[P+ + P−],

P± = U [Diag{λ± e}, 0m,n−m]V , is not an extreme point of B (note that P+ 6= P−,
P+, P− ∈ B). Thus, every extreme point P of B satisfies PP T = Im. Vice versa, if
P ∈ Mm,n satisfies PP T = Im, then P ∈ B. Assuming that P ± E ∈ B for some
E, all rows Pi ±Ei in the matrices P ±E must be of ‖ · ‖2-norm not exceeding 1,
while the rows Pi of P are of ‖ · ‖2-norm equal to 1; this is possible only if all rows
Ei of E are zero vectors. Thus, and m×n orthoprojector is an extreme point of B.

2 since the objective is linear in X[1], the remaining variable matrices being
fixed, and thus attains its maximum in X[1] varying in the set {X : ‖X‖ ≤ 1} at
an extreme point of the set, which is an orthogonal matrix; this matrix is easily
computable, given X[2], ..., X[K].
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with X[2] in the role of X[1], and so on. After K steps we end up with

a feasible solution to both (Pr+) and (Pr) which is at least as good as

the solution we have started with.

It remains to note that problem (Pr+) is of the form of (P ) – we can
arrange all matrices X[`], ` = 1, ..., K, in a large block-diagonal matrix

x =




X[1]
. . .

X[K]


, thus converting (Pr+) into the equivalent problem

max
x

{
F (x) ≡

∑

`<`′
Tr(A[`]X[`]XT [`′]AT [`′]) : Cx = 0, ‖x‖ ≤ 1

}

where the homogeneous equations Cx = 0 express the fact that x is of
the outlined block-diagonal form; the resulting problem is in the form of
(P );

4. The problem

max
X[1],...,X[K]

{∑

`<`′
‖A[`]X[`]−A[`′]X[`′]‖22 : X[`]XT [`] = In, ` = 1, ..., k

}

“opposite” to the Procrustes problem. Indeed, since the objective is con-
vex in every one of X[`], we, same as above, lose nothing when relaxing
the constraints X[`]XT [`] = In to ‖X[`]‖ ≤ 1. The resulting problem can
be converted to the form of (P ) in exactly the same manner as in the
previous example. The same argument applies to a general-type prob-
lem of quadratic maximization under orthogonality constraints, provided
that the objective is convex in every one of the corresponding variable
matrices.

Structure of (P ). In some of the outlined examples we end up with a par-
ticular case of problem (P ) where the homogeneous linear constraints (c)

in (P ) imply that x is a block-diagonal matrix




x1

. . .
xK


 with mk × nk

diagonal blocks xk, k = 1, .., K. We shall refer to ∆ = {(mk, nk)}K
k=1 as to

the structure of (P ). If the homogeneous constraints in (P ) do not impose a
nontrivial block-diagonal structure on x, then, by definition, B possesses the
trivial structure ∆ = (m,n) with K = 1.

Semidefinite relaxation of (P ). Problem (P ), in general, is NP-hard (this is
the case already for the generic inhomogeneous (C 6= 0) orthogonal relaxation
of the quadratic assignment problem, see [12]). At the same time, (P ) admits
a straightforward semidefinite relaxation as follows. We can identify A in
(P ) with a symmetric mn×mn matrix A = [Aij,k`] with rows and columns
indexed by pairs (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n satisfying the relation

[Ax]ij =
∑

k,`

Aij,k`xk`



20 Arkadi Nemirovski

(from now on, unless stated otherwise, in a sum
∑
p,q

, p runs from 1 to m, and q

runs from 1 to n). Similarly, B, B` can be identified with symmetric positive
semidefinite mn ×mn matrices B, B`, with B of rank 1. Finally, C can be
identified with a M ×mn matrix C = [Cµ,ij ]:

(Cx)µ =
∑

i,j

Cµ,ijxij .

For x ∈ Mm,n, let Vec(x) be the mn-dimensional vector obtained from the
matrix x by arranging its columns into a single column, and let X(x) ∈ Smn

+

be the matrix Vec(x)VecT (x), that is, the mn×mn matrix [xijxk`]. Observe

that X(x) º 0, and that
∑
i,j

cijxij = 0 if and only if 0 =

(
∑
i,j

cijxij

)2

≡
∑

ij,k`

cijxijck`xk` = Tr(X(c)X(x)). Further,

〈x,Ax〉 =
∑

ij,k`

Aij,k`xijxk` = Tr(AX(x)),

and similarly

〈x,B〉 = Tr(BX(x)), 〈x,B`〉 = Tr(B`X(x)).

Finally, ‖x‖ ≤ 1 if and only if xxT ¹ Im. The entries in the matrix xxT are
linear combinations of the entries in X(x), so that

xxT ¹ Im ⇔ S(X(x)) ¹ Im,

where S is an appropriate linear mapping from Smn to Sm. Similarly, ‖x‖ ≤ 1
if and only if xT x ¹ In, which again is a linear restriction on X(x):

xT x ¹ In ⇔ T (X(x)) ¹ In,

where T is an appropriate linear mapping from Smn to Sn. With the above
observations, (P ) can be rewritten as the problem

max
x∈Mm,n





Tr(AX(x)) :

Tr(BX(x)) ≤ 1 (a)
Tr(B`X(x)) ≤ 1, ` = 1, ..., L (b)
Tr(CµX(x)) = 0, µ = 1, ...,M (c)
S(X(x)) ¹ Im, T (X(x)) ¹ In (d)





,

where Cµ ∈ Smn
+ is given by Cµ

ij,k` = Cµ,ijCµ,k`. Since X(x) º 0 for all x,
the problem

max
X∈Smn





Tr(AX) :

Tr(BX) ≤ 1 (a)
Tr(B`X) ≤ 1, ` = 1, ..., L (b)
Tr(CµX) = 0, µ = 1, ..., M (c)
S(X) ¹ Im, T (X) ¹ In (d)
X º 0 (e)





(SDP)

is a relaxation of (P ), so that Opt(P ) ≤ Opt(SDP). Observe that problem
(SDP) is a semidefinite program and as such is computationally tractable.
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Remark 1 When (P ) possesses a nontrivial structure, the design dimension
of relaxation (SDP) can be reduced. Indeed, in this case, as it is immediately
seen, (SDP.c) imply that Xij,k` should be zero unless both the cells (i, j),
(k, `) belong to diagonal blocks in x. Consequently, in fact the decision matrix

X in (SDP) can be thought of as a symmetric matrix of the row size
K∑

k=1

mknk

rather than of the size mn.

4.2 Quality of the relaxation

Our goal is to prove the following

Proposition 6 (i) There exists x̄ ∈ Mm,n such that

(∗) 〈x̄,Ax̄〉 = Opt(SDP) (a) 〈x̄,Bx̄〉 ≤ 1
(b) 〈x̄,B`x̄〉 ≤ Ω2, ` = 1, ..., L (c) Cx̄ = 0
(d) ‖x̄‖ ≤ Ω

(33)

where

Ω = max
[

max
1≤k≤K

µk +
√

32 ln(132K),
√

32 ln(12(L + 1))
]

,

µk = min
[
7(mk + nk)

1
6 , 4

√
min[mk, nk]

] (34)

(ii) In particular, one has

Opt(P ) ≤ Opt(SDP) ≤ Ω2Opt(P ). (35)

Proof. 00. (ii) is an immediate consequence of (i). Indeed, with x̄ satisfying
(33), the matrix x̃ = Ω−1x clearly is a feasible solution to (P ), and the value
of the objective at this solution is Ω−2Opt(SDP) by (33.∗), which gives the
right inequality in (35); the left inequality is readily given by the origin of
(SDP).

It remains to prove (i). Let Y be an optimal solution to (SDP); then
Y º 0, so that the matrix S = Y 1/2 is well defined. Let us set

SAS = UT ΛU,

where Λ is a diagonal mn ×mn matrix, and U is an orthogonal mn ×mn
matrix. Let ξ be a random mn-dimensional vector with independent entries
ξij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, taking values ±1 with probabilities 1/2, and let
random m× n matrix ζ be given by

Vec(ζ) = SUT ξ, (36)

so that ζ = ζ(ξ) is a deterministic function of ξ.
10. Observe that

E {X(ζ)} = Y. (37)

Indeed,

E {X(ζ)} = E
{
Vec(ζ)VecT (ζ)

}
= E

{
SUT ξξT US

}
= SUT E

{
ξξT

}
US

= SUUT S = Y.
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20. We have

Cζ ≡ 0. (38)

Indeed,

E
{(∑

Cµ,ijζij

)2
}

= E
{
Tr(CµVec(ζ)VecT (ζ))

}
= Tr(CµY ) = 0

(we have used (37) and the fact that Y is feasible for (SDP)).
Since the relations Cx = 0 imply that x is block-diagonal with mk × nk

diagonal blocks, k = 1, ..., K, we conclude that all realizations of ζ are block-
diagonal with mk × nk diagonal blocks ζk, k = 1, ..., K. Recalling (36) and
the nature of ξ, we see that all combinations of the columns of the matrix
SUT with coefficients ±1 are of the form Vec(z) with block-diagonal, of the
block-diagonal structure ∆, m× n matrices z; this is possible if and only if
every one of the columns in SUT is of the form Vec(z) with block-diagonal,
of the block-diagonal structure ∆, matrices z. Recalling (36), we arrive at

ζk = ζk(ξ) =
∑

i,j

zk,ijξij , k = 1, ...,K, (39)

with deterministic mk × nk matrices zk,ij .
30. We have also

(a) 〈ζ,Aζ〉 ≡ Opt(SDP)
(b) E {〈ζ,Bζ〉} ≤ 1
(b′) E {〈ζ,B`ζ〉} ≤ 1, ` = 1, ..., L

(40)

Indeed,

〈ζ,Aζ〉 = Tr(AVec(ζ)VecT (ζ)) = Tr(ASUT ξξT US)
= Tr(U(SAS)UT ξξT ) = Tr(U(UT ΛU)UT ξξT )
= Tr(ΛξξT ) = Tr(Λ) = Tr(UT ΛU) = Tr(SAS) = Tr(AY )
= Opt(SDP),

as required in (40.a). Further,

E {〈ζ,Bζ〉} = E
{
Tr(BVec(ζ)VecT (ζ))

}
= E

{
Tr(BSUT ξξT US)

}
= Tr(BSUT E{ξξT }︸ ︷︷ ︸

=I

US) = Tr(BS2) = Tr(BY ) ≤ 1

where the concluding ≤ comes from the fact that Y is feasible for (SDP). We
have arrived at (40.b); verification of (40.b′) is completely similar.

40. Finally, we have

E
{
ζζT

} ¹ Im, E
{
ζT ζ

} ¹ In. (41)

Indeed, by the origin of S and T , we have ζζT = S(X(ζ)), ζT ζ = T (X(ζ)),
and (41) follows from (37).
Recalling that ζ = Diag{ζ1, ..., ζK}, we have
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ζζT = Diag{ζ1ζ
T
1 , ..., ζKζT

K}, ζT ζ = Diag{ζT
1 ζ1, ..., ζ

T
KζK},

and (41) implies that

E
{
ζkζT

k

} ¹ Imk
, E

{
ζT
k ζk

} ¹ Ink
, k = 1, ..., K. (42)

Invoking (39), we have ζk =
∑
i,j

zk,ijξij with deterministic mk × nk matrices

zk,ij , so that (42) implies
∑

i,j

zk,ijz
T
k,ij ¹ Imk

,
∑

i,j

zT
k,ijzk,ij ¹ Ink

, k = 1, ..., K. (43)

Applying Propositions 2, 3 with Θ = 1 and Ω = t and taking into account
the definition of µk (see (34)), we deduce from (43) that

t > µk ⇒ Prob {ξ : ‖ζk(ξ)‖ ≥ t} ≤ 22 exp
{
− t2

32

}
, k = 1, ..., K. (44)

50. We are basically done; the only additional element we need to complete
the proof of (i) is the following simple fact:

Lemma 4 One has

(a) Prob {ξ : 〈ζ(ξ),Bζ(ξ)〉 ≤ 1}︸ ︷︷ ︸
Ea

≥ 1
3

(b) t ≥ 8 ⇒ Prob
{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 > t2

} ≤ 4
3 exp{− t2

32}, ` = 1, ..., L.

(45)

Proof. Recall that

〈ζ(ξ),Bζ(ξ)〉 = Tr(BVec(ζ(ξ))VecT (ζ(ξ))) = Tr(BSUT ξξT US)
= Tr((USBSUT )ξξT ).

(46)

Since B is positive semidefinite dyadic matrix, so is the matrix USBSUT ,
that is, USBSUT = ddT for a mn-dimensional deterministic vector d with
entries dij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. It follows that

〈ζ(ξ),Bζ(ξ)〉 = (dT ξ)2 =


∑

i,j

dijξij




2

. (47)

Applying (40.b), we derive from (47) that
∑
i,j

d2
ij = E {〈ζ(ξ),Bζ(ξ)〉} ≤ 1.

Invoking Lemma A.1 in [2], we conclude that Prob

{
|∑

i,j

dijξij | ≤ 1

}
≥ 1

3 ,

and (45.a) follows from (47). Similarly to (46), we have

〈ζ(ξ),B`ζ(ξ)〉 = ξT USB`SUT

︸ ︷︷ ︸
D`

ξ.

The matrix D` is symmetric positive semidefinite along with B`; setting
F` = D

1/2
` , we arrive at the identity

〈ζ(ξ),B`ζ(ξ)〉 = ‖F`ξ‖22. (48)
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Invoking (40.b′), we derive from the latter inequality that

‖F`‖22 = E {〈ζ(ξ),B`ζ(ξ)〉} ≤ 1. (49)

We are about to use the following simple fact:

Lemma 5 Let bp ∈ Rπ, p = 1, ..., P , be deterministic vectors such that∑
p
‖bp‖22 ≤ 1, and δp, p = 1, ..., P , be independent random scalars taking

values ±1 with probabilities 1/2. Then

t ≥ 8 ⇒ Prob

{
‖

P∑
p=1

δpbp‖2 > t

}
≤ 4

3
exp{− t2

32
}. (50)

Proof is similar to the one of Lemma 1. Let Q = {γ ∈ RP : ‖∑
p

γpbp‖2 ≤ 1},
and let µ be the distribution of the random vector γ = (δ1/2, ..., δP /2).

Observe that E

{
‖∑

p
γpbp‖22

}
= 1

4

∑
p
‖bp‖22 ≤ 1

4 , whence by Tschebyshev

inequality µ{γ 6∈ Q} = µ{γ : ‖∑
p

γpbp‖2 > 1} ≤ 1
4 , so that µ(Q) ≥ 3

4 .

Further, Q clearly is a closed convex set. We claim that this set contains the
unit Euclidean ball in RP . Indeed, if u ∈ RP and ‖u‖2 ≤ 1, then

‖
∑

p

upbp‖2 ≤
∑

p

|up|‖bp‖2 ≤
√∑

p

u2
p

√∑
p

‖bp‖22 ≤ 1,

so that u ∈ Q. Now, if s > 1 and u ∈ RP is such that ‖∑
p

upbp‖2 > 2s, then

the vector u/2 does not belong to sQ, so that dist‖·‖2(u/2, Q) > s − 1 (cf.
the justification of (12) with γ = 1). Applying the Talagrand Inequality to
A = Q and the distribution µ, we get

s > 1 ⇒
Prob

{
δ : ‖∑

p
δpbp‖2 > 2s

}
≤ exp{− (s−1)2

4 } ∫
exp{dist2

‖·‖2 (γ,Q)

4 }µ(dγ)

≤ exp{− (s−1)2

4 }
µ(Q) ≤ 4 exp{− (s−1)2

4 }
3 ,

and (50) follows. ut
Specifying in Lemma 5 P as mn, bp as the columns of F` and δp as the

random scalars ξij , we derive from (49) that

t ≥ 8 ⇒ Prob {ξ : ‖F`ξ‖2 > t} ≤ 4
3

exp{− t2

32
},

which combines with (48) to imply (45.b). Lemma 4 is proved. ut
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60. We are ready to complete the proof of (i). Let Ω be given by (34).
Then clearly Ω ≥ 8, and we can apply (45) with t = Ω to conclude that for
every ` ≤ L we have Prob

{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 > Ω2

} ≤ 1
9(L+1) , whence

Prob
{
ξ : 〈ζ(ξ),B`ζ(ξ)〉 ≤ Ω2, 1 ≤ ` ≤ L

}
︸ ︷︷ ︸

Eb

≥ 8
9
. (51)

By (44), with our Ω for every k ≤ K we have also Prob {ξ : ‖ζk(ξ)‖ > Ω} ≤
1

6K , whence

Prob
{

ξ : ‖ζ(ξ)‖ ≡ max
k≤K

‖ζk(ξ)‖ ≤ Ω

}

︸ ︷︷ ︸
Ed

≥ 5
6
. (52)

Combining (45.a), (51) and (52), we see that the events Ea, Eb and Ed have
a point ξ∗ in common. Setting x̄ = ζ(ξ∗), we see that x̄ satisfies all the
requirements in (33) ((∗) – by (40.a), (a), (b), (d) – due to ξ∗ ∈ Ea ∩Eb ∩Ed,
and (c) by (38)). ut

4.2.1 Comments

A. With norm constraint (d) in (P ) eliminated, (P ) becomes the purely
quadratic program

max
x∈Mm,n



〈x,Ax〉 :

〈x,Bx〉 ≤ 1 (a)
〈x,B`x〉 ≤ 1, ` = 1, ..., L (b)
Cx = 0 (c)



 ; (P ′)

its semidefinite relaxation (SDP′) is obtained from (SDP) by eliminating
constraints (SDP.d). From the proof of Proposition 6 it follows that

Opt(P ′) ≤ Opt(SDP′) ≤ Ω2Opt(P ′), Ω =
√

32 ln(12(L + 1));

the resulting statement is a slightly improved version of “Approximate S-
Lemma” from [2] and the results of [7] (in the original statements, the role
of the number L of quadratic constraints in the formula for Ω was played by
a larger quantity, the total rank of mappings B`, ` = 1, ..., L).

B. The proof of Proposition 6 goes along the lines of the proof of Ap-
proximate S-Lemma [2] (which, in turn, goes back to [7]); the crucial new
component (bound (44) based on Theorem 2) allows us to treat the norm
constraint (P.d).

C. Any further progress towards the proof of Conjecture 1 would result
in improving the result of Proposition 6. For example, if Conjecture were
true, we would be able to replace the terms 7(mk +nk)

1
6 in (34) with a much

nicer, from the theoretical viewpoint, terms O(1)
√

ln(mk + nk).
D. As it is usually the case with semidefinite relaxations of difficult opti-

mization problems, (SDP) not only provides us with an efficiently computable
upper bound on the optimal value of (P ), but offers as well a randomized
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algorithm for building suboptimal feasible solutions to (P ). Such an algo-
rithm is suggested by the proof of Proposition 6; specifically, we generate a
sample of, say, M = 1000 realizations ζ1, ..., ζM of the random matrix ζ(ξ)
(see (36)), choose the largest possible scale factors λp such that the scaled
matrices ζ̂p = λpζ

p are feasible for (P ), thus getting a sample of feasible so-
lutions to (P ), and then choose among these feasible solutions the one with
the best – the largest – value of the objective. Note that the required “feasi-
ble scalings” indeed are possible, since every ζ satisfying homogeneous linear
equations (P.c) (and thus - every realization of ζ(ξ)) after multiplication by
appropriate positive scalar becomes feasible for (P ).

E. Under favourable circumstances, the outlined randomized algorithm
can be further improved by a kind of “purification”. Specifically, assume that

– (P ) has no quadratic constraints (P.a-b) (that is, B = 0, B` = 0, ` =
1, ..., L);

– The linear homogeneous constraints (P.c) say that a feasible solution x
to (P ) possesses certain block-diagonal structure ∆ = {(mk, nk)}K

k=1 and
impose no further restrictions on x;

– The objective f(x) = f(x1, ..., xK) we are maximizing in (P ) is convex
w.r.t. every one of the diagonal blocks xk in a feasible (and thus block-
diagonal) candidate solution x, the remaining components being fixed.

Note that outlined assumptions are satisfied in all problems of quadratic
optimization under orthogonality constraints mentioned in the beginning of
section 4. Now, given a feasible solution x with components xk, k = 1, ..., K,
purification converts x to a feasible solution x̂ with the same or better value
of the objective in such a way that x̂ is an “extreme point” feasible solution
to (P ). The latter means that every component x̂k of x̂ satisfies the orthog-
onality relation, namely, x̂kx̂T

k = Imk
when mk ≤ nk and x̂T

k x̂k = Ink
when

mk ≥ nk.
The conversion x 7→ x̂ takes K steps. At the first step, we represent

x1 as a convex combination of a moderate number Q of matrices xq
1, q =

1, ..., Q, satisfying the orthogonality constraint (this is possible and can be
done efficiently, see below); note that every one of the Q candidate solutions
xq = (xq

1, x2, ..., xK) is feasible for (P ). We compute the value of f at these
solutions and find the one, let it be xq∗ , with the largest value of f . Since
f(·, x2, ..., xK) is convex and x1 is a convex combination of xq

1, q = 1, ..., Q,
we have f(xq∗) ≥ f(x). Thus, we have found a feasible solution x(1) = xq∗

to (P ) with the same or better value of the objective than the one at x and
with the first block satisfying the orthogonality constraint. Now we repeat
this procedure with x(1) in the role of x and x2 in the role of x1, thus getting a
feasible solution x(2) which is at least as good as x(1) in terms of the objective
and has two blocks satisfying the orthogonality constraints. Proceeding in
this fashion, we in K steps end up with an extreme point feasible solution
x̂ = x(K) which is at least as good as x.

For the sake of completeness, we present here the standard algorithm for
representing a given µ × ν matrix z, ‖z‖ ≤ 1, as a convex combination of
matrices satisfying the orthogonality constraint. W.l.o.g., let us assume that
µ ≥ ν, so that the orthogonality constraint is satisfied by a µ×ν matrix w iff
wT w = Iν . We first find the singular value decomposition z = UDiag{σ}V T ,
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where V is orthogonal ν × ν matrix, σ ≥ 0 is the ν-dimensional vector of
singular values of z and the µ×ν matrix U satisfies the relation UT U = Iν .
Since ‖z‖ ≤ 1, we have 0 ≤ σi ≤ 1. Now observe that whenever γ ∈ Rν has
entries ±1, the matrix UDiag{γ}V T satisfies the orthogonality constraint.
Thus, all we need is to represent σ as a convex combination

∑
q

λqγ
q of a

moderate number of vectors γq with entries ±1, thus inducing the desired
representation z =

∑
q

λqUDiag{γq}V T . A required representation of σ is

immediate. W.l.o.g. we may assume that σ1 ≤ σ2 ≤ ... ≤ σν . Let us define
ν + 1 ν-dimensional vectors δi as

δ1 = (1, ..., 1)T , δ2 = (0, 1, ..., 1)T , δ3 = (0, 0, 1, ..., 1)T , ..., δν+1 = (0, ..., 0)T ;

observe that δi is the half-sum of two vectors δi
± with coordinates ±1. The

required representation of σ is merely

σ =

ν+1∑
i=1

(σi − σi−1)δ
i =

ν+1∑
i=1

σi − σi−1

2
[δi

+ + δi
−]

(we have set σ0 = 0, σν+1 = 1). This representation involves Q = 2ν + 1

vectors with coordinates ±1 (note that δ1
+ = δ1

−).

F. Finally, when f is affine in every one of xk (as it is the case in the
Procrustes problem), the purification can be simplified and improved – here
we can at every step easily maximize f in the block to be updated. To simplify
notation, consider the first step. Given x2, ..., xK , we can represent the affine
function φ(y) = f(y, x2, ..., xK) of m1 × n1 matrix y as φ(y) = Tr(yaT ) + c
with a, c readily given by x2, ..., xK . Assuming w.l.o.g. that m1 ≥ n1, let
us compute the singular value decomposition a = UDiag{σ}V T of a, so that
σ ≥ 0. It is immediately seen that the maximum of φ(y) over y’s satisfying the
constraint ‖y‖ ≤ 1 is equal to

∑
i

σi and is attained at the matrix y∗ = UV T

satisfying the orthogonality constraint; y∗ is clearly the best possible extreme
point updating of x1.

4.3 Numerical illustration: Procrustes problem

To illustrate the outlined considerations, we are about to present numerical
results for the Procrustes problem

Opt(Pr) = min
x[·]





∑

1≤k<k′≤K

‖a[k]x[k]− a[k′]x[k′]‖22 : x[k]xT [k] = In ∀k


 ,

(Pr)
a[·] being given N × n matrices. The problem is equivalent to the quadratic
problem with orthogonality constraints

max
x[·]



2

∑

1≤k<k′≤K

Tr(a[k]x[k]xT [k′]aT [k′]) : x[k]xT [k] = In ∀k


 ; (53)
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as we have already explained, relaxing the orthogonality constraints in the
latter problem to ‖x[k]‖ ≤ 1, we preserve the optimal value, so that (Pr) is
equivalent to the problem

Opt(Pr+) = max
x[·]



2

∑

1≤k<k′≤K

Tr(a[k]x[k]xT [k′]aT [k′]) : ‖x[k]‖ ≤ 1∀k




(Pr+)
of the form of (P ); the optimal values in (Pr) and (Pr+) are linked by the
relation

Opt(Pr) = (K − 1)
K∑

k=1

Tr(a[k]aT [k])

︸ ︷︷ ︸
C

−Opt(Pr+). (54)

In our experiments, we generated random instances of (Pr), solved the semide-
finite relaxations (SDP) of the resulting instances of (Pr+), thus obtaining
upper bounds on the optimal values of the latter instances (which, in turn,
induce via (54) lower bounds on the optimal values in (Pr)), and used the
randomized algorithm outlined in item D, section 4.2.1, to get suboptimal
solutions to (Pr). The details are as follows.

Generating instances. Given “sizes” K, N, n of (Pr), we generated the data
a[1], ..., a[K] of (Pr) as follows: entries of a[1] were picked at random from
the standard Gaussian distribution N (0, 1), while the remaining matrices
were generated as a[k] = a[1]Uk + εQk, 2 ≤ k ≤ K, with randomly chosen
orthogonal matrix Uk and random matrix Qk generated in the same fashion
as a[1]. The “closeness parameter” ε was chosen at random according to
ε = exp{ξ} with ξ uniformly distributed in [−3, 3]. The sizes K,n of (Pr)
were limited by the necessity to end up with semidefinite relaxation not too
difficult for the SDP solver mincx (LMI Toolbox for MATLAB) we used,
which means at most 1000 – 1200 free entries in X. This restriction allows
us to handle the sizes (K, n) with Kn ≤ 50 (see below). The column size N
of a[·] was always set to 20.

The relaxation of (Pr+) as given by the above construction is the semidefinite
problem

Opt(SDP) = max
X





2Tr(AX)︸ ︷︷ ︸
F (X)

:

X ≡ [Xkij,k′i′j′ ] k,k′≤K

i,i′,j,j′≤n

º 0

Sk(X) ≡
[

n∑
p=1

Xkpi,kpj

]

i,j≤n

¹ In,

k ≤ K

Tk(X) ≡
[

n∑
p=1

Xkip,kjp

]

i,j≤n

¹ In,

k ≤ K





(55)



Sums of random symmetric matrices 29

(see (SDP) and Remark 1), where A is the symmetric Kn2 × Kn2 matrix
with the entries

Akij,k′i′j′ =





1
2

N∑
`=1

a[k]`ia[k′]`i′ , j = j′ and k 6= k′

0, j 6= j′ or k = k′
. (56)

In fact (55) can be significantly simplified. Specifically, let us treat Kn×Kn

symmetric matrices Y as K ×K block matrices with n × n blocks Y k,k′ =
[Y k,k′

ij ]ni,j=1, 1 ≤ k, k′ ≤ K, and consider the semidefinite program

max
Y

{
G(Y ) = Tr(BY ) : Y = {Y k,k′} ∈ SKn, Y º 0, Y k,k ¹ In ∀k

}
(57)

where B ∈ SKn is the block matrix with blocks Bk,k′ =
{

aT [k]a[k′], k 6= k′

0, k = k′

of sizes n × n, 1 ≤ k, k′ ≤ K. Note that the design dimension of (57) is less
than the one of (55) by factor ≈ n2.

Lemma 6 Problems (55), (57) are equivalent to each other. Specifically, if
a matrix X = [Xkij,k′i′j′ ] is a feasible solution to (55), then the matrix Y =
Y[X] ≡ {Y k,k′}K

k,k′=1 ∈ SKn given by

Y k,k′

ii′ =
n∑

p=1

Xkip,k′i′p, 1 ≤ i, i′ ≤ n, 1 ≤ k, k′ ≤ K (58)

is a feasible solution to (57), and F (X) = G(Y ). Moreover, every feasible
solution Y to (57) is of the form Y[X] for an appropriate feasible solution X
of (55).

Proof. Let X be a feasible solution to (55), Y = Y[X]. Then Y º 0. Indeed,

since X º 0, we have Xkij,k′i′j′ =
L∑

`=1

v`
kijv

`
k′i′j′ for appropriately chosen L

and v`
kij . It follows that

Y ≡ Y[X] =
L∑

`=1

{



n∑

j=1

v`
kijv

`
k′i′j




i,i′

}K
k,k′=1

︸ ︷︷ ︸
Y `

;

it remains to note that the matrices Y ` are sums of dyadic matrices and thus
are symmetric positive semidefinite. Further, we have Tk(X) = Y k,k (see
(55)), so that Y is feasible for (57). The relation F (X) = G(Y ) is readily
given by (58) and (56).

Now let Y = {Y k,k′}K
k,k′=1 be feasible for (57), and let us set

Xkij,k′i′j′ =
1
n

δj
j′Y

k,k′

ii′ (59)

(δp
q is the Kronecker symbol), so that Y = Y[X] by (58). It remains to prove

that X is feasible for (55). Indeed, X is the Kronecker product of positive
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semidefinite matrix Y and n−1In and thus is positive semidefinite. Further,
by (55) we clearly have Tk(X) = Y k,k ¹ In, and

(Sk(X))jj′ =
n∑

p=1

Xkpj,kpj′ =
n∑

p=1

δj
j′

1
n

Y k,k
pp ⇒ Sk(X) =

Tr(Y k,k)
n

In ¹ In,

where the concluding ¹ is given by Y k,k ¹ In (recall that Y is feasible for
(57)). ut
Remark 2 The origin of (57) is as follows. The objective in (Pr+) is a linear
function of the matrix products x[k]xT [k′], k, k′ = 1, ..., K, which are nothing
but the blocks Y k,k′ in the positive semidefinite block matrix Y = Y [x] =


x[1]
...

x[K]







x[1]
...

x[K]




T

∈ SKn, while the norm bounds in (Pr+) translate into

the constraints ‖Y k,k‖ ≤ 1. Thus, (57) is obtained from (Pr+) by passing to
Y -variable and subsequent eliminating the nonconvex constraint “Y should
be Y [x] for some x”.

Note that the outlined “recipe” for simplifying the semidefinite relaxation
works in the case of general problem (P ), provided that the constraints (P.c)
say exactly that the structure of (P ) is {(mk = µ, nk = ν)}K

k=1 and that the
objective and the left hand sides in the constraints (P.a− b) of (P ) are linear
functions of the matrix products x[k]xT [k′], k, k′ = 1, ..., K. Note also that
under the latter assumptions the reasoning completely similar to the one
in Lemma 6 demonstrates that the outlined simplification of (55) is in fact
equivalent to (55).

Recovering suboptimal solutions to (Pr+), (Pr) was implemented according
to the randomized algorithm with purification outlined in section 4.2.1, items
D, F. Specifically, after (high-accuracy approximation to) optimal solution
Y∗ of (57) was found, we “lifted” it, according to (59), to an optimal solution
X∗ of (55). Then we used X∗ to generate a sample of M = 1000 feasible
solutions x` = {x`

k}K
k=1 to (Pr+) as explained in item 4.2.1.D and purified

these solutions as explained in item 4.2.1.F, thus obtaining feasible solutions
x̂` to (Pr+) which satisfy the orthogonality constraints and thus are feasible
for (53) and (Pr). The resulting suboptimal solution x̂ to (Pr) was the best
(with the smallest value of the objective) of the feasible solutions x̂`, ` =
1, ..., M . The value of the objective of (Pr) at x̂ is an upper bound Optup(Pr)
on Opt(Pr), while the value of the objective of (Pr+) at x̂ is a lower bound
Optlw(Pr+) on the optimal value of (Pr+). Thus, we end up with brackets

[L(Pr+), U(Pr+)] ≡ [Optlw(Pr+), Opt(SDP)],
[L(Pr), U(Pr)] ≡ [C −Opt(SDP),Optup(Pr)]

on the optimal values of (Pr+), (Pr), respectively, along with a feasible sub-
optimal solution x̂ to (Pr+), (Pr); the values of the objectives of (Pr+), (Pr)
at x̂ are appropriate endpoints of the corresponding brackets.
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Sizes of instances. The design dimension of (57) is Kn(Kn+1)
2 ; in order for

it to be at most about 1200 (the limitation imposed by the SDP solver we
used), Kn should be at most 50. In our experiments, we used Pareto-maximal
pairs (K,n) with Kn ≤ 50, specifically, the 10 pairs (K = b 50

n c, n) given by
n = 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, and for every pair solved 20 instances of the
corresponding sizes (which amounts to the total of 200 instances).

The results of our numerical experiments were surprisingly good, much bet-
ter than one could expect looking at the bound (35). Indeed, the latter bound
guarantees that Opt(SDP) is at most by factor Ω2 greater than Opt(Pr+),
with Ω2 slowly growing with K,n and thus being a “moderate” constant,
provided that K, n are not too large3). As about (Pr), Proposition 6 yields
no bounds on the ratio of the true optimal value in (Pr) and its efficiently
computable lower bound C − Opt(SDP). The outlined theoretical guaran-
tees, if any, are not too optimistic, which is in sharp contrast with the actual
numerical results we got. In 200 experiments we have run, the largest rela-
tive error U(Pr+)−L(Pr+)

max[1,U(Pr+)]
in solving (Pr+) was as small as 9.0%, while the

largest relative error U(Pr)−L(Pr)
max[1,U(Pr)] in solving (Pr) was as small as 2.4%. These

data correspond to the best of the purified solutions x̂`. As far as problem
(Pr+) is concerned, already the unpurified solutions x` were not so bad:
the relative error of the best, in terms of the objective, of these solutions
x̃ was at worst 62.2%. Thus, in our experiments we did not observe ratios
Opt(SDP)/Opt(Pr+) exceeding 1.09 (cf. with the theoretical upper bound
≈ 100 on this ratio). The histograms of the relative errors are presented on
Fig. 1.
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