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Abstract

Optimal solutions of Linear Programming problems may become severely infeasible if the
nominal data is slightly perturbed. We demonstrate this phenomenon by studying 90 LPs
from the well-known NETLIB collection. We then apply the Robust Optimization method-
ology (Ben-Tal and Nemirovski [1-3]; El Ghaoui et al. [5,6]) to produce “robust” solutions
of the above LPs which are in a sense immuned against uncertainty. Surprisingly, for the
NETLIB problems these robust solutions nearly lose nothing in optimality.

1 Introduction

To motivate the research summarized in this paper, let us start with an example – problem
PILOT4 from the well-known NETLIB library. This is a Linear Programming problem with 1,000
variables and 410 constraints; one of the constraints (# 372) is

aTx ≡ −15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829 − 1.526049x830

−0.031883x849 − 28.725555x850 − 10.792065x851 − 0.19004x852 − 2.757176x853

−12.290832x854 + 717.562256x855 − 0.057865x856 − 3.785417x857 − 78.30661x858

−122.163055x859 − 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

−84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870 − 0.401597x871

+x880 − 0.946049x898 − 0.946049x916

≥ b ≡ 23.387405

(C)

The related nonzero coordinates in the optimal solution x∗ of the problem, as reported by
CPLEX, are as follows:

x∗826 = 255.6112787181108 x∗827 = 6240.488912232100 x∗828 = 3624.613324098961
x∗829 = 18.20205065283259 x∗849 = 174397.0389573037 x∗870 = 14250.00176680900
x∗871 = 25910.00731692178 x∗880 = 104958.3199274139

Note that within machine precision the indicated optimal solution makes (C) an equality.
Observe that most of the coefficients in (C) are “ugly reals” like -15.79081 or -84.644257.

We have many reasons to believe that coefficients of this type characterize certain technological
devices/processes, and as such they could hardly be known to high accuracy. It is quite natural
to assume that the “ugly coefficients” are in fact uncertain – they coincide with the “true” values
of the corresponding data within accuracy of 3-4 digits, not more. The only exception is the
coefficient 1 of x880 – it perhaps reflects the structure of the problem and is therefore exact –
“certain”.

Assuming that the uncertain entries of a are, say, 0.1%-accurate approximations of unknown
entries of the “true” vector of coefficients ã, we looked what would be the effect of this uncertainty
on the validity of the “true” constraint ãTx ≥ b at x∗. Here is what we have found:
• The minimum, (over all vectors of coefficients ã compatible with our “0.1%-uncertainty

hypothesis”), value of ãTx∗ − b, is < −104.9; in other words, the violation of the constraint can
be as large as 450% of the right hand side!

1Funded by the Germany-Israeli Foundation for R&D and the Israel Ministry of Science.
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• Treating the above worst-case violation as “too pessimistic” (why should the true values of
all uncertain coefficients differ from the values indicated in (C) in the “most dangerous” way?),
consider a more realistic measure of violation. Specifically, assume that the true values of the
uncertain coefficients in (C) are obtained from the “nominal values” (those shown in (C)) by
random perturbations aj 7→ ãj = (1 + ξj)aj with independent and, say, uniformly distributed
on [−0.001, 0.001] “relative perturbations” ξj . What will be a “typical” relative violation

V =
b− ãTx∗

b
× 100%

of the “true” (now random) constraint ãTx ≥ b at x∗? The answer is nearly as bad as for the
worst scenario:

Prob{V > 0} Prob{V > 150%} Mean(V )
0.50 0.18 125%

Table 1. Relative violation of constraint # 372 in PILOT4
(1,000-element sample of 0.1% perturbations of the uncertain data)

We see that quite small (just 0.1%) perturbations of “obviously uncertain” data coefficients can
make the “nominal” optimal solution x∗ heavily infeasible and thus – practically meaningless.
Our intention in this, mainly experimental, paper is to investigate how common is this phe-
nomenon and how to struggle with it when it occurs. Specifically, we look through the list of
NETLIB problems and for every one of them

— quantify the level of infeasibility of the nominal solution in face of small uncertainty;
— when this infeasibility is “too large”, apply the Robust Optimization methodology (see

[1-6]), thus generating another solution which in a sense is immuned against data perturbations,
and, finally,

— look what is the price, in terms of the value of the objective function, of our “immuniza-
tion”.

It is important to emphasize that our approach has nearly nothing in common with Sensitiv-
ity Analysis – a traditional tool for investigating the stability of optimal solutions with respect
to data perturbations:

• In Sensitivity Analysis, one is interested in how much the optimal solution to a perturbed
problem can differ from the one of the nominal problem. In contrast to this, we want to
know by how much the optimal solution to the nominal problem can violate the constraints
of the perturbed problem, which is a completely different question.

• Sensitivity Analysis is a “post-mortem” tool – at best, it can quantify locally the stability
of the nominal solution with respect to infinitesimal data perturbations, but it does not say
how to improve this stability when necessary. The latter issue is exactly what is addressed
by the Robust Optimization methodology.

The rest of the paper is organized as follows. In Section 2 we describe our methodology for
quantifying the level to which data perturbations may affect the quality of a feasible solution
to a LP program and present the associated results for the NETLIB problems. In Section 3 we
explain how the Robust Optimization methodology can be used to immune solutions against
data perturbations and discuss the results of this immunization for the NETLIB problems.
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2 Quantifying the influence of data perturbations

2.1 Detecting uncertain data entries

Consider an LP problem in the form

minimize cTx s.t.





Ex = e (a)
Ax ≤ b (b)

` ≤ x ≤ u (c)
(LP)

and let x̂ be a feasible solution to the problem. We intend to define a “reliability index” of x̂
with respect to perturbations of the uncertain data elements of (LP). In order to define this
quantity, we first should decide what are the uncertain data elements and how they are affected
by uncertainty. In the ideal case, this information should be provided by the user responsible
for the model. Here, however, we intend to carry out a NETLIB case study, so that all we
know about the problem is its nominal data – that given in the mps file specifying the problem.
In accordance with what was explained in Introduction, we resolve the question of “what is
uncertain” as follows:

“Uncertain data elements” in (LP) are the “ugly reals” appearing as entries in
the matrix A of inequality constraints (LP.b), specifically reals which cannot be
represented as rational fractions p

q with 1 ≤ q ≤ 100.

Note that we ignore possible uncertainty in the data of the objective, the equality and the box
constraints, or in the right hand side of the inequality constraints. The motivation for that is
as follows:

• If there was uncertainty in the data of an equality constraint, a good model-builder would
not model the constraint as an equality, rather as a range constraint with the right hand
side bounds close to one another;

• Possible uncertainty in the data of the box constraints and the right hand side vector of the
inequality constraints in principle should be taken into account. However, it will become
clear that with our approach this uncertainty hardly affects the results, so for the sake of
simplicity we treat this data as certain;

• Possible uncertainty in the objective should and could in principle be treated similarly to
that in the inequality constraints. In our NETLIB case study we have checked the influence
of this uncertainty and found that it does not essentially affect the quality of the nominal
solution; consequently, we assume the objective data certain.

2.2 The uncertainty and the Reliability index

The next issue is how the uncertainty affects the data. Here we intend to work with the simplest
assumption:

The “true” value ãij of an uncertain data entry is obtained from the nominal
value aij of the entry by random perturbation:

ãij = (1 + εξij)aij ,

where ε > 0 is a given uncertainty level and ξij are random variables distributed sym-
metrically in the interval [−1, 1]. The random perturbations affecting the uncertain
data entries of a particular inequality constraint are iid.
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With this assumption, the value of the left hand side of the “true” constraint

ζix ≡
∑

j

ãijxj − bi ≤ 0

at a candidate solution x is a random variable with mean and the standard deviation given by

Mean(ζix) =
∑

j

aijxj − bi; StD(ζix) = σiDi(x), Di
ε(x) = ε

√∑

j∈Ji
a2
ijx

2
j ,

where Ji is the set of indices of uncertain data entries of the i-th constraint and σi is the
standard deviation of ξij . Assuming that σi is of order of 1, we see that “typical” values of the
difference δix ≡ ζix −Mean(ζix) are of the order of Di

ε(x), values of opposite sign being equally
possible. For instance, when ξij are distributed uniformly on [−1, 1], the probability of the
event {δix > 0.92Di

ε(x)} is more than 2%, while the probability of the event {δix > 5.24Di
ε(x)} is

< 10−6, whatever the (symmetric) distribution of ξij in [−1, 1].
It follows that the “typical” violation of the true constraint in question at x is of order of

the quantity
max

[
Mean(ζix) +Di

ε(x); 0
]
.

Normalizing the violation by the absolute value of the right hand side bi, we come to the
ε-reliability index

Reliε(x) =

max

[
∑
j
aijxj − bi + 0.92ε

√ ∑
j∈Ji

a2
ijx

2
j ; 0

]

max[1; |bi|] × 100%

of x with respect to i-th constraint2)

Finally, we define the ε-reliability index of a candidate solution x to (LP) as the quantity

Relε(x) = max
i

Reliε(x),

the maximum being taken over all inequality constraints of the problem.

2.3 The NETLIB case study: analyzing reliability of nominal solutions

Now we are ready to explain the methodology of our case study in its analysis part. We looked
at 90 NETLIB problems and for every one of them we

1. solved the problem using CPLEX 6.2; let x∗ be the optimal solution as reported by the
solver.

2. computed the reliability index of the nominal solution x∗ for the three uncertainty levels
ε = 10−4, 10−3, 10−2.

Given an uncertainty level ε, we qualify an inequality constraint as bad at x∗, if the
corresponding reliability index is greater than 5%. We qualify x∗ as a bad nominal solution
to the problem, if at least one of the inequality constraints of the problem is bad at x∗.

2)To evaluate the “level of relevance” of the reliability index, note that for the constraint and the solution of
problem PILOT4 considered in the Introduction the 0.001-reliability index is 260%, which is quite consistent with
the simulation results in Table 1.
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The results of the Analysis phase of our case study are as follows. From the total of 90 NETLIB
problems we have processed,
• in 27 problems the nominal solution turned out to be bad at the largest (ε = 1%) level of

uncertainty;
• 19 of these 27 problems are already bad at the 0.01%-level of uncertainty, and in 13 of

these 19 problems, 0.01% perturbations of the uncertain data can make the nominal solution
more than 50%-infeasible.
The details are given in Table 2.

Problem Sizea) ε = 0.01% ε = 0.1% ε = 1%
Nbadb) Indexc) Nbad Index Nbad Index

80BAU3B 2263× 9799 37 84 177 842 364 8,420
25FV47 822× 1571 14 16 28 162 35 1,620
ADLITTLE 57× 97 2 6 7 58
AFIRO 28× 32 1 5 2 50
BNL2 2325× 3489 24 34
BRANDY 221× 249 1 5
CAPRI 272× 353 10 39 14 390
CYCLE 1904× 2857 2 110 5 1,100 6 11,000
D2Q06C 2172× 5167 107 1,150 134 11,500 168 115,000
E226 224× 282 2 15
FFFFF800 525× 854 6 8
FINNIS 498× 614 12 10 63 104 97 1,040
GREENBEA 2393× 5405 13 116 30 1,160 37 11,600
KB2 44× 41 5 27 6 268 10 2,680
MAROS 847× 1443 3 6 38 57 73 566
NESM 751× 2923 37 20
PEROLD 626× 1376 6 34 26 339 58 3,390
PILOT 1442× 3652 16 50 185 498 379 4,980
PILOT4 411× 1000 42 210,000 63 2,100,000 75 21,000,000
PILOT87 2031× 4883 86 130 433 1,300 990 13,000
PILOTJA 941× 1988 4 46 20 463 59 4,630
PILOTNOV 976× 2172 4 69 13 694 47 6,940
PILOTWE 723× 2789 61 12,200 69 122,000 69 1,220,000
SCFXM1 331× 457 1 95 3 946 11 9,460
SCFXM2 661× 914 2 95 6 946 21 9,460
SCFXM3 991× 1371 3 95 9 946 32 9,460
SHARE1B 118× 225 1 257 1 2,570 1 25,700

Table 2. NETLIB problems with bad nominal solutions.
a) # of linear constraints (excluding the box ones) plus 1 and # of variables
b) # of constraints with Reliε(x∗) > 5%
c) ε-reliability index of the nominal solution x∗, %

The analysis stage of our Case Study leads to the following conclusion:

In real-world applications of Linear Programming one cannot ignore the possibil-
ity that a small uncertainty in the data (intrinsic for most real-world LP programs)
can make the usual optimal solution of the problem completely meaningless from a
practical viewpoint.
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Consequently,
In applications of LP, there exists a real need of a technique capable of detecting

cases when data uncertainty can heavily affect the quality of the nominal solution,
and in these cases to generate a “reliable” solution, one which is immuned against
uncertainty.

3 Robust solutions to linear programs

3.1 The methodology

The methodology for generating robust (“uncertainty-immune”) solutions to uncertain LPs we
intend to implement originates in the Robust Optimization paradigm proposed and developed
independently in [1-3] and [5-6]. Within the outlined framework, there are two ways to imple-
ment this methodology, depending on whether we treat the uncertainty affecting the data as
“unknown-but-bounded”, or as random.

“Unknown-but-bounded” uncertainty. Assume that we intend to make a solution immune
against entry-wise uncertainty of given (relative) magnitude ε > 0 affecting uncertain coefficients
of (LP); specifically, we intend to build a solution x with the following characteristics:

(i) x is feasible for the nominal problem,
and

(ii) Suppose that in inequality constraint i the true values ãij , j ∈ Ji, of uncertain data
can range in the interval [aij − ε|aij |, aij + ε|aij |]. Whatever are the true values of uncertain
coefficients from these intervals, x must satisfy the i-th constraint with an error of at most
δmax[1, |bi|], where δ is a given infeasibility tolerance:

∀i ∀(ãij : |ãij − aij | ≤ ε|aij |) :
∑

j 6∈Ji
aijxj +

∑

j∈Ji
ãijxj ≤ bi + δmax[1, |bi|].

We shall call a solution satisfying (i) and (ii) reliable3).

It is clearly seen that x is reliable if and only if x is a feasible solution of the following
optimization problem:

cTx→ min
s.t.

Ex = e
Ax ≤ b∑

j
aijxj + ε

∑
j∈Ji
|aij ||xj | ≤ bi + δmax[1, |bi|] ∀i

` ≤ x ≤ u

(∗)

The optimal solution to the latter problem can be treated as the best, in terms of the objective,
of the reliable solutions. It is easily seen that (∗) is equivalent to the Linear Programming

3) A rigorous name should, of course, be “(ε, δ)-reliable”. In what follows, however, the values ε and δ will be
clear from the context, which allows us to use the nickname “reliable”. This is also the case with the notion of
an “almost reliable” solution to be introduced later.
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program
cTx→ min

s.t.
Ex = e
Ax ≤ b∑

j
aijxi + ε

∑
j∈Ji
|aij |yj ≤ bi + δmax[1, |bi|] ∀i
−yj ≤ xj ≤ yj ∀j

` ≤ x ≤ u

(IRC[ε, δ])

Thus, one way to get a “robust optimal” solution to (LP) is to solve the (ε, δ)-interval robust
counterpart (IRC[ε, δ]) of our uncertain problem. Note that this scheme in fact goes back to L.
Soyster [7].

“Random symmetric uncertainty”. Now assume that the true values ãij of uncertain data
entries in i-th inequality constraint ∑

j

aijxj ≤ bi

of (LP) are obtained from the nominal values aij of the entries by random perturbations:

ãij = (1 + εξij)aij ,

where ξij = 0 for j 6∈ Ji and the perturbations {ξij}j∈Ji are independent random variables
symmetrically distributed in the interval [−1, 1].

In this situation, when speaking about robust solutions to (LP), it makes sense to pass from
the deterministic requirement (ii) to its probabilistic version, specifically, to the requirement

(ii′) For every i, the probability of the event
∑

j

ãijxj > bi + δmax[1, |bi|]

is at most κ, where δ > 0 is a given feasibility tolerance and κ > 0 is a given “reliability level”.
We shall call a solution satisfying (i) and (ii’) an almost reliable solution to (LP).

Proposition 3.1 Assume that x can be extended to a feasible solution (x, y, z) of the optimiza-
tion problem

cTx→ min
s.t.

Ex = e,
Ax ≤ b,

∑
j
aijxj + ε

[
∑
j∈J
|aij |yij + Ω

√ ∑
j∈Ji

a2
ijz

2
ij

]
≤ bi + δmax[1, |bi|]

∀i,
` ≤ x ≤ u,

−yij ≤ xj − zij ≤ yij ∀i, j.

(RC[ε, δ,Ω])

where Ω > 0 is a positive parameter. Then x satisfies (i) and (ii′) with κ = exp{−Ω2/2}.
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Proof. Let (x, y, z) be feasible for (RC[ε, δ,Ω]). Then

Pr




∑
j
ãijxj >

b+i︷ ︸︸ ︷
bi + δmax[1, |bi|]





= Pr

{
∑
j
aijxj + ε

∑
j∈Ji

ξij |aij |(xi − yij) + ε
∑
j∈Ji

ξij |aij |yij > b+i

}

≤ Pr

{
∑
j
aijxj + ε

∑
j∈Ji

ξij |aij |zij + ε
∑
j∈Ji
|aij |yij > b+i

}

≤ Pr

{
∑
j∈Ji

ξij |aij |yj > Ω
√ ∑
j∈Ji

a2
ijy

2
ij

}
,

and the concluding probability is ≤ exp{−Ω2/2} due to the following well-known fact:

Let pj be given reals and ηj be symmetrically distributed in [−1, 1] independent
random variables. Then for every Ω > 0 one has

Pr




∑

j

ηjpj > Ω
√∑

j

p2
j



 ≤ exp{−Ω2/2}. (1)

For the sake of completeness, here is the proof of (1): By homogeneity arguments, it suffices to
consider the case of

∑
j

p2
j = 1. In this case

Pr

{∑
j

ηjpj > Ω

}
≤︸︷︷︸
(a)

exp{−Ω2}E
{

exp{Ω∑
j

ηjpj}
}

=︸︷︷︸
(b)

exp{−Ω2}∏
j

E {exp{Ωηjpj}}

=︸︷︷︸
(c)

exp{−Ω2}∏
j

[ ∞∑
`=0

(Ωpj)
2`

(2`)!

]
≤ exp{−Ω2}∏

j

exp{Ω2p2
j/2} =︸︷︷︸

(d)

exp{−Ω2/2}

with (a) being the Tschebyshev inequality, (b) coming from independence of ηj for distinct j, (c)

given by symmetry of the distribution of ηj ∈ [−1, 1] and (d) given by
∑
j

p2
j = 1.

Note that (RC[ε, δ,Ω]) is “less conservative” that (IRC[ε, δ]): if {xj , yj} is a feasible solution
of the latter problem, then {xj , yij = yj , zij = 0} is a feasible solution to the former one. In
fact, in the case of “large” sets Ji (IRC) can be “much more restrictive” than (RC). Indeed, a
necessary and sufficient condition for a vector x to admit an extension to a feasible solution to
(IRC) is that x satisfies all the constraints of the nominal problem along with the inequalities

∑

j

aijxj + εαi(x) ≤ b+i ∀i, αi(x) =
∑

j∈Ji
|aij ||xj |

while a sufficient condition for x to admit an extension to a feasible solution of (RC) is to be
feasible for (LP) and to satisfy the inequalities

∑

j

aijxj + εβi(x) ≤ b+i ∀i, βi(x) = Ω
√∑

j∈Ji
a2
ijx

2
j .

Now, the ratio αi(x)
βi(x) can be as large as

√
card (Ji).

A practical drawback of (RC) as compared to (IRC) is that the former problem, although
convex and “well-structured”, is more demanding computationally than the LP program (IRC).

8



3.2 The NETLIB case study: results of immunization

We have implemented the two aforementioned schemes – the (IRC)- and the (RC)-based ones –
to get robust solutions to the bad NETLIB problems presented in Section 2. In the RC-scheme,
the “safety parameter” Ω was set to 5.24, which corresponds to the reliability level κ = 10−6 in
(ii′), while the tolerance δ was set to 5%, the same as at the Analysis stage. The goal of the
“immunization” stage of our case study was to understand what is the price of immunization in
terms of the objective value. The results can be summarized as follows:

• Reliable solutions do exist, except for the four cases corresponding to the highest (ε = 1%)
uncertainty level (see the right column in Table 3). Moreover, the price of immunization
in terms of the objective value is surprisingly low: when ε ≤ 0.1%, it never exceeds 1%
and it is less than 0.1% in 13 of 23 cases. Thus, passing to the robust solutions, we gain a
lot in the ability of a solution to withstand data uncertainty, while losing nearly nothing
in optimality.

The detailed description of the results is given in Table 3.

Objective at robust solution
Problem Optnom ε = 0.01% ε = 0.1% ε = 1%
80BAU3B 987224.2 987311.8 (+ 0.01%) 989084.7 (+ 0.19%) 1009229 (+ 2.23%)
25FV47 5501.846 5501.862 (+ 0.00%) 5502.191 (+ 0.01%) 5505.653 (+ 0.07%)
ADLITTLE 225495.0 225594.2 (+ 0.04%) 228061.3 (+ 1.14%)
AFIRO -464.7531 -464.7500 (+ 0.00%) -464.2613 (+ 0.11%)
BNL2 1811.237 1811.237 (+ 0.00%) 1811.338 (+ 0.01%)
BRANDY 1518.511 1518.581 (+ 0.00%)
CAPRI 1912.621 1912.738 (+ 0.01%) 1913.958 (+ 0.07%)
CYCLE 1913.958 1913.958 (+ 0.00%) 1913.958 (+ 0.00%) 1913.958 (+ 0.00%)
D2Q06C 122784.2 122793.1 (+ 0.01%) 122893.8 (+ 0.09%) Infeasible
E226 -18.75193 -18.75173 (+ 0.00%)
FFFFF800 555679.6 555715.2 (+ 0.01%)
FINNIS 172791.1 172808.8 (+ 0.01%) 173269.4 (+ 0.28%) 178448.7 (+ 3.27%)
GREENBEA -72555250 -72526140 (+ 0.04%) -72192920 (+ 0.50%) -68869430 (+ 5.08%)
KB2 -1749.900 -1749.877 (+ 0.00%) -1749.638 (+ 0.01%) -1746.613 (+ 0.19%)
MAROS -58063.74 -58063.45 (+ 0.00%) -58011.14 (+ 0.09%) -57312.23 (+ 1.29%)
NESM 14076040 14172030 (+ 0.68%)
PEROLD -9380.755 -9380.755 (+ 0.00%) -9362.653 (+ 0.19%) Infeasible
PILOT -557.4875 -557.4538 (+ 0.01%) -555.3021 (+ 0.39%) Infeasible
PILOT4 -64195.51 -64149.13 (+ 0.07%) -63584.16 (+ 0.95%) -58113.67 (+ 9.47%)
PILOT87 301.7109 301.7188 (+ 0.00%) 302.2191 (+ 0.17%) Infeasible
PILOTJA -6113.136 -6113.059 (+ 0.00%) -6104.153 (+ 0.15%) -5943.937 (+ 2.77%)
PILOTNOV -4497.276 -4496.421 (+ 0.02%) -4488.072 (+ 0.20%) -4405.665 (+ 2.04%)
PILOTWE -2720108 -2719502 (+ 0.02%) -2713356 (+ 0.25%) -2651786 (+ 2.51%)
SCFXM1 18416.76 18417.09 (+ 0.00%) 18420.66 (+ 0.02%) 18470.51 (+ 0.29%)
SCFXM2 36660.26 36660.82 (+ 0.00%) 36666.86 (+ 0.02%) 36764.43 (+ 0.28%)
SCFXM3 54901.25 54902.03 (+ 0.00%) 54910.49 (+ 0.02%) 55055.51 (+ 0.28%)
SHARE1B -76589.32 -76589.32 (+ 0.00%) -76589.32 (+ 0.00%) -76589.29 (+ 0.00%)

Table 3. Objective values for nominal and robust solutions to bad NETLIB problems

Note that Table 3 represents only a single result per problem plus uncertainty level, in spite
of the fact that we have implemented two immunization schemes. The reason is that with our
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setup, both (IRC[ε, δ]) and (RC[ε, δ,Ω]) have “essentially the same” (coinciding with each other
within relative inaccuracy 10−7) optimal values. A possible explanation of this phenomenon is
that we require high (κ = 10−6) reliability and thus use “large” Ω (Ω = 5.24). With this Ω, (RC)
is indeed less conservative than (IRC) only when there are at least 30 uncertain data entries per
constraint, which is not the case for the majority of bad NETLIB problems.

How close is the nominal solution to reliable ones? The outlined results demonstrate
that as far as a reasonable (0.1%) level of uncertainty is concerned, the nominal solution, even
if it itself “cannot withstand uncertainty”, results in the “true” optimal value, in the sense that
there exists another solution, capable of withstanding the uncertainty, with nearly the same
value of the objective. An immediate question arises: can the nominal solution itself be made
reliable by a small correction?

To answer this question, we have carried out the following experiment. Given a bad NETLIB
problem (LP), we build a “local robust counterpart” (LRC) of the problem by adding to the
constraints of (IRC) an additional requirement that the x-component of the solution of (IRC)
must belong to a given “moderately small” neighbourhood X of the nominal solution x∗ of (LP).
If the optimal value in (LRC) is close to that of (IRC), we can say that the nominal solution
is not that bad – a small correction suffices to make it reliable; in the opposite case, when the
optimal value in (LRC) differs significantly from that of (IRC) (in particular, when (LRC) is
infeasible), the nominal solution “is indeed bad”.

To carry out the outlined experiment, we need a reasonable way to define X, i.e., to decide
somehow what is “small” and what is “large”, as far as changes in values of xj are concerned.
Since we do not know the origin of the models we are dealing with, the only way to make such a
decision is to look at the data themselves and to retrieve from them a “natural scale” for every
one of the decision variables xj . Note that the data plus the nominal solution give us a number
of “clearly meaningful” values of xj , namely

• the nominal optimal value x∗j of the variable,

• the lower bound `j on the variable, provided that it is not −∞,

• the upper bound uj on the variable, provided that it is not +∞.

From these values, we reconstruct a “natural scale” dj for xj :

dj = max
{
|x∗j |, ̂̀j , ûj

}
[
̂̀
j =

{ |`j |, `j > −∞
0, otherwise

, ûj =
{ |uj |, uj <∞

0, otherwise

]

and define ω-neighbourhood of x∗ as

Xω = {x | |xj − x∗j | ≤ ωdj , j = 1, ...,dim x}.

With this approach, the local robust counterpart of (LP) becomes the Linear Programming
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program
cTx→ min

s.t.
Ex = e
Ax ≤ b∑

j
aijxi + ε

∑
j∈Ji
|aij |yj ≤ bi + δmax[1, |bi|] ∀i
−yj ≤ xj ≤ yj ∀j
|xj − x∗j | ≤ ωdj ∀j

` ≤ x ≤ u

(LRC[ε, δ, ω])

In our experiments, we used δ = 0.05 and ω = 0.05. The results are presented in Table 4.

ε = 0.01% ε = 0.1% ε = 1%
Problem ∆[IRC]a) ∆[LRC]a) ∆[IRC] ∆[LRC] ∆[IRC] ∆[LRC]
80BAU3B 0.00 0.00 0.19 +∞b) 2.23 +∞
25FV47 0.00 0.00 0.01 +∞ 0.07 +∞
ADLITTLE 0.04 0.04 1.14 +∞
AFIRO 0.00 0.00 0.16 0.16
BNL2 0.00 0.00 0.01 0.01
BRANDY 0.00 0.01
CAPRI 0.01 +∞ 0.07 +∞
CYCLE 0.00 0.00 0.00 +∞ 0.00 +∞
D2Q6C 0.00 +∞ 0.09 +∞ +∞ +∞
E226 0.00 0.00
FFFFF800 0.01 0.01
FINNIS 0.01 0.01 0.28 +∞ 3.27 +∞
GREENBEA 0.04 0.29 0.50 +∞ 5.08 +∞
KB2 0.00 0.00 0.02 1.95 0.19 +∞
MAROS 0.00 +∞ 0.09 +∞ 1.29 +∞
NESM 0.68 0.68
PEROLD 0.00 0.00 0.19 0.20 +∞ +∞
PILOT 0.00 +∞ 0.39 +∞ +∞ +∞
PILOT4 0.07 0.07 0.95 0.95 9.47 +∞
PILOT87 0.00 0.00 0.17 0.17 +∞ +∞
PILOTJA 0.00 0.00 0.15 0.15 2.77 +∞
PILOTNOV 0.02 0.02 0.21 0.21 2.04 +∞
PILOTWE 0.02 0.02 0.25 0.26 2.51 +∞
SCFXM1 0.00 0.00 0.02 +∞ 0.29 +∞
SCFXM2 0.00 0.00 0.02 +∞ 0.28 +∞
SCFXM3 0.00 0.00 0.02 +∞ 0.28 +∞
SHARE1B 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. (IRC) vs. (LRC)
a) ∆[xxx] = Opt(xxx)−Opt(LP)

|Opt(LP)| × 100%
b) (xxx) is infeasible

We see that all bad nominal solutions, except two of them, are “nearly capable” of withstanding
0.01%-uncertainty: a reliable solution with essentially the same value of the objective can be
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found already in the 5%-neighbourhood of the nominal solution. The situation changes dramat-
ically when the uncertainty level is increased to 0.1%: here, to get a reliable solution, one should
“reshape essentially” the nominal one in 12 of 23 cases. The latter phenomenon becomes even
stronger when the uncertainty level is further increased to 1%.

A somewhat surprising observation related to the data of Table 4 is that whenever a bad
nominal solution can be converted to a reliable one by a “5%-correction”, the value of the
objective at the resulting solution is nearly as good as the one corresponding to the best reliable
solution; the only exception is problem KB2 at the uncertainty level 0.1%.

Conclusions. We see that

1. In many cases the feasibility of the usual optimal solution to a Linear Programming pro-
gram can be heavily affected by quite small, from the practical viewpoint, perturbations
of the data. At the same time, there exists a systematic and computationally reasonable
way to construct reliable solutions, those capable to withstand data uncertainty of a given
level.

2. When passing from the usual optimal solution to a reliable one, we do not necessarily lose
a lot in optimality (in fact, for the NETLIB problems with 0.1%-perturbations in the data,
the losses never exceed 1%).

3. In many cases, a reliable solution cannot be obtained by a moderately small correction of
the nominal solution; in other words, the immunization methodology we have presented is
“essential”.
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