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Abstract

In the paper, we focus primarily on the problem of recovering a linear form gT x of unknown
“signal” x known to belong to a given convex compact set X ⊂ Rn from N independent
realizations of a random variable ι taking values in a finite set, the distribution p of ι being
affinely parameterized by x: p = Ax + b. With no additional assumptions on X and A, we
develop minimax optimal, within an absolute constant factor, and computationally efficient
estimation routine. We then apply this routine to recovering x itself in the Euclidean norm.

1 Introduction

In the sequel, we mainly focus on the estimation problem as follows:

Problem I: We observe N independent realizations i1, ..., iN of a random variable ι
taking values in a finite set, say, the set I = {1, ...,M}. The distribution of ι (which is
identified with a vector p from the standard simplex PM = {y ∈ RM : y ≥ 0,

∑
i yi = 1}

by setting pi = Prob{ι = i}, 1 ≤ i ≤ M) is affinely parameterized by n-dimensional
“signal” – vector of unknown parameters x known to belong to a given convex compact
set X ⊂ Rn: p = A(x) = [A1(x); ...; AM (x)], where A(·) is a given affine mapping with
A(X) ⊂ PM .

Our goal is to infer from the observations certain information on x, primarily, to estimate
a given linear form gT z of z ∈ Rn at the point x underlying our observations.

While the unknown x is assumed to be finite-dimensional, we allow the dimension to be arbi-
trarily large, thus addressing, essentially, a nonparametric estimation problem. In Nonparametric
Statistics, there exists an immense literature on various versions of Problem I, including numerous
papers on estimating linear forms, see, e.g., [2–4, 6–8, 10–13, 15–20, 22, 24–26, 28, 30, 32–39]
and references therein. To the best of our knowledge, the majority of papers on the subject focus
on “concrete” domains X (e.g., distributions on fine grids obtained by discretization of densities
from Sobolev balls), and investigate lower and/or upper bounds on the worst-case, w.r.t. x ∈ X,
quality to which the problem of interest can be solved. These bounds depend on the number of
observations N , and the question of primary interest is the behaviour of the bounds as N → ∞.
When the lower and the upper bounds coincide within a constant factor (or, ideally, within factor
(1 + o(1))) as N → ∞, the estimation problem is considered as being essentially solved, and the
estimation methods underlying the upper bounds are treated as optimal.
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The approach we take in this paper is of a different spirit. Except for the concluding Section 4,
we make no “structural assumptions” on X, aside of crucial for us assumptions of convexity and
compactness, and we make no assumptions on the affine mapping A(x). Clearly, with no structural
assumptions on X and A(·), explicit bounds on the risks of our estimates, same as bounds on
the minimax optimal risk, are impossible. What is possible – and this is our major goal in what
follows – is to demonstrate that when estimating linear forms, the worst-case risk of the estimate
we develop is within an absolute constant factor of the “ideal” (i.e., the minimax optimal) risk. It
should be added that while the optimal, within an absolute constant factor, worst-case risk of our
estimates is not available in a closed analytical form, it is “available algorithmically” – it can be
efficiently computed, provided that X is computationally tractable1.

While we are not aware of general results of the outlined spirit for Problem I, results of this
type do exist for the “regression counterpart” of Problem I, namely, for

Problem II: Given indirect noisy observations

y = Ax + σξ (1)

of unknown signal x known to belong to a given convex compact set X ⊂ Rn (A is a
given m× n matrix, ξ ∼ N (0, Im), σ > 0 is given), we want to estimate the value gT z
of a given linear form gT z of z ∈ Rn at the point x underlying our observations.

As shown by D. Donoho [8], for all commonly used loss functions, the minimax optimal affine in
y estimate in Problem II (this estimate can be easily built, provided that X is computationally
tractable) is minimax optimal, within an absolute constant factor, among all possible estimates.
In a sense, our results establish similar fact for estimating linear forms of the signal in the context
of Problem I, since our estimates also are “affine” – they are affine functions of the empirical
distribution of the discrete random variable ι induced by our observations.

The rest of this paper is organized as follows. In Section 2 we consider the Hypotheses Testing
version of Problem I, where one, given two convex subsets X1, X2 in X, is interested to test the
hypothesis x ∈ X1 vs. the alternative x ∈ X2. The central Section 3 focuses on the version of
Problem I where the goal is to estimate via the observations a given linear form of x. In the
concluding Section 4, we discuss briefly how our results from Section 3 related to Problem I and
the aforementioned results of Donoho [8] related to Problem II can be used in order to recover
the “entire” signal x underlying our observations, the model of observations being either Problem
I, or Problem II; as a loss function, we use the standard Euclidean norm on Rn. When passing
from recovering linear forms of the unknown signal to recovering the signal itself, we do impose
structural assumptions on X, but still make no structural assumptions on the affine mapping A(x)
(Problem I) and matrix A (Problem II), and our “optimality results” become weaker – instead of
“optimality within an absolute constant factor” we end up with statements like “the worst-case risk
of such-and-such estimate is in-between the minimax optimal risk and the latter risk to the power
χ”, with χ depending on the geometry of X (and close to 1 when this geometry is “good enough”).
The appendix contains an alternative proof (in our opinion, much simpler than the original one) of
the aforementioned Donoho’s theorem on minimax “almost-optimality” of affine estimates in the
context of Problem II.

1For details on computational tractability and complexity issues in Convex Optimization, see, e.g., [1, Chapter 4].
A reader not familiar with this area will not lose much when interpreting a computationally tractable convex set as
a set given by a finite system of inequalities pi(x) ≤ 0, i = 1, ..., m, where pi(x) are convex polynomials.
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2 Problem I: Hypotheses testing

In this Section, we focus on the case of Problem I as follows:

Hypotheses Testing (HT): In the situation of Problem I, given two closed convex subsets
Xi, i = 1, 2, of X, test the hypothesis x ∈ X1 vs. the alternative x ∈ X2.

2.1 The test

Let Y1, Y2 be two closed convex subsets in PM (recall that we identify vectors from PM with
probability distributions on the M -element index set I = {1, ..., M}). Assume that we are given N
independent realizations iN = [i1; ...; iN ] of a random variable ι distributed according to y ∈ PM

and want to distinguish between two hypotheses, Π1 and Π2, stating, respectively, that y ∈ Y1 and
that y ∈ Y2. A candidate decision rule in this problem is a function ψ(iN ) taking values 1 and 2;
for such a decision rule, its error probabilities εκ(ψ), κ = 1, 2, are defined as

εκ(ψ) = sup
y∈Yκ

ProbiN∼y×...×y

{
ψ(iN ) 6= κ

}
.

The test we intend to use is as follows.

Test ψφ,c: We choose a “weight vector” φ ∈ RM and a threshold c ∈ R and accept

hypothesis Π1 when
∑N

t=1 φit ≥ c, otherwise we accept Π2.

We start with a construction of “test parameters” (φ, c) based on “Bernstein approximation” [31].
Let us fix ν ∈ Y2. With iN ∼ νN = ν × ...× ν, the probability for a (φ, c)-test to accept hypothesis
Π1 is ProbiN∼νN {∑t φit ≥ c}. For every β > 0, this probability does not exceed the quantity

EiN∼νN

{
exp{

∑
t

β−1φit}
}

exp{−β−1c} = exp{−β−1c}
(∑

i∈I

νi exp{φi/β}
)N

.

We conclude that if ω ∈ (0, 1), then the condition

∃β > 0 : N ln

(∑

i∈I

νi exp{φi/β}
)
− β−1c ≤ ln(ω)

is a sufficient condition for the νN -probability to accept Π1 with test ψφ,c to be ≤ ω. We rewrite
this sufficient condition equivalently as

∃β > 0 : βN ln

(∑

i∈I

νi exp{φi/β}
)
− c + β ln(1/ω)

︸ ︷︷ ︸
Ψ(φ,β,c;ν)

≤ 0, (2)

the benefit being the fact that the function Ψ(φ, β, c; ν) is convex in (φ, β, c) in the domain β > 0
and is concave in ν ∈ PM . Indeed, the concavity in ν is evident; to verify the convexity, note that
the function H(φ, c; ν) = N ln

(∑
i∈I νi exp{φi}

) − c + ln(1/ω) clearly is convex in (φ, c), and the
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“projective transformation” F (u) 7→ βF (β−1u) is known to convert a convex function of u into a
convex in the domain β > 0 function of (u, β).

By similar argument, the condition

∃α > 0 : αN ln

(∑

i∈I

µi exp{−φi/α}
)

+ c + α ln(1/ω) ≤ 0 (3)

guarantees that the µN -probability to accept Π2 with the test ψφ,c is ≤ ω. We have arrived at the
following

Proposition 2.1 Assume that φ ∈ RM and α, β are such that

αN max
µ∈Y1

ln
(∑

i∈I

µi exp{−φi/α}
)

+ βN max
ν∈Y2

ln
(∑

i∈I

νi exp{φi/β}
)

+ (α + β) ln(1/ω) ≤ 0,

α > 0, β > 0
(4)

Setting

c =
1
2

[
βN max

ν∈Y2

ln

(∑

i∈I

νi exp{φi/β}
)
− αN max

µ∈Y1

ln

(∑

i∈I

µi exp{−φi/α}
)

+ (β − α) ln(1/ω)

]
,

(5)
we ensure that

ε1(ψφ,c) ≤ ω and ε2(ψφ,c) ≤ ω.

Proof. We have

αN max
µ∈Y1

ln
(∑

i∈I

µi exp{−φi/α}
)

+ c + α ln(1/ω)

= 1
2

[
αN max

µ∈Y1

ln
(∑

i∈I

µi exp{−φi/α}
)

+ βN max
ν∈Y2

ln
(∑

i∈I

νi exp{φi/β}
)

+ (α + β) ln(1/ω)
]
≤ 0

and similarly

βN max
ν∈Y2

ln
(∑

i∈I

νi exp{φi/β}
)
− c + β ln(1/ω)

= 1
2

[
αN max

µ∈Y1

ln
(∑

i∈I

µi exp{−φi/α}
)

+ βN max
ν∈Y2

ln
(∑

i∈I

νi exp{φi/β}
)

+ (α + β) ln(1/ω)
]
≤ 0.

We see that for every ν ∈ Y2, β, φ, c satisfy (2), so that the νN -probability to accept Π1 with the
test ψφ,c is ≤ ω, and for every µ ∈ Y1, α, φ, c satisfy (3), so that the µN -probability to accept Π2

with the same test also is ≤ ω. ¥
Remark 2.1 Note that (φ, α, β) is a solution to (4) if and only if (φ/(α+β), α/(α+β), β/(α+β))
solves the “normalized” system of constraints

αN max
µ∈Y1

ln
(∑

i∈I

µi exp{−φi/α}
)

+ βN max
ν∈Y2

ln
(∑

i∈I

νi exp{φi/β}
)

+ ln(1/ω) ≤ 0,

α > 0, β > 0, α + β = 1,

(6)

and of course every solution to the latter system solves (4) as well. Thus, we lose nothing when
working with (6) instead of (4).
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The advantage of the conditions (4), (6) is that they are represented by convex inequalities
in variables φ, α, β with efficiently computable (provided that Yi, i = 1, 2, are computationally
tractable) left hand sides and as such are “computationally tractable” – we can find efficiently a
solution to (4) or (6), provided that one exists.

2.2 Efficiency

We are about to demonstrate that our sufficient condition, even in somehow strengthened form, is
“nearly necessary” for the existence of a good test for distinguishing between Π1 and Π2. What
follows is a variation of well-known relations between Hellinger affinity and hypotheses testing (cf.,
e.g., [6, 7]).

Proposition 2.2 Let ω ∈ (0, 1).
(i) The relation

sup
µ∈Y1,ν∈Y2

[
N ln

(∑

i∈I

√
µiνi

)]
+ ln(1/ω) < 0 (7)

is sufficient for the feasibility of (6). When all vectors y ∈ Y1 ∪ Y2 are strictly positive, so that

κ ≡ min
µ∈Y1,ν∈Y2,i

min[µi, νi] > 0,

the same conclusion is true for the non-strict version

max
µ∈Y1,ν∈Y2

[
N ln

(∑

i∈I

√
µiνi

)]
+ ln(1/ω) ≤ 0 (8)

of (7), and in this case (6) admits a feasible solution φ, α, β with ‖φ‖∞ ≤ S = 1
4 ln(1/κ) and

α = β = 1/2.
(ii) Assume that (7) is not satisfied. Then one can find µ̄ ∈ Y1 and ν̄ ∈ Y2 such that for every

test ψ(iN ) one has either
ProbiN∼µ̄N {ψ(iN ) = 2} ≥ ω+ ≡ ω2/4,

or
ProbiN∼ν̄N {ψ(iN ) = 1} ≥ ω+.

Proof. Consider the function

F (φ; µ, ν) = N

[
ln

(∑

i∈I

µi exp{−φi}
)

+ ln

(∑

i∈I

νi exp{φi}
)]

.

This function clearly is continuous, concave in (µ, ν) ∈ Y1×Y2 and convex in φ ∈ RM . Since Y1×Y2

is a convex compact set, we have

inf
φ

max
µ∈Y1,ν∈Y2

F (φ; µ, ν) = max
µ∈Y1,ν∈Y2

inf
φ

F (φ; µ, ν). (9)

It is immediately seen that for (µ, ν) ∈ PM ×PM we have

inf
φ

F (φ;µ, ν) = 2N ln

(∑

i

√
µiνi

)
; (10)
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when both µ, ν are positive, a minimizer of the left hand side is given by

φi =
1
2

ln(µi/νi), i ∈ I. (11)

From (9), (10) it follows that in the case of (7) there exists φ such that

max
µ∈Y1,ν∈Y2

N

[
ln

(∑

i∈I

µi exp{−φi}
)

+ ln

(∑

i∈I

νi exp{φi}
)]

+ 2 ln(1/ω) ≤ 0,

meaning that (φ/2, α = β = 1/2) satisfy (4). In the case when µi ≥ κ > 0 and νi ≥ κ > 0 for all
µ ∈ Y1, ν ∈ Y2, the left hand side in (10) admits a minimizer satisfying (11), so that

sup
µ∈Y1,ν∈Y2

inf
φ

F (φ;µ, ν) = max
µ∈Y1,ν∈Y2

min
‖φ‖∞≤S

F (φ;µ, ν).

By the standard Saddle Point Theorem, we can interchange max and min in the right hand side,
thus arriving at

min
‖φ‖∞≤S

max
µ∈Y1,ν∈Y2

F (φ;µ, ν) = max
µ∈Y1,ν∈Y2

min
‖φ‖∞≤S

F (φ;µ, ν)

= max
µ∈Y1,ν∈Y2

inf
φ

F (φ;µ, ν) = max
µ∈Y1,ν∈Y2

N ln
(∑

i

√
µiνi

)
.

From this relation, same as above, it follows that if φ is a minimizer in min
‖φ‖∞≤S

max
µ∈Y1,ν∈Y2

F (φ; µ, ν)

and (8) takes place, then (φ/2, α = β = 1/2) satisfies (4). (i) is proved.
(ii): The function under sup in the left hand side of (7) is concave and upper semi-continuous on

Y1×Y2; thus, it either equals to −∞ on this set (this is the case when µiνi = 0 for all µ ∈ Y1, ν ∈ Y2

and all i), or the sup is achieved. In the first case, (7) clearly is satisfied, which is not so under the
premise of (ii); thus, under this premise there exist µ̄ ∈ Y1 and ν̄ ∈ Y2 such that

N ln

(∑

i

√
µ̄iν̄i

)
+ ln(1/ω) ≥ 0. (12)

Mow assume, on the contrary to what should be proved, that there exists a test ψ such that

ProbiN∼ν̄N {ψ(iN ) = 1} < ω+, ProbiN∼µ̄N {ψ(iN ) = 2} < ω+. (13)

Setting A = {iN : ψ(iN ) = 1} and B = {iN : ψ(iN ) = 2}, we have
∑

iN∈A

ν̄N
iN < ω+,

∑

iN∈B

µ̄N
iN < ω+,

whence
∑

iN

√
µ̄N

iN
ν̄N

iN
=

∑
iN∈A

√
µ̄N

iN
ν̄N

iN
+

∑
iN∈B

√
µ̄N

iN
ν̄N

iN

≤ (∑
iN∈A µ̄N

iN

)1/2 (∑
iN∈A ν̄N

iN

)1/2 +
(∑

iN∈B µ̄N
iN

)1/2 (∑
iN∈B ν̄N

iN

)1/2
< 2√ω+.

On the other hand, we have

∑

iN

√
µ̄N

iN
ν̄N

iN
=

∑

i1,...,iN∈I

√
µ̄i1 ...µ̄iN ν̄i1 ...ν̄iN =

(∑

i∈I

√
µ̄iν̄i

)N

,
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Figure 1: The support of η (magenta and red): 8× 8 point grid (grid steps 2) and the partitioning
of the range of η + ξ (blue) into 24× 24 squares (grid steps 1).

and we arrive at the inequality

(∑

i∈I

√
µ̄iν̄i

)N

< 2
√

ω+ = ω,

which is impossible by (12). ¥

2.3 Numerical illustration

Consider the situation where we observe the value of the sum η + ξ of two independent 2D random
vectors, with ξ ∼ N (0, I2) and η being a finite-valued random variable taking values from the
64-point grid G shown on Fig. 1. We denote by x the (unknown in advance) distribution of η; X is
the space of all probability distributions on G (that is, X is the standard 64-dimensional simplex).
We denote by G+ the part of G belonging to the non-negative quadrant (red points on Fig. 1).
Our goal is to distinguish between two hypotheses on x: x ∈ X1 = {x ∈ X :

∑
g∈G+

xg ≤ 0.4} and
x ∈ X2 = {x ∈ X :

∑
g∈G+

xg ≥ 0.6}.
We reduce the situation to the one described in Problem I by partitioning the range R2 of η + ξ

into 577 parts: the 576 = 24 × 24 squares shown on Fig. 1 and the complement to the union of
these squares; ι = ι(η + ξ) is the index of the part to which η + ξ belongs. With N = 1, we can
easily find the smallest ω = ωmin for which the inequality (6) associated with the problem at hand
has a solution (α∗, β∗, φ∗); computations result in ωmin = 1 − 0.004657. The solution (α∗, β∗, φ∗)
implies the optimal, with our approach, decision rule for distinguishing between our two hypotheses
x ∈ Xi, i = 1, 2, for every number N of observations; the upper bound on error probabilities
with N observations is ωN

min ≈ exp{−0.0047N}. E.g., with N = 1000, the error probabilities are
guaranteed to be ≤ 0.0094. In an experiment with 20,000 sample of randomly generated probability
distributions on G, with 10,000 distributions belonging to X1 and the remaining 10,000 belonging
to X2, the empirical probabilities to reject the hypothesis x ∈ Xi when it is true was 0.001 for i = 1
and 0 for i = 2.
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3 Problem I: Estimating linear form

Here we focus on the problem

Estimating Linear Form (ELF): In the situation of Problem I, given a linear form gT z

on Rn, estimate gT x.

3.1 Simple estimates

An estimate – candidate solution to our problem – is a function ĝ(iN ) : I × ... × I → R. Given
tolerance ε ∈ (0, 1), we define the ε-risk of such an estimate on X as

Risk(ĝ; ε) = inf
[
δ : sup

x∈X
ProbiN∼AN (x)=A(x)×...×A(x)

{|ĝ(iN )− gT x| > δ
}

< ε

]
,

and the minimax optimal ε-risk as

Risk∗(ε) = inf
bg(·)

Risk(ĝ; ε).

We call an estimate ĝ(iN ) simple, if it is of the form

ĝ(iN ) =
N∑

t=1

hit + c,

where h ∈ RM and c ∈ R. In other words, a simple estimate is an estimate which is affine in the
empirical distribution

π(iN ) =
1
N

[#{t : it = 1}; ...;#{t : it = M}]

of ι associated with observations iN . We denote by RiskS(ε) the best ε-risk achievable with simple
estimates.

3.2 Main result

Our main result is as follows:

Theorem 3.1 Let ε ∈ (0, 1/4). Then, for every δ > 0, we can point out a simple estimate ĝε,δ(·)
satisfying the relation

Risk(ĝε,δ; ε) ≤ ϑ(ε)Risk∗(ε) + δ, ϑ(ε) =
2 ln

(
2
ε

)

ln
(

1
4ε

) (14)

(note that ϑ(ε) → 2 as ε → +0); in particular,

RiskS(ε) ≤ ϑ(ε) Risk∗(ε).

In addition, the estimate ĝε,δ is readily given by a solution to an explicit convex program and as such
can be found in a computationally efficient fashion, provided that X is computationally tractable.
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Proof. Consider the function

Φ(α, β, φ; x, y) = αN ln
(∑

i Ai(x) exp{α−1φi}
)

+ βN ln
(∑

i Ai(y) exp{−β−1φi}
)

+gT y − gT x : U × V → R,
U = {(α, β, φ) : α > 0, β > 0, φ ∈ RM},
V = {(x, y) : x, y ∈ X}.

(15)

For ω ≥ 0, let
2S(ω) = inf

(α,β,φ)∈U
max

(x,y)∈V
[Φ(α, β, φ; x, y) + (α + β)ω] . (16)

We are about to demonstrate that
A. Whenever 0 < ε < 1/4 and δ > 0, we can point out a simple estimate ĝε,δ(·) such that

Risk(ĝε,δ; ε) ≤ S(ln(2/ε)) + δ, and ĝ is readily given by a solution to a convex program;
B. One has S(ln(2/ε)) ≤ ϑ(ε)Risk∗(ε).

Clearly A and B combine to yield the statement of Theorem.

A is given by the following

Lemma 3.1 Let ε ∈ (0, 1) and δ > 0, so that, by definition of S(·), there exists (ᾱ, β̄, φ̄) ∈ U such
that

max
(x,y)∈V

Φ(ᾱ, β̄, φ̄; x, y) + (ᾱ + β̄) ln(2/ε) < 2[S(ln(2/ε)) + δ]. (17)

Setting

c = 1
2

[
max
y∈X

{
β̄N ln

(∑

i

Ai(y) exp{−β̄−1φ̄i}
)

+ gT y + β̄ ln(2/ε)
}

︸ ︷︷ ︸
J

−max
x∈X

{
ᾱN ln

(∑

i

Ai(x) exp{ᾱ−1φ̄i}
)
− gT x + ᾱ ln(2/ε)

}

︸ ︷︷ ︸
I

]
,

(18)

the simple estimate

ĝε,δ(iN ) =
n∑

t=1

φ̄it + c

satisfies Risk(ĝε,δ; ε) ≤ S(ln(2/ε)) + δ.

Proof. Setting D = S(ln(2/ε)) + δ, observe that the left hand side in (17) is nothing but I + J ,
that is, I + J < 2D. We now have

max
x∈X

{
ᾱN ln

(∑

i

Ai(x) exp{ᾱ−1φ̄i}
)

+ c− gT x + ᾱ ln(2/ε)

}
= I +

J − I

2
=

I + J

2
< D (19)

and

max
y∈X

{
β̄N ln

(∑

i

Ai(y) exp{β̄−1φ̄i}
)
− c + gT y + β̄ ln(2/ε)

}
= J − J − I

2
=

I + J

2
< D. (20)
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Now, for x ∈ X we have

ProbiN∼AN (x)

{∑
t φ̄it + c > gT x + D

}
= ProbiN∼AN (x)

{
exp{∑t ᾱ−1φ̄it} exp{ᾱ−1(c− gT x)} exp{−ᾱ−1D} > 1

}
≤ EiN∼AN (x)

{
exp{∑t ᾱ−1φ̄it} exp{ᾱ−1(c− gT x)} exp{−ᾱ−1D}}

=
(∑

i Ai(x) exp{ᾱ−1φ̄i}
)N exp{ᾱ−1(c− gT x)} exp{−ᾱ−1D},

whence

ln
(
ProbiN∼AN (x)

{∑
t φ̄it + c > gT x + D

})

≤ N ln
(∑

i Ai(x) exp{ᾱ−1φ̄i}
)

+ ᾱ−1(c− gT x)} − ᾱ−1 I+J
2 − ᾱ−1

[
D − I+J

2

]
≤ ln(ε/2)− ᾱ−1

[
D − I+J

2

]
,

(21)

where the concluding inequality is given by (19). Similarly,

ProbiN∼AN (x)

{∑
t φ̄it + c < gT x−D

}
= ProbiN∼AN (x)

{
exp{−∑

t β̄−1φ̄it} exp{β̄−1(−c + gT x)} exp{−β̄−1D} > 1
}

≤ EiN∼AN (x)

{
exp{−∑

t β̄−1φ̄it} exp{β̄−1(−c + gT x)} exp{−β̄−1D}}

=
(∑

i Ai(x) exp{−β̄−1φ̄i}
)N exp{β̄−1(−c + gT x)} exp{−β̄−1D},

whence

ln
(
ProbiN∼AN (x)

{∑
t φ̄it + c < gT x−D

})

≤ N ln
(∑

i Ai(x) exp{−β̄−1φ̄i}
)

+ β̄−1(−c + gT x)} − β̄−1 I+J
2 − β̄−1

[
D − I+J

2

]
≤ ln(ε/2)− β̄−1

[
D − I+J

2

]
,

(22)

where the concluding inequality is given by (20). We see that

sup
x∈X

ProbiN∼AN (x)

{
|
∑

t

φ̄it + c− gT x| > D

}
≤ ε exp{−min[ᾱ−1, β̄−1]

[
D − I + J

2

]
} < ε,

as claimed. ¥.

B is given by the following fact:

Lemma 3.2 When ε ∈ (0, 1/4), one has

Risk∗(ε) ≥
ln

(
1
4ε

)

2 ln
(

2
ε

)S(ln(2/ε)). (23)

Proof. 10. Assume, on the contrary to what should be proved, that

Risk∗(ε) + κ ≤ ln
(

1
4ε

)

2 ln
(

2
ε

)S(ln(2/ε)) (24)

with some κ > 0, and let us lead this assumption to a contradiction. Let us make a simple
observation as follows:
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Lemma 3.3 S(γ) is a nonnegative concave function of γ ≥ 0. In particular, S(θγ) ≤ θS(γ)
whenever θ ≥ 1 and γ ≥ 0.

Proof. Let x̄ ∈ X. Then

Φ(α, β, φ; x̄, x̄) = αN ln
( ∑

i

Ai(x̄) exp{α−1φi}
︸ ︷︷ ︸
≥exp{α−1

P
i Ai(x̄)φi}

)
+ βN ln

(∑

i

Ai(x̄) exp{−β−1φi}
︸ ︷︷ ︸
≥exp{−β−1

P
i Ai(x̄)φi}

) ≥ 0,

whence maxx,y∈X Φ(α, β, φ; x, y) ≥ 0 and therefore S(γ) is nonnegative when γ ≥ 0. By construc-
tion, S(γ) is the infinum of a family of affine functions of γ and as such is concave. ¥

Let us set

γ =
1
2

ln
(

1
4ε

)
. (25)

20. Since S(·) is concave and nonnegative on the nonnegative ray, we have

2S(γ) = inf
(α,β,φ)∈U

max
x,y∈X

[
Φ(α, β, φ; x, y) + (α + β)γ︸ ︷︷ ︸

Ψ(α,β,φ;x,y)

] ≥ (γ/ ln(2/ε))2S(ln(2/ε)) ≥ 2 Risk∗(ε) + 2κ,

(26)
the concluding ≥ being given by (24). The function Ψ is continuous on U×V , concave in (x, y) ∈ V
and convex in (α, β, φ) ∈ U . Since both U and V are convex sets and V is compact, we have

inf
α,β,φ

max
x,y∈X

Ψ(α, β, φ; x, y) = max
x,y∈X

inf
(α,β,φ)∈U

Ψ(α, β, φ;x, y)
︸ ︷︷ ︸

ψ(x,y)

, (27)

and, besides this, ψ(x, y) is upper semicontinuous on V and concave on V function. As such, it
attains its maximum over x, y ∈ X at certain (x̄, ȳ). Invoking (26), (27), we get

∀(α > 0, β > 0, φ) : Φ(α, β, φ; x̄, ȳ) + (α + β)γ ≥ 2Risk∗(ε) + 2κ,

whence, recalling the definition of Φ,

∀(α > 0, β > 0, φ) :
αN ln

(∑
i Ai(x̄) exp{α−1φi}

)
+ βN ln

(∑
i Ai(ȳ) exp{−β−1φi}

)
+ (α + β)γ

≥ 2Risk∗(ε) + gT [x̄− ȳ] + 2κ.
(28)

30. We claim that

(a) gT [ȳ − x̄] ≥ 2 Risk∗(ε) + 2κ,
(b) ∀(α > 0, β > 0, φ) :

αN ln
(∑

i Ai(x̄) exp{α−1φi}
)

+ βN ln
(∑

i Ai(ȳ) exp{−β−1φi}
)

+ (α + β)γ ≥ 0.
(29)

Indeed, the inequality in (28) holds true for φ = 0 and all positive α, β, that is, (α + β)γ ≥
2Risk∗(ε) + gT [x̄ − ȳ] + 2κ for all α, β ≥ 0, which implies (29.a). To prove (29.b), assume for a
moment that there exist ᾱ > 0, β̄ > 0 and φ̄ such that

w ≡ ᾱN ln

(∑

i

Ai(x̄) exp{ᾱ−1φ̄i}
)

+ β̄N ln

(∑

i

Ai(ȳ) exp{−β̄−1φ̄i}
)

+ (ᾱ + β̄)γ < 0.

11



Setting αt = tᾱ, βt = tβ̄ and φt = tφ̄, we see that along the sequence {αt, βt, φ
t}∞t=1 the left hand

side in the inequality in (28) is tw → −∞, t →∞, which is forbidden by (28). This contradiction
completes the proof of (29.b).

40. By the definition of ε-risk, there exists ε′ < ε and an estimate ĝ(iN ) such that

sup
x∈X

ProbiN∼AN (x){|ĝ(iN )− gT x| ≥ Risk∗(ε) + κ/2} ≤ ε′.

Setting

ψ(iN ) =
{

1, ĝ(iN ) ≤ 1
2gT [x̄ + ȳ]

−1, otherwise
,

we get
ProbiN∼AN (x̄)

{
ψ(iN ) 6= 1

} ≤ ProbiN∼AN (x̄)

{
ĝ(iN ) ≥ 1

2gT [ȳ + x̄]
}

≤ ProbiN∼AN (x̄)

{
ĝ(iN ) ≥ gT x̄ + Risk∗(ε) + κ

}
,

since by (29.a) we have gT x̄ ≤ 1
2gT [ȳ + x̄]− Risk∗(ε)− κ. It follows that

ProbiN∼AN (x̄)

{
ψ(iN ) 6= 1

} ≤ ε′. (30)

By similar argument, we have

ProbiN∼AN (ȳ)

{
ψ(iN ) 6= −1

} ≤ ε′. (31)

Setting µi = Ai(x̄), νi = Ai(ȳ) and I = {iN : ψ(iN ) = −1}, we conclude that

∑

iN∈I

N∏

t=1

µit ≤ ε′ and
∑

iN 6∈I

N∏

t=1

νit ≤ ε′,

whence
(∑

i

√
µiνi

)N =
∑

iN

√
µN

iN
νN

iN
=

∑
iN∈I

√
µN

iN
νN

iN
+

∑
iN 6∈I

√
µN

iN
νN

iN

≤
√∑

iN∈I µN
iN

√∑
iN∈I νN

iN
+

√∑
iN 6∈I µN

iN

√∑
iN 6∈I νN

iN

≤ 2
√

ε′,

whence

N ln

(∑

i

√
µiνi

)
≤ 1

2
ln(4ε′). (32)

On the other hand, from (29.b) it follows that

inf
φ

[
N ln

(∑

i

µi exp{φi}
)

+ N ln

(∑

i

νi exp{−φi}
)

+ 2γ

]
≥ 0,

whence, passing to limit along the sequence φt of values of φ given by

φt
i





= 1
2 ln(νi/µi), µi > 0 and νi > 0

→ +∞, t →∞, µi = 0 and νi > 0
→ −∞, t →∞, µi > 0 and νi = 0
= 0, µi = νi = 0.

,
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we get 2N ln
(∑

i

√
µiνi

) ≥ −2γ, that is,

N ln

(∑

i

√
µiνi

)
≥ 1

2
ln(4ε),

which is impossible due to (32) combined with ε′ < ε. We have arrived at a desired contradiction.
¥

3.3 Modifications

3.3.1 A simplification

A close inspection reveals that the proof of Theorem 3.1 remains valid when we restrict the param-
eters α, β to be equal to each other instead of being independent. Thus, the following version of
Theorem 3.1 and Lemmas 3.1 – 3.2 takes place:

Theorem 3.2 Let ε ∈ (0, 1/4). Then, for every δ > 0, we can point out a simple estimate g̃ε,δ(·)
satisfying the relation (14). This estimate can be built as follows. Let

Φ̃(α, φ; x, y) = αN
[
ln

(∑
i Ai(x) exp{α−1φi}

)
+ ln

(∑
i Ai(y) exp{−α−1φi}

)]

+gT y − gT x : Ũ × V → R,

Ũ = {(α, φ) : α > 0, φ ∈ RM},
V = {(x, y) : x, y ∈ X}.

(33)

and
2S̃(ω) = inf

(α,φ)∈eU
max

(x,y)∈V

[
Φ̃(α, φ; x, y) + 2αω

]
, (34)

so that for a given δ > 0 there exist α̃ > 0 and φ̃ such that

max
x,y∈X

[
Φ̃(α̃, φ̃) + 2α̃

]
≤ 2S̃(ln(2/ε)) + δ. (35)

Setting

c = 1
2

[
maxy∈X

{
α̃N ln

(∑
i Ai(y) exp{−α̃−1φ̃i}

)
+ gT y + α̃ ln(2/ε)

}

−maxx∈X

{
α̃N ln

(∑
i Ai(x) exp{α̃−1φ̃i}

)
− gT x + α̃ ln(2/ε)

}]
,

(36)

the simple estimate

g̃ε,δ(iN ) =
n∑

t=1

φ̃it + c

satisfies Risk(g̃ε,δ; ε) ≤ S̃(ln(2/ε)) + δ.
Besides this,

Risk∗(ε) ≥ ϑ−1(ε)S̃(ln(2/ε)), ϑ(ε) =
2 ln

(
2
ε

)

ln
(

1
4ε

) ,

whence
Risk(g̃ε,δ; ε) ≤ ϑ(ε)Risk∗(ε) + δ.
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3.3.2 Computational issues

Our local goal is to investigate the structure of function S̃(·) and the possibilities to compute
associated simple estimates. Same as in the proof of Lemma 3.2, we can rewrite the expression for
S̃ equivalently as

2S̃(ω) = max
x,y∈X

Ψω(x, y),

Ψω(x, y) = inf
α>0,φ

{
αN

[
ln

(∑
i Ai(x) exp{α−1φ}) + ln

(∑
i Ai(y) exp{−α−1φ})] + 2αω

+gT y − gT x

} (37)

We now claim that

Ψω(x, y) =

{
gT [y − x], (x, y) ∈ Ṽω

−∞, (x, y) ∈ (X ×X)\Ṽω
,

Ṽω =
{

(x, y) ∈ X ×X : N ln
(∑

i

√
Ai(x)Ai(y)

)
+ ω ≥ 0

}
.

(38)

Indeed, it is immediately seen that

infφ Nα
[
ln

(∑
i Ai(x) exp{α−1φ}) + ln

(∑
i Ai(y) exp{−α−1φ})]

= 2Nα ln
(∑

i

√
Ai(x)Ai(y)

)
,

so that (37) reads

Ψω(x, y) = inf
α>0

2α

[
N ln

(∑

i

√
Ai(x)Ai(y)

)
+ ω

]
+ gT [y − x].

The right hand side in this expression is −∞ outside of Ṽω and is equal to gT [y− x] on
Ṽω, and we arrive at (38).

Recalling the first equality in (37), we get

S̃(ω) = max
(x,y)∈eVω

1
2
gT [y − x]. (39)

To proceed to computational issues, assume that there exists κ > 0 such that Ai(x) ≥ κ for
all x ∈ X and all i. Note that by (39) S̃(ω), ω = ln(2/ε), is the optimal value in the convex
optimization problem

max
x,y

{
1
2
gT [y − x] :

x ∈ X, y ∈ X (a)
f(x, y) ≡ exp{−ω/N} −∑

i

√
Ai(x)Ai(y) ≤ 0 (b)

}
(P )

((b) is an equivalent form of the constraint cutting Ṽω off X ×X). The problem clearly is solvable.
By convex programming theory, an optimal solution (x̄, ȳ) to this problem can be augmented
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by Lagrange multiplier ν ≥ 0 such that the vectors ex = ∂
∂x

∣∣∣∣
(x,y)=(x̄,ȳ)

[
1
2gT x + νf(x, y)

]
, ey =

∂
∂y

∣∣∣∣
(x,y)=(x̄,ȳ)

[−1
2gT x + νf(x, y)

]
belong to normal cones of X at the points x̄, ȳ, respectively:

∀(x, y ∈ X) : eT
x (x− x̄) ≥ 0, eT

y (y − ȳ) ≥ 0. (40)

After x̄, ȳ, ν are found, we can convert these data straightforwardly into a simple estimate with the
ε-risk S̃(ω) = S̃(ln(2/ε)) as follows. There are two possible cases: (a) ν = 0 and (b) ν > 0. In
the case of (a), (40) implies that (x̄, ȳ) is an optimal solution to the problem obtained from (P ) by
eliminating the constraint (P.b), that is, gT ȳ is the maximum, and gT x̄ is the minimum of gT x on
X. In this case, an estimate which reproduces gT x, x ∈ X, with the risk 1

2gT [ȳ− x̄] = S̃(ω) is trivial
– this is the constant estimate g̃(iN ) = 1

2gT [ȳ + x̄]. Note that this case indeed takes place when
ω = ln(2/ε) is large enough, that is, given the number of observations, our reliability requirement
is too strong to allow for a nontrivial estimation.

Now assume that ν > 0. In this case, when setting

W =
∑

i

√
Ai(x̄)Ai(ȳ), α =

ν

N
W, φi = α ln

(
νW

αN

√
Ai(ȳ)/Ai(x̄)

)
, (41)

it is straightforward to verify that the function Φ̃(α, φ; x, y)+2αω attains its maximum over x, y ∈ X
at the point (x̄, ȳ), and the maximal value is exactly 2S̃(ω). Recalling that ω = ln(2/ε) and
invoking Theorem 3.2, our α, φ can be straightforwardly converted into a simple estimate with
ε-risk S̃(ln(2/ε)). The bottom line is that such an estimate is readily given by an optimal solution
to the convex optimization problem (P ) augmented by the associated Lagrange multiplier ν. Note
that (high accuracy approximations of) these data are produced, in a polynomial time fashion, by
every “intelligent” convex programming algorithm.

3.4 Example: Tomography problem

Consider the following somehow simplified model of Positron Emission Tomography (PET). There
are n sources of particles; the particles originating at j-th source form a Poisson process with
parameter xj , and these processes are independent of each other. The vector x = [x1; ...; xn] is
known to belong to a given convex compact set X ⊂ Rn

+. There are M detectors, and a particle
emitted by source j can be either registered at the same instant by exactly one of the detectors,
or is missed at all. The probabilities for a particle emitted by source j at certain time instant t
to be registered at this instant by detector i are known and form a M × n matrix P = [pij ≥ 0],
with

∑
j pij ≤ 1, 1 ≤ i ≤ M . We observe the numbers µi of particles registered by every one of

the detectors in time interval 0 ≤ t ≤ 1 and intend to infer from these observations an estimate of
gT x, g ∈ Rn being given.

In “actual PET”, a patient is injected a radioactive fluid (“tracer”) and is placed in a cylinder
with the surface split into small cells. Now, every disintegration act in the tracer produces a
positron which annihilates with a near-by electron, producing two γ-quanta running in opposite
directions from the annihilation point at the speed of light. The orientation of the resulting
“line of response” (LOR) passing through the annihilation point is completely random. If this
orientation is such that the line crosses the cylinder’s surface at two points, the corresponding
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cells are nearly simultaneously hit by γ-quanta. Such an event (two cells are hit within a very
narrow time window) is registered. When modelling this process, the sources of “particles” are
voxels – small 3D cubes into which we split the interior of the cylinder, the detectors are pairs
of cells (called bins), and pij is (easily computable from the geometry of the device) probability
for a LOR (“particle”) originating in voxel j to be registered by pair i of the cells.

The tracer is chosen in such a way that it concentrates in “areas of interest” (e.g., in the areas
of high metabolic activity in tumor diagnosis), and the distribution of tracer between the voxels
plays the role of the parameter vector x.

This problem as it is stated does not fit the framework of Problem I – instead of N independent
observations of a discrete random variable with distribution affinely parameterized by x, we have a
single observation of random variable with distribution nonlinearly depending on x. Nevertheless,
the problem can be reduced to Problem I, namely, as follows. Given integer N > maxx∈X

∑
j xj ,

let us split the time interval [0, 1] into N consecutive intervals D1, ..., DN of duration ∆ = 1/N
each, and consider an “artificial” model as follows: in time interval Dt, the sources either emit no
particles at all, which happens with probability 1 − ∆

∑
j xj , or exactly one particle is emitted,

and its origin is j-th source with probability xj∆. The emitted particle, if any, is registered by
detector i with probability pij , where j is the source of the particle. Finally, emission/detection
processes at time slots D1, ..., DN are independent of each other. In this new problem, we do have
N independent observations of a discrete random variable ι which takes value i, 1 ≤ i ≤ M , with
probability A∆

i (x) = ∆
∑

j pijxj , and takes additional value 0 (“no particle in time slot of duration
∆ is registered”) with probability A∆

0 (x) = 1−∑M
i=1 A∆

i (x). Note that a simple estimate, associated
with our new observation model, is an affine function of the numbers of particles registered by every
one of the detectors in the time interval [0, 1]. At the same time, as N → ∞, the distribution of
the random vector comprised of these numbers approaches the distribution of the observations in
the “true” model, so that the larger is N , the closer is the artificial model to the true one.

Now, problem (39) responsible for a “good” simple estimate for the artificial model reads

S̃N (ω) = max
x,y∈X

{
1
2
gT [y − x] :

M∑

i=0

√
A∆

i (x)A∆
i (y) ≥ exp{−ω/N}

}
, ω = ln(2/ε). (PN )

When replacing the constraint with the equivalent constraint

FN (x, y) ≡ N

[
M∑

i=0

√
A∆

i (x)A∆
i (y)− exp{−ω/N}

]
≥ 0 (42)

we observe that as N → ∞, the function FN (x, y) converges uniformly on X ×X to the function
F (x, y) =

∑M
i=1

√
ai(x)aj(y) − 1

2

[∑M
i=1[ai(x) + ai(y)]

]
+ ω, where ai(x) =

∑
j pijxj . Thus, the

problems (PN ) “have a limit” as N →∞, and the limiting problem is

Opt = max
x,y∈X

{
1
2
gT [y − x] : h(x, y) ≡ 1

2

M∑

i=1

[√
ai(x)−

√
ai(y)

]2
− ω ≤ 0

}
. (P∞)

We can expect that an optimal solution (x̄, ȳ) of (P∞) can be converted into an affine in µ =
[µ1; ...;µM ] estimate of gT x via the actual observations µ, and that the ε-risk of this estimate on
X is within an absolute constant factor of the minimax optimal ε-risk associated with the true
problem. We are about to demonstrate that this is indeed the case, provided that ai(x) are positive
on X, i = 1, ...,M .
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Building the estimate. Let ω = ln(2/ε). The associated problem (P∞) clearly is convex and feasible,
and h is smooth on X ×X due to ai(x) > 0, x ∈ X. It follows that the problem is solvable, and an optimal
solution (x̄, ȳ) to this problem can be augmented by a nonnegative Lagrange multiplier ν in such a way that
for the vectors

ex ≡ ∇x

∣∣∣∣
x=x̄,y=ȳ

[
1
2gT [x− y] + νh(x, y)

]
= 1

2

[
g + νp− ν

∑
i

√
ai(ȳ)/ai(x̄)pi

]
,

pi = ∇ai(x), p =
∑

i pi,

ey ≡ ∇y

∣∣∣∣
x=x̄,y=ȳ

[
1
2gT [x− y] + νh(x, y)

]
= 1

2

[
−g + νp− ν

∑
i

√
ai(x̄)/ai(ȳ)pi

] (43)

it holds
∀x, y ∈ X : eT

x (x− x̄) ≥ 0, eT
y (y − ȳ) ≥ 0, (44)

and, in addition,
νh(x̄, ȳ) = 0. (45)

It is possible that ν = 0. Then (43), (44) imply that (x̄, ȳ) maximize 1
2gT [y − x] in x, y ∈ X, so that ȳ is a

maximizer, x̄ is a minimizer of gT x over x ∈ X, and Opt = 1
2gT [ȳ − x̄]. In this case, the estimate of gT x

associated with the optimal solution of (P∞) is the constant estimate ĝ ≡ 1
2gT [ȳ + x̄], and the ε-risk of this

estimate clearly is equal to Opt.
Now let ν > 0. Let us set

φi =
1
2

ln(ai(ȳ)/ai(x̄)),

and consider the affine in x, y function

Ψ(x, y) = ν
∑

i

[ai(x) exp{φi} − ai(x)] + ν
∑

i

[ai(y) exp{−φi} − ai(y)] + gT [y − x] + 2νω.

We have

∇xΨ(x, y) = ν
∑

i

√
ai(ȳ)/ai(x̄)pi − νp− g = −2ex, ∇yΨ(x, y) = ν

∑

i

√
ai(x̄)/ai(ȳ)pi − νp + g = −2ey,

whence, by (44), Ψ attains its maximum in x, y ∈ X at the point (x̄, ȳ):

∀x, y ∈ X : Ψ(x, y) ≤ Ψ(x̄, ȳ) = ν
∑

i

[
ai(x̄)

√
ai(ȳ)/ai(x̄)− ai(x̄)

]
+ ν

∑
i

[
ai(ȳ)

√
ai(x̄)/ai(ȳ)− ai(ȳ)

]

+gT [ȳ − x̄] + 2νω = 2ν
[∑

i

√
ai(x̄)ai(ȳ)− 1

2

∑
i[ai(x̄) + ai(ȳ)] + ω

]
+ gT [ȳ − x̄] = 2Opt,

(46)
where the concluding inequality is given by (45) combined with ν > 0. Recalling the definition of Ψ, (46)
reads

max
x∈X

[
ν

∑

i

[ai(x) exp{φi} − ai(x)] + νω − gT x

]

︸ ︷︷ ︸
I

+ max
y∈X

[
ν

∑

i

[ai(y) exp{−φi} − ai(y)] + νω + gT y

]

︸ ︷︷ ︸
J

≤ 2Opt.

(47)
Now let us set

c =
J − I

2
;

Then (47) reads

(a) maxx∈X

[
ν

∑
i [ai(x) exp{φi} − ai(x)] + νω − gT x + c

]
= I + J−I

2 = I+J
2 ≤ Opt,

(a) maxx∈X

[
ν

∑
i [ai(x) exp{−φi} − ai(x)] + νω + gT x− c

]
= J − J−I

2 = I+J
2 ≤ Opt.

(48)
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Consider the affine in µ estimate
ĝ(µ) = ν

∑

i

φiµi + c (49)

and let us prove that its ε-risk on X does not exceed Opt. Indeed, let δ > 0 and x ∈ X. Using the standard
properties of Poisson processes we conclude that the components µi, i = 1, ...,M , of the observation µ in the
true problem, the underlying signal being x, are independent of each other Poisson random variables with
the parameters of the Poisson distributions a1(x),...,aM (x), respectively. Denoting by P (x) the distribution
of observations, x being the underlying signal, and setting a(x) =

∑
i ai(x), we have

Probµ∼P (x)

{
ĝ(µ)− gT x > Opt + δ

} ≤ Eµ∼P (x)

{
exp{ν−1[ĝ(µ)− gT x−Opt− δ]}}

= exp{ν−1[c− gT x−Opt− δ]}
M∏
i=1

Eµi∼Poisson(ai(x)) {exp{µiφi}}

= exp{ν−1[c− gT x−Opt− δ]}
M∏
i=1

[∑∞
k=0

ak
i (x) exp{−ai(x)}

k! exp{kφi}
]

= exp{ν−1[c− gT x−Opt− δ]}
M∏
i=1

exp{ai(x) exp{φi} − ai(x)}
= exp

{
ν−1

[
ν [

∑
i ai(x) exp{φi} − a(x)] + c− gT x−Opt− δ

]} ≤ exp{−ω − ν−1δ},
where the concluding inequality is given by (48.a). Recalling the definition of ω, we arrive at

Probµ∼P (x)

{
ĝ(µ)− gT x > Opt + δ

} ≤ ε′/2 < ε/2,

with ε′ independent of x. Similar computation, with (48.b) substituted for (48.a), results in

Probµ∼P (x)

{
ĝ(µ)− gT x < −Opt− δ

} ≤ ε′/2 < ε/2;

since x ∈ X is arbitrary, we see that the ε-risk of the estimate ĝ on X is ≤ Opt + δ for every δ ≥ 0, that is,
this risk is ≤ Opt, as claimed.

Near-optimality of the estimate. We claim that the optimal value Opt in (P∞) (which, as we have

just seen, is the ε-risk of the affine in µ estimate we have built) is within the factor ϑ =
2 ln( 2

ε )
ln( 1

4ε )
of the minimax

optimal ε-risk Risk∗(ε) in the Tomography problem.
Indeed, assume that our claim is not valid, that is, that there exist an estimate g∗(µ), R < Opt/ϑ and

ε′ < ε such that
sup
x∈X

Probµ∼P (x)

{|g∗(µ)− gT x| > R
} ≤ ε′, (50)

where, as above, P (x) is the distribution of observations µ in the Tomography problem, the underlying
signal being x. Let us lead this assumption to a contradiction. Consider N -th approximating model of
observations, and let PN (·) be the distribution of the “particle count” in this model, that is, the random
vector with i-th coordinate, i = 0, 1, ...,M , being the total number of particles registered by i-th detector in
the time period 0 ≤ t ≤ 1. Both PN (x) and P (x) are probability distributions on a common discrete set (the
set Z+

M of nonnegative M -dimensional integral vectors); from the compactness of X and the construction of
our approximating models it follows that the distributions PN (x) uniformly in x ∈ X converge in probability,
as N → ∞, to P (x); since we are speaking about distributions on a common countable set, it follows that
for every δ > 0 there exists Nδ such that

∀(x ∈ X, A ⊂ ZM
+ , N ≥ Nδ) : |PN (x){A} − P (x){A}| ≤ δ.

Now let ε′′ ∈ (ε′, ε). From the just described convergence of distributions PN (·) to P (·) it follows immediately
that with properly chosen N0 we have

N ≥ N0 ⇒ sup
x∈X

Probµ∼PN (x)

{|g∗(µ)− gT x| > R
}

< ε′′,
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whence also
∀(N ≥ N0) : RiskN,∗(ε′′) ≤ R, (51)

where RiskN,∗(ε′′) is the minimax optimal ε′′-risk in N -th approximating problem. Now, recall that Opt
is the optimal value in problem (P∞) with ω = ln(2/ε), and (x̄, ȳ) is an optimal solution to this problem.
Setting ω′′ = ln(2/ε′′) > ω, we conclude that

1
2

M∑

i=1

[√
ai(x̄)−

√
ai(ȳ)

]2

− ω′′ < 0,

whence

N

[
M∑

i=0

√
A∆

i (x̄)A∆
i (ȳ)− exp{−ω′′/N}

]
< 0

for all large enough values of N (cf. the derivation of (P∞)). In other words, for all large enough values of N ,
(x̄, ȳ) is a feasible solution to the problem (PN ) with ω replaced with ω′′, whence S̃N (ω′′) ≡ S̃N (ln(2/ε′′)) ≥
Opt for these N . By Theorem 3.2, we have RiskN,∗(ε′′) ≥ ϑ−1S̃N (ln(2/ε′′)) ≥ ϑ−1Opt. Invoking (51), we
conclude that R ≥ ϑ−1Opt, which is a desired contradiction (look at the origin of R).

3.5 Adaptive version of the estimate

Let X1 ⊂ X2 ⊂ ... ⊂ XK be a nested collection of nonempty convex compact sets in Rn. Consider
a modification of Problem I where the set X, instead of being given in advance, is known to be
one of the sets of the collection. Given a linear form gT z on Rn, let Riskk(ĝ; ε) and Riskk

∗(ε) be,
respectively, the ε-risk of an estimate ĝ on Xk, and the minimax optimal ε-risk of recovering gT x
on Xk. Let also Sk(·) be the function (16) associated with X = Xk. As it is immediately seen, the
functions Sk(·) grow with k. Our goal is to modify the estimate ĝ we have built in such a way that
the ε-risk of the modified estimate on Xk will be “nearly” Riskk

∗(ε) for every k ≤ K. This goal can
be achieved by a straightforward application of the well-known Lepskii’s adaptation scheme [26] as
follows.

Given δ > 0, let δ′ ∈ (0, δ), and let ĝk(·) be the simple estimate with the (ε/K)-risk on Xk not
exceeding Sk(ln(2K/ε)) + δ′ given by the construction of Lemma 3.2 applied with ε/K substituted
for ε and Xk substituted for X. Then,

∀(k ≤ K) : sup
x∈Xk

ProbiN∼(A(x))N

{|ĝk(iN )− gT x| > Sk(ln(2K/ε)) + δ
} ≤ ε′/K < ε/K. (52)

Given observation iN , let us say that the index k ≤ K is iN -good, if

∀(k′, k ≤ k′ ≤ K) : |ĝk′(iN )− ĝk(iN )| ≤ Sk(ln(2K/ε)) + Sk′(ln(2K/ε)) + 2δ. (53)

Note that iN -good indexes do exist (e.g., k = K). Given iN , we can find the smallest iN -good
index k = k(iN ); our estimate is nothing but ĝ(iN ) = ĝk(iN )(iN ).

Proposition 3.1 Assume that ε ∈ (0, 1/4), and let

ϑ = 3
ln(2K/ε)
ln(2/ε)

. (54)

Then

∀(k, 1 ≤ k ≤ K) : sup
x∈Xk

ProbiN∼(A(x))N

{|ĝ(iN )− gT x| > ϑSk(ln(2/ε)) + 3δ
}

< ε, (55)
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whence also

∀(k, 1 ≤ k ≤ K) : Riskk(ĝ; ε) ≤ 6 ln
(

2K
ε

)

ln
(

1
4ε

) Riskk
∗(ε) + 3δ. (56)

Proof. Setting ω = ln(2K/ε), let us fix k̄ ≤ K and x ∈ X k̄ and call a realization iN x-good, if

∀(k, k̄ ≤ k ≤ K) : |ĝk(iN )− gT x| ≤ Sk(ω) + δ. (57)

Since Xk ⊃ X k̄ when k ≥ k̄, (52) implies that

ProbiN∼AN (x)

{
iN is good

} ≥ 1− ε′. (58)

Now, when x is the signal and iN is x-good, relations (57) imply that k̄ is an iN -good index, so
that k(iN ) ≤ k̄. Since k(iN ) is an iN -good index, we have

|ĝ(iN )− ĝk̄(iN )| = |ĝk(iN )(iN )− ĝk̄(iN )| ≤ Sk(iN )(ω) + Sk̄(ω) + 2δ,

which combines with (57) to imply that

|ĝ(iN )− gT x| ≤ 2Sk̄(ω) + Sk(iN )(ω) + 3δ ≤ 3Sk̄(ω) + 3δ, (59)

where the concluding inequality is due to k(iN ) ≤ k̄ and to the fact that Sk grows with k. The
bound (59) holds true whenever iN is x-good, which, as we have seen, happens with probability
≥ 1− ε′. Since ε′ < ε and x̄ ∈ X k̄ is arbitrary, we conclude that

Riskk̄(ĝ; ε) ≤ 3Sk̄(ω) + 3δ. (60)

By Lemma 3.3 we have Sk(θγ) ≤ θSk(γ) whenever γ ≥ 0 and θ ≥ 1. Recalling the definition of
ω and ϑ, the right hand side in (60) does not therefore exceed ϑSk̄(ln(2/ε)) + 3δ. Since k̄ ≤ K is
arbitrary, we have proved (55). This bound, by Lemma 3.2, implies (56). ¥

4 From estimating linear forms to signal recovery

We have seen that in the context of Problem I, we know how to recover a linear form of the unknown
signal with ε-risk just by an absolute constant factor larger than the minimax optimal risk. As it
was mentioned in Introduction, in the context of Problem II similar fact was established by Donoho
[8], who proved that the minimal ε-risk on X of recovering gT x achievable with affine in y estimates
is within an absolute constant factor of the minimax risk, and this is so for risks associated with all
usual loss functions, not only for the ε-risk (a significantly simplified, as compared to the original
one, proof of Donoho’s result can be found in the appendix). Our goal is to demonstrate that
when X has a favourable geometry, nearly optimal estimates of linear forms imply “not too bad”
estimates of the unknown signal. For the sake of simplicity, we focus on recovery the signal in the
standard Euclidean norm.

Our simple approach is equally applicable to the situations of Problems I and II; in order to
make the presentation “problem-independent”, we from now denote the observations by w (w is iN

in the case of Problem I and w is y in the case of Problem II), and denote by Px the distribution of
observations associated with x. A candidate estimate is now a Borel function x̂(w) taking values
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in the space Rn where x lives. Given a tolerance ε ∈ (0, 1), we quantify the quality of such an
estimate by the worst-case, over x ∈ X, upper (1− ε)-quantile of the recovering error as measured
in the Euclidean norm:

Risk2(x̂; ε) = inf
{

δ : sup
x∈X

Probw∼Px {‖x̂(w)− x‖ > δ} < ε

}
,

and denote by Risk2,∗(ε) the associated optimal risk:

Risk2,∗(ε) = inf
bx(·)

Risk2(x̂; ε).

The construction. Let us choose somehow a collection of N unit vectors e1, ..., eN in Rn. For ε ∈
(0, 0.1), let Risk`

∗(ε) be the optimal, in the minimax sense, ε-risk of recovering eT
` x via observations

w ∼ Px. By the results of Section 3 (case of Problem I) and the just cited Donoho’s Theorem
(case of Problem II), whenever ε ∈ (0, 0.01) is given, we can build efficiently (provided that X is
computationally tractable) estimates ê`

ε(·) of the linear forms eT
` x and compute efficiently upper

bounds R`(ε) on the ε-risks of the estimates:

R`(ε) > inf
{

δ : sup
x∈X

Probw∼Px

{
|ê`

ε(w)− eT
` x| > δ

}
< ε

}

in such a way that R` are within an absolute constant factor C of the minimax optimal ε-risks
Risk`

∗(ε) of recovering eT
` x, x ∈ X:

R`(ε) < C Risk`
∗(ε). (61)

Now, given ε̄ ∈ (0, 0.1), consider the following estimate x̂ of a signal x ∈ X via observations w. We
build the N estimates ê`(·) ≡ ê`

ε̄/N (·), 1 ≤ ` ≤ N . We further take as x̂(w) (any) vector u satisfying
the relations

u ∈ X and |eT
` u− ê`

ε̄/N (w)| ≤ R`(ε̄/N), ` = 1, ..., N, (62)

if such an u exists, otherwise x̂(w) is a once for ever fixed point of X.

Analysis. Let p∞(z) = max` |eT
` z|, z ∈ Rn, and let Risk∞,∗(ε) be the optimal, in the minimax

sense, ε-risk of recovering x ∈ X via observations w ∼ Px, the loss function being p∞(·):

Risk∞,∗(ε) = inf
ex(·)

Risk∞(x̃; ε), Risk∞(x̃; ε) = inf
{

δ : sup
x∈X

Probw∼Px {p∞(x̃(w)− x) > δ} < ε.

}
.

Since ‖ · ‖ ≥ p∞(·) due to ‖e`‖ = 1, we have

Risk∞,∗(ε) ≤ Risk2,∗(ε). (63)

Our goal is to compare Risk∞(x̂; ε̄) and Risk∞,∗(ε̄). By the origin of the estimates and R`, when
w ∼ Px with x ∈ X, every one of the N inequalities |eT

` x − ê`
ε̄/N (w)| ≤ R`(ε̄/N) takes place with

probability ≥ 1− ε̄/N + δ with certain independent of x δ > 0. If all these inequalities take place
(which happens with probability ≥ 1 − ε̄ + δ), (62) is feasible (since the constraints in (62) are
satisfied when u = x), and for every feasible solution u to (62) we have |eT

` u − eT
` x| ≤ 2R`(ε̄/N).

Thus, we have
sup
x∈X

Probw∼Px

{
|eT

` [x̂(w)− x]| ≤ 2R`(ε̄/N), ` = 1, ..., n
}

< ε̄,
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whence
Risk∞(x̂; ε̄) ≤ 2 max

1≤`≤N
R`(ε̄/N). (64)

Now, in the situation of Problem I we have R`(ε) = S(ln(2/ε)), and therefore by Lemma 3.3 one has
R`(ε̄/N) ≤ O(ln(2N/ε̄)/ ln(2/ε̄))R`(ε̄). One can easily extract from [8] that the resulting inequality
holds true in the situation of Problem II as well. Thus, (64) implies that

Risk∞(x̂; ε̄) ≤ ϑ max
`≤N

R`(ε̄), ϑ = O(ln(N/ε̄)/ ln(1/ε̄)),

which combines with (61) to imply that

Risk∞(x̂; ε̄) ≤ ϑ̂ max`≤N R`∗(ε̄) ≤ ϑ̂Risk∞,∗(ε̄) ≤ ϑ̂ Risk2,∗(ε̄),
ϑ̂ = O(ln(N/ε̄)/ ln(1/ε̄)).

(65)

Note that ϑ̂ is a moderate constant, unless N is astronomically large. We conclude that unless N
is astronomically large, the estimate x̂ is nearly optimal in the sense of its ε-risk on X associated
with the loss function p∞.

Now assume that the geometry of X allows to choose a collection {e`} of a “moderate” number
N of unit vectors in such a way that

∀u ∈ X −X : ‖u‖ ≤ CXpχ(X)
∞ (u) (66)

where CX > 0 and χ(X) ∈ (0, 1] are appropriate constants. Since x̂ takes values in X, (66)
combines with (65) to imply that

Risk2(x̂; ε̄) ≤ CX [ Risk∞(x̂, ε̄)]χ(X) ≤ CX ϑ̂χ(X) [ Risk2,∗(ε̄)]χ(X) , (67)

so that the ε̄-risk of the estimate x̂, the loss function being ‖ · ‖, can be bounded from above in
terms of the corresponding minimax optimal risk. Ideally, we would like to have χ(X) = 1, meaning
that our estimate x̂ is “nearly minimax optimal” in terms of ‖ · ‖-risk (recall that for all practical
purposes, ϑ̂ is a moderate constant). How “far” we are from this ideal situation (that is, how far is
χ(X) from 1), it depends solely on the geometry of X and is completely independent of how good
is the affine mapping A(x) (Problem I) or the matrix A (Problem II). It should be added that there
are important situations where (66) is satisfied with “not too bad” constants CX , χ(X). Here are
two instructive examples:

Example 1: `1-ball. Assume that X ⊂ ∆R = {x ∈ RN :
∑

i |xi| ≤ R} (this is a frequently used
model of a “sparse” signal). In this case, choosing as ei the standard basic orths, we clearly have∑

i |ui| ≤ 2R for every u ∈ X −X, whence ‖u‖ =
√∑

i u
2
i ≤

√
p∞(u)

∑
i |ui| ≤

√
2Rp

1/2
∞ (u), that

is, (66) holds true with CX =
√

2R, χ(X) = 1/2.

Example 2: Ellipsoid. Now assume that X is a centered at the origin ellipsoid with half-axes
di = Ri−γ , γ > 0 (this is the standard model of signals from Sobolev balls restricted onto uniform
grids). In this case, assuming w.l.o.g. that the directions of the ellipsoid axes are the standard
basic orths and choosing these orths as e1, ..., eN , for u ∈ X −X we have

N∑

i=1

u2
i i

2γ ≤ (2R)2,
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whence for every integer k ≥ 0 one has
∑N

i=k+1 u2
i ≤ (2R)2(k + 1)−2γ . It follows that for every

integer k ≥ 0 we have

‖u‖2 ≤ kp2
∞(u) +

n∑

i=k+1

u2
i ≤ kp2

∞(u) + (2R)2(k + 1)−2γ .

Minimizing the resulting bound in k, we get ‖u‖ ≤ O(1)R
1

2γ+1 p
2γ

2γ+1∞ (u), that is, in the case in
question CX = O(1)R

1
2γ+1 , χ(X) = 2γ

2γ+1 .
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Appendix: Donoho’s Theorem revisited

We are about to present an alternative proof of the (finite-dimensional version of the) main result of Donoho
[8]. While the underlying ideas are exactly the same as in [8], we believe that our proof is much simpler and
more transparent than the original one.

The fact we intend to demonstrate is as follows

Proposition 4.1 [D. Donoho, [8]] Let ε ∈ (0, 0.1], and consider the problem of estimating a linear form gT x
via observations (1). The minimal, over all affine in y estimates, worst-case ε-risk RiskAff∗(ε) achievable
with affine in y estimates is within the factor 2.05 of the minimax optimal risk Risk∗(ε).

Proof. We lose nothing by assuming that X possesses a nonempty interior (otherwise we could replace
Rn with the affine hull of X). By scaling the observations, we can assume further that σ = 1. Finally,
eliminating the trivial case when g is constant on X and scaling g, we can normalize the situation by the
requirement that Risk∗(ε) = 0.49; all we need to prove is that then RiskAff∗(ε) ≤ 1. To this end, let us set

α = 0.49, β =
α

ErfInv(ε)

where ErfInv(ε), 0 < ε < 1, is the inverse of the error function

Erf(s) =
1√
2π

∫ ∞

s

exp{−s2/2}ds.

Let X∗ = X −X, so that X∗ is a convex compact symmetric w.r.t. origin set with 0 ∈ intX∗, that is, X∗ is
the unit ball of certain norm p(·) on Rn. Let p∗(·) be the conjugate norm: p∗(x) = maxu{xT u : p(u) ≤ 1}.
We claim that there exists h ∈ Rm such that

‖h‖ ≤ β and p∗(g −AT h) ≤ 2α. (68)
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Our claim immediately implies the desired relation RiskAff∗(ε) ≤ 1. Indeed, let h solve (68). The relation
p∗(g −AT h) ≤ 2α reads

2α ≥ max
x∈X,y∈X

(g −AT h)T (x− y) = max
x∈X

(g −AT h)T x−min
x∈X

(g −AT h)T x.

Setting c = 1
2

[
maxx∈X(g −AT h)T x−minx∈X(g −AT h)T x

]
and H(x) = hT Ax + c, we see that for the

affine form a(x) = gT x−H(x) one has
max
x∈X

|a(x)| ≤ α.

Now consider the affine in y estimate ĝ(y) = hT y + c. For this estimate and x ∈ X, we have

|gT x− ĝ(Ax + ξ)| = |gT x− hT (Ax + ξ)− c| = |a(x)− hT ξ|;
denoting η = hT ξ, note that η ∼ N(0, β̄2) with β̄ = ‖h‖ ≤ β. It follows that

Prob{|gT x− ĝ(Ax + ξ)| > 1} ≤ Erf((1− a(x))/β̄) + Erf((1 + a(x))/β̄) ≤ Erf((1− α)/β) + Erf((1 + α)/β);

it is easily seen that the concluding quantity with our α and β is < ε, provided ε ≤ 0.1.
It remains to justify the claim. Assume that no h satisfying (68) exists. Then the convex compact

sets U = {u ∈ Rn : p∗(g − u) ≤ 2α} and V = {v = AT h : ‖h‖ ≤ β} do not intersect and thus can be
strongly separated: there exists z ∈ Rn such that minu∈U zT u > maxv∈V zT v. W.l.o.g. we can assume that
p(z) = 1 (i.e., z ∈ X∗); with this normalization, we have minu∈U zT u = gT z − max{zT u : p∗(u) ≤ 2α} =
gT z−2αp(z) = gT z−2α and maxv∈V zT v = maxw:‖w‖≤β zT AT w = β‖Az‖. Since z ∈ X∗, we have z∗ = r−s
with r, s ∈ X. Thus, there exist r, s ∈ X such that

gT (r − s) > 2α + β‖A(r − s)‖. (69)

It may happen that ‖A(r− s)‖ ≤ 2ErfInv(ε). In this case, for every decision rule for distinguishing between
the hypotheses Πr, Πs stating that the distribution of observation (1) is N (Ar, I) and N (As, I), respectively,
the sum of error probabilities is at least 2ε; since gT r and gT s differ by more than 2α, it follows immediately
that the worst-case, over x ∈ {r; s}, ε-risk of an arbitrary estimate ĝ(·) of gT x is > α – otherwise we could use
the estimate to distinguish between our two hypotheses by accepting the first of them when ĝ(y) ≥ 1

2gT (r+s)
and otherwise accepting the second; if the ε-risk of our estimate were ≤ α, the probability to reject the true
hypothesis would be < ε. Thus, in the situation in question Risk∗(ε) > 0.49. Now consider the case when
‖A(r − s)‖ > 2 ErfInv(ε). Setting λ = 2 ErfInv(ε)/‖A(r − s)‖ and r′ = s + λ(r − s), we get r′, s ∈ X and
‖Ar′ − As‖ = 2ErfInv(ε), while gT (r′ − s) = λgT (r − s) > λ[2α + β‖A(r − s)‖] ≥ 2β ErfInv(ε) ≡ 2α. The
same reasoning as above, with r′, s in the role of r, s results in Risk∗(ε) > α = 0.49. Thus, we end up with
Risk∗(ε) > 0.49, which is a contradiction.

4.1 The case of the expected squared error risk

The outlined reasoning can be easily modified to cover the ESE risks, that is, the risks associated with the
expected squared error of estimation. The result is, that the worst-case, over x ∈ X, ESE-risk of estimating
linear form achievable with affine estimates is within the factor 1.25 of the corresponding minimax optimal
risk (this is exactly the constant appearing in [8]). To get the announced result, we act as follows.

Preliminaries. For D > 0, let R∗(D) be the minimax ESE-risk of recovering a parameter θ known to
belong to [−D,D] from observation θ + ζ, ζ ∼ N (0, 1):

R∗(D) = inf
φ(·)

max
|θ|≤D

E{[φ(θ + ζ)− θ]2},

and let

Ω = inf
D>0

(1 + D2)R∗(D)
D2

.
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We claim that the minimal worst-case, over x ∈ X, ESE-risk of an affine in y = Ax + ξ, ξ ∼ N (0, σ2I),
estimate of gT x is within the factor 1/Ω from the minimax optimal ESE-risk R∗ of recovering gT x. We first
justify our claim, and then explain how to bound Ω from below to get the desired numbers.

It clearly suffices to prove our claim for σ = 1. By scaling g, is suffices to show that when σ = 1 and
R∗ < Ω, then there exists an affine in y estimate with the worst-case, over x ∈ X, ESE-risk not exceeding 1.
Thus, let R∗ ≤ Ω, and let us build an affine estimate with risk 1.

Temporary assumption. We assume for the time being that A has a trivial kernel; eventually, this
assumption will be eliminated.

The strategy. There are two possibilities:
(a) There exist α, β ≥ 0 with α2 + β2 = 1 such that for certain vector h and real c we have

‖h‖ ≤ β and |gT x− hT Ax− c| ≤ α ∀x ∈ X. (∗)
In this case we are done: the squared bias of the affine estimate ĝ(Ax+ ξ) = hT (Ax+ ξ)+ c does not exceed
α2 for every x ∈ X, and the expectation of the squared stochastic term does not exceed β2, whence with
our estimate, the expected square error is ≤ 1 for every x ∈ X.

(b) (a) does not take place. All we need is to prove that in fact (b) is impossible – it contradicts the
assumption that R∗ < Ω. Thus, our goal is to prove that if (a) does not take place, then

R∗ ≥ Ω = inf
D>0

1 + D2

D2
R∗(D). (70)

The proof goes as follows. As we know, when (a) does not take place, for every α, β ≥ 0 with α2 + β2 = 1,
there is no h satisfying (68), whence, as we have seen, there exists z ∈ X∗ = X −X such that

gT z > 2α + β‖Az‖.
Note that this inequality implies that z 6= 0, and therefore D ≡ ‖Az‖/2 > 0, since A has a trivial kernel.
Representing z = r − s with r, s ∈ X and setting ∆ = [s, r], e = r−s

2 ,

γ(θ) = gT

[
r + s

2
+

θ

D
e

]
= const + γθ, −D ≤ θ ≤ D,

observe that an estimate of gT x via observations (1) with the ESE-risk ≤ R on X induces an estimate of
the value of γ(θ) via a single observation of a random variable ζ ∼ N (θ, 1), the ESE of the estimate being
≤ R when −D ≤ θ ≤ D. The slope γ of g(θ) is > (α + βD)/D, so that the latter estimate induces an
estimate of θ ∈ [−D,D] from a single observation of ζ with the expected squared error less than γ−2R, that
is, R ≥ γ2R∗(D) = (α+βD)2

D2 R∗(D). Since this bound holds true for every estimate of gT x, we conclude that

R∗ ≥ (α + βD)2

D2
R∗(D),

whence

R∗ ≥ inf
D>0

(α + βD)2

D2
R∗(D)

and thus

R∗ ≥ sup
α,β>0:

α2+β2=1

inf
D>0

(α + βD)2

D2
R∗(D) (71)

Already this bound allows to prove that the minimum of the worst-case, over x ∈ X, ESE of an affine
estimate is within O(1)-factor of R∗. Indeed, it is immediately seen that R∗(D) ≥ O(1)min[1, D2], and
therefore the announced claim is given by (71) where we replace the maximum over α, β by the value of the
maximized function at, say, α = β = 1/

√
2.

In fact, our target relation (70) is nothing but a strengthened version of (71) obtained by swapping inf
and sup in the latter relation. We are about to demonstrate that this swap is indeed legitimate.
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The proof. Assume that (a) does not take place, and let us prove (70). Since (a) does not take place,
for every α ∈ (0, 1] the conic quadratic inequality

gT z ≥ 2α +
√

1− α2‖Az‖ (!)

has a solution in X∗. Since X∗ is bounded, it follows that for every ε > 0 there exists δ(ε) > 0 such that the
convex inequality

gT z ≥ (2− ε)α + δ(ε)zT z +
√

1− α2‖Az‖ (+ε)

has a solution in X∗, provided that α ∈ [ε, 1]. Let us fix ε ∈ (0, 1). The set Xε(α) of all belonging to X∗
solutions to (+ε) is a nonempty closed convex subset of X∗, and its image Yε(α) under the mapping x 7→ Ax
is a nonempty closed convex subset of Rm. Let yε(α) be the (uniquely defined) minimal norm point from
the set Yε(α), let zε(α) ∈ Xε(α) be such that yε(α) = Azε(α), and let Dε(α) = 1

2‖yε(α)‖. Note that since A
has a trivial kernel, we have Dε(α) > 0 for all α ∈ [ε, 1].

We claim that zε(α) is continuous in α ∈ [ε, 1]. Indeed, let [ε, 1] 3 αt → ᾱ as t →∞, and let zt = zε(αt),
z̄ = zε(ᾱ); we should prove that zt → z̄ when t → ∞. Assume that this is not the case. Passing to a
subsequence, we may assume that zt → z̃ 6= z̄ as t → ∞; clearly, z̃ belongs to X∗ and is a solution to the
inequality (+ε) associated with α = ᾱ. Since we are in the situation z̃ 6= z̄, we have ‖Az̃‖ > ‖Az̄‖. Let ∆
be the segment [z̄, z̃], and let f(z) = (2 − ε)ᾱ + δ(ε)zT z +

√
1− ᾱ2‖Az‖ − gT z. f is strongly convex on ∆

and is nonpositive at the endpoints of ∆, whence it is negative at the midpoint ẑ of ∆ (since ∆ is not a
singleton). But then ẑ is a solution, belonging to X∗, of the inequalities (+ε) associated with α = αt for all
large enough values of t, which is a contradiction (note that ‖Aẑ‖ < ‖Az̃‖ and thus ‖Aẑ‖ < ‖Azt‖ for all
large enough values of t).

We now claim that there exist αmin, αmax, 0 < αmin ≤ αmax < 1, such that for all small enough values
of ε, there exists α = αε ∈ [αmin, αmax] such that

√
1− α2/α = Dε(α). (:)

Indeed, since X∗ is bounded, Dε(α) ≤ C < ∞ for all ε ∈ (0, 1) and all α ∈ [ε, 1]; setting αmin = 1/
√

1 + C2,
we conclude that when α = αmin, the left hand side in (:) is ≥ the right hand side one. On the other hand,
since A is with trivial kernel, there clearly exists c > 0 (which is independent of ε) such that whenever
ε ∈ (0, 1/2) and α ∈ [1/2, 1], we have Dε(α) ≥ c. It follows that setting αmax = max[1/

√
1 + c2, 1/2], we

ensure that when ε ∈ (0, 1/2] and α = αmax, the left hand side in (:) is ≤ the right hand side one. Recalling
that Dε(α) is continuous in α ∈ [ε, 1] along with zε(α), the bottom line is, that whenever ε > 0 is small
enough, equation (:) has a solution αε in the segment [αmin, αmax], as claimed.

Now let us choose a sequence εt → +0 and set αt = αεt , zt = zεt(αt). Passing to a subsequence,
we may assume that αt → ᾱ ∈ [αmin, αmax] and zt → z̄ = r − s, r, s ∈ X∗, as t → ∞. Recalling that
Dε(α) = 1

2‖zε(α)‖, we clearly have

(a) gT (r − s) ≥ 2ᾱ + β̄‖A(r − s)‖, β̄ =
√

1− ᾱ2 ∈ (0, 1)
(b) D̄ ≡ 1

2‖A(r − s)‖ = β̄/ᾱ.
(72)

Same as in our preliminary reasoning, this relation implies that

R∗ ≥ (ᾱ + β̄D̄)2

D̄2
R∗(D̄) =

1 + D̄2

D̄2
R∗(D̄),

where the concluding equality is given by (72.b). Since D̄ > 0, (70) follows.

Eliminating the assumption that A has trivial kernel. Let A be arbitrary. Consider the
artificial problem where we want to recover gT x from observations

[Ax + ξ; εx + η],
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where ε > 0 is a parameter, and η ∼ N (0, In) is independent of ξ. The minimax risk R∗(ε) of recovering gT x
via these “augmented” observations clearly is ≤ the original minimax risk R∗. As about the optimal worst-
case ESE-risk Rε achievable with affine estimates based on the augmented observations, we clearly have that
lim infε→+0 Rε is the optimal ESE-risk R0 achievable with estimates affine in the original observations y.
Indeed, if ĝε(y) = hT

ε y+cε +dT
ε (εx+η) is the estimate underlying Rε, then ‖dε‖2 remains bounded (by a risk

of a whatever once for ever fixed affine estimate which does not use the artificial observations). It follows
that when replacing ĝε(y) with the estimate hT

ε y + cε, the resulting increase in the risk goes to 0 as ε → 0,
meaning that lim infε→+0 Rε = R0, as claimed. Now, since the matrix [A; εIn] underlying the augmented
observations has a trivial kernel, we have Rε/R∗(ε) ≤ 1/Ω by our previous results, whence Rε/R∗ ≤ 1/Ω
due to R∗ ≥ R∗(ε). Thus, R0/R∗ = lim infε→0 Rε/R∗ ≤ 1/Ω, as claimed.

Bounding R∗(D) from below. For every probability measure µ on [−D, D], we clearly have

R∗(D) ≥ inf
g(·)

∫ {∫
(g(s)− θ)2p(s− θ)ds

}
dµ(θ),

where p(·) is the standard Gaussian density on the axis. It follows that if Γ is a finite subset of [−D,D],
then

R∗(D) ≥ max
{µγ≥0}γ∈Γ:P

γ µγ=1

inf
g(·)

∑

γ∈Γ

µγ

∫
(g(s)− γ)2p(s− γ)ds.

Note that the quantity

inf
g(·)

∑

γ∈Γ

µγ

∫
(g(s)− γ)2p(s− γ)ds =

∑

γ∈Γ

∫ (∑
γ∈Γ γµγp(s− γ)∑
γ∈Γ µγp(s− γ)

− γ

)2

µγp(s− γ)ds

can be easily computed to whatever accuracy, and that this quantity, due to its origin, is a concave function
of {µγ}γ∈Γ and thus can be efficiently maximized numerically. We have carried out this maximization
with the equidistant 31-element grid in [−D, D] for a “fine resolution” finite set D of values of D, thus
obtaining a valid lower bound on R∗(D) along the set and used this calculations, combined with the evident
formula R∗(D) ≥ (1 + o(1))D2 as D → 0 (with easily quantifiable o(1)) to conclude that Ω ≥ 0.802, whence
1/Ω ≤ 1.25.
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