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Exercises from Part I

5.1 Elementaries

Exercise I.1. Mark in the following list the sets which are convex:

1. {x ∈ R2 : x1 + i2x2 ≤ 1, i = 1, . . . , 10}
Solution: convex

2. {x ∈ R2 : x21 + 2ix1x2 + i2x22 ≤ 1, i = 1, . . . , 10}
Solution: convex. Here is an equivalent description where convexity is evident: {x : |x1 + ix2| ≤
1, i = 1, . . . , 10}.

3. {x ∈ R2 : x21 + ix1x2 + i2x22 ≤ 1, i = 1, . . . , 10}
Solution: convex (it is the intersection of ellipses)

4. {x ∈ R2 : x21 + 5x1x2 + 4x22 ≤ 1}
Solution: nonconvex

5.

{
x ∈ R10 : x21 +2x22 +3x23 + . . .+10x210 ≤ 1000x1 − 999x2 + 998x3 − . . .+ 992x9 − 991x10

}
Solution: convex (ellipsoid)

6. {x ∈ R2 : exp{x1} ≤ x2}
Solution: convex

7. {x ∈ R2 : exp{x1} ≥ x2}
Solution: nonconvex

8. {x ∈ Rn :
n∑
i=1

x2i = 1}

Solution: nonconvex

9. {x ∈ Rn :
n∑
i=1

x2i ≤ 1}

Solution: convex

10. {x ∈ Rn :
n∑
i=1

x2i ≥ 1}

Solution: nonconvex

11. {x ∈ Rn : max
i=1,...,n

xi ≤ 1}

Solution: convex

12. {x ∈ Rn : max
i=1,...,n

xi ≥ 1}

Solution: nonconvex, except for n = 1

13. {x ∈ Rn : max
i=1,...,n

xi = 1}

Solution: nonconvex, except for n = 1

14. {x ∈ Rn : min
i=1,...,n

xi ≤ 1}
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Solution: nonconvex, except for n = 1

15. {x ∈ Rn : min
i=1,...,n

xi ≥ 1}

Solution: convex

16. {x ∈ Rn : min
i=1,...,n

xi = 1}

Solution: nonconvex, except for n = 1

Exercise I.2. Mark by T those of the following claims which are always true:

1. The linear image Y = {Ax : x ∈ X} of a linear subspace X is a linear subspace. Solution: T
2. The linear image Y = {Ax : x ∈ X} of an affine subspace X is an affine subspace. Solution: T
3. The linear image Y = {Ax : x ∈ X} of a convex set X is convex. Solution: T
4. The affine image Y = {Ax+ b : x ∈ X} of a linear subspace X is a linear subspace.
5. The affine image Y = {Ax+ b : x ∈ X} of an affine subspace X is an affine subspace. Solution:

T

6. The affine image Y = {Ax+ b : x ∈ X} of a convex set X is convex. Solution: T
7. The intersection of two linear subspaces in Rn is always nonempty. Solution: T
8. The intersection of two linear subspaces in Rn is a linear subspace. Solution: T
9. The intersection of two affine subspaces in Rn is an affine subspace.

10. The intersection of two affine subspaces in Rn, when nonempty, is an affine subspace. Solution:
T

11. The intersection of two convex sets in Rn is a convex set. Solution: T
12. The intersection of two convex sets in Rn, when nonempty, is a convex set. Solution: T

Exercise I.3. Prove that the relative interior of a simplex with vertices y0, . . . , ym is exactly the set{
m∑
i=0

λiyi : λi > 0,

m∑
i=0

λi = 1

}
.

Solution: The claim is evident for the standard simplex ∆m := {x ∈ Rm
+ :

∑
i xi ≤ 1}. Moreover, the

set ∆ := Conv{y0, . . . , ym} is the image of ∆m under the affine mapping

x 7→ A(x) = y0 +

m∑
i=1

xi(y
i − y0) : Rm → Rdim(y),

which is a one-to-one affine correspondence between Rm and Aff{y0, . . . , ym}, and such a correspondence

clearly maps the relative interiors of convex sets in the argument space onto the relative interiors of their

images in the image space.

Exercise I.4 Which of the following claims is true:

1. The set X = {x : Ax ≤ b} is a cone if and only if X = {x : Ax ≤ 0}.
2. The set X = {x : Ax ≤ b} is a cone if and only if b = 0.

Solution: The claim in item 1 is correct, while the claim in item 2 is not. Let us show that the claim

in item 1 is correct. We immediately see that if X = {x : Ax ≤ 0}, then X is clearly a cone. To see

the other direction, suppose that the set X = {x : Ax ≤ b} is a cone. Then 0 ∈ X, so that b ≥ 0, and

therefore the set X := {x : Ax ≤ 0} is contained in X. Moreover, for any x ∈ X, as X is a cone we have

that tx ∈ X for all t > 0, and so Ax ≤ t−1b for all t > 0. Then, by taking the limit of both sides of this

latter inequality as t → +∞ we conclude that Ax ≤ 0. Therefore, X ⊆ X, the bottom line being that

X = X = {x : Ax ≤ 0}.
A counterexample for the claim in item 2 is, e.g., A = [1; 1], b = [0; 1], so that Ax ≤ b is the system of

two univariate linear inequalities x ≤ 0, x ≤ 1; here the solution set is a cone, but b ̸= 0.

Exercise I.5 Suppose K is a closed cone. Prove that the set X = {x : Ax − b ∈ K} is a cone if
and only if X = {x : Ax ∈ K}.
Solution: Follows the same argument as in Exercise I.4.1.
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Exercise I.6. Prove that if M is a nonempty convex set in Rn and ϵ > 0, then for every norm ∥ · ∥
on Rn, the ϵ-neighborhood of M , i.e., the set

Mϵ =

{
y ∈ Rn : inf

x∈M
∥y − x∥ ≤ ϵ

}
,

is convex.

Solution: Consider any y′, y′′ ∈Mϵ and any λ ∈ [0; 1]; we should prove that y := λy′ +(1−λ)y′′ ∈Mϵ.

As y′, y′′ ∈ Mϵ, using the definition of the set Mϵ we deduce that for every δ > 0 there exist x′δ ∈ M

and x′′δ ∈ X such that ∥y′ − x′δ∥ ≤ ϵ+ δ and ∥y′′ − x′′δ ∥ ≤ ϵ+ δ. Hence,

∥y − [λx′δ + (1− λ)x′′δ ]︸ ︷︷ ︸
:=xδ

∥ = ∥λ[y′ − x′δ] + (1− λ)[y′′ − x′′δ ]∥

≤ λ∥y′ − x′δ∥+ (1− λ)∥y′′ − x′′δ ∥

≤ λ(ϵ+ δ) + (1− λ)(ϵ+ δ) = ϵ+ δ.

Also, as M is convex, xδ ∈ M . Thus, we see that for every δ > 0 there is a point xδ ∈ M such that

∥y − xδ∥ ≤ ϵ+ δ, and since δ > 0 is arbitrary, we conclude that infx∈M ∥y − x∥ ≤ ϵ, that is, y ∈Mϵ.

Exercise I.7. Which of the following claims are always true? Explain why/why not.

1. The convex hull of a bounded set in Rn is bounded.

Solution: yes.

2. The convex hull of a closed set in Rn is closed.

Solution: not necessarily. Consider the set X := {x ∈ R2 : x2 ≥ |x1|−1, x1 ̸= 0}. Note that X is

closed yet its convex hull is the open half-plane {x ∈ R2 : x2 > 0}.
3. The convex hull of a closed convex set in Rn is closed.

Solution: yes. And the color of white horse of Alexander the Great is “white.”

4. The convex hull of a closed and bounded set in Rn is closed and bounded.

Solution: yes, see Corollary I.2.5.

5. The convex hull of an open set in Rn is open.

Solution: yes

Exercise I.8. Let A, B be nonempty subsets of Rn. Consider the following claims. If the claim
is always (i.e., for every data satisfying premise of the claim) true, give a proof; otherwise, give a
counter example.

1. If A ⊆ B, then Conv(A) ⊆ Conv(B).
Solution: evidently true.

2. If Conv(A) ⊆ Conv(B), then A ⊆ B.
Solution: evidently false. Consider n = 1, A = {1, 2, 3}, B = {1, 3}.

3. Conv(A ∩B) = Conv(A) ∩ Conv(B).
Solution: evidently false. Consider n = 1, A = {0, 2}, B = {1, 3}, resulting in Conv(A ∩B) = ∅ and
Conv(A) ∩ Conv(B) = [1, 2].

4. Conv(A ∩B) ⊆ Conv(A) ∩ Conv(B).
Solution: evidently true, since A∩B ⊆ A, we have Conv(A∩B) ⊆ Conv(A). Similarly, Conv(A∩B) ⊆
Conv(B).

5. Conv(A ∪B) ⊆ Conv(A) ∪ Conv(B).
Solution: evidently false. Consider n = 1, A = {0}, B = {1}.

6. Conv(A ∪B) ⊇ Conv(A) ∪ Conv(B).
Solution: evidently true: since A ∪ B contains A, we have Conv(A ∪ B) ⊇ Conv(A), and similarly

Conv(A ∪B) ⊇ Conv(B).

7. If A is closed, so is Conv(A).
Solution: false, see Remark I.2.6.
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8. If A is closed and bounded, so is Conv(A).
Solution: true, see Corollary I.2.5.

9. If Conv(A) is closed and bounded, so is A.
Solution: evidently false. Consider A = [0, 1/2) ∪ {1}.

Exercise I.9. Let A,B,C be nonempty subsets of Rn and D be a nonempty subset of Rm. Consider
the following claims. If the claim is always (i.e., for every data satisfying premise of the claim) true,
give a proof; otherwise, give a counter example.

1. Conv(A ∪B) = Conv(Conv(A) ∪B).

Solution: true. Since A ⊆ Conv(A) and B ⊆ B, we have (A∪B) ⊆ (Conv(A)∪B) and so Conv(A∪
B) ⊆ Conv(Conv(A)∪B). To see the other direction, note that the set Conv(A∪B) clearly contains

both Conv(A) and B, that is, Conv(A ∪ B) ⊇ (Conv(A) ∪ B). Moreover, Conv(A ∪ B) is convex,

implying Conv(A ∪B) ⊇ Conv(Conv(A) ∪B).

2. Conv(A ∪B) = Conv(Conv(A) ∪ Conv(B)).

Solution: true. Applying the preceding part twice, we get

Conv(A ∪B) = Conv(Conv(A) ∪B) = Conv(B ∪ Conv(A)) = Conv(Conv(B) ∪ Conv(A)).

3. Conv(A ∪B ∪ C) = Conv(Conv(A ∪B) ∪ C).

Solution: true. Applying the first part of this exercise, we get

Conv(A ∪B ∪ C) = Conv((A ∪B) ∪ C) = Conv(Conv(A ∪B) ∪ C).

4. Conv(A×D) = Conv(A)× Conv(D).

Solution: true. Indeed, A × D ⊆ Conv(A) × Conv(D). Moreover, Conv(A) × Conv(D) is convex,

implying that Conv(A × D) ⊆ Conv(A) × Conv(D). To see the reverse direction, consider a point

z ∈ (Conv(A)×Conv(D)). Then, z = [
∑
i λia

i;
∑
j µjd

j ] for some weights λi ≥ 0 summing up to 1

and ai ∈ A, and for some weights µj ≥ 0 summing up to 1 and dj ∈ D. Hence, z =
∑
i,j λiµj [a

i; dj ],

and since λiµj ≥ 0 and
∑
i,j λiµj = 1, we see that z ∈ Conv(A×D). Thus, Conv(A)× Conv(D) ⊆

Conv(A×D).

5. When A is convex, to get the set Conv(A∪B) (which is always the set of convex combinations
of several points from A and several points from B), it suffices to take convex combinations of
points with at most one of them taken from A, and the rest taken from B. Similarly, if A and
B are both convex, to get Conv(A ∪B), it suffices to add to A ∪B all convex combinations of
pairs of points, one from A and one from B.

Solution: Both claims are true. Indeed, Conv(A ∪ B) is the set of all convex combinations of finite

collections of points, some from A and the rest from B. Consider such a collection z =
∑
i∈I λia

i +∑
j∈J µjb

j , where I, J are sets of indices, λi are nonnegative and ai ∈ A, i ∈ I, µj are nonnegative

and bj ∈ B, j ∈ J , and the total sum of all λi and µj is 1. Justifying the first claim boils down to

verifying that when A is convex, we can restrict I to be of cardinality 0 or 1. Indeed, if
∑
i∈I λi = 0,

z is convex combination of points from B, and if α :=
∑
i∈I λi > 0, we can write

∑
i∈I λia

i = αa,

where a :=
∑
i∈I

λi
α
ai is a point from A (since A is convex), that is, z can be represented as convex

combination αa+
∑
i∈J µib

i of a collection where one point is from A, and all remaining points are

from B, as required.

Similarly, to justify the second claim, we should verify that when A and B are convex, the above

z is either a point from A, or from B, or a convex combination of two points, one from A and one

from B. When α :=
∑
i∈I λi = 0 or β :=

∑
i∈J µi = 0, the initial representation of z is in fact the

representation of the point as convex combination of points from B, resp., from A, that is, either is a

point from B, or a point from A, or both. And when α > 0 and β > 0, we have, same as in the first

claim, z = αa+ βb with a ∈ A, b ∈ B, and of course α+ β = 1. That is, z is convex combination of

a point from A and a point from B.

6. Suppose A is a set in Rn. Consider the affine mapping x 7→ Px+ p : Rn → Rm, and the image
of A under this mapping, i.e., the set PA + p := {Px + p : x ∈ A}. Then, Conv(PA + p) =
P Conv(A) + p.
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Solution: trivially true. Here is the justification:

Conv{PA+ p} =

{∑
i

λiy
i : λi ≥ 0,

∑
i

λi = 1, yi ∈ PA+ p, ∀i

}

=


∑
i

λi(Px
i + p)︸ ︷︷ ︸

=P (
∑

i λixi)+p

: λi ≥ 0,
∑
i

λi = 1, xi ∈ A, ∀i


=

{
Px+ p : x =

∑
i

λix
i, λ ≥ 0,

∑
i

λi = 1

}
= P Conv(A) + p.

7. Consider an affine mapping y 7→ P (y) : Rm → Rn where P (y) := Py+p. Recall that given a set
X ∈ Rn, its inverse image under the mapping P (·) is given by P−1(X) := {y ∈ Rm : P (y) ∈
X}. Then, Conv(P−1(A)) = P−1(Conv(A)).

Solution: clearly false. Consider m = n = 1, Px+ p ≡ 0, and A = {−1, 1}. Note that in this case as

0 ̸∈ A we have P−1(A) = ∅ and so Conv(P−1(A)) = ∅. On the other hand, Conv(A) = [−1, 1] and

so 0 ∈ Conv(A) and P−1(Conv(A)) = Rm.

8. Consider an affine mapping y 7→ P (y) : Rm → Rn where P (y) := Py+p. Then, Conv(P−1(A)) ⊆
P−1(Conv(A)).

Solution: clearly true. Consider any z ∈ Conv(P−1(A)); then z is a convex combination of points

from P−1(A), that is, Pz + p is a convex combination of points from A.

Exercise I.10 LetX1, X2 ∈ Rn be two nonempty sets, and define Y := X1∪X2 and Z := Conv(Y ).
Consider the following claims. If the claim is always (i.e., for every data satisfying premise of the
claim) true, give a proof; otherwise, give a counter example.

1. Whenever X1 and X2 are both convex, so is Y .

Solution: Obviously false. Take n = 1, and X1 := {−1} and X2 := {+1}.
2. Whenever X1 and X2 are both convex, so is Z.

Solution: Obviously true by definition of Z.

3. Whenever X1 and X2 are both bounded, so is Y .

Solution: Obviously true.

4. Whenever X1 and X2 are both bounded, so is Z.

Solution: Obviously true.

5. Whenever X1 and X2 are both closed, so is Y .

Solution: Obviously true - closedness is preserved by taking finite unions.

6. Whenever X1 and X2 are both closed, so is Z.

Solution: This is false as Z is not necessarily closed. Indeed, this claim is not valid even when X1, X2

are nonempty polyhedral, but not bounded, sets. For example, by selecting n = 2, X1 := {x ∈ R2 :

x1 ≥ 0, x2 = 0} and X2 := {[0; 1]}, we see that the set Conv(X1 ∪ X2) is not polyhedral, but its

closure is.

7. Whenever X1 and X2 are both compact, so is Y .

Solution: Obviously true – Y is closed and bounded along with X1 and X2.

8. Whenever X1 and X2 are both compact, so is Z.

Solution: Obviously true – by previous item, Y is compact, so that Z is compact by Corollary I.2.5.

9. Whenever X1 and X2 are both polyhedral, so is Y .
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Solution: Obviously false. Take n = 1, and X1 := {−1} and X2 := {+1}.
10. Whenever X1 and X2 are both polyhedral, so is Z.

Solution: This is false as Z is not necessarily closed, see solution to item 6, and closedness for a

polyhedral set is a must.

11. Whenever X1 and X2 are both polyhedral and bounded, so is Y .

Solution: Obviously false. Take n = 1, and X1 := {−1} and X2 := {+1}.
12. Whenever X1 and X2 are both polyhedral and bounded, so is Z.

Solution: This claim is indeed true, see solution to Exercise I.22.2 for a proof.

Exercise I.11. Consider two families of convex sets given by {Fi}i∈I and {Gj}j∈J . Prove that the
following relation holds:

Conv

( ⋃
i∈I, j∈J

(Fi ∩Gj)

)
⊆ Conv

(⋃
j∈J

[Gj ∩ Conv(∪i∈IFi)]

)
.

Solution: Note that for all j ∈ J and for all i′ ∈ I, we have

(Fi′ ∩Gj) ⊆ [Gj ∩ (∪i∈IFi)] ⊆ [Gj ∩ Conv(∪i∈IFi)] ,

and so for all j ∈ J ⋃
i′∈I

(Fi′ ∩Gj) ⊆ [Gj ∩ Conv(∪i∈IFi)] .

By first taking the union of both sides over j ∈ J and then taking the convex hull of the resulting sets,

we arrive at the desired relation.

Exercise I.12. Let C1, C2 be two nonempty conic sets in Rn, i.e., for each i = 1, 2, for any x ∈ Ci
and t ≥ 0, we have t · x ∈ Ci as well. Note that C1, C2 are not necessarily convex. Prove that

1. C1 + C2 ̸= Conv(C1 ∪ C2) may happen if either C1 or C2 (or both) is nonconvex.

Solution: Let C1 be the origin in R2, and C2 be the union of nonnegative rays of the coordinate

axes. Here both sets are nonempty and conic, their sum is C2, and the convex hull of their union

(which is C2) is the first quadrant.

2. C1 + C2 = Conv(C1 ∪ C2) always holds if C1, C2 are both convex.

Solution: When C1, C2 are nonempty and convex, we have by Exercise I.9.5 that Conv(C1 ∪ C2) =

{x = αy+(1−α)z : y ∈ C1, z ∈ C2, α ∈ [0, 1]}, whence Conv(C1∪C2) = C1∪C2∪{x = αy+(1−α)z :

y ∈ C1, z ∈ C2, α ∈ (0, 1)} = C1 ∪ C2 ∪
(
∪α∈(0,1)[αC1 + (1− α)C2]

)
. When C1, C2, in addition to

being nonempty and convex, are also conic, for α ∈ (0, 1) it holds αC1 + (1 − α)C2 = C1 + C2, so

that the above computation results in Conv(C1 ∪C2) = C1 ∪C2 ∪ [C1 +C2]. The latter union is just

C1 + C2, since C1 + C2 contains both C1 and C2 (as a nonempty conic set contains the origin).

3. The equality C1 ∩ C2 =
⋃
α∈[0,1](αC1 ∩ (1− α)C2) always holds if C1, C2 are both convex.

Solution: We have

∪α∈[0,1][αC1 ∩ (1− α)C2] = [0 · C1 ∩ 1 · C2] ∪ [1 · C1 ∩ 0 · C2] ∪
(
∪α∈(0,1)[αC1 ∩ (1− α)C2]

)
,

and the set in parentheses
( )

is just C1 ∩ C2 due to the conicity of C1, C2. Besides this, as it was

mentioned when solving item 2, 0 ∈ C1 ∩ C2, so that [0 · C1 ∩ C2] = [C1 ∩ 0 · C2] = {0} ⊂ C1 ∩ C2.

The bottom line is that ∪α∈[0,1][αC1 ∩ (1− α)C2] = C1 ∩ C2, as claimed.

Exercise I.13. Let X ⊆ Rn be a convex set with intX ̸= ∅, and consider the following set

K := cl {[x; t] : t > 0, x/t ∈ X} .

Prove that the set K is a closed cone with a nonempty interior.

Solution: K is what was in section 1.5 called closed conic transform of X; it was shown in section 1.5

that K is a closed cone. When x ∈ intX, we clearly have [x; 1] ∈ intK, so that intK ̸= ∅ whenever

intX ̸= ∅.
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5.2 Around ellipsoids

Exercise I.14. Verify each of the following statements:

1. Any ellipsoid E ∈ Rn is the image of the unit Euclidean ball Bn = {x ∈ Rn : ∥x∥2 ≤ 1} under a
one-to-one affine mapping. That is, E ⊂ Rn can be represented as E = {x : (x−c)⊤C(x−c) ≤
1} with C ≻ 0 and c ∈ Rn if and only if it can be represented as E = {c + Du : u ∈ Bn}
with nonsingular D, and in the latter representation D can be selected to be symmetric positive
definite.

Solution: Let E = {x : (x− c)⊤C(x− c) ≤ 1} with C ≻ 0. Then, by defining H := C1/2 (see section

D.1.5) we have

E = {x : (H(x− c))⊤(H(x− c)︸ ︷︷ ︸
:=u

) ≤ 1} = {x = c+H−1︸︷︷︸
=:D

u : u⊤u ≤ 1}

where D = H−1 ≻ 0 as C ≻ 0. For the other direction, given a nonsingular D, to say that x = c+Du

with some u satisfying ∥u∥2 ≤ 1, is the same as to say that ∥D−1(x− c)∥2 ≤ 1, that is, the same as

to say that (x − c)⊤D−⊤D−1︸ ︷︷ ︸
=:C

(x − c) ≤ 1 (by definition, D−⊤ = (D−1)⊤), and C := D−⊤D−1 is

symmetric positive definite since D−1 is nonsingular.

2. Given C ≻ 0, D ≻ 0 and c, d ∈ Rn, the ellipsoid EC := {x : (x−c)⊤C(x−c) ≤ 1} is contained
in the ellipsoid ED := {x : (x − c)⊤D(x − c) ≤ 1} if and only if C ⪰ D. If the ellipsoid EC is
contained in the ellipsoid E′

D = {x : (x− d)⊤D(x− d) ≤ 1}, then C ⪰ D.

Solution: The first claim: Setting x = y + c, we should prove that with positive definite C,D,

the implication y⊤Cy ≤ 1 =⇒ y⊤Dy ≤ 1 holds true if and only if C ⪰ D. By homogeneity, the

implication in question is the same as the relation

∀(s, y : s > 0, y⊤Cy ≤ s) : y⊤Dy ≤ s,

which for C ≻ 0 is exactly the same as C ⪰ D.

The second claim: Suppose EC ⊆ E′
D. Then, using part 1,

u⊤u ≤ 1 ⇐⇒ c+ C−1/2u ∈ EC
=⇒ c+ C−1/2u ∈ E′

D

=⇒ (C−1/2u+ c− d)⊤D(C−1/2u+ c− d) ≤ 1

=⇒ (u+ f)⊤ (C−1/2DC−1/2)︸ ︷︷ ︸
=:H

(u+ f), f := C1/2(c− d).

Applying the resulting inequality to −u in the role of u, we conclude that

u⊤u ≤ 1 =⇒ (f ± u)⊤H(f ± u) ≤ 1,

whence

u⊤u ≤ 1 =⇒ 1 ≥
1

2

(
(f + u)⊤H(f + u) + (f − u)⊤H(f − u)

)
= u⊤Hu+ f⊤Hf ≥ u⊤Hu,

where the concluding inequality is due to H ≻ 0 (implied by C,D ≻ 0). Hence, we arrive at

I ⪰ H = C−1/2DC−1/2,

implying, after multiplying both sides from the right and from the left by the symmetric matrix

C1/2, that C ⪰ D, as claimed.

3. For a set U ⊂ Rn, let Vol(U) be the ratio of the n-dimensional volume of U and the n-
dimensional volume of the unit ball Bn. Then, for an n-dimensional ellipsoid E represented as
{x = c+Du : ∥u∥2 ≤ 1} with nonsingular D we have

Vol(E) = |Det(D)|,
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and when E is represented as {x : (x− c)⊤C(x− c) ≤ 1} with C ≻ 0, we have

Vol(E) = Det−1/2(C).

Solution: The first relation is evident – one-to-one affine transformation u 7→ c + Du multiplies

n-dimensional volumes by |Det(D)|. Using item 1, we see that the second representation of E is

equivalent to the first representation with D := C−1/2, so that the second representation of Vol(E)

is readily given by the first one.

Exercise I.15. Given C ≻ 0, an ellipsoid {x : (x−a)⊤C(x−a) ≤ 1} is the solution set of quadratic
inequality x⊤Cx − 2(Ca)⊤x + (a⊤Ca − 1) ≤ 0. Prove that the solution set E of any quadratic
inequality f(x) := x⊤Cx− c⊤x+ σ ≤ 0 with positive semidefinite matrix C is convex.

Solution: Let x, y ∈ E and λ ∈ [0, 1]. Then,

f(λx+ (1− λ)y)

=
(
λ2x⊤Cx+ λ(1− λ)x⊤Cy + λ(1− λ)y⊤Cx+ (1− λ)2y⊤Cy

)
− λc⊤x− (1− λ)c⊤y + λσ + (1− λ)σ

= λ(x⊤Cx− c⊤x+ σ) + (1− λ)(y⊤Cy − c⊤y + σ)− λ(1− λ)((x− y)⊤C(x− y))︸ ︷︷ ︸
≥0 due to C ⪰ 0

≤ λ f(x)︸︷︷︸
≤0

+(1− λ) f(y)︸︷︷︸
≤0

≤ 0.

That is, λx+ (1− λ)y ∈ E.

5.3 Truss Topology Design

Exercise I.16. [First acquaintance with Truss Topology Design]
Preamble. What follows is the first exercise in a “Truss Topology Design” (TTD) series ((other
exercises in it are I.18, III.9, IV.11, IV.28). The underlying “real life” mechanical story is simple enough
to be told and rich enough to illustrate numerous constructions and results presented in the main
body of our textbook – ranging from Caratheodory Theorem to semidefinite duality, demonstrating
on a real life example how the theory works.
Trusses. Truss is a mechanical construction, like railroad bridge, electric mast, or Eiffel Tower,
composed of thin elastic bars linked with each other at nodes – points from physical space (3D
space for spatial, and 2D space for planar trusses).

Figure 5.1. Pratt Truss Bridge

When truss is subject to external load – collection of forces acting at the nodes – it starts to deform,
so that the nodes move a little bit, leading to elongations/shortenings of bars, which, in turn, result
in reaction forces. At the equilibrium, the reaction forces compensate the external ones, and the truss
capacitates certain potential energy, called compliance. Mechanics models this story as follows.

• The nodes form a finite set p1, . . . , pK of distinct points in physical space Rd (d = 2 for planar,
and d = 3 for spatial constructions). Virtual displacements of the nodes under the load are
somehow restricted by “support conditions;” we will focus on the case when some of the nodes
“are fixed” – cannot move at all (think about them as being in the wall), and the remaining “are
free” – their virtual displacements form the entire Rd. A virtual displacement v of the nodal set
can be identified with a vector of dimension M = dm, where m is the number of free nodes;
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v is block vector with m d-dimensional blocks, indexed by the free nodes, representing physical
displacements of these nodes.

• There are N bars, i-th of them linking the nodes with indexes αi and βi (with at least one of
these nodes free) and with volume (3D or 2D, depending on whether the truss is spatial or planar)
ti.

• An external load is a collection of physical forces – vectors from Rd – acting at the free nodes
(forces acting at the fixed nodes are of no interest – they are suppressed by the supports). Thus, an
external load f can be identified with block vector of the same structure as a virtual displacement
– blocks are indexed by free nodes and represent the external forces acting at these nodes. Thus,
displacements v of the nodal set and external loads f are vectors from the space V of virtual
displacements – M -dimensional block vectors with m d-dimensional blocks.

• The bars and the nodes together specify the symmetric positive semidefinite M ×M stiffness
matrix A of the truss. The role of this matrix is as follows. A displacement v ∈ V of the nodal
set results in reaction forces at free nodes (those at fixed nodes are of no interest – they are
compensated by supports); assembling these forces into M -dimensional block-vector, we get a
reaction, and this reaction is −Av. In other words, the potential energy capacitated in truss
under displacement v ∈ V of nodes is 1

2
v⊤Av, and reaction, as it should be, is the minus gradient

of the potential energy as a function of v 2. At the equilibrium under external load f , the total of
the reaction and the load should be zero, that is, the equilibrium displacement satisfies

Av = f (5.1)

Note that (5.1) may be unsolvable, meaning that the truss is crushed by the load in question. As-
suming the equilibrium displacement v exists, the truss at equilibrium capacitates potential energy
1
2
v⊤Av; this energy is called compliance of the truss w.r.t. the load. Compliance is convenient

measure of rigidity of the truss with respect to the load, the less the compliance the better the
truss withstands the load.

Let us build the stiffness matrix of a truss. As we have mentioned, the reaction forces originate from
elongations/shortenings of bars under displacement of nodes. Consider i-th bar linking nodes with
initial – prior to the external load being applied – positions ai = pαi and bi = pβi , and let us set

di = ∥bi − ai∥2, ei = [bi − ai]/di.

Under displacement v ∈ V of the nodal set,

• positions of the nodes linked by the bar become ai + vαi︸︷︷︸
da

, bi + vβi︸︷︷︸
db

, where vγ is γ-th block in v

– the displacement of γ-th node
• as a result, elongation of the bar becomes, in the first-order in v approximation, e⊤i [db− da], and

the reaction forces caused by this elongation by Hooke’s Law3 are

d−1
i Sieie

⊤
i [db− da] at node # αi

−d−1
i Sieie

⊤
i [db− da] at node # βi
0 at all remaining nodes

where Si = ti/di is the cross-sectional size of i-th bar. It follows that when both nodes linked
by i-th bar are free, the contribution of i-th bar to the reaction is

−tibib⊤i v,
2 This is called linearly elastic model; it is the linearized in displacements approximation of the actual

behavior of a loaded truss. This model works the better the smaller are the nodal displacements as

compared to the inter-nodal distances, and is accurate enough to be used in typical real-life

applications.
3 Hooke’s Law says that the magnitude of the reaction force caused by elongation/shortening of a bar

is proportional to Sd−1δ, where S is bar’s cross-sectional size (area for spatial, and thickness for

planar truss), d is bar’s (pre-deformation) length, and δ is the elongation. With units of length

properly adjusted to bars’ material, the proportionality coefficient becomes 1, and this is what we

assume from now on.
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where bi ∈ V is the vector with just two nonzero blocks:
— the block with index αi – this block is ei/di = [bi − ai]/∥bi − ai∥22, and
— the block with index βi – this block is −ei/di = −[bi − ai]/∥bi − ai∥22.
It is immediately seen that when just one of the nodes linked by i-th bar is free, the contribution
of i-th bar to the reaction is given by similar relations, but with one, rather than 2, blocks in bi
– the one corresponding to the free among the nodes linked by the bar.

The bottom line is that The stiffness matrix of a truss composed of N bars with volumes ti,
1 ≤ i ≤ N , is

A = A(t) :=
∑
i

tibib
⊤
i ,

where bi ∈ V = RM are readily given by the geometry of nodal set and the indexes of nodes linked
by bar i.

Truss Topology Design problem. In the simplest Truss Topology Design (TTD) problem, one is
given

• a finite set of tentative nodes in 2D or 3D along with support conditions indicating which of
the nodes are fixed and which are free, and thus specifying the linear space V = RM of virtual
displacements of the nodal set,

• the set of N tentative bars – unordered pairs of (distinct from each other) nodes which are
allowed to be linked by bars, and the total volume W > 0 of the truss,

• An external load f ∈ V.

These data specify, as explained above, vectors bi ∈ RM , i = 1, . . . , N , and the stiffness matrix

A(t) =

N∑
i=1

tibib
⊤
i = BDiag{t1, . . . , tN}B⊤ ∈ SM [B = [b1, . . . , bN ]]

of truss, which under the circumstances can be identified with vector t ∈ RN
+ of bar volumes. What

we want is to find the truss of given volume capable to “withstand best of all” the given load, that
is, the one that minimizes the corresponding compliance.

When applying the TTD model, one starts with dense grid of tentative nodes and broad list of
tentative bars (e.g., by allowing to link by a bar every pair of distinct from each other nodes, with at
least one of the nodes in the pair free). At the optimal truss yielded by the optimal solution to the
TTD problem, many tentative bars (usually vast majority of them) get zero volumes, and significant
part of the tentative nodes become unused. Thus, TTD problem in fact is not about sizing – it allows
to recover optimal structure of the construction, this is where “Topology Design” comes from.

To illustrate this point, here is a toy example (it will be our guinea pig in the entire series of TTD
exercises):
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Console design: We want to design a 2D truss as follows:

• The set of tentative nodes is the 9× 9 grid {[p; q] ∈ R2 : p, q ∈ {0, 1, . . . , 8}} with the
9 most-left nodes fixed and remaining 72 nodes free, resulting in M = 144-dimensional
space V of virtual displacements

• The external load f ∈ V = R144 is a single-force one, with the only nonzero force
[0;−1] applied at the 5-th node of the most-right column of nodes.

• We allow for all pairwise connections of pairs of distinct from each other nodes, with
at least one of these nodes free, resulting in N = 3204 tentative bars

• The total volume of truss is W = 1000.

a) 9× 9 nodal grid b) 3024 tentative bars
•: fixed nodes

c) optimal truss, 38 bars d) displacement under
compliance 0.1914 load of interest

Figure 4.1. Console. d): positions of the bars and nodes before and after (in gray) deformation.

The vertical segment starting at the right-most node: the external force.

Important: From now on, speaking about TTD problem, we always make the fol-
lowing assumption:

R :
∑N
t=1 bib

⊤
i ≻ 0.

Under this assumption, the stiffness matrix A(t) =
∑
i tibib

⊤
i associated with truss t > 0

is positive definite, so that such a truss can withstand whatever load f .

You can verify numerically that this is the case in Console design as stated above.
After this lengthy preamble (to justify its length, note that it is investment to a series of exercises,

rather than just one of them), let us pass to the exercise per se. Consider a TTD problem.

1. Prove that truss t ≥ 0 (recall that we identify truss with the corresponding vector of bar volumes)
is capable to carry load f if and only if the quadratic function

F (v) = f⊤v − 1

2
v⊤A(t)v

is bounded from above, and that whenever this takes place,
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• the maximum of F over V is achieved

• the maximizers of F are exactly the equilibrium displacements v – those with

A(t)v = f,

and for such a displacement, one has

[maxF =] F (v) =
1

2
v⊤A(t)v =

1

2
v⊤f

• the maximum value of F is exactly the compliance of the truss w.r.t. the load f

Solution: Observe, first, that a quadratic function

G(v) = g⊤v −
1

2
v⊤Av : RM → R

with A ⪰ 0 attains its maximum if and only if it is bounded from above, and that the maximizers v of

G are exactly the solutions v to the Fermat equation

[∇G(v) =] g −Av = 0.

Indeed, invoking eigenvalue decomposition A = U Diag{λ}U⊤ of A (here U is orthogonal, and λ1 ≥
λ2 ≥ . . . ≥ λM are the eigenvalues of A; note that λM ≥ 0 since A ⪰ 0) and representing v ∈ RM by

the vector v = U⊤v of coordinates of v in the eigenbasis of A, we get

G(v) = f
⊤
v −

1

2

M∑
i=1

λiv
2
i . [f = U⊤f ]

We conclude that G is bounded from above if and only if f i = 0 for all i such that λi = 0, and in this

case G attains its maximum, the maximizers being exactly v’s such that λivi = f i for all i, or, which is

the same, all v’s such that Av = f . For such a v, if any,

G(v) =
∑
i

[f ivi −
1

2
λiv

2
i ] =

1

2

∑
i

λiv
2
i =

1

2
v⊤Av =

1

2
v⊤f.

It remains to note that by definition of the compliance of truss t w.r.t. load f , this compliance is finite

if and only if the equation Av = f in variables f has a solution v = vf , in which case the compliance is
1
2
v⊤f Avf . ■

Note: From the above analysis, it follows that our original definition of compliance indeed makes sense

– while the equilibrium displacement v – the one such that Av = f – when exists, not necessarily is

uniquely defined by A and f , the analysis we have just carried out shows that when vf exists, the

quantity 1
2
v⊤f Avf is uniquely defined by A and f .

2. Prove that a real τ is an upper bound on the compliance of truss t ≥ 0 w.r.t. load f if and only
if the symmetric matrix

A =

[
BDiag{t}B⊤ f

f⊤ 2τ

]
, B = [b1, . . . , bN ]

is positive semidefinite. As a result, pose the TTD problem as the optimization problem

Opt = min
τ,r

{
τ :

[
BDiag{t}B⊤ f

f⊤ 2τ

]
⪰ 0, t ≥ 0,

∑
i

ti =W

}
(5.2)

Prove that the problem is solvable.
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Solution: As we have already seen, the compliance C of truss t w.r.t. f does not exceet a real τ iff

τ ≥ supv F (v), that is, setting A = A(t) = BDiag{t}B,

τ ≥ C
⇐⇒ τ ≥ f⊤v − 1

2
v⊤Av ∀v

⇐⇒ τ − f⊤v + 1
2
v⊤Av ≥ 0 ∀v

⇐⇒ 2τ − 2f⊤v + v⊤Av ≥ 0 ∀v
⇐⇒ 2τs2 + 2sf⊤u+ u⊤Au ≥ 0∀(s ̸= 0, u) [look at v = −u/s]
⇐⇒ 2τs2 + 2sf⊤u+ u⊤Au ≥ 0∀[u; s] ∈ RM+1 [by continuity]

⇐⇒
[

A f

f⊤ 2τ

]
⪰ 0 ■

To prove that the problem is solvable, note that BB⊤ ≻ 0, implying that every t > 0 such that∑
i ti = W can be augmented by large enough τ to yield a feasible solution. Thus, (5.2) is feasible.

Since for every feasible solution to the problem τ is nonnegative, the objective is below bounded on

the (nonempty!) feasible set, so that the infimum Opt of the value of s objective at feasible solutions

is nonnegative real. We can find sequence [tj , τ j ] of feasible solutions with τ j → Opt as j → ∞.

By feasibility, tj form a bounded sequence, so that passing to a subsequence, we can assume that

limj→∞[tj ; τ j ] exists; clearly, this limit is a feasible solution, and the τ -component of this solution

is Opt, implying that this solution is optimal. ■

3. [computational study]

3.1. Solve the Console problem numerically and reproduce the numerical results presented above.
3.2. Resolve the problem with the set of all possible tentative bars reduced to the subset of “short”

bars connecting neighboring nodes only:

Figure 5.3. 262 “short” tentative bars

and compare the resulting design and compliance to those in the previous item.

Solution: 3.2: Here are our results:

”Long-bar truss:” 38 bars, compliance 0.1914 ”Short-bar truss:” 128 bars, compliance 0.2903

The vertical segments starting at the right-mpst nodes: the external force.
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5.4 Around Caratheodory Theorem

Exercise I.17. Prove the following statement: Let X ⊂ Rn be nonempty. Then

1. if a point x can be represented as a convex combination of a collection of vectors from X, then
the collection can be selected to be affinely independent.

2. if a point x can be represented as a conic combination of a collection of vectors from X, then
the collection can be selected to be linearly independent,

Note that the claims above are refinements, albeit minor ones, of the Caratheodory Theorem (plain
and conic, respectively). Indeed, when M = Aff(X) and m is the dimension of M , every affine
independent collection of points from X contains at most m+ 1 points (Proposition A.44), so that
the first claim implies that if x ∈ Conv(X), then x is a convex combination of at most m + 1
points from X; however, the vectors participating in such a combination are not necessarily affinely
independent, so that the first claim provides a bit more information than the plain Caratheodory’s
Theorem. Similarly, if L = Lin(X) and m = dimL, then every linearly independent collection of
vectors from X contains at most m ≤ n points, that is, the second claim implies the Caratheodory’s
Theorem in conic form, and provides a bit more information than the latter theorem.

Solution: 1: For x ∈ Conv(X), let x =
∑
i∈I λixi be the shortest – with the minimum possible cardinality

of I – representation of x as a convex combination of points from X, and let us verify that the vectors xi
participating in this representation form an affinely independent collection. Assuming otherwise, there

exists a nontrivial collection of reals δi, i ∈ I, such that
∑
i δixi = 0 and

∑
i δi = 0, and we can proceed

exactly as in the proof of Caratheodory’s Theorem: setting λi(t) = λi + tδi, we have
∑
i λi(t) = 1 and∑

i λi(t)xi = x for all t, and since not all δi are zeros and their sum is 0, some of λi(t) for large t become

negative, implying, due to λi(0) ≥ 0 ∀i, that for some t∗ all λi(t
∗) are nonnegative, and some of them

vanish, contradicting the assumption that number of terms in our initial representation of x as a convex

combinations of points from X is the minimum possible.

2: Similarly, for x ∈ Cone(X), let x =
∑
i∈I λixi be the representation of x as a conic combination

of points from X with the minimum possible number of terms, and let us prove that the vectors xi
participating in this representation form a linearly independent collection. This indeed is so when I = ∅.

Now let I be nonempty, and assume, for contradiction, that the vectors xi, i ∈ I, are linearly dependent,

so that
∑
i δixi = 0 for a nontrivial collection δi, i ∈ I. Passing, if necessary, from δi to −δi, i ∈ I, we

may assume that some of δi are strictly negative. Setting λi(t) = λi + tδi, we have that
∑
i λi(t)xi = x

for all t, λi(0) ≥ 0, i ∈ I, and some of λi(t) become negative for large t. It follows that there exists the

largest t = t∗ for which all λi(t) still are nonnegative, and for t = t∗ some of λi(t) vanish, implying that

x =
∑
i∈I λi(t

∗)xi is a representation of x as a conic combination of xi with some of the coefficients

equal to 0, contradicting the minimality of the original representation. ■

Exercise I.18.4 Consider TTD problem, and let N be the number of tentative bars, M be the
dimension of the corresponding space of virtual displacements V, and f be an external load. Prove
that if truss t ≥ 0 can withstand load f with compliance ≤ τ for some given real τ , then there exists
truss t of the same total volume as t with compliance w.r.t. f at most τ and at most M + 1 bars
of positive volume.

Solution: Denoting by v the equilibrium displacement of (nodes of) truss t under load f , by the results

of Exercise I.16.1 we have

N∑
i=1

ti [bib
⊤
i v]︸ ︷︷ ︸
gi

= f &
1

2
f⊤v ≤ τ

Denoting w the volume of t and assuming w.l.o.g. that w > 0, we see that f/w is a convex combination,

with coefficients ti/w, of vectors gi ∈ RM . By Caratheodory Theorem, f/w is a convex combination

of the same vectors gi with coefficients si such that at most M + 1 of these coefficients are positive. It

follows that setting ti = wsi, we get truss t of the same volume as t, with at most M +1 bars of positive

4 Preceding exercise in the TTD series is I.16.
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volume, such that
∑
i tibib

⊤
i v = f , so that v is the equilibrium displacement of truss t under load f .

Consequently, the compliance of truss t̄ w.r.t. load f is 1
2
f⊤v ≤ τ . ■

Exercise I.19.

1. Prove that if a system of linear equations Ax = b with n variables and m equations has a
nonnegative solution, it has a nonnegative solution with at most m positive entries.

Solution: Let A1, . . . , An be the columns of A. Nonnegative solutions to the system Ax = b are

exactly the vectors of coefficients in representation of b ∈ Rm as a conic combination of A1, . . . , An.

Then, by conic version of Caratheodory’s Theorem (Fact I.2.7), if b admits such a representation, it

admits such a representation with at most m of Ai’s involved.

2. Let V1, . . . , Vn be n nonempty sets in Rm, and define

V := Conv(V1 + V2 + . . .+ Vn).

1. Prove that

1. Taking direct product commutes with taking convex hull:

Conv(V1 × ...× Vn) = Conv(V1)× ...× Conv(Vn)

Solution: Applying induction in n, it suffices to verify that for nonempty U, V ⊂ Rn it holds

Conv(U × V ) = Conv(U) × Conv(V ). When [ui; vi] ∈ U × V and λi ≥ 0,
∑
i λi = 1, we

have
∑
i λi[u

i; vi] = [
∑
i λiu

i;
∑
i λiv

i] ∈ Conv(U)×Conv(V ), implying that Conv(U×V ) ⊆
Conv(U) × Conv(V ). Vice versa, if [u; v] ∈ Conv(U) × Conv(V ), then u =

∑
i λiu

i with

ui ∈ U , λi ≥ 0,
∑
i λi = 1, and v =

∑
j µjv

j with vj ∈ V , µj ≥ 0,
∑
j µj = 1, whence

[u; v] = [
∑
i,j λiµju

i;
∑
i,j λiµjv

j ] =
∑
i,j λiµj [u

i; vj ] ∈ Conv(U × V ) due to λiµj ≥ 0 and∑
i,j λiµj = 1. Thus, Conv(U)× Conv(V ) ⊆ Conv(U × V ).

2. Taking affine image commutes with taking convex hull: if V ⊂ Rn is nonempty and x 7→
A(x) = Ax+ b : Rn → Rm is an affine mapping, then define A(V ) := {A(x) : x ∈ V }
and show that

Conv (A(V ) := {A(x) : x ∈ V }) = A(Conv(V ))

Solution: Evident.

3. Conclude from the previous two items that taking weighted sum of sets commutes with
taking convex hull:

Conv

(
λ1V1 + ...+ λnVn := {v =

∑
i

λivi : vi ∈ Vi, i ≤ n}

)
= λ1 Conv(V1)+...+λn Conv(Vn)

[λi ∈ R]
In particular,

V = Conv(V1) + . . .+Conv(Vn).

Solution: Note that λ1V1 + ...+λnVn = A(V1 × ...×Vn), where A[v1; ...; vn] =
∑
i λiv

i, and

apply subsequently the first and the second of the preceding items.

Note: The last three claims remain true when convex hull is substituted with affine span
(but not when it is substituted with conic hull or linear span – compare Cone({1}) ×
Cone({1}) and Lin({1})×Lin({1}) with Cone({1}×{1}) and Lin({1}×{1}), respectively.

2. Prove Shapley-Folkman Theorem:

Let x ∈ V . Then, there exists a representation of x such that

x = x1 + . . .+ xn, xi ∈ Conv(Vi),

in which at least n−m of xi’s belong to the respective sets Vi.

Comment: Shapley-Folkman Theorem says, informally, that when n ≫ m, summing up n
nonempty sets in Rm possesses certain “convexification property” – every point from the
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convex hull V of the sum of our sets is the sum of points xi with all but m of them belonging
to Vi rather than to Conv(Vi), and only ≤ m of the points belonging to Vi “fractionally,”
that is, belonging to Conv(Vi), but not to Vi. This nice fact has numerous useful applications.

Solution: Let x ∈ V . Then, by the previous part, x =
∑n
i=1

(∑K
k=1 λi,kxi,k

)
with some K,

xi,k ∈ Vi, and λi,k ≥ 0,
∑K
k=1 λi,k = 1, i ≤ n. Hence, nK reals λi,k form a nonnegative solution

to the system of m+ n linear equations

(a)
∑
k

λi,k = 1, 1 ≤ i ≤ n

(b)
∑
i

∑
k

λi,kxi,k = x.

By the first item of this exercise, this system has a nonnegative solution with at most m + n

nonzero entries; let us denote this solution by {λi,j}. We can partition the equations in (a)

into two groups, the ones in which exactly one of the variables participating in the equation

takes a positive value in the solution {λi,j}, and the equations in which two or more variables

participating in the equation take positive values in {λi,j}. Let d be the number of equations

in the latter set. Every one of the remaining n − d equations in (a) involves at most one, and

therefore exactly one, variable which at our solution gets positive value, and this positive values

is, of course, 1. Since every one of the variables λi,k enters exactly one of the equations (a), we

conclude that the total number of positive λi,k’s (which, as we remember, is at most m + n) is

at least 2d + (n − d) = n + d, implying that d ≤ m. Thus, for at least n −m values of i all but

one of λi,k’s, k = 1, . . . ,K, are zeros, and the remaining one equals to 1. In other words, all but

at most m of the n sums
∑
k λi,kxi,k, i = 1, . . . , n, are just points from the respective sets Vi. It

remains to recall that x =
∑n
i=1

∑
k λi,kxi,k.

Exercise I.20. Caratheodory’s Theorem in its plain and its conic forms are “existence” statements:
if a point x ∈ Rm is a convex, respectively conic, combination of points x1, . . . , xN , then there
exists a representation of x of the same type which involves at most (m+1), respectively, m, terms.
Extract from the proofs of the theorems algorithms for finding these “short” representations at the
cost of solving at most N solvable systems of linear equations with at most N variables and m
equations each.

Solution: For the sake of definiteness, consider plain Caratheodory Theorem (conic case can be treated

in exactly the same fashion). Proof of Theorem, on immediate inspection, is based on the following

observation:

Given representation x =
∑K
i=1 λix

i with λi > 0, i ≤ K and
∑
i λi = 1, in the case of

K > m+1 and finding a nontrivial solution δ to the homogeneous system of linear equations

K∑
i=1

δix
i = 0,

K∑
i=1

δi = 0.

we can convert, by simple computation, the initial representation into a new one, of the same

form, which assigns positive weights to at most K′ ≤ K − 1 of xi’s.

Recall that we are given representation of x as convex combination of K = N of xi’s. If K > m + 1,

we can apply the above construction to represent x as a convex combination of K′ < K of xi’s. If

K′ > m+ 1, we can iterate this update, with K′ in the role of K, to represent x as convex combination

of at most K′′ < K′ of xi’s. Proceeding in this way, we in at most N steps will represent x as convex

combination of at most m+ 1 of xi’s.

Exercise I.21. Prove Kirchberger’s Theorem:

Consider two sets of finitely many points X =
{
x1, . . . , xk

}
and Y =

{
y1, . . . , ym

}
in

Rn such that k + m ≥ n + 2 and all the points x1, . . . , xk, y1, . . . , ym are distinct.
Assume that for any subset S ⊆ X ∪ Y which contains n+ 2 points the convex hulls
of the sets X ∩S and Y ∩S do not intersect: Conv(X ∩S)∩Conv(Y ∩S) = ∅. Then,
the convex hulls of X and Y also do not intersect: Conv(X) ∩ Conv(Y ) = ∅.
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Hint: Assume for contradiction that Conv(X) ∩ Conv(Y ) ̸= ∅, so that

k∑
i=1

λix
i =

m∑
j=1

µjy
j (∗)

for certain nonnegative λi,
∑k
i=1 λi = 1, and certain nonnegative µj ,

∑m
j=1 µj = 1, and look at the

expression of this type with the minimum possible total number of nonzero coefficients λi, µj .

Solution: Following the hint, assume for the contradiction that Conv(Y ) and Conv(X) do intersect, so

that the relation (∗) holds for appropriately chosen λi, µj satisfying

λi ≥ 0, µj ≥ 0,
∑
i

λi =
∑
j

µj = 1. (∗∗)

And, among the collection of weights λi, µj satisfying (∗) and (∗∗), let us select one that has the smallest

in the total number of positive λi, µj . Without loss of generality, we may assume that in this collection

of weights, the positive weights are the first p of λi’s and the first q of µj ’s. Note that by the premise

of Kirchberger’s Theorem, p + q > n + 2. Now consider the following system of n + 2 equations with

p+ q > n+ 2 unknowns:

p∑
i=1

δix
i −

q∑
j=1

θjy
j = 0,

∑
i

δi = 0,

∑
j

θj = 0.

As this is a homogeneous system of linear equations and the number of unknowns is greater than the

number of equations, the system has a nontrivial solution δ, θ. Setting λi(t) = λi + tδi, i ≤ p, and

µj(t) = µj + tθj , j ≤ q, we have for all t:∑
i

λi(t)x
i =

∑
j

µj(t)y
j ,
∑
i

λi(t) = 1,
∑
j

µj(t) = 1.

For t = 0, all the coefficients λi(t), µj(t) are positive. Since
∑
i

δi+
∑
j

θj = 0 and not all δi, θj are zeros,

among the reals δi, θj at least one should be negative.

Hence, for large enough t > 0 some of the coefficients λi(t), µj(t) will be negative. Consequently,
there exists the largest t = t∗ for which all λi(t), µj(t) are nonnegative; among λi(t∗), µj(t∗), there
is clearly at least one zero, and we see that the coefficients λi(t∗), µj(t∗) satisfy (∗), (∗∗), and the
total number of positive among them is < p+ q, which is a contradiction.

Exercise I.22 [Follow-up to Shapley-Folkman Theorem]

1. Let X1, . . . , XK be nonempty convex sets in Rn, and define X :=
⋃
k≤K Xk. Prove that

Conv(X) =

{
x =

K∑
k=1

λkx
k : λk ≥ 0, xk ∈ Xk, ∀k ≤ K,

K∑
k=1

λk = 1

}
.

Solution: Let X be the set on the right hand side. As X =
⋃
k≤K Xk, based on the definition of X

it is clear that Conv(X) ⊇ X. So, all we need to show is that Conv(X) ⊆ X. To this end consider any

x ∈ Conv(X), and so x =
∑S
s=1 µsy

s with µs ≥ 0, ys ∈ X, s ≤ S, and
∑
s µs = 1. We can clearly

split the index set {1, 2, . . . , S} into K non-overlapping subsets Sk, k ≤ K (some of these subsets can be

empty) in such a way that s ∈ Sk implies that µs > 0 and ys ∈ Xk. For k with nonempty Sk, let us set

λk :=
∑
s∈Sk

µs and define xk :=
∑
s∈Sk

µs
λk
ys. By definition of λk and the fact that ys ∈ Xk for all

s ∈ Sk, we see that xk is a convex combination of points from Xk, and as Xk is a convex set we conclude

that xk ∈ Xk. For k with empty Sk, let us set λk = 0 and select somehow xk in the (nonempty!) set
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Xk. As a result, we get x =
∑S
s=1 µsy

s =
∑K
k=1 λkx

k with xk ∈ Xk, λk ≥ 0, and
∑K
k=1 λk = 1. This

shows that x ∈ X as desired.

2. Let Xk, k ≤ K, be nonempty bounded polyhedral sets in Rn given by polyhedral representations:

Xk =
{
x ∈ Rn : ∃uk ∈ Rnk such that Pkx+Qku

k ≤ rk
}
.

Define X :=
⋃
k≤K Xk. Prove that the set Conv(X) is a polyhedral set given by the polyhedral

representation

Conv(X) =

x ∈ Rn :

∃xk ∈ Rn, uk ∈ Rnk , λk ∈ R, ∀k ≤ K :
Pkx

k +Qku
k − λkrk ≤ 0, k ≤ K (a)

λk ≥ 0,
∑K
k=1 λk = 1 (b)

x =
∑K
k=1 x

k (c)

 . (∗)

Does the claim remain true when the assumption of boundedness of the sets Xks is lifted?

Solution: Let us temporary denote by X̂ the right hand side set in (∗) and set X := Conv(X). We need

to show that X = X̂. Recall from item 1 that

X =

{
x =

K∑
k=1

λkx
k : λk ≥ 0, xk ∈ Xk, ∀k ≤ K,

K∑
k=1

λk = 1

}
.

Let X̃ be the set of all vectors representable as convex combinations, with positive coefficients, of vectors

from X1, . . . , XK . Note that X̃ ⊆ X.

Observe that

X̃ =

x ∈ Rn :

∃xk ∈ Rn, uk ∈ Rnk , λk ∈ R, ∀k ≤ K :

Pkx
k +Qku

k − λkrk ≤ 0, k ≤ K (a′)

λ > 0,
∑K
k=1 λk = 1 (b′)

x =
∑K
k=1 x

k (c′)

 . (!)

Indeed, when x belongs to the right hand side set in (!), we have yk := λ−1
k xk ∈ Xk due to Pky

k +

Qk[λ
−1
k uk] ≤ rk and x =

∑
k λky

k. Vice versa, when x ∈ X̃, we have x =
∑
k λky

k with positive λk
summing up to 1 and yk ∈ Xk. The latter means that there exist vk such that Pky

k + Qkv
k ≤ rk.

Setting xk = λky
k, uk = λkv

k, we ensure validity of (a′) – (c′), so that x belongs to the right hand side

set in (!).

Next, we claim that X̂ = clX. First, observe that X̃ is dense in X, meaning that every point x ∈ X is the

limit of a sequence of points from X̃. Indeed, consider any x ∈ X, i.e., x =
∑
k λkx

k with nonnegative

λk summing up to 1 and xk ∈ Xk for all k. Then, we have x = limi→∞
∑
k
λk+1/i
1+K/i

xk, and the points in

the right hand side sequence belong to X̃. Now, observe that X̂ is closed (it is polyhedrally representable

and thus polyhedral) and moreover X̃ is dense in X̂. Indeed, by (!) we have X̃ ⊆ X̂. On the other hand,

let us fix somehow xk ∈ Xk and λk > 0 such that
∑
k λk = 1, and let uk be such that Pkx

k+Qku
k ≤ rk.

Given x ∈ X̂, there exist xk, uk and λk satisfying (a) – (c). For all i = 1, 2, . . ., setting

xk,i := (1− 1/i)xk + (1/i)xk,

uk,i := (1− 1/i)uk + (1/i)uk,

λk,i := (1− 1/i)λk + (1/i)λk,

we ensure that Pkx
k,i+Qku

k,i−λk,irk ≤ 0, λk,i > 0,
∑
i λk,i = 1, implying that x(i) :=

∑
k x

k,i ∈ X̃.

As i→ ∞, we clearly have x(i) → x, so that X̃ indeed is dense in X̂. The latter combines with closedness

of X̂ to imply that the X̂ is the closure of X̃, and the latter set, due to the fact that X̃ is dense in X,

is the same as the closure of X. Thus, X̂ = clX.

It remains to note that since Xk are bounded, X is closed. This is immediate: assuming that x =

limi→∞
∑
k λk,ix

k,i with nonnegative λk,i,
∑
k λk,i = 1, and xk,i ∈ Xk, boundedness of Xk, k ≤ K,

allows to find a subsequence i1 < i2 < . . . of indexes such that for some λk and xk, k ≤ K, it holds
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λk,is → λk and xk,is → xk for every k as s → ∞. Since Xk are polyhedral and thus closed, we have

xk ∈ Xk, and of course λk ≥ 0,
∑
k λk = 1, that is, x = lims→∞

∑
k λk,isx

k,is =
∑
k λkx

k ∈ X.

Finally, Conv(
⋃
k≤K Xk) is not necessarily polyhedral when Xk are nonempty polyhedral, but un-

bounded, sets. For example, by selectingK = n = 2,X1 := {x ∈ R2 : x1 ≥ 0, x2 = 0} andX2 := {[0; 1]},
we see that the set Conv(X1 ∪ X2) is not polyhedral, but its closure is. On inspection, the above rea-

soning demonstrates that when Xk are nonempty polyhedral sets given by polyhedral representations,

then the polyhedral set X̂ defined as the right hand side set of (∗) is the closure of Conv(
⋃
k≤K Xk).

After two preliminary items above, let us pass to the essence of the matter. Consider the situation
as follows. We are given n nonempty and bounded polyhedral sets Xj ⊂ Rr, j = 1, . . . , n. We will
think of Xj as the “resource set” of the j-th production unit: entries in x ∈ Xj are amounts of
various resources, and Xj describes the set of vectors of resources available, in principle, for j-th
unit. Each production unit j can possibly use any one of its Kj <∞ different production plans. For
each j = 1, . . . , n, the vector yj ∈ Rp representing the production of the j-th unit depends on the
vector xj of resources consumed by the unit and also on the production plan utilized in the unit.
In particular, the production vector yj ∈ Rp stemming from resources xj under k-th plan can be
picked by us, at our will, from the set

Y kj [xj ] :=
{
yj ∈ Rp : zj := [xj ;−yj ] ∈ V kj

}
,

where V kj , k ≤ Kj , are given bounded polyhedral “technological sets” of the units with projections
onto the xj-plane equal to Xj , so that for every k ≤ Kj it holds

xj ∈ Xj ⇐⇒ ∃yj such that [xj ;−yj ] ∈ V kj . (5.3)

We assume that all the sets V kj are given by polyhedral representations, and we define

Vj :=
⋃
k≤Kj

V kj .

Let R ∈ Rr be the vector of total resources available to all n units and let P ∈ Rp be the vector
of total demands for the products. For j ≤ n, we want to select xj ∈ Xj , kj ≤ Kj , and yj ∈ Y

kj
j [xj ]

in such a way that ∑
j

xj ≤ R and
∑
j

yj ≥ P.

That is, we would like to find zj = [xj ; vj ] ∈ Vj , j ≤ n, in such a way that
∑
j zj ≤ [R;−P ]. Note

that the presence of “combinatorial part” in our decision – selection of production plans in finite sets
– makes the problem difficult.

3. Apply Shapley-Folkman Theorem (Exercise I.19) to overcome, to some extent, the above difficulty
and come up with a good and approximately feasible solution.

Solution: Let s := [R;−P ], and observe that our problem reads

Find zj ∈ Vj such that

n∑
j=1

zj ≤ s. (P )

Note that given polyhedral representations of V kj , based on item 2, we can build explicit polyhedral

representations of the convex hulls of the sets Vj , i.e., we can efficiently compute V j , where

V j := Conv(Vj).

Let us relax the problem of interest (P ) to the problem

Find zj ∈ V j such that

n∑
j=1

zj ≤ s. (P )

By calculus of polyhedral representations, (P ) is the problem of the form
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Given polyhedral representation of nonempty polyhedral set Z ⊂ Rr+p and vector s ∈ Rr+p,

find z ∈ Z such that z ≤ s.

Note that is an explicit Linear Programming feasibility problem. Thus, we can apply LP algorithms

to check whether (P ) is solvable, and if it is the case – find a solution {zj , j ≤ n} to (P ). Applying

Shapley-Folkman Theorem, we can convert, in a computationally efficient fashion, this solution into

another feasible solution, {[xj ; vj ], j ≤ n}, for which for all but at most

d := min {r + p, n}

components [xj ; vj ] belong to Vj , that is, “are implementable” – for the corresponding j, one has xj ∈ Xj

and yj = −vj ∈ Y
kj
j [xj ] with properly selected kj ≤ Kj . Let J be the set of “bad” indices j, i.e., those for

which [xj ; vj ] ∈ V j \Vj . Note that for each j ∈ J we still have xj ∈ Xj . We can correct the corresponding

yj , passing from [xj ; vj ] to [xj ; vj ] with vj ∈ −Y 1
j [xj ], or, better, vj defined as the optimal solution to

the “best” – with the smallest optimal value – among the Kj convex optimization problems

min
uk

{
∥vj − uk∥ : [xj ;uk] ∈ V kj

}
, k ≤ Kj ,

where ∥ · ∥ is some norm. As a result, we get “fully implementable” solution {[xj ; vj ], j ≤ n}, where

vj = vj for j ̸∈ J , to problem (P ). This solution, in general, may not be feasible when J ̸= ∅. However,

by selecting somehow norm ∥ · ∥, defining

Dj := max
x,v,x′v′

{
∥v − v′∥ : [x; v] ∈ Vj , [x′; v′] ∈ Vj

}
, ∀j ≤ n and D := max

j
Dj ,

and taking into account that Card(J) ≤ d = min{r + p, n}, we have
∑
j [xj ; vj ] ≤ s + δ, ∥δ∥ ≤ dD,

and
∑
j xj ≤ R. In the case of “mass production”, when ∥P∥ is large, the violation of the constraint∑

j vj ≤ −P as quantified by ∥δ∥ is a small fraction of the magnitude of P , and our implementable

solution has chances to be a good, from a “practical perspective,” surrogate of a feasible solution to (P ).

5.5 Around Helly Theorem

Exercise I.23. [Alternative proof of Helly Theorem] The goal of this exercise is to build an alternative
proof of Helly’s Theorem, without using Radon’s Theorem.

1. Consider a system a⊤i x ≤ bi, i ≤ N , of N linear inequalities in variables x ∈ Rn. Helly’s Theorem
applied to the sets Ai := {x ∈ Rn : a⊤i x ≤ bi} gives us that

(!) If a system a⊤i x ≤ bi, i ≤ N , of linear inequalities in variables x ∈ Rn is infeasible,
so is a properly selected sub-system composed of at most n+ 1 inequalities from the
system.

Find an alternative proof of (!) without relying on Helly’s or Radon’s Theorems.

Solution: Suppose that the system a⊤i x ≤ bi, i ≤ N , is infeasible. Then, by General Theorem of

the Alternative there exist nonnegative weights λi and α < 0 such that the vector [0; . . . ; 0;α] is a

conic combination, with coefficients λi, of vectors [ai; bi], i ≤ N . Note that [ai; bi] ∈ Rn+1, and so by

Caratheodory’s Theorem in conic form it follows that the vector [0; . . . ; 0;α] is a conic combination

of at most n + 1 of the vectors [ai; bi], let I be the set of their indexes. By GTA, the subsystem

a⊤i x ≤ bi, i ∈ I, of the original system is infeasible, and the number of inequalities in it is at most

n+ 1, as desired.

2. Extract from item 1 Helly’s Theorem for polyhedral sets: If A1, . . . , AN , N ≥ n+1, are polyhe-
dral sets in Rn and every n+ 1 of these sets have a point in common, then all the sets have
a point in common.

Solution: Let Ai := {x ∈ Rn : Pix ≤ pi} for i ≤ N . To justify the claim in question is the same

as to prove that if ∩iAi = ∅, then the intersection of properly selected k ≤ n + 1 sets from the

collection is empty. Suppose that ∩iAi = ∅, that is, the system

Pix ≤ pi, i ≤ N (∗)
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of linear inequalities in variables x ∈ Rn has no solutions. By item 1, we can select from (∗) k ≤ n+1

inequalities to get an infeasible subsystem of (∗). Denoting by I the set of indices i of the blocks

Pix ≤ pi of (∗) containing the k selected inequalities, we conclude that k ≤ n+1 sets Ai, i ∈ I, have

no point in common.

3. Extract from item 2 Helly’s Theorem (Theorem I.2.10).

Solution: Let A1, . . . , AN be a collection of convex sets in Rn, N ≥ n + 1, such that every n + 1

sets from the collection have a point in common, and let us prove that all sets have a point in

common. For a collection ι = {ι1 < ι2 < . . . < ιn+1} of n + 1 distinct from each other indices

from {1, 2, . . . , N}, let xι be a point from the (nonempty!) set Aι1 ∩ Aι2 ∩ . . . ∩ Aιn+1 , and let

Aj := Conv({xι : j ∈ ι}). Note that Aj is the convex hull of points from Aj (since xι ∈ Aj whenever

j ∈ ι), and thus Aj ⊂ Aj (as Aj is convex). The sets A1, . . . , AN are convex hulls of finite sets and as

such are polyhedrally representable and therefore polyhedral. Every n+ 1 sets Aι1 , Aι2 , . . . , Aιn+1 ,

ι1 < ι2 < . . . < ιn+1 ≤ N , have a point in common, namely, xι1,...,ιn+1 . Then, by item 2, all the

sets Aj , j ≤ N , have a point in common, and this point is a common point of A1, . . . , AN , since, as

we already know, Aj ⊂ Aj .

Exercise I.24. A0, A1, . . . , Am, m = 2025, are nonempty convex subsets of R2000, and A0 is a
triangle (convex hull of 3 affinely independent vectors). Which of the claims below are always (that
is, for any A0, . . . , Am satisfying the above assumptions) true:

1. If every 3 among the sets A0, . . . , Am have a point in common, all m + 1 sets have a point in
common.

2. If every 4 among the sets A0, . . . , Am have a point in common, all m + 1 sets have a point in
common.

3. If every 2001 among the sets A0, . . . , Am have a point in common, all m+ 1 sets have a point
in common.

Solution: The true statements are the second and the third ones. To see that the second statement is

true, let us define Ai := Ai ∩ A0. Then, we get m + 1 convex sets such that every 3 of them intersect

(since the intersection of a triple of A-sets is the same as intersection of four of A-sets) and all of them

belong to the affine plane Π of dimension 2 (namely, the affine span of the triangle A0). Applying Helly’s

theorem to the sets Ai (treated as the subsets of the 2-dimensional affine plane), we conclude that all

of them have a point in common, and this point, of course, is a common point of A0, . . . , Am. Since the

second statement is true, so is the third (the third statement is true even without assumption that A0

is a triangle).

To see that the first statement can be incorrect, consider the following 4 sets in R3: B0 is a triangle in

the plane L := {x ∈ R3 : x3 = 0}, and Bi := {x ∈ R3 : [x1, x2] ∈ B0, x3 = 1
2
− λi(x1, x2)}, 1 ≤ i ≤ 3,

where λi(x1, x2) are the barycentric coordinates of [x1;x2] ∈ L, that, is coefficients in the representation

of [x1;x2] as the linear combination of the 3 vertices of B0 with sum of coefficients equal to 1. Note that

we have B0 := {[x1;x2;x3] : λi(x1, x2) ≥ 0, i ≤ 3, x3 = 0}. Let us check that every 3 of our 4 sets

B0, B1, B2, B3 have a point in common. Indeed, if the triple of sets in question does not contain B0, the

common point is [x̄1; x̄2; x̄3], where [x̄1; x̄2] is the barycenter of B0 (the average of its vertices), so that

λi(x̄1, x̄2) = 1/3, 1 ≤ i ≤ 3, and x̄3 = 1
2
− 1

3
. Now let us verify that if triple of our sets includes B0, the

sets from the triple still have a point in common. By symmetry, it suffices to check this for the triple B0,

B1, B2, for which the common point is [x̃1; x̃2; 0], with λ1([x̃1; x̃2]) = λ2([x̃1; x̃2]) =
1
2
, λ3([x̃1; x̃2]) = 0

(that is, [x̃1; x̃2] is the midpoint of a properly selected side of the triangle B0). Thus, every 3 of the four

sets B0, B1, B2, B3 have a point in common, while all four sets have no such a point: indeed, such a

point x should have x3 = 0 (since it belongs to B0) and therefore 1
2
− λi(x1, x2) = 0, i = 1, 2, 3 (since

this point belongs to B1, B2, B3). Therefore, every 3 of the barycentric coordinates of [x1;x2] should be

equal to 1/2, which is impossible, since their sum must be 1.

To show that the first statement is not always true, it suffices to place our 3D sets B0, B1, B2, B3 into

2000-dimensional space by augmenting 3 entries in point from R3 by 1997 zero entries; as a result, we

get 4 convex sets A0, A1, A2, A3 in R2000 such that the first of them is triangle, every 3 of the sets have

a point in common, but all 4 sets have no such a point. Augmenting the 4 sets Ai we have built by 2021
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copies of one of them, say, A0, we get a family of 2025 convex sets in R2000 such that every 3 of them

have a point in common, but the intersection of all sets is empty, which is a counterexample for the first

statement.

Exercise I.25. Let Pi := {x ∈ Rn : Aix ≤ bi} for i ∈ {1, . . . ,m} and C := {x ∈ Rn : Dx ≥ d}
be nonempty polyhedral sets. Suppose that for any n+1 sets, Pi1 , . . . , Pin+1 , there is a translate of
C, i.e., the set C + u for some u ∈ Rn, which is contained in all Pi1 , . . . , Pin+1 . Prove that there
is a translate of C, which is contained in all of the sets P1, . . . , Pm.

Solution: For every i = 1, . . . ,m, we define the set Ci := {u ∈ Rn : Pi ⊇ C + u}. Note that Ci is a

convex set for every i. Indeed, if u+ c ∈ Pi and v+ c ∈ Pi for all c ∈ C, then for λ ∈ [0, 1] and c ∈ C one

has [λu+(1−λ)v]+c = λ[u+c]+(1−λ)[v+c] ∈ Pi by convexity of Pi, implying that λu+(1−λ)v ∈ Ci.

From the statement of the problem we know that every n + 1 sets Ci have a non-empty intersection.

From Helly’s Theorem, we deduce that all of them have a non-empty intersection. In other words, there

is a u ∈ Rn such that Pi ⊇ C + u for every i ∈ {1, . . . ,m}.

Exercise I.26. A cake contains 300 g of raisins (you may think of every one of them as of a 3D ball
of positive radius). John and Jill are about to divide the cake according to the following rules:

• first, Jill chooses a point a in the cake;
• second, John makes a cut through a, that is, chooses a 2D plane Π passing through a and takes

the part of the cake on one side of the plane (both Π and the side are up to John, with the only
restriction that the plane should pass through a); all the rest goes to Jill.

1. Prove that it may happen that Jill cannot guarantee herself 76 g of the raisins.

Solution: Suppose there are 4 raisins, 75 g each, placed in the vertices of large tetrahedron; whatever

point Jill chooses, John can cut off 3 of the four raisins.

2. Prove that Jill always can choose a in a way which guarantees her at least 74 g of the raisins.
3. Consider n-dimensional version of the problem, where the raisins are n-dimensional balls, the

cake is a domain in Rn, and “a cut” taken by John is defined as the part of the cake contained
in the half-space {

x ∈ Rn : e⊤(x− a) ≥ 0
}
,

where e ̸= 0 is the vector (“inner normal to the cutting hyperplane”) chosen by John. Prove that
for every ϵ > 0, Jill can guarantee to herself at least 300

n+1
− ϵ g of raisins, but in general cannot

guarantee to herself 300
n+1

+ ϵ g.

Solution:

(2-3): Let us consider the case of n = 3 (generalization to arbitrary n will be evident).

For every direction (that is, unit vector) d ∈ R3 consider the closed half-spaces{
x ∈ R3 : d⊤x ≤ α

}
,

and let us look at the mass of raisins outside of such a half-space. This mass is clearly a continuous

function of α (since the distribution of raisins’ mass has density) which is close to 300 when α is very

negative and close to 0 when α is very positive. It follows that there exists the largest α = α(d) such

that the mass of the raisins outside the half-space

Hd :=
{
x ∈ R3 : d⊤x ≤ α(d)

}
is exactly 74 g. Note that

(!) If John takes himself the part of the cake in the half-space {x ∈ R3 : d⊤x ≤ d⊤x̄} with

x̄ ∈ Hd (that is, d is exactly the outer normal to the cut chosen by John, and this cut passes

through x̄), then Jill gets at least 74 g of raisins.

In view of (!), it suffices to prove that the intersection of all sets Hd is nonempty. Indeed, in this case

Jill can choose, as the point through which the cut should pass, a point in
⋂
d

Hd; then whatever John

will do, his cut will be as explained in (!) with certain d, and therefore Jill will get at least 74 g of raisins.
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To prove that
⋂
d

Hd is nonempty, we can use Helly Theorem II. Let us check its assumptions: The sets

Hd indeed are closed and convex sets in R3. The intersection of every 4 sets Hd indeed is nonempty,

since, assuming the opposite, the complements of the 4 sets with empty intersection would together cover

the entire space; but every one of these complements contains 74 g of raisins, and therefore the union of

4 of them can contain at most 4 · 74 = 296 g of raisins, while the entire space contains 300 g of raisins. It

remains to verify that one can choose among the sets Hd finitely many sets with bounded intersection.

This is evident, since the intersection of Hei and H−ei (e1, e2, e3 are basic orth) is a stripe ai ≤ xi ≤ bi
with finite ai, bi, so that the intersection of the 6 sets Hei , H−ei , i = 1, 2, 3, is a bounded box.

Generalization to the n-dimensional case is evident.

Remarks:

1. With some minor effort, you can prove that Jill can find a point which guarantees her 300
n+1

g of

raisins, and not 300
n+1

− ϵ g.
2. If, instead of dividing raisins, John and Jill would divide in the same fashion uniform and convex

cake (that is, a closed and bounded convex body X with a nonempty interior in Rn, the reward
being the n-dimensional volume of the part a person gets), the results would change dramatically:
choosing as the point the center of masses of the cake

x̄ :=

∫
X

xdx∫
X

dx
,

Jill would guarantee herself at least
(

n
n+1

)n
≈ 1

e
part of the cake. This is a not so easy corollary

of the following extremely important and deep result:

Brunn-Minkowski Symmetrization Theorem: Let X be as above, and let [a, b]
be the projection of X on an axis ℓ, say, on the last coordinate axis. Consider the “
symmetrization” Y of X, i.e., Y is the set with the same projection [a, b] on ℓ and
for every hyperplane orthogonal to the axis ℓ and crossing [a, b], the intersection of Y
with this hyperplane is an (n− 1)-dimensional ball centered at the axis with precisely
the same (n−1)-dimensional volume as the one of the intersection of X with the same
hyperplane:{
z ∈ Rn−1 : [z; c] ∈ Y

}
=
{
z ∈ Rn−1 : ∥z∥2 ≤ ρ(c)

}
, ∀c ∈ [a, b], and

Voln−1

({
z ∈ Rn−1 : [z; c] ∈ Y

})
= Voln−1

({
z ∈ Rn−1 : [z; c] ∈ X

})
, ∀c ∈ [a, b].

Then, Y is a closed convex set.

5.6 Around Polyhedral Representations

Exercise I.27. Justify the calculus rules for polyhedral representations presented in Section 3.3.

Solution: This is straightforward.

Exercise I.28. Given two sets U, V ⊆ Rm, we define

U + V = {x ∈ Rm : ∃u ∈ U,∃v ∈ V such that x = u+ v} .

Let D := {x ∈ Rn : Ax+ b+Qs ⊆ P, ∀s ∈ S} where the nonempty set P ⊂ Rm admits poly-
hedral representation, the nonempty set S ⊂ Rk is given but arbitrary, and the nonempty sets
Qs ⊂ Rm are indexed by s ∈ S.

1. Suppose that S is a finite set and for each s ∈ S we have Qs = {qs}, i.e., is a single point. Then,
will the set D be polyhedrally representable?

2. State sufficient conditions on the structure of sets Qs and S that will guarantee that the resulting
set D is polyhedral. Here, the goal is to have conditions as general as possible. Among your
sufficient conditions, can you identify at least some of those that are necessary?
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Solution:

1. This part follows immediately from the next one.

2. Note that x ∈ D if and only if Ax + b + q ∈ P holds for all q ∈
⋃
s∈S Qs. Since P is polyhedrally

representable, let P = {y ∈ Rm : Gy ≤ g}. Then, x ∈ D if and only if G(Ax + b + q) ≤ g for all

q ∈
⋃
s∈S Qs, i.e., if and only if x satisfies

[GA]⊤i x ≤ inf
q

{
[(g −G(b+ q))]i : q ∈

⋃
s∈S

Qs

}
, for all rows i.

Clearly this is a polyhedral representation of D without making any assumptions on the structure of

S or Qs.

Exercise I.29. For x ∈ Rn and integer k, 1 ≤ k ≤ n, let sk(x) be the sum of k largest entries
in x. For example, s1(x) = maxi{xi}, sn(x) =

∑n
i=1 xi, s3([3; 1; 2; 2]) = 3 + 2 + 2 = 7. Now let

1 ≤ k ≤ n be two integers. For any integer k = 1, . . . , n, define

Xk,n := {[x; t] ∈ Rn ×R : sk(x) ≤ t} .

Observe that Xk,n is a polyhedral set. Indeed, sk(x) ≤ t holds if and only if for every k indices
i1 < i2 < . . . < ik from {1, 2, . . . , n} we have xi1 + xi2 + . . . + xik ≤ t, which is nothing but
a linear inequality in variables x, t. Since there are

(
n
k

)
possible ways of selecting k indices from

{1, 2, . . . , n}, the number of linear inequalities describing Xk,n is
(
n
k

)
, and these linear inequalities

give the polyhedral description of Xk,n. The point of this exercise is to demonstrate that Xk,n admits
a “short” polyhedral representation, specifically,

Xk,n =

{
[x; t] ∈ Rn ×R : ∃z ∈ Rn, ∃s ∈ R s.t. xi ≤ zi + s, ∀i, z ≥ 0,

n∑
i=1

zi + ks ≤ t

}
. (∗)

Solution: Let Xk,n be the right hand side set in (∗), we will prove that (a) Xk,n ⊆ Xk,n and (b)

Xk,n ⊆ Xk,n.

(a): Observe first of all that both Xk,n and Xk,n are “permutationally symmetric in x”, meaning that

when [x; t] ∈ Xk,n and x̄ is obtained from x by permuting entries, we have [x̄; t] ∈ Xk,n, and similarly

[x; t] ∈ Xk,n implies [x̄; t] ∈ Xk,n. It follows that in order to verify (a) it suffices to prove that if

[x; t] ∈ Xk,n and x1 ≥ x2 ≥ . . . ≥ xn, then [x; t] ∈ Xk,n. This is immediate: set zi := xi − xk for

i ≤ k and zi := 0 for i > k, and s := zi. Taking into account that the entries in x form a non-ascending

sequence, we immediately see that z ≥ 0, xi ≤ zi + s for all i, and sk(x) =
∑k
i=1 xi =

∑k
i=1 zi + ks =∑n

i=1 zi + ks. Recalling that [x; t] ∈ Xk,n, that is, sk(x) ≤ t, we conclude that x, t, z, s satisfy all

inequalities participating in the description of Xk,n, that is, [x; t] ∈ Xk,n. (a) is proved.

(b): let x, t, z, s satisfy all inequalities in the description of Xk,n. When i1 < i2 < . . . < ik is an ordered

collection of k indices from {1, . . . , n}, we have by the inequalities describing Xk,n that

xi1 + xi2 + . . .+ xik ≤ ks+ zi1 + zi2 + . . .+ zik ≤ ks+

n∑
i=1

zi ≤ t,

where the second inequality is due to z ≥ 0. The resulting inequality holds true for all ordered collections

of k indices i1, . . . , ik, implying that sk(x) ≤ t. Thus, [x; t] ∈ Xl,n implies [x; t] ∈ Xk,n, as claimed in

(b).

Exercise I.30. [Computational study: Fourier-Motzkin elimination as an LP algorithm] It was
mentioned in section 3.2.1 that Fourier-Motzkin elimination provides us with an algorithm for solving
LP problems that terminates in finitely many steps. This algorithm, however, is of no computational
value due to the potential rapid growth of the number of inequalities one may need to handle
when eliminating more and more variables. The goal of this exercise is to get an impression of this
phenomenon.
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Our “guinea pig” will be transportation problem with n unit capacity suppliers and n unit demand
customers:

min
x,t

{
t : t ≥

n∑
i=1

n∑
i=1

cijxij ,
∑
i

xij ≥ 1, ∀j,
∑
j

xij ≤ 1, ∀i, xij ≥ 0, ∀i, j

}
.

This problem has n2 + 1 variables and (n + 1)2 linear inequality constraints, and let us solve it by
applying the Fourier-Motzkin elimination to project the feasible set of the problem onto the axis
of the t-variable, that is, to build a finite system S of univariate linear inequalities specifying this
projection.

How many inequalities do you think there will be in S when n = 1, 2, 3, 4? Check your intuition by
implementing and running the F-M elimination, assuming, for the sake of definiteness, that cij = 1
for all i, j.

Solution: Our results are as follows (your numbers could be different, since the outcome depends on the

serial numbers assigned to the x-variables):

n mini mfin

1 4 4

2 9 19

3 16 44, 854

4 25 †

mini and mfin are the number of inequalities in the initial and the final systems

†When n = 4, we are supposed to eliminate n2 = 16 of 17 variables in a system with 25 linear inequality

constraints on these 17 variables. Eliminating the last 11 variables results in system of 974,236 constraints

with 6 variables. Eliminating in this system the last – the sixth – of the variables would result in a system

of 121,226,850 linear inequalities with 5 variables; building this system was terminated after the number

of assembled so far inequalities reached our a priori limit 223 = 8, 388, 608.

5.7 Around General Theorem on Alternative

Exercise I.31.

1. Prove Gordan’s Theorem on Alternative:

A system of strict homogeneous linear inequalities Ax < 0 in variables x has a solution
if and only if the system A⊤λ = 0, λ ≥ 0 in variables λ has only the trivial solution
λ = 0.

Solution: By GTA, the system has no solutions if and only if by using nonnegative aggregations

with weights λ of the inequalities in the system we can derive a contradictory consequence inequality,

i.e., [A⊤λ]⊤xΩ0, where Ω = “ < ” when λ ̸= 0 and Ω = “ ≤ ” when λ = 0. Note that the only two

possible contradictory linear inequalities are of the form either 0⊤x < ϵ with ϵ ≤ 0 or 0⊤x ≤ ϵ′ with

ϵ′ < 0. In our case, when λ = 0 and so Ω = “ ≤ ”, the right-hand side of the consequence inequality

will be zero, so the second option cannot lead to any contradictory inequality. Thus, we deduce that

when given the system Ax < 0, we can derive a contradictory inequality if and only if Ω = “ < ” and

A⊤λ = 0 for some nonzero λ ≥ 0. Thus, Ax < 0 has no solutions if and only if there exists a nonzero

vector λ ≥ 0 such that A⊤λ = 0.

2. Prove Motzkin’s Theorem on Alternative:

A system Ax < 0, Bx ≤ 0 of strict and nonstrict homogeneous linear inequalities has
a solution if and only if the system A⊤λ + B⊤µ = 0, λ ≥ 0, µ ≥ 0 in variables λ, µ
has no solution with λ ̸= 0.
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Solution: Same as above, the infeasibility of the system is equivalent to the existence of nonnegative

weights λ, µ resulting in a contradictory consequence inequality [A⊤λ+B⊤µ]⊤xΩ0 with Ω = “ < ”

when λ ̸= 0 and Ω = “ ≤ ” when λ = 0. Because the given system of constraints is homogeneous,

the only one of these two options which can lead to a contradictory consequence inequality is that

A⊤λ+B⊤µ = 0 and λ ̸= 0.

Exercise I.32. For the systems of constraints to follow, write them down equivalently in the standard
form Ax < b,Cx ≤ d and point out their feasibility status (“feasible – infeasible”) along with the
corresponding certificates (certificate for feasibility is a feasible solution to the system; certificate
for infeasibility is a collection of weights of constraints which leads to a contradictory consequence
inequality, as explained in GTA).

1. x ≤ 0 (x ∈ Rn)

Solution: already in the standard form, feasible, feasibility certificate x = 0.

2. x ≤ 0, and
∑n
i=1 xi > 0 (x ∈ Rn)

Solution: the standard form is given by −
∑
i xi < 0, and x ≤ 0, infeasible, infeasibility certificate

λ = [1; . . . ; 1] ∈ Rn+1

3. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n
i=1 xi ≥ n (x ∈ Rn)

Solution: the standard form is given by −
∑
i xi ≤ −n, x ≤ [1; . . . ; 1], −x ≤ [1; . . . ; 1], feasible,

feasibility certificate x = [1; . . . ; 1].

4. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n
i=1 xi > n (x ∈ Rn)

Solution: the standard form is given by −
∑
i xi < −n, x ≤ [1; . . . ; 1], −x ≤ [1; . . . ; 1], infeasible,

infeasibility certificate is λ = [1; 1; . . . ; 1; 0; . . . ; 0] (n zeros).

5. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n
i=1 ixi ≥

n(n+1)
2

(x ∈ Rn)

Solution: the standard form is given by −
∑
i ixi ≤ −n(n+1)

2
, x ≤ [1; . . . ; 1], −x ≤ [1; . . . ; 1],

feasible, feasibility certificate x = [1; . . . ; 1].

6. −1 ≤ xi ≤ 1, 1 ≤ i ≤ n,
∑n
i=1 ixi >

n(n+1)
2

(x ∈ Rn)

Solution: the standard form is given by −
∑
i ixi < −n(n+1)

2
, x ≤ [1; . . . ; 1], −x ≤ [1; . . . ; 1],

infeasible, infeasibility certificate is λ = [1; 1; 2; 3; . . . ;n; 0; . . . ; 0] (n zeros).

7. x ∈ R2, |x1|+ x2 ≤ 1, x2 ≥ 0, x1 + x2 = 1

Solution: the standard form is given by −x1+x2 ≤ 1, x1+x2 ≤ 1, −x2 ≤ 0, x1+x2 ≤ 1, −x1−x2 ≤
−1, feasible, feasibility certificate x = [1; 0].

8. x ∈ R2, |x1|+ x2 ≤ 1, x2 ≥ 0, x1 + x2 > 1

Solution: the standard form is given by −x1 + x2 ≤ 1, x1 + x2 ≤ 1, −x2 ≤ 0, −x1 − x2 < −1,

infeasible, infeasibility certificate is λ = [0; 1; 0; 1].

9. x ∈ R4, x ≥ 0, the sum of two largest entries in x does not exceed 2, and x1 + x2 + x3 ≥ 3

Solution: the standard form is given by −x ≤ 0, xi + xj ≤ 2, 1 ≤ i < j ≤ 4, −x1 − x2 − x3 ≤ −3,

feasible, feasibility certificate x = [1; 1; 1; 0].

10. x ∈ R4, x ≥ 0, the sum of two largest entries in x does not exceed 2, and x1 + x2 + x3 > 3

Solution: the standard form is given by −x ≤ 0, xi + xj ≤ 2, 1 ≤ i < j ≤ 4, −x1 − x2 − x3 < −3,

infeasible, infeasibility certificate is as follows: sum up inequalities x1+x2 ≤ 2, x2+x3 ≤ 2, x1+x3 ≤ 2

with weights 1/2 and add the inequality −x1 − x2 − x3 < −3 with weight 1.

Exercise I.33. Let (S) be the following system of linear inequalities in variables x ∈ R3

x1 ≤ 1, x1 + x2 ≤ 1, x1 + x2 + x3 ≤ 1 (S)

In the following list, point out which inequalities are/are not consequences of this system, and
certify your claims. To certify that a given inequality is a consequence of the given system, you
need to provide nonnegative aggregation weights λ ∈ R3

+ for the inequalities in (S) such that the
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resulting consequence inequality implies the given inequality. To certify that a given inequality is not
a consequence of the given system (S), you need to find a point x ∈ R3 that satisfies the given
system but violates the given inequality.

1. 3x1 + 2x2 + x3 ≤ 4

Solution: This is a consequence of the system with the certificate λ = [1; 1; 1], i.e., when taking

weighted sum of the inequalities from the system with weights λ1, λ2, λ3, we get the inequality

3x1 + 2x2 + x3 ≤ 3, which clearly implies the target inequality.

2. 3x1 + 2x2 + x3 ≤ 2

Solution: This is not a consequence of the system. A certificate for this is x = [1; 0; 0] – this vector

is feasible to the system but does not satisfy the inequality 3x1 + 2x2 + x3 ≤ 2.

3. 3x1 + 2x2 ≤ 3

Solution: This is a consequence of the system, the certificate being λ = [1; 2; 0].

4. 3x1 + 2x2 ≤ 2

Solution: This is not a consequence of the system, a certificate being x = [1; 0; 0].

5. 3x1 + 3x2 + x3 ≤ 3

Solution: This is a consequence of the system, a certificate being λ = [0; 2; 1].

6. 3x1 + 3x2 + x3 ≤ 2

Solution: This is not a consequence of the system, a certificate being x = [1; 0; 0].

Make a generalization: prove that a linear inequality px1 + qx2 + rx3 ≤ s is a consequence of (S)
if and only if s ≥ p ≥ q ≥ r ≥ 0.

Solution: By Inhomogeneous Farkas Lemma, an inequality is a consequence of the (feasible!) system

(S) if and only if there exists a nonnegative vector λ ∈ R3
+ such that λ1[1; 0; 0]+λ2[1; 1; 0]+λ3[1; 1; 1] =

[p; q; r] and λ1 +λ2 +λ3 ≤ s, which is equivalent to p = λ1 +λ2 +λ3, q = λ1 +λ2, r = λ3, p ≤ s, which

in turn is equivalent to s ≥ p ≥ q ≥ r ≥ 0.

Exercise I.34. Is the inequality x1+x2 ≤ 1 a consequence of the system x1 ≤ 1, x1 ≥ 2? If yes, can
it be obtained by taking a legitimate weighted sum of inequalities from the system and the identically
true inequality 0⊤x ≤ 1, as it is suggested by the Inhomogeneous Farkas Lemma?

Solution: The given system is infeasible, and therefore every inequality is a consequence of the system.

The consequence in question cannot be obtained by aggregating inequalities from the system and the

identically true inequality 0⊤x ≤ 1, since in every aggregation of this type the coefficient at x2 is zero.

There is no contradiction with the Inhomogeneous Farkas Lemma, since the latter deals with feasible

systems of inequalities and this is not applicable in our case.

Exercise I.35. Certify the correct statements in the following list:

1. The polyhedral set X =
{
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1

}
is nonempty.

Solution: A certificate is x = [1/3; 1/3; 1/3] ∈ X.

2. The polyhedral set X =
{
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 0.99

}
is empty.

Solution: A certificate is λ = [−1;−1;−1; 1]: by taking weighted sum of the inequalities defining X

using these weights λ is legitimate and leads to the contradictory inequality 0⊤x ≤ −0.01.

3. The linear inequality x1 + x2 + x3 ≥ 2 is violated somewhere on the polyhedral set X ={
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1

}
.

Solution: A certificate is x = [1/3; 1/3; 1/3]: this point belongs to X but does not satisfy the given

inequality.

4. The linear inequality x1 + x2 + x3 ≥ 2 is violated somewhere on the polyhedral set X ={
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 0.99

}
.

Solution: This statement is false: X is empty, and therefore every linear inequality is satisfied

everywhere on X.
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5. The linear inequality x1 + x2 ≤ 3/4 is satisfied everywhere on the polyhedral set

X =
{
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1.05

}
.

Solution: A certificate is λ = [0; 0;−1; 1] – taking weighted sum of the inequalities x1 ≥ 1/3,

x2 ≥ 1/3, x3 ≥ 1/3, x1 +x2 +x3 ≤ 1.05 with the weights λ1, . . . , λ4, we get the inequality x1 +x2 ≤
1.05− 1/3 < 3/4.

6. The polyhedral set Y =
{
x ∈ R3 : x1 ≥ 1/3, x2 ≥ 1/3, x3 ≥ 1/3

}
is not contained in the

polyhedral set X =
{
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1

}
.

Solution: A certificate is x = [1; 1; 1]: this point is contained in Y but it is not contained in X.

7. The polyhedral set Y =
{
x ∈ R3 : x ≥ [1/3; 1/3; 1/3],

∑3
i=1 xi ≤ 1

}
is contained in the poly-

hedral set X =
{
x ∈ R3 : x1 + x2 ≤ 2/3, x2 + x3 ≤ 2/3, x1 + x3 ≤ 2/3

}
.

Solution: It suffices to certify that every one of the constraints defining X is valid for Y , i.e., is

a consequence of the constraints defining Y . The inequality x1 + x2 ≤ 2/3 can be obtained as the

weighted sum of the inequalities x1 ≥ 1/3, x2 ≥ 1/3, x3 ≥ 1/3, x1 + x2 + x3 ≤ 1 using the weights

0, 0,−1, 1, and thus it is valid for Y . Similarly, we can certify that the inequalities x1 +x3 ≤ 2/3 and

x2 + x3 ≤ 2/3 are valid for Y .

5.8 Around Linear Programming Duality

Exercise I.36. Let the polyhedral set P = {x ∈ Rn : Ax ≤ b}, where A = [a⊤1 ; ...; a
⊤
m], be

nonempty. Prove that P is bounded if and only if every vector from Rn can be represented as
a linear combination of the vectors ai with nonnegative coefficients where at most n coefficients are
positive. As a result, given A, all nonempty sets of the form {x ∈ Rn : Ax ≤ b} simultaneously
are/are not bounded.

Solution: P is bounded if and only if for every z ∈ Rn the feasible LP program

max
x

{
z⊤x : Ax ≤ b

}
is bounded and thus is solvable, or, which is the same by LP Duality Theorem, if and only if the dual of

this problem, i.e.,

min
λ

{
b⊤λ : λ ≥ 0, A⊤λ = z

}
is solvable. Next, since the dual of this dual is feasible (P is nonempty!), the dual automatically is

bounded, so that its solvability is the same as its feasibility. We conclude that P is bounded if and only

if every x ∈ Rn is a conic combination of ai’s.

Applying the Caratheodory Theorem in conic form, the latter is the same as the possibility to represent

every z ∈ Rn as a conic combination of at most n vectors from the collection a1, ..., am.

Exercise I.37. Consider the linear program

Opt = max
x∈R2

{x1 : x1 ≥ 0, x2 ≥ 0, ax1 + bx2 ≤ c} (P )

where a, b, c are parameters. Answer the following questions:

1. Let c = 1. Is the problem feasible?

Solution: The problem is feasible; a certificate is a feasible solution, e.g., x = 0.

2. Let a = b = 1, c = −1. Is the problem feasible?

Solution: The problem is infeasible; a certificate for infeasibility is given by λ = [−1;−1; 1]: summing

up the constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ −1 with weights −1,−1, 1, we get the contradictory

inequality 0⊤x ≤ −1.
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3. Let a = b = 1, c = −1. Is the problem bounded5?

Solution: The problem is bounded since it is infeasible; certificate of infeasibility was given in the

previous item.

4. Let a = b = c = 1. Is the problem bounded?

Solution: The problem is bounded since the weighted sum of the constraints x1 ≥ 0, x2 ≥ 0,

x1 + x2 ≤ 1, the weights being 0,−1, 1, gives us the consequence inequality x1 ≤ 1. Thus, the

objective maxx1 is bounded from above on the feasible set.

5. Let a = 1, b = −1, c = 1. Is the problem bounded?

Solution: The problem is unbounded. Indeed, setting d = [1; 1], we get d1 ≥ 0, d2 ≥ 0, ad1 + bd2 =

d1−d2 ≤ 0, [1; 0]⊤d = d1 > 0, implying that the points x(t) := td are feasible when t ≥ 0; it remains

to note that the objective, as evaluated at x(t), tends to +∞ as t→ ∞.

6. Let a = b = c = 1. Is it true that Opt ≥ 0.5?

Solution: A certificate is a feasible solution with objective value ≥ 0.5, e.g., the solution x = [0.5; 0.5].

7. Let a = b = 1, c = −1. Is it true that Opt ≤ 1?

Solution: The claim is true due to the fact that the problem is infeasible, for infeasibility certificate

see item 2, and thus Opt = −∞.

8. Let a = b = c = 1. Is it true that Opt ≤ 1?

Solution: The claim is true, a certificate is the collection of weights (Lagrange multipliers) 0,−1, 1;

taking the corresponding weighted sum of the constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1, we get the

inequality x1 ≤ 1. Thus, the objective does not exceed 1 on the feasible set.

9. Let a = b = c = 1. Is it true that x∗ = [1; 1] is an optimal solution of (P )?

Solution: The claim is false since x∗ is infeasible (it violates the constraint x1 + x2 ≤ 1).

10. Let a = b = c = 1. Is it true that x∗ = [1/2; 1/2] is an optimal solution of (P )?

Solution: The claim is false since there exists a feasible solution x = [1; 0] with larger objective value.

11. Let a = b = c = 1. Is it true that x∗ = [1; 0] is an optimal solution of (P )?

Solution: The claim is true, the corresponding certificate is the collection of Lagrange multipliers

0,−1, 1 associated with the constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1. Indeed, the multipliers are of

proper signs, satisfy the complementary slackness condition and the KKT equation 0 × [1; 0] − 1 ×
[0; 1] + 1× [1; 1] = [1; 0].

Exercise I.38. Consider the LP program

max
x1,x2

−x2 :
x1 ≤ 0
−x1 ≤ −1
x2 ≤ 1


Write down the dual problem and check whether the optimal values are equal to each other.

Solution: The dual problem reads

min
λ1,λ2,λ3

−λ2 + λ3 :

λ1 − λ2 = 0

λ3 = −1

λi ≥ 0, 1 ≤ i ≤ 3


Both problems are clearly infeasible, and their optimal values (−∞ and +∞, respectively) differ from

each other.

Exercise I.39. Write down the problems dual to the following linear programs:

5 Recall that a maximization problem is called bounded, if the objective is bounded from above on the

feasible set, which is the same as its optimal value being <∞
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1. max
x∈R3

x1 + 2x2 + 3x3 :

x1 − x2 + x3 = 0,
x1 + x2 − x3 ≥ 100,
x1 ≤ 0,
x2 ≥ 0,
x3 ≥ 0


Solution: The dual problem is

min
λ∈R5

100λ2 :

λ2 ≤ 0, λ3 ≥ 0, λ4 ≤ 0, λ5 ≤ 0,

λ1 + λ2 + λ3 = 1,

−λ1 + λ2 + λ4 = 2,

λ1 − λ2 + λ5 = 3

 .

2. max
x∈Rn

{
c⊤x : Ax = b, x ≥ 0

}
Solution: The dual problem is

min
λ=[λe;λg ]

{
b⊤λe :

λg ≤ 0,

A⊤λe + λg = c

}
,

or, after eliminating λg :

min
λe

{
b⊤λe : c ≤ A⊤λe

}
.

3. max
x∈Rn

{
c⊤x : Ax = b, u ≤ x ≤ u

}
Solution: The dual problem is

min
λ=[λe;λg ;λℓ]

{
u⊤λℓ + u⊤λg + b⊤λe :

λℓ ≥ 0, λg ≤ 0,

λℓ + λg +A⊤λe = c

}
.

4. max
x,y

{
c⊤x : Ax+By ≤ b, x ≤ 0, y ≥ 0

}
Solution: The dual problem is

min
λ=[λℓ,b;λℓ,0,λg ]

b⊤λℓ,b :
λℓ,b ≥ 0, λℓ,0 ≥ 0, λg ≤ 0,

A⊤λℓ,b + λℓ,0 = c,

B⊤λℓ,b + λg = 0

 ,

or, after eliminating λℓ,0 and λg ,

min
λℓ,b

{
b⊤λℓ,b : λℓ,b ≥ 0, A⊤λℓ,b ≤ c, B⊤λℓ,b ≥ 0

}
.

Exercise I.40. Consider a primal-dual pair of linear programs given by

Opt(P ) = min
x

{
c⊤x : Ax ≥ b

}
, (P )

Opt(D) = max
y

{
b⊤y : y ≥ 0, A⊤y = c

}
. (D)

Suppose that both are feasible. Prove that the feasible set of at least one of these problems is
unbounded.

Solution: See solution to Exercise IV.25.

Exercise I.41. Consider the following linear program

Opt = min
{xij}1≤i<j≤4

2
∑

1≤i<j≤4

xij : xij ≥ 0, 1 ≤ i < j ≤ 4,
∑
j>i

xij +
∑
j<i

xji ≥ i, 1 ≤ i ≤ 4

 .

1. Show that the optimum objective value is at most 20.
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Solution: The solution x34 = 4, x23 = 3, x12 = 2, and all other variables equal to 0 is a feasible

solution to this LP and has the objective value equal to 2(2+3+4) = 18. Since this is a minimization

problem, we deduce that Opt ≤ 18.

2. Show that the optimum objective value is at least 10.

Solution: The dual of this LP is given by

max
y∈R4

{
4∑
i=1

iyi : yi ≥ 0 ∀i, yi + yj ≤ 2, 1 ≤ i < j ≤ 4

}
.

The solution y1 = y2 = y3 = y4 = 1 is feasible to the dual with an objective value of 1+2+3+4 = 10.

Therefore, by Weak LP Duality, we deduce that Opt ≥ 10.

Exercise I.42. We say that an n× n matrix P is stochastic if all of its entries are all nonnegative
and the sum of the entries of each row is equal to 1. Show that if P is a stochastic matrix, then
there is a nonzero vector a ∈ Rn such that P⊤a = a and a ≥ 0.

Solution: Consider the linear program

min
x∈Rn

{
0⊤x : Px ≥ x+ e

}
,

where e is the all-ones vector inRn. Suppose that there is a feasible solution x to this LP, and let the index

i be such that xi = maxj{xj}. We have that xi+1 ≤
∑n
k=1 Pi,kxk ≤

∑n
k=1 Pi,kxi = xi

∑n
k=1 Pi,k = xi,

which is a contradiction. Therefore, this LP is infeasible. This means that its dual is either infeasible

or unbounded. The dual problem is given by maxy∈Rn

{
e⊤y : y⊤P = y⊤, y ≥ 0

}
. Clearly, the solution

y = 0 is feasible for the dual; thus the dual must be unbounded. Therefore, there is an a ̸= 0, such that

a⊤P = a⊤ and a ≥ 0.

Exercise I.43. Let A ∈ Rn×n be a symmetric matrix, i.e., A⊤ = A. Consider the linear program

min
x

{
c⊤x : Ax ≥ c, x ≥ 0

}
.

Prove that if x̄ satisfies Ax̄ = c and x̄ ≥ 0, then x̄ is optimal.

Solution: Note that the dual of this optimization problem is given by

max
λ,µ

{
c⊤λ : Aλ+ µ = c, λ ≥ 0, µ ≥ 0

}
,

where we used A⊤ = A. The solution x̄ along with µ̄ = 0 such that Ax̄ = c and x̄ ≥ 0 is thus feasible for

the dual problem, and x̄ is feasible for the primal one, with the same objective value. Therefore, by the

“zero duality gap” LP optimality condition, Theorem I.4.11, we deduce that x̄ is optimal for the primal

problem.

Exercise I.44. Let w ∈ Rn, and let A ∈ Rn×n be a skew-symmetric matrix, i.e., A⊤ = −A.
Consider the following linear program

Opt(P ) = min
x∈Rn

{
w⊤x : Ax ≥ −w, x ≥ 0

}
.

Suppose that the problem is solvable. Provide a closed analytical expression for Opt(P ).

Solution: The dual problem is given by

Opt(D) = max
u,v

{
−w⊤u : A⊤u+ v = w, u ≥ 0, v ≥ 0

}
= max

u

{
−w⊤u : A⊤u ≤ w, u ≥ 0

}
= max

u

{
−w⊤u : −Au ≤ w, u ≥ 0

}
[since A⊤ = −A]

= max
u

{
−w⊤u : Au ≥ −w, u ≥ 0

}
= −min

u

{
w⊤u : Au ≥ −w, u ≥ 0

}
= −Opt(P ).
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We are given that the primal problem is solvable, thus Opt(P ) = Opt(D) by LP Duality Theorem, and

at the same time, as we just have seen, Opt(D) = −Opt(P ), implying that Opt(P ) = 0.

Exercise I.45. [Separation Theorem, polyhedral version] Let P and Q be two nonempty polyhedral
sets in Rn such that P ∩Q = ∅. Suppose that the polyhedral descriptions of these sets are given as

P := {x ∈ Rn : Ax ≤ b} and Q := {x ∈ Rn : Dx ≥ d} .

Using LP duality show that there exists a vector c ∈ Rn such that

c⊤x < c⊤y, for all x ∈ P and y ∈ Q.

Solution: Consider the following linear program

max
x

{
0⊤x : Ax ≤ b, Dx ≥ d

}
,

together with its dual given by

min
p,q

{
b⊤p+ d⊤q : A⊤p+D⊤q = 0, p ≥ 0, q ≤ 0

}
.

Since P ∩Q = ∅, the primal problem is infeasible, therefore the dual problem can be either infeasible or

unbounded. But p = 0, q = 0 is a feasible solution to the dual problem therefore, we conclude that the

dual problem is unbounded, i.e., there exists, (zp, zq) such that A⊤zp +D⊤zq = 0, zp ≥ 0, zq ≤ 0 and

b⊤zp + d⊤zq < 0. Let c := A⊤zp. Then, for any x ∈ P and any y ∈ Q, we have

c⊤x = z⊤p Ax ≤ z⊤p b [as zp ≥ 0 and Ax ≤ b]

< −d⊤zq [as b⊤zp + d⊤zq < 0]

≤ z⊤q (−Dy) [as zq ≤ 0 and Dy ≥ d]

≤ c⊤y, [as c = A⊤zp = −D⊤zq ]

and thus we have proved the result.

Exercise I.46. Suppose we are given the linear program

min
x

{
c⊤x : Ax = b, x ≥ 0

}
(P )

and its associated Lagrangian function

L(x, λ) := c⊤x+ λ⊤(b−Ax).

The LP dual to (P ) is (replacing Ax = b with Ax ≥ b, −Ax ≥ −b)

Opt(D) = max
λ±,µ

{
b⊤[λ+ − λ−] : A

⊤[λ+ − λ−] + µ = c, λ± ≥ 0, µ ≥ 0
}
,

or, after eliminating µ and setting λ = λ+ − λ−,

Opt(D) = max
λ

{
b⊤λ : A⊤λ ≤ b

}
. (D)

Now, let us consider the following game: Player 1 chooses some x ≥ 0, and player 2 chooses some
λ simultaneously; then, player 1 pays to player 2 the amount L(x, λ). In this game, player 1 would
like to minimize L(x, λ) and player 2 would like to maximize L(x, λ).

A pair (x∗, λ∗) with x∗ ≥ 0, is called an equilibrium point (or saddle point or Nash equilibrium)
if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀x ≥ 0 and ∀λ. (∗)

(That is, in an equilibrium no player is able to improve his performance by unilaterally modifying his
choice.)

Show that x∗ and λ∗ are optimal solutions to the problem (P ) and to its dual, respectively, if and
only if (x∗, λ∗) is an equilibrium point.
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Solution: First, suppose that x∗ and λ∗ are optimal solutions of (P ) and (D), respectively. We will show

that they are in equilibrium. Since x∗ is primal feasible, we have Ax∗ = b, and so L(x∗, λ) = c⊤x∗ =

L(x∗, λ∗) which proves the left inequality in (∗). Moreover, as λ∗ is dual feasible, we have c−A⊤λ∗ ≥ 0.

Hence, for every x ≥ 0, we obtain

L(x, λ∗) = (c−A⊤λ∗)⊤x+ b⊤λ∗ ≥ b⊤λ∗ = c⊤x∗ = L(x∗, λ∗),

where the second equality follows from the LP Duality Theorem which gives us Opt(P ) = Opt(D), i.e.,

c⊤x∗ = b⊤λ∗. Justification of (∗) is complete.

We now prove the reverse. Suppose that x∗ ≥ 0 and λ∗ are in equilibrium. The inequality L(x∗, λ) ≤
L(x∗, λ∗) yields λ⊤(b − Ax∗) ≤ (λ∗)⊤(b − Ax∗) for all λ. This can happen only if Ax∗ = b, which

establishes the primal feasibility of x∗. Furthermore, the inequality L(x∗, λ∗) ≤ L(x, λ∗) leads to c⊤x∗ ≤
(c − A⊤λ∗)⊤x + b⊤λ∗. Since this must be true for all x ≥ 0, we get c⊤x∗ ≤ b⊤λ∗ (set x = 0) and

c − A⊤λ∗ ≥ 0 and therefore λ∗ is dual feasible. By weak LP duality, we conclude that c⊤x∗ = b⊤λ∗

and it follows that x∗ and λ∗ are optimal solutions of the primal and the dual problems, respectively.

Exercise I.47. Given a polyhedral set X =
{
x ∈ Rn : a⊤i x ≤ bi, ∀i = 1, . . . ,m

}
, consider the

associated optimization problem

Opt(X) = max
x,t

{t : B∞(x, t) ⊆ X} ,

where B∞(x, t) := {y ∈ Rn : ∥y − x∥∞ ≤ t}. Is it possible to pose this optimization problem as a
linear program with a polynomial in m,n number of variables and constraints? If it is possible, give
such a representation explicitly. If not, argue why.

Solution: Note that in order for (x, t) to be feasible to the given optimization problem, for every

i = 1, . . . ,m, we must have

bi ≥ max
y∈B∞(x,t)

{a⊤i y} = a⊤i x+ t∥ai∥1,

where the last equality is evident. Hence, we arrive at

Opt(X) = max
x,t

{
t : a⊤i x+ t∥ai∥1 ≤ bi, i = 1, . . . ,m

}
,

which clearly is a formulation with polynomially many variables and inequalities.

Exercise I.48. Consider the optimization problem

min
x∈Rn

{
c⊤x : ã⊤i x ≤ bi for some ãi ∈ Ai, i = 1, . . . ,m, x ≥ 0

}
, (*)

where Ai = {āi + ϵi : ∥ϵi∥∞ ≤ ρ} for i = 1, . . . ,m. In this problem, we basically mean that the
constraint coefficient ãij (j-th component of the i-th constraint vector ãi) belongs to the interval
uncertainty set [āij − ρ, āij + ρ], where āij is its nominal value. That is, in (∗), we are seeking a
solution x such that each constraint is satisfied for some coefficient vector from the corresponding
uncertainty set.

Note that in its current form (∗), this problem is not a linear program (LP). Prove that it can be
written as an explicit linear program and give the corresponding LP formulation.

Solution: This problem is equivalent to

min c⊤x

s.t. min
ãi∈Ai

{ã⊤i x} ≤ bi i = 1, . . . ,m

x ≥ 0.

Note that when x ≥ 0

min{ã⊤i x : ãi = ai + ϵi, ∥ϵi∥∞ ≤ ρ} = a⊤i x+min{ϵ⊤i x : ∥ϵi∥∞ ≤ ρ}

= a⊤i x− ρ

n∑
j=1

xj ,
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where the last equality is evident. Then, the resulting LP formulation for problem in (∗) is given by

min c⊤x

s.t. a⊤i x− ρ

n∑
j=1

xj ≤ bi i = 1, . . . ,m

x ≥ 0.

Exercise I.49. Let S = {a1, a2, . . . , an} be a finite set composed of n distinct elements, and let f
be a real-valued function defined on the set of all subsets of S. We say that f is submodular if, for
every X,Y ⊆ S, the following inequality holds:

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

1. Give an example of a submodular function f .

Solution: A simple trivial example is the function f(X) = 0,∀X ⊆ S. Here is another simple slightly

less trivial example: given a ∈ Zn+, consider the function f(X) = max {ai : i ∈ X} for every X ⊆ S.

There are quite a lot of other examples of submodular functions; interested readers can refer to books

on submodularity and combinatorial optimization.

2. Let f : 2S → Z be an integer-valued submodular function such that f(∅) = 0. Consider the
polyhedron

Pf :=

{
x ∈ R|S| :

∑
t∈T

xt ≤ f(T ), ∀T ⊆ S

}
,

Consider

x̄ak := f({a1, . . . , ak})− f({a1, . . . , ak−1}), k = 1, . . . , n.

Show that x̄ is feasible to Pf .

Solution: To justify this claim, we need to show that
∑
t∈T x̄t ≤ f(T ) for all subsets T of S. If

T = ∅, then by definition
∑
t∈T x̄t = 0 = f(∅). When T ̸= ∅, we will show this by induction on

Card(T ). To see the base case, suppose T is a singleton, i.e., T = {ak} for some k = 1, . . . , n . Then,

since f is submodular, we always have

f({a1, . . . , ak})− f({a1, . . . , ak−1}) ≤ f({ak}), ∀k = 1, . . . , n.

Thus, by its definition x̄ak ≤ f({ak}) holds for all k = 1, . . . , n. Now, for the inductive hypothesis

suppose that
∑
t∈T ′ x̄t ≤ f(T ′) for all subsets T ′ of S such that Card(T ′) < k for some k ≥ 2, and

let us show that the inequality holds for all subsets T of S of cardinality k as well to complete the

induction. So, consider any T = {aι1 , . . . , aιk}, and define T ′ := T \ {aιk}. Thus, Card(T ′) = k − 1,

and by induction hypothesis we have
∑
t∈T ′ x̄t ≤ f(T ′) and so∑

t∈T

x̄t = x̄aιk +
∑
t∈T ′

x̄t ≤
(
f({a1, . . . , aιk})− f({a1, . . . , aιk−1})

)
+ f(T ′)

Now, by defining the sets X := T and Y := {a1, . . . , aιk−1}, we see that X ∪ Y = {a1, . . . , aιk} and

X ∩ Y = {aι1 , . . . , aιk−1} = T ′. Now, combining the previous inequality with the submodularity of

f applied to the sets X and Y , we obtain∑
t∈T

x̄t ≤
(
f({a1, . . . , aιk})− f({a1, . . . , aιk−1})

)
+ f(T ′)

= f(X ∪ Y )− f(Y ) + f(X ∩ Y )

≤ f(X) = f(T ),

as desired. This completes the induction and so x̄ is in Pf .
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3. Consider the following optimization problem associated with Pf :

max
x

{
c⊤x : x ∈ Pf

}
.

Write down the dual of this LP.

Solution: The dual of this LP is

min
y

 ∑
T :T⊆S

f(T )yT :
∑
T∋t

yT = ct, ∀t ∈ S, yT ≥ 0, ∀T ⊆ S

 .

4. Assume without loss of generality that ca1 ≥ ca2 ≥ . . . ≥ can . Identify a dual feasible solution
and using the LP Duality Theorem show that the solution x̄ specified in item 2 is optimal to the
primal maximization problem associated with Pf .

Solution: The following is a feasible solution for the dual problem:

ȳT :=

{
cak − cak+1 , if T = {a1, . . . , ak} for some k = 1, . . . , n

0, otherwise,

where we define can+1 = 0. Indeed, as ca1 ≥ ca2 ≥ . . . ≥ can , we immediately see that ȳT ≥ 0 for

all T ⊆ S. Now, consider any t ∈ S, and suppose i is such that ai = t. Note that the only dual

variables ȳT that may take positive values are the ones corresponding to the sets T = {a1, . . . , ak}
for some k = 1, . . . , n. And among such sets the only ones that contain the given t = ai are the sets

T̄i := {a1, . . . , ai}, T̄i+1 := {a1, . . . , ai, ai+1}, . . . , T̄n := {a1, . . . , an}. Thus, for any t ∈ S, we have∑
T∋t

ȳT =

n∑
ℓ=i

ȳT̄ℓ
=

n∑
ℓ=i

(
caℓ − caℓ+1

)
= cai − can+1 = cai = ct,

where we used the fact that can+1 = 0.

Both of these solutions (x̄ and ȳ) give the same objective value for their corresponding problems as

c⊤x̄ =

n∑
k=1

cak x̄ak =

n∑
k=1

cak (f({a1, . . . , ak})− f({a1, . . . , ak−1}))

=

n∑
k=1

f({a1, . . . , ak})
(
cak − cak+1

)
=

∑
T :T⊆S

f(T )ȳT .

Therefore, both solutions are optimal.

Remark. Note that when the submodular function f is integer-valued, we immediately see from
the characterization of the optimal primal solution x̄ that for all integer vectors c ∈ Zn such that
there exists an optimum solution to the primal problem, there exists an optimum solution (e.g.
x̄) where all variables take integer values. A system of linear inequalities Ax ≤ b with b ∈ Zm and
A ∈ Qm×n satisfying such a property (i.e., whenever c ∈ Zn is such that there is an optimal solution
to maxx{c⊤x : Ax ≤ b} then there is an integer optimum solution) is called totally dual integral
(TDI). Thus, we conclude that the polyhedron Pf associated with an integer-valued submodular
function f is TDI. The TDI property is a well-known sufficient condition that guarantees that every
extreme point (see section 6.4) of the associated polyhedron is integral. In particular, the TDI
property generalizes total unimodularity (TU), i.e., the other well-known sufficient condition for the
integrality of a polyhedron, which plays a key role in network-flow based optimization.
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8.1 Separation

Exercise II.1. Mark by “Y”/“N” those of the below listed cases where the linear form f⊤x
separates/does not separate the sets S and T :

• S = {0} ⊂ R, T = {0} ⊂ R, f⊤x = x

Solution: N

• S = {0} ⊂ R, T = [0, 1] ⊂ R, f⊤x = x

Solution: Y

• S = {0} ⊂ R, T = [−1, 1] ⊂ R, f⊤x = x

Solution: N

• S = {x ∈ R3 : x1 = x2 = x3}, T = {x ∈ R3 : x3 ≥
√
x21 + x22}, f⊤x = x1 − x2

Solution: N

• S = {x ∈ R3 : x1 = x2 = x3}, T = {x ∈ R3 : x3 ≥
√
x21 + x22}, f⊤x = x3 − x2

Solution: Y
• S = {x ∈ R3 : −1 ≤ x1 ≤ 1}, T = {x ∈ R3 : x21 ≥ 4}, f⊤x = x1

Solution: N
• S = {x ∈ R2 : x2 ≥ x21, x1 ≥ 0}, T = {x ∈ R2 : x2 = 0}, f⊤x = −x2

Solution: Y

Exercise II.2. Consider the set

M =

x ∈ R2004 :

x1 + x2 + . . .+ x2004 ≥ 1
x1 + 2x2 + 3x3 . . .+ 2004x2004 ≥ 10

x1 + 22x2 + 32x3 . . .+ 20042x2004 ≥ 102

. . . . . . . . . ..
x1 + 22002x2 + 32002x3 + . . .+ 20042002x2004 ≥ 102002


Is it possible to separate this set from the set {x1 = x2 = . . . = x2004 ≤ 0}? If yes, what could be
a separating plane?

Solution: Separation is possible, and a separating plane is, e.g., {x : x1 + . . .+ x2004 = 1/2}, since the

linear form
∑
ixi is ≥ 1 on M and clearly is ≤ 0 on the set {x1 = ... = x2004 ≤ 0}.

Exercise II.3. Can the sets S = {x ∈ R2 : x1 > 0, x2 ≥ 1/x1} and T = {x ∈ R2 : x1 < 0, x2 ≥
−1/x1} be separated? Can they be strongly separated?

Solution: The sets are separated by the line {x ∈ R2 : x1 = 0} They cannot be strongly separated

since the distance between the sets is zero (take large t > 0 and look at the points [1/t; t] ∈ S and

[−1/t; t] ∈ T ).

Exercise II.4. Let M ⊂ Rn be a nonempty closed convex set. The metric projection ProjM (x) of
a point x ∈ Rn onto M is the ∥ · ∥2-closest to x point of M , so that

ProjM (x) ∈M & ∥x− ProjM (x)∥22 = min
y∈M

∥x− y∥22. (∗)

37
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1. Prove that for every x ∈ Rn the minimum in the right hand side of (∗) is achieved, and x+ is a
minimizer if and only if

x+ ∈M & ∀y ∈M : [x− x+]
⊤[x+ − y] ≥ 0. (8.1)

Derive from the latter fact that the minimum in (∗) is achieved at a unique point, the bottom
line being that ProjM (·) is well defined

2. Prove that when passing from a point x ∈ Rn to its metric projection x+ = ProjM (x), the
distance to any point of M does not increase, specifically,

∀y ∈ M : ∥x+ − y∥22 ≤ ∥x− y∥22 − dist2(x,M),
dist(x,M) := minu∈M ∥x− u∥2 = ∥x− x+∥2. (8.2)

3. Let x ̸∈ M , so that, denoting x+ = ProjM (x), the vector e =
x−x+

∥x−x+∥2
is well defined. Prove

that the linear form e⊤z strongly separates {x} and M , specifically,

∀y ∈M : e⊤y ≤ e⊤x− dist(x,M).

Note: The fact just outlined underlies an alternative proof of Separation Theorem, where the first
step is to prove that a point outside a nonempty closed convex set can be strongly separated
from the set. In our proof, the first step was similar, but with M restricted to be polyhedral,
rather than merely convex and closed.

4. Prove that the mapping x 7→ ProjM (x) : Rn →M is contraction in ∥ · ∥2:

∀u, u′ ∈ Rn : ∥ProjM (u)− ProjM (u′)∥2 ≤ ∥u− u′∥2.

5. Let M be the probabilistic simplex: M = {x ∈ Rn : x ≥ 0,
∑
i xi = 1}, Justify the following

recipe for computing ProjM (x):

Let ψ(t) =
∑m
i=1[xi − t]+. where [s]+ = max[s, 0]. ψ is piecewise linear, with break-

points x1, x2, . . . , xn, continuous function of t ∈ R. ψ(t) → +∞ as t → −∞, and
ψ(t) → 0 as t→ +∞. Consequently, there exists (and can be easily computed due to
piecewise linearity of ψ) t ∈ R such that

∑
i[xi − t]+ = 1. The metric projection of x

onto M is nothing but the vector x+ with coordinates [xi − t]+, 1 ≤ i ≤ n.

What is metric projection of the point x = [1; 2; 2.5] on the 3-dimensional probabilistic simplex?

Solution:

1: Let d = infy∈M ∥x−y∥2, so that there exists a sequence {yi ∈M}i≥1 such that limi→∞ ∥x−yi∥2 = d.

Since d < ∞, the sequence {yi} is bounded, so that we can extract from it a converging subsequence

{yis , is < is+1}s≥1. Since yis ∈M , the limit ȳ of the subsequence belongs toM , and since ∥yis−x∥2 → d

as s→ ∞ and ∥ · ∥2 is continuous, we conclude that ∥ȳ−x∥2 = d. Thus, the minimum in (∗) is achieved.
Now let us prove that the closest to x points ofM are exaclty the points satisfying (8.1), Note that when

x+ ∈M and y ∈M , we have x+ + t(y − x) ∈M when 0 ≤ t ≤ 1 due to convexity of M . It follows that

if x+ is a minimizer of ∥z − y∥2 over y ∈ M , then the function ϕ(t) = ∥x − [x+ + t(y − x+)]∥22 attains

its minimum on the segment 0 ≤ t ≤ 1 at t = 0. We have

ϕ(t) = ∥x− x+∥22 − 2t[x− x+]⊤[y − x+] + t2∥y − x+∥22;

since this smooth function achieves its minimum on [0, 1] at the point t = 0, we have ϕ′(0) ≥ 0,

which is the inequality in (8.1). As a byproduct, we see that ∥y − x∥22 = ϕ(1) ≥ ϕ(0) + ∥y − x+∥22 =

∥x−x+∥22+∥y−x+∥22, implying that if y ∈M and y ̸= x+, then ∥x−y∥2 > ∥x−x+∥2, that is, x+ is the

unique minimizer of ∥x−y∥22 over y ∈M . It remains to prove that if x+ satisfies (8.1), then x+ minimizes

∥y−x∥22 over y ∈M . Indeed, assuming that x+ satisfies (8.1) and given y ∈M , the associated with this

y function ϕ(t) is quadratic in t and satisfies ϕ(0) ≥ 0, ϕ′(0) ≥ 0, ϕ′′ ≥ 0, implying that ϕ(0) ≤ ϕ(t)

whenever t ≥ 0; in particular, ∥x+ − x∥22 = ϕ(0) ≤ ϕ(1) = ∥y − x∥22. Thus, ∥x+ − x∥22 ≤ ∥y − x∥22 for all

y ∈M and, in addition, x+ ∈M , implying that x+ minimizes ∥y − x∥22 over y ∈M . ■
2: Let x ∈ Rn, x+ = ProjM (x), and y ∈M . We have

∥x− y∥22 = ∥[[x− x+] + [x+ − y]∥22 = ∥x− x+∥22 + ∥x+ − y∥22 + 2[x− x+]⊤[x+ − y]

≥ ∥x− x+∥22 + ∥x+ − y∥22,
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where the concluding ≥ is due to (8.1).

3: Assuming x ̸∈M , for y ∈M we have

[x− x+]⊤[x− y] = [x− x+]⊤[x− x+] + [x− x+]⊤[x+ − y] ≥ ∥x− x+∥22

with the inequality given by (8.1). Thus, [x− x+]⊤y ≤ [x− x+]⊤x−∥x− x+∥22. Recalling what e is, we

get e⊤x ≥ e⊤y + ∥x− x+∥2 = e⊤y + dist(x,M) ∀y ∈M. ■
4: Let u+ = ProjM (u), u′+ = ProjM (u′). Let us set e = u−u+, f = u′+−u′, so that [u+−u′+]+[e+f ] =

u−u′ and e⊤[u+−u′+] ≥ 0, f⊤[u+−u′+] ≥ 0 by (8.1) as applied with x = u and with x = u′. We conclude

that ∥u−u′∥22 = ∥[u+−u′+]+ [e+ f ]∥22 = ∥u+−u′+∥22+2[e+ f ]⊤[u+−u′+]+∥e+ f∥22 ≥ ∥u+−u′+∥22. ■
5: Invoking item 1, all we need is to verify that with x+ given by the construction in question, (8.1)

holds true. Indeed, the inclusion x+ ∈M is evident. Besides this,

∀y ∈M : [x− x+]⊤[x+ − y] = −
∑
i:xi≤t xiyi +

∑
i:xi>t

t([xi − t]− yi)

= −
∑
imin[xi, t]yi + t

∑
i:xi>t

[xi − t] = t−
∑
imin[xi, t]yi ≥ t− t

∑
i yi = 0,

where ≥ is due to nonnegativity of y ∈M .

The metric projection of [1; 2; 2.5] on 3-dimensional probabilistic simplex is the vector

[0; 0.25; 0.75] = [[1− 1.75]+; [2− 1.75]+; [2.5− 1.75]+]. ■

Exercise II.5. [Follow-up to Exercise II.4] Let p(z) = zn + pn−1z
n−1 + ... + p1z + p0, n ≥ 1

be a polynomial of complex variable z. By the Fundamental Theorem of Algebra, p has n roots
λ1, ..., λn. Treating complex numbers as 2D real vectors, prove that all roots of the derivative
p′(z) = nzn−1 + (n− 1)pn−1z

n−2 + ..+ p1 belong to the convex hull of λ1, ..., λn.

Solution: Let C = Conv{λ1, ..., λn}, and let λ be a root of p′. Assuming that λ ̸∈ C, let us lead this

assumption to contradiction. Indeed, let λ = ProjC(λ) and e = λ− λ, so that e⊤[λ− λi] ≥ e⊤e > 0 by

Exercise II.4,3. We have p(z) =
∏
i(z − λi), whence, setting f(z) = |p(z)|2 =

∏
i ∥z − λi∥22 : R2 → R2,

one has

d
dt

∣∣
t=0

f(λ+ te) = 2

[
eT [λ− λ1]∥λ− λ2∥2...∥λ− λn∥2 + ∥λ− λ1∥2eT [λ− λ1]∥λ− λ3∥2...∥λ− λn∥2

+...+ ∥λ− λ21∥...∥λ− λn−1∥22e⊤[λ− λn]

]
> 0.

On the other hand, we have

0 = p′(λ) = lim
δ→0

p(λ+ δ)− p(λ)

δ
,

(why?). Denoting by ı the imaginary unit and setting λ = a+ ıb, p(x+ ıy) = u(x, y) + ıv(x, y) with real

a, b, x, y, u, v, and looking what happens when δ → 0 stays (a) real, (b) purely imaginary, we get

∂

∂x
u(a, b) = 0,

∂

∂x
v(a, b) = 0 and

∂

∂y
u(a, b) = 0,

∂

∂y
v(a, b) = 0,

whence

∇
∣∣
x=a,y=b

f(x+ ıy) = ∇
∣∣
x=a,y=b

[u2(x, y) + v2(x, y)] = 0,

so that d
dt

∣∣
t=0

f(λ+ te) = 0, which is a desired contradiction. ■

Exercise II.6. Derive the statement in Remark I.1.4 from the Separation Theorem.

Solution: We already know that the solution set of a whatever system of nonstrict linear inequalities

is closed and convex, and all we need to prove is that a closed convex set M ⊂ Rn is a solution set of a

sequence of nonstrict linear inequalities a⊤i x ≤ bi, i = 1, 2, . . .. There is nothing to prove when M = Rn

(take empty system, or, if you want, single inequality 0⊤x ≤ −1). Similarly, there is nothing to prove

when M = ∅ – take the system of inequalities x1 ≤ −1,−x1 ≤ −1. Now let M be nonempty and smaller

than Rn. The complement Mc of C is a nonempty open set; note that the set of all rational vectors

from Mc can be arranged into sequence c1, c2, . . ..
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Indeed, let us look at the set TN of all rational vectors from Mc with the total of magnitudes

of numerators and denominators in representations of their (rational!) coordinates as fractions

does not exceed a given integer N ; for every N , this set is finite. We now can list all vectors

from T1, then list all unlisted yet vectors from T2, then – all unlisted yet vectors from T3,

and so on; as a result, all rational vectors from Mc will be arranged into a sequence.

Now let r(x) = miny∈M ∥x− y∥2 be the distance from x ∈ Rn to M ; since M is closed and nonempty,

the minimum is achieved. Again invoking closedness of M , r(x) > 0 whenever x ̸∈ M . Besides this, the

function r(x) clearly satisfies the relation |r(x)−r(x′)| ≤ ∥x−x′∥2 and is therefore continuous. Note also

that when x ̸∈M , the open ball B(x) of radius r(x) centered at x does not intersect M . By Separation

Theorem, the balls B(ci) can be separated from M : for properly selected ai we have supx∈M a⊤i x ≤
infy∈B(ci)

a⊤i y. We lose nothing by scaling ai to become a unit vector, in which case the “separation

inequality” becomes supx∈M a⊤i x ≤ bi := a⊤i ci − r(ci). We claim that M is exactly the solution set of

the resulting sequence of inequalities a⊤i x ≤ bi, i = 1, 2, . . .. Indeed, by construction, every point from

M solves this system. All we need to verify is that if x̄ solves the system, then x̄ ∈M . Assuming, on the

contrary, that this is not the case, x̄ ∈Mc and therefore for some sequence i1 < i2 < . . . we have cij → x̄

as j → ∞, whence a⊤ij (cij − x̄) → 0 as j → ∞. Due to the origin of x̄, a⊤ij x̄ ≤ bij = a⊤ij cij − r(cij ),

whence a⊤ij (cij − x̄) ≥ r(cij ), which combines with a⊤ij (cij − x̄) → 0 as j → ∞ to imply that r(cij ) → 0

as j → ∞. On the other hand, r(·) is continuous and cij → x̄, j → ∞, implying that r(cij ) → r(x̄) as

j → ∞. The bottom line is that r(x̄) = 0, which is not the case, since x̄ ̸∈ M and M is closed. Thus,

assuming that M is not the solution set of the system a⊤i x ≤ bi, i = 1, 2, . . ., we arrive at contradiction.

■

8.2 Extreme points

Exercise II.7. Find extreme points of the following sets:

1. X = {x ∈ R3 : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x1 ≤ 1}
2. X = {x ∈ R4 : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x4 ≤ 1, x4 + x1 ≤ 1}
Solution: 1: The set is polyhedral; by algebraic characterization of extreme point of polyhedral sets,

among the inequalities specifying the set, an extreme point w, if any, should make equalities 3 inequalities

with linearly independent vectors of coefficients, that is, w should make equalities all 3 constraints

specifying the set (their vectors of coefficients indeed are linearly independent). As a result, the only

extreme point is [0.5; 0.5; 0.5].

2: The same reasoning as in item 1 says that at an extreme point all constraints specifying the set

should be satisfied as equalities, and the vectors of coefficients of these constraints should be linearly

independent. The latter does not take place, so that there are no extreme points.

Explanation: when n ≥ 2, the n×n matrix An =


1 1

1 1

.

.

.

.

.

.

.
.
.

.

.

.

1 1

 is nondegenerate when n is odd and

is degenerate, with kernel spanned by the vector [1;−1; 1;−1; ...;−1] when n is even. As a result, the set

Xn = {x ∈ Rn : Anx ≤ [1; ...; 1]} contains lines, and thus has no extreme point, when n is even, and has

exactly one extreme point [0.5; ...; 0.5] when n is odd. For odd n, x 7→ y = Anx is a linear one-to-0one

transformation of Rn, and in y-variables Xn becomes the set {y ∈ Rn : y ≤ [1; ...; 1]}. Thus, for odd n,

Xn is just a translation of a polyhedral cone – the image of Rn
+ under one-to-one linear transformation.

Exercise II.8. Let M ⊂ Rn be a nonempty closed convex set not containing lines, and f⊤x be
a linear function of x ∈ Rn achieving its maximum over X. Prove that among maximizers of this
function on M there are extreme points of M .

Solution: Let M = Argmaxx∈M f⊤x be the set of maximizers of f⊤x over x ∈ M . By assumption,

this set is nonempty; along with M , it is convex, closed, and does not contain lines. By item (i) of

Krein-Milman Theorem M has an extreme point x∗; let us prove that x∗ is an extreme point of M .

Indeed, assuming x± h ∈ M , we should have f⊤[x∗ ± h] ≤ f⊤x∗ (since x∗ is a maximizer of f⊤x over
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x ∈M) which is possible only when f⊤[x∗ ± h] = f⊤x∗, Thus, x∗ ± h ∈M , implying that h = 0 (since

x∗ ∈ Ext(M)). Thus, x∗ is a desired extreme point maximizer of f⊤x over x ∈M . ■

Exercise II.9. Mark by T those of the below claims which always (i.e., for every data satisfying
premise of the claim) are true:

1. If Conv(A) = Conv(B), then A = B.

Solution: evidently false – take n = 1, A = {0, 1, 2}, B = {0, 2}.
2. If Conv(A) = Conv(B) is nonempty and A,B,Conv(A) are closed, then A ∩B ̸= ∅.

Solution: false – take n = 1, A = {2k + 1}∞k=−∞, B = {2k}∞k=−∞.

3. If Conv(A) = Conv(B) is nonempty and bounded, then A ∩B ̸= ∅.

Solution: false; take A = { 1
2k

}∞k=1∪{1− 1
2k

}∞k=1, B = { 1
2k+1

}∞k=1∪{1− 1
2k+1

}∞k=1, so that A∩B = ∅
and Conv(A) = Conv(B) = (0, 1).

4. If Conv(A) = Conv(B) is nonempty, closed and bounded, then A ∩B ̸= ∅.

Solution: true. When Conv(A) is nonempty, closed, and bounded, by Krein-Milman Theorem,

Conv(A) possesses an extreme point v, and by Fact II.6.10 v ∈ A. By the same token, Conv(A) =

Conv(B) implies that v ∈ B, so that A ∩B is nonempty and, moreover, contains all extreme points

of Conv(A) = Conv(B). Applying Krein-Milman Theorem once more, we conclude that A∩B is not

just nonempty, it is rich enough to ensure that Conv(A ∩B) = Conv(A) = Conv(B).

Exercise II.10. As is immediately seen, the only extreme point of the nonnegative orthant Rn
+ =

R+×R+×. . .×R+ is the origin, that is, the vector from {0}×{0}×. . .×{0}; as we know, the extreme
points of n-dimensional unit box {x ∈ Rn : 0 ≤ xi ≤ 1, i ≤ n} = [0, 1] × [0, 1] × . . . × [0, 1] are
zero/one vectors, that is, vectors from {0, 1}×{0, 1}×. . .×{0, 1}. Prove the following generalization
of these observations:

Let Xi ⊂ Rni , 1 ≤ i ≤ K, be closed convex sets. The set of extreme points of the
direct product X = X1 × . . . × XK of these sets is the direct product of the sets of
extreme points of Xi.

Solution: The vectors from X are the block vectors x = [x1; . . . ;xK ] with blocks xi ∈ Xi. If such an x

is an extreme point of X, that is, x ± h ∈ X implies h = 0, then for every i the relation xi ± hi ∈ Xi
implies hi = 0, since otherwise, setting h = [0; ...; 0;hi; 0; ...; 0] we would have x ± h ∈ X and h ̸= 0,

which is impossible; thus, x ∈ Ext(X1)× ...×Ext(XK). Vice versa, if x ∈ Ext(X1)× ...×Ext(XK) and

x± h ∈ X, then xi± hi ∈ Xi for all i, implying that hi = 0 for all i, that is, h = 0; thus, x ∈ Ext(X). ■

Exercise II.11. Looking at the sets of extreme points of closed convex sets like the unit Euclidean
ball, a polytope, the paraboloid {[x; t] : t ≥ x⊤x}, etc., we see that these sets are closed. Do you
think this always is the case? Is it true that the set Ext(M) of extreme points of a closed convex
set M always is closed ?

Solution: The claim is not true. Indeed, consider the set X in 3D which is the union of the segment

{[x1; 0; 0] : −1 ≤ x1 ≤ 1} and the arc {[0;x2;x22], 0 ≤ x2 ≤ 1}; this set is closed and bounded, and

therefore so is its convex hull M := Conv(X) (Corollary I.2.5). We claim that when t ∈ (0, 1), the point

xt = [0; t; t2] is an extreme point of M . Taking this claim for granted, we conclude that the point [0; 0; 0]

is the limit, as t → +0, of extreme points xt of M , but this limit clearly is not an extreme point – it is

the midpoint of the segment with the endpoints [±1; 0; 0] ∈M .

It remains to prove that xt is an extreme point of M . Observe first that xt is an extreme point of the

projection M− of M onto the plane L = {x : x1 = 0} ∋ xt. Indeed, M− clearly belongs to the convex

hull C of the projection of X onto L, that is, to the convex hull of the arc {[0; s; s2] : 0 ≤ s ≤ 1}. We

clearly have C = {x : x1 = 0, 0 ≤ x2 ≤ 1, x22 ≤ x3 ≤ x2}, and xt is an extreme point of C. Since this

point belongs to M− ⊂ C, it is extreme point of M− as well. Now, to prove that xt ∈ Ext(M) is the

same as to prove that xt ± h ∈M implies h = 0. Indeed, let h be such that xt ± h ∈M . Looking at the

projections of xt ± h onto L and taking into account that xt is an extreme point of the projection of M

onto L, we see that h2 = h3 = 0. Thus, we are in the situation [±h1; t; t2] ∈ M , and should prove that
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h1 = 0. Recalling what M is, we conclude that [h1; t; t2] is convex combination of several points of the

type [s; 0; 0], s ∈ [−1, 1], and several points of the type [0; r; r2] with 0 ≤ r ≤ 1. If the total weight of

the points of the first type in this combination is positive, then, projecting the combination onto L, we

conclude that xt is a convex combination of several points of the second type and the point [0; 0; 0], the

weight of the latter point being positive. This is impossible – all points participating in the latter convex

combination belong to C, and, as we know, xt is an extreme point of this set, implying that all points

participating, with positive weights, in representation of xt as a convex combination of points from C

should be equal to xt, see Fact II.6.9. The bottom line is that [h1; t; t2] can be represented as a convex

combination of points of the second type only, that is, h1 = 0, that is, h = 0, as claimed. ■

Exercise II.12. Derive representation (∗) in Exercise I.29 from Example II.7.1 in section 7.1.1.

Solution: Given positive integers k ≤ n and x ∈ Rn, consider the LP program

Opt = max
u

{∑
i

xiui : 0 ≤ ui ≤ 1, i ≤ n,
∑
i

ui = k

}
Example II.7.1 in section 7.1.1 says that extreme points of the bounded feasible set of the problem are

0/1 vectors with exactly k entries equal to 1, implying that Opt = sk(x). We now have

sk(x) = maxu {
∑
i xiui : 0 ≤ ui ≤ 1, i ≤ n,

∑
i ui = k}

= minz±,s
{∑

i z
+
i + ks : [z+i − z−i ] + s = xi, i ≤ n, z± ≥ 0

}
[LP duality]

= minz+,s
{∑

i z
+
i + ks : z+ ≥ 0, xi ≤ z+i + s, i ≤ n

}
,

or, equivalently,

t ≥ sk(x) ⇐⇒ ∃(z, s) : xi ≤ zi + s∀i, z ≥ 0,
∑
i

zi + ks ≤ t,

which is equivalent form of the representation we are justifying. ■

Exercise II.13. By Birkhoff Theorem, the extreme points of the polytope Πn = {[xij ] ∈ Rn×n :
xij ≥ 0,

∑
ixij = 1∀j,

∑
jxij = 1∀i} are exactly the Boolean (i.e., with entries 0 and 1) matrices

from this set. Prove that the same holds true for the “polytope of sub-doubly stochastic” matrices
Πm,n = {[xij ] ∈ Rm×n : xij ≥ 0,

∑
ixij ≤ 1 ∀j,

∑
jxij ≤ 1 ∀i}.

Solution: First, every Boolean matrix [xij ] from Πm,n is extreme point. Indeed, we know that every

Boolean matrix is extreme point of the box Bm,n = {[xij ] ∈ Rm×n : 0 ≤ xij ≤ 1∀i, j}, and it remains

to refer to the evident fact: When Y ⊂ X is a nested pair of convex sets, then every extreme point v

of X which happens to be in Y is an extreme point of Y . Indeed, were v the midpoint of a nontrivial

segment in Y , it would be the midpoint of a nontrivial segment in X, which is not the case.

Given that the set B of all Boolean matrices from Πm,n belongs to Ext(Πm,n), all we need to conclude

that B = Ext(Πm,n) is to show that Πm,n = Conv(B) (see Fact II.6.10). Our plan is as follows: given

a matrix x ∈ Πm,n, we will show that x can be made a North-Western m × n submatrix of k × k

doubly stochastic matrix x, with properly selected k. This is all we need: by Birkhoff Theorem, x is

convex combination of k×k permutation matrices, implying that x is a convex combination of the m×n
North-Western submatrices of these permutation matrices, and these submatrices clearly are Boolean

matrices from Πm,n.

Thus, let a matrix x ∈ Πm,n be given; we want to extend it by adding several rows and columns to

a larger doubly stochastic matrix. First of all, by adding to x n − m zero rows (if n > m) or m − n

zero columns (if m > n), we can reduce the situation to the one where m = n, which we assume from

now on. Next, let S =
∑n
i,j=1xij . Note that since the row sums in x are ≤ 1, we have S ≤ n, so that

κ := n − S is nonnegative; let d be the smallest integer which is ≥ κ. This is how we can embed x,

as the North-Western n × n submatrix, into (n + d) × (n + d) doubly stochastic matrix. Denote by ri,

i ≤ n, the sum of entries in i-th row of x, and by cj , j ≤ n, the sum of entries in j-th column of x. Note

that 0 ≤ ri ≤ 1, 0 ≤ cj ≤ 1 and
∑
iri =

∑
jcj = S. Let also ρi = 1 − ri, σj = 1 − cj , so that ρi ≥ 0,

σj ≥ 0, and
∑
iρi =

∑
jσj = κ. Now let ρ = [ρ1/d; ρ2/d; ...; ρn/d] and σ = [σ1/d;σ2/d; ...;σn/d], so

that ρ and σ are nonnegative vectors with sums of entries equal to κ/d ≤ 1. Setting θ = (1 − κ/d)/d
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and specifying x as the (n+ d)× (n+ d) matrix



x ρ ... ρ

σ⊤ θ ... θ

.

.

.

.

.

.

.
.
. · · ·

σ⊤ θ ... θ

, we, as is immediately seen, get

a doubly stochastic matrix, and this is the desired doubly stochastic extension of x. ■

Exercise II.14. [Follow-up to Exercise II.13] Let m,n be two positive integers with m ≤ n, and
Xm,n be the set of m × n matrices [xij ] with

∑
i |xij | ≤ 1 for all j ≤ n and

∑
j |xij | ≤ 1 for all

i ≤ m. Describe the set Ext(Xm,n). To get an educated guess, look at the matrices
[

1 0 0
0 0 −1

]
,[

0 0 0
0 0 −1

]
,

[
0.5 −0.5 0

−0.5 0.5 0

]
from X2,3.

Solution: Ext(Xm,n) is the set of all m× n matrices with entries −1, 0, 1 such that in every row there

is exactly one nonzero entry, and in every column there is at most one nonzero entry.

In one direction: Let x = [xij ] bem×nmatrix with entries−1, 0, 1, at most one nonzero entry per column,

and exactly one nonzero entry per row; let us prove that x ∈ Ext(Xm,n). First, x clearly belongs to

Xm,n. It remains to prove that if x±h ∈ Xm,n, then h = 0. Indeed, in the situation in question, denoting

σ(i) the index j of the column with xij ̸= 0 (for our x, such j exists for every i ≤ m), we should have∑
j |xij±hij | ≤ 1. In particular, |xiσ(i)±hiσ(i)| ≤ 1, implying, in view of |xiσ(i)| = 1 (all nonzero entries

in our x are of magnitude 1!) that hiσ(i) = 0. Therefore 1 ≥
∑
j |xij±hij | = |xiσ(i)|︸ ︷︷ ︸

=1

+
∑
j ̸=σ(i) |xij±hij |,

implying that hij = 0 for j ̸= σ(i). Thus, i-th row in h is zero; since i ≤ m is arbitrary, h = 0, as required.

In the opposite direction: Let x ∈ Ext(Xm,n), and let us prove that x has all entries in {−1, 0, 1}, with

exactly one nonzero entry per row and at most one nonzero entry per column. Let ξij ∈ {−1, 1} be such

that ξijxij = |xij | for all i, j, and let Ξ be the one-to-one linear transformation of the space Rm×n

of m × n matrices given by entrywise multiplication of a matrix by the matrix [ξij ]. Linear one-to-one

transformation Ξ maps the polytope Xm,n onto itself and thus maps onto itself the set Ext(Xm,n). In

particular, the matrix x = [|xij |] composed of magnitudes of entries in x (this is the image of x under the

mapping Ξ) is an extreme point of Xm,n. Note that x ∈ Πm,n, where Πm,n is the polytope of entrywise

nonnegative m× n matrices with all column and row sums not exceeding 1. Moreover, x is an extreme

point of Πm,n, since from x±h ∈ Πm,n it clearly follows x±h ∈ Xm,n, and the latter implies that h = 0

– x is an extreme point of Xm,n! By the result of Exercise II.13, x has entries 0 and 1 only, implying

that all nonzero entries in x are ±1. With this in mind,
∑
i |xij | ≤ 1, j ≤ n, implies that x has at most

one nonzero entry per column, and
∑
j |xij | ≤ 1, i ≤ m, implies that x has at most one nonzero entry

per row. It remains to verify that every row of x has a nonzero entry. Assume the opposite, say, that the

first row of x is zero, and let us lead this assumption to a contradiction. In the case in question x has at

most m− 1 nonzero entries (since, as we have already seen, there is at most one nonzero entry per row,

and the first row is zero). Consequently, among n > m− 1 columns of x there is a zero column, w.l.o.g.

let it be the first one. Thus, x has zero first column and zero first row, which combines with x ∈ Xm,n

to imply that when h is m× n matrix with the only nonzero entry, equal to 1, in the cell 1, 1, we have

x± h ∈ Xm,n, contradicting x being an extreme point of Xm,n. ■

Exercise II.15. [follow-up to Exercise II.13] Let x be an n× n entrywise nonnegative matrix with
all row and all column sums ≤ 1. Is it true that for some doubly stochastic matrix x, the matrix
x− x is entrywise nonnegative?

Solution: Yes. By the result of Exercise II.13, x is a convex combination of Boolean matrices with

column and row sums ≤ 1. Every matrix with the latter property clearly is obtained from appropriate

permutation matrix by replacing with zeros some of the unit entries. Thus, every Boolean matrix with

row and column sums ≤ 1 is entrywise ≤ a permutation matrix, and therefore a convex combination of

the matrices of the former class is entrywise ≤ a convex combination of permutation matrices, which is

a doubly stochastic matrix. ■

Exercise II.16. [Assignment problem] Consider the problem as follows:
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There are n jobs and n workers. When worker j is assigned to job i, we get profit cij .
We want to assign every worker to a job in such a way that every worker is assigned to
exactly one job and every job is assigned to exactly one worker. Under this restriction,
we want to maximize the total profit.

1. Pose the Assignment problem as the Boolean (i.e., with the decision variables restricted to be
zeros and ones) Linear Programming problem.

Solution: Encoding a candidate assignment by n × n matrix x = [xij ] with xij = 1 when job i is

assigned to worker j and xij = 0 otherwise, we end up with the problem

max
x

∑
i,j

cijxij : xij ≥ 0,
∑
j

xij = 1 ∀i,
∑
i

xij = 1 ∀j, xij ∈ {0, 1}

 (!)

2. Think how to solve the problem from item 1 via plain Linear Programming

Solution: Removing in (!) the Boolean constraints xij ∈ {0, 1}, we arrive at the LP problem of

maximizing a linear form over the polytope of doubly stochastic n×n matrices. The problem clearly

is solvable, and among its optimal solutions there are extreme points of the polytope. By Birkhoff

Theorem, these extreme points are permutation matrices. Thus, passing from (!) to the LP relaxation

of the problem, we preserve the optimal value, and every LP algorithm which produces extreme point

solutions will, as applied to relaxation, provide us with an optimal solution to (!).

3. [computational study] Consider the special case of Assignment problem where all profits cij are
zeros or ones; you can interpret cij = 1/0 as the fact that worker j knows/does not know how to
execute job j. In this situation Assignment problem requires from us to find an assignment which
maximizes the total number of executed jobs. Assume now that the matrix C = [cij ] is generated
at random, with entries taking, independently of each other, value 1 with probability ϵ ∈ (0, 1) and
value 0 with probability 1− ϵ. For n ∈ {4, 8, 16, 32, 64, 128, 256} and ϵ ∈ {1/2, 1/4, 1/8, 1/16},
run 100 simulations per pair n, ϵ to find the empirical mean of the ratio ”number of executed
jobs in optimal assignment”/n and look at the results.

Solution: Our results are as follows:

n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

ϵ = 0.5000 0.8800 0.9862 1.0000 1.0000 1.0000 1.0000 1.0000

ϵ = 0.2500 0.6025 0.8187 0.9769 1.0000 1.0000 1.0000 1.0000

ϵ = 0.1250 0.3325 0.5650 0.8094 0.9719 0.9995 1.0000 1.0000

ϵ = 0.0625 0.2250 0.3688 0.5387 0.7906 0.9723 0.9993 1.0000

The results allow to make an educated guess that with ϵ fixed and n→ ∞, the probability to get all

n jobs executed in the optimal assignment goes to 1; this guess happens to be true.

Exercise II.17. Let ν = (ν1, ..., νK) with positive integer νi, and let Sν = Sν1 × ... × SνK be the
space of block-diagonal, with K diagonal blocks of sizes νi× νi, i ≤ K, symmetric matrices, let Sν+
be the cone composed of positive semidefinite matrices from Sν , and let E be an m-dimensional
affine plane in Sν which intersects Sν+. The intersection X = E ∩ Sν+ is a closed nonempty convex
set not containing lines and thus possessing extreme points. Let W be such a point, W ii be the
diagonal blocks of W , and ri be the ranks of νi × νi matrices W ii. Prove that

k∑
i=1

ri(ri + 1) ≤
K∑
i=1

νi(νi + 1)− 2m.

What happens in the diagonal case ν1 = ... = νK = 1 ?

Solution: Let W ii = UiΛiU
⊤
i be eigenvalue decompositions of W ii; w.l.o.g. we can assume that the

first ri of eigenvalues of W ii are positive, and the remaining eigenvalues are zero. For every collection

of K symmetric ri × ri matrices Di, denoting by D
i
the νi × νi matrices obtained by augmenting Di
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with zero rows and columns, and setting D = Diag{U1D
1
U⊤
1 , ..., UKD

K
U⊤
K}, we get W ± tD ⪰ 0 for

all small positive t. Now let us impose on the matrices Di the requirement

D ∈ L, (!)

where L is the parallel to E linear subspace in Sν . Assuming that

codimL :=
∑
i

νi(νi + 1)/2−m < R :=
∑
i

ri(ri + 1)/2,

relation (!), which is a system of codimL homogeneous linear equations on R variables {Dipq , p ≤ q ≤
ri, i ≤ K}, has a nontrivial solution, implying that W ± tD ∈ X for some nonzero D and positive t,

which is impossible. Thus, codimL ≥ R, as claimed. ■
In the diagonal case, the result becomes the following fact (perfectly well known to everybody who

somehow dealt with the Simplex method in LP): The number of nonzero entries in any extreme point

of the feasible set of a feasible LP problem in the standard form maxx∈Rk{c⊤x : Ax = b, x ≥ 0} does

not exceed the number of equality constraints (i.e., of rows in A).

Exercise II.18. Let M be a closed convex set in Rn and x̄ be a point of M .

1. Prove that if there exists a linear form a⊤x such that x̄ is the unique maximizer of the form on
M , then x̄ is an extreme point of M .

2. Is the inverse of 1) true, i.e., is it true that every extreme point x̄ of M is the unique maximizer,
over x ∈M , of a properly selected linear form?

Solution: 1: the answer is positive, Indeed, let x̄ be the unique maximizer over x ∈M of a linear form

f⊤x. Assuming, on the contrary to what should be proved, that x̄ ± h ∈ M for some h ̸= 0, the linear

function f⊤x attains its maximum on the segment [x̄− h, x̄+ h] in the midpoint of this segment, which

for a linear function is possible only when the function is constant on the segment. Thus, all points on

the segment maximize f⊤x over x ∈ M , contradicting the fact that x̄ is the unique maximizer of the

function on M .

2: The inverse is not true in general. For example, consider the set

M = {(x, y) ∈ R2 : y ≥


x2 , x ≤ 0

0 , 0 ≤ x ≤ 1

(x− 1)2 , x ≥ 1

}

(draw picture). The origin clearly is an extreme point of the set, but there are no linear forms on R2

attaining their maximum over M at the origin, and only at it.

Exercise II.19. Identify and justify the correct claims in the following list:

1. Let X ⊂ Rn be a nonempty closed convex set, P be an m× n matrix, and Y = PX := {Px :
x ∈ X} ⊂ Rn. Then

• For every x ∈ Ext(X), Px ∈ Ext(Y )

Solution: Wrong – look at the orthogonal projection of the planar triangle with vertices (0, 0),

(1, 1), (2, 0) onto the first coordinate axis.

• Every extreme point of Y is Px for some x ∈ Ext(X)

Solution: Wrong – look what happens when X is the stripe 0 ≤ x ≤ 1 on the 2D plane and P is

the same as in the solution of item 1.

• When X does not contain lines, then every extreme point of Y is Px for some x ∈ Ext(X).

Solution: Correct. Indeed, let w ∈ Ext(Y ). Then the set Xw = {x ∈ X : Px = w} is nonempty,

convex, closed and does not contain lines, and thus has an extreme point x. It suffices to verify

that x ∈ Ext(X). Indeed, let d be such that x ± d ∈ X, and let us prove that d = 0. We have

P [x ± d] ∈ Y , and since w = Px ∈ Ext(Y ), we get Pd = 0, implying that x ± d ∈ Xw; since

x ∈ Ext(Xw), we conclude that d = 0.
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2. Let X,Y be nonempty closed convex sets in Rn, and let Z = X + Y . Then

• If w ∈ Ext(Z), then w = x+ y for some x ∈ Ext(X) and y ∈ Ext(Y ).

Solution: Correct. Indeed, we have w = x + y for some x ∈ X, y ∈ Y . If x ̸∈ Ext(X), then

x± d ∈ X for some d ̸= 0, whence w± d = (x± d) + y ∈ Z, contradicting w ∈ Ext(Z). By similar

reasoning, y ∈ Ext(Y ).

• If x ∈ Ext(X), y ∈ Ext(Y ), then x+ y ∈ Ext(Z).

Solution: Wrong – look what happens when X = [0, 1] ⊂ R and Y = [2, 3] ⊂ R.

Exercise II.20. Let X = {x ∈ Rn : a⊤i x ≤ bi, i ≤ m} be a nonempty polyhedral set and f⊤x be
a linear form of x ∈ Rn which is bounded above on X:

Opt(f) = sup
x∈X

f⊤x <∞

Prove that

1. Opt(f) is achieved – the set Argmax
x∈X

f⊤x := {x ∈ X : f⊤x = Opt(f)} is nonempty.

Solution: This is nothing but the claim that bounded and feasible LP program has a solution

(section 3.2.1 or Theorem II.7.12).

2. The set Argmax
x∈X

f⊤x is as follows: there exists an index set I ⊂ {1, 2, ...,m}, perhaps empty,

such that

Argmax
x∈X

f⊤x = XI := {x : a⊤i x ≤ bi ∀i, a⊤i x = bi ∀i ∈ I}

Solution: By Linear Programming Duality Theorem, the problem dual to primal problem Opt(f) =

max
x

{f⊤x : a⊤i x ≤ bi, i ≤ I} reads max
λ

{
λ⊤b : λ ≥ 0,

∑
iλiai = f

}
and is solvable with the optimal

value Opt(f) – the same as the one of the primal problem. Let λ∗ be an optimal solution to the dual

problem, and let I = {i : λ∗i > 0}. We claim that X∗ := Argmax
x∈X

f⊤x = XI . In one direction: when

x ∈ X∗, we have x ∈ X and

Opt(f) = f⊤x = [
∑

i
λ∗i ai]

⊤x =
∑

i∈I
λ∗i [a

⊤
i x] ≤

∑
i∈I

λ∗i bi = b⊤λ∗ = Opt(f),

where the inequality is due to λ∗i ≥ 0, and the last equality – due to the fact that λ∗ is optimal

solution to the dual problem, and the dual optimal value is Opt(f). We conclude that the inequality

in the chain is equality, so that
∑
i∈Iλ

∗
i [bi − a⊤i x] = 0. The latter relation implies a⊤i x = bi, i ∈ I

(since a⊤i x ≤ bi for all i and λ∗i > 0, i ∈ I). In addition, x ∈ X, and we conclude that x ∈ XI . Thus,

X∗ ⊂ XI . Vice versa, if x ∈ XI , then x ∈ X and

f⊤x = [
∑

i∈I
λ∗i ai]

⊤x =
∑

i∈I
λ∗i bi = b⊤λ∗ = Opt(f),

that is, x ∈ X∗ ■

3. Vice versa, if I ⊂ {1, ...,m} is such that the set XI = {x : a⊤i x ≤ bi ∀i, a⊤i x = bi ∀i ∈ I} is
nonempty, then XI = X∗ := Argmaxx∈X f

⊤x for properly selected f .
Note: Nonempty sets of the form XI , I ⊂ {1, ...,m}, are called faces of the polyhedral set X.
This definition is not geometric – according to it, whether a given set Y is or is not a face in
X, may depend not on X per se, but on its representation as the solution set of a finite system
of linear inequalities. Items 2—3, taken together, state that in fact being a face of a polyhedral
set is a geometric property – faces are exactly the sets Argmax

x∈X
f⊤x of all maximizers of linear

forms bounded from above on X.

Solution: Indeed, given I ⊂ {1, 2, ..., n} such that XI is nonempty, let us set f =
∑
i∈Iai

6, so that

for x ∈ XI one has f⊤x =
∑

∈Ibi. On the other hand, for every x ∈ X we have f⊤x =
∑
i∈a

⊤
i x ≤∑

i∈I bi. We conclude that Opt(f) =
∑
i∈Ibi and XI ⊂ X∗ := Argmax

x∈X
f⊤x,. The same reasoning

6 recall that by our standard convention,
∑
i∈∅ ai = 0.
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as in the concluding part of the solution to the previous item (where λ∗i , i ∈ I, should be set to 1)

demonstrates the opposite inclusion X∗ ⊂ XI . Thus, XI = Argmaxx∈X f⊤x. ■

4. Extreme points of a face of X are extreme points of X.

Solution: Assume that v is an extreme point of a face XI of X; to prove that is an extreme point

of X as well, we should show that whenever v ± h ∈ X, it holds h = 0. To this end, note that if

v ± h ∈ X, then a⊤i [v ± h] ≤ bi for all i; when i ∈ I, the inequalities a⊤i [v ± h] ≤ bi imply that

a⊤i [v ± h] = bi due to a⊤i v = bi. We see that in fact v ± h ∈ XI ; since v is extreme point of XI , we

end up with the desired conclusion h = 0. ■

5. Extreme points of X, if any, are exactly the faces of X which are singletons.
Note: As a corollary of 1—3, 5, we see that extreme points of polyhedral set X are exactly the
maximizers of those linear forms which achieve their maximum on X at a unique point.

Solution: In one direction: let v be an extreme point of X. By Theorem II.7.1, there exists n-element

set I ⊂ {1, ...,m} such that a⊤i v = bi for i ∈ I and the n vectors ai, i ∈ I, are linearly independent.

Since, in addition, v ∈ X, we conclude that v ∈ XI , and the latter set is a singleton due to linear

independence of ai, i ∈ I. In the opposite direction: let XI = {v} for some I; then of course, v is an

extreme point of XI , which in view of item 4 implies that v is an extreme point of X.

Exercise II.21. [Follow-up to Exercise II.20]

1. Let X ⊂ Y be nonempty closed convex sets in Rn. Is it true that Ext(Y ) ∩X ⊂ Ext(X) ?

Solution: The answer clearly is positive. Indeed, assuming that w ∈ Ext(Y ) ∩X is not an extreme

point of X, w is the midpoint of a nontrivial segment ∆⊂X and thus – a nontrivial segment ∆ ⊂ Y

(since X ⊂ Y ), which is impossible.

2. Let X be a nonempty closed convex set contained in the polyhedral set {x : Ax ≤ b}. Assuming
that the set X = X ∩ {x : Ax = b} is nonempty, is it true that Ext(X) = Ext(X) ∩X ?

Solution: The answer is positive. Indeed, by item 1 it holds Ext(X) ∩X ⊂ Ext(X) due to X ⊂ X.

To prove the opposite inclusion, assume that an extreme point w of X is not extreme point of X,

and let us lead this assumption to a contradiction. Since w ∈ X ⊂ X, we have w ∈ X, and since

w is not an extreme point of X, there exists a nontrivial segment ∆ = [x, x] ⊂ X with w as the

midpoint. By assumption, Ax ≤ b and Ax ≤ b, which combines with A 1
2
[x + x] = Aw = b to imply

that Ax = Ax = b, that is, ∆ ⊂ X. The bottom line is that w is the midpoint of a nontrivial segment

in X, which is he desired contradiction – w is an extreme point of X!

3. By the result of Exercise II.13, the extreme points of the polytope Πm,n = {[xij ] ∈ Rm×n :
xij ≥ 0,

∑
ixij ≤ 1 ∀j,

∑
jxij ≤ 1∀i} are exactly the Boolean matrices from this polytope. Now

let Π̂m,n be the part of Πm,n cut off Πm,n by imposing on prescribed row and column sums of
m × n matrix x ∈ Πm,n the requirement to be equal to 1, rather than to be ≤ 1. Assuming

Π̂m,n nonempty, prove that the extreme points of this polytope are exactly the Boolean matrices
contained in it.

Solution: The fact that Boolean matrices contained in Π̂m,n are extreme points of this polytope

is readily given by item 1 – we have already mentioned that these matrices are extreme points of

the larger polytope Πm,n. It remains to note that Π̂m,n is cut off Πm,n by converting into equalities

several inequalities satisfied everywhere on Πm,n, and thus by item 2 extreme points of Π̂m,n are

extreme points of Πm,n and thus are Boolean matrices.

Exercise II.22. Let X ⊂ Rm be a nonempty polyhedral set, x 7→ Px+ p : Rn → Rm be an affine
mapping, and Y be the image of X under this mapping. Mark by T the statements in the below list
which are always (i.e., for all X,P, p compatible with the above assumptions) true:

1. Y is a nonempty polyhedral set.

Solution: True, rule 4 in calculus of polyhedral representations, see section 3.3.
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2. If X does not contain lines, so is Y .

Solution: False – take X =
{
[x; y] ∈ R2 : y ≥ |x|

}
and consider the affine map P [x; y] + p ≡ x.

Then, Y = R and is itself a straight line.

3. If X does contain lines, so does Y .

Solution: False – take X = {[x; y] ∈ R2 : |x| ≤ 1} and P [x; y] + p ≡ x, resulting in Y = [−1, 1].

4. If v is an extreme point of X, then Pv + p is an extreme point of Y .

Solution: False – take X = {[x; y] ∈ R2 : |x|+ |y| ≤ 1} and P [x; y]+ p ≡ x, resulting in Y = [−1, 1].

The image of the extreme point [0; 1] of X under the affine mapping in question is not extreme for

Y .

5. If z is an extreme point of Y , then z = Pv + p for certain extreme point z of X.

Solution: False– take X = {[x; y] ∈ R2 : |x| ≤ 1} and P [x; y] + p ≡ x, resulting in Y = [−1, 1]. Y

has extreme points, and X does not.

6. If z is an extreme point of Y and X does not contain lines, then z = Pv+ p for certain extreme
point z of X.

Solution: True. By Exercise II.20, there is a linear form f⊤y which attains its maximum over y ∈ Y

at z, and only at this point. It follows that the form g⊤x, g = P⊤f , attains its maximum over x ∈ X

exactly at the set Xz = {x ∈ X : Px + p = z}. By Exercise II.20, Xz is a face of X. Since X does

not contain lines, so is Xz , implying that Xz has an extreme point, call it v. Since v ∈ Xz , we have

Pv+p = z, and since v is an extreme point of face of X, it is extreme point of X by Exercise II.20.4.

■

Exercise II.23. Find extreme points of the following closed convex sets:

1. The set Sn = {X ∈ Sn : −In ⪯ X ⪯ In}
Solution: Ext(Sn) is the set of all matrices from Sn which are orthogonal, or, which is the same,

symmetric n× n matrices with eigenvalues ±1.

In one direction: Let W be an orthogonal symmetric matrix; let us prove that this is an extreme

point. Indeed, assuming thatW±D ∈ Sn for some D, let us prove that D = 0. Otherwise there exists

x ∈ Rn with Dx ̸= 0; assuming w.l.o.g. that ∥x∥2 = 1, we have ∥Wx∥2 = 1, and ∥[W ±D]x∥2 ≤ 1

(since the spectral norm ∥V ∥2,2 of a symmetric matrix V ∈ Sn is the maximum of magnitudes of

eigenvalues of V and is therefore ≤ 1), On the other hand, assuming w.l.o.g. that [Dx]⊤[Wx] ≥ 0,

we have ∥[W +D]x∥22 = ∥Wx∥22 +2[Dx]⊤[Wx] + ∥Dx∥22 ≥ ∥Wx∥22 + ∥Dx∥22 = 1+ ∥Dx∥22 > 1, which

is a desired contradiction.

In the opposite direction: LetW be an extreme point of Sn andW = U Diag{λ}U⊤ be the eigenvalue

decomposition of W ; we should verify that λ is a ±1 vector. We clearly have ∥λ∥∞ ≤ 1, and if

∥λ ± d∥∞ ≤ 1, then W ± U Diag{d}U⊤ ∈ Sn, implying that d = 0. Thus, λ is an extreme point of

the unit box {x ∈ Rn : ∥x∥∞ ≤ 1}, and these points are the ±1 vectors. ■

2. The set S+
n = {X ∈ Sn : 0 ⪯ X ⪯ In}

Solution: The extreme points are exactly the orthogonal projectors – symmetric n×n matrices with

eigenvalues 0 and 1. To see it, note that S+
n is the image of Sn under the one-to-one affine mapping

X 7→ 1
2
[X + In] : Sn → Sn.

3. The set Dk,n = {X ∈ Sn : In ⪰ X ⪰ 0,Tr(X) = k}, where k is a positive integer ≤ n.

Solution: The extreme points are exactly the orthogonal rank k projectors, or, which is the same,

the symmetric n× n matrices with k eigenvalues equal to 1 and the remaining eigenvalues equal to

0.

In one direction: let W ∈ Ext(Dk,n), and let us prove that k eigenvalues of W are equal to 1, and

the remaining – to 0. Indeed, let W = U Diag{λ}U⊤ be the eigenvalue decomposition of W ; since

W ∈ Dk,n, we should have 0 ≤ λi ≤ 1 for i ≤ n, and
∑
i λi = k. If now d ∈ Rn is such that

0 ≤ λi±di ≤ 1 for i ≤ n and
∑
i di = 0, then W ±U Diag{d}U⊤ ∈ Dk,n, implying that d = 0 due to

W ∈ Ext(Dk,n). Thus, λ should be an extreme point of the set {x ∈ Rn : 0 ≤ xi ≤ 1, i ≤ n,
∑
i λi =
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k}. As we know from Example II.7.1 in section 7.1.1, this implies that k entries in λ are equal to 1,

and the remaining to 0.

In the opposite direction: Let W be symmetric n × n matrix with k eigenvalues equal to 1 and the

remaining eigenvalues equal to 0, and let us prove that W is an extreme point of Dk,n. Passing

to representations of matrices in the eigenbasis of W , we lose nothing when assuming that W =∑k
i=1 eie

⊤
i , where e1, ..., en are the standard basic orths in Rn. To see that W ∈ Ext(Dk,n), we

should prove that if
∑k
i=1 eie

⊤
i ±D ∈ Dk,n and D is symmetric, then D = 0. Indeed, for D satisfying

the premise of this claim, the diagonal entries of
∑k
i=1 eie

⊤
i ± D should be between 0 and 1 and

sum up to k, implying that Dii = 0 for all i (the same Example II.7.1 we have already mentioned).

In other words, the diagonals of positive semidefinite symmetric matrices B± =
∑k
i=1 eie

⊤
i ±D are

(1, ..., 1︸ ︷︷ ︸
k

, 0, ..., 0), implying that Dij = Dji = B±
ij = Bji = 0 whenever max[i, j] > k (since the 2 × 2

principal minors in B± should be nonnegative). Thus, all entries in D outside of the k × k angular

submatrix D of D are zeros. Next, the matrices Ik ± D are angular submatrices E± of symmetric

matrices with eigenvalues between 0 and 1, implying by the Eigenvalue Interlacement Theorem that

the eigenvalues of the symmetric k × k matrices E± are between 0 and 1, so that E± ∈ S+
k . From

item 2 we know that Ik is an extreme point of the latter set, implying that D = 0. The bottom line

is that D = 0, ■

4. The set Mn = {X ∈ Rn×n : ∥X∥2,2 ≤ 1} (∥ · ∥2,2 is the spectral norm)

Solution: The extreme points are exactly the orthogonal n× n matrices. To see that an orthogonal

n× n matrix W is an extreme point of Mn, you can use exactly the same reasoning as in the proof

of the similar fact for Sn, with D ∈ Rn×n rather than D ∈ Sn. To see that if W is an extreme point

of Mn, then W is orthogonal, or, which is the same, with all singular values equal to 1, look at the

singular value decomposition W = U Diag{σ}V ⊤ of W , From ∥W∥2,2 ≤ 1 it follows that ∥σ∥∞ ≤ 1,

and if certain singular value σi is < 1, then the singular values of the matrices W ± tU [eie
⊤
i ]V ⊤

(ei is i-th basic orth) for small positive t are ≤ 1, implying that W ± tU [eie
⊤
i ]V ⊤ ∈ Mn, which is

impossible, ■

Exercise II.24. Prove the following fact (which can be considered as a matrix extension of Birkhoff
Theorem):

For positive integers d, n, let Πd,n be the set of all n × n block matrices with d × d
symmetric blocks Xij satisfying

Xij ⪰ 0,
∑
j

Tr(Xij) = 1∀i,
∑
i

Tr(Xij) = 1∀j.

The extreme points of Πd,n are exactly the block matrices [Xij ]i,j≤n as follows: for certain
n× n permutation matrix P and unit vectors eij ∈ Rd, one has

Xij = Pijeije
⊤
ij ∀i, j.

Solution: In one direction: Let [W ij ] be an extreme point of Πd,n and Pij = Tr(Wij), so that P is

doubly stochastic. For every i, j, W ij should be an extreme point of the set Dij = {X ∈ Sd : X ⪰
0,Tr(X) = Pij} (why?), whence, by item 3 of Exercise II.23, W ij = Pijeije

⊤
ij for some unit eij . Besides

this, P should be an extreme point of the polytope of doubly stochastic n× n matrices, since otherwise

P ± D will be doubly stochastic for some nonzero D, implying that W ± [Dijeije
⊤
ij ]i,j≤n︸ ︷︷ ︸
D

∈ Πd,n for

nonzero block-matrix D with symmetric blocks, contradicting the fact that W ∈ Ext(Πd,n). Thus, by

Birkhoff Theorem, P is a permutation matrix, and W = [Pijeije
⊤
ij ] with unit eij ∈ Rd. ■

In the opposite direction: Let W = [Pijeije
⊤
ij ] with unit eij and permutation matrix P , and let W ±

[Dij ] ∈ Πd,n for some block-matrix with symmetric blocks Dij ; we should prove that Dij = 0 for all i, j.

If i, j are such that Pij = 1, then the d× d matrices eije
⊤
ij ±Dij are ⪰ 0 with trace not exceeding 1 (as

blocks in a matrix from Πd,n), whence both matrices are ⪰ 0, ⪯ Id, and with trace 1 (the latter – due to
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Tr(eije
⊤
ij) = 1). Thus, eije

⊤
ij ±Dij ∈ D1,d; applying item 3 of Exercise II.23, we conclude that Dij = 0.

And if Pij = 0, then W ij±Dij should be ⪰ 0, again implying that Dij = 0 due to W ij = Pijeije
⊤
ij = 0.

■

Exercise II.25. Let k, n be positive integers with k ≤ n, and let sk(λ) for λ ∈ Rn be the sum of k
largest entries in λ. From the description of the extreme points of the polytope X = {x ∈ Rn : 0 ≤
xi ≤ 1, i ≤ n,

∑n
i=1 xi ≤ k}, see Example II.7.2 in section 7.1.1, it follows that when λ ∈ Rn

+, then

max
x∈X

n∑
i=1

λixi = sk(λ).

Prove the following matrix analogy of this fact:

For k, n as above, let X = {(X1, ..., Xn) : Xi ∈ Sd, 0 ⪯ Xi ⪯ Id, i ≤ n,
∑n
i=1Xi ⪯ kId}.

Then for λ ∈ Rn
+ one has

(X1, ..., Xn) ∈ X =⇒
n∑
i=1

λiXi ⪯ sk(λ)Id,

with the concluding ⪯ being = for properly selected (X1, ..., Xn) ∈ X .

Solution: Assuming w.l.o.g. that λ1 ≥ λ2 ≥ ... ≥ λn, for X = (X1, ..., Xn) ∈ X , setting Si =
∑i
j=1Xj ,

we have Si ⪯ min[i, k]Id. When k = n, we clearly have
∑n
i=1 λiXi ⪯

∑n
i=1 λiId = sn(λ)Id, with ⪯

being = when Xi = Id, i ≤ n Now let k < n, and let Xi =

{
Id, i ≤ k

0, i > k
, Si =

∑i
j=1Xi; note that

Si = min[i, k]Id ⪰ Si, i ≤ n. We have∑n
i=1 λiXi =

∑n
i=1 λi[Si − Si−1] =

∑n−1
i=1 Si [λi − λi+1]︸ ︷︷ ︸

≥0

+ λn︸︷︷︸
≥0

Sn

⪯
∑n−1
i=1 [λi − λi+1]Si + λnSn

=
∑n
i=1 λi[Si − Si−1] = sk(λ)Id,

and the resulting inequality
∑
i λiXi ⪯ sk(λ)Id is equality when Xi = Xi, i ≤ n. ■

8.3 Cones and extreme rays

Exercise II.26. Let X be a nonempty closed and bounded set in Rn. Which of the following
statements are true?

1. Conv(X) is closed convex set.

Solution: True – see Corollary I.2.5

2. Cone(X) is a closed cone.

Solution: Wrong in general. When X = {x ∈ R2 : x21 + (x2 − 1)2 ≤ 1} (circle of unit radius

in the upper half-plane touching the x1-axis at the origin), Cone(X) is the open upper half-plane

{x = [x1;x2] : x2 > 0} with origin added; this cone is not closed

3. When X is convex, Cone(X) is closed cone.

Solution: Wrong in general, see example to item 2.

4. When 0 ̸∈ X, Cone(X) is a closed cone.

Solution: Wrong in general. When X = X+∪X− with X+ = {[x1;x2; 1] ∈ R3 : x21+(x2−1)2 ≤ 1},
X− = {[x1;x2;−1] ∈ R3 : x21 + (x2 − 1)2 ≤ 1}, Cone(X) contains the circle {x21 + (x2 − 1)2 ≤ 1} in

the plane x3 = 0 and therefore contains the conic hull of this circle. As a result, cl Cone(X) contains

the tangent line {x2 = 0, x3 = 0} to this circle, and this line clearly does not belong to Cone(X).

5. When 0 ̸∈ X and X is convex, Cone(X) is closed cone.
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Solution: True. The fact that Cone(X) is a cone holds true for every X; all we need is to prove

that under the circumstances this cone is closed. Since X is nonempty closed convex set and 0 ̸∈ X,

Separation Theorem applied to {0} and X says that these two sets can be strongly separated, so

that for properly selected e it holds 0 = e⊤0 < α := infx∈X e⊤x. Now let y = limt→∞ yt with

yt ∈ Cone(X); we want to prove that y ∈ Cone(X). We have yt =
∑
i≤It λtixti with λti ≥ 0 and

xti ∈ X. Setting λt =
∑
i λti, we have

e⊤y = lim
t→∞

e⊤yt = lim
t→∞

∑
i

λit e
⊤xti︸ ︷︷ ︸

≥α>0

.

implying that the sequence of nonnegative reals λt is bounded. Therefore, passing to a subse-

quence, we may assume that λt → λ̄ as t → ∞. Taking into account that ∥yt∥2 ≤ Cλt with

C = maxx∈X ∥x∥2 < ∞, we see that when λ̄ = 0, one has y = 0, whence y ∈ Cone(X). And when

λ̄ > 0, y = limt→∞ yt implies that y = λ̄ limt→∞ xt with xt = λ−1
t

∑
i λtixti (these points are well

defined for large enough t’s). Since X is convex, the points xt belong to X, and since X is closed,

the point x := limt→∞ xt belongs to X as well. Thus, y is a positive multiple of a point from X, so

that y ∈ Cone(X). ■

6. When X is polyhedral, Cone(X) is a closed cone.

Solution: True. By Krein-Milman Theorem, nonempty bounded polyhedral set is Conv{v1, ..., vN}
for a finite nonempty set {v1, ..., vN}, whence clearly Cone(X) = Cone({v1, ..., vN}) = {y =

∑
i λivi :

λi ≥ 0, i ≤ N}. Thus, Cone(X) admits polyhedral representation and is therefore polyhedral, and

thus closed, set.

Exercise II.27. Let X ⊂ Rn be a nonempty polyhedral set given by polyhedral representation:

X = {x : ∃u : Ax+Bu ≤ r}

and let K = Cone(X) be the conic hull of X.

1. Is it true that K is a closed cone?

Solution: Wrong in general. As every conic hull, K is a cone, but this cone not necessarily is closed.

For example, when X = {[x1; 1] : x1 ∈ R} ⊂ R2, Cone(X) is the union of the interior of the upper

half-plane and of the origin, and this cone is not closed.

2. Prove that K := clK is a polyhedral cone and find polyhedral representation of K.

Solution: We claim that K admits polyhedral representation

K = {x : ∃λ, u : λ ≥ 0, A+Bu− λr ≤ 0}

and is therefore a polyhedral cone. To justify the claim, denote the right hand side in the latter

relation by K+, so that K+ is polyhedral (and thus closed) cone. To prove that K = K+ is the same

as to check that, first, K ⊂ K+ and, second, K is dense in K+.

To justify the first claim, note that x ∈ K is of the form
∑
i λixi with λi ≥ 0 and xi ∈ X; the latter

means that for properly selected ui it holds Axi+Bui ≤ r. Consequently, A[λixi]+B[λiui]−λiri ≤ 0.

Summing up these vector inequalities, we get

A
∑

i
λixi︸ ︷︷ ︸
x

+B
∑

i
λiui︸ ︷︷ ︸

=:u

+ [
∑

i
λi]︸ ︷︷ ︸

=:λ

r ≤ 0;

implying that x ∈ K+ due to λ =
∑
i λi ≥ 0.

To justify the second claim, let us fix x̄ ∈ X (X is nonempty!), so that Ax̄+Bū− r ≤ 0 for some ū.

Now let x ∈ K+, and let us prove that x ∈ clK. Indeed, x ∈ K+ means that Ax+Bu− λr ≤ 0 for

some u and some λ ≥ 0, implying that for ϵ > 0 one has

A [x+ ϵx̄]︸ ︷︷ ︸
=:xϵ

+B[u+ ϵū]− [λ+ ϵ]︸ ︷︷ ︸
>0

r ≤ 0.
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Dividing both sides by [λ + ϵ], we see that xϵ = [λ + ϵ]xϵ with xϵ = [λ + ϵ]−1xϵ ∈ X Thus,

xϵ ∈ K = Cone(X); since xϵ → x as ϵ→ +0, we conclude that x ∈ clK, as claimed.

3. Assume that X is given by plain – no extra variables – polyhedral representation: X = {x : Ax ≤
b}. Build plain polyhedral representation of K := cl Cone(X).

Solution: By the previous item,

K = {x : ∃λ : λ ≥ 0, Ax− bλ ≤ 0},

and to get plain polyhedral representation of K, it suffices to subject the above polyhedral represen-

tation to one step of Fourier-Motzkin elimination. To this end, let us set A =

[
−1

A −b

]
, so that

K = {x : ∃λ : A[x;λ] ≤ 0}. Denoting the transposes of the rows of A by [αi;βi] with αi ∈ Rn and

βi ∈ R and denoting by I0, I+, I− the sets of i’s with βi = 0, βi > 0, βi < 0, respectively, we have

K =
{
x : ∃λ : A[x;λ] ≤ 0

}
=

{
x :

α⊤
i x ≤ 0∀i ∈ I0

[β−1
i αi − β−1

j αj ]
⊤x ≤ 0 ∀(i ∈ I+, j ∈ I−)

}
and we end up with plain polyhedral representation of K.

Exercise II.28. As we know, the extreme directions of the nonnegative orthant Rn
+ = R+ ×R+ ×

... × R+ are the vectors with single positive entry and remaining entries equal to 0. Prove the
following generalization of this observation:

Let Xi ⊂ Rni , 1 ≤ i ≤ K, be closed, nontrivial, and pointed cones. The extreme
directions of the direct product X = X1× ...×XK of these cones, if any, are the block-
vectors d = [d1; ...; dK ] with di ∈ Rni of the following structure: all but one blocks in
d are zero, and the only nonzero block is an extreme direction of the corresponding
factor Xi.

Solution: In one direction: if d = [0; ...; 0; di; 0; ...; 0] with di being extreme direction ofXi and d = d1+d2

with d1, d2 ∈ X, then d is nonzero and d1j = d2j = 0 for j ̸= i; indeed, for j in question d1j , d
2
j ∈ Xj and

d1j + d2j = dj = 0, and Xj is pointed. From di = d1i + d2i with di being extreme direction of Xi both

d1i and d2i are nonnegative multiples of di (indeed, d
1
i and d2i belong to Xi and sum up to the extreme

direction di of Xi). Combining our observations, we conclude that d1 and d2 are nonnegative multiples

of d, and we conclude that d is an extreme direction of X. In the opposite direction: let d = [d1; ...; dK ]

be an extreme direction of X implying, in particular, that di ∈ Xi for all i, and d ̸= 0, so that d has

a nonzero block, say, d1. Since d = [d1; 0; ...; 0]︸ ︷︷ ︸
∈X

+ [0; d2; d3; ...; dK ]︸ ︷︷ ︸
∈X

and d is extreme direction of X, the

vector [d1; 0; ...; 0] must be nonnegative multiple of d; since d1 ̸= 0, [d1; 0; 0; ...; 0] in fact is a positive

multiple of d, implying that di = 0, i ≥ 2. It remains to verify that the only nonzero block, d1, in d is an

extreme direction of X1. Assuming the opposite, we can represent d1 as d11+d
2
1 with vectors dχ1 , χ = 1, 2,

belonging to X1 and not both being nonnegative multiples of d1. But then d = [d1; 0; ...; 0] = d1 + d2,

with dχ = [dχ1 ; 0; ...; 0] ∈ X, χ = 1, 2, and at least one of d1, d2 not being a nonnegative multiple of d,

which contradicts the fact that d is an extreme direction of X. ■

Exercise II.29. Describe all extreme rays of

1. positive semidefinite cone Sn+
2. Lorentz cone Ln

3. Lorentz cone Ln, n ≥ 2, is the special case of the following construction: given a norm ∥ · ∥ on
Rn−1 (n ≥ 2), we associate with it the set

Kn
∥·∥ = {[x; t] ∈ Rn : t ≥ ∥x∥},

which is a pointed nontrivial cone with a nonempty interior (why?); note that Ln = Kn
∥·∥2 .

Describe the extreme directions of Kn
∥·∥.

Solution:
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1. Extreme rays of Sn+ are nonnegative multiples R+ × ee⊤, e ∈ Rn \ {0}, of positive semidefinite rank

1 matrices.

In one direction: When e ∈ Rn \ {0}, in every representation ee⊤ = d1 + d2 with d1 ⪰ 0, d2 ⪰ 0,

for every x orthogonal to e we should have 0 = x⊤[ee⊤]x = x⊤d1x︸ ︷︷ ︸
≥0

+x⊤d2x︸ ︷︷ ︸
≥0

, that is, [R · e]⊥ is in

the kernel of both d1 and d2, implying that the only eigenvector of di with nonzero eigenvalue, if

any, is proportional to e. In other words, eigenvalue decomposition of di is λiee
⊤ with nonnegative

λi (since λi is an eigenvalue of di ⪰ 0). Thus, di, i = 1, 2,, are nonnegative multiples of ee⊤, so

that ee⊤ is extreme direction of Sn+. In the opposite direction: let E ∈ Sn+ and E =
∑
iλieie

⊤
i be

eigenvalue decomposition of E. When the number of nonzero eigenvalues λi is > 1, say, λ1 > 0 and

λ2 > 0, then E = λ1e1e⊤1 +
∑
i≥2λieie

⊤
i is decomposition of E into sum of two positive semidefinite

matrices which are not proportional to E, that is, positive semidefinite matrix of rank > 1 is not an

extreme direction of Sn+. Since an extreme direction should be nonzero and positive semidefinite, it

must be of the form ee⊤ with nonzero vector e. ■
2. The extreme directions of L1 = R+ are positive reals. When n > 1, the extreme directions of Ln are

exactly positive multiples of vectors [e; 1] with e ∈ Rn−1, ∥e∥2 = 1, see solution to item 3.

3. Denoting by B = {x ∈ Rn−1 : ∥x∥ ≤ 1} the unit ball of norm ∥ · ∥, the extreme directions of Kn
∥·∥

are positive multiples of vectors [x; 1] with x ∈ Ext(B). Indeed, the set

Y := {[x; 1] ∈ Kn
∥·∥} = B × {1}

clearly is a base of the cone Kn
∥·∥, see Definition II.6.37. By Fact II.6.38.(iv), the extreme directions

of Kn
∥·∥ are positive multiples of the vectors from Ext(Y ), and

Ext(Y ) = Ext(B × {1}) = Ext(B)× {1} = {[x; 1] : x ∈ Ext(B)},

where the second equality is due to Exercise II.10. ■

8.4 Recessive cone

Exercise II.30. Let M be a convex set, and let x̄ and h be such that Rx̄ := {x̄+ th : t ≥ 0} ⊂M .

1. Is it always true that whenever x ∈M , the set Rx = {x+ th, t ≥ 0} is contained in M ?

Solution: The answer is no, example being M = {[x1;x2] ∈ R2 : x1 ≥ 0, x2 > 0} ∪ {[0; 0]}. This

set clearly is convex and contains the ray {[x1; 1] : x1 ≥ 0} (that is, the ray Rx̄ corresponding to

x̄ = [0; 1] and h = [1; 0]), but does not contain the parallel ray R[0;0] = {[x1; 0] : x1 ≥ 0} emanating

from [0; 0] ∈M . ■

2. Let h be a recessive direction of M = clM , and let x̄ be a point from the relative interior of M .
Is it always true that the set Rx̄ = {x̄+ th : t ≥ 0} is contained in M ?

Solution: The answer is yes. Indeed, by Lemma I.1.30 the ray R = {x̄+ th : t ≥ 0} is contained in M ,

and since every point x = x̄+ th on this ray is of the form 1
2
x̄+ 1

2
x′ with x′ ∈ R ⊂ clM (you can take

x′ = x̄+ 2th), x ∈M by Lemma I.1.30.

Exercise II.31. Let M ⊂ Rn be a cone, not necessary closed; recall that pointedness of a cone
M means that the only vector x such that x ∈ M and −x ∈ M is the zero vector. Which of the
following statements are always true:

1. M is pointed if an only if the only representation of 0 as the sum of k ≥ 1 vectors xi ∈M is the
representation with xi = 0, i ≤ k.

Solution: This is true. Indeed, if M is not pointed, so that ±x ∈M for some x ̸= 0, then setting k = 2,

x1 = x, x2 = −x, we get a representation of 0 as the sum of two nonzero vectors from M . On the other

hand, when M is pointed and 0 = x1 + . . . + xk with xi ∈ M , then either k = 1 and x1 = 0, or k > 1,
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and then for every i ≤ k we have 0 = xi +
∑

j ̸=i
xj︸ ︷︷ ︸

∈M

implying that ±xi ∈ M , whence, by pointedness,

xi = 0, i ≤ k. ■

2. M is pointed if and only if M does not contain straight lines (one-dimensional affine planes)
passing through the origin.

Solution: True. In one direction: if M contains straight line passing through the origin, that is, the set

{th : t ∈ R} with some h ̸= 0 is contained in M , then ±h ∈ M and h ̸= 0, contradicting pointedness of

M . In the opposite direction: if M is not pointed, that is, ±h ∈M for some h ̸= 0, then M , being conic,

contains the straight line {th : t ∈ R} passing through the origin. ■

3. M is pointed if and only if M does not contain straight lines.

Solution: Wrong – take M = {[x1, x2] ∈ R2 : x2 > 0} ∪ {[0; 0]}. This cone is pointed (since all nonzero

vectors from M have the second coordinate positive) and contains the line {[x1; 1] : x1 ∈ R}. ■

4. Assuming M closed, M is pointed if and only if M does not contain straight lines.

Solution: True. By Lemma II.6.13, if a closed convex set contains a line, it contains all parallel lines

intersecting the set, so that a closed cone M contains lines if and only if it contains lines passing through

the origin, and it remains to use item 2. ■

5. M is pointed cone if and only if the closure of M is so.

Solution: Wrong, the counter-example being the pointed cone M = {[x1;x2] ∈ R2 : x2 > 0} ∪ {[0; 0]}.
■

6. The closure of M is a pointed cone if and only if M does not contain straight lines.

Solution: True. If M contains a line, then this line is contained in the closed cone clM , so that clM is

not pointed by item 4. Vice versa, if clM is not pointed, it contains a line {th : t ∈ R} (h ̸= 0) passing

through the origin by item 2, and therefore by the result stated in Exercise II.30 M contains all lines of

the form {x+ th : t ∈ R} with x ∈ rintM [̸= ∅]. ■

Exercise II.32. Literal interpretation of the words “polyhedral cone” is: a polyhedral set {x : Ax ≤
b} which is a cone. An immediate example is the solution set {x : Ax ≤ 0} of homogeneous system
of linear inequalities. Prove that this example is generic: whenever a polyhedral setK = {x : Ax ≤ b}
is a cone, one has K = {x : Ax ≤ 0}.
Solution: One way to prove the claim is to note that when the set K = {x : Ax ≤ b} is a cone, this

(clearly closed) set, as every closed cone, coincides with its recessive cone: K = Rec(K), and Fact II.6.20

states that for a nonempty polyhedral set M = {x : Ax ≤ b} one has Rec(M) = {x : Ax ≤ 0}.
A “bare hands” proof of the claim in question can be found in solution to Exercise I.4.

Exercise II.33. Prove the following modification of Proposition II.6.23:

(!) Let X ⊂ RN be a nonempty closed convex set such that X ⊂ V + Rec(X) for
some bounded and closed set V , let x 7→ A(x) = Ax + b : RN → Rn be an affine
mapping, and let Y = A(X) := {y : ∃x ∈ X : y = A(x)} be the image of X under
this mapping. Let also

K = {h ∈ Rn : ∃g ∈ Rec(X) : h = Ag}.

Then the recessive cone of the closure Y of Y is the closure K of K. In particular,
when K is closed (as definitely is the case when Rec(X) is polyhedral), it holds

Rec(Y ) = K.

Solution: If y ∈ Y and h ∈ K, so that y = A(x) and h = Ag for some x ∈ X and g ∈ Rec(X), then

x + tg ∈ X for all t ≥ 0, so that y + th = A(x + tg) ∈ Y ⊂ Y whenever t ≥ 0. Thus, h is a recessive

direction of Y , so that K ⊂ Rec(Y ), and since the cone Rec(Y ) is closed, K belongs to Rec(Y ) along

with K.

Vice versa, under the premise of Proposition, let h ∈ Rec(Y ); we want to prove that h ∈ K. Indeed,
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selecting somehow y ∈ Y , we have y + ih ∈ Y , i = 1, 2, ... Next, from X ⊂ V + Rec(X) is follows

that Y ⊂ Ŷ := A(V ) + ARec(X) = A(V ) + K, and therefore Y ⊂ cl(A(V ) + K) = A(V ) + K,

where the concluding equality is due to the fact that A(V ) is a compact set along with V 7. Thus,

y+ ih ∈ Y⊂A(V )+K, implying that for every i there exists δi ∈ Rn, vi ∈ V and gi ∈ Rec(X) such that

y+ih = A(vi)+Agi+δi and δi → 0 as i→ ∞. Setting hi = i−1Agi, we have h = hi+i
−1[A(vi)+δi−y],

and the second term in the right hand side of this equality tends to 0 as i→ ∞ due to the boundedness of

V and of the sequence {δi}. We conclude that h = limi→∞ hi with hi ∈ K for all i (due to gi ∈ Rec(X)),

so that h ∈ K. Recalling what h is, we conclude that Rec(Y ) ⊂ K. The opposite inclusion has already

been verified, and we arrive at Rec(Y ) = K. ■

Exercise II.34. [follow-up to Exercise II.33]

1. Let K1 ⊂ Rn,K2 ⊂ Rn be closed cones, and let K = K1 +K2.

• Is it always true that K is a cone?

Solution: K clearly is a cone.

• Is it always true that K is closed?

Solution: The answer is negative, as is shown by the following example: K1 = {[x; y; z] ∈ R3 :

y, z ≥ 0, yz ≥ x2} (this, up to one-to-one linear substitution of variables, is the 3D Lorentz cone),

K2 = {[x; y; z] : x = y = 0, z ≤ 0} (just a ray). In this case K contains all lines ℓa = {[x; y; z] :
y = a, z = 0} with a > 0; indeed, given a > 0 and x, the vector [x; a;x2/a] belongs to K1, and the

vector [0; 0;−x2/a] belongs to K2, so that the sum [x; a; 0] of these vectors belongs to K, implying

that ℓa ⊂ K. On the other hand, the only vector of the form [x; 0; 0] belonging to K clearly is

the sum of some vector from K1 with the y-coordinate equal to 0 and a vector from K2; the only

option for the first vector is to be of the form [0; 0; z] with z ≥ 0, and in this case, x must be zero.

We see that K contains all lines ℓa with a > 0, but does not contain the line ℓ0 ⊂ cl∪a>0ℓa.

• Let K2 be polyhedral. Is it always true that K is closed?

Solution: The answer is negative, as is shown by the example of the previous item, where K2 is

a ray.

• Let both K1 and K2 be polyhedral. Is it always true that K is closed?

Solution: The answer is positive: by evident reasons, K admits polyhedral representation and

therefore is polyhedral.

2. Let Xi, i = 1, ..., I, be closed convex sets in Rn with nonempty intersection. Is it true that
∩iRec(Xi) = Rec(∩iXi)?
Solution: The answer is positive: selecting x ∈ ∩iXi, we have h ∈ Rec(∩iXi) iff x+ th ∈ ∩iXi for
all t ≥ 0, or, which is the same, iff h ∈ Rec(Xi) for every i.

3. Let X1, X2 be nonempty closed convex sets in Rn, let K1 = Rec(X1), K2 = Rec(X2), X =

cl(X1 +X2), K = cl(K1 +K2).

• Is it always true that K ⊂ Rec(X) ?

Solution: The answer is positive: selecting xi ∈ Xi and hi ∈ Rec(Xi), i = 1, 2, we have x1 + x2 +

t(h1 + h2) ∈ X1 + X2 for all t ≥ 0, implying that h1 + h2 ∈ Rec(X). Thus, the cone K1 + K2

belongs to the cone Rec(X), and since the latter cone is closed, K belongs to this cone as well.

• Is is always true that K = Rec(X) ?

7 We have used a nearly evident statement (prove it!): if A,B are nonempty sets in Rm and A is

bounded, then cl(A+B) = cl(A) + cl(B).
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Solution: The answer is negative: take X1 = {[x; t] : x2 ≤ t}, X2 = −X1 = {[x; t] : x2 ≤ −t}.
Then K1 = {[0; t] : t ≥ 0}, K2 = {[0; t] : t ≤ 0}, so that K = {[0; t], t ∈ R}. At the same time, we

clearly have X1 +X2 = R2, that is, Rec(X) = R2.

• Assume that Xi ⊂ Vi+Ki for properly selected closed and bounded set Vi, i = 1, 2, Is it true
that K = Rec(X) ?

Solution: The answer is positive. Indeed, let Y = X1 ×X2, L = K1 ×K2, V = V1 × V2. Then

clearly Y is a nonempty closed convex set, L = Rec(Y ), and V is a bounded and closed set such

that Y ⊂ V + L. Setting A(x1, x2) = x1 + x2, we get a linear mapping acting from Rn ×Rn to

Rn such that X = clA(Y ) and K = clA(L), so that K = Rec(X) by the result of Exercise II.33.

Exercise II.35. Let f(x) = x⊤Cx− c⊤x+ σ be quadratic form with C ⪰ 0. By Exercise I.15, the
set E = {x : f(x) ≤ 0} is convex (and of course closed). Assuming E ̸= ∅, describe Rec(E).

Solution: Let x̄ ∈ E. Ray {x̄+ th : t ≥ 0} is contained in E if and only if

∀t ≥ 0 : t2 h⊤Ch︸ ︷︷ ︸
≥0

+2tx̄⊤Ch− tc⊤h ≤ −[x̄⊤Cx̄− c⊤x̄+ σ]︸ ︷︷ ︸
≥0

,

which is possible if and only if h⊤Ch = 0 and c⊤h ≥ 0. Recalling that for C ⪰ 0 relation h⊤Ch = 0 is

equivalent to h ∈ KerC, we get

Rec(E) = {h ∈ KerC : c⊤h ≥ 0}.

8.5 Around majorization

Exercise II.36. Let x ∈ Rm, let X[x] be the convex hull of all permutations of x, and let X+[x]
be the set of all vectors x′ dominated by a vector form X[x]:

X+[x] = {y | ∃z ∈ X[x] : y ≤ z}.

1) Prove that X+[x] is a polyhedral set.
2) Prove the following characterization of X+[x]: X+[x] is exactly the set of solutions of the

system of inequalities sj(y) ≤ sj(x), j = 1, . . . ,m, in variables y, where, as always sj(z) is the sum
of the j largest entries in vector z.

Solution: 1) The set X+[x] is the sum of the polyhedral set X[x] and the polyhedral cone −Rm
+

and therefore admits immediate polyhedral representation: denoting by Σ the set of all m! permutation

matrices of size m×m, we have

X+[x] = {y : ∃{λσ , σ ∈ Σ}, z ∈ Rm : λ ≥ 0,
∑
σ

λσ = 1, z ≥ 0, y =
∑
σ∈Σ

λσ [σx]− z}

and is therefore polyhedral. ■
2) To justify the claim, let us fix x, and let X+[x] be the set of all solutions to the system of constraints

sj(y) ≤ sj(x), 1 ≤ j ≤ m. We want to prove that X+[x] = X+[x]. First, if y ∈ X+[x], then y ≤ y

for some y ∈ X[x]. By Majorization Principle, we have sj(y) ≤ sj(x), j ≤ m (in fact, the last of these

inequalities is equality, but this does not matter now). And since y ≤ y and sj(z) is monotonically

nondecreasing in z, we have sj(y) ≤ sj(y) ≤ sj(x), j ≤ m, so that y ∈ X+[x]. We conclude that

X+[x] ⊂ X+[x]. To prove the inverse inclusion, let y ∈ X+[x], that is, sj(y) ≤ sj(x), j ≤ m. Setting

∆ = sm(x) − sm(y), we get ∆ ≥ 0. Keeping all but the smallest entry in x intact and decreasing the

smallest entry by ∆, we get a vector x such that sj(x) = sj(x) for j < m and sm(x) = sm(y). Thus,

sj(y) ≤ sj(x) for all j, the inequality being equality when j = m. By Majorization Principle, y = Dx for

some doubly stochastic matrix D, and since by construction x ≤ x, we have Dx ≤ Dx, whence y ≤ Dx.

Since Dx, by Birkhoff theorem, belongs to X[x], we conclude that y is dominated by some point from

X[x], that is, y ∈ X+[x]. Thus, X+[x] ⊂ X+[x]. ■
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8.6 Around polars

Exercise II.37. Justify the last three claims in Example II.6.12.

Solution: 5: We have supz∈DX y⊤z = supx∈X y⊤Dx = supx∈X [D⊤y]⊤x. Thus, y ∈ Polar (DX) if and

only if D⊤y ∈ Polar (X). ■
6: We have E = {x = C−1/2u : u⊤u ≤ 1}, whence max

x∈E
y⊤x = max

u:u⊤u≤1
[C−1/2y]⊤u = ∥C−1/2y∥2, Thus,

Polar (E) = {y : ∥C−1/2y∥2 ≤ 1} = {y : [C−1/2y]⊤[C−1/2y] ≤ 1} = {y : y⊤C−1y ≤ 1}. ■
7: This is evident.

Exercise II.38. [more on polars]

1. Recall that for U ⊂ Rn, Vol(U) stands for the ratio of the n-dimensional volume of U and the
volume of the n-dimensional unit Euclidean ball. Check that for a centered at the origin ellipsoid
E = {x : x⊤Cx ≤ 1} (C ≻ 0) we have Vol(E)Vol(Polar (E)) = 1.

2. Let C ≻ 0 and let ellipsoid E = {x : (x − c)⊤C(x − c) ≤ 1} contain the origin. Compute
Polar (E).

3. Let Xk, k ≤ K, be closed convex sets in Rn containing the origin. Prove that

Polar (Conv(∪kXk)) = ∩kPolar (Xk) (a)
Polar (∩kXk) = clConv(∪kPolar (Xk)) (b)

Solution: 1: By Example II.6.12.4, Polar (E) = {x : x⊤C−1x} , so that by the results of Exercise I.14

one has Vol(E) = Det−1/2(C), Vol(Polar (E) = Det−1/2(C−1) = Det1/2(C).

2: We have

Polar (E) = {y : maxx=c+C−1/2u:u⊤u≤1 y
⊤x ≤ 1} = {y : c⊤y +maxu:∥u∥2≤1 u

⊤[C−1/2y] ≤ 1}
= {y :

√
yC−1y ≤ 1− c⊤y} ⊆ Q := {y : y⊤C−1y − [1− c⊤y]2 ≤ 0}

Let us prove that the⊆ above is in fact equality. To this end note thatQ is a sublevel set of inhomogeneous

quadratic form with the matrix

Θ := C−1 − cc⊤ = C−1/2[I − dd⊤]C−1/2,

where d,= C1/2c, so that d⊤d = c⊤Cc ≤ 1 due to 0 ∈ E. We conclude that Θ ⪰ 0, implying that Q is

convex (Exercise I.15). Now, to prove that the ⊆ in question is in fact equality is the same as to prove

that the linear function 1 − c⊤y is nonnegative everywhere on Q. Assuming that the latter is not the

case and observing that 0 ∈ Q, among the values taken on Q by the linear function in question there are

both positive and negative, and since Q is convex, there should be y ∈ Q with c⊤y = 1, and the latter

clearly is forbidden by the definition of Q.

Thus, the polar of E is

Q = {y : y⊤Θy + 2c⊤y ≤ 1}.

Geometrically, this is

— either ellipsoid – this is the case when Θ ≻ 0, or, which is the same, 0 ∈ intE,

— or hyperparaboloid/elliptic cylinder – the set which in coordinates t = Dx with properly selected

nonsingular D is given by γt1 ≥ α+
∑
i≥2[ti − βi]

2 – this is what happens when 0 ∈ bdE.

3: A linear form does not exceed a real a on the convex hull of the union of K nonempty convex sets if and

only if it does not exceed a on every one of these sets, resulting in (a). Setting Yk = Polar (Xk), k ≤ K,

so that Xk = Polar (Yk) by Proposition II.6.42 (recall that Xk are closed, convex, and contain the origin)

and applying (a) to the sets Yk in the role of Xk, we get Polar (Conv(∪kYk)) = ∩kPolar (Yk) = ∩kXk,
whence also Polar (cl Conv(∪kYk)) = ∩kXk. Since the set cl Conv(∪kYk) is closed, convex, and contains

the origin, it is the polar of its polar (Proposition II.6.42), that is, cl Conv(∪kYk) = Polar (∩kXk).
Recalling what Yk are, we arrive at (b). ■

Exercise II.39. Let X ⊂ Rn be a cone given by polyhedral representation

X = {x ∈ Rn : ∃u : Ax+Bu ≤ r}

Is the dual to X cone X∗ polyhedral? If yes, build a polyhedral representation of X∗.
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Solution: The fact that the cone dual to a polyhedral cone is polyhedral as well was explained in Remark

II.6.27 and Exercise I.4. An independent reasoning (which as a byproduct yields polyhedral representation

of X∗ and as such can be considered as an addition to the calculus of polyhedral representations, see

section 3.3), is as follows. We have

y ∈ X∗ ⇐⇒ y⊤x ≥ 0 ∀x ∈ X ⇐⇒ 0 ≤ minx,u
{
y⊤x : Ax+Bu ≤ r

}
⇐⇒ 0 ≤ maxλ

{
−r⊤λ : λ ≥ 0, A⊤λ+ y = 0, B⊤λ = 0

}
[LP Duality]

⇐⇒ ∃λ : r⊤λ ≤ 0, λ ≥ 0, A⊤λ+ y = 0, B⊤λ = 0,

and we end up with polyhedral representation of X∗.

Exercise II.40.

1. Let X ⊂ Rn be a nonempty polyhedral set given by polyhedral representation

X = {x ∈ Rn : ∃u : Ax+Bu ≤ r}

Is the polar Polar (X) of X polyhedral? If yes, point out a polyhedral representation of Polar (X).
For non-polyhedral extension, see Exercise IV.36.

Solution: We have

Polar (X) = {y : Opt(P ) := maxx,u{y⊤x : Ax+Bu ≤ r} ≤ 1}
= {y : Opt(D) := minλ

{
r⊤λ : λ ≥ 0, A⊤λ = y,B⊤λ = 0

}
≤ 1}

[by LP Duality; note that (P ) is feasible due to X ̸= ∅]

= {y : ∃λ : r⊤λ ≤ 1,λ ≥ 0, y = A⊤λ,B⊤λ = 0},
[since by the above, the dual problem is solvable when y ∈ Polar (X)]

and we end up with polyhedral representation of Polar (X), implying polyhedrality of the polar.

2. Compute the polars of

1. probabilistic simplex ∆ = {x ∈ Rn : x ≥ 0,
∑
i xi = 1}

Solution: Polar (∆) = {y ∈ Rn : y ≤ [1; ...; 1]}

2. convex hull of nonempty finite set of points a1, ..., aN from Rn

Solution: Polar (Conv{a1, ..., aN}) = {y : a⊤i y ≤ 1, i ≤ N}

3. the set {x ∈ Rn : x ≤ b}

Solution: Polar ({x : x ≤ b}) = {y : y ≥ 0, y⊤b ≤ 1}

8.7 Miscellaneous exercises

Exercise II.41. Let X = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedral set.

1. Prove that X is bounded if and only if every one of the vectors ±ei, (ei, 1 ≤ i ≤ n, are the
standard basic orths) can be represented as conic combination of columns of A⊤.

Solution: A nonempty polyhedral set {x : Ax ≤ b} ⊂ Rn is bounded if and only if the optimal

values in the 2n optimization problems maxx{±e⊤i x : Ax ≤ b} are finite, and this, by LP Duality

Theorem, boils down to feasibility of their duals, the latter being exactly the possibility to represent

±ei as conic combination of the columns of A⊤.

2. Certify the statements:

• The polyhedral set X = {x ∈ R3 : x ≥ [1/3; 1/3; 1/3],
∑3
i=1xi ≤ 1} is bounded.
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Solution: The set is

{x : Ax ≤ b}, A =


−1 0 0

0 −1 0
0 0 −1
1 1 1

, b = q


−1/3
−1/3
−1/3

1


It suffices to verify that every one of the vectors ±ei, i = 1, ..., 3, is a conic combination of the

columns of A⊤. The vectors −ei are among the columns of A⊤; to get e1, sum up all columns of

A⊤ but the first one, and similarly for e2 and e3.

• The polyhedral set X = {x ∈ R3 : x1 ≥ 1/3, x2 ≥ 1/3,
∑3
i=1xi ≤ 1} is unbounded.

Solution: By Lemma II.6.13 a polyhedral set is unbounded if and only if it is nonempty and

its recessive cone is nontrivial. For the set in question, certificate of nonemptiness is, e.g., x =

[1/3; 1/3; 1/3], and a nonzero vector in Rec(X) = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 + x3 ≤ 0} is,

e.g., x = [0; 0;−1].

Exercise II.42. Prove the easy part of Theorem II.7.7, specifically, that every n × n permutation
matrix is an extreme point of the polytope Πn of n× n doubly stochastic matrices.

Solution: Let Πn be the set of all n × n matrices with entries from [0, 1]. As we know, the extreme

points of Πn are exactly the n × n matrices with zero and one entries. In view of this, the claim to be

proved is readily given by the following statement (evident due to geometric characterization of extreme

points): If X ⊂ Y are convex sets, then every extreme point of Y which happens to belong to X is an

extreme point of X.

Exercise II.43. [robust LP] Consider an uncertain Linear Programming problem – a family{
min
x∈Rn

{c⊤x : [A+
∑N

ν=1
ζν∆ν ]x ≤ b+

∑N

ν=1
ζνδν} : ζ ∈ Z

}
(8.3)

of LP instances of common sizes (n variables, m constraints). The associated story is as follows: we
want to solve an LP program with the data not known exactly when the problem is being solved; what
we know at this time, is that the “true problem” belongs to the parametric family given, according
to (8.3), by the “nominal data” c, A, b, the “basic perturbations ∆ν , δν” and the perturbation set
Z through which run the data perturbations ζ specifying particular instances in the family. In this
situation (quite typical for real life applications of LP, where partial data uncertainty is the rule rather
than the exception), one way to “immunize” decisions against data uncertainty is to look for robust
solutions – those remaining feasible for all perturbations of the data from the perturbation set – by
solving the Robust Counterpart (RC) of our uncertain problem – the optimization problem

min
x

{
c⊤x : [A+

∑N

ν=1
ζν∆ν ]x ≤ b+

∑N

ν=1
ζνδν ∀(ζ ∈ Z)

}
(RC)

(RC) is not an LP program – it has finitely many decision variables and infinite (when Z is ”massive”)
system of linear constraints on these variables. Optimization problems of this type are called semi-
infinite and are, in general, difficult to solve. However, the RC of an uncertain LP is easy, provided
that Z is a “computation-friendly” set, for example, nonempty set given by polyhedral representation:

Z = {ζ : ∃u : Pζ +Qu ≤ r} (8.4)

Now goes the exercise per se:
Use LP duality to reformulate (RC), (8.4) as an explicit LP program.

Solution: The constraints of (RC) are of the form

max
ζ∈Z

∑
ν
ζν [∆νx− δν ]j ≤ [b−Ax]j , 1 ≤ j ≤ m,

or, which is the same,

max
ζ,u

{∑
ν
[∆νx− δν ]j ζν : Pζ +Qu ≤ r

}
≤ [b−Ax]j , 1 ≤ j ≤ m.
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Applying LP Duality, the constraints can be rewritten as

min
λj

{
r⊤λj :

[P⊤λj ]ν = ∆νx− δν , 1 ≤ ν ≤ N

Q⊤λj = 0, λj ≥ 0

}
≤ [b−Ax]j , 1 ≤ j ≤ m. (∗)

We see that x is robust feasible (i.e., feasible for (RC)) if and only if x can be augmented by properly

selected λ1, ..., λm to satisfy system (∗) of linear constraints on x and λj ’s. As a result, (RC) is equivalent

to the explicit LP program

min
x,λ1,...,λm

c⊤x :

∆νx− [P⊤λj ]ν = δν , 1 ≤ ν ≤ N

Q⊤λj = 0, λj ≥ 0

r⊤λj + [Ax]j ≤ bj

 , j = 1, ...,m


Exercise II.44. Consider scalar linear constraint

a⊤x ≤ b (1)

with uncertain data a ∈ Rn (b is certain) varying in the set

U = {a : |ai − a∗i |/δi ≤ 1, 1 ≤ i ≤ n,
∑n

i=1
|ai − a∗i |/δi ≤ k} (2)

where a∗i are given “nominal data,” δi > 0 are given quantities, and k ≤ n is an integer (in literature,
this is called “budgeted uncertainty”). Rewrite the Robust Counterpart

a⊤x ≤ b ∀a ∈ U (RC)

in a tractable LO form (that is, write down an explicit system (S) of linear inequalities in variables
x and additional variables such that x satisfies (RC) if and only if x can be extended to a feasible
solution of (S)).

Solution: Let D be diagonal n× n matrix with diagonal entries δi, and let ai − a∗i = δiϵi, so that

U = {a = a∗ +Dϵ : −1 ≤ ϵi ≤ 1 ∀i,
∑
i|ϵi| ≤ k}

= {a = a∗ +Dϵ : −u ≤ ϵ ≤ u, ui ≤ 1 ∀i,
∑
iui ≤ k}.

x is robust feasible iff

b ≥ max
a

{
x⊤a : a ∈ U

}
= max

ϵ,u

{
x⊤[a∗ +Dϵ] : −u ≤ ϵ ≤ u, u ≤ [1; ...; 1],

∑
iui ≤ k

}
= x⊤a∗ +max

ϵ,u

{
[Dx]⊤ϵ : −u ≤ ϵ ≤ u, u ≤ [1; ...; 1],

∑
iui ≤ k

}
= x⊤a∗ + min

λℓ,u,λg,u,λℓ,1,λℓ,k

{
[1; ...; 1]⊤λℓ,1 + kλℓ,k :

λℓ,u ≥ 0, λℓ,1 ≥ 0, λℓ,k ≥ 0, λg,u ≤ 0

λℓ,u + λg,u = Dx

−λℓ,u + λg,u + λℓ,1 + λℓ,k[1; ...; 1] = 0

}
[LO duality]

= x⊤a∗ + min
λℓ,1,λℓ,k

{
[1; ...; 1]⊤λℓ,1 + kλℓ,k :

λℓ,1 ≥ 0, λℓ,k ≥ 0

−λℓ,1 − λℓ,k[1; ...; 1] ≤Dx ≤ λℓ,1 + λℓ,k[1; ...; 1]

}
[eliminating λℓ,u, λg,u]

Thus, (RC) can be represented as the system of linear constraints

λℓ,1 ≥ 0, λℓ,k ≥ 0, [a∗]⊤x+ [1; ...; 1]⊤λℓ,1 + kλℓ,k ≤ b,

−λℓ,1 − λℓ,k[1; ...; 1] ≤Dx ≤ λℓ,1 + λℓ,k[1; ...; 1],

in variables x, λℓ,1, λℓ,k.

Exercise II.45. [computational study, follow-up to Exercise II.43]
Preliminaries. Consider oscillator transmitting harmonic wave with unit wavelength and placed at
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some point P in 3D. Physics says that the electric field generated by the oscillator, when measured
at a remote point A, is

eA(t) ≈ r−1 α cos
(
ωt− 2πr + θ + 2πd cos(ϕ)

)︸ ︷︷ ︸
EA(t)

(∗)

where

• t is time, ω is the frequency,
• r is the distance from A to the origin O, d is the distance from P to the origin, ϕ ∈ [0, π] is the

angle between the directions
−−→
OP and

−→
OA,

• α and θ are responsible for how the oscillator is actuated.

The difference between the left and the right hand sides in (∗) of order of r−2 and in all our
subsequent considerations can be completely ignored.

It is convenient to assemble α and θ into the actuation weight – the complex number w = αeıθ

(ı is the imaginary unit); with this convention, we have

EA(t) = ℜ
[
wDP (ϕ)e

ıωt−2πr] , DP (ϕ) = e2πıd cos(ϕ).

where ℜ[·] stands for the real part of a complex number. The complex-valued function DP (ϕ) :
[0, π] → C, called the diagram of the oscillator, is responsible for the directional density of the
energy emitted by the oscillator: when evaluated at certain 3D direction e⃗, this density is proportional

to |Dp(ϕ)|2, where ϕ is the angle between the direction e⃗ and the direction
−−→
OP . Physics says that

when our transmitting antenna is composed of K harmonic oscillators located at points P1, ..., PK
and actuated with weights w1, ..., wK , the directional density of energy emitted by the resulting
antenna array, as evaluated at a direction e⃗, is proportional to |

∑
kwkDk(ϕk(e⃗))|

2, where ϕk(e⃗) is

the angle between the directions e⃗ and
−−→
OPk.

Consider the design problem as follows. We are given linear array of K oscillators placed at the
points Pk = (k−1)δe, k ≤ K, where e is the first basic orth (that is, the unit vector “looking” along
the positive direction of the x-axis), and δ > 0 is a given distance between consecutive oscillators.
Our goal is to specify actuation weights wk, k ≤ K, in order to send as much of total energy as
possible along the directions which make at most a given angle γ with e. To this end, we intend to
act as follows:

We want to select actuation weights wk, k ≤ K, in such a way that the magnitude
|Dw(ϕ)| of the complex-valued function

Dw(ϕ) =
∑K

k=1
wke

2πı(k−1)δ cos(ϕ))

of ϕ ∈ [0, π] is “concentrated” on the segment 0 ≤ ϕ ≤ γ. Let us normalize the weights
by the requirement

Dw(0) = 1

and minimize under this restriction the “sidelobe level”

max
γ≤ϕ≤π

|Dw(ϕ)|

over w.

To get a computation-friendly version of this problem, we replace the full range [0, π] of values of
ϕ with M -point equidistant grid

Γ = {ϕℓ =
ℓπ

M − 1
: 0 ≤ ℓ ≤M − 1},

thus converting our design problem into the optimization problem

Opt = min
t,w

{
t :

|
∑K
k=1wke

2πı(k−1)δ cos(ϕℓ)| ≤ t∀(ℓ : ϕℓ > γ)∑K
k=1wke

2πı(k−1)δ = 1
, wk ∈ C, k ≤ K

}
(P )

which is a convex problem in 2k real variables – real and imaginary parts of w1, ..., wK .
Your tasks are as follows:
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1. Process problem (P ) numerically and find the optimal design wn = {wn
k, k ≤ K} along with the

optimal value Optn. Here and in what follows, recommended setup is

• number of oscillators K = 24, distance between consecutive oscillators δ = 0.125
• γ = π/12
• cardinality M of the equidistant grid Γ is 512

Draw the plot of the modulus of the resulting diagram

Dn(ϕ) =

K∑
k=1

wn
ke

2πı(k−1)δ cos(ϕ)

and compute the corresponding “energy concentration” Cn, with concentration of a diagram D(·)
defined as

C =

∑
ℓ:ϕℓ≤γ

sin(ϕℓ)|D(ϕℓ)|2∑M
ℓ=1 sin(ϕℓ)|D(ϕℓ)|2

– up to discretization of ϕ, this is the ratio of the energy emitted in the “cone of interest” (i.e.,
along the directions making angle at most γ with e) to the total emitted energy. Factors sin(ϕℓ)
reflect the fact that when computing the energy emitted in a spatial cone, we should integrate
|D(·)|2 over the part of the unit sphere in 3D cut off the sphere by the cone.

Solution: Our computation yielded diagram with modulus as shown on Figure S2II.1.
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Optn = 0.053, Cn = 74.8%
Figure S2II.1. Optimal diagram, dream – no actuation errors.

2. Now note that “in reality” the optimal weights wn
k, k ≤ K are used to actuate physical devices and

as such cannot be implemented with the same 16-digit accuracy with which they are computed;
they definitely will be subject to small implementation errors. We can model these errors by
assuming that the “real life” diagram is

D(ϕ) =
∑K

k=1
wnk (1 + ρξk)e

2πı(k−1)δ cos(ϕ)

where ρ ≥ 0 is some (perhaps small) perturbation level and ξk ∈ C are “primitive” perturbations
responsible for the implementation errors and running through the unit disk {ξ : |ξ| ≤ 1}. It is not
a great sin to assume that ξk are independent across k random variables uniformly distributed on
the unit circumference in C. Now the diagram becomes random and can violate the constraints
of (P ) , unless ρ = 0; in the latter case, the diagram is the “nominal” one given by the optimal
weights wn, so that it satisfies the constraints of (P ) with t set to Optn.
Now, what happens when ρ > 0? In this case, the diagram D(·) and its deviation v from the
prescribed value 1 at the origin, its sidelobe level l = maxℓ:ϕℓ>γ |D(ϕℓ)|, and energy concentration
become random. A crucial “real life” question is how large are “typical values” of these quantities.
To get impression of what happens, you are asked to carry out the numerical experiment as follows:

• select perturbation level ρ ∈ {10−ℓ, 1 ≤ ℓ ≤ 6}
• for selected ρ, simulate and plot 100 realizations of the modulus of the actual diagram, and

find empirical averages v of v, l of l, and C of C.
Solution: Our experimental results are shown on Figure S2II.2. To put the above concentration

numerics into proper perspective, note that with our setup, the surface of the “spherical hat” cut

off the unit sphere by our cone of interest is 1.7% of the total surface of the sphere, so that energy

concentration 1.7% we can get without any trouble by placing just one oscillator at the origin.
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ρ = 10−6, v = 0.074, ρ = 10−5, v = 0.67, ρ = 10−4, v = 7.0,

l = 0.16, C = 35.5% l = 1.3, C = 2.6% l = 13.0, C = 1.8%

ρ = 10−3, v = 72, ρ = 10−2, v = 690, ρ = 10−1, v = 7.3e3,

l = 130, C = 1.8% l = 1.3e3, C = 1.7% l = 1.3e4, C = 1.8%

Figure S2II.2. Nominal diagram – reality,
Magnitudes of 100 actual diagrams stemming from the optimal solution to (P )

Taking into account that in “real life” implementation errors in antenna weights hardly could be

less than 0.1% (corresponding to ρ = 10−3), we would qualify the nominal design yielded by the

optimal solution to the nominal problem (P ), same as the nominal optimal value, as wishful thinking

completely meaningless for actual antenna design.

3. Apply Robust Optimization methodology from Exercise II.43 to build “immunized against im-
plementation errors” solution to (P ), compute these solutions for perturbation levels 10−ℓ,
1 ≤ ℓ ≤ 6, and subject the resulting designs to numerical study similar to the one outlined
in the previous item.
Note: (P ) is not a Linear Programming program, so that you cannot formally apply the results
stated in Exercise II.43; what you can apply, is the Robust Optimization “philosophy.”

Solution:

• With our model of implementation errors, the effect of these errors on the value of the actual

diagram D(·) as evaluated at a point ϕ ∈ Γ is in adding to the value

Dw(ϕ) =
∑k

k=1
wke

2πı(k−1)δ cos(ϕ)

of the “no-errors” diagram corresponding to candidate weights w a perturbation which can be

whatever complex number of the modulus not exceeding ρ
∑
k |wk|. Thus, the “robust” – worst-

case w.r.t. implementation errors, the perturbation level being ρ – sidelobe level corresponding to

candidate weights w is

maxℓ:ϕℓ>γ |Dw(ϕℓ)|+ ρ
∑

k
|wk|,

and the robust counterpart of the system of inequality constraints in (P ) is the constraint

t ≥ maxℓ:ϕℓ>γ |Dw(ϕℓ)|+ ρ
∑

k
|wk|. (C)

As about the normalizing equality constraint in (P ), formally its robust counterpart is contradic-

tory – we cannot select wk such that the actual diagram as evaluated at ϕ = 0 will be exactly one,

whatever be the perturbations. It makes full sense to keep this constraint as is – in the presence

of implementation errors, it will be violated by at most ρ
∑
k |wk|, the same quantity which we
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ρ = 10−6, v = 0.0019, ρ = 10−5, v = 0.0049, ρ = 10−4, v = 0.0072,

l = 0.091, C = 55.3% l = 0.12, C = 44.0% l = 0.18, C = 30.1%

Opt(10−6) = 0.097 Opt(10−5) = 0.135 Opt(10−4) = 0.198

ρ = 10−3, v = 0.014, ρ = 10−2, v = 0.022, ρ = 10−1, v = 0.068,

l = 0.26, C = 18.8% l = 0.42, C = 10.3% l = 0.68, C = 5.6%

Opt(10−3) = 0.302 Opt(10−2) = 0.488 Opt(10−1) = 0.834

Figure S2II.3. Robust design.
Magnitudes of 100 actual diagrams stemming from optimal solutions to (R)

see in (C). Hopefully, this quantity will be made small by minimization over w of the right hand

side in (C).

With the outlined approach the robust w.r.t. implementation errors counterpart of (P ) is the

convex optimization problem

Opt(ρ) = min
t,w

t :
|
∑K
k=1 wke

2πı(k−1)δ cos(ϕℓ)|+ ρ
∑
k |wk| ≤ t ∀(ℓ : ϕℓ > γ)∑K

k=1 wke
2πı(k−1)δ = 1

wk ∈ C, k ≤ K

 (R)

• The results of our experiments with robust designs yielded by (R) are shown in Figure S2II.3.

Comparison with similar results for the nominal design speaks for itself loud and clear.

Exercise II.46. Prove the statement “symmetric” the Dubovitski-Milutin Lemma:

The cone M∗ dual to the arithmetic sum of k (closed or not) cones M i ⊂ Rn, i ≤ k, is
the intersection of the k cones M i

∗ dual to M i.

Solution: By evident reasons, a linear function f⊤x can be nonnegative everywhere on the arithmetic

sum of k nonempty sets M1 + ...+Mk if and only if it is nonnegative on every one of these sets.

Exercise II.47. Prove the following polyhedral version of the Dubovitski-Milutin Lemma:

Let M1, ...,Mk be polyhedral cones in Rn, and let M = ∩iM i. The cone M∗ dual to M
is the sum of cones M i

∗, i ≤ k, dual to M i, so that a linear form e⊤x is nonnegative on
M if and only it can be represented as the sum of linear forms e⊤i x nonnegative on the
respective cones Mi.

Solution: This is immediate consequence of Proposition II.6.30 combined with the fact that by calculus

of polyhedral representations from section 3.3 and the result of Exercise II.39, intersections, sums, and

duals of polyhedral cones are polyhedral cones and therefore are closed.
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Exercise II.48. [follow-up to Exercise II.47] Let A ∈ Rm×n be a matrix with trivial kernel, e ∈ Rn,
and let the set

X = {x : Ax ≥ 0, e⊤x = 1} (∗)

be nonempty and bounded. Prove that there exists λ ∈ Rm such that λ > 0 and A⊤λ = e.
Prove “partial inverse” of this statement: if KerA = {0} and e = A⊤λ for some λ > 0, the set

(∗) is bounded.

Solution: Let E be the image space of A, and P be the orthogonal projector of Rm onto E. Since

KerA = {0}, there exists g ∈ Rm such that A⊤g = e, so that y ∈ Rm is representable as Ax with

e⊤x = 1 if and only if y ∈ E and g⊤y = 1. Therefore

Y := {y = Ax : x ∈ X} = {y ∈ E : y ≥ 0, g⊤y = 1}

Y is cut off the cone M = Rm
+ ∩ E by the linear equality constraint g⊤y = 1 and is nonempty and

bounded. Clearly M is pointed along with Rm
+ and is nontrivial (since Y is nonempty). Treating M as

a cone in Euclidean space E equipped with the inner product ⟨·, ·⟩ inherited from the standard inner

product on Rm, and denoting by f the orthoprojection of g onto E, we have

Y = {y ∈M : ⟨f, y⟩ = 1};

since Y is nonempty and bounded, and M is closed, nontrivial and pointed, Fact II.6.28.iii states that

f ∈ intM∗, where M∗ is the dual of the cone M ⊂ E. In other words, for some r > 0 and all f ′ ∈ E,

∥f ′ − f∥2 ≤ r, we have f ′ ∈ M∗. Now let λ ∈ intRm
+ be such that ∥λ∥2 ≤ r, and let g = g − λ and

f = Pg ∈ E, so that ∥f − f∥2 ≤ ∥g − g∥2 ≤ r. The latter inequality, due to the origin of r, implies that

⟨f, y⟩ ≥ 0 ∀y ∈M,

or, which is the same,

g⊤y ≥ 0 ∀y ∈ Rm
+ ∩ E.

By polyhedral version of Dubovitski-Milutin Lemma (Exercise II.47), there exists λ̃ ∈ (Rm
+ )∗ = Rm

+ and

µ ∈ E∗ := {µ : µ⊤u ≥ 0 ∀u ∈ E} = E⊥ = [ImA]⊥ = KerA⊤

such that g = λ+ µ, implying that

g = g + λ = [λ̃+ λ]︸ ︷︷ ︸
λ>0

+µ,

whence

e = A⊤g = A⊤λ+A⊤µ = A⊤λ.

We have found λ > 0 with A⊤λ = e, as required.

To prove “partial inverse”, note that if λ > 0, then the set

Z = {y ∈ Rm
+ : λ⊤y = 1}

is bounded; when A⊤λ = e, X is the inverse linear image of Z under the linear embedding x 7→ Ax :

Rn → Rm, and therefore X is bounded along with Z.

Exercise II.49. Let E be a linear subspace in Rn, K be a closed cone in Rn, and ℓ(x) : E → R be
a linear (linear, not affine!) function which is nonnegative on K ∩E. Which of the following claims
are always true:

1. ℓ(·) can be extended from E onto the entire Rn to yield a linear function which is nonnegative
on K

2. Assuming intK ∩ E ̸= ∅, ℓ(·) can be extended from E onto the entire Rn to yield a linear
function which is nonnegative on K.
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3. Assuming, in addition to ℓ(x) ≥ 0 for x ∈ K ∩ E, that K = {x : Px ≤ 0} is a polyhedral cone,
ℓ(·) can be extended from E onto the entire Rn to yield a linear function which is nonnegative
on K.

Solution: The first claim is wrong in general. The simplest counterexample isK = L3: take a generator of

K - an emanating from the origin ray on the boundary of the cone, say, R = {x ∈ R3 : x3 = x1, x2 = 0},
and let E = {x ∈ R3 : x1 = x3} be the 2D plane tangent to the surface of the cone along the ray R.

Linear function ℓ(x) = x2 : E → R is nonnegative on K ∩ E = R, but cannot be extended to a linear

function f(x) = e⊤x on R3 nonnegative on K; indeed, points xδ = [1;−δ; 1] with δ > 0 are in E, so that

we should have f(xδ) = ℓ(xδ) = −δ; at the same time, xδ belongs to the plane E and ∥x0 − xδ∥2 = δ;

since E is tangent to the boundary of K at x0, there are points x+δ ∈ K with ∥xδ − x+δ ∥2 ≤ O(1)δ2

(you can take x+δ = [1;−δ;
√
1 + δ2]), so that f(x+δ ) ≤ f(xδ) + ∥e∥2∥x+δ − xδ∥2 ≤ −δ + O(1)∥e∥2δ2,

that is, f(x+δ ) < 0 for all small δ > 0, which is a desired contradiction, since x+δ ∈ K, and f(x) on K is

nonnegative.

The second claim is true by Dubovitski-Milutin Lemma (DML). Indeed, in the notation of this Lemma,

set M1 = K and M2 = E, thus satisfying the premise of Lemma. Extend ℓ(·) to a whatever linear form

e⊤x of x ∈ Rn; this form is nonnegative on M1 ∩M2 and therefore, by DML, can be represented as

g⊤x + h⊤x with g⊤x nonnegative for x ∈ M1 = K and h⊤x nonnegative when x ∈ M2 = E, that is,

with h⊤x = 0 for x ∈ E (E is a linear subspace!). The desired extension of ℓ(x) from E to a nonnegative

on K linear form is x 7→ g⊤x.

The third claim is true. Indeed, E is a linear subspace and thus is a polyhedral cone. We can find a

vector e ∈ Rn such that ℓ(x) = e⊤x for x ∈ E. Applying the result of Exercise II.47 to the polyhedral

cones M1 = K and M2 = E, we conclude that under the premise of item 3 we have e = e1 + e2 with

e1 ∈M1
∗ = K∗ and e2 ∈M2

∗ = E⊥, implying that e⊤1 x is the desired linear form nonnegative on K and

equal to ℓ(x) on E. ■

Exercise II.50. Let n > 1. Is the unit ∥ · ∥2-ball Bn = {x ∈ Rn : ∥x∥2 ≤ 1} a polyhedral set?
Justify your answer.

Solution: The answer, of course, is ”no”. Indeed, were Bn polyhedral, the set of extreme points of

Bn would be finite (Corollary II.7.2), which contradicts the evident fact that Ext(Bn) = Sn := {x ∈
Rn : ∥x∥2 = 1}, and this set is infinite when n > 1. To show that Ext(Bn) = Sn is clearly the

same as to show that every point e ∈ Sn is extreme; to this end note that when e ± h ∈ Bn, we have

2∥e∥22+2∥h∥22 = ∥e+h∥22+∥e−h∥22 ≤ 2, and the resulting inequality implies that h = 0 due to ∥e∥2 = 1.

It is worthy of mentioning that “for all practical purposes,” Bn is a simple polyhedral set.
Specifically, it is known (see [Nem24, section 1.4]) that for every ϵ ∈ (0, 1/2) and every n one
can explicitly write down system of O(1)n ln(1/ϵ) linear inequalities with O(1)n ln(1/ϵ) variables
such that the projection of the solution set of this system onto the plane of the first n variables is
in-between Bn and (1 + ϵ)Bn. When ϵ = 1.0e−17, usual computer does not distinguish between
1 and 1 + ϵ, so that for all practical purposes Bn admits explicit polyhedral representation; to get
ϵ = 1.e−17, this representation should involve ≈ 79n linear inequalities on ≈ 28n variables.

Exercise II.51. The unit box {x ∈ Rn : −1 ≤ xi ≤ 1, i ≤ n} is cut off Rn by a system of m = 2n
linear inequalities and is a nonempty and bounded polyhedral set. However, when we eliminate any
inequality from this system, the solution set of the resulting system becomes unbounded. To see that
this situation is in a sense extreme, prove the following claim:

Consider the solution set of a system of m linear inequalities in n variables x, i.e., the
set

X := {x ∈ Rn : Ax ≤ b} ,

where A = [a⊤1 ; a
⊤
2 ; . . . ; a

⊤
m]. Suppose that X is nonempty and bounded. Then, when-

ever m > 2n, one can drop from this system a properly selected inequality in such a
way that the solution set of the resulting subsystem remains bounded.

A provocative follow-up: Is it possible to cut off from R1000 a bounded set by using only a single
linear inequality?
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Solution: Suppose X is nonempty and bounded, and let m > 2n. Recall from Fact II.6.18 that a

nonempty closed convex set is bounded if and only if its recessive cone is trivial. Then, as X is closed (it

is polyhedral!), we have Rec(X) = {0}. Moreover, based on Fact II.6.20 we have Rec(X) = {x : Ax ≤ 0}.
Thus, the closed cone K := {x : Ax ≤ 0} is trivial, or, which is the same by Fact II.6.28, the dual

K∗ of this cone is the entire Rn. On the other hand, as is explained immediately after Proposition

II.6.26, K∗ = Cone({−a1, . . . ,−am}). Thus, Cone({−a1, . . . ,−am}) = Rn, implying, in particular, that

rankA = n (since the conic hull of −a1, . . . ,−am belongs to the linear span of the collection a1, . . . , am).

Without loss of generality, we can assume that a1, . . . , an are linearly independent. Hence, the vector

a :=
∑n
i=1 ai belongs to K∗ = Rn and therefore a is a conic combination of vectors −a1, . . . ,−am.

Then, by conic version of Caratheodory’s Theorem (Fact I.2.7) we can select n vectors ai1 , . . . , ain from

the givenm vectors a1, . . . , am in such a way that a is a conic combination of the vectors −ai1 , . . . ,−ain .
As a result, all vectors of the form

n∑
i=1

(1− µi)ai, where µ ≥ 0, (∗)

are conic combinations of vectors from the collection {−a1,−a2, . . . ,−an,−ai1 ,−ai2 , . . . ,−ain}. All

vectors
∑n
i=1 ziai with ∥z∥∞ ≤ 1 admit a representation of the form (∗) and therefore, as we have just

seen, they belong to the cone Cone({−a1,−a2, . . . ,−an,−ai1 ,−ai2 , . . . ,−ain}). Since a1, . . . , an are

linearly independent, the set of linear combinations of these vectors with coefficients of magnitude ≤ 1

contains a neighborhood of the origin. Thus, the cone

Cone({−a1,−a2, . . . ,−an,−ai1 ,−ai2 , . . . ,−ain})

contains a neighborhood of the origin and is therefore the entire Rn. On the other hand, by the same

argument as above, this cone is dual to the cone{
x : a⊤i x ≤ 0, i ≤ n, a⊤ijx ≤ 0, j ≤ n

}
,

so that the latter cone is trivial. Thus, the recessive cone of the set

X+ :=
{
x : a⊤i x ≤ bi, i ≤ n, a⊤ijx ≤ bij , j ≤ n

}
is trivial, and therefore this set is bounded. Thus, we conclude that we can extract a carefully selected

set of 2n constraints from the constraints a⊤i x ≤ bi, i ≤ m, such that they still result in a bounded set

in Rn. ■
The answer to the follow-up question is positive: the insolvable linear inequality 0⊤x ≤ −1 cuts off R1000

the empty set which of course is bounded.

Exercise II.52. [computational study] let ωN = (ω1, ..., ωN ) be an N -element i.i.d. sample drawn
from the standard Gaussian distribution (zero mean, unit covariance) on Rd. How many extreme
points are there in the convex hull of the points from the sample?

1. Consider the planar case d = 2 and think how to list extreme points of Conv{ω1, ..., ωN}. Fill
the following table:

N 2 4 8 16 32 64 128
U
M
L

where U is the maximal, M is the mean, and L is the minimal # of extreme points observed
when processing 100 samples ωN of a given cardinality.

Solution: The simplest way to check whether a point, say, ω1, from N -element sample ωN of 2D

points is or is not extreme, is to look at N − 1 lines ℓj , j = 2, ..., N , linking ω1 and ωj . When no

triple of points from the sample belong to a common line (which happens with probability 1), ω1 is

extreme point of Conv(ωN ) if and only if all points of the sample are on one side of one of these

lines.
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Here are our results:

N 2 4 8 16 32 64 128

U 2 8 14 18 20 24 26

M 2.00 7.36 10.22 12.60 14.72 16.54 18.36

L 2 6 8 8 10 10 10

E 4 7.30 10.06 12.37 14.34 17.23 17.77

(the E-row is the answer to the question of item 2).

2. Think how to upper-bound the expected number of extreme points in the set W = Conv(ωN ).

Solution: Similarly to the previous item, ignoring “degenerate” samples with total probability mass

0, ω1 is an extreme point of W if one can select d−1 points ωi2 , ..., ωid with 2 ≤ i2 < i3 < ... in such

a way that the entire sample is on one side of the hyperplane passing through ω1, ωi2 , ωi3 , ..., ωid .

Probability π of this outcome clearly is independent of what is the collection i2 < i3 < ... < id and

can be reliably estimated via simulation, namely, as follows: we simulate M ≫ 1 times d-element

sample ωd, measure the Euclidean distance from the hyperplane containing this sample to the origin,

and recover the distribution P of this distance. We clearly have

π =

∫ ∞

0

[ψN−d(s) + (1− ψ(s))N−d]dP (s),

where ψ is the cumulative distribution function of N (0, 1) random variable, and we can estimate π

by substituting the expectation w.r.t. P with expectation w.r.t. the empirical approximation of P .

After π is estimated, we can upper-bound the probability for ω1 to be an extreme point of W by the

quantity θ =
(
N−1
d−1

)
π, resulting in the upper bound θN on the expected number of extreme points

of W .

Exercise II.53. [computational study] Given positive integers m,n, with n ≥ 2, consider randomly
generated system Ax ≤ b ofm linear inequalities with n variables. We assume that A, b are generated
by drawing the entries, independently of each other, from N (0, 1).

1. Consider the planar case n = 2. For m = 2, 4, 8, 16, generate 100 samples of m× 2 systems and
fill the following table:

m 2 4 8 16

F
B

where F is the number of feasible systems, and U is the number of feasible systems with bounded
solution sets.

Solution: see item 3 below.

Intermezzo: related theoretical results originating from [Nem24, Exercise 2.23] are as follows. Given
positive integers m,n with n ≥ 2, consider homogenous system Ax ≤ 0 of m inequalities with n
variables. We call this system regular, if its matrix A is regular, regularity of a matrix B meaning
that all square submatrices of B are nonsingular. Clearly, the entries of a regular matrix are
nonzero, and when a p× q matrix B is drawn at random from a probability distribution on Rp×q

which has a density w.r.t the Lebesgue measure, B is regular with probability 1.
Given regularm×n homogeneous system of inequalities Ax ≤ 0, let gi(x) =

∑n
j=1Aijxj , i ≤ m,

so that gj are nonconstant linear functions. Setting Πi = {x : gi(x) = 0}, we get a collection of
m hyperplanes in Rn passing through the origin. For a point x ∈ Rn, the signature of x is, by
definition, the m-dimensional vector σ(x) of signs of the reals gi(x), 1 ≤ i ≤ m. Denoting by Σ
the set of all m-dimensional vectors with entries ±1, for σ ∈ Σ the set Cσ = {x : σ(x) = σ} is
either empty, or is a nonempty open convex set; when it is nonempty, let us call it a cell associated
with A, and the corresponding σ – an A-feasible signature. Clearly, for regular system, Rn is the
union of all hyperplanes Πi and all cells associated with A. It turns out that
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The number N(m,n) of cells associated with a regular homogeneous m × n system
Ax ≤ 0 is independent of the system and is given by a simple recurrence:

N(1, 2) = 2
m ≥ 2, n ≥ 2 =⇒ N(m,n) = N(m− 1, n) +N(m− 1, n− 1) [N(m, 1) = 2, m ≥ 1].

Next, when A is drawn at random from probability distribution P on Rm×n which possesses
symmetric density p, that is, such that p([a⊤1 ; a

⊤
2 ; ...; a

⊤
m]) = p([ϵ1a

⊤
1 ; ϵ2a

⊤
2 ; ...; ϵma

⊤
m]) for all

A = [a⊤1 ; a
⊤
2 ; ...; a

⊤
m] and all ϵi = ±1, then the probability for a vector σ ∈ Σ to be an

A-feasible signature is

π(m,n) = N(m,n)/2m.

In particular, the probability for the system Ax ≤ 0 to have a solution set with a nonempty
interior (this is nothing but A-feasibility of the signature [−1; ...;−1]) is π(m,n).
The inhomogeneous version of these results is as follows. An m× n system of linear inequalities
Ax ≤ b is called regular, if the matrix [A,−b] is regular. Setting gi(x) =

∑n
j=1Aijxj− bi, i ≤ n,

the [A, b]-signature of x is, as above, the vector of signs of the reals gi(x). For σ ∈ Σ, the set
Cσ = {x : σ(x)) = σ} is either empty, or is a nonempty open convex set; in the latter case, we
call Cσ an [A, b]-cell, and call σ an [A, b]-feasible signature. Setting Πi = {x : gi(x) = 0}, we get
m hyperplanes in Rn, and the entire Rn is the union of those hyperplanes and all [A, b]-cells. It
turns out that

The number N(m,n) of cells associated with a regular m × n system Ax ≤ b is
independent of the system and is equal to 1

2
N(m+ 1, n+ 1).

In addition, when m× (n+ 1) matrix [A, b] is drawn at random from a probability distribution

on Rm×(n+1) possessing a symmetric density w.r.t. the Lebesgue distribution, the probability
for every σ ∈ Σ to be [A, b]-feasible signature is

π(m,n) = N(m+ 1, n+ 1)/2m+1.

In particular, the probability for the system Ax ≤ b to be strictly feasible is π(m,n).
2. Accompanying exercise: Prove that if A is m× n regular matrix, then the system Ax ≤ 0 has a

nonzero solution if and only if the system Ax < 0 is feasible. Derive from this fact that if [A, b]
is regular, then the system Ax ≤ b is feasible if and only if it is strictly feasible, and that when
the system Ax ≤ 0 has a nonzero solution, the system Ax ≤ b is strictly feasible for every b.

Solution: Let us start with the first claim. The only nontrivial part of it is that for regular A, the

existence of nonzero x such that Ax ≤ 0 implies feasibility of the system Ax < 0. Let us lead to

contradiction the assumption that A is an m× n regular matrix such that the system Ax ≤ 0 has a

nonzero solution x, and at the same time the system Ax < 0 is infeasible. By the General Theorem

of the Alternative, infeasibility of the system Ax < 0 implies that a nontrivial linear combination of

rows of A with nonnegative coefficients is 0, or, which is the same, denoting by a⊤i the rows of A,

the origin in Rn is a convex combination of ai. W.l.o.g. we can assume that positive coefficients in

this combination are associated with a1, ..., ak, for some k ≤ m. From the relations
∑k
i=1 λiai = 0,

λi > 0, i ≤ k, and a⊤i x ≤ 0 it follows that x⊤ai = 0, i = 1, ..., k. Since x ̸= 0, it follows that ai, i ≤ k,

belong to an (n − 1)-dimensional subspace of Rn, so that the affine dimension of the affine span of

a1, ..., ak is at most n− 1. Since 0 is a convex combination of a,.., ak, by Caratheodory Theorem 0 is

a convex combination of k ≤ min[k, n] of vectors from the collection a1, .., ak, implying that properly

selected k rows in A are linearly dependent, contradicting regularity of A. As a corollary, if A is

regular and Ax ≤ 0 for some nonzero x, the system Ax < 0 is solvable, which, of course, implies that

the system Ax ≤ b is solvable for every b. ■
To justify the second claim, it suffices to verify that if the system Ax ≤ b is feasible and [A, b] is

regular, then the system is strictly feasible. To this end assume that the premise of this claim holds

true, so that for some x̄ it holds b̄ := Ax̄ ≤ b. For small ϵ̄ > 0 and all e ∈ Rn, ∥e∥∞ ≤ ϵ̄, we

have [A,−b̄; e⊤,−1]︸ ︷︷ ︸
B[e]

[x̄; 1]︸︷︷︸
ȳ

= [Ax̄ − b̄; e⊤x̄ − 1] ≤ 0. On the other hand, selecting e from the uniform

distribution of the box ∥e∥∞ ≤ ϵ, with 0 < ϵ ≤ ϵ̄, it is easily seen that when ϵ > 0 is small enough,
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the matrix B[e] is regular with probability 1. Thus, we may assume that B[e] is regular, and, as we

have seen, the system B[e]y ≤ 0 in variables y has a nonzero solution ȳ. By the already proved first

claim, it follows that the system B[e]y < 0 has a solution ỹ. As a result, for every λ ∈ (0, 1), the

vector yλ = (1 − λ)ȳ + λỹ satisfies B[e]yλ < 0. For small positive λ, yλ is of the form [xλ; tλ] with

tλ > 0; for such a λ, relation B[e]yλ < 0 implies that Axλ − tλb̄ < 0, whence A[xλ/tλ] < b̄ ≤ b, that

is, the system Ax ≤ b is strictly feasible. ■
Note: by Accompanying Exercise, in the situations described in Intermezzo, probability π(m,n) for

an m× n system Ax ≤ b to be strictly feasible is the same as the probability to be feasible, and the

probability to have an unbounded feasible set (i.e., to be feasible and such that Ah ≤ 0 for some

nonzero h) is the same as the probability π(m,n) for the signature [−1, ...,−1] to be A-feasible.

3. Use the results from Intermezzo to compute the expected values of F and B, see item 1.

Solution: Here are our results:

m 2 4 8 16

F 100 72 18 0

E{F} 100 68.75 14.45 0.21

B 0 18 15 0

E{B} 0 18.75 8.20 0.16

Exercise II.54. [computational study]

1. For ν = 1, 2, ..., 6, generate 100 systems of linear inequalities Ax ≤ b with n = 2ν variables and
m = 2n inequalities, the entries in A, b being drawn, independently of each other, from N (0.1).
Fill the following table:

n 2 4 8 16 32 64

F
E{F}
B

F : # of feasible systems in sample;
B: # of feasible systems with bounded soultion sets

To compute the expected value of F , use the results from [Nem24, Exercise 2.23] cited in item
2 of Exercise II.53.

2. Carry out experiment similar to the one in item 1, but with m = n+ 1 rather than m = 2n.

n 2 4 8 16 32 64

F
E{F}
B

E{B}
F : # of feasible systems in sample;

B: # of feasible systems with bounded soultion sets

Solution: Our results, rounded to 2 digits after the dot, are as follows:

1. m = 2n:

n 2 4 8 16 32 64

F 74 72 64 57 50 53

E{F} 68.75 63, 67 59.82 57.00 54.97 53.52

B 17 16 7 5 3 3

E{B} 18.75 13.67 9.82 7.00 4.97 3.52

F : # of feasible systems in sample;

B: # of feasible systems with bounded solution sets
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2. m = n+ 1:

n 2 4 8 16 32 64

F 92 96 100 100 100 100

E{F} 87.50 96.88 100.00 100.00 100.00 100.00

B 11 4 0 0 0 0

E{B} 12.50 3.13 0.20 0.00 0.00 0.00

F : # of feasible systems in sample;

B: # of feasible systems with bounded solution sets
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15.1 Around convex functions

Exercise III.1. Which of the functions below are convex on the indicated domains:

• f(x) ≡ 1 on R

Solution: convex

• f(x) = x on R

Solution: convex

• f(x) = |x| on R

Solution: convex

• f(x) = −|x| on R

Solution: nonconvex

• f(x) = −|x| on R+ = {x ∈ R : x ≥ 0}
Solution: convex

• f(x) = |2x− 3| on R

Solution: convex

• f(x) = |2x2 − 3| on R

Solution: nonconvex

• exp{x} on R

Solution: convex

• exp{x2} on R

Solution: convex

• exp{−x2} on R

Solution: nonconvex

• exp{−x2} on {x ∈ R : x ≥ 100}
Solution: convex

• ln(x) on {x ∈ R : x > 0}
Solution: nonconvex

• − ln(x) on {x ∈ R : x > 0}
Solution: convex

Exercise III.2.

1. Prove the following fact:
For every Ci ∈ Sm+ , i ≤ I, satisfying

∑
i∈ICi = Im and for every λi ∈ R, we have

Tr

((∑
i∈I
λiCi

)2)
≤ Tr

(∑
i∈I
λ2
iCi
)
.

72
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Solution: Define ϕij := Tr(CiCj) so that ϕij = ϕji ≥ 0 as Sm+ is a self-dual cone (see section D.2.2).

Thus,

Tr

((∑
i∈I

λiCi

)2)
=
∑

i∈I

∑
j∈I

λiλjϕij

=
∑

i∈I

∑
j∈I

[λi
√
ϕij ][λj

√
ϕij ]

≤
(∑

i∈I

∑
j∈I

ϕijλ
2
i

)1/2 (∑
i∈I

∑
j∈I

ϕijλ
2
j

)1/2
=
∑

i∈I

∑
j∈I

ϕijλ
2
i

=
∑

i∈I

∑
j∈I

Tr(CiCj)λ
2
i

=
∑

i∈I
Tr
(
Ci
∑

j∈I
Cj

)
λ2i

=
∑

i∈I
Tr(Ci)λ

2
i . [since

∑
j∈I

Cj = Im]

2. Recall from Example III.10.4 in section 10.2 that for ai ≥ 0,
∑
i ai > 0 the function ln(

∑
i ai exp(λi))

is a convex function of λ. Prove the following matrix analogy of this fact:

For every Ai ∈ Sm+ , 1 ≤ i ≤ I such that
∑
iAi ≻ 0, the function

f(λ) = lnDet
(∑

i
exp(λi)Ai

)
: RI → R

is convex.

Solution: Invoking Examples C.7-8 from section C.1.6, we have

Df(λ)[dλ] = Tr
([∑

i e
λiAi

]−1 [∑
i dλie

λiAi
])

[Bi = eλiAi ⪰ 0, B =
∑
iBi ≻ 0, Ci = B−1/2BiB

−1/2,

so that Ci ⪰ 0,
∑
i Ci = Im]

= Tr
(
B−1

∑
iBidλi

)
= Tr

(∑
i dλiCi

)
,

D2f(λ)[dλ, dλ)] = −Tr
(
B−1

[∑
i dλiBi

]
B−1

[∑
i dλiBi

])
+Tr

(
B−1

∑
i dλ

2
iBi
)

= −Tr
(
B−1/2

[∑
i dλiBi

]
B−1

[∑
i dλiBi

]
B−1/2

)
+Tr

(
B−1/2

[∑
i dλ

2
iBi
]
B−1/2

)
= Tr

(∑
i dλ

2
iCi
)
− Tr

([∑
i dλiCi

]2)
,

≥ 0 [by item 1]

implying that f is convex (Corollary III.10.4).

3. Let Ai, i ≤ I, be as in item 2. Is it true that the function

g(x) = lnDet(
∑

i
x−1
i Ai) : {x ∈ RI : x > 0} → R

is convex?

Solution: The answer is “yes.” Indeed, the function f from item 2 is convex and clearly is nonde-

creasing in λi; g is obtained from f by convex substitution of the argument λi = − ln(xi), i ≤ I.

4. Let Bi, i ≤ I, be mi × n matrices such that
∑
iB

⊤
i Bi ≻ 0, and let

Λ = {λ := (λ1, ..., λI) : λi ∈ Smi , λi ≻ 0, i ≤ I}.

Prove that the function

h(λ) = lnDet
(∑

i
B⊤
i λ

−1
i Bi

)
: Λ → R

is convex.
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Solution: We have

λ ∈ Λ, t ≥ h(λ)

⇐⇒ ∃V ≻ 0 : V −1 ⪰
∑
iB

⊤
i λ

−1
i Bi,− lnDet(V ) ≤ t

⇐⇒ ∃V ≻ 0 :


V −1 B⊤

1 · · · B⊤
I

B1 λ1
...

. . .

BI λI

 ⪰ 0,− lnDet(V ) ≤ t

[by Schur Complement Lemma]

⇐⇒ ∃V ≻ 0 : − lnDet(V ) ≤ t,Diag{λ1, ..., λI} ⪰ [B1; ...;BI ]V [B⊤
1 , ..., B

⊤
I ]

[by Schur Complement Lemma]

Taking into account that the function − lnDet(V ) : intSn+ → R is convex, we conclude that the

epigraph of h is the projection of a convex set in (t, λ, V )-space onto the subspace of (t, λ)-variables

and is therefore convex. ■

5. Let Bi, i ≤ I, and Λ be as in the previous item. Prove that the matrix-valued function

F (λ) =

[∑
i

B⊤
i λ

−1
i Bi

]−1

: Λ → intSn+

is ⪰-concave, that is, the ⪰-hypograph

{(λ, Y ) : λ ∈ Λ, Y ⪯ F (λ)}

of the function is convex.

Solution: The values of F on λ are positive definite, implying that the set in question is convex if

and only if the set

E = {(λ, Y ) : λ ∈ Λ, ∃V ≻ 0 : Y ⪯ V ⪯ F (λ)}

is convex. When V ≻ 0 and λ ∈ Λ, one has

V ⪯ F (λ) ⇐⇒ V −1 ⪰ [F (λ)]−1 =
∑
i

B⊤
i λ

−1
i Bi

(Exercise D.5), implying that

E = {(λ ∈ Λ, Y ) : ∃V ≻ 0 : Y ⪯ V ⪯ F (λ)} = {(λ ∈ Λ, Y ) : ∃V ≻ 0 : Y ⪯ V, V −1 ⪰
∑
iB

⊤
i λ

−1
i Bi}

= {(λ ∈ Λ, Y ) : ∃V : Y ⪯ V ,


V −1 B⊤

1 · · · B⊤
I

B1 λ1
...

. . .

BI λI

 ⪰ 0}, [Schur Complement Lemma]

= {(λ ∈ Λ, Y ) : ∃V ≻ 0 : V ⪰ Y ,Diag{λ1, ..., λI} ⪰ [B1; ...;BI ]V [B⊤
1 , ..., B

⊤
I ]}

[Schur Complement Lemma]

We see that E is the projection of the convex set in the space of (λ, Y, V )-variables onto the plane of

(λ, Y )-variables, and thus E is convex. ■

Exercise III.3. A function f defined on a convex set Q is called log-convex on Q,
if it takes real positive values on Q and the function ln f is convex on Q. Prove that

• a log-convex on Q function is convex on Q
• the sum (more generally, linear combination with positive coefficients) of two log-convex functions

on Q also is log-convex on the set.

Solution: If f(x) = eh(x) and h is convex, then so is f , as superposition of a convex monotone function

ex and convex function h. If f(x) = λ1f1(x) + λ2f2(x) with fi(x) = ehi(x), where hi are convex and

λi > 0, i = 1, 2, then f(x) = eh(x) with h(x) = ln(eh1(x)+lnλ1 + eh2(x)+lnλ2 ). Since ln(eu + ev) is

convex and monotone function of u, v, we conclude that h is convex along with h1(x), h2(x). ■
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Exercise III.4. [Law of Diminishing Marginal Returns] Consider optimization problem

Opt(r) = max
x

{f(x) : G(x) ≤ r & x ∈ X} (P [r])

where X ⊂ Rn is nonempty convex set, f(·) : X → R is concave, and G(x) = [g1(x); ...; gm(x)] :
X → Rm is vector-function with convex components, and let R be the set of those r for which
(P [r]) is feasible. Prove that

1. R is a convex set with nonempty interior and this set is monotone, meaning that when r ∈ R
and r′ ≥ r, one has r′ ∈ R.

Solution: we clearly have R = ∪x∈X{r : r ≥ G(x)}, and the right hand side set clearly has nonempty

interior and is monotone. To prove that R is convex, let r, r′ ∈ R and λ ∈ [0, 1]. For properly selected

x, x′ ∈ X we have G(x) ≤ r, G(x′) ≤ r′, which combines with convexity of X and G to imply that

λx+ (1− λ)x′ ∈ X and G(λx+ (1− λ)x′) ≤ λr + (1− λ)r′, so that λr + (1− λ)r′ ∈ R. ■

2. The function Opt(r) : R → R ∪ {+∞} satisfies the concavity inequality:

∀(r, r′ ∈ R, λ ∈ [0, 1]) : Opt(λr + (1− λ)r′) ≥ λOpt(r) + (1− λ)Opt(r′). (!)

Solution: Let r, r′, λ satisfy the premise in (!). There is nothing to prove when λ = 0 or when λ = 1,

so let λ ∈ (0, 1). Let us select s < Opt(r) and s′ < Opt(r′), so that there exist x, x′ ∈ X such that

G(x) ≤ r, f(x) ≥ s. G(x′) ≤ r′, f(x′) ≥ s′. Since X is convex, the components of G are convex, and f

is concave, we have

λx+ (1− λ)x′ ∈ X & G(λx+ (1− λ)x′) ≤ λr + (1− λ)r′ & f(λx+ (1− λ)x′) ≥ λs+ (1− λ)s′,

implying that Opt(λr + (1 − λ)r′) ≥ λs + (1 − λ)s′. In the resulting inequality, properly selecting

s < Opt(r) and s′ < Opt(r′), the right hand side can be made arbitrarily large when Opt(r) and/or

Opt(r′) are +∞, and can be made arbitrarily close to λOpt(r) + (1− λ)Opt(r′) when both Opt(r) and

Opt(r′) are finite, and the concavity inequality follows. ■

3. If Opt(r) is finite at some point r ∈ intR, then Opt(r) is real-valued everywhere on R. Moreover,
when X = Rn and f and the components of G are affine, so that (P [r]) is an LP program, we
can replace in the above claim the inclusion r ∈ intR with the inclusion r ∈ R: in the LP case,
the function Opt(r) is either identically +∞ everywhere on R, or is real-valued at every point of
R.

Solution: Let Opt(r) be finite at a point r ∈ intR and let r ∈ R; we need to prove that Opt(r) < ∞.

There is nothing to prove when r = r, thus assume that r ̸= r. For properly selected r− ∈ R, the point

r is a relative interior point of the segment [r−, r], which combines with the concavity inequality from

the previous item to imply that both Opt(r−) and Opt(r) are finite.

Now let X = Rn, f(x) = f⊤x and G(x) = Ax − b. Assuming that r ∈ R is such that Opt(r) < ∞, we

conclude that when r = r, the LP program

max
x

{f⊤x : Ax ≤ b+ r} (L[r])

is feasible and bounded. By LP duality, it means that the dual problem

min
y

{
[b+ r]⊤y : y ≥ 0, A⊤y = f

}
is solvable and therefore feasible. But the feasible set of the LP dual to (L[r]) is independent of r,

implying by Weak Duality that problems (L[r]) are above bounded. Thus, in the situation in question

Opt(r) does not take value +∞ at all and therefore is real-valued on R. ■

Comment. Think about problem (P [r]) as about problem where r is the vector of resources you
create, and f(·) is your profit, so that the problem is to maximize your profit given your resources
and “technological constraints” x ∈ X. Now let r̄ ∈ R and e be a nonnegative vector, and let us
look what happens when you select your vector of resources on the ray R = r̄+R+e, assuming that
Opt(r) on this ray is real-valued. Restricted on this ray, your best profit becomes a function ϕ(t) of
nonnegative variable t:

ϕ(t) = Opt(r̄ + te).
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Since e ≥ 0, this function is nondecreasing, as it should be: the larger t, the more resources you
utilize, and the larger is your profit. A not so nice news is that ϕ(t) is concave in t, meaning that the
slope of this function does not increase as t grows. In other words, if it costs you $1 to pass from
resources x̄ + te to resources x̄ + (t + 1)e, the return ϕ(t + 1) − ϕ(t) on one extra dollar of your
investment goes down (or at least does not go up) as t grows. This is called The Law of Diminishing
Marginal Returns.

Exercise III.5. [follow-up to Exercise III.4] There are n goods j with per-unit prices cj > 0, per-unit
utilities vj > 0, and the maximum available amounts xj , j ≤ n. Given budget R ≥ 0, you want to
decide on amounts xj of goods to be purchased to maximize the total utility of the purchased goods,
while respecting the budget and the availability constraints. Pose the problem as LO program and
verify that the optimal value Opt(R) is piecewise linear function of R. What are the breakpoints of
this function? What are the slopes between breakpoints?

Solution: Denoting by xj the amount of good j we buy, maximizing the total utility becomes the LO

program

max
x

∑
j

vjxj : 0 ≤ xj ≤ xj ∀j,
∑
j

cjxj ≤ R


As is immediately seen (check it!), the optimal solution to the problem is given by the following procedure:

we sort the goods to make the ratios vj/cj (“utility per $1 investment”) nonincreasing. Assuming this

is the case from the very beginning, we start with buying good # 1 until either the available amount

of this good, or our budget becomes exhausted, whichever happens first. If this step does not exhaust

the budget, we start to buy the second product until either its available amount, or the budget, is

exhausted. Then, if we still have money, we start buying product # 3, and proceed in this fashion until

either all available goods are bought, or the budget becomes zero. With this strategy, the breakpoints

R1 < R2 < ... < Rn of Opt(R) : [0,∞) → R are given by the recurrence

Rk = Rk−1 +min[R−Rk−1, xk/ck], 1 ≤ k ≤ n,

where R0 = 0, and the slope of Opt(·) on (Rk−1, Rk) is vk/ck; to the right of Rn, the slope is zero.

Exercise III.6. Let β ∈ Rn be such that β1 ≥ β2 ≥ ... ≥ βn. For x ∈ Rn, let x(k) be the k-th
largest entry in x. Consider the function

f(x) =
∑
k

βkx(k) = [β1 − β2]s1(x) + [β2 − β3]s2(x) + ...+ [βn−1 − βn]sn−1(x) + βnsn(x),

where, as always, sk(x) =
∑k
i=1 x(i). As we know from Exercise I.29, the functions sk(x), k < n,

are polyhedrally representable:

t ≥ sk(x) ⇐⇒ ∃z ≥ 0, s : xi ≤ zi + s, i ≤ n,
∑
i

zi + ks ≤ t,

and sn(x) is just linear:

sn(x) =
∑
i

xi

As a result, f admits the polyhedral representation

t ≥ f(x) ⇐⇒ ∃Z = [zik] ∈ Rn×(n−1), sk, tk, k < n : ∀(i ≤ n, k < n) : zik ≥ 0, xi ≤ zik + sk,
∀k < n : tk ≥

∑
i zik + ksk

t ≥
∑n−1
k=1 [βk − βk+1]tk + βn

∑n
i=1 xi

This polyhedral representation has 2n2 − n linear inequalities and n2 + n − 2 extra variables. Now
goes the exercise:

1. Find an alternative polyhedral representation of f with n2 + 1 linear inequalities and 2n extra
variables.



Exercises from Part III 77

Solution: Let Πn be the set of n × n doubly stochastic matrices. By Birkhoff Theorem, Πn is the

convex hull of n× n permutation matrices, implying that the set X = {Px : P ∈ Πn} is the convex

hull of vectors obtained from x by permuting entries, which combines with β1 ≥, , , . ≥ βn to imply

that

f(x) = max
P∈Πn

β⊤Px,

that is, denoting by e the n-dimensional all-ones vector,

f(x) = max
P=[Pij ]

{
β⊤Px : Pij ≥ 0, Pe = e, P⊤e = e

}
= min

λ,µ,[yij ]

{
e⊤[λ+ µ] : yij ≥ 0, [eλ⊤ + µe⊤]ij − yij = [βx⊤]ij , 1 ≤ i, j ≤ n

}
[LP Duality]

= min
λ,µ

[
e⊤[λ+ µ] : [eλ⊤ + µe⊤]ij ≥ [βx⊤]ij , 1 ≤ i, j ≤ n

}
Thus, f(x) admits the polyhedral representation

t ≥ f(x) ⇐⇒ ∃λ, µ ∈ Rn : t ≥ e⊤[λ+ µ], [eλ⊤ + µe⊤]ij ≥ [βx⊤]ij , 1 ≤ i, j ≤ n

and this representation has n2 + 1 linear inequalities and 2n extra variables.

2. [computational study] Generate at random orthogonal n× n matrix U and vector β with nonin-
creasing entries and solve numerically the problem

min
x

{
f(x) :=

∑
k

βkx(k) : ∥Ux∥∞ ≤ 1

}
utilizing the above polyhedral representations of f . For n = 8, 16, 32, ..., 1024, compare the
running times corresponding to the 2 representations in question.

Solution: In our CVX experiments, U and β were generated according to

[U,D,V]=svd(randn(n,n));beta=-sort(randn(n,1))

and the ratio of the CPU time for the “long” polyhedral representation of f in use to the CPU time

for the “short” one was as follows:

n 8 16 32 64 128 256 512 1024

CPU ratio 1.67 1.35 1.71 1.92 4.26 6.39 8.19 10.29

Exercise III.7. Let a ∈ Rn be a nonzero vector, and let f(ρ) = ln(∥a∥1/ρ), ρ ∈ [0, 1]. Moment
inequality, see section 13.3.3, states that f is convex. Prove that the function is also nonincreasing
and Lipschitz continuous, with Lipschitz constant lnn, or, which is the same, that

1 ≤ p ≤ p′ ≤ ∞ =⇒ ∥a∥p ≥ ∥a∥p′ ≥ n
1
p′ −

1
p ∥a∥p.

Solution: By homogeneity, it suffices to prove the inequality assuming ∥a∥p = 1, and by continuity

it suffices to consider the case when p ≤ p′ < ∞. Setting αi = |ai|p, we get 1 = ∥a∥p =
[∑

i αi
]1/p

,

∥a∥p′ =

[∑
i α

p′
p

i

]1/p′
. In terms of αi the goal is to prove that when αi ≥ 0 sum up to 1, then

1 ≥
∑
i

α
p′
p

i ≥
[
n

1
p′ −

1
p

]p′
,

which is immediate: due to p′ ≥ p the function g(α) =
∑
i α

p′/p
i is convex on the probabilistic simplex

{α ∈ Rn
+ :

∑
i αi = 1} and therefore attains its maximum on this simplex at a vertex (Theorem

III.11.7), and attains its minimum on the simplex at the barycenter n−1[1; ...; 1] by Symmetry Principle

(Proposition III.11.5 – permutations of coordinates are symmetries of the simplex and of g(·)). ■
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Exercise III.8. This Exercise demonstrates power of Symmetry Principle. Consider the situation as
follows: you are given noisy observations

ω = Ax+ ξ, A = Diag{αi, i ≤ n}

of unknown signal x known to belong to the unit ball B = {x ∈ Rn : ∥x∥2 ≤ 1}; here αi > 0 are
given, and ξ is the standard (zero mean, unit covariance) Gaussian observation noise. Your goal is
to recover from this observation the vector y = Bx, B = Diag{βi, i ≤ n} being given. You intend
to recover y by linear estimate

ŷH(ω) = Hω,

where H is an n × n matrix you are allowed to choose. For example, selecting H = BA−1 =
Diag{βiα−1

i }, you get an unbiased estimate:

E{ŷH(Ax+ ξ)− y} = 0.

Let us quantify the quality of a candidate linear estimate ŷH
— at a particular signal x ∈ B - by the quantity

Errx(H) =
√

E{∥ŷH(Ax+ ξ)−Bx∥22},

so that Err2x(H) is the expected squared ∥ · ∥2-distance between the estimate and the estimated
quantity,
— on the entire set B of possible signals – by risk Risk[H] = maxx∈B Errx(H).

1. Find closed form expressions for Errx(H) and Risk(H).

2. Formulate the problem of finding the linear estimate with minimal risk as the problem of mini-
mizing a convex function and prove that the problem is solvable, and admits an optimal solution
H∗ which is diagonal: H∗ = Diag{ηi, i ≤ n}.

3. Reduce the problem yielded by item 2 to the problem of minimizing easy-to-compute convex
univariate function. Consider the case when βi = i−1 and αi = [σi2]−1, 1 ≤ i ≤ n, set
n = 10000 and fill the following table:

σ 1.0 0.1 0.01 0.001 0.0001 0.00001 0.000001
Risk[H∗]

Risk[BA−1]

where H∗ is the minimum risk linear estimate as yielded by the solution to univariate problem
you end up with, and Risk[BA−1] is the risk of unbiased linear estimate.
You should see from your numerical results that minimal risk of linear estimation is much smaller
than the risk of the unbiased linear estimate. Explain on qualitative level why allowing for bias
reduces the risk.

Solution: 1: We have

Err2x[H] = E{∥H[Ax+ ξ]−Bx∥22} = E{∥[HA−B]x+Hξ∥22}
= E{∥[B −HA]x∥22 + 2[Hξ]⊤[HA−B]x+ [Hξ]⊤[Hξ]}
= ∥[B −HA]x∥22 +E{ξ⊤H⊤Hξ}
= ∥[B −HA]x∥22 +E{Tr(ξ⊤H⊤Hξ)} = ∥[B −HA]x∥22 +E{Tr(H⊤Hξξ⊤)}
= ∥[B −HA]x∥22 +Tr(H⊤HE{ξξ⊤)} = ∥[B −HA]x∥22 +Tr(H⊤H)

and

Risk2[H] = max
x∈B

Err2x(H) = Tr(H⊤H) + max
x,∥x∥2≤1

∥[B −HA]x∥22 = Tr(H⊤H) + ∥[B −HA]∥2,

where ∥ · ∥ is the spectral norm, see section D.1.4.

2: By the solution to item 1, the minimum risk linear estimate is yielded by an optimal solution to the

problem

Opt = min
H∈Rn×n

[
R(H) = ∥[B −AH]∥2 +Tr(H⊤H)

]
. (!)
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the best achievable risk being
√
Opt. The objective tends to ∞ when ∥H∥ → ∞, implying the existence

of solution.

To prove that there exists an optimal solution H∗ which is diagonal, let us apply Symmetry Principle

(Proposition III.11.5). Consider the set G of all linear transformations X 7→ G(X) := GXG : Rn×n →
Rn×n associated with 2n diagonal n × n matrices G with diagonal entries ±1. This clearly is a group,

and its elements are symmetries of the feasible set Rn×n of our optimization problem. Let us prove that

every transformation X → G(X), G ∈ G, is a symmetry of the objective as well. To this end note that

multiplying a matrix from the left and/or from the right by orthonormal matrices, we clearly preserve

the spectral norm of the matrix. Therefore for G(·) ∈ G we have

R(G(H)) = ∥B −GHGA∥2 +Tr([GHG]⊤[GHG])

= ∥GBG−GHG[GAG]∥2 +Tr(GH⊤G2HG)

[due to B = GBG and A = GAG – A and B are diagonal, and G = G⊤]

= ∥G[B −HA]G∥2 +Tr(GH⊤HG) [due to G2 = In]

= ∥B −HA∥2 +Tr(HH⊤) = R(H)
[we have used orthonormality of G and the relation Tr(GH⊤HG)

= Tr(H⊤HG2) = Tr(H⊤H) due to G2 = In.]

By Symmetry Principle, the (solvable) convex problem in question has an optimal solution H∗ which

is G-symmetric: GH∗G = H∗ for all diagonal G with diagonal entries ±1. Observing that [GH∗G]ij =

GiiH
∗
ijGjj , we get that GiiH

∗
ijGjj = H∗

ij for all i, j whenever Gkk = ±1 for all k, implying that

H∗
ij = −H∗

ij when i ̸= j, that is, H∗
ij = 0 when i ̸= j, so that H∗ is diagonal. ■

3: By item 2, we do not spoil the optimal value in (!) when restricting ourselves with diagonal candidate

solutions H = Diag{ηi}, thus arriving at the problem

Opt = minηi,i≤n
[
maxi[βi − ηiαi]

2 +
∑
i η

2
i

]
= minρ,{ηi}

[
ρ2 +

∑
i η

2
i : |βi − αiη| ≤ ρ

]
= minρ≥0:

{
ρ2 +

∑
i

[
max[ρ−|βi|,0]

αi

]2}
(∗)

In the case when βi = i−1 and αi = [σi2]−1, 1 ≤ i ≤ n, and n = 10000 one has

σ 1.0 0.1 0.01 0.001 0.0001 0.00001 0.000001

Risk[H∗] 0.7071 0.28244 0.1124 0.04474 0.01781 0.00709 0.00282

Risk[BA−1] 1.827e4 1.827e3 1.827e2 1.827e1 1.827e0 0.1827 0.01827

where H∗ is the minimum risk linear estimate as yielded by the solution to (∗), and Risk[BA−1] is the

risk of unbiased linear estimate.

Unbiased recovery in the case of diagonal B and A recovers an entry yi in y as

ŷi =
βi

αi
ωi = yi +

βi

αi
ξi.

We see that while the recovery is unbiased, it significantly amplifies the noise, provided that βi/αi is

large (with our data, this ratio is σi and indeed is large when i ≫ 1/σ). On the other hand, we know

in advance that x is bounded by 1 in ∥ · ∥2, so that when βi is small for some i, the bias in recovering

yi will be small even when we recover yi by 0. The optimal linear estimate heavily utilizes our a priori

information ∥x∥2 ≤ 1 to find optimal tradeoff between the bias and the stochastic component of the

recovery error yi− ŷi, this is why it not just beats the unbiased linear estimate (this always is the case –

the latter estimate is linear!), but may beat it by huge margin, For example, the above table shows that

unbiased estimate makes no sense when σ ≥ 1.e–4 – knowing in advance that ∥x∥2 ≤ 1, we can estimate

x by 0 with risk 1 (which does not require observations at all), which is better than the risk 1.82... of

the unbiased linear estimate when σ = 1.e–4 .

Exercise III.9. Given the sets of d-dimensional tentative nodes (d = 2 or d = 3) and of tentative
bars of a TTD problem satisfying assumption R, let V = RM be the space of virtual displacements
of the nodes, N be the number of tentative bars, and W > 0 be the allowed total bar volume, see
Exercise I.16. Let, next, C(t, f) : RN

+ ×V → R∪{+∞} be the compliance of truss t ≥ 0 w.r.t. load
f (we identify trusses with the corresponding vectors t of bar volumes). Prove that
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1. C(t, f) is a convex lsc function, positively homogeneous of homogeneity degree 1, of [t; f ] with
RN

++ × V ⊂ Dom C, where RN
++ = intRN

+ = {t ∈ RN : t > 0}. This function is positively
homogeneous, with degree -1, in t, when f is fixed, and positively homogeneous, of degree 2, in f
when t is fixed. Besides this, C(t, f) is nonincreasing in t ≥ 0: if 0 ≤ t′ ≤ t, then C(t, f) ≤ C(t′, f)
for every f .

Solution: As we know from Exercise I.16.2, the epigraph of C is

epi{C} := {[t; f ; τ ] : τ ≥ C(t, f)} = {[t; f ; τ ] : t ≥ 0,A(t, f, τ) :=

[
BDiag(t)B⊤ f

f⊤ 2τ

]
⪰ 0} (!)

with given by the data M × N matrix B satisfying BB⊤ ≻ 0 (the latter is our default assumption

R). We see that epi{C} is closed convex set, implying that C is a convex lsc function (Proposition

III.12.2). The inclusion RN
++ × V ⊂ Dom C is readily given by positive definiteness of the matrix

A(t) = BDiag(t}B⊤ for positive t’s; whenever A(t) ≻ 0, the matrix A(t, f, τ) is, for every f , positive

semidefinite whenever τ is large enough by the Schur Complement Lemma. Positive homogeneity, of

degree 1, of C clearly follows from the fact that by the above description, epi{C} is a closed cone. By

(!) combined with the Schur Complement Lemma, whenever [t; f ; τ ] ∈ epi{C} and λ > 0, µ are reals,

we have [λt;µf ;λ−1µ2τ ] ∈ epi{C}, implying the claims about homogeneity of C w.r.t. t and w.r.t. f .

Finally, by the same (!) when [t′; f, τ ] ∈ epi{C} and t ≥ t′, we have [t; f ; τ ] ∈ epi{C} as well, implying

that C(t, τ) is nonincreasing in t ≥ 0. ■

2. The function Opt(W, f) = inft
{
C(t, f) : t ≥ 0,

∑
i ti =W

}
– the optimal value in the TTD

problem (5.2) – with W restricted to reside in R++ = {W > 0} is convex continuous function
with the domain R++ ×V. This function is positively homogeneous, of degree -1, in W > 0 and
homogeneous, of homogeneity degree 2, in f :

∀(λ > 0, µ) : Opt(λW,µf) = λ−1µ2Opt(W, f), ∀(W, f) ∈ R++ × V.

Moreover, the infimum in inft
{
C(t, f) : t ≥ 0,

∑
i ti =W

}
is achieved whenever W > 0.

Solution: Consider the set

G = {[t; f ; τ ;W ] :W =
∑
i

ti, t ≥ 0,A(t, f, τ) ⪰ 0}

This set clearly is a closed convex cone, and the function

F (t, f, τ,W ) =

{
τ, [t; f ; τ ;W ] ∈ G & W > 0

+∞, otherwize

is convex and nonnegative on this set. We clearly have

Opt(W, f) = inf
t,τ

F (t, f, τ,W ), (!!)

which combines with convexity and nonnegativity of F and the rule on partial minimization (stability

of convexity w.r.t. partial minimization, section 10.1) to imply that Opt(W, f) is convex (and of course

nonnegative) function of (W, f). Moreover, by Exercise I.16.3, for every W > 0

inf
t
{C(t, f) : t ≥ 0,

∑
i

ti =W} = inf
t:t≥0,

∑
i ti=W

min
τ

{τ : A(t, f, τ) ⪰ 0}

is achieved, implying, first, the “Moreover” claim of the statement we are justifying, and, second, the

fact that Opt(W, f) is finite whenever W > 0. Thus, Opt(W, f) is convex real-valued function in the

domain R++ × V, and since this domain is convex and open, Opt is continuous in this domain, as

claimed. Homogeneity properties of this function we have announced are immediate consequences of

the fact that G is a closed cone and that by Schur Complement Lemma for λ > 0, µ ̸= 0 the matrices

A(t, f, τ) and A(λt, µf, λ−1µ2τ) simultaneously are/are not positive semidefinite. ■

3. When on certain bridge there is just one car, of unit weight, the compliance of the bridge does
not exceed 1, whatever be the position of the car. How large could the compliance of the bridge
when there are 100 cars of total weight 70 on it?
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Solution: The compliance is at most 4900. Indeed, a 100-force load with the total of forces’ magnitudes

1 is a convex combination of loads with single force of magnitude 1 8. As we know from item 1, the

compliance of a given truss is a convex function of the load, implying by Jensen’s inequality that

when our bridge is loaded by 100 (or any other number of) cars of total weight 1, the compliance does

not exceed the maximum of compliances caused by a single car of unit weight, the maximum being

taken over possible positions of this single car. For our bridge, this maximum is ≤ 1, implying that

the compliance of the bridge loaded by a whatever number of cars of total weight 1 does not exceed

1. It remains to note that the compliance is positively homogeneous, of degree 2, function of load, so

that with the total weight of cars not exceeding 70, the compliance does not exceed 702 = 4900.

To formulate the next two tasks, let us associate with a free node p the set Fp of all single-force
loads stemming from forces g of magnitude ∥g∥2 not exceeding 1 and acting at node p. For a set S
of free nodes, FS is the set of all loads with nonzero forces acting solely at the nodes from S and
with the sum of ∥ · ∥2-magnitudes of the forces not exceeding 1, so that

FS = Conv(∪p∈SFp)

(why?)

4. Let S = {p1, ..., pK} be a K-element collection of free nodes from the nodal set. Assume that
for every node p from S and every load f ∈ Fp there exists a truss of a given total weight W
such that its compliance w.r.t. f does not exceed 1. Which, if any, of the following statements
are true?

(i) For every load f ∈ FS , there exists a truss of total volume W with compliance w.r.t. f not
exceeding 1

(ii) There exists a truss of total volumeW with compliance w.r.t. every load from FS not exceeding
1

(iii) For properly selected γ depending solely on d, there exists a truss of total volume γKW with
compliance w.r.t. every load from FS not exceeding 1

Solution: The first and the third claims are correct, the second, in general, is wrong. Indeed, let

C(t, f) be the compliance of truss t w.r.t. load f ; as we know from item 1, this is a convex function

of (t, f).

To justify the first claim, given load f ∈ FS , we can find its representation f =
∑
k λkf

k as a

convex combination of loads fk ∈ Fpk . By assumption on S, for every k there exists truss tk of total

volume W such that C(tk, fk) ≤ 1, implying by convexity that C(t :=
∑
k λkt

k, f) ≤ 1. Since the

total volume of t is W , t is the truss announced in claim 1.

To demonstrate that the second claim is wrong in general, consider planar sets of tentative nodes

and bars depicted on Figure S2III.1,

Fugure S2III.1. Tentative nodes and bars.

where bold circles are fixed nodes, and S = {a, b}. Denoting by T = {t ∈ R4
+ :
∑
i ti = W} the set

of all trusses of total volume W , we can assume w.l.o.g. that

max
f∈Fa

min
t∈T

C(t, f) = 1,

8 ”What is meant is not always put into writing” (”Boris Godunov” by Alexander Pushkin): we

tacitly assume that possible locations of cars are among the nodes of the bridge, modeled as a truss,

and that the stemming from cars forces acting at the bridge “look down.”
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note that by symmetry we also have

max
f∈Fb

min
t∈T

C(t, f) = 1,

so that we are in the situation postulated in item 4. Let fa ∈ F1 and fb ∈ F2 be the “critical loads”

– those where the respective maxf are achieved. Clearly, there is no truss t of total volume W with

C(t, fa) ≤ 1 and C(t, fb) ≤ 1 – were it existing, with our TTD data there clearly would exist truss

t of total volume W/2 with compliance w.r.t one of the loads, fa or fb, not exceeding 1. It would

imply the existence of truss of total volume W with compliance w.r.t. either fa, or fb not exceeding

1/2 (recall that C(t, f) is homogeneous, of degree -1, with respect to t), which is not the case, since

both loads are critical.

To justify the third claim, note that for every integer µ ≥ d+1 the unit ∥·∥2-ball B in Rd is contained

in the convex hull ∆ = Conv({rd,µgι, 1 ≤ ι ≤ d + 1}) of µ vectors of the ∥ · ∥2-norm rd,µ each, gι

being unit normalizations of these vectors. For example, when d = 2, specifying ∆ as µ-side perfect

polygon circumscribed around the unit circle and the vectors gι as the unit length normalization of

the vertices of the polygon, we get rd,µ = 1/ cos(π/µ).

Let us specify fkι, 1 ≤ k ≤ K, 1 ≤ ι ≤ µ as single-force load with force gι acting at k-th node, pk, of S,

1 ≤ k ≤ K, 1 ≤ ι ≤ µ, so that fkι ∈ Fpk . Under the premise of item 4, there exist trusses tkι of total

volume W each such that C(tk,ι, fk,ι) ≤ 1. Let t =
∑
k,ι t

kι. Since C(t, f) clearly is nondecreasing

in t ≥ 0, we have C(t, fkι) ≤ 1 for all k, ι, whence, by convexity of C(t, f) in f , C(t, f) ≤ 1 for all

f ∈ U := Conv({fkι, k ≤ K, ι ≤ µ}). Due to the origin of gι, we have U ⊃ r−1
d,µF

pk ∀k ≤ K, implying

that U ⊃ Conv(∪kr−1
d,µF

pk ) = r−1
d,µF

S . Thus, C(t, f) ≤ 1 for all f ∈ r−1
d,µF

S . By homogeneity of

C(t, f) w.r.t. f and to t, it follows that C(r2d,µt, f) ≤ 1 for all f ∈ FS , so that the compliance of the

truss t = r2d,µt w.r.t. every load from FS does not exceed 1. It remains to note that the total volume

of t is r2d,µµ︸ ︷︷ ︸
γ

KW . We can now try different values of µ in order to minimize the factor γ over µ (and

over geometry of ∆). For d = 2, restricting ourselves with perfect µ-side polygons ∆ circumscribed

around the unit circle, the best µ is 5, resulting in γ = 5/ cos2(π/5) ≈ 7.6393. When d = 3, we

restricted our search with Platonian solids ∆ circumscribed around the unit 3D ball. The best solid

was the octahedron, resulting in µ = 6 and γ = 18. ■

⋆5. Prove the following statement:

In the situation of item 4 above, let γ = 4 when d = 2 and γ = 7 when d = 3. For
every k ≤ K there exists a truss t̂k of total volume γW such that the compliance of t
w.r.t. every load from Fpk does not exceed 1. As a result, there exists truss t̃ of total
volume γKW with compliance w.r.t. every load from FS not exceeding 1.

Solution: Given ϵ ∈ (0, 1), let Tϵ = {t ∈ RN
+ :

∑
i ti =W, ti ≥ ϵW/N ∀i}.

1o Observe that for every f ∈ Fpk there exists truss t ∈ Tϵ such that C(t, f) ≤ (1 − ϵ)−1. In-

deed, given f ∈ Fpk , there exists truss tf of total volume W such that C(tf , f) ≤ 1. Setting

t = ϵ[W/N ;W/N ; ...W/N ] and t = (1 − ϵ)tf + t, we get a truss from Tϵ satisfying t ≥ (1 − ϵ)tf .

Since C(t, f) is nonincreasing and positively homogeneous, of degree -1, in t > 0, we conclude that

C(t, f) ≤ (1− ϵ)−1, as claimed.

2o Let us fix a free node p of the nodal set, and let fg , g ∈ Rd, stand for single-force load where

force g acts at node p. Recall that vectors from the space V = RM of nodal displacements are block

vectors with d-dimensional blocks representing “physical displacements” of free nodes and indexed

by these nodes. Let Ip be the set of indexes of those entries in a vector of nodal displacements which

correspond to the block indexed by p.

When t ∈ Tϵ, the stiffness matrix A(t) = BDiag{t}B⊤ of truss t is positive definite (assumption R),

so that the equilibrium displacement of truss t under a load f is v = [A(t)]−1f , and the compliance

is

C(t, f) =
1

2
v⊤f =

1

2
f⊤A−1(t)f.
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As a result, for every g ∈ Rd and every truss t ∈ Tϵ one has

C(t, fg) =
1

2
g⊤[A−1(t)]Ipg,

where for Q = [Qi,j ]i,j≤M ∈ SM , [Q]Ip = [Qij ]i,j∈Ip ∈ Sd is the d × d principal submatrix of Q

corresponding to rows and columns with indexes from Ip.

Next, let A = A(t), so that 0 ≺ A ⪯ A(t) for every t ∈ Tϵ due to t ≥ t > 0. It follows that for all

t ∈ Tϵ it holds A−1(t) ⪯ A−1, whence

∀t ∈ Tϵ : [A−1(t)]Ip ⪯ Q := [A−1]Ip .

3o Let us associate with node p the set Sp ⊂ Sd+ given by

Sp = {Q ∈ Sd : ∃t ∈ Tϵ : [A−1(t)]Ip ⪯ Q ⪯ Q}.

We claim that Sp is a convex compact set in Sd+. The main component of verification is the following

simple observation to be justified at the end of the proof:

(@) Given symmetric positive definite M ×M matrix A and a d-element subset I of its row

indexes and denoting by [C]I the d×d principal submatrix of C ∈ SM composed of rows and

columns with indexes from I, the set

SI = {(Q,A) ∈ Sd × SM : A ⪰ A & Q ⪰ [A−1]I}

is closed and convex.

By (@), the set

S+
p =

{
(Q, t) ∈ Sd × Tϵ : Q ⪰ [A−1(t)]Ip

}
is closed and convex (as the inverse image of closed and convex set SIp under the linear mapping

(Q, t) 7→ (Q,A(t)). Consequently, the projection S[p] of S+
p onto the Q-space is convex, so that Sp

is convex as well – this is the intersection of S[p] with the convex set {Q : Q ⪯ Q}. Sp clearly is

bounded – it is contained in the set {0 ⪯ Q ⪯ Q}. To see that Sp is closed, let Qi ∈ Sp converge

to Q as i → ∞, and let us prove that Q ∈ Sp, that is, that Q ⪯ Q (which is evident) and that

Q ⪰ [A−1(t)]Ip for some t ∈ Tϵ. To see that the latter is the case, recall that for every i there

exist ti ∈ Tϵ such that Qi ⪰ [A−1(ti)]Ip . Taking into account that Tϵ is compact and passing to a

subsequence we can assume that limi→∞ ti exists; this limit clearly can be taken as the desired t.

Thus, Sp is convex compact set.

4o Now – the main step. Assume that p is a node from S and that we are under the premise of

item 4, that is, for every g ∈ Rd with ∥g∥2 ≤ 1 there exists a truss t′ of total volume W such that

C(t′, fg) ≤ 1. Invoking 1o, we conclude that

∀(g ∈ Rd, ∥g∥2 ≤ 1)∃t ∈ Tϵ : C(t, fg) ≤ (1− ϵ)−1 (#)

Denoting B = {g ∈ Rd : ∥g∥2 ≤ 1}, consider the family of sets

Q[g] = {Q ∈ Sp :
1

2
g⊤Qg ≤ γ(1− ϵ)−1}

parameterised by vectors g ∈ B. By their origin, the sets from the family are convex and compact.

The crucial fact which we are about to prove is that

(!!) Every γ of sets from the family have a point in common.

To prove (!!), let gℓ ∈ B, 1 ≤ ℓ ≤ γ, and let us prove that the sets Q[gℓ], ℓ = 1, ..., γ, have a point

in common. For every ℓ, by (#), there exists tℓ ∈ Tϵ such that C(tℓ, fgℓ ) ≤ (1− ϵ)−1, implying that

setting

Qℓ = [A−1(tℓ)]Ip ,
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we get

Qℓ ⪯ Q &
1

2
g⊤ℓ Qℓgℓ =

1

2
f⊤gℓA

−1(tℓ)fgℓ ≤ (1− ϵ)−1

Now let t = 1
γ

∑γ
ℓ=1 t

ℓ and Q = [A−1(t)]Ip , so that t ∈ Tϵ, (Q, t) ∈ S+
p , and Q ⪯ Q, implying that

Q ∈ Sp. For every ℓ we have

t ≥ 1
γ
tℓ > 0 =⇒ A(t) ⪰ 1

γ
A(tℓ) =⇒ A−1(t) ⪯ γA−1(tℓ)

=⇒ Q ⪯ γQℓ =⇒ 1
2
g⊤ℓ Qgℓ ≤ γg⊤ℓ Qℓgℓ ≤ γ(1− ϵ)−1

Thus, Q ∈ Sp and

1

2
g⊤ℓ Qgℓ ≤ γ(1− ϵ)−1 ∀ℓ ≤ γ

implying that Q ∈ Q[gℓ] for all ℓ ≤ γ, that is, ∩ℓ≤γQ[gℓ] is nonempty, as claimed.

5o The rest of the proof is easy. Note that Q[g] are convex compact subsets of Sd and the latter

linear space has dimension γ − 1. Applying Helly Theorem II, there exists a common point Q of all

the sets Q[g], g ∈ B. Due to Q[g] ⊂ Sp for every g ∈ B, we get Q ∈ Sp, so that there exists t ∈ Tϵ
such that

Q ⪰ [A−1(t)]Ip

Consequently,

∀g ∈ B : C(t, fg) =
1

2
f⊤g A

−1(t)fg =
1

2
g⊤[A−1(t)]Ipg ≤

1

2
g⊤Qg ≤ γ(1− ϵ)−1,

where the concluding inequality is due to Q ∈ Q[g]. Thus, there exists truss t ∈ Tϵ such that the

compliance of this truss w.r.t. every load fg , g ∈ B, is ≤ γ(1− ϵ)−1.

6o The remaining reasoning is quite straightforward. The truss t we have build depends on ϵ; setting

ϵi = 1/(i + 1), i = 1, 2, ... let us denote by t
i
the truss given by the above construction as applied

with ϵ = ϵi. All these trusses are of total volume W , and passing to a subsequence, we can assume

that t
i → t as t→ ∞. Due to C(ti, fg) ≤ γ(1− ϵ)−1, we have

∀i∀g ∈ B :

[
BDiag{ti}B⊤ fg

f⊤g 2γ(1− ϵ)−1

]
⪰ 0,

implying that

∀g ∈ B :

[
BDiag{t}B⊤ fg

f⊤g 2γ

]
⪰ 0

that is, C(t, fg) ≤ γ for all g ∈ B. Besides this, truss t, same as all trusses t
i
, is of total volume W .

Setting t̂ = γt, we get truss of total volume γW and compliance, w.r.t. every load fg with ∥g∥2 ≤ 1,

not exceeding 1.

Summing up the K trusses given by the above construction as applied to every one of the K free

nodes composing the set S, we get a truss t̃ of total volume γKW with compliance w.r.t. every load

from FS not exceeding 1.

Paying debts: proof of (@). Closedness of SI is evident; all we need is to prove that the set is

convex.

Let us make the following

Observation: The mapping X 7→ X−1 : intSM+ → intSM+ is ⪰-convex: whenever X,Y ∈
intSM+ and λ ∈ [0, 1], one has [λX + ((1− λ)Y ]−1 ⪯ λX−1 + (1− λ)Y −1.

The “‘bare hands” proof of this important fact (to be put into perspective in Part IV) is as follows.

For X,Y ≻ 0 we have, by Schur Complement Lemma,

[
X−1 I
I X

]
⪰ 0,

[
Y −1 I
I Y

]
⪰ 0, whence
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λX−1 + (1 − λ)Y −1 I

I λX + (1 − λ)Y

]
⪰ 0, implying, by the same Schur Complement Lemma, that

λX−1 + (1 − λ)Y −1 ⪰ [λX + (1 − λ)Y ]−1.

Due to Observation, the mapping X 7→ [X−1]I : intSM+ → intSd+ is ⪰-convex:

X ≻ 0, Y ≻ 0, λ ∈ [0.1] =⇒ [λX + (1− λ)Y ]−1 ⪯ λX−1 + (1− λ)Y −1

=⇒ [(λX + (1− λ)Y )−1]I ⪯ [λX−1 + (1− λ)Y −1]I = λ[X−1]I + (1− λ)[Y −1]I
[since principal submatrix of a positive semidefinite matrix is positive semidefinite as well]

which clearly implies the convexity of SI = {(Q,A) : A ⪰ A,Q ⪰ [A−1]I}. ■

Some remarks are in order.

1. A careful reader hopefully recognizes the “driving force” behind the above proof – it is the same

as the one used in essentially less technical, and thus much more transparent section 2.3.1.

2. In the above proof, it was completely unimportant that B was the unit ball of ∥ · ∥2 – it could be

a whatever nonempty subset of Rd. In fact the proof justifies the following claim:

Given (1) the data of a TTD problem satisfying assumption R and with nodes “living” in

Rd (d = 2 or d = 3), (2) a collection of K free nodes pk, k ≤ K, from the nodal set, and (3)

K nonempty subsets Bk ⊂ Rd, let Fk be the set of all single-force loads where a force from

Bk acts at the node pk, and let F = Conv{∪k≤KFk). Assume that for every k and every

load f ∈ Fk there exists a truss of total volume W with compliance w.r.t. f not exceeding 1.

Then there exists truss of total volume γKW with compliance w.r.t. every load from F not

exceeding 1, with γ = 4 when d = 2 and γ = 7 when d = 3.

3. Finally we remark that the values of γ yielded by the above proof are essentially better than the

values yielded by much more transparent (and fully adjusted to the unit Euclidean balls in the

role of Bk’s) solution to item 4. There is no reason to believe that these values are the smallest

ones for which the above claim is true. This being said, it is easy to demonstrate that for d = 2

the best possible in this respect value of γ is at least 2.

15.2 Support, characteristic, and Minkowski functions

Exercise III.10. [characteristic and support functions of convex sets] Let X ⊂ Rn be a nonempty
convex set. Characteristic (a.k.a indicator) function of X is, by definition, the function

χX(x) =

{
0 , x ∈ X

+∞ , x ̸∈ X

As is immediately seen, this function is convex and proper. The Legendre transform of this function
is called the support function ϕX(x) of X:

ϕX(x) = sup
u

[x⊤u− χX(u)] = sup
u∈X

x⊤u.

1. Prove that χX is lower semicontinuous (lsc) if and only if X is closed, and that the support
functions of X and clX are the same.

Solution: Lower semicontinuity of convex function is, by Proposition III.12.2, exactly the same as

closedness of the epigraph of the function. The epigraph of χX(·) is exactly X × R+, and this set is

closed if and only if X is so. And of course

ϕX(x) = sup
u∈X

x⊤u = sup
u∈clX

x⊤u,

so that the support functions of X and clX are the same.

In the remaining part of Exercise, we are interested in properties of support functions, and in view of
item 1, it makes sense to assume from now on that X, on the top of being nonempty and convex,
is also closed.

Prove the following facts:
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2. ϕX(·) is proper lsc convex function which is positively homogeneous of degree 1:

∀(x ∈ Domϕx, λ ≥ 0) : ϕX(λx) = λϕX(x).

In particular, the domain of ϕX is a cone. Demonstrate by example that this cone not necessarily
is closed (look at the support function of the closed convex set {[v;w] ∈ R2 : v > 0, w ≤ ln v}).

Solution: ϕX(·) is convex, proper and lsc, as Legendre transform of a whatever proper convex function.

And of course whenever x is such that supu∈X x⊤u < ∞, we have supu∈X [λx]⊤u = λ supu∈X x⊤u for

all λ ≥ 0.

Finally, for X = {[v;w] ∈ R2 : v > 0, w ≤ ln v} we have

ϕX([x1;x2]) = supv,w {x1v + x2w : v > 0, w ≤ ln v}

=


+∞ , x1 > 0 (a)

+∞ , x1 ≤ 0, x2 < 0 (b)

+∞ , x1 = 0, x2 ̸= 0 (c)

< +∞ , x1 < 0, x2 ≥ 0 (d)

< +∞ , x1 = x2 = 0 (e)

(to justify (a) and (c), set [v;w] = [v; ln v] and look what happens when v → ∞ and when v → +0, to

justify (b), look what happens when [v;w] = [1;w] and w → −∞). We see that DomϕX is the second

quadrant {x1 ≤ 0, x2 ≥ 0} with eliminated open ray {[0;x2] : x2 > 0}, and this set is just a cone, not a

closed one.

3. Vice versa, every proper convex lsc function ϕ which is positively homogeneous of degree 1,

(x ∈ Dom f, λ ≥ 0) =⇒ ϕ(λx) = λϕ(x)

is the support function of a nonempty closed convex set, specifically, its subdifferential ∂ϕ(0)
taken at the origin. In particular, ϕX(·) “remembers” X: if X,Y are nonempty closed convex
sets, then ϕX(·) ≡ ϕY (·) if and only if X = Y .

Solution: Let ϕ be proper lsc convex and positively homogeneous, of degree 1, function, and let χ(x)

be the Legendre transform of ϕ. As every Legendre transform of proper convex function, χ is proper,

convex and lsc. In addition, from properness and positive homogeneity of ϕ it follows that 0 ∈ Domϕ

and ϕ(0) = 0, whence

χ(u) = sup
x

{
u⊤x− ϕ(x)

}
≥ u⊤0− ϕ(0) = 0.

It remains to prove that χ takes just two values, 0 and +∞; given this, we immediately conclude that

χ is the characteristic function of its (nonempty, convex, and closed due to properness, convexity and

lower semicontinuity of χ, see item 1 of Exercise) domain. Indeed, we already know that χ(·) ≥ 0; what

remains to prove is that if χ(u) > 0 for some u, then in fact χ(u) = ∞. Relation χ(u) > 0 amounts to

existence of x such that u⊤x− ϕ(x) > 0; but then, due to positive homogeneity of ϕ, for λ > 0 if holds

u⊤[λx]− ϕ(λx) = λ[u⊤x− ϕ(x)] → ∞, λ→ ∞, that is, χ(u) = +∞, as claimed.

Finally, from Proposition III.13.3 it follows that ϕ, being proper convex lsc function, is the Legendre

transform χ∗ of χ, that is, of the characteristic function of nonempty closed convex domain. By item B

from chapter 13, see p. 213, the subdifferential of ϕ ≡ χ∗ taken at the origin is the set of all minimizers

of χ, and this set for characteristic function is nothing but its domain. ■

4. Let X,Y be two nonempty closed convex sets. Then ϕX(·) ≥ ϕY (·) if and only if Y⊆X.

Solution: For proper lsc convex functions f, g and their Legendre transforms x∗, g∗ the relation f(·) ≤
g(·) clearly implies that f∗(·) ≥ g∗(·); since f and g are the Legendre transforms of their Legendre

transforms (Proposition III.13.3), the latter relation, in turn, implies that f ≤ g. Thus, for proper lsc

convex functions f, g the relation f ≤ g is equivalent to f∗ ≥ g∗. In particular, ϕX(·) ≥ ϕY (·) if and

only if χX(·) ≤ χY (·), and the latter relation clearly takes place if and only if Y ⊂ X. ■

5. DomϕX = Rn if and only if X is bounded.
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Solution: When X is bounded, ϕX(·) clearly is real-valued on the entire space. Vice versa, if the convex

function ϕX(·) is real valued on the entire space, ∂ϕX(0) is bounded by Proposition III.12.10; it remains

to note that by item 3 of Exercise, X = ∂ϕX(0). ■

6. Let X be the unit ball of some norm ∥ · ∥. Then ϕX is nothing but the norm ∥ · ∥∗ conjugate to
∥ · ∥. In particular, when p ∈ [1,∞] and X = {x ∈ Rn : ∥x∥p ≤ 1}, we have ϕX(x) ≡ ∥x∥q,
1
q
+ 1

p
= 1.

Solution: This is nothing but straightforward rewording of Fact III.13.4.

7. Let x 7→ Ax+ b : Rn → Rm be an affine mapping, and let Y = AX + b = {Ax+ b : x ∈ X}.
Then

ϕY (v) = ϕX(A⊤v) + b⊤v.

Solution: Indeed, ϕY (v) = supy∈Y u
⊤y = supx∈X u⊤[Ax + b] = b⊤u + supx∈X [A⊤v]⊤x = b⊤u +

ϕX(A⊤v). ■

Exercise III.11. [Minkowski functions of convex sets] The goal of this Exercise is to acquaint the
reader with important special family of convex functions – Minkowski functions of convex sets.

Consider a proper nonnegative lower semicontinuous function f : Rn → R ∪ {+∞} which is
positively homogeneous of degree 1, meaning that

x ∈ Dom f, t ≥ 0 =⇒ tx ∈ Dom f and f(tx) = tf(x).

Note that from the latter property of f and its properness it follows that 0 ∈ Dom f and f(0) = 0.
We can associate with f its basic sublevel set

X = {x ∈ Rn : f(x) ≤ 1}.

Note that X “remembers” f , specifically

∀t > 0 : f(x) ≤ t ⇐⇒ f(t−1x) ≤ 1 ⇐⇒ t−1x ∈ X,

whence also

∀x ∈ Rn : f(x) = inf
{
t : t > 0, t−1x ∈ X

}
[inf{t : t > 0, t ∈ ∅} = +∞ by definition]

(15.1)

Note that the basic sublevel set of our f cannot be arbitrary: it is convex and closed (since f is
convex lsc) and contains the origin (since f(0) = 0).

Now, given a closed convex set X ⊂ Rn containing the origin, we can associate with it a function
f : Rn → R ∪ {+∞} by construction from (15.1), specifically, as

f(x) = inf
{
t : t > 0, t−1x ∈ X

}
(15.2)

This function is called the Minkowski function (M.f.) of X.
Here goes your first task:

1. Prove that when X ⊂ Rn is convex, closed, bounded, and contains the origin, function f given
by (15.2) is proper, nonnegative, convex lsc function positively homogeneous of degree 1, and X
is the basic sublevel set of f . Moreover, f is nothing but the support function ϕX∗ of the polar
X∗ of X.

Solution: The polar X∗ of X is closed convex set containing the origin, and therefore its support function

f , as the support function of any nonempty convex set, is convex lsc and positively homogeneous of degree

1 by Exercise III.10.2. Nonnegativity of f is readily given by the inclusion 0 ∈ X∗. Thus, all which remains

to verify is that in fact f = f and X is the basic sublevel set of f . Verification of the equality f = f is

immediate:

∀t > 0 : f(x) ≤ t ⇐⇒ f(t−1x) ≤ 1 ⇐⇒ supy∈X∗ [t
−1x]⊤y ≤ 1

⇐⇒ t−1x ∈ Polar (X∗) = X,

which combines with (15.2) to imply that whenever t > 0, relation t ≥ f(x) is the same as the relation

t ≥ f(x); since f and f are nonnegative, it follows that f ≡ f . To see that X is the basic sublevel set of

f ≡ f , note that the basic sublevel set of the support function of X∗ clearly is Polar (X∗) = X.
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Your next tasks are as follows:

2. What are the Minkowski functions of

• the singleton {0}?
• a linear subspace?
• a closed cone K?
• the unit ball of a norm ∥ · ∥?

3. Prove that the Minkowski functions fX , fY of closed convex and containing the origin sets X,Y
are linked by the relation fX ≥ fY if and only if X⊆Y .

4. When the Minkowski function of a set X (convex, closed, bounded, and containing the origin)
does not take value +∞?

5. What is the set of zeros of the Minkowski function of a set X (convex, closed, bounded, and
containing the origin)?

6. What is the Minkowski function of the intersection ∩k≤KXk of closed convex sets containing the
origin?

Solution: 2: The Minkowski function (M.f.) of a closed cone (in particular, of a linear subspace) is

nothing but the characteristic function of this set. The M.f. of the unit ∥ · ∥-ball is the norm ∥ · ∥.
3: This is immediate consequence of the fact that fX , fY are the support functions of the polars X∗,

Y∗ of X,Y combined with the the result of Exercise III.10.4 and the fact that passing to polars reverses

inclusions.

4: The M.f. fX of a closed convex set X containing the origin is real-valued if and only if X contains a

neighbourhood of the origin. Indeed, if X contains a centered at the origin ∥ · ∥2-ball of raduis r > 0,

fX , by item 3, does not exceed the real-valued M.f. r−1∥ · ∥2 of this ball. And if fX is real-valued, small

enough positive multiples of ±ei (ei are the standard basic orths) belong to X, so that the origin is an

interior point of X.

5: The set of zeros of the M.f. of X is exactly the recessive cone of X.

6: The M.f. in question is the maximum of the M.f.’s of Xk.

Exercise III.12.

1. Recall that the closed conic transform

ConeT(X) = cl {[x; t] ∈ Rn ×R : t > 0, x/t ∈ X} ,

of a nonempty convex set X ⊂ Rn (see section 1.5) is a closed cone such that

cl(X) = {x : [x; 1] ∈ ConeT(X)}.

What is the cone dual to ConeT(X)?

2. Let X ⊂ Rn be a nonempty closed convex set and X+ = ConeT(X). Prove that

X+
t := {x : [x; t] ∈ X+} =

 tX, t > 0 (a)
Rec(X), t = 0 (b)
∅, t < 0 (c)

3. Let X1, ..., XK be closed convex sets in Rn with nonempty intersection X. Prove that

ConeT(X) =
⋂
k

ConeT(Xk).

4. 4 Let X =
⋂
k≤K Xk, where X1, ..., XK are closed convex sets in Rn such that XK ∩ intX1 ∩

intX2... ∩ intXK−1 ̸= ∅. Prove that ϕX(y) ≤ a if and only if there exist yk, k ≤ K, such that

y =
∑
k

yk and
∑
k

ϕXk (yk) ≤ a. (∗)

In words: the supremum of a linear form on
⋂
kXk does not exceed some a if and only if the

form can be decomposed into the sum of K forms with the sum of their suprema over the
respective sets Xk not exceeding a.
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5. Prove the following polyhedral version of the claim in item 4:
Let Xk = {x ∈ Rn : Akx ≤ bk}, k ≤ K, be polyhedral sets with nonempty intersection X.
A linear form does not exceed some a ∈ R everywhere on X if and only if the form can be
decomposed into the sum of K linear forms with the sum of their maxima on respective sets
Xk not exceeding a.

Solution: 1: This is the cone

{[y; s] ∈ Rn
y ×Rs : s ≥ ϕX(−y)},

where

ϕX(y) = sup
x∈X

y⊤x

is the support function of X.

Indeed, from the definition of the closed conic transform it immediately follows that [y; s]⊤[x; t] ≥ 0 for

all [x; t] ∈ ConeT(X) if and only if [y; s]⊤[x; 1] ≥ 0 for all x ∈ X, that is, if and only if

0 ≤ s+ inf
x∈X

y⊤x = s− sup
x∈X

[−y]⊤x = s− ϕX(−y).■

2: A point [x; t] belongs to X+ if and only if there exist a sequence [xi; ti] converging to [x; t] and such

that ti > 0 and xi = tiyi with yi ∈ X. When t > 0, the points yi = xi/ti have the limit y = x/t as

i → ∞, and y ∈ X since X is closed; vice versa, if y ∈ X and t > 0, the point [ty; t] clearly belongs to

X+ ∩Πt; we have proved (a). (c) is evident. (b) is stated in Fact II.6.19.

3: Let Πs be the hyperplane {[x; s] : x ∈ Rn} in Rn+1. By (a) and (c) in the previous item, we have

ConeT(X) ∩ Πt = ∩k[ConeT(Xk) ∩ Πt] for t ̸= 0. Since Xk are closed convex sets with nonempty

intersection, we have Rec(∩kXk) = ∩kRec(Xk), whence ConeT(X)∩Π0 = ∩k[ConeT(Xk)∩Π0] as well.

4: There is nothing to prove when a = ∞. Now let a ∈ R. When (∗) takes place and x ∈ X, for every k

we have x ∈ Xk, so that y⊤k x ≤ ϕXk
(yk) ≤ ak. Summing up the resulting inequalities and taking into

account that
∑
k yk = y, we get y⊤x ≤

∑
k ak ≤ a. The resulting inequality holds true for every x ∈ X,

implying ϕX(y) ≤ a.

Vice versa, let ϕX(y) ≤ a ∈ R. Let X+
k = ConeT(Xk), k ≤ K. By item 3, ConeT(X) = ∩kConeT(Xk),

and by item 1 we have [−y; a] ∈ [ConeT(X)]∗ The conesMk = ConeT(Xk) are closed, and their interiors

clearly contain the sets {[x; 1] : x ∈ intXk}. It follows MK ∩ intM1 ∩ ... ∩ intMK−1 ̸= ∅. We see that

the linear from with the vector of coefficients [−y; a] and cones M1, ...,MK satisfy the premise of the

Dubovitski-Milutin Lemma. By this lemma, there exists a decomposition

[−y; a] =
∑
k

[−yk; ak]

with [−yk; ak] ∈Mk
∗ , that is, invoking item 1, with ϕXk

(yk) ≤ ak, k ≤ K. ■

5: We could prove this claim by slight modification of the reasoning for item 4, but it is easier to get it

immediately from LP duality: for ȳ ∈ Rn and a ∈ R we have

a ≥ supx∈X ȳ⊤x =⇒ a ≥ maxx{ȳ⊤x : Akx ≤ bk, k ≤ K}
=⇒ a ≥ minz1,...,zK {

∑
k b

⊤
k zk : zk ≥ 0 ∀k,

∑
k A

⊤
k zk = ȳ} [LP Duality Theorem]

=⇒ ∃(z1 ≥ 0, ..., zK ≥ 0) :
∑
k A

⊤
k zk︸ ︷︷ ︸
yk

= ȳ,
∑
k b

⊤
k zk︸ ︷︷ ︸
ak

≤ a

=⇒ ∃y1, ..., yK , a1, ..., aK : ak ≥ maxx{y⊤k xk : Akx ≤ bk}, k ≤ K,
∑
k yk = ȳ

[LP Duality Theorem]

We see that if ȳ⊤x ≤ a ∈ R ∀x ∈ X, then the linear form ȳ⊤x can be decomposed into the sum of linear

forms y⊤k x with the sum of maxima of the forms on the respective sets Xk not exceeding a. The inverse

statement is evident.
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Exercise III.13. Let X ⊂ Rn be a nonempty polyhedral set given by polyhedral representation

X = {x : ∃u : Ax+Bu ≤ r}.

Build polyhedral representation of the epigraph of the support function of X. For non-polyhedral
extension, see Exercise IV.36.

Solution: We have

t ≥ ϕX(y) ⇐⇒ t ≥ Opt(P ) := maxx,u{y⊤x : Ax+Bu ≤ r}
⇐⇒ t ≥ Opt(D) := minλ

{
r⊤λ : λ ≥ 0, A⊤λ = y,B⊤λ = 0

}
[LP Duality Theorem; note that (P ) is feasible due to X ̸= ∅]

⇐⇒ ∃λ : r⊤λ ≤ t, λ ≥ 0, A⊤λ = y,B⊤λ = 0

[since by the above, (D) is solvable whenever t ≥ ϕX(y)]

and we end up with polyhedral representation of epi{ϕX}.

Exercise III.14. Compute in closed analytic form the support functions of the following sets:

1. The ellipsoid {x ∈ Rn : (x− c)⊤C(x− c) ≤ 1} with C ≻ 0

Solution: ϕ(y) =
√
y⊤C−1y+c⊤y

2. The probabilistic simplex {x ∈ Rn
+ :
∑
i xi = 1}

Solution: ϕ(y) = maxi≤n yi.

3. The nonnegative part of the unit ∥ · ∥p-ball: X = {x ∈ Rn
+ : ∥x∥p ≤ 1}, p ∈ [1,∞]

Solution: ϕ(y) = ∥[y]+∥q , where 1
p
+ 1
q
= 1 and [[y1; ...; yn]]+ = [max[y1; 0]; ...;max[yn, 0]].

4. The positive semidefinite part of the unit ∥ · ∥p,Sh norm: X = {x ∈ Sn+ : ∥x∥p,Sh ≤ 1}
Solution: ϕ(y) = ∥[y]+∥q,Sh, where 1

p
+ 1

q
= 1 and [y]+ is the “positive semidefinite part of y”

– the matrix obtained from symmetric matrix y by keeping intact all eigenvectors and nonnegative

eigenvalues, and zeroing out the negative eigenvalues (what is called the function [·]+ as applied to a

symmetric matrix, see section D.1.5).

5. The paraboloid {x ∈ Rn+1 : xn+1 ≥ 1
2

∑n
i=1 x

2
i } (n ≥ 1).

Solution: ϕ(y) =


−

∑n
i=1 y

2
i

2yn+1
, yn+1 < 0

0 , y = 0

+∞ , all other cases

15.3 Around subdifferentials

Exercise III.15. Let f be a convex function and x̄ ∈ Dom f ⊂ Rn. Prove that the property of
g ∈ Rn to be a subgradient of f at x̄ is local: the inequality

f(x) ≥ f(x̄) + g⊤(x− x̄) (∗)

hods true for all x ∈ Rn iff it holds true for all x in a neighborhood of x̄.

Solution: In one direction the claim is evident. Now assume that (∗) holds true for all x in a neighborhood

of x̄, and let us prove that it holds true for all x. Indeed, let f̄(x) = f(x)− f(x̄)− g⊤(x− x̄), so that f

is convex along with f by calculus of convexity. Validity of (∗) is a neighborhood of x̄ means that x̄ is

a local minimizer of f̄ : f̄(x) ≥ f̄(x̄) = 0 for all x from a neighborhood of x̄. By unimodality (Theorem

III.11.1 applied with Q = Rn and x∗ = x̄ to f̄ in the role of f) x̄ is a global minimizer of f̄ , so that

f̄(x) ≥ f̄(x̄) = 0 for all x. Recalling what f̄ is, we see that (∗) holds true for all x. ■

Exercise III.16. [subdifferentials of norms] Let ∥ · ∥ be a norm on Rn, and ∥ · ∥∗ be its conjugate
(see Fact III.13.4). Prove that
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1. The subdifferential of ∥ · ∥ taken at the origin is the unit ball B∗ of ∥ · ∥∗, or, which is the same,
the polar {

u : u⊤x ≤ 1∀(x : ∥x∥ ≤ 1)
}

of the unit ball B of the norm ∥ · ∥.
2. When x ̸= 0, the subdifferential of ∥·∥ taken at x is the set {u ∈ B∗ : u⊤x = ∥x∥}. In particular,

the subdifferential of ∥ · ∥ remains intact when replacing x with tx, t > 0, and is reflected w.r.t.
the origin when x is replaced with tx, t < 0.

Solution: 1: By Fact III.13.4, the Legendre transform of ∥ · ∥ is the characteristic function of B∗, so

that ∥ · ∥, being real-valued convex continuous (and thus lsc) function, by Proposition III.13.3 is the

Legendre transform of the characteristic function of the closed nonempty convex set B∗, or, which is

the same, ∥ · ∥ is the support function of B∗. By item 3 of Exercise III.10, ∥ · ∥ is the support function

of its subdifferential, taken at the origin, which also is a closed nonempty convex set. As we know from

Exercise III.10.4, the support functions of nonempty closed convex sets coincide iff the sets coincide, so

that the subdifferential of ∥ · ∥ taken at the origin is B∗. ■
2: Let x ̸= 0 and X be the subdifferential of ∥ · ∥ taken at x; this is a nonempty convex compact set

(Proposition III.12.10). When g ∈ X, we should have

g⊤(ty − x) ≤ ∥ty∥ − ∥x∥, t > 0,

which, after dividing both sides by t and passing to limit as t→ ∞, implies that g⊤y ≤ ∥y∥ for all y, so

that g ∈ B∗ = {h : h⊤y ≤ 1 ∀(y, ∥y∥ ≤ 1)} (see Fact III.13.4). On the other hand, for ϵ ∈ (0, 1) one has

g⊤[(1− ϵ)x− x] ≤ ∥(1− ϵ)x∥ − ∥x∥ = −ϵ∥x∥, implying thai g⊤x ≥ ∥x∥. Strict inequality is impossible

due to already proved g ∈ B∗, and we conclude that g⊤x = ∥x∥. Thus, X ⊂ {g ∈ B∗ : g⊤x = ∥x∥}. On

the other hand, when g ∈ B∗ is such that g⊤x = ∥x∥, we have for every y ∈ Rn

∥y∥ ≥ g⊤y = g⊤(y − x) + g⊤x = g⊤(y − x) + ∥x∥,

where the first inequality is due to g ∈ B∗. Thus, ∥x∥+ g⊤(y − x) ≤ ∥y∥ for all y, implying that g ∈ X.

■

Exercise III.17. [Shatten norms] Let p ∈ [1,∞]. The space Sn of symmetric n×n matrices can be
equipped with Shatten p-norms – matrix analogies of the standard ∥ · ∥p-norms on Rn. Specifically,
Shatten p-norm ∥ · ∥p,Sh of symmetric matrix X is defined as

∥X∥p,Sh = ∥λ(X)∥p,

where λ(X), as always, is the vector of eigenvalues of X.

1. Prove that Shatten norms indeed are norms, and the norm conjugate to ∥ · ∥p,Sh is ∥ · ∥q,Sh,
1
p
+ 1

q
= 1:

∥X∥q,Sh = max
Y

{Tr(XY ) : ∥Y ∥p,Sh ≤ 1} (15.3)

2. Verify that ∥ · ∥2,Sh is nothing but the Frobenius norm of X, and ∥X∥∞,Sh is the same as the
spectral norm of X.

Solution: 1: The facts that ∥·∥p,Sh is positive outside of the origin and satisfies ∥λX∥p,Sh = |λ|∥X∥p,Sh
are evident. Therefore, all we need to justify all claims in item 1 is to justify (15.3), which, as a byproduct,

implies convexity of ∥ · ∥p,Sh, which for positively homogeneous, of degree 1, functions implies the

Triangle inequality. To justify (15.3), let X = UΛU⊤ be the eigenvalue decomposition of X ∈ Sn, so

that Λ = Diag{λ(X)}. Denoting by Dg{Z} the vector of diagonal entries in matrix Z, we have

∀(Y ∈ Sn) : Tr(XY ) = Tr(UΛU⊤Y ) = Tr(Λ[U⊤Y U ]) = λ⊤(X)Dg{U⊤Y U}
≤ ∥λ(X)∥q∥Dg{U⊤Y U}∥p ≤ ∥λ(X)∥q∥λ(Y )∥p,

where the concluding inequality is due to Proposition III.14.3 as applied with f(x) = ∥x∥p. We see

that the right hand side in (15.3) is ≤ the left hand side. On the other hand, we can select g ∈ Rn

in such a way that ∥g∥p = 1 and λ⊤(X)g = ∥λ(X)∥q (since ∥ · ∥q is the conjugate of ∥ · ∥p). Setting
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Y = U Diag{g}U⊤, we get λ(Y ) = g, ∥Y ∥p,Sh = 1, and U⊤Y U = Diag{g} , whence by the above

computation, Tr(XY ) = λ⊤(X)λ(Y ) = ∥λ(X)∥q , so that the right hand side in (15.3) is ≥ the left hand

side. Thus, (15.3) does hold true. ■

2: Taken together, eigenvalue decomposition and the fact that multiplication of matrix from the left and

from the right by orthogonal matrices preserves the Frobenius norm (Fact D.2) demonstrate that the

Frobenius norm of a symmetric matrix is the same as ∥ · ∥2-norm of its vector of eigenvalues. The fact

that ∥ · ∥∞,Sh is the spectral norm is evident. ■

Exercise III.18. [chain rule for subdifferentials] Let Y ⊂ Rm and X ⊂ Rn be nonempty convex
sets, y ∈ Y , x ∈ X, let f(·) : Y → R be a convex function, and let A(·) : X → Y with A(x) = y.
Further, let K be a closed cone in Rn. A function f is called K-monotone on Y , if for y, y′ ∈ Y
such that y′ − y ∈ K it holds that f(y′) ≥ f(y), and A is called K-convex on X if for all x, x′ ∈ X
and λ ∈ [0, 1] it holds that λA(x) + (1− λ)A(x′)−A(λx+ (1− λ)x′) ∈ K.

Prove that

1. A is K-convex on X if and only if for every ϕ ∈ K∗ the real-valued function ϕ⊤A(x) is convex
on X.

Solution: Indeed, since K is closed, we have K = (K∗)∗, so that λA(X) + (1 − λ)A(x′) − A(λx +

(1− λ)x′) ∈ K if and only if λϕ⊤A(x) + (1− λ)ϕ⊤A(x′)− ϕ⊤A(λx+ (1− λ)x′) ≥ 0 for all ϕ ∈ K∗.

2. Let A be K-convex on X and differentiable at x. Let A′(x) denote the Jacobian of A at x. Prove
that

∀x ∈ X : A(x)− [A(x) +A′(x)[x− x]] ∈ K. (∗)

Solution: By item 1, for ϕ ∈ K∗ the function ϕ⊤A(x) is convex on X, and by the standard Calculus

it is differentiable at x with the derivative ϕ⊤A′(x). Therefore by Gradient inequality one has

∀x ∈ X : ϕ⊤
[
A(x)− [A(x) +A′(x)[x− x]]

]
= ϕ⊤A(x)− [ϕ⊤A(x) + ϕ⊤A′(x)[x− x]] ≥ 0,

and (∗) follows.

3. Let f be K-monotone on Y and let A be K-convex on X. Prove that the function f◦A (x) =
f(A(x)) is real valued and also convex on X.

Solution: Indeed, for x, x′ ∈ X and λ ∈ [0, 1] the points y = A(x), y′ = A(x′), w = λy + (1− λ)y′

and z = A(λx + (1 − λ)x′) belong to Y since Y is convex and A maps X into Y , and w − z ∈ K

since A is K-convex. Since f is K-monotone, w − z ∈ K implies that f(w) ≥ f(z). Besides this,

recalling what w is and that f is convex, λf(y) + (1 − λ)f(y′) ≥ f(w). The bottom line is that

λf(y) + (1− λ)f(y′) ≥ f(z), that is,

f◦A (λx+ (1− λ)x′) = f(z) ≤ λf(y) + (1− λ)f(y′) = λf◦A (x) + (1− λ)f◦A (x′).

The resulting inequality hods true for all x, x′ ∈ X and λ ∈ [0, 1], so that f◦A is convex on X.

4. Let f be K-monotone on Y . Prove that ∂f(y) ⊆ K∗, provided y ∈ intY .

Solution: Indeed, let g ∈ ∂f(y) and h ∈ K. Since y ∈ intY , we have y− th ∈ Y for small positive t,

and f(y−th) ≤ f(y) by K-monotonicity of f . Besides this, f(y−th) ≥ f(y)−tg⊤h due to g ∈ ∂f(y).

Thus, for all small positive t it holds

f(y) ≥ f(y)− tg⊤h,

implying that g⊤h ≥ 0. This relation holds true for every g ∈ ∂f(y) and h ∈ K, implying that

∂f(y) ⊆ K∗.

5. [chain rule] Let y ∈ intY , x ∈ intX; let f be K-monotone on Y , and let A be K-convex on X
and differentiable at x. Prove that

∂f◦A (x) = [A′(x)]⊤∂f(y) = {[A′(x)]⊤g : g ∈ ∂f(y)} (!)
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Solution: Let us first verify that the right hand side set in (!) is contained in the left hand side one.

Indeed, let g ∈ ∂f(y), x ∈ X, and y = A(x). We have

f◦A (x) = f(y) ≥ f(y) + g⊤[y − y] = f(y) + g⊤[A(x)−A(x)]

≥ f(y) + g⊤A′(x)[x− x] [since g ∈ K∗ and due to (∗)]
= f◦A (x) + g⊤A′(x)[x− x].

The resulting inequality holds true for all x ∈ X and g ∈ ∂f(y), implying that [A′(x)]⊤∂f(y)) ⊂
∂f◦A (x).

Now let us prove that the left hand side set in (!) is contained in the right hand side set, let it be called

D. y ∈ intY , so that ∂f(y) is a nonempty convex compact set; therefore D also is nonempty convex

compact set. Assume, on the contrary to what should be proved, that there exists e ∈ ∂f◦A (x) \D.

By Separation Theorem, there exists h ∈ Rn such that

h⊤e > α = max
z∈D

h⊤z = max
g∈∂f(y)

g⊤A′(x)h.

For small positive t from differentiability of A at x it follows that

yt := A(x+ th) = y + tA′(x)h+ ϵt, ∥ϵt∥2/t→ 0, t→ +0.

Since f is convex and real-valued in a neighbourhood of y, it is Lipschitz continuous, with some

constant L, in such a neighbourhood, which combines with the above relation to imply that

f◦A (x+ th) = f(yt) = f(y + tA′(x)h) + δt, δt/t→ 0, t→ +0,

whence

lim
t→+0

f◦A (x+ th)− f◦A (x)

t
= lim
t→+0

f(y + tA′(x)h)− f(y)

t
.

By Theorem III.12.12, the left hand side in this equality is maxd∈∂f◦A(x) d
⊤h (and is therefore

≥ e⊤h due to the origin of e), and the right hand side is maxg∈∂f(y) g
⊤A′(x)h = α. Thus, e⊤h ≤ α,

which is the desired contradiction.

Exercise III.19. Recall that the sum Sk(X) of k ≤ n largest eigenvalues of the X ∈ Sn is a convex
function of X, see Remark III.14.4. Point out a subgradient of Sk(·) at a point X ∈ Sn. As a special
case, find a subgradient of the maximal eigenvalue λmax(X) of X ∈ Sn treated as a function of X.

Solution: Let X = U Diag{λ(X}U⊤
be the eigenvalue decomposition of X. Setting

P = U Diag{1, ..., 1︸ ︷︷ ︸
k

, 0, ..., 0}U⊤
,

we get Tr(XP ) =
∑k
i=1 λk(X) = Sk(X). On the other hand, for X ∈ Sn we have

Tr(XP ) = Tr(XU Diag{1, ..., 1, 0, .., 0}U⊤
) = Tr([U

⊤
XU ] Diag{1, ..., 1, 0, ..., 0})

≤ sk(Dg{U⊤
XU}),

where, as always, sk(x) is the sum of k largest entries in a vector x. By Proposition III.14.3,

sk(Dg{U⊤
XU}) ≤ sk(λ(X)) = Sk(X). Thus,

∀X ∈ Sn : Sk(X) ≥ Tr(XP ) = Tr(XP ) + Tr(P [X −X]) = Sk(X) + Tr(P [X −X]).

Recalling what is the inner product on Sn, we conclude that P ∈ ∂Sk(X).

To get a subgradient of λmax(X), note that λmax(X) ≡ S1(X), so that the above computation says that

if e(X) is leading eigenvector of X (i.e., unit ∥ · ∥2-norm eigenvector of X with eigenvalue λmax(X)),

then e(X)e⊤(X) ∈ ∂λmax(X).
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15.4 Around Legendre transform

Exercise III.20. Compute Legendre transforms of the following univariate functions:

1. f(x) = − lnx, Dom f = (0,∞)

Solution: f∗(y) = supx>0[xy + lnx]. When y ≥ 0, the supremum is +∞ (look what happens when

x → +∞). When y < 0, the sufficient condition for some x > 0 to maximize ϕy(x) = xy + lnx is to

be a root of ϕ′y(x) (Theorem III.11.2 as applied to convex differentiable function −ϕy(·)). The equation

ϕ′y(x) = 0 reads y + 1/x = 0, resulting in x = −1/y and maxx>0 ϕy(x) = ϕy(−1/y) = − ln(−y) − 1.

Thus,

f∗(y) = − ln(−y)− 1, Dom f∗ = (−∞, 0).

2. f(x) = ex, Dom f = R.

Solution: Setting ϕy(x) = xy − ex, we have supx ϕy(x) = +∞ when y < 0 (look what happens when

x → −∞). When y = 0, we clearly have supx ϕy(x) = 0. Finally, when y > 0, the maximizer of ϕy(·),
same as in the previous item, can be found via Fermat rule – as a root of the equation ϕ′y(x) = 0. This

equation reads y − ex = 0, resulting in x = ln y and supx ϕy(x) = y ln y − y. Thus,

f∗(y) = y ln y − y, Dom f∗ = [0,∞); here, as always, 0 ln 0 = 0 by definition.

3. f(x) = x lnx, Dom f = [0,∞) (0 ln 0 = 0 by definition).

Solution: To maximize xy − x lnx over x ≥ 0 we can use the Fermat rule resulting in the equation

y − 1− lnx = 0. Thus, the maximizer is x = ey−1, resulting in

f∗(y) = ey−1, Dom f∗ = R.

We could get the same result without computation: from item 2 we know that the Legendre transform

of ex is y ln y − y, implying that the Legendre transform of x lnx− x is ey ; and linear perturbation of a

function (in our case, adding x to x lnx− x) results in shift of the Legendre transform.

4. f(x) = xp/p, Dom f = [0,∞); here p > 1.

Solution: f∗(y) = supx≥0[ϕy(x) := xy−xp/p]. When y ≤ 0, we clearly have supx≥0 ϕy(x) = ϕy(0) = 0.

When y > 0, the maximizer of ϕy(x) over x ≥ 0 is given by Fermat rule resulting in the equation

y = xp−1. Thus, for y > 0 we have supx≥0 ϕy(x) = y
1+ 1

p−1 −y
p

p−1 /p = yq/q, where q = p
p−1

, or, which

is the same, 1
p
+ 1
q
= 1. We end up with

f∗(y) = [y+]q/q, Dom f∗ = R; here y+ = max[y, 0], q = p
p−1

.

Exercise III.21. Compute Legendre transforms of the following functions:

• [log-barrier for nonnegative orthant Rn
+] f(x) = −

∑n
i=1 lnxi : intR

n
+ → R

Solution:

f∗(z) = sup
x>0

∑
i

[zixi + lnxi] =

{
−n−

∑
i ln(−zi), z < 0

+∞ , otherwise
,

thus, f∗(z) = f(−z)− n.

• [log-det barrier for semidefinite cone Sn+] f(x) = − lnDet(x) : intSn+ → R (start with proving
convexity of f).

Solution: Convexity of f was already established twice – first time via computing second order directional

derivative in section C.2.2, second time in chapter 14. We have

f∗(z) = sup
x≻0

[Tr(zx) + lnDet(x)] .

It is immediately seen that f∗(z) = +∞ unless z ∈ − intSn+. Indeed, restricting maximization over x ≻ 0
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by maximization over x ≻ 0 commuting with z and looking what happens when x and z are represented

in the orthonormal eigenbasis of z, we get

f∗(z) ≥ sup
ξ>0

[∑
i
ξiζi +

∑
i
ln ξi

]
,

where ζi are the eigenvalues of z, and from item 1 we know that the right hand side sup is +∞ unless all ξi
are negative. Now let z ≺ 0. In this case we can maximize the concave function Tr(zx)−f(x) = Tr(zx)+

lnDet(x) over x ≻ 0 by solving the Fermat equation; as we know from Example C.9 in section C.1.6,

∇f(x) = −x−1, so that the Fermat rule results in x = −z and f∗(z) = − lnDet(−z)− n = f(−z)− n.

Exercise III.22. [computing the Legendre transform of the log-barrier − ln(x2n − x21 − ... − x2n−1)
for Lorentz cone] Consider the optimization problem

max
x,t

{
ξ⊤x+ τt+ ln(t2 − x⊤x) : (t, x) ∈ X = {(t, x) : t >

√
x⊤x}

}
,

where ξ ∈ Rn, τ ∈ R are parameters. Is the problem convex9)? For what values of ξ, τ this problem
is solvable? What is the optimal value? Is it convex in the parameters?

Solution: Problem is convex, since the function f(t, x) = − ln(t2 − x⊤x) is convex (direct computation

of the second order directional derivative10); the domain of the problem is open. Therefore the problem

is solvable if and only if the Fermat system

ξ − f ′x(t, x) = 0 ⇐⇒ 2x
t2−x⊤x = ξ

τ − f ′τ (t, x) = 0 ⇐⇒ − 2t
t2−x⊤x = τ

(∗)

in variables t, x has a solution with t >
√
x⊤x; it follows that τ should be negative. Assuming that it is

the case, the second equation says that 1
t2−x⊤x = − τ

2t
, whence the first equation says that x = − t

τ
ξ.

It follows that

−
2t

τ
= t2 − x⊤x = t2 −

t2

τ2
ξ⊤ξ =

t2

τ2
(τ2 − ξ⊤ξ). (1)

In order for this equation be solvable one should have τ2 > ξ⊤ξ, which combines with τ < 0 to yield

that −τ >
√
ξ⊤ξ. Under the latter assumption, (1) implies that

t = −
2τ

τ2 − ξ⊤ξ
, (2)

whence also

x =
2ξ

τ2 − ξ⊤ξ
(3)

Thus, the space of parameters for which the problem is solvable is given by

−τ >
√
ξ⊤ξ,

the solution is given by (2) - (3), and the optimal value is (direct computation)

− ln(τ2 − ξ⊤ξ) + 2 ln 2− 2.

9 A maximization problem with objective f(·) and certain constraints and domain is called convex if

the equivalent minimization problem with the objective (−f) and the original constraints and

domain is convex.
10 intelligent reasoning: in the domain t >

√
x⊤x we have

f(t, x) = − ln t− ln(t− t−1x⊤x) = − ln t+ g(t−1x⊤x− t), where the function

g(s) =

{
− ln(−s), s < 0

+∞, s ≥ 0
is convex and nondecreasing. The function t−1x⊤x− t is convex in the

domain t > 0 as the perspective transform of x⊤x− 1. Now convexity of f is readily given by

calculus of convexity-preserving operations.
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The optimal value is convex in the parameters τ, ξ (by its origin, it is supremum of linear forms, param-

eterized by x, t, of the parameters τ, ξ).

Exercise III.23. Consider the optimization problem

max
x,y

{f(x, y) = ax+ by + ln(ln y − x) + ln(y) : (x, y) ∈ X = {(x, y) : y > exp{x}}} ,

where a, b ∈ R are parameters. Is the problem convex? For what values of a, b this problem is
solvable? What is the optimal value? Is it convex in the parameters?

Solution: The objective is concave (direct computation), the domain is convex, so that the problem is

convex; the domain of the problem is open. Therefore a, b correspond to a solvable problem if and only

if the Fermat system

f ′x(x, y) = 0 ⇐⇒ a = 1
ln y−x

f ′y(x, y) = 0 ⇐⇒ b = − 1
y

[
1 + 1

ln y−x

] (4)

in variables x, y has a solution with y > 0, ln y > x. From the first equation, a should be positive, and

if this is the case, the second equation says that b should be negative and y = − 1+a
b

. Thus, a should be

positive, b should be negative, and in this case the solution to (4) is

x = ln

(
−
1 + a

b

)
−

1

a
, y = −

1 + a

b
,

whence the optimal value is

(a+ 1) ln

(
−
1 + a

b

)
− ln a− a− 2.

This quantity, due to its origin, is supremum of linear forms of a, b and therefore is convex in the domain

a > 0, b < 0.

Exercise III.24. Compute Legendre transforms of the following functions:

• [“geometric mean”] f(x) = −
∏
i≤n x

πi
i : Rn

+ → R, where πi > 0 sum up to 1 and n > 1.

Solution: Convexity of f was established in Example III.10.5. The Legendre transform is

f∗(y) = sup
x≥0

{
∑
i

yixi +
∏
i

x
πi
i } (∗)

The right hand side is +∞ unless y < 0 (assuming that, say, y1 ≥ 0, look what happens when x

runs through the ray {[t; 1; ...; 1] : t ≥ 0}). Assuming y < 0 and setting z = −y, we have f∗(−z) =

supx≥0{
∏
i x
πi
i −

∑
i zixi}. What we are maximizing over x, is a homogeneous, of homogeneity degree

1, function of x ≥ 0 (recall that
∑
i πi = 1); therefore the supremum is either 0 or +∞, depending

on whether what we are maximizing is or is not nonpositive on Rn
+, or, which is the same, is or is

not nonpositive on the set Xz = {x ≥ 0 :
∑
i zixi = 1}. Making educated guess that the maximizer

xz of
∏
i x
πi
i over Xz is positive, Karush-Kuhn-Tucker optimality conditions (see discussion after

Proposition III.11.3) as applied to our maximization problem (rewritten as minx∈Xz [
∑
i zixi+f(x)])

result in the system

πi [
∏
j

x
πj

j ]

︸ ︷︷ ︸
α

x−1
i = λzi, i ≤ n,

∑
i

zixi = 1

in variables x, λ; x-component of a solution to this system, if positive, is the desired xz by Proposition

III.11.3. From the system,
∑
i zixi = λ−1α, that is, λ = α and therefore xi = πi/zi. The vector

[π1/z1; ...;πn/zn] indeed is positive and is therefore the desired maximizer xz of ϕ over Xz the

maximum being
∏
i[πi/zi]

πi −1. As we remember, f∗(−z) is +∞ when this maximum is positive and

is zero otherwise. The bottom line is that the domain of f∗ is {y ∈ Rn : y < 0,
∏
i[−πi/yi]

πi ≤ 1}
and in this domain f∗ is identically equal to 0.

‘
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• [“inverse geometric mean”] f(x) =
∏
i≤n x

−πi
i : intRn

+ → R, where πi > 0.

Solution: Convexity of f is stated in Example III.10.6. We have f∗(y) = supx>0[
∑
i yixi−

∏
i x

−πi
i ].

This supremum is +∞ when some of yi are positive (look what happens when, say, y1 > 0, x2 =

x3 = ... = xn = 1 and x1 → ∞). Assuming y ≤ 0, a necessary and sufficient condition for x > 0

to maximize the concave function ϕ(x) =
∑
i yixi −

∏
i

x
−πi
i︸ ︷︷ ︸

ψ(x)

on its domain intRn
+ is to solve the

Fermat equation ∇ϕ(x) = 0, that is, to satisfy

πiψ(x)x
−1
i = −yi, i ≤ n,

resulting in

f∗(y) =

{
−(1 +

∑
i πi)

[∏
i[−yi/πi]

πi
] 1
1+

∑
i πi , y ≤ 0

+∞, otherwise
.

Exercise III.25. Prove the following version of the results of section 13.2:

Suppose that f : Rn → R∪ {+∞} is a proper convex lsc function with open domain G,
and f is twice continuously differentiable, with positive definite Hessian, on G. Assume
also that
(!) Whenever y is such that the function y⊤x− f(x) is, as a function of x, bounded from
above, the function achieves its maximum over x.
Prove that the domain G∗ of the Legendre transform f∗ of f is an open convex set, f∗ is
twice continuously differentiable, with positive definite Hessian, on G∗, and the mappings
x 7→ ∇f(x), y 7→ ∇f∗(y) are inverse to each other one-to-one correspondences between
G and G∗.

Hint: Use Implicit Function Theorem (Theorem IV.21.5).

Solution: When x̄ ∈ G, the gradients, taken at x̄, of the functions ϕp(x) =
∂f(x)
∂xp

, 1 ≤ p ≤ n, are linearly

independent (as these gradients are the columns of the Hessian, taken at x̄, of f , and this Hessian is

positive definite and thus is nonsingular). Applying the Implicit Function Theorem, we conclude that

the image G∗ of G under the mapping x 7→ ∇f(x) is open, and the mapping establishes one-to-one

correspondence, with a continuously differentiable inverse, between an open neighbourhood of x̄ and

an open neighbourhood of ∇f(x̄). Besides this, the mapping x 7→ ∇f(x) maps different points of G

into different points of G∗; indeed, assuming ∇f(x) = ∇f(x′) =: d with x, x′ ∈ G, both x and x′

are, by the Fermat rule, minimizers of the strictly convex function f(x) − d⊤x, whence x = x′ as

the minimizer of a strictly convex function is unique. Next, by (!) combined with the Fermat rule,

G∗ is exactly the set Dom f∗ of those d for which the function d⊤x − f(x) is bounded from above.

Thus, the mapping x 7→ ∇f(x) establishes one-to-one continuously differentiable correspondence, with

continuously differential inverse d → g(d), between G and the open set Dom f∗ = G∗ . By item C

in section 13.2, ∇f(g(y)) = y implies that g(y) ∈ ∂f∗(y). Thus, f∗ is a convex lsc function with

open domain allowing for a continuously differentiable selection y 7→ g(y) of subgradients, whence f∗

is differentiable with ∇f(y) = g(y). Indeed, for y ∈ G∗, by convexity of f , for small t > 0 we have

h⊤g(y+ th) ≥ Df∗(y)[h] ≥ h⊤g(y− th); passing to limit as t→ +0, we get Df∗(y)[h] ≡ h⊤g(y). Thus,

first order partial derivatives of f∗ – they are just the entries of g(·) and are continuous on G∗, whence

f∗ is continuously differentiable on the open convex domain G∗ with continuously differentiable gradient

∇f∗(·) ≡ g(·), which is the inverse of the mapping x 7→ ∇f(x) : G→ G∗.

Exercise III.26. The goal of this exercise is to investigate the relation between smoothess of a
convex function and strong convexity of its Legendre transform.
Just for starters:

1. Let ∥ · ∥ be a norm on Rn. Recall that unit ball of the conjugate norm ∥y∥∗ = maxx{y⊤x :
∥x∥ ≤ 1} is the polar of the unit ball of ∥ · ∥, and the norm conjugate to ∥ · ∥∗ is the norm ∥ · ∥
itself. Your task is to prove that the functions 1

2
∥x∥2 and 1

2
∥d∥2∗ are Legendre transforms of each

other.
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Solution: We have

sup
x

{d⊤x−
1

2
∥x∥2} = sup

t
sup
x

{td⊤f −
1

2
∥x∥2t2} = sup

x̸=0

1

2

[d⊤x]2

∥x∥2
=

1

2
max2x{d⊤x : ∥x∥ ≤ 1} =

1

2
∥d∥2∗.

The subsequent tasks need certain preamble.
Smooth convex functions. Let f be a convex function, ∥·∥ be a norm on Rn, and L be a nonnegative
real. We say that f is (L, ∥ · ∥)-smooth, if Dom f = Rn and

∀(x, z ∈ Rn, e ∈ ∂f(x)) : f(z) ≤ f(x) + e⊤[z − x] +
L

2
∥z − x∥2.

It is easily seen that a convex function f : Rn → R is (L, ∥·∥)-smooth if and only if it is continuously
differentiable, and the mapping x 7→ ∇f(x) is Lipschitz continuous, with constant L, from the norm
∥ · ∥ to the norm ∥ · ∥∗:

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ ∀x, y

same as if and only if f is continuously differentiable and

[x− y]⊤[∇f(x)−∇f(y)] ≤ L∥x− y∥2 ∀x, y.

A twice continuously differentiable function f : Rn → R is (L, ∥ · ∥)-smooth if and only if 0 ≤
d2

dt2

∣∣
t=0

f(x+ th) ≤ L∥h∥2 for all x, h.

Example: Convex quadratic function f = 1
2
x⊤Qx− q⊤x+ c (Q ⪰ 0) is (L, ∥ · ∥2)-smooth whenever

the eigenvalues of Q are upper-bounded by L.
Strongly convex functions. Let g : Rn → R ∪ {+∞} be a proper convex lsc function, ∥ · ∥∗ be the
conjugate of a norm ∥ · ∥, and L be a positive real. We say that g is (L, ∥ · ∥∗)-strongly convex, if
for every ȳ ∈ Dom g it holds

∀(y ∈ Rn, e ∈ ∂g(ȳ)) : g(y) ≥ g(ȳ) + [y − ȳ]⊤e+
1

2L
∥y − ȳ∥2∗.

It can be proved that a proper convex lsc function g is (L, ∥ · ∥∗)-strongly convex if and only if

[e′ − e]⊤[y′ − y] ≥ 1

L
∥y′ − y∥2∗ ∀(y, y′ ∈ Dom g, e ∈ ∂g(y), e′ ∈ ∂g(y′))

A twice continuously differentiable on rintDom g convex lsc function g is (L, ∥ · ∥∗)-strongly convex

if and only if d2

dt2

∣∣
t=0

g(y+ th) ≥ L−1∥h∥2∗ for all y ∈ rintDom g and all h from the linear subspace

parallel to Aff(Dom g).
Example: Convex quadratic form f(x) = 1

2
x⊤Qx− q⊤x+ c : Rn → R is (L, ∥ · ∥∗)-strongly convex

if and only if Q ≻ 0 and all eigenvalues of Q are lower-bounded by L−1.
Note: When f is convex quadratic form with the matrix of the quadratic part equal to Q ≻ 0, the
Legendre transform f∗ of f is convex quadratic form with the matrix of the quadratic part equal to
Q−1.
From the examples above, a quadratic form with positive definite matrix of the quadratic part, the
form is (L, ∥ · ∥2)-smooth if and only if the Legendre transform f∗ of f is (L, ∥ · ∥2)-strongly convex.

The point of the exercise is to justify the following far-reaching extension of the latter observation:

The Legendre transform f∗ of an (L, ∥ · ∥)-smooth convex function f : Rn → R is
(L, ∥ ·∥∗)-strongly convex. Vice versa, if the Legendre transform f∗ of a proper convex lsc
function f : Rn → R ∪ {+∞} is (L, ∥ · ∥∗)-strongly convex, then f is (L, ∥ · ∥)-smooth.

2. Justify the above claim.

Solution: Justifying the first claim: Let f : Rn → R be (L, ∥ · ∥)-smooth convex function, and let

us prove that f∗ is (L, ∥ · ∥∗)-strongly convex. Let d̄ ∈ Dom f∗ be such that ∂f∗(d̄) ̸= ∅, and let

x̄ ∈ ∂f∗(d̄). By item C in section 13.2, x̄ is a maximizer over x ∈ Rn of the function d̄⊤x − f(x),

whence f∗(d̄) = d̄⊤x̄−f(x̄). Besides this, as x̄ ∈ ∂f∗(d̄), d̄ is a maximizer of d⊤x̄−f∗(d) over d, whence
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d̄ ∈ ∂f(x̄) by the same item C in section 13.2. Consequently, f(x) ≤ f(x̄) + d̄⊤[x− x̄] + L
2
∥x− x̄∥2 (as

f is (L, ∥ · ∥)-smooth), whence

f∗(d) = supx[d
⊤x− f(x)] ≥ supx{d⊤x− f(x̄)− d̄⊤[x− x̄]− L

2
∥x− x̄∥2}

= supx{[d− d̄]⊤[x− x̄]− L
2
∥x− x̄∥2}+ d⊤x̄− f(x̄) = 1

2L
∥d− d̄∥2∗ + d⊤x̄− f(x̄)

= 1
2L

∥d− d̄∥2∗ + [d− d̄]⊤x̄+ [d̄⊤x̄− f(x̄)] = f∗(d̄) + [d− d̄]⊤x̄+ 1
2L

∥d− d̄∥2∗

(we have used the fact that the Legendre transform of L
2
∥ · ∥2 is 1

2L
∥ · ∥2∗). Thus,

f∗(d) ≥ f∗(d̄) + x̄⊤[d− d̄] +
1

2L
∥d− d̄∥2

whenever x̄ ∈ Argmaxx[ȳ
⊤x − f(x)] = ∂f∗(ȳ) (the latter relation is again given by item C in section

13.2). Thus, f∗ is (L, ∥ · ∥∗)-strongly convex.

Justifying the second claim: Let f∗ be (L, ∥ · ∥∗)-strongly convex, and let us prove that f is (L, ∥ · ∥)-
smooth. Let us prove, first, that Dom f = Rn. Indeed, as f is proper convex lsc, it is the Legendre

transform of f∗, Selecting d̄ ∈ rintDom f∗ and ē ∈ ∂f∗(d̄), we have

f∗(d) ≥ f∗(d̄) + ē⊤[d− d̄] +
1

2L
∥d− d̄∥2∗,

implying that for every x the function x⊤d − f∗(d) is bounded from above, and thus Dom(f∗)∗ =

Dom f = Rn. Now let x̄ ∈ Rn and d̄ ∈ ∂f(x̄). Then x̄ is a maximizer of d̄⊤x − f(x) over x, whence

d̄ ∈ Dom f∗, f(x̄) = d̄⊤x̄ − f∗(d̄), and x̄ ∈ ∂f∗(d̄) by item C in section 13.2. As f∗ is strongly convex

and x̄ ∈ ∂f∗(d̄), we have f∗(d) ≥ f∗(d̄) + x̄⊤[d − d̄]⊤ + 1
2L

∥d − d̄∥2∗ for every d. Therefore, as f is the

Legendre transform of f∗, we have

f(x) = supd[d
⊤x− f∗(d)] ≤ supd

{
d⊤x− f∗(d̄)− x̄⊤[d− d̄]− 1

2L
∥d− d̄∥2∗

}
= supd

{
[d− d̄]⊤[x− x̄]− 1

2L
∥d− d̄∥2∗

}
+ d̄⊤[x− x̄] + [d̄⊤x̄− f∗(d̄)]

= L
2
∥x− x̄∥2 + [x− x̄]⊤d̄+ f(x̄).

Thus,

f(x) ≤ f(x̄) + [x− x̄]⊤d̄+
L

2
∥x− x̄∥2.

The resulting inequality holds true for every x ∈ Rn and every d̄ ∈ ∂f(x̄), implying that f is (L, ∥ · ∥)-
smooth.

Your concluding task is as follows:

3. Verify that the function f(x) = ln(
∑n
i=1 e

xi) is (1, ∥ · ∥∞)-smooth, compute its Legendre trans-
form f∗, and make conclusions about strong convexity of f∗ (the latter plays important role
in the design of proximal First Order algorithms for minimization of convex functions over the
probabilistic simplex).

Solution: Direct computation shows that setting pi = exi/(
∑
j e
xj ), so that pi > 0 and

∑
i pi = 1,

we have d2

dt2

∣∣
t=0

f(x+ th) =
∑
i pih

2
i − (

∑
i pihi)

2; convexity of f was established in Example III.10.4.

We see that d2

dt2

∣∣
t=0

f(x+ th) ≤
∑
i pih

2
i ≤ maxi h

2
i = ∥h∥2∞, implying that f is (1, ∥ · ∥∞)-smooth. To

compute the Legendre transform f∗ of f , note that when di > 0 and
∑
i di = 1, the solution to the

problem maxx[dT x − f(x)] can be found by Fermat rule and is xi = ln(di); thus, Dom f∗ contains the

relative interior {d > 0,
∑
i di = 1} of the probabilistic simplex ∆ = {d ∈ Rn : d ≥ 0,

∑
i di = 1}, and

f∗(d) =
∑
i di ln(di) on rint∆. A natural guess is that Dom f∗ = ∆ and f∗ =

∑
i di ln(di) everywhere

on ∆. To verify this guess, note that when d ∈ rbd∆, so that the entries in d are nonnegative, sum up

to 1, and some of di are zeros, the evident way to maximize
∑
i dixi − ln(

∑
i e
xi ) is to push xi such

that di = 0 to −∞, which reduces the maximization to maximizing
∑
i∈I dixi − ln(

∑
i∈I e

xi ), with

I = {i : di > 0}. This problem we have already solved, and we get f∗(d) =
∑
i di ln(di) everywhere on

∆ (here, as always, 0 ln(0) is set to 0 = lims→+0 s ln s). It remains to verify that f∗ = +∞ outside of

∆. Indeed, when d is not nonnegative, say, d1 < 0, the function fd(x) =
∑
i dixi − ln(

∑
i e
xi ) is not

bounded from above (look what happens when x1 → −∞ and xi = 0, i ≥ 2). When d is nonnegative

and
∑
i di ̸= 1, we clearly have fd([s; ...; s]) → ∞ as s → ∞ when

∑
i di > 1, and as s → −∞ when
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i di < 1. The bottom line is that f∗(d) =

∑
i di ln(di) : ∆ → R, and this function is (1, ∥ · ∥1)-strongly

convex.

15.5 Miscellaneous exercises

Exercise III.27. [multi-factor Hölder inequality]
Given positive reals q1, ..., qn and p ∈ [1,∞), we define the weighted p-norm of a vector x ∈ Rn

as

|x|p =

(
n∑
j=1

qj |xj |p
)1/p

This clearly is a norm which becomes the standard norm ∥ · ∥p when qj = 1, j ≤ n. Same as ∥x∥p,
the quantity |x|p has limit, namely, ∥x∥∞, as p→ ∞, and we define | · |∞ as this limit.

Now let pi, i ≤ k, be positive reals such that

k∑
i=1

1

pi
= 1.

1. Prove that for nonnegative reals a1, ..., ak one has

a1a2...ak ≤ ap11
p1

+ . . .+
a
pk
k

pk

or, equivalently (set bi = apii )

∀b ≥ 0 : b
1/p1
1 b

1/p2
2 ...b

1/pk
k ≤ b1

p1
+
b2
p2

+ ...+
bk
pk
.

Note: the special case pi = k, i ≤ k, of this inequality is the inequality between the geometric
and the arithmetic means.

Solution: Set λi = 1/pi, so that λi ≥ 0 and
∑
i λi = 1. The claim is evident if some of ai ≥ 0 are

equal to 0. Assuming ai > 0 for all i and taking into account that ln(s) is concave on the positive

ray, we have ∑
i

λi ln(a
pi
i ) ≤ ln

(∑
i

λia
pi
i

)
whence, taking the exponents of both sides and recalling what λi are,

a1...ak ≤
∑
i

a
pi
i

pi
. ■

2. Let x1, ..., xk ∈ Rn, and let x1x2 . . . xk be the entrywise product of x1, ..., xk:

[x1x2 . . . xk]j = x1jx
2
j · · ·xkj , 1 ≤ j ≤ n.

Prove that

|x1x2 . . . xk|1 ≤
k∑
i=1

|xii|pipi
pi

. (∗)

Solution: Set x = x1x2 . . . xk and yij = q
1/pi
j |xij |, so that

∏k
i=1 y

i
j = qj

∏k
i=1 |x

i
j | due to

∑
i 1/pi = 1.

We have

qj |xj | = qj
∏
i |x

i
j | =

∏
i y
i
j

≤
∑
i[y

i
j ]
pi/pi [by item 1]

=
∑
i qj |x

i
j |pi/pi, [by definition of yij ]

that is, qj |xj | ≤
∑k
i=1 qj |x

i
j |pi/pi. Summing up these inequalities over j = 1, ..., n, we get (∗). ■
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3. Prove multi-factor Hölder inequality : for vectors xi ∈ Rn, i ≤ k, one has

|x1x2 . . . xk|1 ≤ |x1|p1 |x
2|p2 · · · |x

k|pk (#)

Solution: (#) clearly holds true when some of xi are zero vectors. Assuming |xi|pi > 0 for all i,

observe that both sides in (#) are positively homogeneous, of degree 1, w.r.t. every one of xi: when

multiplying xi by t, both sides are multiplied by |t|. As a result, to verify (#) for nonzero xi is the

same as to verify this inequality when |xi|pi = 1 for all i. But in this case, invoking item 2,

|x1x2 . . . xk|1 ≤
k∑
i=1

|xi|pipi/pi =
k∑
i=1

1/pi = 1,

exactly as stated by (#) in the case of |xi|pi = 1, i ≤ k. ■

Note: we have proved (#) for positive reals p1, ..., pk with
∑
i 1/pi = 1. From the reasoning it is

immediately seen that the (#) remains true when pi = ∞ for some i (and, of course, 1/pi is set to
0 for these i).

Exercise III.28. [Muirhead’s inequality]
For any u ∈ Rn and z ∈ Rn

++ := {z ∈ Rn : z > 0} define

fz(u) =
1

n!

∑
σ

zu1
σ(1) · · · z

un
σ(n),

where the sum is over all permutations σ of {1, . . . , n}. Show that if P is a doubly stochastic n× n
matrix, then

fz(Pu) ≤ fz(u), ∀(u ∈ Rn, z ∈ Rn
++).

Solution: For z ∈ Rn
++, fz(u) clearly is convex and permutation symmetric function of u; it remains to

apply Lemma III.14.1.

Exercise III.29. Prove that a convex lsc function f with polyhedral domain is continuous on its
domain. Does the conclusion remain true when lifting either one of the assumptions that (a) convex
f is lsc, and (b) Dom f is polyhedral?

Solution: We should prove that if Dom f is polyhedral, xi ∈ dom f converge to x̄ as i → ∞, then

f(x) = limi→∞ f(xi). Passing to a subsequence, it suffices to prove this relation when the sequence

f(xi) has a limit (finite or infinite) as i→ ∞. Finally, restricting f from Dom f onto the intersection of

Dom f with appropriate box, the situation reduces to the one where Dom f is polyhedral and bounded.

Let V = Ext(Dom f); then V is nonempty finite set: V = {v1, ..., vN}, and Dom f = Conv(V ) (by

Krein-Milman Theorem). Since f is lsc, we have s := limi→∞ f(xi) ≥ f(x̄). We want to prove that

in fact s = f(x̄); given that s ≥ f(x̄), all we need is to lead to a contradiction the assumption that

s > f(x̄). Assume that s > f(x̄); then for some δ > 0 we have f(xi) ≥ f(x̄) + δ for all but finitely many

values of i. Representing xi as a convex combination
∑N
j=1 λ

i
jvj of vj and passing to a subsequence, we

can assume that the N sequences {λij}i≥1 have limits λj as i → ∞, so that λj ≥ 0,
∑
j λj = 1, and

x̄ = limi→∞ xi =
∑
j λjvj , and, in addition, that f(xi) ≥ f(x̄) + δ for all i. Now let J = {j : λj > 0}.

For every θ > 1, we have

xθi := x̄+ θ(xi − x̄) =

N∑
j=1

λij,θvj , λ
i
j,θ = λj + θ[λij − λj ].

Note that
∑
j λ

i
j,θ = 1 for all i, same as λij,θ ≥ 0 for all i provided that j ̸∈ J . When j ∈ J , we have

λj > 0, and therefore λij,θ ≥ 0 for all large enough values of i, due to λj − λij → 0, i→ ∞. The bottom

line is that for fixed θ, all coefficients λij,θ, 1 ≤ j ≤ N , are nonnegative for all large enough values of i.

Consequently, xθi for large i is a convex combination of vj and therefore belongs to Dom f . For i such

that xθi ∈ Dom f by convexity of f we have

δ ≤ f(xi)− f(x̄) ≤ θ−1[f(xθi )− f(x̄)]
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due to xθi − x̄ = θ[xi − x̄]. We conclude that for every θ > 1 and all large enough values of i we have

xθi ∈ Dom f and f(xθi ) ≥ f(x̄) + θδ. As a result, f is not bounded from above on Dom f , which is the

desired contradiction, since maxx∈Dom f f(x) = maxj≤N f(vj) < ∞ by convexity of f combined with

Dom f = Conv{v1, ..., vN}. ■

A convex non-lsc function with polyhedral domain can be discontinuous, e.g., f(x) =

{
1 , x = 0

0 , 0 < x ≤ 1
,

Dom f = [0, 1]. Similarly, a convex lsc function with non-polyhedral domain, even a closed one, can be

discontinuous. To give an example, consider the following construction: we take the convex hull E of

the set {[x; y; 0] : (x − 1)2 + y2 ≤ 1} ∪ {[0; 0;−1]} and set E+ = {[x; y; t] : ∃τ : [x; y; τ ] ∈ E & t ≥ τ}.
Clearly, E+ is closed and convex and is the epigraph of some function f with the domain D = {[x; y] :
(x − 1)2 + y2 ≤ 1}. Since E+ = epi{f} is closed and convex, f is convex lsc. At the same time, the

intersection of E+ and the line {[0; 0; t] : t ∈ R} is the ray {[0; 0; t] : t ≥ −1}, so that f(0, 0) = −1, and

the intersection of E+ and a line {[a; b; t] : t ∈ R} with a > 0, b satisfying (a − 1)2 + b2 = 1 is the ray

{[a; b; t] : t ≥ 0}, that is, f(a, b) = 0 whenever [a; b] is a boundary point of D distinct from [0; 0]. Since

the boundary point [0; 0] of D is the limit of a sequence of distinct from it boundary points of D, f is

not continuous on D.

Exercise III.30. Let a1, ..., an > 0, α, β > 0. Solve the optimization problem

min
x

{
n∑
i=1

ai
xαi

: x > 0,
∑
i

xβi ≤ 1

}

Solution: Passing to variables yi = xβi , we convert the problem to a convex program

min
y

{∑
i

aiy
−α/β
i : y > 0,

∑
i

yi ≤ 1

}

KKT conditions (where we guess that the constraint is active) read

−α
β
aiy

−α
β
−1

i + λ = 0, i = 1, ..., n∑
i

yi = 1

whence

yi =
a

β
α+β

i∑
j

a
β

α+β

j

=⇒ xi =
a

1
α+β

i(∑
j

a
β

α+β

j

)1/β

Since the problem in y-variables is convex, the KKT point we have found is a globally optimal solution.

The optimal value is ∑
j

a
β

α+β

j


α+β
β

.

Exercise III.31. [computational study] Consider the following situation: there are K ”radars” with
k-th of them capable to locate targets within ellipsoid Ek = {x ∈ Rn : (x− ck)

⊤Ck(x− ck) ≤ 1}
(Ck ≻ 0); the measured position of target is

yk = x+ σkζk,

where x is the actual position of the target, and ζk is the standard (zero mean, unit covariance)
Gaussian observation noise; ζk’s are independent across k. Given measurements y1, ..., yK of target’s
location x known to belong to the “common field of view” E = ∩kEk of the radars, which we
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assume to possess a nonempty interior, we want to estimate a given linear form e⊤x of x by using
linear estimate

x̂ =
∑
k

h⊤
k yk + h.

We are interested in finding the estimate (e.g., the parameters h1, ..., hK , h) minimizing the risk

Risk2 = max
x∈E

√
E

{[
e⊤x−

∑
k
h⊤
k [x+ σkζk]− h

]2}

1. Pose the problem as convex optimization program

Solution: We have

Risk22 = maxx∈E E
{[(

[e−
∑
k hk]

⊤x− h
)
−
(∑

k σkh
⊤
k ζk

)]2∥∥∥
= maxx∈E

[[
e−

∑
k hk]

⊤x− h
]2

+
∑
k σ

2
kh

⊤
k hk

]
=
∑
k σ

2
kh

⊤
k hk +maxx∈E

[
[e−

∑
k hk]

⊤x− h
]2
.

As a result, denoting by ϕE the support function of E, the problem of minimizing Risk22 can be

posed as convex optimization problem

Opt = min
h1,...,hK ,h,t

{
t2 +

∑
k

σ2
kh

⊤
k hk : ϕE(e−

∑
k

hk) ≤ t+ h, ϕE(
∑
k

hk − e) ≤ t− h

}

By Exercise III.12.4, we have

ϕE(g) = min
g1,...,gK

{∑
k

ϕEk
(gk) :

∑
k

gk = g

}
,

and by Exercise III.14.1,

ϕEk
(g) =

√
gC−1

k g+g⊤ck,

so that the problem of interest becomes

Risk22 = min
hk,gk,fk,k≤k,h,t

t
2 +

∑
k

σ2
kh

⊤
k hk :

∑
k[∥C

−1/2
k gk∥2+c⊤k gk] ≤ t+ h,∑

k gk +
∑
k hk = e∑

k[∥C
−1/2
k fk∥2+c⊤k fk] ≤ t− h,

−
∑
k fk +

∑
k hk = e


2. Process the problem numerically and look at the results.

Recommended setup:

• K = 3, n = 2, [c1, c2, c3] =

[
1.000 −0.500 −0.500
0 0.866 −0.866

]
,

C1 =

[
0.2500 0

0 1.5000

]
, C2 =

[
1.1875 0.5413
0.5413 0.5625

]
, C3 =

[
1.1875 −0.5413

−0.5413 0.5625

]
• σ1 = 0.1, σ2 = 0.2, σ3 = 0.3

• e = [1; 1]/
√
2.
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Figure 15.1. 3 radars and their common field of view (dotted)

Solution: Our results are as follows:

• Risk2 = 0.0852, [h1, h2, h3] =

[
0.5130 0.1283 0.0570

0.5136 0.1284 0.0571

]
, h = 0.0010

Exercise III.32. For any k ≤ m and X ∈ Sm, recall that Sk(X) denotes the sum of k largest
eigenvalues of the matrix X. Given X ∈ Sm, define R[X] :=

{
V ⊤XV : V ∈ Om

}
where Om =

{V ∈ Rm×m : V V ⊤ = Im} is the set of all m ×m orthogonal matrices. Prove that for any two
symmetric matrices X,Y ∈ Sm, we have

Y ∈ Conv(R[X]) if and only if Sk(Y ) ≤ Sk(X) for all k < m and Tr(Y ) = Tr(X).

Solution: In one direction: suppose Y ∈ Conv(R[X]), and let us prove that Sk(Y ) ≤ Sk(X), k ≤M , with

Sm(Y ) = Sm(X). Observe that a rotation X 7→ V ⊤XV , V ∈ Om, as every similarity transformation

X 7→ Z−1XZ, preserves the vector of eigenvalues. It follows that the linear function Tr(Z) = Sm(Z)

is equal to Sm(X) on the entire R[X] and is therefore equal to the same Sm(X) on Conv(R[X]). The

bottom line is that Tr(Y ) = Sm(Y ) = Sm(X) = Tr(X). Next, by the above argument Sk(Z) is identically

equal to Sk(X) on the entire R[X], and since Sk(·) is convex (see chapter 14), we conclude that Sk(·) is
≤ Sk(X) everywhere on Conv(R[X]), whence Sk(Y ) ≤ Sk(X), k ≤ m.

In the opposite direction: let Sk(Y ) ≤ Sk(X), k ≤ m, and Sm(Y ) = Sm(X). By Majorization Prin-

ciple, λ(Y ) = πλ(X) with doubly stochastic π. By Birkhoff Theorem (Theorem II.7.7), π is a convex

combination of permutation matrices Pi: π =
∑
i αiPi with αi ≥ 0 summing up to 1. Consequently,

λ(Y ) =
∑
i αiPiλ(X), or, which is clearly the same, Diag{λ(Y )} =

∑
i αiPiDiag{λ(X)}P⊤

i . Next,

X = U Diag{λ(X)}U⊤ and Y = V Diag{λ(Y )}V ⊤ with U, V ∈ Om. The bottom line is

Y = V Diag{λ(Y )}V ⊤ = V
[∑

i αiPiDiag{λ(X)}P⊤
i

]
V ⊤ = V

[∑
i αiPiU

⊤XUP⊤
i

]
V ⊤

=
∑
i αi V PiU

⊤︸ ︷︷ ︸
=:W⊤

i

XWi

The matrices Wi are products of matrices form Om and thus Wi ∈ Om, and we conclude that Y ∈
Conv(R[X]). ■
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24.1 Around Conic Duality

Exercise IV.1. Given Linear Dynamical System

x0 = 0
xt+1 = Axt +But, t = 0, 1, . . . , N − 1

(LDS)

(A : n× n,B : n×m) with controls ut subject to the “energy constraints”

∥ut∥2 ≤ 1, 0 ≤ t < N, (EN)

pose the problem of minimizing f⊤xN (f is a given vector) as a conic problem on the product of
Lorentz cones, write down the conic dual of this problem and answer the following questions:

1. Is the problem essentially strictly feasible?
2. Is the problem bounded?
3. Is the problem solvable?
4. Is the dual problem feasible?
5. Is the dual problem solvable?
6. Are the optimal values equal to each other?
7. What do the optimality conditions say?

Solution: Relation ∥u∥2 ≤ 1 with u ∈ Rm is equivalent to [u; 1] ∈ Lm+1, so that the problem of interest

in the conic form reads

min
x,u,r

{f⊤xN : x0 = 0, xt+1 = Axt +But, 0 ≤ t ≤ N − 1, [ut; 1] ∈ Lm+1, 0 ≤ t ≤ N − 1} (P )

To get the dual problem, we denote by st ∈ Rn the vectors of Lagrange multipliers for the state

constraints xt+1 −Axt−But = 0, by s−1 the vector of Lagrange multipliers for the equality constraints

x0 = 0 and by [yt; zt] ∈ Lm+1
∗ = Lm+1 – the Lagrange multipliers for the conic constraints. Aggregating

constraints of (P ) with multipliers as the weights, we get the aggregated constraint

s⊤−1x0 +
∑N−1

t=0
s⊤t [xt+1 −Axt −But] +

∑N−1

t=0
[y⊤t ut + zt] ≥ 0,

or, which is the same, the constraint

s⊤N−1xN + [sN−2 −A⊤sN−1]
⊤xN−1 + [sN−3 −A⊤sN−2]

⊤xN−2 + . . .+ [s−1 −A⊤s0]⊤x0

+
∑N−1
t=0 [yt −B⊤st]⊤ut ≥ −

∑N−1
t=0 zt

(∗)

To get the dual problem, we add to the restrictions ∥yt∥2 ≤ zt (that is, restrictions [yt; zt] ∈ Lm+1)

the restriction that the left hand side in (∗) identically in x’s and u’s is f⊤xN and maximize under this
restriction the right hand side in (∗). Thus, the dual problem is

max
yt,zt,st

{
−
∑N−1

t=0
zt :

sN−1 = f,A⊤st+1 = st, −1 ≤ t ≤ N − 2,
yt = B⊤st, 0 ≤ t ≤ N − 1, ∥yt∥2 ≤ zt, 0 ≤ t ≤ N − 1

}
(D)

An optimal solution to the dual problem is evident:

st = [AN−1−t]⊤f, −1 ≤ t ≤ N − 1, yt = B⊤[AN−1−t]⊤f, zt = ∥B⊤[AN−1−t]⊤f∥2,
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the optimal value is

−
∑N−1

t=0
∥B⊤[AN−1−t]⊤f∥2.

The answers to the remaining questions are as follows:

1. Is the problem essentially strictly feasible? – Yes, (P ) is essentially strictly feasible, an essentially

strictly feasible solution being, e.g. ut = 0, 0 ≤ t ≤ N − 1, xt = 0, 0 ≤ t ≤ N

2. Is the problem bounded? – Yes, since the feasible set clearly is bounded

3. Is the problem solvable? – Yes, as every feasible problem with bounded feasible set (this set is

automatically closed, and therefore the linear – and thus continuous – objective attains its minimum

on this set)

4. Is the dual problem feasible? – Yes, by Conic Duality Theorem (not speaking about the fact that we

see feasible solution by naked eyes)

5. Is the dual problem solvable? – Yes, by Conic Duality Theorem (not speaking about the fact that we

see the optimal solution by naked eyes)

6. Are the optimal values equal to each other? – Yes, by Conic Duality Theorem

7. What do the optimality conditions say? – They say that at the primal-dual optimum the primal

slacks [ut; 1] are orthogonal to the vectors [yt; zt] = [B⊤[AN−1−t]⊤f ; ∥B⊤[AN−1−t]⊤f∥2], that is,

∥B⊤[AN−1−t]⊤f∥2 + u⊤t B
⊤[AN−1−t]⊤f = 0,

which combines with ∥ut∥2 ≤ 1 and the Cauchy inequality to imply that whenever the vector

et = B⊤[AN−1−t]⊤f is nonzero, we have ut = −et/∥et∥2, and when et = 0, ut can be a whatever

vector of norm not exceeding 1. Note that we got “closed form” solutions to both (P ) and (D).

Exercise IV.2. Consider the conic constraint Ax − b ∈ K where K ⊂ Rm is a regular cone and
matrix A is of full column rank (i.e., has linearly independent columns, or, which is the same, has
trivial kernel). Suppose that the constraint is feasible. Show that the following properties are all
equivalent to each other:

1. the feasible region {x ∈ Rn : Ax− b ∈ K} is bounded;
2. Im(A) ∩K = {0}, where Im(A) := {Ax : x ∈ Rn};
3. the following system of vector inequalities is solvable

A⊤λ = 0, λ ∈ intK∗.

Using these conclude that the property of whether a conic problem minx{c⊤x : Ax − b ∈ K} has
a bounded feasible region or not is independent of the choice of b, provided that the problem is
feasible.

Solution: 1. ⇐⇒ 2.: We are in the case when the feasible set X = {x : Ax− b ∈ K} is nonempty (and

clearly is closed). By Fact II.6.18 X is bounded if and only if X has no nonzero recessive directions, that

is, if and only if the recessive cone of X (which is {h : Ah ∈ −K} (why?)) is trivial. Since h 7→ Ah is an

embedding, the latter happens if and only if Im(A) ∩ [−K] = {0}, or, which is the same, if and only if

Im(A) ∩K = {0}. ■
3. =⇒ 2.: With 3. in force, there exists λ ∈ intK∗ such that A⊤λ = 0. If now x ∈ Rn is such that

y = Ax ∈ K, we have λ⊤y = [A⊤λ]x = 0, and since y ∈ K and λ ∈ intK∗, we conclude that y = 0. The

bottom line is that Im(A) ∩K = {0}, that is, 2. takes place. ■
2. =⇒ 3.: Assume, on the contrary to what should be proved, that 2. does take place, and 3. does not.

Then the convex nonempty set {λ : A⊤λ = 0} does not intersect intK∗, which also is a nonempty convex

set, implying, by Separation Theorem, that there exists y ∈ Rm,y ̸= 0, such that

sup
λ:A⊤λ=0

y⊤λ ≤ inf
u∈intK∗

y⊤u.

since the right hand side infimum is finite and K∗ is a cone, this infimum is 0, implying that y ∈
(intK∗)∗ = K. On the other hand, the supremum in the left hand side is taken over a linear subspace

KerA⊤; it can be finite if and only if y ∈ [KerA⊤]⊥ = Im(A). Thus, y is a nonzero vector from Im(A)∩K,

which is impossible by 2. ■
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Finally, consider a feasible conic constraint Ax− b ∈ K with tegular cone K. If KerA ̸= {0}, the feasible

set of this constraint is unbounded independently of what b is, since KerA is the recessive subspace of

the feasible set, provided the latter is nonempty. And if KerA = {0}, we, as we just have seen, are in the

case where 1. is equivalent to 2., and the validity status of 2. is independent of what b is.

Exercise IV.3.
Given a cone K in a Euclidean space E with inner product ⟨·, ·⟩, we call a pair of elements x ∈ K

and y ∈ K∗ complementary if ⟨x, y⟩ = 0.
In this exercise, we will examine complementarity relations for the second-order cones Ln and the

positive semidefinite cone Sn+.

1. Consider Ln :=
{
x = [x̃;xn] ∈ Rn−1 ×R : xn ≥ ∥x̃∥2

}
; as we know, this cone is self-dual

(Example II.6.9). Prove that x, s ∈ Ln satisfy ⟨x, s⟩ = 0 iff xns̃+ snx̃ = 0 holds.
2. Consider the space of n×n symmetric matrices, i.e., E = Sn equipped with the Frobenius inner

product ⟨X,Y ⟩ = Tr(XY ) =
∑n
i=1

∑n
j=1XijYij . Let K = Sn+ := {X ∈ Sn : x⊤Xx ≥ 0, ∀x ∈

Rn} be the positive semidefinite cone; recall that this cone is self-dual (Example II.6.10). Prove
that X,Y ∈ Sn+ are complementary, i.e., ⟨X,Y ⟩ = 0, if and only if their matrix product is zero,
i.e., XY = Y X = 0. In particular, matrices from a complementary pair commute and therefore
share a common orthonormal eigenbasis.

Solution:

1. The statement clearly is true when sn = 0 or xn = 0. Assuming xn > 0, sn > 0, the relation

[x̃;xn]⊤[s̃; sn] = 0 for [x̃;xn] and [s̃; sn] from Ln means that snxn = −s̃⊤x̃ together with ∥x̃∥2 ≤ xn

and ∥s̃∥2 ≤ sn, which, by Cauchy inequality (Theorem B.1) may happen if and only if x̃ = xne and

s̃ = −sne for unit vector e, or, which is the same, when xns̃+ snx̃ = 0. ■

2. For X,Y ∈ Sn we have [XY ]⊤ = Y X, whence XY = 0 if and only if Y X = 0. Clearly when XY =

Y X = 0, we have Tr(XY ) = 0. So we will prove the reverse direction. Assume that X ⪰ 0, Y ⪰ 0

and Tr(XY ) = 0, and let us prove that XY = 0. Indeed, we have

0 = Tr(XY ) = Tr(X1/2[X1/2Y 1/2]Y 1/2) = Tr([X1/2Y 1/2][X1/2Y 1/2]⊤) =
∑
i,j

[X1/2Y 1/2]2ij ,

whence X1/2Y 1/2 = 0, so that XY = X1/2[X1/2Y 1/2]Y 1/2 = 0. ■

Exercise IV.4. By General Theorem of the Alternative, a system of m scalar linear constraints
Ax ≥ b in variables x ∈ Rn (or, which is the same, the conic inequality Ax ≥Rm

+
b) has no

solutions if and only if it can be led to contradiction by aggregation: there exist nonnegative weights
λ1, ..., λm such that the associated weighted sum λ⊤Ax ≥ λ⊤b of inequalities from the system is a
contradictory inequality, that is, A⊤λ = 0 and b⊤λ > 0. For a general conic constraint of the form

Ax ≥K b (I)

where K ⊂ Rm is a regular cone, a similar recipe for certifying infeasibility would read

∃λ ∈ K∗ : A⊤λ = 0 and b⊤λ > 0. (II)

The goal of this exercise is to investigate relation between feasibility statuses of (I) and of (II).
Your first task is easy:

1. Prove that if (II) is feasible, then (I) is infeasible.

Solution: Let λ satisfy (II). To prove that (I) has no solutions, assume, on the contrary, that x solves

(I). Then λ⊤Ax ≥ λ⊤b due to λ ∈ K∗, which with our λ results in 0 ≥ b⊤λ, which is not the case due

to λ⊤b > 0; this is the desired contradiction.

The rest of your effort is aimed at investigating to which extent item 1 can be inverted: if and when
it is true that when (II) has no solutions, then (I) is feasible? General Theorem of the Alternative
says that this indeed is the case when K is the nonnegative orthant Rm

+ . In the general case, the
situation is different.
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2. Let (I) be the univariate conic inequality

Ax := [1; 0; 1]x ≥L3 b := [0; 1; 0] (i)

where L3 is the 3D Lorentz cone. Write down the associated system (II) and check that both
this system and (i) are infeasible. Conclude from this example that in general, solvability of (II)
is only sufficient, but not necessary, condition for infeasibility of (I).

Solution: Recalling what L3 is, (i) is the scalar inequality x ≥
√
x2 + 1; of course, it is infeasible. Now,

the associated system (II) reads

λ3 ≥
√
λ21 + λ22, λ1 + λ3 = 0, λ2 > 0

in real variables λ1, λ2, λ3; λ1 can be immediately eliminated, resulting in clearly infeasible system

λ3 ≥
√
λ23 + λ22, λ2 > 0. ■

3. Prove that (II) is infeasible if and only if (I) is nearly feasible, meaning that for every ϵ > 0 there
exists b′ such that ∥b′ − b∥2 ≤ ϵ and the conic constraint Ax ≥K b′ is feasible. Equivalently: (II)
is infeasible if and only if b belongs to the closure B of the set B = ARn − K of those right
hand side vectors in (I) for which (I) is feasible.

Solution: Taking into account item 1, the claim we want to prove is that (II) has no solutions if and

only if b ∈ B, or, which is the same,

(!) (II) has a solution iff b ̸∈ B.

Justification of (!) is immediate. In one direction: if (II) has a solution λ, then A⊤λ = 0 and A⊤b′ > 0

for all b′ close enough to b, implying, by item 1, that all these close enough to b vectors b′ , when treated

as the right hand sides in (I), result in infeasible conic constraint, that is, do not belong to B. Thus,

there is a neighbourhood of b which does not intersect B, implying that b ̸∈ B.

In the opposite direction: assume that b ̸∈ B, and let us prove that (II) is feasible. Since b ̸∈ B, b is at a

positive distance from the nonempty convex set B = {z : z = Ax− y, x ∈ Rn, y ∈ K}, implying by the

Separation Theorem that {b} can be strongly separated from B: for properly selected λ it holds

λ⊤b > sup
z∈B

λ⊤z = sup
x∈Rn,y∈K

λ⊤[Ax− y]. (∗)

the concluding supremum here is finite, implying that A⊤λ = 0 (otherwise we could make λ⊤[Ax − y]

arbitrarily large by properly selecting x and setting y = 0) and λ ∈ K∗ (otherwise we could make

λ⊤[Ax−y] arbitrarily large by properly selecting y ∈ K and setting x = 0). Thus, A⊤λ = 0 and λ ∈ K∗,

implying that the supremum in (∗) is 0, that is, λ⊤b > 0; we conclude that λ solves (II), so that the

latter system is feasible. ■

Conclusion: Feasibility of (II) is necessary and sufficient for infeasibility of (I) if and only if
the set B = ARn−K of the right hand sides in the conic constraint (I) resulting in constraint’s
feasibility is closed; in fact, feasibility of (II) is necessary and sufficient condition for b not to

belong to the closure B of B. Now, when K = {y : Py ≥ 0} is a polyhedral cone, e.g., Rm
+ , B

is polyhedral (since its definition in the case under consideration is its polyhedral representation as
well) and therefore is closed, which explains why when the cone K is polyhedral infeasibility of (II)
is equivalent to feasibility of (I). At the same time, when K is not polyhedral, B can be non-closed,
as is the case in example from item 2. Let us look at the geometry of this example. (i) wants of

us to find a point in the intersection of the cone L3 = {x ∈ R3 : x3 ≥
√
x21 + x22} with the line

ℓ = {[t;−1; t] ∈ R3 : t ∈ R}. ℓ belongs to the 2D plane L = {x ∈ R3 : x2 = −1}, and the
intersection of L3 with this plane is the set {[x1;−1;x3] : x

2
3 − x21 ≥ 1, x3 ≥ 0}, or, which is the

same, the set {[x1;−1;x3] : (x3 − x1)(x3 + x1) ≥ 1, x3 − x1 ≥ 0}; introducing the coordinates
u = x3 + x1, v = x3 − x1 on the 2D plane L, the intersection of L and L3 in these coordinates
becomes the inner part H = {[u; v] : u ≥ 1/v, v > 0} of the branch Γ = {[u; v] : uv = 1, v > 0} of
hyperbola. In u, v-coordinates the line ℓ is just the line v = 0. Thus, geometrically the situation is as
follows: to intersect ℓ and L3 is the same as to intersect H with the v-axis of the [u; v]-plane; the
intersection clearly is empty, so that (i) is infeasible. At the same time, our line is an asymptote of Γ,
so that the shift v = ϵ of the line v = 0 makes the intersection of the shifted line with H nonempty,
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whatever small ϵ > 0 be. The outlined shift of ℓ in our original x-coordinates reduces to passing
from b = [0; 1; 0] to bϵ = [0; 1;−ϵ]. The bottom line is that b ̸∈ B and b ∈ B, since b = limϵ→+0 bϵ
and bϵ ∈ B.

The result of item 3 attracts our attention to the following question: What are natural sufficient
conditions which guarantee the closedness of the set ARn −K ? Here is a simple answer:

4. Prove that when the only common point of the image space L := {y ∈ Rm : ∃x : y = Ax} of
A and of K is the origin, the set B := ARn −K = L−K is closed. Prove that the same holds
true when the condition L ∩K = {0} is “heavily violated,” meaning that L ∩ intK ̸= ∅.

Solution: Assume that L ∩ K = {0}, and let us prove that B is closed. Thus, let bi = yi − zi with

yi ∈ L and zi ∈ K, and let bi → b as i→ ∞; we need to prove that then b ∈ B. Consider two cases: (a)

the sequence {zi} is bounded, and (b) the sequence {zi} is unbounded. In the case of (a), passing to a

subsequence, we can assume that zi → z as i→ ∞; since zi → z and bi → b as i→ ∞, we conclude that

yi = bi + zi → b + z =: y as i → ∞. As K is closed and zi ∈ K, we have z ∈ K. By its origin, y is the

limit of a converging sequence of points from L and thus y ∈ L. We see that b = y − z ∈ B, as claimed.

In the case of (b), passing to a subsequence, we can assume that ri := ∥zi∥2 → ∞ as i → ∞; since

zi = yi − bi and the sequence {bi} converges and is therefore bounded, we conclude that r−1
i ∥yi∥2 → 1

as i → ∞. Passing to a subsequence, we can further assume that the unit vectors zi := r−1
i zi converge

as i → ∞ to some unit vector z, and the sequence of vectors yi = r−1
i yi converges as i → ∞ to some

vector y, which also is unit due to r−1
i ∥yi∥2 → 1, i→ ∞. We have

r−1
i yi − r−1

i zi = r−1
i bi; (∗)

since {bi} is a bounded sequence and ri → ∞, i→ ∞, passing to limit in (∗) we get y = z. By its origin,

y is the limit of sequence of points from L and thus y ∈ L, and z is the limit of a sequence of points

from the closed cone K and therefore z ∈ K. The bottom line is that in the case of (b) the set L ∩ K

contains the unit vector z = y, which is impossible due to L∩K = {0}. Thus, (b) is impossible, and we

are done.

Finally, in the case of L∩ intK ̸= ∅ B is closed by a very simple reason – in this case B = Rm. Indeed,

if a ∈ intK ∩ L, then λa − b ∈ K for all large enough positive λ, that is, b = λa − z for certain λ > 0

and z ∈ K. And since a ∈ L, we have λa ∈ L as well, that is, b ∈ L−K. ■

Exercise IV.5. [follow-up to Exercise IV.4] LetK ⊂ Rm be a regular cone, P ∈ Rm×n, Q ∈ Rm×k,
and p ∈ Rm. Consider the set

K = {x ∈ Rn : ∃u ∈ Rk : Px+Qu+ p ∈ K}

This set clearly is convex. When the cone K is polyhedral, the above description ofK is its polyhedral
representation, so that the set K is polyhedral and as such is closed.

The goal of this exercise is to understand what happens with closedness of K when K is a
general-type regular cone.

1. Is it true that K is closed whenever K is a regular cone?
Hint: Look what happens when K = L3, P = I3, Q = [0; 1; 1] ∈ R3×1, and p = [0; 0; 0]

2. Prove when K is a regular cone and ImQ ∩K = {0}, K is closed.

Solution: 1: In the situation of Hint. denoting by L the linear subspace {x ∈ R3 : x2 = 0} we have

K ∩ L = {x = [x1; 0;x3] : ∃u ∈ R : [x1;u;x3 + u] ∈ L3} = {x = [x1; 0;x3] : ∃u : x3 + u ≥
√
x21 + u2}.

From the concluding description of K ∩L we see that this set contains all triples [1; 0; ϵ] with ϵ > 0 and

does not contain the triple [1; 0; 0] and therefore is not closed; consequently, K is not closed as well (L

is closed!).

2: Assuming K regular and L ∩K = {0}, where L = ImQ, the set Z = {b ∈ Rm : ∃u ∈ L : u+ b ∈ K}
is closed (by Exercise IV.4.4); it remains to note that K is the inverse image of the closed set Z under

the continuous mapping x 7→ Px+ p and as such is closed along with Z. ■
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Exercise IV.6. Let n(x) be a norm on Rn such that n is continuously differentiable outside of the
origin, and let

n∗(y) = max
x

{y⊤x : n(x) ≤ 1}.

be the norm conjugate to n (see Fact III.13.4), so that n∗(·) is a norm such that

x⊤y ≤ n(x)n∗(y) ∀x, y ∈ Rn

and (n∗)∗ = n, implying that for every x ̸= 0 there exists y ̸= 0 such that

x⊤y = n(x)n∗(y).

Here are your tasks:

1. Let M be a d×d matrix, d ≥ 2, with diagonal entries equal to 1. Assume that Mλ ≤ 0 for some
nonzero vector λ ≥ 0. How large could be mini,jMij ?

Solution: µ := mini,jMi,j ≤ − 1
d−1

. Indeed, assuming that Mλ ≤ 0 with nonzero λ ≥ 0, let k be

the index of largest entry in λ. We have

0 ≥
∑
j

Mkjλj = λk +
∑
j ̸=k

Mkjλj ≥ λk + λk(d− 1)µ =⇒ µ ≤ −
1

d− 1
.

For the matrix M with diagonal entries equal to 1 and off-diagonal entries equal to −1/(d − 1) we

have M [1; ...; 1] = 0, that is, the bound mini,jMij ≤ − 1
d−1

is unimprovable.

2. For d ≥ 2, let p1, ..., pd be n∗(·)-unit vectors, w1, ..., wd be n(·)-unit vectors, and let p⊤i wi = 1,
1 ≤ i ≤ d. Assume that 0 ∈ Conv{p1, ..., pd}. How small could be maxi ̸=j n(wi − wj) ?

Solution: maxi,j≤d n(wi − wj) ≥ d
d−1

. Indeed, consider the d× d matrix M = [Mij = w⊤
i pj ]i,j≤d,

We have 0 =
∑
j λjpj with properly selected λ ≥ 0 such that

∑
j λj = 1, so that Mλ = 0. Besides

this, the diagonal entries in M are equal to 1. By the previous item, we have Mij ≤ − 1
d−1

for some

i, j, that is,

n(wj − wi) = n∗(pj)n(wj − wi) ≥ p⊤j [wj − wi] = 1−Mij ≥ 1 +
1

d− 1
=

d

d− 1
.

3. Let x ∈ Rn be nonzero.

1. Let g = ∇n(x).

1. What is n∗(g) ?

Solution: For every h ∈ Rn we have n(x + h) ≥ n(x) + g⊤h, whence also n(x) + n(h) ≥
n(x) + g⊤h, that is, n(h) ≥ g⊤h, implying that n∗(g) = maxh{g⊤h : n(h) ≤ 1} ≤ 1. On the

other hand, 0 = n(0) ≥ n(x)− g⊤x, that is, g⊤x ≥ n(x). Besides this, g⊤x ≤ n∗(g)n(x), and

we get n(x) ≤ g⊤x ≤ n∗(g)n(x), implying that n∗(g) ≥ 1. The bottom line is that n∗(g) = 1.

2. What is g⊤x ?

Solution: g⊤x = n(x) – differentiate the identity n(tx) = tn(x), t > 0, in t at t = 1.

3. Let e be such that n∗(e) ≤ n∗(g) and e
⊤x = g⊤x. Is it true that e = g ?

Solution: Yes. e in question should satisfy n∗(e) ≤ n∗(g), that is, n∗(e) ≤ 1 by item 3.1.1.

Next, e⊤x = g⊤x, that is, e⊤x = n(x) by item 3.1.2. Therefore for every h it holds e⊤h =

e⊤(x+ h)− e⊤x ≤ n∗(e)n(x+ h)− n(x) ≤ n(x+ h)− n(x), that is, n(x) + e⊤h ≤ n(x+ h) for

all h, so that e is a subgradient of f at x. Since x ̸= 0 and n is differentiable outside of the

origin, we have e = ∇n(x) = g.

2. Given N points yi ∈ Rn, consider the problem of finding the smallest n(·)-ball containing
y1, ..., yN .
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1. Write down the problem as a conic one, and write down the conic dual of this problem.
Are both the problems solvable with equal optimal values?

Solution: The problem in question is

Opt(P ) = minx,t {t : n(x− yi) ≤ t, 1 ≤ i ≤ N}
= min[x;t] {t : [x− yi; t] ∈ K, i ≤ N}

K = {[u; t] ∈ Rn ×R : n(u) ≤ t}
(P )

its dual is

Opt(D) = maxz1,...,zN ,s1,...,sN

{∑
i z

⊤
i yi :

∑
i zi = 0,

∑
i si = 1

[zi; si] ∈ K∗, i ≤ N

}
K∗ = {[z; s] ∈ Rn ×R : n∗(z) ≤ s}

(D)

and both problems are solvable with equal optimal values.

Indeed, (P ) is self-explanatory; the fact that K is a regular cone is evident. The fact that the

dual cone is as indicated in (D) is immediate: denoting a vector from Rn × R by [z; s], this

vector is in the cone dual to K if and only if for every t ≥ 0 one has

0 ≤ min
u

{[u; t]⊤[z; s] : [u; t] ∈ K} = min
u

{st+ u⊤z : n(u) ≤ t} = st− tn∗(z),

implying that the dual cone is as in (D). Now, to get the dual problem, we should equip

the constraints [x− yi; t] ∈ K of (P ) with Lagrange multipliers [zi; si] ∈ K∗ in such a way,

that the left hand side in the aggregated constraint
∑
i[zi; si]

⊤[x − yi; t] ≥ 0, that is, in the

inequality ∑
i

tsi +
∑
i

z⊤i x ≥
∑
i

z⊤i yi

is identically in t, x equal to the primal objective t, and to maximize under this restriction

(taken along with the restrictions [zi; si] ∈ K∗) the right hand side of the aggregated con-

straint, which results in (D).

Problem (P ) clearly is strictly feasible (to get a strictly feasible solution, set x = 0 and

take t > maxi n(yi)) and solvable (since the sets of feasible solutions where the objective is

upper-bounded by a given real are compact); by Conic Duality Theorem, the dual problem is

solvable with the same optimal value as (P ).

2. Assume that the data are such that the optimal value in (P ) is equal to 1. How small can
be maxi,j n(yi − yj) ?
Hint: write down and analyze optimality conditions.

Solution: maxi,j n(yi − yj) ≥ n+1
n

.

Indeed, let [x; 1] be primal optimal, and [zi; si], i ≤ N , be dual optimal. By optimality

conditions (complementary slackness) the primal slacks [x−yi; 1] should be orthogonal to the

respective dual solutions [zi; si], that is,

si = [yi − x]⊤zi, i ≤ N, (#)

and since n(yi − x) ≤ 1 and n∗(zi) ≤ si for all i by primal and dual feasibility, we have

n(yi − x) ≤ Opt(P ) = 1, so that the right hand side in (#) is ≤ n(yi − x)n∗(zi) ≤ n∗(zi),

and since n∗(zi) ≤ si by dual feasibility, (#) implies that n∗(zi) = si for all i. Next, setting

wi = yi−x, we have n(wi) ≤ 1, so that the right hand side in (#) is ≤ n(wi)n∗(zi) = n(wi)si;

therefore (#) implies that n(wi) = 1 for all i ∈ I = {i : si > 0}. Note that the set I is

nonempty, since otherwise Opt(D) would be 0 and not 1. Now, from the constraints of (D)

we have ∑
i∈I

zi = 0,
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and n∗(zi) = si > 0 for i ∈ I, so that setting pi = s−1
i zi, i ∈ I, we have

n(wi) = 1, i ∈ I & n∗(pi) = 1, i ∈ I & p⊤i wi = 1, i ∈ I &
∑
i∈I

sipi = 0, (!)

where the relations p⊤i wi = 1, i ∈ I, stem from (#) due to si > 0, i ∈ I.
Since 0 < si for i ∈ I ≠ ∅, the last relation in (!) means that 0 ∈ Conv{pi : i ∈ I}. By

Caratheodory Theorem, we can find a subset I ⊂ I of cardinality d, 2 ≤ d ≤ n+1, such that

0 ∈ Conv{pi, i ∈ I}. Assuming w.l.o.g. that I = {1, ..., d}, for M = [w⊤
i pj ]i,j≤d and some

λ ∈ Rd
+ with

∑
i λi = 1 we have

n∗(pi) = 1, n(wi) = 1, p⊤i wi = 1, i ≤ d &λ ≥ 0, λ ̸= 0,Mλ = 0 (!!)

By item 2, we have maxi,j≤d n(wi−wj) ≥ d
d−1

≥ n+1
n

, and it remains to note that wi−wj =

yi − yj .

3. In the situation of item 3.2.2, assume that n(x) = ∥x∥2 is the standard Euclidean norm.
How small can be maxi,j n(yi − yj) now?

Solution: The concluding relation in the solution to the previous item now reads ∥pi∥2 =

∥wi∥2 = 1 and p⊤i wi = 1, 1 ≤ i ≤ d ≤ n + 1, whence pi = wi, i ≤ d. By item 1, (!!) implies

that mini,j≤d wip
⊤
j ≤ − 1

d−1
, that is, there exist i, j ≤ d such that w⊤

i pj ≤ − 1
d−1

, that is,

w⊤
i wj ≤ − 1

d−1
. Consequently,

∥wi − wj∥2 = w⊤
i wi + w⊤

j wj − 2w⊤
i wj ≥ 2(1 +

1

d− 1
) =

2d

d− 1
,

that is, maxi,j ∥yi − yj∥2 ≥ maxi,j≤d ∥wi − wj∥2 ≥
√

2d
d−1

≥
√

2(n+1)
n

.

Note: instead of asking how large is the maximum of pairwise distances between yi ∈ Rn

given that the smallest Euclidean ball containing y1, ..., yN is of radius 1, we could ask how

large could be radius of the smallest Euclidean ball containing the points y1, ..., yN ∈ Rn

with pairwise ∥ · ∥2-distances not exceeding 1, and in terms of the latter question, the above

result states that this radius is at most
√

n
2(n+1)

. This is called “Jung’s Theorem;” the result

is sharp, since the smallest radius Euclidean ball containing the n+ 1 vertices of the perfect

simplex (simplex in Rn with distances 1 between every two vertices) is exactly
√

n
2(n+1)

;

to see this, realize the perfect simplex as {x ∈ Rn+1
+ :

∑
i xi = 1/

√
2}, and Rn - as the

hyperplane
∑
i xi = 1/

√
2 in Rn+1.

24.2 Geometry of primal-dual pair of conic problems

Exercise IV.7. [geometry of primal-dual pair of conic problem] The goal of the Exercise is to
reveal notable geometry of primal-dual pair of conic problem.

It is convenient to work with the primal problem in the form

Opt(P ) = min
x

{
c⊤x : Ax− b ≥K 0, Px = p

}
(P )

where K is a regular cone in certain RN . As is immediately seen, the conic dual of (P ) reduces to
the problem

Opt(D) = max
y,z

{
b⊤y + p⊤z : y ∈ K∗, A

⊤y + P⊤z = c
}

11 (D)

From now on we make the following, in fact, rather weak,

11 building conic dual to a conic problem is a purely mechanical process; however, this process as

presented in section 18.4 operates with conic problem in a form slightly different from the one of

(P ), namely, with linear inequality constraints instead of linear equalities. To apply this process to
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Assumption: The systems of linear equality constraints in (P ) and (D) are solvable.

Let us fix x and (y, z) such that

Px = p & A⊤y + P⊤z = c. (#)

Your first task is as follows:

1. Pass in (P ) from variables x to primal slack ξ = Ax − b. Specifically, prove that in terms of
primal slack (P ) becomes the problem

Opt(P) = minξ
{
y⊤ξ : ξ ∈ K ∩ [L − ξ]

}[
L = {ξ : ∃x : ξ = Ax, Px = 0}, ξ = b−Ax

] (P)

namely, prove that
(i) Every feasible solution x to (P ) induces feasible solution ξ = Ax − b to (P), and the value
of the objective of (P ) at x differs from the value of the objective of (P) at Ax − b by the
independent of x constant:

y⊤ξ = c⊤x−
[
y⊤b+ z⊤p

]
. (A)

(ii) Vice versa, every feasible solution ξ to (P) is of the form Ax − b for some feasible solution
x to (P ).
The bottom line is that (P ) can be reformulated equivalently as (P), and the optimal values of
these two problems are linked by the relation

Opt(P) = Opt(P )−
[
y⊤b+ z⊤p

]
.

Solution: Let x be feasible for (P ) and ξ = Ax− b. Then ξ satisfies the inclusion ξ ∈ K and

ξ = A[x− x] + [Ax− b] = A[x− x]− ξ

and P [x− x] = 0, that is, ξ ∈ K ∩ [L − ξ]. This reasoning can be easily reversed to demonstrate that if

ξ ∈ K ∩ [L − ξ], then ξ = Ax− b for some x feasible for (P ). Besides this,

c⊤x = [A⊤y + P⊤z̄]⊤x = y⊤[Ax− b] + y⊤b+ z⊤Px = y⊤ξ +
[
y⊤b+ z⊤p

]
,

as claimed in (A).

On the other hand, when ξ is feasible for (P), we have ξ ∈ K and ξ = Ax′ − ξ for some x′ with Px′ = 0,

whence

K ∋ ξ = Ax′ − ξ = A[x′ + x]− b = Ax− b,

where x = x′ + x satisfies Px = p. We conclude that ξ = Ax− b with x feasible for (P ). ■

Next task is as follows:

2. Pass from problem (D) in variables y, z to problem

max
y

{
ξ
⊤
y : y ∈ K∗ ∩ [L⊥ + y]

}
[
L⊥ := {y : y⊤ξ = 0∀ξ ∈ L} = {y : ∃z : A⊤y + P⊤z = 0}

] (D)

in variable y only, specifically, prove that
(i) The orthogonal complement L⊥ of L indeed is the linear subspace {y : ∃z : A⊤y+P⊤z = 0}.
(ii) y-component of feasible solution (y, z) to (D) is a feasible solution to (D), and vice versa –

(P ), it suffices to represent the linear equalities Px = p by a pair of opposite linear inequalities

Px− p ≥ 0,−Px+ p ≥ 0. Applying the recipe from section 18.4 to the resulting problem, the dual

reads

max
y,z′,z′′

{
b⊤y + [z′ − z′′]⊤p :A⊤y + P⊤[z′ − z′′] = c, y ∈ K∗, z

′ ≥ 0, z′′ ≥ 0
}
.

Passing from z′, z′′ to z = z′ − z′′, we reduce the latter problem to (D).
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every feasible solution y to (D) can be augmented by z to yield a feasible solution (y, z) to (D).
Besides this, whenever (y, z) is feasible for (D), we have

b⊤y + p⊤z = ξ
⊤
y + c⊤x. (B)

The bottom line is that (D) can be reformulated equivalently as (D), and the optimal values of
these two problems are linked by the relation

Opt(D) = Opt(D)− c⊤x.

Solution: (i): To prove that L⊥ = {y : ∃z : A⊤y+P⊤z = 0} is the same as to prove that the necessary

and sufficient condition for equality y⊤ξ = 0 treated as equality in variables ξ, x to be consequence of the

system of linear equalities ξ −Ax = 0, Px = 0 in variables ξ, x is for y to admit selection of z such that

A⊤y + P⊤z = 0, but this is what Linear Algebra (not speaking about Homogeneous Farkas Lemma)

says: a homogeneous linear equation is a consequence of a system of homogeneous linear equations if and

only is the vector of coefficients of this equation (in our case, the vector [y⊤, 01×n]) is linear combination

of the vectors of coefficients of the equations from the system, which in the case in question boils down

to y⊤A+ z⊤P = 0 for certain z. ■
(ii) If (y, z) is feasible for (D), then [A⊤, P⊤][y− y; z− z] = 0, that is, y ∈ L⊥ + y by already proved (i),

and y ∈ K∗, that is, y is feasible for (D). Besides this, A⊤y+P⊤z = c, ξ = b−Ax, and Px = p, whence

ξ
⊤
y − [b⊤y + p⊤z] = [b−Ax]⊤y − [b⊤y + p⊤z] = −x⊤A⊤y − p⊤z = x⊤[P⊤z − c]− p⊤z = −x⊤c,

as required in (B).

Vice versa, if y is feasible for (D), then y ∈ K∗ and y − y ∈ L⊥, that is, by (i), for properly selected w

one has A⊤[y − y] + P⊤w = 0. This, due to the origin of y implies that

A⊤y + P⊤w = A⊤y = c− P⊤z,

so that y can be augmented by z = z + w to yield a feasible solution to (D). (ii) is proved. ■

The summary of items 1 and 2 is as follows:

• Primal-dual pair (P ), (D) of conic problems reduces to pair of problems (P), (D),
“reduces” meaning that feasible solutions x and (y, z) to (P ), (D) induce feasible solutions
ξ = Ax− b and y to (P), (D), and every pair of feasible solutions to the latter problems
can be obtained, in the fashion just described, from a pair of feasible solutions to (P ),
(D);
• Geometrically, (P), (D) are as follows:

• Problems’ data are (a) primal-dual pair of regular cones K, K∗ in some RN , (b) pair
of linear subspaces LP , LD in RN which are orthogonal complements to each other,
and (c) pair of vectors y, ξ in RN .

• (P) is the problem of minimizing linear objective y⊤ξ over the intersection of the

primal feasible plane MP := LP − ξ with the cone K, while (D) is the problem of

maximizing the linear objective ξ
⊤
y over the intersection of the dual feasible plane

MD := LD + ȳ with the dual cone K∗.

Pay attention to the “nearly perfect” primal-dual symmetry; the only asymmetry is that in the primal
feasible plane the shift vector is −ξ – minus the vector of coefficients of the objective in (D), while
in the dual feasible plane the shift vector is y – the vector of coefficients of the objective in (P). This
minor asymmetry stems from the fact that by tradition one of the problems (in our presentation,
(P)) is written as a minimization program, and the other problem from the pair as a maximization
one.

In fact, the symmetry can be made perfect, and the objectives – eliminated at all.

3. Consider pairs of problems (P ), (D) along with problems (P), (D), and let x, (y, z) be feasible
solutions to (P ), (D), and ξ, y – the feasible solutions to (P), (D) induced by x and (y, z),
respectively. Prove that the duality gap

DualityGap(x; y, z) := c⊤x− [b⊤y + p⊤z]
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– the difference between the objective of primal problem (P ) evaluated at primal feasible solution
x and the objective of the dual problem (D) evaluated at the dual feasible solution (y, z) – is
nothing but the inner product ξ⊤y of ξ and y.

Solution: Here is the computation: Let x, (y, z) be feasible for (P ), (D), and ξ = Ax − b, y be the

induced by x, (y, z) feasible solutions to (P), (D). Then

0 = [y − y]⊤[ξ + ξ] [since y − y ∈ L and ξ + ξ ∈ L⊥]

=⇒ y⊤ξ = [y⊤ξ − ξ
⊤
y] + y⊤ξ

= [c⊤x− [b⊤y + p⊤z]]− b⊤y − p⊤z + c⊤x+ y⊤ξ [by (A) and (B)]

= DualityGap(x; y, z)− b⊤y − p⊤z + [A⊤y + P⊤z]⊤x+ y⊤[b−Ax]

[by origin of y, z, ξ]

= DualityGap(x; y, z)− p⊤z + [A⊤y + P⊤z]⊤x− y⊤Ax

= DualityGap(x; y, z) [since Px = p]

24.3 Around S-Lemma

Exercise IV.8. Recall that S-Lemma guarantees that the validity of the implication

xTAx ≥ 0 =⇒ xTBx ≥ 0 [A,B ∈ Sn]

is the same as the existence of λ ≥ 0 such that B ⪰ λA only under the assumption that the
inequality xTAx ≥ 0 is strictly feasible. Does the lemma remain true when this assumption is lifted?

Solution: The answer is negative. When n = 2, xTAx = −x22 and xTBx = 2x1x2, the above implication

holds true, but the quadratic form xT (B−λA)x = 2x1x2+λx22 is not everywhere nonnegative whatever

be λ ∈ R.

Exercise IV.9. Given A ∈ Sn, consider the set QA = {x ∈ Rn : x⊤Ax ≤ 0}.
1. Let B ∈ Sn be such that B ̸= A and QB = QA. Then, is it always true that there exists ρ > 0

such that B = ρA?
2. Suppose that A ∈ Sn satisfies Aij ≥ 0 for all i, j. Under this condition, does your answer to item

1 change?
3. Suppose that A ∈ Sn satisfies λmin(A) < 0 < λmax(A). Under this condition, does your answer

to item 1 change?

Solution:

1 : A counter-example is given by A = −I and B = Diag{−1,−2, . . . ,−n} where QA = QB = Rn.

2 : A counter-example is given by A = 0 and B = −I, where QA = QB = Rn.

3 : Suppose x⊤Ax ≤ 0 ⇐⇒ x⊤Bx ≤ 0. Then x⊤(−A)x ≥ 0 ⇐⇒ x⊤(−B)x ≥ 0. Since λmin(A) <

0 < λmax(A), QA ̸= Rn and QA ̸= {0}. Therefore, λmin(B) < 0 < λmax(B) also. Furthermore, the

same eigenvalue condition holds for both −A,−B, which means x⊤(−A)x ≥ 0 and x⊤(−B)x ≥ 0

are both strictly feasible. By the S-lemma, this implies that there exist λ1, λ2 ≥ 0 such that

−B ⪰ −λ1A =⇒ λ1A ⪰ B

−A ⪰ −λ2B =⇒ λ2B ⪰ A.

Note that λ1, λ2 > 0, otherwise one of QA, QB will be Rn, which we have already established is not

true. Therefore, we can multiply the first inequality by 1/λ1 > 0 to get

A ⪰
1

λ1
B =⇒ λ2B ⪰

1

λ1
B =⇒ (λ1λ2 − 1)B ⪰ 0.

Since B is not positive semidefinite or negative semidefinite, we must have λ1λ2 = 1 =⇒ λ2 = 1/λ1.

But this means

λ1A ⪰ B

λ2B =
1

λ1
B ⪰ A =⇒ B ⪰ λ1A
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which combines with λ1A ⪰ B to imply that B = λ1A with λ1 > 0. ■

Exercise IV.10. For two nonzero reals a, b, one has 2|ab| = minλ>0[λ
−1a2 + λb2], implying

by the Schur Complement Lemma that 2|ab| ≤ c if and only if there exists λ > 0 such that[
c− λb2 a
a λ

]
⪰ 0. Assuming b ̸= 0, we have also 2|ab| ≤ c if and only if there exists λ ≥ 0 such

that

[
c− λb2 a
a λ

]
⪰ 0. Note also that c ≥ 2|ab| is the same as c ≥ 2aδb for all δ ∈ [−1, 1].

Prove the following matrix analogy of the above observation:

Let A ∈ Rp×r, B ∈ Rp×s, let B ̸= 0, and let D = {∆ ∈ Rr×s : ∥∆∥ ≤ 1}, where ∥ · ∥ is the
spectral norm. Then C ⪰ [A∆B⊤ + B∆⊤A⊤] for all ∆ ∈ D if and only if there exists λ ≥ 0 such

that

[
C − λBB⊤ A

A⊤ λIr

]
⪰ 0. In particular, when a, b ∈ Rp and b ̸= 0, one has C ⪰ ±[ab⊤+ba⊤]

if and only if there exists λ ≥ 0 such that

[
C − λbb⊤ a

a⊤ λ

]
⪰ 0.

Solution: We have

C ⪰ [A∆B⊤ +B∆⊤A⊤] ⇐⇒ x⊤Cx− 2x⊤A[∆B⊤x] ≥ 0 ∀(x ∈ Rp,∆ ∈ D)

⇐⇒ x⊤Cx− 2x⊤Aξ ≥ 0 ∀(x ∈ Rp, ξ : ∃∆ ∈ D : ξ = ∆B⊤x)

⇐⇒ x⊤Cx− 2x⊤Aξ ≥ 0 ∀(x ∈ Rp, ξ ∈ Rr : ξ⊤ξ ≤ x⊤BB⊤x)

⇐⇒ ∃λ ≥ 0 : x⊤Cx− 2x⊤Aξ ≥ λ[x⊤BB⊤x− ξ⊤ξ] ∀(x, ξ) [S-Lemma]

⇐⇒ ∃λ ≥ 0 :

[
C − λBB⊤ A

A⊤ λIr

]
⪰ 0.

Note that the assumption B ̸= 0 implies that the quadratic form x⊤BB⊤x − ξ⊤ξ of x, ξ is positive at

certain point, thus making S-Lemma applicable. ■

Exercise IV.11. [Robust TTD] Let us come back to TTD problem (5.2). Assume we have solved
this problem and have at our disposal the resulting nominal truss withstanding best of all, the total
truss volume being a given W > 0, the load of interest f . Now, we cannot ignore the possibility that
“in real life” the truss can be affected, aside of the load of interest f , by perhaps small, but still
nonzero, occasional load composed of forces acting at the free nodes utilized by the nominal truss
(think of railroad bridge and wind). In order for our truss to be useful, it should withstand well all
small enough occasional loads of this type. Note that our design gives no guarantees of this type –
when building the nominal truss, we took into account just one loading scenario f .

1. To get impression of potential dangers of “small occasional loads,” run numerical study as follows:

• Compute the optimal console t∗ (see “Console design” in Exercise I.16)

• Looking one by one at the free nodes p1, ..., pµ actually used by the nominal console, associate
with every one of them single-force occasional load, the corresponding force acting at node
under consideration, generate this force as random 2D vector of Euclidean length 0.01 (that
is, 1% of the magnitude of the single nonzero force in the load of interest), and compute
the compliance of the nominal truss w.r.t. to the resulting occasional load. Conclude that
the nominal console can be crushed by small occasional load and is therefore completely
impractical.

Solution: Were the nominal truss be able to withstand occasional loads as well as it withstands

the load of interest, we could expect the compliances w.r.t. occasional loads to be of order of 10−5

(the nominal compliance is ≈ 0.191, and reducing the load by factor α, we reduce the compliance

by factor α2). In our experiments, the actual compliance w.r.t. the worst small occasional external
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force was as large as 0.344; the corresponding equilibrium displacement is shown on Figure S2IV.1:

Figure S2IV.1. Deformation of nominal truss under small occasional load.

The dotted line on Figure S2IV.1 is the equilibrium displacement under small – just 1% of the force

of interest – “badly placed” occasional external force. In the scale of this displacement, we merely do

not see the original truss – it is represented by the black area on the figure. Thus, for all practical

purposes, the nominal truss can be completely crushed by a small occasional load and as such is

completely impractical.

2. Proposed cure is, of course, to use Robust Optimization methodology – to immunize the truss
against small occasional loads, that is, to control its compliance w.r.t. the load of interest and all
small occasional loads. An immediate question is where the occasional loads should be applied.
There is no sense to allow them to act at all free nodes from the original set of tentative nodes
– we have all reasons to believe that some, if not most, of these nodes will not be used in the
optimal truss, so that we should not bother about forces acting at these nodes. On the other hand,
we should take into account occasional loads acting at the nodes actually used by the optimal
robust truss, and we do not know in advance what these nodes are. A reasonable compromise
here as follows. After the nominal optimal truss is built, we can reduce the nodal set to the
nodes actually used in this truss, allow for all pair connection of these nodes and resolve the TTD
problem on this reduced sets of tentative nodes and tentative bars, now taking into account not
only the load of interest, but all small occasional loads distributed along the nodes of our new
nodal set. This approach can be implemented as follows.

• We specify V as the set of virtual displacements of nodes of our reduced nodal set, preserving
the original status (”fixed” – ”free”) of these nodes, and denote by f the natural projection
of the load of interest on V; note that all nonzero blocks in f – those representing nonzero
physical forces from the collection specifying f – are inherited by f , since the free nodes where
these nonzero forces are applied should clearly be used by the nominal truss.

• We specify F as the “ellipsoidal envelope” of f and all small in magnitude (measured in

∥ · ∥2-norm) loads from V. Specifically, we use f as one of the half-axes of F ; the other M −1

half-axes of F (M = dimV) are orthogonal to each other and to f vectors from V of ∥ · ∥2-
norm ρ∥f∥2, where the “uncertainty level” ρ ∈ [0, 1] is a parameter of our construction. Note
that

F = {g = Ph : h⊤h ≤ 1}

for properly selected M ×M matrix P .

• We define the robust compliance C(t) of a truss t̄ ∈ RN
+ (N is the number of bars in our new

– reduced – set of tentative bars), as the supremum, over g ∈ F , of the usual compliances
(computed for the new nodal set) of t w.r.t. load g, and pose the Robust Counterpart of the
TTD problem as the problem of minimizing this robust compliance over trusses t ≥ 0 of total
volume W . Solving this problem, we arrive at the robust truss.

An immediate question is how to solve the Robust Counterpart. Those who solved Exercise I.16.3
know that as stated right now, the Robust Counterpart is the semiinfinite – with infinitely many
convex constraints – optimization program

Opt = min
t,τ

τ : t ∈ RN
+ ,

N∑
i=1

ti =W,

[
BDiag{t}B⊤

g

g⊤ 2τ

]
⪰ 0,∀g ∈ F

 (#)
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where B is the matrix built for the new TTD data in the same fashion as the matrix B was built
for the original data.
Here go your tasks:

1. Reformulate (#) as a “normal” convex optimization problem – one with efficiently computable
convex objective and finitely many explicitly verifiable convex constraints.

2. Solve the Console design version of the latter problem and subject the resulting robust truss to
the same tests as those proposed above for quantifying the “real-life” quality of the nominal
truss.

Solution: As we know from the solution to Exercise I.16.2-3, a real τ is an upper bound on the robust

compliance of truss t iff

∀g ∈ F : 2τ ≥ 2g⊤v − v⊤A(t)v ∀v ∈ RM [A(t) = BDiag{t}B⊤
]

Note that when h runs through the ∥ · ∥2-unit ball in V = RM , vector g = −Ph runs through the
entire ellipsoid F , so that the above relation is equivalent to

[u;h]⊤Q[u;h] := −2h⊤P⊤u− u⊤A(t)u ≤ 2τ ∀([u;h] ∈ R2M : [u;h]⊤P [u;h] := h⊤h ≤ 1)

Applying Inhomogeneous S-Lemma (Lemma IV.18.9), the latter relation takes place iff

∃λ ≥ 0 :

 A(t) P

P⊤ λIM
2τ − λ

 ⪰ 0,

or, which is clearly the same, if and only if[
A(t) P

P⊤ 2τIM

]
⪰ 0.

The bottom line is that problem (#) is equivalent to the “normal” convex optimization problem

Opt = min
t,τ

{
τ : t ≥ 0,

∑
i

ti =W,

[
BDiag{t}Bt P

P⊤ 2τIM

]
⪰ 0

}
.

We solved the latter problem with ρ = 0.1 and tested the resulting robust truss against the load of

interest f and 100 randomly selected occasional loads of magnitude 1% of the nominal load. The

results are presented at Figure S2IV.2. Pay attention to the low cost of robustness: optimal robust

compliance corresponding to the rather high (10%) uncertainty level is just by 10% larger than the

optimal nominal compliance; compliance of the robust truss w.r.t. the load of interest is just by 0.6%

larger than the compliance of the nominal truss.

24.4 Miscellaneous exercises

Exercise IV.12. Find the minimizer of a linear function

f(x) = c⊤x

on the set

Vp = {x ∈ Rn |
n∑
i=1

|xi|p ≤ 1};

here p, 1 < p < ∞, is a parameter. What happens with the solution when the parameter becomes
0.5?
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nominal truss, 38 bars nominal truss, nominal truss,
compliance 0.1917 displacement under load displacement under badly placed

of interest f , ∥f∥2 = 1 occasional load g, ∥g∥2 = 0.01

robust truss, 152 bars robust truss, robust truss,
robust compliance 0.1992 displacement under load displacement under badly placed

of interest f , ∥f∥2 = 1 occasional load g, ∥g∥2 = 0.01

Figure S2IV.2. Nominal and robust consoles: positions of the bars and nodes before and after (in gray)

deformation. The vertical segment starting at the right-most node: the external force.

Solution: Let us find a KKT point of the problem where the constraint is active. The KKT condition

reads

ci + λp|xi|p−1sign(xi) = 0, i = 1, ..., n∑
i

|xi|p = 1

whence

xi = −
|ci|q−1sign(ci)

∥c∥q−1
q

, q =
p

p− 1

(we have assumed that c ̸= 0, otherwise every feasible point is optimal). When 1 < p <∞, the problem

is convex, so that the KKT point we have found is global optimal solution to the problem.

When p = 0.5, the solution is as follows. W.l.o.g. assume that ci ≤ 0; then at the optimum one clearly

has xi ≥ 0; we lose nothing by adding these inequalities to the list of constraints. Assuming x ≥ 0 and

passing to new variables yi =
√
xi, our problem becomes

min
∑
i

ciy
2
i s.t. y ≥ 0,

∑
i

yi ≤ 1.

Since ci ≤ 0, this is the problem of minimizing a concave function over the standard simplex; the solution

is at the vertex of the simplex, and clearly this vertex is yi∗ = 1, yi = 0, i ̸= i∗, where i∗ is the index

of the most negative ci. Thus, an optimal solution is the basic orth corresponding to the most negative

ci. In general (that is, without the assumption ci ≤ 0), the solution is ϵei∗ , where i∗ is the index of

the maximal, in absolute value, coordinate of c, ϵ = ±1 is the minus sign of this coordinate, and ei are

standard basic orths. The optimal value is −∥c∥∞.

Exercise IV.13 Every one of 3 random variables ξ1, ξ2, ξ3 takes values 0 and 1 with probabilities
0.5, and every two of these 3 variables are independent. Is it true that all 3 variables are mutually
independent? If not, how large could be probability of the event ξ1 = ξ2 = ξ3 = 1?
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Solution: We know that 8-dimensional probabilistic vector p representing the probability distribution

of the random 3D Boolean vector ξ = [ξ1; ξ2; ξ3] satisfies a bunch of linear equalities and inequalities

(specifically, is nonnegative and induces uniform on {0, 1}2 distributions of pairs of entries; we could add

also ”induces uniform on {0, 1} marginal distributions of entries,” but this requirement is covered by the

one on marginal distributions of pairs of entries), and ask what is under the circumstances the maximin

allowed value of a particular entry. This is a simple LP program, and its optimal value turns out to be

1/4 – twice the value of this entry in the distribution corresponding to the case of ξi independent across

i = 1, 2, 3.

This simple example illustrates potential difficulties in recovering multivariate distributions from samples

– with no a priori information on a probability distribution on, say, {0, 1}d - a priori, it could be a

whatever probabilistic vector p of dimension 2d – statistically reliable recovery of p by sampling the

corresponding random vector would require exponential in d, and thus unrealistic already for moderate

d’s, sample sizes. An alternative could be to try to “reconstruct” p from something we can estimate by

sampling reliably, e.g., from low-dimensional marginal distributions induced by p. Our example is the

simplest illustration of the difficulties which cold be met along this road.

Exercise IV.14. [computational study] Consider situation as follows: at discrete time instants t =
1, 2, ..., T we observe the states yt ∈ Rν of dynamical system; our observations are

yt + σξt, t = 1, 2, ..., T,

where σ > 0 is a given noise intensity and ξt are independent across t zero mean Gaussian noises
with unit covariance matrix. All we know about the trajectory of the system is that

∥yt+1 − 2yt + yt−1∥2 ≤ dt2α, (!)

where dt > 0 is the continuous time interval between consecutive discrete time instants; in other
words, the Euclidean norm of the (finite-difference approximation of the) acceleration of the system
is ≤ α. Given time delay d, we want to estimate the linear form f⊤yT+d of the system’s state at
time T + d ≥ 1, and we intend to use a linear estimate

ŷ =

T∑
t=1

h⊤
t ωt.

1. Write down optimization problem specifying the minimum risk linear estimate, with the risk of
an estimate defined as

Risk[ŷ] =
√

sup
y∈Y

E{|ŷ − f⊤yT+d|2},

where Y is the set of all trajectories y = {yt,−∞ < t <∞} satisfying all constraints (!).

Solution: Let Ety = yt+1 − 2yt + yt−1, so that (!) reads ∥Ety∥2 ≤ β = dt2α, t = 0,±1,±2, .... For

a linear estimate, we clearly have

E{|ŷ − yT+d|22} = |
T∑
t=1

h⊤t yt − f⊤yT+d|2 + σ2
T∑
t=1

∥ht∥22

Consequently,

Risk2[ŷ] = σ2
∑T
t=1 ∥ht∥

2
2 +Φ2(h),

Φ(h) := max
y:∥Ety∥2≤β ∀t

|
∑T
t=1 h

⊤
t yt − f⊤yT+d|

= max
y:∥Ety∥2≤β ∀t

[
∑T
t=1 h

⊤
t yt − f⊤yT+d]

where the concluding equality follows from the fact that trajectories y and −y simultaneously sat-

isfy/do not satisfy the acceleration bound. Next, when computing supy , we clearly can restrict our-

selves with supy:∥Ety∥2≤β,1≤t≤T , where T = max[T, T + d], and in this case we lose nothing when
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thinking of y as of finite sequence: y = [y0; y1; ...; yT+1]. Thus, the optimization problem responsible

for the minimum risk linear estimate is

Opt = min
h1,...,hT

F (h) = σ2
T∑
t=1

∥ht∥22 +

 max
y=[y0;y1;...;y

T+1
]:

∥Ety∥2≤β,1≤t≤T

[

T∑
t=1

h⊤t yt − f⊤yT+d]


2 , (∗)

This is a convex optimization problem with albeit implicitly given, but efficiently computable objec-

tive. The optimal value Opt of the problem is the squared risk of the minimum risk linear estimate.

2. Use Conic Duality to convert the problem from the previous item into a Conic Quadratic problem.

Solution: By Conic Duality,

Φ(h) := max
y=[y0;y1;...;yT+1

]

{
G⊤[h]y :=

∑T
t=1 h

⊤
t yt − f⊤yT+d : ∥Ety∥2 ≤ β, 1 ≤ t ≤ T

}
= min

λ1,...,λT
∈Rκ

{
β
∑T
t=1 ∥λt∥2 :

∑T
t=1 E

⊤
t λt = G[h],

}
making (∗) the Conic Quadratic problem

√
Opt = min

λ1,...,λT
,h1,...,hT ,r,s,γ


γ :

∥[r; s]∥2 ≤ γ

∥ht∥2 ≤ rt/σ, 1 ≤ t ≤ T

∥λt∥2 ≤ st/β, 1 ≤ t ≤ T∑T
t=1 E

⊤
t λt = [0ν×1;h1; ...;hT ; 0ν(T−T )×1]

−[0ν(T+d)×1; f ; 0ν(T−T−d)×1]


3. Carry out numerical experimentation with minimum risk linear estimate.

Solution: In our experiments, we used ν = 3, T = 100, dt = 0.25, α = 1, σ = 0.1, d = 10. We built

linear estimates for every one of the 3 coordinates in yT+d. The risks of these estimates and their

empirical, over 300 simulations, risks are as follows:

3.73 3.73 3.73

1.80 1.75 1.76

Top row: Theoretical risk bounds; bottom row: empirical risks

The plot of a sample simulation is presented on Figure S2IV.3.
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Figure S2IV.3. Coordinates of system’s state vs. time. Circles: forecasts; dotted segment

between dotted vertical lines: instants where observations are taken.

Exercise IV.15. [computational study] Consider the following problem:

A particle is moving through Rd. Given positions and velocities of the particle at times
t = 0 and t = 1, find the trajectory of the particle on [0, 1] with minimum possible (upper
bound) on acceleration.

1. Formulate the (discretized in time version of the) problem as a Conic Quadratic problem and
write down its conic dual. Are the problems solvable? Are the optimal values equal to each other?
What is said by optimality conditions?

2. Run numerical experiments in 2D and 3D and look at the results.
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Solution: 1: Let us discretize time interval [0, 1], splitting it into n + 1 consecutive segments of length

dt = 1/(n+1) each, and set ti = i/(n+1). We discretize a candidate trajectory by looking at the sequence

u = {u1, ..., un} of positions of the particle at time instants ti, i = 1, ..., n, and augment this sequence

with two initial terms, u−1, u0, and two concluding terms un+1, un+2 to model the boundary conditions;

specifically, we set u0 to be the given position of the particle at time 0, and set u−1 = u0 − dtv0, where

v0 is the velocity of the particle at time 0. Similarly, we set un+1 to be the given position of particle

at time 1, and set un+2 = un+1 + dtv1, where v1 is the velocity of the particle at time 1. Finally, we

approximate the acceleration of the particle at time ti by the finite difference [ui − 2ui−1 + ui−2]/dt
2.

As a result, the discretized model of our problem becomes

Opt(P ) = min
τ,u

{
τ : ∥ui − 2ui−1 + ui−2∥2 ≤ dt2τ, 1 ≤ i ≤ n+ 2

}
(P )

Note that in this problem, the variables are u1, ..., un, while u−1, u0, un+1, un+2 are data.

(P ) is a Conic Quadratic problem; its “canonical” form is

min
τ,u

{
τ : [2ui − ui−1 + ui+2; dt

2τ ] ∈ Ld+1, 1 ≤ i ≤ n+ 2
}

Equipping the conic constraints with Lagrange multipliers [yi; si] ∈ Ld+1, 1 ≤ i ≤ n+ 2, the conic dual

of (P ) is built as follows: we aggregate the constraints with the “weights” [yi; si], thus arriving at the

relation
n∑
i=1

[dt2τsi + y⊤i [ui − 2ui−1 + ui=2]] ≥ 0

which, due to its origin, is a consequence of the constraints of (P ), rewrite this relation equivalently as

[homogeneous linear function of τ, u1, ..., un] ≥ [linear function of yi, si, 1 ≤ i ≤ n+ 2] (∗)

and impose on the Lagrange multipliers, in addition to the constrains [yi; si] ∈ Ld+1, the restriction

that the left hand side linear function in (∗) is identically in τ, u1, ..., un equal to the objective of (P ).

The dual problem is to maximize under these restrictions the right hand side of (∗).
Executing this strategy (which is a fully mechanical process) results in the dual problem

Opt(D) = maxyi,si

{
y⊤1 [2u0 − u−1]− y⊤2 u0 − y⊤n+1un+1 + y⊤n+2[2un+1 − un+2] :

yi+2 − 2yi+1 − yi = 0 , i = 1, ..., n (a)∑n+2
i=1 si = 1/dt2 , (b)

[yi; si] ∈ Ld+1 , 1 ≤ i ≤ n+ 2 (c)

} (D)

Clearly, (P ) is strictly feasible and bounded, implying that (D) is solvable and that the optimal values are

equal to each other. Besides this, (D) clearly is essentially strictly feasible, so that (P ) is solvable as well.

Optimality conditions in their complementary slackness form say that a pair (u∗i , i ≤ n, τ∗; y∗i , s
∗
i , i ≤

n+ 2) of primal-dual feasible solutions is composed of optimal solutions iff

[u∗i − 2u∗i−1 + u∗i−2; dt
2τ∗]⊤[y∗i ; s

∗
i ] = 0, 1 ≤ i ≤ n+ 2. (∗∗)

Observe that the equality constraints (a) in (D) say that entries in yi are linear functions of i: yi =

g + (i− 1)h for some g, h. As a result, (D) simplifies to

Opt = ming,h,si

{
[−u−1 + u0 + un+1 − un+2]⊤g + [−u0 + (n+ 2)un+1 − (n+ 1)un+2]⊤h :

∥g + (i− 1)h∥2 ≤ si, 1 ≤ i ≤ n+ 2,
∑
i si = 1/dt2

}
,

(D′)

and Opt = Opt(P ) = Opt(D). This combines with complementary slackness (∗∗) to conclude that in

the only nontrivial case Opt > 0 an optimal solution to (P ) is readily given by an optimal solution

g∗, h∗, s∗i , i ≤ n+ 2 to (D′) via the relation

u∗i − 2u∗i−1 + u∗i−2 = −dt2Opt
g∗ + (i− 1)h∗

∥g∗ + (i− 1)h∗∥2
(!)
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2D trajectoris (top) and magnitudes of velocity vs. time (bottom)

3D trajetories
Figure S2IV.4. Sample trajectories (bold) in Exercise IV.15 and their 2D projections (dotted).

which holds true for all i, 1 ≤ i ≤ n + 2, such that g∗ + (i − 1)h∗ ̸= 0; in this relation, by definition

u∗−1 = u−1, u∗0 = u0, u∗n+1 = un+1, u∗n+2 = un+2. Note that if there is no i ≤ n + 2 such that

g∗ + (i− 1)h∗ = 0, recurrence (!) fully determines u∗i , 1 ≤ i ≤ n. If g∗ + (i− 1)h∗ = 0 (if such an i = i∗
exists, it is unique, since otherwise we would have g∗ = h∗ = 0 and therefore Opt = 0, which is not the

case), we could specify u∗i for 1 ≤ i < i∗ via recurrence (!), and for i = i∗, i∗+1, ..., n - running the same

recurrence backward, starting with i = n+ 2.

2: In or computations, we used n = 50. Sample trajectories in 2D and 3D are shown at Figure S2IV.4.

Exercise IV.16. [computational study] The study offered to you in this Exercise is as follows:

A steel rod is heated at time t = 0, the magnitude of the temperature being ≤ R,
and is left to cool, the temperature at the endpoints being all the time kept 0. We
measure the temperature of the rod at locations si and times ti > 0, 1 ≤ i ≤ m; the
measurements are affected by Gaussian noise with zero mean and covariance matrix
σ2Im. Given the measurements, we want to recover the distribution of temperature
of the rod at time t̄ > 0.

Building the model. With properly selected units of temperature and length (so that the rod
becomes the segment [0, 1]), evolution of the temperature u(t, s) (t ≥ 0 is time, s ∈ [0, 1] is
location) is governed by the Heat equation

∂

∂t
u(t, s) =

∂2

∂s2
u(t, s) [u(t, 0) = u(t, 1) ≡ 0]

It is convenient to represent functions on [0, 1] as

f(s) =

∞∑
k=1

fkϕk(s), ϕk(s) =
√
2 sin(πks).

Functions ϕk form an orthonormal basis in the space L2 = L2[0, 1] of square summable real-valued
functions on [0, 1] equipped with the inner product

⟨f, g⟩ =
∫ 1

0

f(s)g(s)ds,



124 Exercises from Part IV

the corresponding norm being ∥f∥2 =
√∫ 1

0
f2(s)ds.

Functions ϕk form an orthonormal basis in L2, meaning that for every f ∈ L2 the series

∞∑
k=1

fkϕk(s), fk = ⟨f, ϕk⟩

converges in ∥ · ∥2 to f , f ∈ L2 if and only if
∑
k f

2
k <∞, and

⟨
∑
k

fkϕk(·),
∑
k

gkϕk(·)⟩ =
∑
k

fkgk ∀f, g ∈ L2.

In particular,

u(t, s) =

∞∑
k=1

uk(t)ϕk(s), uk(t) =

∫ 1

0

u(t, s)ϕk(s)ds.

Assuming |u(0, ·)| ≤ R, we have ∑
k

u2
k(0) ≤ R2, (23.1)

and in terms of the coefficients uk(t) of the rod’s temperature, the Heat equation becomes very
simple:

d

dt
uk(t) = −π2k2uk(t) =⇒ uk(t) = exp{−π2k2t}uk(0).

As a result, when t > 0, the coefficients uk(t) go to 0 exponentially fast as k → ∞, so that the
series ∑

k

uk(t)ϕk(s)

converges to the solution (t, s) of the heat equation not only in ∥ · ∥2, but uniformly on [0, 1] as
well, implying, due to ϕk(0) = ϕk(1) = 0, that the series does satisfy the boundary conditions
u(t, 0) = u(t, 1) = 0, t > 0.

Now our problem can be posed as follows:

The sequence of coefficients {utk}∞k=1 of u(t, ·) in the orthonormal basis {ϕk(·)}k≥1 of
L2 evolves according to

utk = exp{−π2k2t}u0
k,

with

u0 := {u0
k}k≥1 ∈ B := {{ck}k≥1 :

∑
k

c2k ≤ R2}.

Given m noisy observations

ωi = Ωi[u
0] + σξi, Ωi[u

0] =

∞∑
k=1

exp{−π2k2ti}u0
kϕk(si),

where ξ1, ..., ξm are independent of each other N (0, 1) observation noises, and ti > 0,

si ∈ [0, 1] are given, we want to recover the sequence {ut̄k}k≥1.
We quantify the performance of a candidate estimate ω := (ω1, ..., ωm) :7→ û =
{ûk(ω)}k≥1 by the risk

Risk[û] =

√√√√√max
u0∈B

Eξ

∑
k≥1

[ûk(Ω1[u0] + ξ1, ...,Ωm[u0] + ξm)− exp{−π2k2t̄}u0
k]

2


that is, Risk2 is the worst, w.r.t. the distribution of temperature at time t = 0 of
∥ · ∥2-norm not exceeding R, expected squared norm ∥ · ∥22 of the recovery error.
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Our last modeling step is to replace infinite sequences {u0
k}k≥1 with their finite initial segments

{u0
k}1≤k≤K , that is, to approximate the situation by the one where uk0 = 0 when k > K. The

simplest way to do it is as follows. Let t = min[mini ti, t̄]], so that t > 0. For u0 ∈ B and K ≥ 1,
the magnitude of the total contribution of the coefficients uk0 , k > K, to u(t, s) with t ≥ t does not
exceed

∞∑
k=K+1

max
s

|ϕk(s)| exp{−π2k2t}|uk0 | ≤ δ :=
√
2R

∞∑
k=K+1

exp{−π2k2t}.

Given a “really small” tolerance δ̄ > 0, say, δ̄ = 10−10, we can easily find K = K(δ̄) such that
δ ≤ δ̄. Thus, as far as the temperatures we measure and the temperatures we want to recover are
concerned, zeroing out coefficients uk0 with k > K(δ̄) changes these temperatures by at most δ̄.
Common sense (which can be easily justified by formal analysis) says, that with δ̄ as small as 10−10,
these changes have no effect on the quality of our recovery, at least when σ ≫ δ̄.

Now goes your task:

1. Assuming uk0 = 0 for k > K, model the problem of interest as the following estimation problem:

“In the nature” there exists K-dimensional signal u known to belong to the centered
at the origin Euclidean ball BR = {u ∈ RK : u⊤u ≤ R2} of a given radius R. Given
noisy observations

ω = Au+ σξ, [A : m×K, ξ ∼ N (0, Im)]

we want to recover Bu, quantifying the recovery error of a candidate estimate ω 7→
û(ω) by its risk

Risk2[û] =
√

sup
u∈BR

Eξ∼N (0,Im) {[û(Au+ σξ)−Bu]⊤[û(Au+ σξ)−Bu]}

where B is a given K ×K matrix.

Write down the expressions for the matrices A and B.
2. Build convex optimization problem responsible for the minimum risk linear estimate – estimate

of the form û(ω) = H⊤ω.
3. Compute the minimum risk linear estimate and run simulations to test its performance.

Recommended setup:

• t̄ ∈ {0.01, 0.001, 0.0001, 0.00001}
• m = 100, ti are drawn at random from the uniform distribution on [t̄, 2t̄], si are drawn at

random from the uniform distribution on [0, 1];
• R = 104, σ = 10, δ̄ = 10−10;
• To accelerate computations, truncate K(δ̄) at the level 100.

Solution: 1: Aik =
√
2 exp{−π2k2ti} sin(πksi), 1 ≤ i ≤ m, 1 ≤ k ≤ K. B is diagonal K × K matrix

with diagonal entries exp{−π2k2 t̄}, 1 ≤ k ≤ K.

2: The problem is

Opt = min
H∈Rm×K

√
R2∥B −H⊤A∥22,2 + σ2Tr(H⊤H),

where ∥ · ∥2,2 is the spectral norm (the largest singular value) of a matrix.

3: Our results are as follows:

empirical errors

t̄ K Risk2 mean median max

0.01 18 6.47 6.35 11.24 7.17

0.001 58 15.60 14.06 13.84 22.71

0.0001 100 1186.8 1154.3 1638.9 2192.3

0.00001 100 4332.2 4332.2 4762.9 9294.7

Risks and empirical recovery errors,

data over 100 simulations
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Figure S2IV.5. Sample recoveries: dotted line - true; solid line – recovery

To put the results in proper perspective, pay attention to the range of true signals on Figure S2IV.5.

Exercise IV.17. Given positive definite A ∈ Sn, let us set

P [A] = {X ∈ Sn : X ⪰ 0, X2 ⪯ A}, Q[A] = {X ∈ Sn : X ⪰ 0, X ⪯ A1/2}.

From ⪰-monotonicity of the matrix square root on Sn+ (Example IV.20.5 in section 20.2) it follows
that P [A] ⊆ Q[A]. Your task is to answer the following question:

Are P [A] and Q[A] ”comparable,” meaning that for some c independent of A (but perhaps
depending on n) one has

Q[A] ⊂ c · P [A] ?

Solution: The answer is negative, unless n = 1. To justify the claim, it suffices to consider the case of

n = 2. Given ϵ ∈ (0, 1), let us set A =

[
ϵ

1

]
, so that A1/2 =

[
ϵ1/2

1

]
, implying that the matrix

X = 1
2

[
ϵ1/2 ϵ1/4

ϵ1/4 1

]
belongs to Q[A]. On the other hand, for X = [xij ]i,j=1,2 ∈ P [A] we should have

[X2]1,1 = X2
1,1 +X2

1,2 ≤ A1,1 = ϵ, that is, X1,2 ≤
√
ϵ. By looking at off-diagonal entries, we conclude

that if Q[A] ⊂ c · P [A], so that X = cX for some X ∈ P [A], we should have c ≥ 1
2
ϵ−1/4, and the right

hand side here tends to +∞ when ϵ→ +0. ■
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Figure S2IV.6. Results for Exercise IV.17

For a given ϵ, setting A =

[
ϵ

1

]
, the matrices from P [A] are of the form

[
t
√
ϵ δ

δ s

]
with 0 ≤

t, s ≤ 1 and −γϵ(t, s) ≤ δ ≤ γϵ(t, s), and the matrices from Q[A] are of the form

[
t
√
ϵ δ

δ s

]
with

0 ≤ t, s ≤ 1 and −θϵ(t, s) ≤ δ ≤ θϵ(t, s). What you see on Figure S2IV.6 are the plots of the functions

γϵ(t, 1− t) (lower curves) and θϵ(t, 1− t) (upper curves) vs. t ∈ [0, 1].

Exercise IV.18. Find the optimal value in the convex optimization problem

Opt(a) = min
x

{∑n

i=1
[−(1 + ai)xi + xi lnxi] : x ≥ 0,

∑
i
xi ≤ 1

}
where 0 ln 0 = 0 by definition, so that the function x lnx is well defined and continuous on the
nonnegative ray x ≥ 0.
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Solution: The problem is of the form minx∈X f(x) with X = {x ∈ Rn : x ≥ 0,
∑
ixi ≤ 1} and

f(x) =
∑

i
[−(1 + ai)xi + xi lnxi];

f is convex on X and is differentiable on the part x > 0 of X. Let us make an educated guess that there

is an optimal solution x to the problem with x > 0. The necessary and sufficient condition for such a

solution x to be optimal is that

1. either x ∈ intX and ∇f(x) = 0, resulting in

xi = exp{ai}, 1 ≤ i ≤ n;

this solution indeed belongs to the interior of X provided that∑n

i=1
exp{ai} < 1 (!)

2. or x > 0 belongs to the face
∑
ixi = 1 of X, in which case x is optimal if and only if ∇f(x) has

nonnegative inner products with all directions leading from x to points of X, or, which is the same,

∇f(x) is a nonpositive multiple of the all-ones vector. Thus, what we want of x now is to be positive,

to have
∑
ix = 1, and to have

∇f(x) = −λ[1; . . . ; 1]

with some λ ≥ 0. Looking at what ∇f(x) is, this boils down to

xi = exp{ai − λ}

and
∑
ixi = 1, implying

λ = ln(
∑

j
exp{aj}).

Thus, λ ≥ 0 whenever (!) fails to be true, and in this case

xi =
exp{ai}∑
j exp{aj}

The bottom line is that an optimal solution is given by

xi =
exp{ai}

max[1,
∑
j exp{aj}]

, 1 ≤ i ≤ n,

and the optimal value is {
−
∑
i exp{ai},

∑
i exp{ai} ≤ 1,

− ln
(∑

i exp{ai}
)
− 1, otherwise

Exercise IV.19. Given m × n matrix A with trivial kernel, consider the matrix-valued function
F (X) = [A⊤X−1A]−1 : DomF := {X ∈ Sm, X ≻ 0} → Sn+. Prove that F is ⪰-concave on its
domain.

Solution: We should prove that the ⪰-hypograph of F – the set

E = {X,Y : X ∈ Sm, X ≻ 0, Y ∈ Sn, Y ⪯ F (X)}

is convex. To this end it suffices to show that the set

F = {X,Y : X ∈ Sm, X ≻ 0, 0 ≺ Y ⪯ F (X)}

is convex, since E is the sum of F and the convex set {0m×m} × [−Sn+]. We have

Y ≻ 0 & X ≻ 0 & Y ⪯ [A⊤X−1A]−1

⇐⇒ Y ≻ 0 & X ≻ 0 & A⊤X−1A ⪯ Y −1 [Exercise D.5]

⇐⇒ Y ≻ 0 & X ≻ 0 &

[
Y −1 A⊤

A X

]
⪰ 0 [Schur Complement Lemma]

⇐⇒ Y ≻ 0 & X ≻ 0 &X ⪰ AY A⊤ [Schur Complement Lemma]
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and the resulting description of F clearly states that F is convex. ■
Note: the result we have just proved is the special case of the one stated in Exercise III.2.5.

Exercise IV.20. [cone-constrained semidefinite problems]

1. Let X,Y ∈ Sm+ . Prove that Tr(XY ) = 0 is and only if XY = Y X = 0.
2. Given an ordered collection ν = {n1, ..., nk} of positive integers, let Sν be the space of block-

diagonal symmetric matrices with k diagonal blocks of sizes n1×n1,...,nk×nk, and let Sν+ be the
cone of positive semidefinite matrices from Sν . Equipping Sν with the Frobenius inner product,
Sν+ clearly is a self-dual regular cone in the resulting Euclidean space.
Convex cone-constrained problem on the cone Sν+ is of the generic form

Opt(SDP) = min
x∈X

{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) := Diag{g1(x), ..., gk(x)} ≤Sν

+
0
}
(SDP)

where X is a nonempty convex set in some Rn, the function f : X → R is convex, and the
mapping ĝ : X → Sν is Sν+-convex.
Prove that in the case of convex cone-constrained semidefinite problem (SDP) Theorem IV.19.7
reads

Theorem IV.19.7.SDP Consider a convex cone-constrained semidefinite problem
(SDP), let x∗ ∈ X be a feasible solution to the problem, and let f and ĝ be differ-
entiable at x∗.
(i) If x∗ is a KKT point of (SDP), the Lagrange multipliers being λ

∗ ≥ 0 and λ̂∗ ∈ Sν+,
meaning that

λ
∗
i [g(x

∗)]i = 0 ∀i & λ̂∗ĝ(x∗) = 0 [sdp complementary slackness]

∇x

[
f(x) + [λ

∗
]⊤g(x) + Tr(λ̂∗ĝ(x))

] ∣∣
x=x∗

∈ −NX(x∗) [ KKT equation]

(here, as always, NX(x) is the normal cone of X, see (11.5)), then x∗ is an optimal
solution to (SDP).
(ii) If x∗ is optimal solution to (SDP) and, if addition to the above premise, (SDP)
satisfies the cone-constrained Relaxed Slater condition, then x∗ is an sdp KKT point,
as defined in item (i).

Solution: 1. This claim is Exercise IV.3.2.

2. Straightforward application of Theorem IV.19.7 to the convex cone-constrained problem (SDP) differs

from Theorem IV.19.7.SDP in the only point: in the complementary slackness part of the former The-

orem, the ĝ-related equality reads Tr(λ̂∗ĝ(x∗)) = 0, while in Theorem IV.19.7.SDP the corresponding

equality is λ̂∗ĝj(x∗) = 0. Taking into account that we are in the case λ̂∗ ⪰ 0,, ĝ(x∗) ⪯ 0 and invoking

item 1 of Exercise, in the situation in question both equalities are satisfied/not satisfied simultaneously.

Exercise IV.21. [follow-up to Exercise IV.20] In the sequel, we fix the dimension n of the embedding
space and denote by EC = {x ∈ Rn : x⊤Cx ≤ 1} the centered at the origin ellipsoid associated
with positive definite n× n matrix C. Given positive K and K ellipsoids EAk , k ≤ K, consider two
optimization problems:

— O: find the smallest volume centered at the origin ellipsoid containing ∪k≤KEAk ,
— I: find the largest volume centered at the origin ellipsoid contained in ∩k≤KEAk .

1. Pose O as a solvable convex cone-constrained semidefinite program
2. Prove that problems O and I reduce to each other at the cost of appropriate modification of the

data
3. Prove that there exist matrices Λk ⪰ 0 such that Λ :=

∑
k Λk ≻ 0 and

Λk = ΛkAkΛ, k ≤ K.

Solution: Let X be the set of positive definite n× n matrices, and ν = {n, ..., n︸ ︷︷ ︸
K

}.

1: By the result of Exercise I.14.2, we have EP ⊂ EQ if and only if P ⪰ Q. Specifying a candidate
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solution to O as EU , the constraint EU ⊃ ∪kEAk
, that is, EAk

⊂ EU for all k, becomes U ⪯ Ak
and U ∈ X. By the result of Exercise I.14.3, Vol(EU ) = Det−1/2(U), so that O can be posed as the

optimization problem

min
U∈X

{
− lnDet(U) : ĝ(U) := Diag{U −A1, ..., U −AK} ≤Sν

+
0
}

(O)

By Fact III.14.6 applied to the convex symmetric function g(t) = −
∑
i ln ti : intR

n
+ → R, the objective

in (O) is convex on X; thus, (O) is a convex cone-constrained semidefinite program,

It is immediately seen that the problem is solvable. Indeed, its feasible set F is nonempty and bounded,

and the sublevel sets {U ∈ F : − lnDet(U) ≤ a} of the objective on this set clearly are closed, so that

on the feasible set the objective attains its minimum.

2: As we know from Example II.6.12, Polar (EP ) = EP−1 , and from Exercise II.38

Vol(Polar (EP )) = 1/Vol(EP ).

Besides this, passing to polars reverses inclusions. It follows that an ellipsoid EU is a feasible solution

to problem O with data A1, ..., AK if and only if the ellipsoid EU−1 is a feasible solution to problem

I with the data A−1
1 , ..., A−1

K , and the volumes Vol of these two ellipsoids are reciprocals of each other.

The bottom line is that problem O with data A1, ..., AK reduces straightforwardly to problem I with

data A−1
1 , ..., A−1

K , and vice versa.

3: The objective − lnDet(U) in the cone-constrained Problem (O) is differentiable everywhere on X with

the gradient −U−1, see Example C.9. Besides this, (O) is strictly feasible due to Ak ≻ 0, k ≤ K. Let

U∗ be an optimal solution to the problem (it exists by item 1). The cone-constrained Lagrange function

of (O) is

− lnDet(U) +

K∑
k=1

Tr(Λk[U −Ak]).

Invoking Theorem IV.19.7.SDP.ii and taking into account that U∗ ∈ intX = X, there exist Lagrange

multipliers Λk ∈ Sn+, k ≤ K, such that

−U−1
∗ +

∑
k

Λk = 0 & Λk(U∗ −Ak) = 0, k ≤ K.

Augmenting Λ1, ..., λK with Λ :=
∑
k Λk = U−1

∗ ≻ 0, we meet the requirements from item 3. ■

Exercise IV.22. Recall convex cone-constrained problem in Example IV.18.1, section 18.1

Opt(P ) = min
x=(t,y)∈R×Sn

{
t : t ≥ Tr(y)︸ ︷︷ ︸

⇐⇒ ⟨y,In⟩−t≤0

, y2 ⪯ B
}

(18.1)

where B is a positive definite matrix.

1. Verify (18.2)

Solution: We have

L(t, y;λ,Λ) = t+ λ[Tr(y)− t] + Tr(λ̂[y2 −B]) : [R× Sn]× [R+ × Sn+] → R

=⇒ L(λ, λ̂) := inft∈R,y∈Sn

[
t+ λ[Tr(y)− t] + Tr(λ̂[y2 −B])

]
=

{
−∞ , λ ̸= 1

infy∈Sn

[
Tr(y) + Tr(λ̂[y2 −B])

]
, λ = 1

=


−∞ , λ ̸= 1

−∞ , λ = 1 & λ̂ ∈ bdSn+
− 1

4
Tr(λ̂−1)− Tr(λ̂B) , λ = 1 & λ̂ ∈ intSn+

where the concluding equality stems from the following observations:
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• when λ̂ ∈ bdSn+, λ̂ has a nontrivial kernel; taking as f a nonzero vector from this kernel and setting

y(s) = −sff⊤, we get

L(Tr(y(s)), y(s); 1, λ̂) = −sf⊤f +Tr(s2[f⊤f ] λ̂ff⊤︸ ︷︷ ︸
=0

−λ̂B) = −sf⊤f − Tr(λ̂B) → −∞, s→ ∞,

that is, L(1, λ̂) = −∞;

• when λ̂ ≻ 0, the minimum in t, y of the convex in (t, y) function

L(t, y; 1, λ̂) = Tr(y)+Tr(λ̂[y2 −B])

can be found from the Fermat equation

0 = ∇y
[
Tr(y) + Tr(λ̂[y2 −B])

]
= In + λ̂y + yλ̂

resulting in y = − 1
2
λ̂−1 and

L(1, λ̂) = −
1

4
Tr(λ̂−1)− Tr(λ̂B),

as claimed in (18.2). ■

2. Find Lagrange multipliers certifying that t∗ = −Tr(B1/2), y∗ = −B1/2 is a cone-constrained
KKT point of problem (18.1) (and thus, by Theorem IV.19.7, is an optimal solution to the
problem).

Solution: As it should be, the Lagrange multipliers, if any, certifying that (t∗, y∗) is a KKT point of

(18.1) should be an optimal solution to the cone-constrained Lagrange dual (18.3) of (18.1). This solution

λ = 1, λ̂ =
1

2
B−1/2

was found in section 18.3, and augmenting (t∗, y∗) with these Lagrange multipliers, we clearly meet the

complementary slackness

λ[t∗ − Tr(y∗)] = 0, Tr(λ̂[y2∗ −B]) = 0

and the KKT equation

∇tL(t, y;λ, λ̂)
∣∣∣∣
t=t∗,y=y∗

= 0, ∇yL(t, y;λ, λ̂)
∣∣∣∣
t=t∗,y=y∗

= In + [y∗λ̂+ λ̂y∗] = 0

3. Consider the parametric family

Opt(p := (v, w)) = min
t∈R,y∈Sn

{
t : t ≥ Tr(y), yv−1y ⪯ w

}
(P[p])

of convex cone-constrained problems, with p ∈ P = {p = (v, w) : v ∈ intSn+, w ∈ intSn+}, so
that (18.1) is problem (P[p]) corresponding to

p = (In, B).

Prove that Opt(p) is convex function of p ∈ P and find a subgradient of this function at the
point p.

Solution: Observe that setting x = (t, y), the scalar function g(x, p) = Tr(y)− t clearly is R+-convex,

and the Sn-valued function ĝ(x, p) = yv−1y − w is ⪰-convex in (x, p) ∈ [R × Sn] × P ; indeed, by Fact

IV.20.1 ⪰-convexity of ĝ(x, p) on the indicated domain is the same as the convexity of the ⪰-epigraph

of ĝ, and this epigraph is, by the Schur Complement Lemma, the set

{(t, y, v, w, z) ∈
[
R× Sn × [intSn+]× Sn

]
× Sn :

[
z + w y

y v

]
⪰ 0}

which clearly is convex. Applying Proposition IV.19.8, we conclude that Opt(p) is convex on P . Recalling

that by item 2 of Exercise, (t∗ = −Tr(B1/2), y∗ = −B1/2) is a cone-constrained KKT point of (P[p]),
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the corresponding Lagrange multipliers being λ = 1, λ̂ = 1
2
B−1/2, and taking into account that in the

case in question in the notation from Proposition IV.19.8 we have

Fp = 0, Gp[δv, δw] = −y∗v−1δvv−1y∗

∣∣∣∣
v=In

− δw

(see Example C.8 in section C.1.6), the pair [− 1
2
B1/2, − 1

2
B−1/2] is a subgradient of Opt(·) at p = p =

[In, B]:

Opt(p = (v, w)) ≥ −Tr(B1/2)︸ ︷︷ ︸
Opt(In,B)

+Tr(λ̂[Gp[v − In, w −B]])

= −Tr(B1/2)− 1
2
Tr([v − In]B1/2)− 1

2
Tr(B−1/2[w −B]).

Exercise IV.23. [follow-up to Exercise IV.4] Given positive integers m,n, consider two parametric
families of convex sets:

• S1[P ] = {(X,Y ) ∈ R1 := Sm × Sn :
[

X P

P⊤ Y

]
⪰ 0}, where the “parameter” P runs through

the space Rm×n of m× n matrices, let it be temporarily denoted P1;

• S2[P ] = {(X,Y ) ∈ R2 := Sm × Rm×n :
[

X Y

Y ⊤ P

]
⪰ 0}, where the “parameter” P runs

through the positive semidefinite cone Sn+, let it be temporarily denoted P2.

Prove that for χ = 1, 2 the set-valued mappings P → Sχ[P ] are super-additive on their domains:

P,Q ∈ Pχ =⇒ P +Q ∈ Pχ & Sχ[P ] + Sχ[Q] ⊂ Sχ[P +Q]︸ ︷︷ ︸
(∗)

.

and that the concluding inclusion
— not necessarily is equality for χ = 1, and
— is equality for χ = 2.

Solution: The super-additivity is evident due to the following evident fact:

Let K ⊂ RM , P ⊂ RN be cones, and A(U, P ) be a linear (linear, not affine!) mapping from

RK
U ×RN

P into RM such that the set

S[P ] = {U ∈ RK
U : A(U, P ) ∈ K}

is nonempty when P ∈ P. Then the set-valued mapping P 7→ S[P ] is super-additive on P.

Indeed, when Pi ∈ P and Ui ∈ S[Pi], i = 1, 2, we have K ∋ A(U1, P1) + A(U2, P2) =

A(U1 + U2, P1 + P2), implying that U1 + U2 ∈ S[P1 + P2].

The fact that inclusion (∗) can be strict when χ = 1 is nearly evident: take a nonzero P ∈ Rm×n and

note that all pairs (X,Y ) ∈ S1[P ], same as all pairs (X,Y ) ∈ S1[−P ], have nonzero positive semidefinite

components X,Y , while S[0m×n] contains the pair (X = 0m×m, Y = 0n×n) which clearly cannot be

represented as the sum of two pairs of matrices with nonzero positive semidefinite components in every

pair. Thus, when Q = −P ̸= 0 and χ = 1, inclusion (∗) is strict.

The only nontrivial part of the exercise is to prove that when χ = 2, the inclusion (∗) is equality whenever

P,Q are positive semidefinite. In other words, we want to demonstrate that when

P ∈ Sn+ & Q ∈ Sn+ & R ∈ Sm, S ∈ Rm×n & D :=
[

R S

S⊤ P + Q

]
⪰ 0 (1)

the matrix D can be decomposed into the sum of two positive semidefinite matrices, one of the form[
U V

V ⊤ P

]
, and the other – of the form

[
W Z

Z⊤ Q

]
. This is the same as to verify that setting

A+(U, V ) =
[

U V

V ⊤

]
, A−(U, V ) =

[
−U −V

−V ⊤

]
,

b+ = −
[

P

]
, b− = −

[
R S

S⊤ Q

]
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the conic constraint

(A+(U, V ), A−(U, V ))︸ ︷︷ ︸
=:A(U,V )

− (b+, b−)︸ ︷︷ ︸
=:b

∈ Sm+n
+ × Sm+n

+︸ ︷︷ ︸
=:K

(2)

in variables U, V is feasible.

Assume that the constraint is infeasible, and let us lead this assumption to contradiction. The image

space of the linear mapping (U, V ) 7→ A(U, V ) is composed of pairs([
U V

V ⊤

]
,
[

−U −V

−V ⊤

])
of symmetric (m + n) × (m + n) matrices with U ∈ Sm and V ∈ Rm×n; such a pair can belong to

K (that is, has both components positive semidefinite) if and only if V = 0 and both U and −U are

positive semidefinite, that is, if and only if U = 0 and V = 0. With this in mind, the results of Exercise

IV.4 say that infeasibility of (2) implies existence of λ = (λ+, λ−) ∈ K∗, that is, λ± ∈ Sm+n
+ , such that

Tr(λ+A+(U, V )) + Tr(λ−A−(U, V )) = 0 ∀(U ∈ Sm, V ∈ Rm×n) & Tr(λ+b+) + Tr(λ−b−) > 0. (3)

Representing

λ± =
[

E± F±
F⊤

± G±

]
[E± ∈ Sm, G± ∈ Sn)

the first relation in (3) boils down to

Tr(U [E+ − E−]) + 2Tr(V [F+ − F−]⊤) = 0 ∀(U ∈ Sm, V ∈ Rm×n),

that is, E+ = E− =: E, F+ = F− =: F . Now the second relation in (3) reads

Tr(G+P ) + Tr(ER) + 2Tr(FS⊤) + Tr(G−Q) < 0. (4)

and, besides this
[

E F

F⊤ G±

]
⪰ 0. When replacing E in (4) with E′ = E + ϵIm with small enough

positive ϵ, the strict inequality remains valid:

Tr(G+P ) + Tr(E′R) + 2Tr(FS⊤) + Tr(G−Q) < 0. (5)

On the other hand, we have
[

E′ F

F⊤ G±

]
⪰ 0 and E′ ≻ 0, whence, by Schur Complement Lemma,

G± ⪰ G := F⊤[E′]−1F . When replacing G± with G ⪯ G± in the left hand side of (5), we can only

decrease the value of the left hand side due to P ⪰ 0, Q ⪰ 0, so that

Tr(GP ) + Tr(E′R) + 2Tr(FS⊤) + Tr(GQ) < 0.

The left hand side here is nothing but

Tr

([
R S

S⊤ P + Q

][
E′ F

F⊤ G

])
i.e., it is the Frobenius inner product of two positive semidefinite (by (1) and due to the origin of G)

matrices, and this product cannot be negative, which is the desired contradiction. ■

Exercise IV.24. In the simplest Steiner problem, one is given m distinct points a1, . . . , am in Rn

and is looking for a point x∗ such that the sum of Euclidean distances between the points and x∗ is
as small as possible (think, e.g., about m oil wells on 2D plane and the problem of locating collector
to be linked to the wells by pipes in a way minimizing the total length of the pipes).

1. Pose the problem as conic problem, the cone being direct product of m Lorentz cones.
2. Build the dual problem. Are the primal and the dual problems solvable? Are the primal and the

dual optimal values equal to each other?
3. Write down optimality conditions and see what they say

Hint: You are advised to consider separately the cases where optimal solution differs from all of
the points a1, . . . , am, and the case when it is one of the points.
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4. Solve the problem in the case when n = 2, m = 3 and a1, a2, a3 are vertices of triangle on 2D
plane.

Solution: 1: The “maiden” form of the problem is

min
x∈Rn

m∑
i=1

∥x− ai∥2, (Pini)

the conic reformulation is

min
t,x

{∑
i

ti : ∥x− ai∥2 ≤ ti, i ≤ m

}
;

the constraints in this reformulation say that the vectors [x − ai; ti] belong to the Lorentz cone Ln+1,

and the objective is linear. To obey our standards on writing down conic problems, we should rewrite

the above problem as

Opt(P ) = minx,t
{∑

i ti : A [x; t]− b := [[x− a1; t1]; [x− a2; t2]; . . . ; [x− am; tm]] ≥K 0
}

K = Ln+1 × . . .× Ln+1︸ ︷︷ ︸
m times

(P )

2: To build the dual problem, we equip the conic constraint with Lagrange multiplier restricted to belong

to the dual to K cone K∗. This dual cone is K itself due to self-duality of the Lorentz cone, so that

the Lagrange multiplier is [[y1; s1]; . . . ; [ym; sm]] with [yi; si] ∈ Ln+1. We then take the sidewise inner

product of the conic constraint of the primal problem with the Lagrange multiplier, thus arriving at the

scalar linear inequality ∑
i

[tisi + y⊤i x] ≥
∑
i

y⊤i ai; (∗)

whenever [yi; si] ∈ Ln+1, i ≤ m, this inequality is consequence of the constraints of the primal problem.

To build the dual problem, we impose on the Lagrange multipliers, aside of the restrictions [yi; si] ∈ Ln+1,

the restriction that the left hand side in (∗) is equal to the objective of (P ) identically in x, t1, . . . , tm,

which in our case reads

si = 1, i ≤ m,
∑
i

yi = 0.

The dual problem is to maximize the right hand side of (∗) in [yi; si] under the resulting constraints, so

that the dual problem reads

Opt(D) = max
yi,si

{∑
i

a⊤i yi : ∥yi∥2 ≤ si = 1, ., i ≤ m,
∑
i

yi = 0

}
(D)

The primal and the dual problems clearly satisfy the Slater and the Relaxed Slater conditions, respec-

tively, so that by Conic Duality Theorem problems are solvable with equal optimal values.

3: Optimality conditions from Theorem IV.19.9 in their “complementary slackness” form state that the

(under the circumstances, necessary and sufficient) condition for feasible solutions (x, {ti}) to (P ) and

{yi, si} to (D) to be optimal for the respective problems is∑
i

[x− ai; ti]
⊤[yi; si] = 0,

or, which is the same due to si = 1 (by dual feasibility) and [x− ai; ti] ∈ Ln+1, [yi; si] ∈ Ln+1,

y⊤i [ai − x] = ti, i ≤ m

Since ∥yi∥2 ≤ 1 and ∥ai − x∥2 ≤ ti, the above equality implies that y⊤i [ai − x] ≥ ∥yi∥2∥ai − x∥2. This,

taken together with what we know about equality case of Cauchy inequality (Theorem B.1) means that

for every i,

— either x ̸= ai, and then yi =
ai−x

∥ai−x∥2
and ti = ∥ai − x∥2

— or x = ai, ti = 0, and ∥yi∥2 ≤ 1.



134 Exercises from Part IV

We conclude that there are two possible cases:

(A): the x-component of optimal solution to (P ) differs from every one of ai. In this case we should have

yi =
ai−x

∥ai−x∥2
for all i;

(B): the x-component of optimal solution to (P ) is some ai∗ . In this case yi = ai−x
∥ai−x∥2

for all i ̸= i∗
and yi∗ can be arbitrary vector of ∥ · ∥2-norm ≤ 1.

Taking into account that we should have
∑
i yi = 0, we arrive at the following conclusions:

(A): If x is different from all ai and satisfies the relation
∑
i

ai−x
∥ai−x∥2

= 0, then x and

ti = ∥x− ai∥2, i ≤ m, form an optimal solution to (P ).

(B): If x = ai∗ for i∗ such that ∥
∑
i ̸=i∗

ai−ai∗
∥ai−ai∗∥2

∥2 ≤ 1, then x and ti = ∥x− ai∥2, i ≤ m,

form an optimal solution to (P ).

Moreover, every optimal solution to (P ) is either given by (A), or by (B), and optimal solutions

do exist.

4: When m = 3 and a1, a2, a3 are the vertices of a triangle in 2D plane (n = 2), (A) says that a point

distinct from a1, a2, a3 solves (Pini) if and only if all three sides of △a1a2a3 are seen from the point x

under angles 120o — the unit vectors “looking” from x at the vertices of the triangle should sum up to

0. Elementary geometry says that such a point does exist when all three angles of △a1a2a3 are < 120o.

If the latter is not the case, optimal x is given by (B) and is just the vertex of △a1a2a3 with angle at

the vertex ≥ 120o.

Exercise IV.25. Consider a primal-dual pair of conic problems

Opt(P ) = min
x

{
c⊤x : Ax ≥K b

}
(P )

Opt(D) = max
y

{
b⊤y : y ≥K∗ 0, A⊤y = c

}
(D)

(K ⊂ Rn is a regular cone) and assume that both problems are feasible.

1. Find the recessive cones Rec(P ) and Rec(D) of the primal and the dual feasible sets.
2. Prove that the feasible set of at least one of the problems is unbounded.

Solution: The feasible sets of (P ) and (D) are nonempty, convex, and clearly closed. Let x̄ be primal

feasible and ȳ be dual feasible. Then, we have

Rec(P ) = {h : A[x̄+ th]− b ∈ K, ∀t ≥ 0} =
{
h : Ah− t−1[Ax̄− b] ∈ K, ∀t > 0

}
= {h : Ah ∈ K}

Rec(D) =
{
g : ȳ + tg ∈ K∗, tA

⊤g = 0, t ≥ 0
}
=
{
g ∈ K∗ : A⊤g = 0

}
.

Now assume that the feasible set of (D) is bounded, and let us prove that the feasible set of (P ) is

unbounded. AsK is a regular cone, we can select f ∈ intK. Consider two convex sets S =
{
y : A⊤y = 0

}
and T =

{
y ∈ K∗ : f⊤y = 1

}
; note that T ̸= ∅ due to f ∈ intK. We are in the situation where the

dual feasible set is nonempty, closed, and bounded, implying by Fact II.6.18 that Rec(D) = {0}, that is,
S ∩K∗ = {0}, whence the closed nonempty convex sets S and T do not intersect. Recall also that as K

is a regular cone so is its dual K∗, and thus by Fact II.6.38 T is compact. Then, the convex sets S, T are

at positive distance from each other and one of them is compact, hence they can be strongly separated:

there exists a vector a such that

sup
y∈S

a⊤y < min
y∈T

a⊤y.

As S is a linear space and T is a base of K∗ (Fact II.6.38), this relationship is equivalent to

a ∈ S⊥ = [KerA⊤]⊥ = ImA, and a ∈ int(K∗)∗ = intK.

Here the inclusion a ∈ int(K∗)∗ is given by Fact II.6.38.ii as applied to the regular cone K∗ in the role

of M combined with the fact that a⊤y > 0 for all y ∈ T and therefore for all y ∈ K∗ \ {0}. Thus,

we conclude that a = Ah for some h such that Ah ∈ intK and thus h ̸= 0, which clearly shows that
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Rec(P ) = {h : Ah ∈ K} ≠ {0} and thus the primal feasible set is unbounded. Note that we have shown

{h : Ah ∈ intK} ̸= ∅, which is indeed something even stronger than what was desired. ■

Exercise IV.26. [semidefinite duality] A semidefinite program is a conic program involving the
positive semidefinite cone. As a matter of fact, Semidefinite programming – the family of semidefinite
programs – possesses extremely powerful “expressive abilities.” It is prudent to say that for all
practical purposes, whatever it means, Semidefinite programming is “the same” as the entire Convex
programming. In this exercise we would like to acquaint the reader with the specific form taken by
Conic duality when the cone involved is the positive semidefinite cone.

Formally, a semidefinite program is of the form

Opt(P ) = min
x∈Rn

{
c⊤x :

Ax− b :=
∑
j ajxj − b ≥ 0

Ax−B := x1A1 + . . .+ xnAn −B ⪰ 0

}
, (P )

where aj , b are vectors from some Rp, and Aj , B are matrices from some Sq. “Real life” form of
a semidefinite program usually is a bit different, namely,

Opt(P) = min
x∈Rn

{
c⊤x :

Ax− b :=
∑
j xjaj − b ≥ 0

Aix−Bi := x1A
i
1 + . . .+ xnA

i
n −Bi ⪰ 0, ∀i ≤ m

}
, (P)

where Aij , B
i ∈ Sqi . In the formulation (P) as opposed to the formulation (P ) we have a bunch

of positive semidefinite cone constraints, i.e., Aix−Bi ⪰ 0, i ≤ m, instead of a single constraint
Ax − B ⪰ 0. We can always rewrite (P) in the form of (P ) by assembling Aij , B

i into block-

diagonal matrices Aj = Diag{A1
j , . . . , A

m
j }, B = Diag{B1, . . . , Bm}. Taking into account that

a block-diagonal symmetric matrix is positive semidefinite if and only if all the diagonal blocks
are positive semidefinite, we deduce that (P) is equivalent to the problem

min
x∈Rn

{
c⊤x :

Ax− b :=
∑
j xjaj − b ≥ 0

Ax−B :=
∑
j xjAj −B ⪰ 0

}
of the form (P ). When proving theorems, it is usually better to work with program in the form
of (P ) – it saves notation; in contrast, when working with “real life” semidefinite programs, it
is usually better to operate with problems in more detailed form (P).

Your task is as follows:

1. Verify that the conic dual of (P) is the semidefinite program

max
λ,{Λi,i≤m}

{
b⊤λ+

m∑
i=1

Tr(ΛiB
i) :

λ ∈ Rp
+,Λi ∈ Sqi+ , i ≤ m

A⊤λ+
∑m
i=1 A

∗
iΛi = c,

}
, (D)

where for the linear mapping x 7→
∑
j xjAj : Rn → Sq its conjugate linear mapping X 7→

A∗X : Sq → Rn is given by the identity

Tr(X[Ax]) ≡ [A∗X]⊤x ∀(x ∈ Rn, X ∈ Sq),

or, which is the same,

A∗X = [Tr(A1X); . . . ; Tr(AnX)].

Solution: (P) is the cone-constrained problem

min
x∈Rn

{
f(x) := c⊤x : g(x) := b−Ax ≤ 0, ĝ(x)

:= Diag
{
B1 −

∑
j xjA

1
j , . . . , B

m −
∑
j xjA

m
j

}
∈ −K

} (∗)

where K is the cone composed of the positive semidefinite block-diagonal symmetric matrices with m

diagonal blocks of sizes q1, . . . , qm. Then, the cone K lives in the space S{q1,...,qm} of block-diagonal

symmetric matrices withm diagonal blocks of sizes q1, . . . , qm. Equipping S{q1,...,qm} with Frobenius in-

ner product and taking into account that positive semidefinite cone is self-dual, we immediately conclude

that K is self-dual as well. As a result,
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• the Lagrange multipliers Λ ∈ K∗ are exactly block-diagonal matrices Λ = Diag{Λ1, . . .Λm} with

diagonal blocks Λi ∈ S
qi
+ , for all i ≤ m;

• the cone-constrained Lagrange function of (∗) is the function

L(x;λ,Λ) = f(x) + λ⊤g(x) + Tr(ĝ(x)Λ), (!)

where the last term in the right hand side is precisely what is prescribed by our general description

of cone-constrained Lagrange function, i.e., it is the inner product of the Lagrange multiplier Λ for

the cone constraint ĝ(x) ≤K 0 and the left hand side of this constraint12. In other words,

L(x;λ,Λ) = c⊤x+ λ⊤[b−Ax] +
∑m
i=1 Tr

(
Λi[B

i −
∑
j A

i
jxj ]

)
:

Rn
x ×

[
Rp

+ × Sq1+ × . . .× Sqm+
]
→ R.

Consequently, the cone-constrained Lagrange dual of (∗) is the problem

max
λ∈R

p
+,Λ={Λi∈S

qi
+ }

{
L(λ,Λ)

:= inf
x∈Rn

[
λ⊤b+

∑
i Tr(ΛiB

i) +
∑
j xj [cj − λ⊤aj −

∑
i Tr(ΛiA

i
j)]
]
.

}
Note also that

L(λ,Λ) =

{
λ⊤b+

∑
i Tr(ΛiBi), if A⊤λ+

∑
i

[
Tr(Ai1Λi); . . . ; Tr(A

i
nΛi)

]
= c

−∞, otherwise
.

Therefore, the conic dual of (P) is given by

max
λ,{Λi,i≤m}

{
λ⊤b+

∑
i

Tr(ΛiBi) :
λ ∈ Rp

+, Λi ∈ S
qi
+ , i ≤ m

A⊤λ+
∑
i

[
Tr(Ai1Λi); . . . ; Tr(A

i
nΛi)

]
= c

}
(D)

In words, the recipe for building the dual to the semidefinite program (P) is as follows:

1. We equip the constraints of (P) with Lagrange multipliers, specifically, the linear constraints Ax−b ≥
0 with the multiplier λ ∈ Rp such that λ ≥ 0, and the semidefinite constraints Aix − Bi :=∑
j xjA

i
j −Bi ⪰ 0 with the multipliers Λi ∈ Sqi such that Λi ⪰ 0.

2. We take the inner products of the left hand sides of the constraints in (P) and the associated Lagrange

multipliers (the standard inner product for the linear constraint Ax− b ≥ 0, and the Frobenius inner

products for the semidefinite constraints Aix − Bi ⪰ 0) and sum up the results, arriving at the

aggregated constraint [
A⊤λ+

∑
i

A∗
iΛi

]⊤
x ≥ b⊤λ+

∑
i

Tr(BiΛi),

where A∗
iX = [Tr(Ai1X); . . . ; Tr(AinX)].

By its origin, this constraint is a consequence of the system of constraints in (P).

12 in our general description of cone-constrained Lagrange function, the cone in the cone constraint

lived in some RN , and the product of the Lagrange multiplier and the body of the constraint was

the standard inner product in RN . Our present situation can be reduced to the standard one by

identifying S = S{q1,...,qm} equipped with the Frobenius inner product with appropriate RN

equipped with the standard inner product, identification being given by selecting orthonormal,

w.r.t. the Frobenius inner product, basis in S and identifying X ∈ S with the vector of coordinates

of X in this basis. There, however, is no necessity to carry out this identification explicitly, since all

we are interested in is what will be the standard inner product of vectors of coordinates of Λ and of

ĝ(x) in this orthonormal basis, and we know the answer in advance – this will be the Frobenius

inner product of Λ and ĝ(x), the entity we see in (!).
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3. We impose on the Lagrange multipliers, aside of the restrictions mentioned in item 1, the restriction

that the left hand side in the aggregated constraint is equal to c⊤x identically in x ∈ Rn, so that

the right hand side in this constraint is a lower bound on Opt(P), The dual program (D) is nothing

but the problem of maximizing this lower bound over Lagrange multipliers satisfying the restrictions

just listed.

Exercise IV.27. [example of semidefinite relaxation] Let Tk ⪰ 0, k ≤ K, be positive semidefinite
m×m matrices such that

∑
k Tk ≻ 0, T ⊂ RK

+ be a convex compact set intersecting the interior of

RK
+ , and A be a symmetric m×m matrix. Let also ϕT (z) = maxt∈T z

⊤t be the support function
of T . Prove that

Opt := minz
{
ϕT (z) : z ≥ 0, A ⪯

∑
k zkTk

}
(a)

= maxΛ,t {Tr(AΛ) : Λ ⪰ 0, t ∈ T ,Tr(TkΛ) ≤ tk, k ≤ K} (b)

and that both minimization and maximization problems above are solvable.

Solution: Since T is bounded, ϕT is real-valued and continuous, and since T ⊂ RK
+ contains a positive

vector, the sets {z ≥ 0 : ϕT (z) ≤ a} are closed and bounded for every a ∈ R. The problem specifying

Opt is cone constrained problem which is strictly feasible (due to
∑
k Tk ≻ 0), and by the above,

denoting by Z the feasible set of the problem, the feasible sublevel sets {z ∈ Z : ϕT (z) ≤ a} of ϕT are

closed and bounded for every a; since the objective is continuous, it follows that the problem is solvable

(Theorem B.32). The minimization problem specifying Opt is cone constrained strictly feasible and

below bounded problem. Thus, by cone constrained version of Convex Programming Duality Theorem

(Theorem IV.18.1), the cone constrained Lagrange dual of problem (a) is solvable with optimal value

Opt. The cone constrained Lagrange function of (a) is

L(z;λ,Λ) = ϕT (z)− λ⊤z +Tr(Λ[A−
∑
k

zkTk]) : R
K
z × [RK

+ × Sm+ ] → R,

so that the objective in the dual problem is

L(λ,Λ) = Tr(AΛ) + inf
z∈RK

[
ϕT (z)− z⊤ [Tr(ΛT1) + λ1; ...; Tr(ΛTK) + λK ]︸ ︷︷ ︸

=:ℓ(λ,Λ)

]
,

that is, L(λ,Λ)−Tr(ΛA) is the minus Legendre transform ϕ∗T of ϕT (·) as evaluated at ℓ(λ,Λ). Since T
is convex, nonempty, and closed, ϕ∗T is just the characteristic function of T (Exercise III.10), that is,

L(λ,Λ) =

{
Tr(AΛ) , ℓ(λ,Λ) ∈ T
−∞ , otherwise

}
so that the cone constrained Lagrange dual of (a), which is the problem of maximizing L over the set

{λ ≥ 0,Λ ⪰ 0} is equivalent to (b). ■

Exercise IV.28. What follows is the concluding exercise in the “Truss Topology Design” series. We
have already used TTD problem to present instructive “real life” illustrations of the power of several
results of Convex Analysis, specifically, Caratheodory Theorem (Exercise I.18), epigraph description
of convexity and Helly Theorem (Exercise III.9) and S-Lemma (Exercise IV.11), not speaking about
the Schur Complement Lemma which was instrumental in all these exercises. Now it is time to
illustrate the power of conic duality.

In the sequel, we assume that the reader is reasonably well acquainted with Truss Topology Design
story as told in Exercise I.16 and use without additional comments the notions, notation, and the
results presented in this Exercise, including the default assumption R which remains in force below.
In addition, we assume from now on that the load of interest f is nonzero – this is the only nontrivial
case in TTD.

Recall that the TTD problem as posed in Exercise I.16.2 reads

Opt = min
τ,r

{
τ :

[
BDiag{t}B⊤ f

f⊤ 2τ

]
⪰ 0, t ≥ 0,

∑
i

ti =W

}
(P )
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In our present language, this is a semidefinite program, and we know from Exercise I.16 that this
problem is solvable.

Your first task is easy:

1. Build the semidefinite dual of (P ) and prove that the dual problem is solvable with the same
optimal value Opt as the primal problem (P ).

Since passing from a semidefinite problem to its dual is a purely mechanical process, on one hand,
and the subsequent tasks will be formulated in terms of the dual problem, here is the dual as given
by Conic Duality:

max
V,g,θ,λ,µ

{
−2f⊤g −Wµ : 2θ = 1, b⊤i V bi + λi − µ = 0 ∀i, λ ≥ 0,

[
V g

g⊤ θ

]
⪰ 0

}
Eliminating variable θ (which is fixed by the corresponding constraint), we rewrite the dual as

max
V,g,λ,µ

{
−2f⊤g −Wµ : b⊤i V bi + λi − µ = 0 ∀i, λ ≥ 0,

[
V g

g⊤ 1
2

]
⪰ 0

}
(D)

What is left to you, is to verify the derivation and to prove that (D) is solvable with the same optimal
value Opt as (P ).

Solution: Assumption R states that every t > 0 satisfying the linear equality
∑
i ti = W results in

positive definite matrix BDiag{t}B⊤, implying by the Schur Complement Lemma that augmenting t

with large enough τ , we get a feasible solution to (P ) which strictly satisfies all ≥- and ⪰-constraints

of (P ). Thus, (P ) is essentially strictly feasible (and of course bounded – the objective is nonnegative

on the feasible set, not speaking about already known to us solvability of (P )). Applying Conic Duality

Theorem, we conclude that (D) is solvable with the same optimal value Opt as the primal problem (P ).

■

Your next task still is easy:

2. Verify that eliminating, by partial optimization, variables V and λ, problem (D) reduces to the
problem

max
g,µ

{
−2f⊤g −Wµ :

[
µ b⊤i g

b⊤i g
1
2

]
⪰ 0∀i

}
(D)

and the latter problem is solvable with the same optimal value Opt as (P ) and (D).

Pay attention to the first surprising fact: semidefinite constraints in (D) involve the cone S2
+ of 2×2

positive semidefinite matrices, and this cone, as we know, is, up to one-to-one linear transformation,
just the Lorentz cone L3. Thus, (D) is a conic quadratic problem.

Solution: Eliminating variables λi is immediate – all we need is to replace the linear equality constraints

b⊤i V bi + λi − µ = 0 with inequality constraints

b⊤i V bi ≤ µ, i ≤ N,

reducing (D) to the problem

max
V,g,µ

{
− 2f⊤g −Wµ : b⊤i V bi ≤ µ ∀i︸ ︷︷ ︸

(∗)

,

[
V g

g⊤ 1
2

]
⪰ 0

}
(D′)

Next, by the Schur Complement Lemma, semidefinite constraint in (D′) is equivalent to the constraint

V ⪰ V := 2gg⊤, and replacing V with V , we clearly preserve validity of constraints (∗). It follows that

if (V, g, µ) is feasible for (D′), so is (V , g, µ). As a result, (D′) is equivalent to the problem

max
g,µ

{
− 2f⊤g −Wµ : 2(b⊤i g)

2 ≤ µ ∀i
}
. (D′′)

Due to its origin, (D′′) is solvable along with (D) and shares with (D) and with (P ) the optimal value

Opt. It remains to note that by the Schur Complement Lemma (D′′) is exactly the same as (D). ■
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Your next task is

3. Pass from problem (D) to its semidefinite dual (P ) and prove that the latter problem is solvable
with optimal value Opt.

At the first glance, the task seems crazy: the dual of the dual is the primal! Note, however, that
(D) is not the plain conic dual to (P ) problem (D) – it is obtained from (D) by eliminating part of
variables, and nobody told us that this elimination keeps the dual to (D) equivalent to the dual of
(D), that is, to (P ).

By the same reasons as in item 1, we take upon ourselves writing down (P ):

min
s,t,q

{
1

2

∑
i

si :
∑
i

ti =W,
∑
i

qibi = f,

[
ti qi
qi si

]
⪰ 0∀i

}
(P )

What is left to you is to prove that (P ) is solvable with optimal value Opt.

Solution: Problem (D) clearly is strictly feasible, and we already know that it is solvable (and thus

bounded) with optimal value Opt. By Conic Duality, (P ) is solvable with the same optimal value. ■

Now – the main surprise:

4. Verify that (P ) allows eliminating, by partial optimization, variables ti and si, which reduces (P )
to solvable optimization problem

min
q

{
1

2W

(∑
i

|qi|

)2

:
∑
i

qibi = f

}
(#.1)

with the same optimal value Opt as all preceding problems, (P ) included.

This indeed is a great surprise – (#.1) is equivalent to Linear Programming problem

min
q

{
∥q∥1 :

∑
i

qibi = f

}
. (#.2)

Solution: Let s, t, q be a feasible solution to (P ), and let I be the set of indexes i with nonzero qi; note

that I ̸= ∅ since, as we have assumed from the very beginning, f ̸= 0. Note that zeroing out si and

ti with i ̸∈ I and increasing somehow ti with i ∈ I to keep
∑
i ti intact, we preserve feasibility and do

not spoil the value of the objective. In the resulting feasible solution q, t′, s′ we have t′i = s′i = 0, i ̸∈ I,

t′i > 0 for i ∈ I (due to
[

ti qi
qi si

]
⪰ 0) and s′i ≥ q2i /t

′
i for i ∈ I (Schur Complement Lemma); when

replacing in s′ entries with indexes from I with q2i /t
′
i, we again preserve feasibility and do not spoil the

objective. The bottom line is that partial optimization over s, t-components of a feasible solution (q, t, s)

reduces to solving the optimization problem

min
ti,i∈I

{
1

2

∑
i∈I

q2i /ti : ti > 0, i ∈ I,
∑
i∈I

ti =W

}
This problem is easy to solve (see Exercise III.30); its optimal solution is given by

ti =W |qi|/
∑
j∈I

|qj |, i ∈ I,

and optimal value is 1
2
W−1(

∑
i∈I |qi|)

2. Thus, problem (P ) reduces to the optimization problem

min
q

{
1

2W
(
∑
i

|qi|)2 :
∑
i

qibi = f

}
.

As follows from our analysis, the latter problem is solvable with optimal value Opt. ■

The challenge is, of course, to extract from optimal solution to (#.2) an optimal truss t∗ – one
with total bar volume W and compliance, w.r.t. load f , equal to Opt, and this is your final task:

5.1. Prove the following
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Observation Let t ≥ 0 be a nontrivial (t ̸= 0) truss and I = {i : ti > 0}. Consider the
convex optimization problem

min
q

{
1

2

∑
i∈I

q2i /ti : qi = 0, i ̸∈ I,
∑
i

qibi = f

}
(#.3)

and assume that the problem is feasible. Then

1. The problem is solvable
2. A feasible solution q to the problem is optimal if and only if for some nodal displacement

v ∈ V one has

qi = tib
⊤
i v ∀i (#.4)

3. The optimal value in the problem is nothing but the compliance of truss t w.r.t. load f .

Solution: Solvability of (#.3) is evident - the problem is feasible with bounded sublevel sets of the

objective. By optimality conditions in convex minimization under linear equality constraints (see the

second example after Proposition III.11.3) a feasible solution q is optimal if and only if for some

v ∈ RM one has

qi/ti = b⊤i v, i ∈ I,

which is the same as (#.4). Assuming q optimal, (#.4) combines with
∑
i qibi = f to imply that∑

i

tibib
⊤
i v = f.

We see that v is the equilibrium displacement of truss t loaded by f , implying that the compliance

of this truss under the load f is (see Exercise I.16.1)

1
2
v⊤f = 1

2

∑
i ti(b

⊤
i v)

2

= 1
2

∑
i∈I ti(b

⊤
i v)

2 [since ti = 0 for i ̸∈ I]

= 1
2

∑
i∈I q

2
i /ti [since b⊤i v = qi/ti, for i ∈ I]

and the concluding quantity is the optimal value of (#.3). ■

5.2. Extract from optimal solution to (#.2) an optimal truss.

Solution: From our preceding considerations (#.1) is solvable with the same optimal value Opt as (P )

and (P ) and is obtained from (P ) by partial optimization in s, t-variables. Let q∗ be an optimal solution

to (#.2), or, which is the same, to (#.1). Due to the origin of (#.1), the value Opt of its objective at q∗

satisfies

Opt = min
s,t

{
1

2

∑
i

si :
∑
i

ti =W,

[
ti q∗i
q∗i si

]
⪰ 0 ∀i ≤ N

}
and we know what is an optimal solution s∗, t∗ to the right hand side problem: setting I = {i : q∗i ̸= 0},
we have

t∗i =

{
0, i ̸∈ I

W
|q∗i |∑

j∈I |q∗j | , i ∈ I
, s∗i =

{
0, i ̸∈ I
(q∗i )2

t∗i
, i ∈ I

(#.4)

Thus,

Opt =
1

2

∑
i∈I

[q∗i ]
2/t∗i (!)

Now consider the optimization problem (#.3) stemming from t = t∗. q∗ is a feasible solution to this

problem with the value of the objective Opt (by (!)). By Observation, the optimal value in this problem

is the compliance of t∗ w.r.t. f , and since the total bar volume of t∗ is W , this optimal value is ≥ Opt

due to the origin of Opt. Thus, q∗ is a feasible solution to the stemming from t = t∗problem (#.3), the

value of the problem’s objective at this solution is Opt, and the optimal value in the problem is ≥ Opt.
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We conclude that q∗ is an optimal solution to the problem in question with the value of the objective

Opt, implying by Observation that Opt is the compliance of truss t∗ w.r.t. f . Recalling that Opt is the

optimal value in (P ) and the total bar volume of t∗ is W , we conclude that t∗ is the t-component of an

optimal solution of (P ). ■

Explanation of LP miracle. Problem (#.1) was obtained from problem (P ) by eliminating t- and s-variables. When elimi-

nating in (P ) s-variables only, we arrive at the problem

min
q,t

{∑
i

q2i
2ti

: t ≥ 0,
∑
i

ti = W,
∑
i

qibi = f

}
(P̃ )

where, by definition,
q2i
ti

is 0 when qi = 0 and +∞ otherwise. LP reformulation of the problem is an immediate consequence

of formulation (P̃ ). The question we address here is: can we derive (P̃ ) directly from the first principles of Mechanics (as

was the case with our initial TTD problem (P )), thus avoiding twice passing to dual which led us from (P ) to (P̃ )? As we
shall see in a while, the answer is both “yes” and “no.”

To interpret (P̃ ) in terms of Mechanics, we need first of all to interpret in this way the decision variables of the problem.

Looking at (P̃ ), we can guess that t plays the role of a tentative truss; at least the constraints on t are exactly those imposed
on a truss with total bar volume W . To interpret q, consider a displacement v of nodes in truss t. As we remember from
the derivation of the TTD model in the preamble to Exercise I.16, the vector

−
∑
i

[tib
⊤
i v]bi

is the reaction (block-vector of reaction forces at different nodes) resulting from nodal displacement v, and

tib
⊤
i v = −Siδi, (#.5)

where Si is the cross-sectional size of i-th bar, and δi is the change in the bar’s length caused by the displacement v of the
nodes13. Recall that by Hooke’s Law the tension in a bar of (pre-deformation) length d and cross-sectional size S caused by
elongation/shortening of the bar by δ (that is, the reaction force caused by this deformation at bar’s endpoint) is −Sδ/d,

so that the quantities tib
⊤
i v admit, according to (#.5), transparent mechanical interpretation – these are scaled tensions,

products of (pre-deformation) bar lengths and tensions in bars of truss t caused by displacement v of the nodes. Moreover,
Mechanics says that the potential energy capacitated in elastic bar of length d and cross-sectional size S as a result of bar’s
elongation/shortening by δ is 1

2Sδ2/d. It follows that given a truss t and a nodal displacement v and setting qi = tib
⊤
i v,

the reaction of the truss caused by nodal displacement v is −
∑

i qibi, and the potential energy capacitated in the truss as

a result of nodal displacement v is 1
2

∑
i q

2
i /ti. We see that when t is a truss, and vector q is linked to t and to some nodal

displacement v by the relations

qi = tib
⊤
i v (#.6)

then qi, −
∑

i qibi and 1
2

∑
i q

2
i /ti are, respectively, the scaled tensions, the reaction, and the potential energy capacitated

in the truss as a result of displacement v of its nodes. Consequently, if (q, t) is a feasible solution to (P̃ ) and q, t and some
nodal displacement v are linked by (#.6), then v is the equilibrium displacement of truss t under load f , and the value of

the objective of (P̃ ) at the feasible solution (q, t) is the compliance of truss t w.r.t. the load f .

Our observations suggest the following mechanical interpretation of candidate solutions to (P̃ ): ti are bar volumes, and qi
are scaled tensions in bars. With this interpretation, the linear constraints

∑
i qibi = f say that the reaction compensates the

external load, and the value of the objective at a feasible solution (q, t) is the compliance of truss t w.r.t load f , so that (P̃ )
indeed is the problem of minimizing, over trusses of total volume W , the compliance of the truss w.r.t. load f . Unfortunately,

this mechanical interpretation of (P̃ ) is completely wrong. Indeed, the dimension of vector q is N , and typically it is much
larger than the dimension M of those vectors q which could be linked to M -dimensional nodal displacements v according
to (#.6) (think about Console design where N = 3024 and M = 144). In order for our guessed mechanical interpretation

of (P̃ ) to make sense, (P̃ ) should include additional constraints stating that q is linked to t and some nodal displacement

v by relations (#.6), but (P̃ ) does not include this sine qua non, from the viewpoint of Mechanics, restriction! As a result,

“most” of feasible solutions to (P̃ ) make no mechanical sense – what pretends to be the vector of scaled tensions does not
come from any deformation of the truss! Note that a straightforward attempt to include into the problem the above sine
qua non restriction by adding to the design variables t, q additional design variables v, and to the constraints – equality

constraints (#.6) , fails – it recovers “mechanical validity” of (P̃ ) at the disastrous, from the computational viewpoint, price
– constraints (#.6) are nonconvex in the design variables q, t, v!

All this being said, how happens that (P̃ ) does allow to recover the optimal truss? The explanation is: at the optimum,
q and t indeed are linked by relations (#.6) with certain nodal displacement v; this displacement stems from the Lagrange

multipliers certifying optimality of q, t (look at the justification of Observation from item 5.1). Thus, (P̃ ) can be treated
as precise relaxation of the “true” TTD problem: formulating the latter problem in terms of scaled tensions, bar volumes,
and nodal displacements, which is fully legitimate from the viewpoint of Mechanics, we then relax the problem by throwing

13 All this corresponds to the Hooke’s Law in the form “reaction force caused by elongation/shortening by δ
of bar with length d and cross-sectional size S is −Sδ/d” – the form corresponding to the linearly elastic
model of truss’s deformation.
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away variables v and constraints (#.6), thus arriving at problem (P̃ ). This relaxation is precise in the sense that the optimal
solution to the relaxed problem provably is the (q, t)-component of optimal solution to the “true” TTD problem in variables
q, t, v.

Finally, we remark that while the “LP miracle” stemming from (P̃ ) has rather restricted scope – it disappears when

passing from single-load TTD with the simplest possible constraints on tentative t’s to more general problems of structural

design (multi-load TTD, Shape Design, etc.), these more general problems still admit “precise relaxations” of type (P̃ ), see

[BTN], and one arrives at these reformulations by strategy similar to the one we have used – start with the “natural” conic

formulation (P ) of the problem, pass to the conic dual (D) of (P ), process (D) “on paper” by eliminating variables allowing

for easy elimination, and end up by passing from the resulting reformulation (D) of (D) to the conic dual (P ) of (D).

24.5 Cone-convexity

Exercise IV.29. [elementary properties of cone-convex functions] The goal of this Exercise is to
extend elementary properties of convex functions onto cone-convex mappings.

A. Let X ,Y be Euclidean spaces equipped with norms ∥ · ∥X , ∥ · ∥Y . Let, next, X be a closed
pointed cone in X , Y be a closed and pointed cone in Y, and f : X → Y be a mapping defined on
a nonempty convex set X ⊂ X . Recall that for a closed and pointed cone K in Euclidean space K
and x, x′ ∈ K, relation x ≤K x′, same as x′ ≥K x, means that x′ − x ∈ K.

Recall that f is called
• (X,Y)-monotone on X, if{

x, x′ ∈ X and x ≤X x′
}

=⇒ f(x) ≤Y f(x′);

• Y-convex on X, if

f(λx+ (1− λ)x′) ≤Y λf(x) + (1− λ)f(x′)

for every x, x′ ∈ X and λ ∈ [0, 1].
For example,

— an affine mapping f(x) = Ax+ a : X → Y is Y-convex, whatever be pointed closed cone Y;
— when Y = R and Y = R+, Y-convex on X functions are the convex, in the standard definition,
real-valued functions on X.

A.1. In the situation of A, let Y∗ be the cone dual to Y. For e ∈ Y, let fe(x) = ⟨e, f(x)⟩Y : X → R.
Prove that f is
— Y-convex on X if and only if the function fe is convex on X whenever e ∈ Y∗

— (X,Y)-monotone on X if and only if the function fe is X-monotone on X (i.e., x, x′ ∈
X,x ≤X x′ =⇒ fe(x) ≤ fe(x

′)) for every e ∈ Y∗.

Solution: Evident due to the fact that y ∈ Y if and only if ⟨e, y⟩ ≥ 0 for all e ∈ Y∗; indeed, the cone

Y is closed and therefore is dual to Y∗.

A.2. In the situation of A, let f be Y-convex. Prove that f is locally bounded and locally Lipschitz
continuous on the interior of X, meaning that if X̄ ⊂ intX is a closed and bounded set, then
there exists M < ∞ such that ∥f(x)∥Y ≤ M holds for all x ∈ X̄ (this is local boundedness)
and there exists L < ∞ such that ∥f(x) − f(z′)∥Y ≤ L∥x − x′∥X holds for all x, x′ ∈ X̄ (this
is local Lipschitz continuity).

Solution: Since Y is pointed closed cone, the cone Y∗ has a nonempty interior. Selecting once for

ever N := dimY linearly independent vectors e1, ..., eN in intY∗, let us set yi := ⟨y, ei⟩Y . Then, the

linear mapping y 7→ ȳ(y) := [y1; ...; yN ] is a one-to-one linear map from Y onto RN , so that the function

|y|∞ := ∥ȳ(y)∥∞ is a norm on Y. By A.1, the real valued functions fei (x) are convex on X, and therefore

are locally bounded and locally Lipschitz continuous on intX, 1 ≤ i ≤ N , implying similar properties of

f w.r.t. | · |∞ on Y, and therefore w.r.t. ∥ · ∥Y . ■

B. Now let us look at elementary operations preserving cone convexity. From now on, Lin(X ,Y)
denotes the linear space of linear mappings acting from Euclidean space X to Euclidean space Y.
Prove the following statements:
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B.1. [“nonnegative linear combinations”] Let X be a nonempty convex subset of Euclidean space
X , Yj , j ≤ J , and Y be Euclidean spaces equipped with pointed closed cones Yj , Y, and
αj ∈ Lin(Yj ,Y) be “nonnegative coefficients”, meaning that αjyj ∈ Y whenever yj ∈ Yj . When
mappings fj(x) : X → Yj . are Yj-convex, j ≤ J , their “linear combination with coefficients
αj” – the mapping

f(x) =
∑
j

αjfj(x) : X → Y

– is Y-convex.

Solution: For x, x′ ∈ X and λ ∈ [0, 1] we have

λf(x) + (1− λ)f(x′)− f(λx+ (1− λ)x′) =
∑
j

αj [λfj(x) + (1− λ)fj(x
′)− fj(λx+ (1− λ)x′)︸ ︷︷ ︸

∈Yj

] ≥Y 0,

where the concluding ≥Y is due to αjyj ≥Y 0 whenever yj ≥Yj
0. ■

B.2. [affine substitution of variables] In the situation of A, let z 7→ Az + a : Z → X be an affine
mapping, and let f be Y-convex on X. Then, the function g(z) := f(Az + a) is Y-convex on
the set Z = {z : Az + a ∈ X}.

Solution: evident.

B.3. [monotone composition] Let Uj , j ≤ J , be Euclidean spaces equipped with closed pointed cones
Uj , let U = U1 × ... × UJ , U = U1 × ... × UJ , and let Y be an Euclidean space equipped
with closed pointed cone Y. Next, let X be nonempty convex set in Euclidean space X , U be
a nonempty convex set in U , let fj(x) : X → Uj be Uj-convex functions, j ≤ J , such that
f(x) = [f1(x); ...; fJ(x)] ∈ U whenever x ∈ X. Finally, let mapping F : U → Y be (U,Y)-
monotone and Y-convex on U . Then the composition

G(x) = F (f(x)) : X → Y

is Y-convex on X.

Solution: Indeed, when x, x′ ∈ X and λ ∈ [0, 1], setting x̄ = λx + (1 − λ)x′, u = f(x), u′ = f(x′),

ū = f(x̄), we get x̄ ∈ X, u, u′, ū ∈ U (since f maps X into U) and ū ≤U û := λu + (1 − λ)u′ due to

Uj-convexity of fj and the origin of U. Consequently,

G(x̄) = F (ū) ≤Y F (û) [since ū, û ∈ U , ū ≤U û and F is (U,Y)-monotone]

≤Y λF (u) + (1− λ)F (u′) [since F is Y-convex on U ]

= λG(x) + (1− λ)G(x′).■

C. The gradient inequality and existence of directional derivative can be extended from the usual
convex functions (i.e., R+-convex functions taking values in R) to the cone-convex ones. Prove the
following statements:

C.1. [“gradient inequality”] In the situation of A, let x̄ ∈ X and f be Y-convex on X and differen-
tiable at x̄. Then

∀y ∈ X : f(y) ≥Y f(x̄) + f ′(x̄)(y − x),

where f ′(x̄) is the Jacobian of f at x̄.

Solution: it suffices to apply the standard gradient inequality to convex functions fe, e ∈ Y∗, and use

the same argument as when processing A.1. ■

C.2. [existence of directional derivative] In the situation of A, let f be Y-convex on X, let x̄ ∈ intX
and d ∈ X . Then

∃Df(x̄)[d] := lim
t→+0

f(x̄+ td)− f(x̄)

t

and

(t ≥ 0 & x̄+ td ∈ X) =⇒ f(x̄+ td) ≥Y f(x̄) + tDf(x̄)[d]. (#)
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Besides this, as a function of d ∈ X , Df(x̄)[d] is positively homogeneous of degree 1 (i.e.,
Df(x̄)[td] = tDf(x̄)[d] when t ≥ 0) and Y-convex.

Solution: By arguments completely similar to those used when justifying A.1-3, this is immediate

consequence of the standard results on directional derivatives of the usual convex functions, see section

12.3.

D. Subdifferentials of the usual convex functions admit natural extensions to the cone-convex
mappings. Specifically, in the situation of A, let x̄ ∈ X. Let us say that g ∈ Lin(X ,Y) is a sub-
Jacobian of f at x̄, if

∀y ∈ X : f(y) ≥Y f(x̄) + g[y − x].

For example, C.1 says that if f is Y-convex on X and differentiable at x̄ ∈ X, then the taken at x
Jacobian f ′(x̄) of f is a sub-Jacobian of f at x̄. Clearly, for a usual convex function its sub-Jacobians
at a point are exactly the linear forms on X given by subgradients f ′(x) of f at x according to

gh = ⟨f ′(x), h⟩X , h ∈ X .

Let Jf(x) be the set of all sub-Jacobians of f at x ∈ X. Prove the following statements:

D.1. In the situation of A, for x ∈ X one has g ∈ Jf(x) if and only if for every e ∈ Y∗ the vector
g∗e ∈ X is a subgradient of fe at x; here for g ∈ Lin(X ,Y), g∗ ∈ Lin(Y,X ) is the conjugate of
g: ⟨gu, v⟩Y = ⟨u, g∗v⟩X for all u ∈ X , v ∈ Y.

Solution: Evident due to the same argument as used when processing A.1. ■

D.2. In the situation of A, let f be Y-convex on X. Then
— D.2.1. For every x ∈ X, the set Jf(x) is a closed convex subset of Lin(X ,Y);
— D.2.2. The mapping x 7→ Jf(x) is locally bounded on the interior of X, that is, for every
closed and bounded set X̄ ⊂ intX, the induced norms ∥g∥X ,Y = maxz{∥gz∥Y : ∥z∥X ≤ 1} of
linear mappings g ∈ Jf(x), x ∈ X̄ are bounded away from +∞;
— D.2.3. The multivalued mapping x 7→ Jf(x) is closed on intX: if xi ∈ intX converge as
i→ ∞ to x̄ ∈ intX and linear mappings gi ∈ Jf(xi) converge as i→ ∞ to some ḡ ∈ Lin(X ,Y),
then ḡ ∈ Jf(x̄).

Solution: D.2.1 is immediate consequence of the fact that Y is a closed cone; D.2.2-3 are readily given

by local Lipschitz continuity of f on intX, see A.2. ■

The most attractive property of subgradients of the usual convex function is their existence, at
least at interior points of the function’s domain. This fact extends to the cone-convex mappings.
Prove the following statements:

D.3. [existence of sub-Jacobians] In the situation of A, let x̄ ∈ intX and f be Y-convex on X. Then
Jf(x̄) is nonempty.

Solution: This is the only claim which seemingly cannot be extracted more or less automatically from

standard facts about the usual convex functions. Moreover, the Separation Theorem underlying the

existence of subgradients of the usual convex functions at interior points of their domains seemingly

does not help now. Fortunately, there is an easily implementable alternative as follows.

For ϵ > 0, let Xϵ = {x ∈ X : ∥y − x∥X ≤ ϵ =⇒ y ∈ intX} and δϵ(x) be a nonnegative C∞ function

such that δϵ(x) = 0 when ∥x∥X ≥ ϵ and
∫
X δϵ(x)dx = 1. Clearly, for small ϵ > 0 Xϵ is a nonempty open

convex set, and the function

fϵ(x) :=

∫
X
f(x− y)δϵ(y)dy

with the domain Xϵ is well defined, continuously differentiable and Y-convex on its domain. Besides

this, for a convex compact set X̄ ⊂ intX such that x̄ ∈ int X̄ we have X̄ ⊂ Xϵ for all small enough

positive ϵ, and for those ϵ the functions fϵ are uniformly in ϵ Lipschitz continuous on X̄. From this latter

observation it follows that the Jacobians f ′ϵ(x̄) are uniformly in ϵ bounded, which in turn implies that

for a properly selected ϵi → +0, i → ∞, the linear mappings gi := f ′ϵi (x̄) converge as i → ∞ to some

ḡ ∈ Lin(X ,Y). Let us prove that ḡ ∈ Jf(x̄), implying that Jf(x̄) is nonempty. Indeed, in view of A.2 the
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functions f i := fϵi converge as i → ∞, uniformly on compact subsets of intX, to f . Then, by C.1, we

have

y ∈ Xϵi =⇒ fi(y) ≥Y f(x̄) + gi(y − x̄),

implying in view of the outlined convergencies that

f(y) ≥Y f(x̄) + g[y − x̄] ∀y ∈ intX.

The only remaining task is to extend the latter relation from y ∈ intX to y ∈ X. Passing from f : X → Y
to f(x) := f(x)− [f(x̄) + g[x− x̄]], which, of course, is Y-convex on X along with f , we get

f(y) ≥Y f(x̄) = 0, ∀y ∈ intX, (!)

and what we need to prove is that f(y) ≥Y f(x̄) for all y ∈ Y . Let y ∈ X. Using the definition of

the directional derivative, we observe that (!) implies that Df(x̄)[y − x̄] ≥Y 0, whence by (#) one has

f(y) ≥Y f(x̄). ■

For a real-valued convex function f and x ∈ intDom f , d ∈ X , one hasDf(x)[d] = maxy∈∂f(x)⟨y, d⟩X .
A similar fact holds true for cone-convex functions:

D.4. In the situation of A, let f be Y-convex on X. Let also x̄ ∈ intX and d ∈ X . Then for properly
selected g ∈ Jf(x̄) one has

Df(x̄)[d] = gd,

while for every g′ ∈ Jf(x̄) one has

Df(x̄)[d] ≥Y g′d.

Solution: For g′ ∈ Jf(x̄) and t > 0 such that x̄+ td ∈ X we have

f(x̄+ td)− f(x̄) ≥Y tg′d,

whence, dividing by t and passing to limit as t→ +0, we get

Df(x̄)[d] ≥Y g′d.

On the other hand, let t0 > t1 > t2 > ... > 0 be such that xi := x̄+ tid ∈ intX and ti → 0, i → ∞. By

D.3, there exists gi ∈ Jf(xi); by D.2.2 the sequence gi is bounded, so that passing to a subsequence, we

can assume that gi → g as i→ ∞; by D.2.3, g ∈ Jf(x̄). Since gi ∈ Jf(xi), we have

f(xi)− f(x̄) ≤Y gi[xi − x̄],

whence

gid ≥Y t−1
i [f(xi)− f(x̄)].

As i → ∞, the left hand side in this ≥Y-inequality tends to gd, and the right hand side to Df(x̄)[d].

Thus, g′d ≤Y Df(x̄)[d] for all g′ ∈ Jf(x̄) and gd ≥K Df(x̄)[d] for some g ∈ Df(x̄)[d]; in particular,

gd = Df(x̄)[d] (recall that Y is pointed). ■

There is a natural relation between sub-Jacobians of Y-convex function f and subgradients of
functions fe = ⟨e, f⟩Y , e ∈ Y∗:

D.5. In the situation of A, let f be Y-convex on X and x̄ ∈ intX. For e ∈ Y∗, h ∈ ∂fe(x̄) (that is,
fe(y) ≥ fe(x̄) + ⟨h, y − x̄⟩X for all y ∈ X) if and only if h = g∗e for some g ∈ Jf(x̄).

Solution: In one direction: when e ∈ Y∗ and h = g∗e for g ∈ Jf(x̄), we have for every y ∈ X:

f(y) ≥Y f(x̄)+g[y−x] =⇒ ⟨e, f(y)⟩Y ≥ ⟨e, f(x̄)⟩Y + ⟨e, g[y− x̄]⟩Y ⇐⇒ fe(y) ≥ fe(x̄)+ ⟨g∗e, y− x̄⟩X .

In the opposite direction: let e ∈ Y∗ and h ∈ ∂fe(x̄). By D.2 and D.3, the set J = Jf(x̄) is a nonempty

closed and bounded convex set in Lin(X ,Y). Thus, the set I := {g∗e : g ∈ J} is a nonempty closed
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and bounded convex set in X . Assume for contradiction that h ̸∈ I. Then, by Separation Theorem there

exists d ∈ X such that

⟨h, d⟩X > max
g∈J

⟨g∗e, d⟩X = max
g∈J

⟨e, gd⟩Y . (∗)

As h ∈ ∂fe(x̄), for all small enough t > 0 we have

fe(x̄+ td)− fe(x̄) ≥ t⟨h, d⟩X ,

whence Dfe(x̄)[d] ≥ ⟨h, d⟩X . We clearly have Dfe(x̄)[d] = ⟨e,Df(x̄)[d]⟩Y , and we arrive at

⟨h, d⟩X ≤ ⟨e,Df(x̄)[d]⟩Y .

By D.4, we have Df(x̄)[d] = ḡd for some ḡ ∈ Jf(x̄), so that ⟨h, d⟩X ≤ ⟨e, ḡd⟩Y , contradicting (∗). ■

Finally, the chain rule:

D.6. [chain rule] Let Uj , j ≤ J , be Euclidean spaces equipped with closed pointed cones Uj , let
U = U1 × ... × UJ , U = U1 × ... × UJ , and let Y be an Euclidean space equipped with
closed pointed cone Y. Next, let X be nonempty convex set in Euclidean space X , U be a
nonempty convex set in U , let fj(x) : X → Uj be Uj-convex on X functions, j ≤ J , such
that f(x) = [f1(x); ...; fJ(x)] ∈ U whenever x ∈ X. Finally, let mapping F : U → Y be
(U,Y)-monotone and Y-convex on U . As we know from B.3, the composition

G(x) = F (f(x)) : X → Y

is Y-convex on X. Now let x ∈ intX, uj = fj(x) be such that u = [u1; ...;uJ ] ∈ intU . Finally,
let gj ∈ Jf j(x), j ≤ J , and g ∈ JF (u). Then the linear mapping [u1; ...;uJ ] 7→ g[u1; ...;uJ ] is
(U,Y)-monotone, and the linear mapping

h 7→ ĝh := g[g1h; ...; gJh] : X → Y

is sub-Jacobian of G at x.

Solution: Indeed, let V be a convex neighborhood of x such that the images of V under the mapping

f(·) and under the linear mapping

f(x) := f(x) + [g1[x− x]; ...; gJ [x− x]]

belong to intU (such a neighborhood exists due to f(x) = f(x) ∈ intU combined with continuity of f

(evident) and f (by A.2) at x). Let also V j , j = 1, ..., J , be convex neighborhoods of origins in Uj such

that u+ V 1 × ...× V J ⊂ U . For d = [d1; ...; dJ ] with dj ∈ V j ∩Uj for j ≤ J we have

−gd+ F (u) ≤Y F (u− d),

whence gd ≥Y 0 by (U,Y)-monotonicity of F . Thus, gd ≥Y 0 for all d ∈ U of small enough norm,

implying that gd ≥Y 0 for all d ∈ U, as claimed.

When x ∈ V , we have f(x) ≤U f(x), since gj are sub-Jacobians of fj at x. Due to the (U,Y)-

monotonicity of F , we conclude that

G(x) = F (f(x)) ≥Y F (f(x)) = F (u+ [g1[x− x]; ...; gJ [x− x]])

≥Y F (f(x)) + g[g1[x− x]; ...; gJ [x− x]] [since g ∈ JF (u)]

= G(x) + ĝ[x− x].

Thus, for x in a neighborhood V of x ∈ intX we have

G(x) ≥Y G(x) + ĝ[x− x].

It remains to prove that the latter relation holds true for all x ∈ X, not for only x ∈ V . This can be

done in the same way as when justifying D.3: the mapping G(x) := G(x) − [G(x) + ĝ[x − x]] : X → Y
which is Y-convex along with G satisfies

G(x) ≥Y G(x) = 0 (!!)
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for x from a neighborhood of x, and we want to prove that in fact (!!) holds true for all x ∈ X. Indeed,

(!!) implies that for every x ∈ X we have DG(x)[x− x] ≥Y 0, whence G(x) ≥Y G(x) = 0 for x ∈ X by

(#), so that G(x) ≥Y G(x) + ĝ[x− x] for all x ∈ X. ■

Exercise IV.30. Univariate function f(x) = x−1/2 : {x > 0} → R is nonincreasing and convex,

and ∇f(x) = −x−3/2/2, x > 0. Now let P be m× n matrix of rank m.

1. Prove that the mapping F (X) = [PXP⊤]−1/2 : Sn++ → Sm, where Sn++ = intSn+ = {X ∈ Sn :
X ≻ 0}, is (Sn+,Sm+ )-antimonotone and Sm+ -convex

2. Assuming P = I2, compute numerically F (X) and dF (X)[dX] for X =

[
2 −1

−1 1

]
and

dX =

[
0 1
1 0

]
. For the above X, compute also the Jacobian J of F at X – the matrix

of the linear mapping dX 7→ DF (X)[dX] : S2 → S2 – in the basis [1, 0; 0, 0], [0, 0; 0, 1],

[0, 1/
√
2; 1/

√
2, 0] of S2.

3. How the “Gradient inequality” (Exercise IV.29.C.1) for the Sn+-convex mapping F looks like?

Solution:

1: Let G(X) = −(PXP⊤)1/2 : Sn++ → Sm and H(U) = [−U ]−1 : −Sm++ → Sm. The mapping

U 7→ P(X) := PXP⊤ with the domain Sn++ maps this domain into Sm++ (since KerP⊤ = {0} due to

rank(P ) = m), clearly is (Sn+,S
m
+ )-monotone and, as any linear mapping, is Sm+ -convex; the mapping

U 7→ G(U) = −U1/2 : Sm+ → Sm is (Sm+ ,S
m
+ )-antimonotone and Sm+ -convex by Example IV.20.5.

Consequently, the map X 7→ G(X) = G(P(X)) : Sn+ → Sm is Sm+ -convex (Rule A.3 in section

20.3) and clearly is (Sn+,S
m
+ )-antimonotone (as superposition of (Sm+ ,S

m
+ )-antimonotone mapping

G and (Sn+,S
m
+ )-monotone mapping P). Next, mapping U 7→ U−1 : Sm++ → Sm is Sm+ -convex and

(Sm+ ,S
m
+ )-antimonotone (Example IV.20.4), whence the mapping U 7→ H(U) := [−U ]−1 : [−Sm++] →

Sm is Sm+ -convex (as the superposition of Sm+ -convex mapping U 7→ U−1 : Sm++ → Sm and linear

mapping U 7→ −U : Sm → Sm). In addition H(U) is (Sm+ ,S
m
+ )-monotone on its domain −Sm++

in view of (Sm+ ,S
m
+ )-antimonotonicity of the mapping U 7→ −U and (Sm+ ,S

m
+ )-antimonotonicity of

the mapping U 7→ U−1 on the domain Sm++. The indicated cone-convexity and cone-monotonicity

properties of the mapping G(·) and H(·) imply, in view of Rule B in section 20.3, that F (X) =

H(G(X)) is Sm+ -convex and (Sn+,S
m
+ )-antimonotone.

2: When justifying Examples IV.20.4 and IV.20.5, we have seen that the mappings H(·) and G(·) are

differentiable on the domains −Sm++, resp., Sm++, and

DH(U)[dU ] = U−1dUU−1, U ∈ −Sm++, dU ∈ Sm,

DG(V )[dV ] = −
∞∫
0

exp{−V 1/2t}dV exp{−V 1/2t}dt, V ∈ Sm++, dV ∈ Sm,

implying by Chain rule that for X ∈ Sn++, dX ∈ Sn one has

DF (X)[dX] = −
[
PXP

⊤
]−1/2

 ∞∫
0

exp{−[PXP
⊤
]
1/2

t}PdXP
⊤

exp{−[PXP
⊤
]
1/2

t}dt

[
PXP

⊤
]−1/2

3: Our computation yields the following results (rounded to 4 digits after the dot):

F =

[
0.8944 0.4472
0.4472 1.3416

]
, DF (X)[dX] =

[
−0.6265 −0.9846
−0.9846 −1.1634

]
,

J =

 −0.4025 −0.2683 −0.4427
−0.2683 −1.2970 −0.8222
−0.4427 −0.8222 −0.9839

 .

4: ∀(X,Y ∈ Sn++) : [PY P⊤]−1/2 ⪰ [PXP⊤]−1/2+DF (X)[Y −X] with DF (X)[·] as described in item

2.
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24.6 Around conic representations of sets and functions

24.6.1 Conic representations: definitions

Let K be a family of regular cones in Euclidean spaces which contains the nonnegative ray R+ and
is closed with respect to taking finite direct products and passing from a cone to its dual. Instructive
examples are the families R of nonnegative orthants, L of finite direct products of Lorentz cones,
and S of finite direct products of semidefinite cones.

• A K-representation (K-r.) of a set X ⊂ Rn is its representation of the form

X = {x ∈ Rn : ∃u : Px+Qu− r ∈ K} (23.2)

withK ∈ K – representation ofX as the projection of the solution set of conic inequality Px+Qu ≥K

r in variables x, u onto the plane of x-variables where X lives. A set X admitting conic representation
with cone from K is called K-representable (K-r for short).

• A K-representation of a function f : Rn → R ∪ {+∞} is, by definition, K-representation of
the epigraph of f :

[t;x] ∈ epi{f} := {[x; t] : t ≥ f(x)} ⇐⇒ ∃u : Px+ tp+Qu− r ∈ K with K ∈ K.

Functions admitting K-representation are called K-representable (K-r for short)
We are already acquainted withR-representability – it is that was called polyhedral representability.

By Fourier-Motzkin elimination, polyhedral representable sets X ⊂ Rn admit polyhedral represen-
tations not involving additional variables u, and similarly for R-representable functions; this is not
the case for more general families K, like families L of Lorentz- and S of semidefinite-representable
sets.

The following exercise explains what is the rationale underlying the above restrictions on K and
why we are interested in K-representations.

Exercise IV.31. Check that

1. Every finite system P0y ≥ r0, Piy − ri ∈ Ki, i ≤ I, of scalar linear inequalities and conic
inequalities, involving cones from K, in variables y is equivalent to a single conic inequality, with
cone from K, in these variables:

{P0y − r0 ≥ 0, Piy − ri ∈ Ki, 1 ≤ i ≤ I}

⇐⇒
{
[P0;P1; ...;PI ]y − [r0; r1; ...; rI ] ∈ K := R+ × ...×R+︸ ︷︷ ︸

dim r0 times

×K1 ×K2 × ...×KI

}

and K ∈ K (since R+ ∈ K and K is closed w.r.t. taking finite direct products).
As a result, representation of a set X as

X = {x : ∃u : P0x+Q0u− r0 ≥ 0, Pix+Qiu− ri ∈ Ki, 1 ≤ i ≤ I} [Ki ∈ K] (!)

– as the projection of the solution set of a finite system of linear and K-conic inequalities in
variables x, u onto the plane of x-variables where X lives, can be straightforwardly converted
into a K-r. of X.

Important: Item 1 allows us from now on to refer to representations of the form (!) as to K-
representations of X, skipping (always straightforward and purely mechanical) conversion of such a
representation into the “canonical” representation (23.2).

2. K-r. of a function straightforwardly induces K-r.’s of its sublevel sets:{
{t ≥ f(x)} ⇐⇒ {∃u : Px+ tp+Qu− r ∈ K}

}
=⇒ Xa := {x : f(x) ≤ a} = {x : ∃u : Px+Qu− [r − ap] ∈ K}

[a ∈ R,K ∈ K]

3. Given K-representations of a set X ⊂ Rn and a function f : Rn → R ∪ {+∞}:

X = {x ∈ Rn : ∃u : PXx+QXu− rX ∈ KX},
epi{f} = {[x; t] : ∃v : Pfx+ tpf +Qfv − rf ∈ Kf} [KX ∈ K,Kf ∈ K]
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we can straightforwardly convert the optimization problem

min
x∈X

f(x) (∗)

into conic problem on a cone from K, namely, the problem

min
x,t,u,v

{
t : A[x; t;u; v]− b

:= [PXx+QXu;Pfx+ tpf +Qfv]− [rX ; rf ] ∈ K := KX ×Kf︸ ︷︷ ︸
∈K

}

As a result, a solver S capable to solve conic problems on cones from K can be straightforwardly
utilized when solving problems (∗) with X and f given by K-r.’s.

4. Given a conic problem

min
x

{
c⊤x : Ax− b ∈ K, Rx ≥ r

}
(P )

on a cone from K, its conic dual – the conic problem

maxy,z
{
⟨b, y⟩+ r⊤z : A∗y +R⊤z = c, y ∈ K∗, z ≥ 0

}[
⟨·, ·⟩ is the inner product in the Euclidean space where K lives, K∗ is the cone dual to K,

A∗ is the conjugate of A: ⟨Ax, y⟩ ≡ x⊤A∗y ∀x, y

]
(D)

also is a conic problem on a cone from K (since K is closed w.r.t. passing from a cone to its dual
and contains nonnegative orthants).

Solution: This is straightforward – substitute “K-representation” with the definition of this notion.

Note that the option mentioned in the last item of Exercise IV.31 is implemented in ”CVX: MATLAB
software for disciplined convex programming” due to M. Grant and S. Boyd http://cvxr.com/cvx
– second to none in its scope and user-friendliness tool for numerical processing of well-structured
convex problems, the underlying family K being the semidefinite family S. We conclude that it makes
sense to develop a kind of calculus allowing to recognize K-representability of sets/functions and to
build, when possible, their K-representations. The desired calculus exists and is pretty simple, general
and fully algorithmic. The goal of subsequent exercises is to make you acquainted with the most
frequently used elements of this calculus; for more on this subject, see [BTN].

24.6.2 Conic representability: elementary calculus

Elementary calculus of conic representability is completely similar to calculus of polyhedral represen-
tations from section 3.3.

Exercise IV.32. [elementary calculus of K-representable sets] Check that basic convexity-preserving14

operations with sets preserve K-representability. Specifically,

1. Finite intersection of K-r sets Xi = {x ∈ Rn : ∃ui : Pix+Qiu
i − ri ∈ Ki}, i ≤ I (here and in

what follows all cones involved are from K) is K-r.:⋂
i≤I

Xi = {x ∈ Rn : ∃u = [u1; ...;uI ] : Px + Qu − r

:= [P1x + Q1u
1; ...;PIx + QIu

I ] − [r1; ...; rI ] ∈ K := K1 × ... × KI︸ ︷︷ ︸
∈K

}

2. Direct product of finitely many K-r sets Xi = {x ∈ Rn : ∃ui : Pix+Qiu
i − ri ∈ Ki}, i ≤ I is

K-r:

X1 × ... × XI = {x = [x1; ...; xI ] : ∃u = [u1; ...;uI ] :

Px + Qu − r := [P1x
1 + Q1u

1; ...;PIx
I + QIu

I ] − [r1; ...; rI ] ∈ K := K1 × ... × KI︸ ︷︷ ︸
∈K

}

14 “convexity-preserving” is crucial – clearly, K-r sets and functions must be convex!

http://cvxr.com/cvx
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3. Affine image Y = {y = Ax+ b : x ∈ X} of K-r set X = {x ∈ Rn : ∃u : Px+Qu− r ∈ K} is
K-r:

Y = {y : ∃[x;u] : Ax+ b = y, Px+Qu− r ∈ K}

is the projection onto the y-plane of a set given by explicit finite system of linear and K-conic
inequalities and as such admits an explicit K-r. by item 1 of Exercise IV.31.

4. Inverse affine image Y = {y : Ay + b ∈ X} of K-r. set X = {x ∈ Rn : ∃u : Px+Qu− r ∈ K}
is K-r.:

Y = {y : ∃u : PAy +Qy − [r − Pb] ∈ K}.

5. The arithmetic sum X = X1+ ...+XI of K-r sets Xi = {x ∈ Rn : ∃ui : Pix+Qiui− ri ∈ Ki},
i ≤ I, is K-r:

X = {x : ∃[x1; ...;xI ;u1; ...;uI ] : x−
∑
i

xi = 0, Pix
i +Qiu

i − ri ∈ Ki, i ≤ I}

and it remains to apply item 1 of Exercise IV.31.

Solution: This is straightforward – substitute “K-representation” with the definition of this notion.

Exercise IV.33. [elementary calculus of K-representable functions] Check that the following convexity-
preserving operations with functions preserve K-representability:

0. Restricting onto K-r set: K-r. t ≥ f(x) ⇐⇒ ∃u : Pfx + tfp + Qfu − rf ∈ Kf of a function
f : Rn → R ∪ {+∞} taken together with K-r. X = {x ∈ Rn : ∃v : PXx+QXv − rX ∈ KX}
of a set X ⊂ Rn induce K-r.

t ≥ f
∣∣
X
(x) ⇐⇒ ∃u, v : Pfx+ tpf +Qfu− rf ∈ Kf , PXx+QXv − rX ∈ KX

of the restriction f
∣∣
X
(x) =

{
f(x) , x ∈ X
+∞ , x ̸∈ X

of f onto X

1. Taking linear combination
∑I
i=1 λifi with positive coefficients:

t ≥ fi(x) ⇐⇒ ∃ui : Pix + tpi + Qiu
i − ri ∈ Ki, i ≤ I

⇓
t ≥ f(x) :=

∑I
i=1 λifi(x) ⇐⇒ ∃[t1; ...; tI ;u1; ...;ui] : t ≥

∑
i λiti, Pix + tipi + Qiu

i − ri ∈ Ki, i ≤ I

2. Direct summation:

t ≥ fi(x
i) ⇐⇒ ∃ui : Pix

i + tpi + Qiu
i − ri ∈ Ki, i ≤ I

⇓
t ≥ f(x1, ..., xI) :=

∑I
i=1 fi(x

i) ⇐⇒ ∃[t1; ...; tI ;u1; ...;ui] : t ≥
∑

i ti, Pix
i + tipi + Qiu

i − ri ∈ Ki, i ≤ I

3. Taking finite maxima:

t ≥ fi(x) ⇐⇒ ∃ui : Pix + tpi + Qiu
i − ri ∈ Ki, i ≤ I

⇓
t ≥ f(x) := max

i≤I
fi(x) ⇐⇒ ∃[u1; ...;ui] : Pix + tpi + Qiu

i − ri ∈ Ki, i ≤ I

4. Affine substitution of variables:

t ≥ f(x) ⇐⇒ ∃u : Px + tp + Qu − r ∈ K
⇓

t ≥ g(y) := f(Ay + b) ⇐⇒ ∃u : PAu + tp + Qu − [r − Pb] ∈ K

In fact, claims in items 1–4 are special cases of the following observation:
5. Monotone superposition: let functions fi(x), i ≤ I, be K-r, with the first K of the functions being

affine, and let F (y) : RI → R∪ {+∞} be K-r and monotonically nondecreasing in yK+1, ..., yI .

y, y′ ∈ RI , y ≥ y′, yi = y′i, i ≤ K =⇒ F (y) ≥ F (y′).

Then the functions

g(x) =

{
F (f1(x), ..., fI(x)) , fi(x) <∞∀i
+∞ , otherwise.
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is K-r, specifically,{
fi are affine, i ≤ K, & t ≥ fi(x) ⇐⇒ ∃ui : Pix + tpi + Qiu

i − ri ∈ Ki, K < i ≤ I
t ≥ F (y) ⇐⇒ ∃u : Py + tp + Qu − r ∈ K

}
⇓

t ≥ g(x) ⇐⇒ ∃ti, 1 ≤ i ≤ I, ui, K < i ≤ I, u :


ti − fi(x) = 0︸ ︷︷ ︸
linear equations

, i ≤ K

Pix + tipi + Qiu
i − ri ∈ Ki , K < i ≤ I

P [t1; ...; tk] + tp + Qu − r ∈ K

Solution: This is straightforward – substitute “K-representation” with the definition of this notion.

24.6.3 R/L/S hierarchy

Exercise IV.34.

1. Let K and M be two families of regular cones, each containing nonnegative rays and closed w.r.t.
taking finite direct products and passing from a cone to its dual cone. Assume that every cone
M ∈ M admits K-representation:

M = {y : ∃v : PMy +QMv − rM ∈ KM︸︷︷︸
∈K

}.

Show that a M-r. X = {x ∈ Rn : ∃u : Px+Qu− r ∈ M︸︷︷︸
∈M

} of a set X can be straightforwardly

converted into K-r. of X.
2. [Cf. Exercise IV.35] Note that Rn

+ belongs to L (same as to every other family of cones we are
considering here – all these families contain nonnegative rays and are closed w.r.t. taking finite
direct products), thus, every polyhedral representable set/function is Lorentz-representable as
well by item 1. Check that the Lorentz cone Lm is semidefinite-representable as well, specifically,

Lm := {x ∈ Rm : xm ≥
√∑m−1

i=1 x
2
i }

= {x ∈ Rm : Arrow(x) :=


xm x1 . . . xm−1

x1 xm

.

.

.
. . .

xm−1 xm

 ⪰ 0}

implying by item 1 that cones from L admit explicit S-representations and thus that Lorentz-
representable sets and functions are semidefinite representable as well, with S-r.’s readily given
by L-r.’s.

Solution: 1: When X = {x ∈ Rn : ∃u : Px + Qu − r ∈ M} and M = {y : ∃v : PMy + QMv − rM ∈
KM ∈ K}, we clearly have

X = {x : ∃u : Px+Qu− r ∈ M} = {x : ∃u, y : y = Px+Qu− r, y ∈ M}
= {x : ∃u, y, v : y = Px+Qy − r, PMy +QMv − rM ∈ KM︸︷︷︸

∈K

},

and we end up with K-representation of X. ■
2: See solution to Exercise IV.35.1.

■

Exercise IV.35. It is easy “to see” the nonnegative orthant Rn
+ in the semidefinite cone Sn+ –

Rn
+ is nothing but the intersection of Sn+ with the linear subspace L of diagonal matrices from

Sn. Formally: Let A be the embedding of Rn into Sn which maps vector a into diagonal matrix
Diag{a}; then z ∈ Rn

+ if and only if Az ∈ Sn+. Alternatively, you can get Rn
+ as the linear image of

the positive semidefinite cone, namely, its image under the linear mapping which maps a symmetric
n × n matrix Z into the vector Dg{Z} composed of diagonal entries of Z. As a result, a Linear
Programming problem minx∈Rn{c⊤z : Ax ≤ b} can be converted into equivalent semidefinite
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problem minX∈Sn{
∑
iciXii : X ⪰ 0, ADg{X} ≤ b}. As it happens, similar possibilities exist for

the Lorentz cone Ln, including possibility to reformulate a conic problem involving direct products
of Lorentz cones as a semidefinite program. Specifically,

1. Prove that x ∈ Ln if and only if the “arrow” matrix

Arrow(x) =


xn x1 x2 . . . xn−1

x2 xn
...

. . .

xn−1 xn


is positive semidefinite.

2. Represent Ln as the image of Sn+ under a linear mapping.

Solution: 1: The case of n = 1 is trivial. Now let n ≥ 2. In one direction: Assume that x ∈ Ln, and

let us verify that Arrow(x) ∈ Sn+. Indeed, from x ∈ Ln it follows that xn ≥ 0. If xn = 0, then x = 0

due to
∑n−1
i=1 x

2
i ≤ x2n, and therefore Arrow(x) = 0n×n ⪰ 0. If xn > 0, then xn −

∑n−1
i=1 x

2
i /xn ≥ 0, or,

which is the same, xn − [x1; . . . ;xn−1]⊤[xnIn−1]−1[x1; . . . ;xn−1] ≥ 0, and Arrow(x) ⪰ 0 by the Schur

Complement Lemma applied with the 1 × 1 North-Western block. In the opposite direction: Assume

that Arrow(x) ⪰ 0, and let us prove that x ∈ Ln. Indeed, xn is diagonal element in positive semidefinite

matrix and as such is nonnegative. If xn = 0, then the diagonal of positive semidefinite matrix Arrow(x)

is zero, whence the matrix itself is zero15, so that x = 0 ∈ Ln. And if xn > 0, then
∑n−1
i=1 x

2
i /xn ≤ xn

by the Schur Complement Lemma, the bottom line being that xn ≥
√∑n−1

i=1 x
2
i , that is, x ∈ Ln. ■

2: The required linear mapping is the mapping X 7→ A∗(X) conjugate to the mapping x 7→ Arrow(x),

that is, the mapping A(X) given by the identity

[A∗(X)]⊤x = Tr(XArrow(x)) ∀x ∈ Rn, X ∈ Sn

or, which is the same,

A∗(X) = [2X12; 2X13; . . . ; 2X1n; Tr(X)]

Indeed, let L be the linear subspace in Sn composed of arrow matrices, that is, the image space of the

linear mapping x 7→ Arrow(x) : Rn → Sn. Since L intersects intSn+, Dubovitski-Milutin Lemma says

that restricting onto L nonnegative on Sn+ linear forms, we get exactly the set of all linear forms on

L which are nonnegative on Sn+ ∩ L (see Exercise II.49.2). Taking into account that x 7→ Arrow(x) is

one-to-one linear mapping of Rn onto L, we conclude that linear form g⊤x is nonnegative whenever

x ∈ Ln if and only if it is of the form Tr(XArrow(x)) for some X ∈ Sn such that Tr(XY ) ≥ 0 for all

Y ∈ Sn+. Since both Sn+ and Ln+ are self-dual, the latter observation can be reformulated as “g ∈ Ln if

and only if there exists X ∈ Sn+ such that g⊤x = Tr(XArrow(x)) identically in x ∈ Rn,” or, which is

the same, if and only if g = A∗(X) for some X ∈ Sn+. ■

24.6.4 More calculus

The calculus rules to follow are less trivial:

Exercise IV.36 [passing from a set to its support function and polar] Let X ⊂ Rn be a nonempty
closed convex set given by essentially strictly feasible K-representation:

X = {x ∈ Rn : ∃u : Ax+Bu− c ≥ 0, Px+Qu− r ∈ K}
& ∃x̄, ū : Ax̄+Bū− c ≥ 0, P x̄+Qū− r ∈ intK.

(∗)

15 due to immediate observation: if a diagonal entry Aii of A ⪰ 0 vanishes, then all entries in i-th row

and i-th column of A vanish as well, due to the inequality A2
ij ≤ AiiAjj , see Remark D.28
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This representation induces K-r. of the support function ϕX(y) = supx∈X y
⊤x, specifically,

t ≥ ϕX(y) ⇐⇒ ∃(λ, ξ) : A⊤λ+ P ∗ξ + y = 0, B⊤λ+Q∗ξ = 0
c⊤λ+ ⟨r, ξ⟩+ t ≥ 0, λ ≥ 0, ξ ∈ K∗

.

where ⟨·, ·⟩ is the inner product in the Euclidean space where K lives and, as always, K∗ is the cone
dual to K. In addition, (∗) induces K-r. of the polar Polar (X) of X:

Polar (X) := {y : y⊤x ≤ 1∀x ∈ X}

=

{
y : ∃(λ, ξ) : A⊤λ+ P ∗ξ + y = 0, B⊤λ+Q∗ξ = 0

c⊤λ+ ⟨r, ξ⟩+ 1 ≥ 0, λ ≥ 0, ξ ∈ K∗

}
Solution: By definition, t ≥ ϕX(y) if and only if the optimization problem

max
x∈X

y⊤x

is bounded with optimal value ≤ t, or, which is the same under the circumstances, the conic problem

max
x,u

{
y⊤x : Ax+Bu− c ≥ 0, Px+Qu− r ∈ K

}
(#)

is bounded with the optimal value ≤ t. We are in the case when the latter problem is essentially strictly

feasible; applying Conic Duality Theorem, we conclude that (#) is bounded with optimal value ≤ t if

and only if the optimization problem

min
λ,ξ

{
−c⊤λ− ⟨r, ξ⟩ : A⊤λ+ P ∗ξ = −y,B⊤λ+Q∗ξ = 0, λ ≥ 0, ξ ∈ K∗

}
has a feasible solution with the value of the objective ≤ t. Thus,

t ≥ ϕX(y) ⇐⇒ ∃(λ, ξ) : A⊤λ+ P ∗ξ + y = 0, B⊤λ+Q∗ξ = 0

b⊤λ+ ⟨r, ξ⟩+ t ≥ 0, λ ≥ 0, ξ ∈ K∗
.

The resulting representation of the epigraph of ϕX , by item 1 of Exercise IV.31, straightforwardly induces

a K-r. of ϕX .

Now, Polar (X) = {Y : ϕX(y) ≤ 1}; applying item 2 of Exercise IV.31, we conclude that

Polar (X) =

{
y : ∃(λ, ξ) : A⊤λ+ P ∗ξ + y = 0, B⊤λ+Q∗ξ = 0

c⊤λ+ ⟨r, ξ⟩+ 1 ≥ 0, λ ≥ 0, ξ ∈ K∗

}
■

Exercise IV.37. Let f : Rn → R ∪ {+∞} be a proper convex lower semiconscious function given
by essentially strictly feasible K-representation:

t ≥ f(x) ⇐⇒ ∃u : Ax+ tq +Bu ≥ c, Px+ tp+Qu− r ∈ K
& ∃x, t, u : Ax+ tq +Bu ≥ c, Px+ tp+Qu− r ∈ intK

Build K-r. of the Legendre transform

f∗(y) = sup
x

[
y⊤x− f(x)

]
of f .

Solution: We clearly have

f∗(y) = sup
x,t

{
y⊤x− t : t ≥ f(x)

}
= sup
x,t,u

{
y⊤x− t : Ax+ tq +Bu ≥ c, Px+ tp+Qu− r ∈ K

}
,

that is, f∗(y) is the optimal value in the conic problem

sup
x,t,u

{
y⊤x− t : Ax+ tq +Bu ≥ c, Px+ tp+Qu− r ∈ K

}
(P )
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Under the circumstances, the problem is essentially strictly feasible, implying by the Conic Duality

Theorem that f∗(y) ≤ τ if and only if the conic dual of (P ) – the problem

min
λ,ξ

−c⊤λ− ⟨r, ξ⟩ :

A⊤λ+ P ∗ξ + y = 0

q⊤λ+ ⟨p, ξ⟩ = 1

B⊤λ+Q∗ξ = 0

λ ≥ 0, ξ ∈ K∗


– has a feasible solution with the value of the objective ≤ τ , that is,

τ ≥ f∗(y) ⇐⇒ ∃λ, ξ :

c⊤λ+ ⟨r, ξ⟩+ τ ≥ 0

A⊤λ+ P ∗ξ + y = 0

q⊤λ+ ⟨p, ξ⟩ = 1

B⊤λ+Q∗ξ = 0

λ ≥ 0, ξ ∈ K∗

which is a K-r. of f∗. ■

Raw materials. Rules of grammar become useful only after we have at our disposal words in
“dictionary form” which we can combine using these rules. Similarly, calculus of conic represen-
tations becomes useful only after a rich enough dictionary of “raw materials,” “atoms” – specific
K-representable sets and functions – is built. In contrast to calculus rules which are, basically, in-
dependent of what is the family K of cones in question, raw materials do depend on K. Here we
restrict ourselves with few instructive examples of Lorentz- and Semidefinite-representable sets and
functions; for in-depth acquaintance with this topic, we refer the reader to [BTN].

We understand well what are the “atomic” R-representable functions and sets – these are half-
spaces and affine functions. Other polyhedrally representable sets are intersections of finite families of
half-spaces, and other polyhedrally representable functions – maxima of finitely many affine functions
restricted on a polyhedral domain. In other words, all R-representable functions and sets are obtained
from the above atoms via the calculus we have just outlined.

In the next two exercises we present instructive examples of L-r functions and sets.

Exercise IV.38. [L-representability of ∥ · ∥2 and ∥ · ∥22] Check that the functions ∥x∥2 and x⊤x on
Rn admits L-r.’s as follows:

{[x; t] ∈ Rn
x ×Rt : t ≥ ∥x∥2} =

{
[x; t] ∈ Rn ×R : [x; t] ∈ Ln+1

}
{[x; t] ∈ Rn

x ×Rt : t ≥ x⊤x} =
{
[x; t] ∈ Rn ×R : [2x; t− 1; t+ 1] ∈ Ln+2

}
Solution: evident.

Exercise IV.39. [L-representability of power functions] Justify the following claims

1. Let k be a positive integer. Then the set

Gk =

{
[t;x1;x2; ...;x2k ] ≥ 0 : t ≤

[ 2k∏
i=1

xi

]1/2k}
– the intersection of the hypograph of the geometric mean of 2k nonnegative variables x1, ..., x2k

with the half-space {[t;x] ∈ R2k

x ×Rt : t ≥ 0} – admits L-representation, specifically,

Gk =

{
[t;x1;x2; ...;x2k ] ≥ 0 : ∃{ui,ℓ ≥ 0, 1 ≤ ℓ ≤ k, 1 ≤ i ≤ 2ℓ} :

uik = xi, 1 ≤ i ≤ 2k

[2uiℓ;u2i−1,ℓ+1 − u2i,ℓ+1;u2i−1,ℓ+1 + u2i,ℓ+1] ∈ L3,
1 ≤ i ≤ 2ℓ, 1 ≤ ℓ < k

[2t;u1,1 − u2,1;u1,1 + u2,1] ∈ L3.

} (∗)
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Solution: For a triple of nonnegative reals u, v, w, relation [2u;w − v; v + w] ∈ L3 is equivalent to

u ≤
√
vw. Thus, the inequalities on x, t, ui,ℓ in (∗) tell us the following story:

We split 2k nonnegative variables xi, i ≤ 2k of “generation 0” into 2k−1 consecutive pairs

and associate with i-th of these pairs its “child” – nonnegative variable ui,k−1 “of generation

1” linked to its parents x2i−1, x2i by the inequality ui,k−1 ≤ √
x2i−1x2i. Similarly, we split

2k−1 variables ui,k−1 of generation 1 into 2k−2 consecutive pairs and associate with every

pair its child, nonnegative variable ui,k−2 of generation 2, and link it to its parents by the

inequality ui,k−2 ≤ √
u2i−1,k−1u2i,k−1.

We proceed in the same fashion until 2 variables, u1,1, u2,1 of generation k− 1 are built, and

link these two variables to variable t by the inequality t ≤ √
u1,1u2,1.

Note that the constraints on all our variables are the linear nonnegativity constraints and the constraints

stating that specific linear images of the vector of these variables belong to L3, that is, the solution set S

of the system of constraints specifying all our variables is given by explicit system of linear and L3-conic

inequalities, and this system provides an explicit L-r. of the projection S of S onto the plane of variables

t, xi. On the other hand, it is clear that what our story says about relation between (nonnegative!)

variables xi and t is exactly the inequality t ≤

[
2k∏
i=1

xi

]1/2k
, so that S is nothing but the set Gk.

Surprisingly, item 1 paves road to L-representations of power functions.

2. Build explicit L-r’s of the univariate functions as follows:

2.1. f(x) = max[0, x]θ with rational θ = p/q ≥ 1 (p ≥ q are positive integers).

2.2. f(x) =

{
xp+/q+ , x ≥ 0

|x|p−/q− , x ≤ 0
, where p±, q± are positive integers with p+/q+ ≥ 1, p−/q− ≥

1

2.3. f(x) =

{
−xp/q , x ≥ 0
+∞ , x < 0

with positive integers p, q such that p/q ≤ 1

2.4. f(x) =

{
x−p/q , x > 0
+∞ , x ≤ 0

with positive integers p, q

Solution: 2.1: Given positive integers p ≥ q, let us select positive integer k such that p + q ≤ 2k and

consider the affine mapping

(y, t) → [y;

2k−p︷ ︸︸ ︷
y; ...; y;

q︷ ︸︸ ︷
t; ...; t;

p−q︷ ︸︸ ︷
1; ...; 1] : R2 → R1+2k .

Our calculus of conic representations allows to convert the L-r. of Gk built in item 1 into an explicit L-r.

for the inverse image of the set Gk under the above affine mapping, that is, for the set

F = {[y; t] ∈ R2
+ : t ≥ yp/q}.

The epigraph E of f is obtained from F by operations covered by our calculus:

E = {[t;x] : t ≥ max[x; 0]p/q} = {[t;x] : ∃y : [t; y] ∈ F, y ≥ x},

so that our calculus allows to convert the L-r. of F we have already built into L-r. for E.

2.2: Construction from item 2.1 allows us to build an explicit L-r. for the function max[0, x]p+/q+ and,

after evident modification, for the function max[0,−x]p−/q− . These L-r.’s via calculus provide explicit

L-r. for the sum of these two functions, that is, for our now target function f .

2.3: The epigraph of our f is obtained from the one of the function g(z) = max[0, z]q/p by one-to-one

linear transformation, and we can convert the explicit L-r. of g given in item 2.1 into L-r. of our current

f .

2.4: Given p, q, let us find positive integer k such that 2k ≥ p+ q, and consider the affine mapping

[t;x] 7→ [1;

q︷ ︸︸ ︷
t; ...; t;

p︷ ︸︸ ︷
x; ...;x;

2k−p−q︷ ︸︸ ︷
1; ...; 1 ] : R2 → R1+2k .
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The inverse affine image of Gk under this mapping is exactly the epigraph of our current f , so that

calculus of L-r.’s provides us with explicit L-r. of f inherited from the L-r. of Gk built in item 1.

3. Build L-r’s of the following sets:

3.1. The hypograph

{[x; t] ∈ Rn
+ ×Rt : t ≤ f(x) := xπ1

1 xπ2
2 ...xπn

n }

of algebraic monomial of n nonnegative variables, where πi are positive rationals such that∑
i πi ≤ 1 (the latter inequality for nonnegative πi’s is a necessary and sufficient for f to be

concave on Rn
+).

3.2. The epigraph of algebraic monomial f(x) = x−π1
1 x−pi22 ...x−πn

n of n positive variables, where
πi are positive rationals.

3.3. The epigraph of ∥ · ∥π on Rn with rational π ≥ 1.

Solution: 3.1: Let πi = pi/q with positive integers pi and q and k be positive integer such that 2k ≥ q.

Consider the affine mapping

[x; t] 7→ [t;

p1︷ ︸︸ ︷
x1; ...;x1;

p2︷ ︸︸ ︷
x2; ...;x2; ...;

pn︷ ︸︸ ︷
xn; ...;xn;

2k−q︷ ︸︸ ︷
t; ...; t;

q−p1−...−pn︷ ︸︸ ︷
1; ...; 1 ] : R1+n → R1+2k ;

note that the right hand side makes sense due to p1+ ...+pn ≤ q in view of
∑
i πi ≤ 1. As is immediately

seen, the inverse image of Gk under this mapping is the set

F = {[x; t] ≥ 0 : t ≤ f(x)},

and the L-r. of Gk built in item 1 combines with the calculus of L-representations to yield an explicit

L-r. for F . It remains to note that, similarly to what happens in item 2.1, the hypograph E of f is

obtained from F by operations covered by our calculus:

E = {[x; t] : ∃τ : [x; τ ] ∈ F & t ≤ τ}.

3.2: Representing πi = pi/q with positive integers pi, q and selecting positive integer k such that

2k ≥ q +
∑
i pi, consider the affine mapping

[x; t] 7→ [1;

p1︷ ︸︸ ︷
x1; ...;x1;

p2︷ ︸︸ ︷
x2; ...;x2; ...;

pn︷ ︸︸ ︷
xn; ...;xn;

q︷ ︸︸ ︷
t; ...; t;

2k−q−
∑

i pi︷ ︸︸ ︷
1; ...; 1 ] : Rn+1 → R1+2k .

as is immediately seen, the inverse image of Gk under this mapping is exactly the epigraph of f , so that

a L-r. for f is readily given by our calculus as applied to the L-r. of Gk built in item 1.

3.3: The case of π = 1 is trivial. Now let π ∈ (1,∞). It is immediately seen (check it) that

t ≥ ∥x∥π ⇐⇒ t ≥ 0 & ∃ui, vi : ±xi ≤ ui, ui ≤ v
1/π
i t1−1/π ,

∑
i

vi ≤ t.

The sets {(t, ui, vi) ≥ 0 : ui ≤ v
1/π
i t1−1/π} admit explicit L-r.’s by item 3.1, and these L-r.’s via our

calculus yield an explicit L-r. for the epigraph of ∥x∥π
By Exercise IV.34, expressive abilities of semidefinite representations are at least as strong as those

of Lorentz representability. In fact, S-representability is strong enough to bring, ”for all practical
purposes,” the entire Convex Optimization within the grasp of Semidefinite Optimization. In our
next exercise we are just touching the tip of the “semidefinite iceberg.”

Exercise IV.40.

1. For starters, build S-r.’s of the maximum eigenvalue of a symmetric matrix and of the spectral
norm ∥ · ∥2,2 (the maximum singular value) of a rectangular matrix.
Hint: Note that for a p× q matrix A, the eigenvalues of the symmetric (p+ q)× (p+ q) matrix[

A

A⊤

]
are the singular values of A, minus these singular values, and perhaps a number of

zeros.
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Solution: S-r. of the maximal eigenvalue λmax(X) of symmetric m×m matrix X is immediate:

t ≥ λmax(X) ⇐⇒ tIm −X ⪰ 0,

This observation combines with Hint to yield S-r. of the spectral norm of p× q matrix:

t ≥ ∥X∥2,2 ⇐⇒
[
tIp X

X⊤ tIq

]
⪰ 0.

As a matter of fact, the single most valuable S-representation is the one for the sums Sk(X) of
k largest eigenvalues of a symmetric matrix X; convexity of these sums in X was established in
chapter 14.

2. Build S-r. of the sum Sk(X) of k ≤ m largest eigenvalues of m×m symmetric matrix X.
Hint: Recall the polyhedral representation, built in Exercise I.29, of the “vector analogy” of Sk(X)
– the sum sk(x) of k largest entries in m-dimensional vector x:

t ≥ sk(x) ⇐⇒ ∃z ≥ 0, s : x ≤ z + s1,
∑
i

zi + ks ≤ t,

where 1 is the all-ones vector.

Solution: The matrix analogy of the representation of sk(x) is

∃Z ⪰ 0, s : X ⪯ Z + sIm,Tr(Z) + ks ≤ t,

and we arrive at the “educated guess” stating that for symmetric m×m matrices X it holds

t ≥ Sk(X) ⇐⇒ ∃Z ⪰ 0, s : X ⪯ Z + sIm,Tr(Z) + ks ≤ t.

Let us verify that this educated guess is true.

In one direction: assume that Z ⪰ 0 and s are such that X ⪯ Z + sIm and Tr(Z) + ks ≤ t, and let

us prove that Sk(X) ≤ t. Denoting by λ(U) the vector of eigenvalues, taken with their multiplicities

and written down in the non-ascending order, of a symmetric matrix U , recall that U ⪰ U ′ implies that

λ(U) ≥ λ(U ′) (by Variational Characterisation of Eigenvalues). Consequently,

Sk(X) = sk(λ(X)) ≤ sk(λ(Z + sIm)) = sk(λ(Z) + s1) = sk(λ(Z)) + sk ≤ Tr(Z) + sk,

where the last inequality is due to Z ⪰ 0. The concluding quantity in the above chain is ≤ t, that is ,

Sk(X) ≤ t, as claimed.

In the opposite direction: let Sk(X) ≤ t, and let X = U Diag{λ1, λ2, ..., λm}U⊤ be the eigenvalue

decomposition of X, λ1 ≥ λ2 ≥ ... ≥ λm being the eigenvalues of X. Let us set s = λk and Z =

U Diag{λ1−λk, λ2−λk, ..., λk−1−λk, 0, ..., 0}U⊤, so that Z ⪰ 0 and Tr(Z) = Sk(X)−kλk = Sk(X)−ks,
that is, t ≥ Sk(X) = Tr(Z) + ks. It remains to note that X ⪯ Z + sIm due to

U⊤[sIm + Z −X]U = λkIm +Diag{λ1 − λk, ..., λk−1 − λk, 0, ..., 0} −Diag{λ1, λ2, ...λm)

= Diag{0, ..., 0, λk − λk+1, λk − λk+2, ..., λk − λm} ⪰ 0.

The importance of S-representability of Sk(·) becomes clear from the following

3. Let f(x) : Rm → R ∪ {+∞} be a convex function symmetric w.r.t. permutations of entries in
the argument, and let

F (X) = f(λ(X)) : Sm → R ∪ {+∞};

recall that F is convex by Proposition III.14.3. Show that F (X) admits the following represen-
tation:

t ≥ F (x) ⇐⇒ ∃u ∈ Rm :

f(u) ≤ t (a)
u1 ≥ u2 ≥ ... ≥ um (b)
Sk(X) ≤ u1 + ...+ uk, 1 ≤ k < m (ck)
Tr(X) = u1 + ...+ um (cm)

(23.3)

Combine this fact with S-representability of Sk(·) to arrive at the following
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Corollary In the situation of item 3, assume that f is not just symmetric, but is S-
representable as well. A S-r. of f gives rise to explicit S-r. of F (X).

Corollary underlies S-representations of numerous highly important functions and sets, e.g., Shatten
norms of rectangular matrices – p-norms of the vector of matrix’s singular values, or the hypograph
t ≤ Det1/m(X) of the (appropriate power of the) determinant of X ∈ Sm+ , or the epigraph of the
function Det−1(X) of X ≻ 0.

Solution: All we need is to justify (23.3). In one direction: when t ≥ F (X), setting u = λ(X), we satisfy

(a)−(c). In the opposite direction: Let u,X satisfy (a)−(c). From (b), (c) it follows that sk(λ(X)) ≤ sk(u)

for all k ≤ m, with sm(λ(X)) = sm(u). Invoking Majorization Principle (section 7.4), we conclude that

λ(X) = Pu for a properly selected doubly stochastic matrix P . The latter relation, by permutational

symmetry and convexity of f , implies that f(λ(X)) ≤ f(u) (see Lemma III.14.1), which combines with

(a) to imply the desired relation F (X) ≤ t. ■

Exercise IV.41. A rather interesting example of S-representable sets deals with matrix square and
marix square root:

1. [⪰-epigraph of the matrix square] Prove that the function F (X) = X⊤X : Rm×n → Sn is
⪰-convex and find a S-r. of its ⪰-epigraph {(X,Y ) ∈ Rm×n × Sn : Y ⪰ X⊤X}.

Solution: This is immediate: by Schur Compelent Lemma,

{(X,Y ) ∈ Rm×n × Sn : Y ⪰ X⊤X} = {(X,Y ) :

[
Y X⊤

X Im

]
⪰ 0}.

In particular,

{(X,Y ) ∈ Sn × Sn : Y ⪰ X2} = {(X,Y ) :

[
Y X

X In

]
⪰ 0}.

2. [⪰-hypograph of the matrix square root] Prove that the set {(X,Y ) ∈ Sn × Sn : X ⪰ 0, Y ⪯
X1/2} is convex and find its S-r.

Solution: The function X1/2 : Sn+ → Sn+ is ⪰-concave and ⪰-monotone (Example IV.20.5), and

therefore

{(X,Y ) ∈ Sn × Sn : X ⪰ 0, Y ⪯ X1/2} = {(X,Y ) : ∃V : 0 ⪯ V, V 2 ⪯ X,Y ⪯ V }

= {(X,Y ) : ∃V :


X ⪰ 0, V ⪰ 0, Y ⪯ V[
X V

V In

]
⪰ 0

}

Note: Solutions to items 1–2 provide us with S-r.’s of the sets {(X,Y ) ∈ Sn × Sn : X ⪰ 0, 0 ⪯
X ⪯ Y 1/2} and {(X,Y ) ∈ Sn × Sn : X ⪰ 0, X2 ⪯ Y }. These sets are different, and the second is
“essentially smaller” than the first one, see Exercise IV.17.

Exercise IV.42. [important example of S-representation] Consider the situation as follows. Given a
basic set B ⊂ Rn which is the solution set of a strictly feasible quadratic inequality:

B = {u ∈ Rn : u⊤Qu+ 2q⊤u+ κ ≤ 0},

we consider target set

Q = {x ∈ Rm : x⊤Sx+ 2s⊤x+ σ ≤ 0} [S ∈ Sm, s ∈ Rm, σ ∈ R]

and affine mapping

u 7→ P (x) := Pu+ p : Rn → Rm.

We are interested in the situation when the image of the basic set under the mapping P (·) is contained
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in the target set, and want to describe this situation in terms of the parameters S, s, σ, P, p.
Your task is as follows. Let us set

M(S, s, σ;P, p;λ) = [P, p]⊤S[P, p] +

[
−λQ P⊤s− λq

s⊤P − λq⊤ 2s⊤p+ σ − λκ

]
.

Prove that the inclusion P (B) ⊂ Q is equivalent to the existence of λ ≥ 0 such that

M(S, s, σ;P, p;λ) ⪯ 0. (!)

Solution:

1. Observe that P (B) ⊂ Q if and only if the strictly feasible quadratic inequality

u⊤Qu+ 2q⊤u+ κ ≤ 0

on variables u ∈ Rn implies validity of the quadratic inequality

[Pu+ p]⊤S[Pu+ p] + 2s⊤[Pu+ p] + σ ≤ 0,

By Inhomogeneous S-Lemma this is the case if and only if there exists λ ≥ 0 such that

∀(u ∈ Rn, t ∈ R) : [Pu+ tp]⊤S[Pu+ tp] + 2ts⊤[Pu+ tp] + σt2 − λ[u⊤Qu+ 2tq⊤u+ κt2] ≤ 0,

and immediate computation shows that the matrix of the left hand side homogeneous quadratic

function of [u; t] is exactly M(S, s, σ;P, p;λ). ■
2. Here are the results of our experiments with the inscribed ellipsoid method:

• n = 5: # of iterations: I = 71, f(xI) = 37.36223, cpu 68 sec

• n = 10: # of iterations: I = 131, f(xI) = 41.30913, cpu 177 sec

Note that the convex optimization problems in question are well-structured: from the results of Exercise

IV.39 it follows that the objectives are L-r, so that the problems can be solved via Conic Quadratic

Programming. With this tool (as implemented in CVX), solving the instance with n = 5 took just 1.28 sec

with reported optimal value 37.36220; similar numbers for the instance with n = 10 are 1.99 and 41.30908.

We see that, on one hand, just exploiting convexity per se already allows to solve optimization problems, at

lest low-dimensional ones, to high accuracy in reasonable time, and, on the other hand, utilizing problem’s

structure via the machinery of R/L/S representations reduces dramatically the computational effort.
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Exercise A.1.
1. Mark in the list below those subsets of Rn which are linear subspaces. For the ones that are linear

subspaces, find their dimensions and point out bases. For the ones that are not linear subspaces
provide counterexamples.

1. Rn

Solution: linear subspace, dimension is n, basis, e.g., the collection of n standard basic orth.

2. {0}
Solution: linear subspace, dimension is 0, basis is empty.

3. ∅
Solution: not a linear subspace (linear subspace by definition must be nonempty).

4.

{
x ∈ Rn :

n∑
i=1

ixi = 0

}
Solution: linear subspace, dimension is n− 1, basis, e.g., the collection of vectors

fi := [0; . . . ; 0︸ ︷︷ ︸
i−1

; i+ 1;−i; 0; . . . ; 0], for 1 ≤ i ≤ n− 1.

5.

{
x ∈ Rn :

n∑
i=1

ix2i = 0

}
Solution: linear subspace, dimension is 0, basis is empty.

6.

{
x ∈ Rn :

n∑
i=1

ixi = 1

}
Solution: not a linear subspace (e.g., does not contain the origin).

7.

{
x ∈ Rn :

n∑
i=1

ix2i = 1

}
Solution: not a linear subspace (e.g., contains the first basic orth, but does not contain twice this

orth).

2. Suppose that we know L is a subspace of Rn with exactly one basis. What is L?

Solution: L = {0}, basis is empty.

Exercise A.2. Consider the sets given in Exercise A.1 and identify those that are affine subspaces.
For those that are affine subspaces, find their affine dimensions and point out their linear subspaces
that are parallel to them. For those that are not affine subspaces, provide counterexamples.

Solution: All of the sets that are marked as linear subspaces are also affine subspaces. Their affine

dimension is equal to their linear dimension, and the corresponding linear subspace parallel to them is

just themselves.

Among the ones that are not linear subspaces, we have the following for their affine subspace status:

• ∅: not an affine subspace since affine subspace by definition needs to be nonempty.
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•
{
x ∈ Rn :

n∑
i=1

ixi = 1

}
: affine subspace, affine dimension is n − 1, and the corresponding linear

subspace parallel to it is given by

{
x ∈ Rn :

n∑
i=1

ixi = 0

}
.

•
{
x ∈ Rn :

n∑
i=1

ix2i = 1

}
: not an affine subspace, e.g., it contains the points a± = [±1; 0; . . . ; 0], but

does not contain their average (which is their affine combination!).

Exercise A.3.

1. Find the orthogonal complement (w.r.t. the standard inner product) of the following subspace of
Rn: {

x ∈ Rn :

n∑
i=1

xi = 0

}
.

Solution: The orthogonal complement in question is R · [1; . . . ; 1], i.e., the one-dimensional linear

subspace spanned by the all-ones vector.

2. Given vectors a1, . . . , am ∈ Rn, find the orthogonal complement (w.r.t. the standard inner
product) of the linear subspace {x ∈ Rn : a⊤i x = 0, ∀i = 1, . . . , n}.
Solution: The orthogonal complement to the linear subspace {x ∈ Rn : Ax = 0} is spanned by the

transposes of rows of A.

3. Find an orthonormal basis (w.r.t. the standard inner product) of the linear subspace {x ∈ Rn : x1 = 0}
of Rn.

Solution: An orthonormal basis is, e.g., {e2, e3, . . . , en}, where ei are the standard basic orth in

Rn.

Exercise A.4. Suppose a ∈ Rn where ai > 0 for all i = 1, . . . , n, and consider the affine subspace

M =

{
x ∈ Rn :

n∑
i=1

aixi = 1

}
.

Point out the linear subspace parallel to M and find an affine basis in M .

Solution: The parallel linear subspace is {x ∈ Rn :
∑n
i=1 aixi = 0}. An example of an affine basis is

the collection
{

1
a1
e1, . . . ,

1
an
en

}
, where ei is the i-th standard basic orth.

Exercise A.5. Let ∅ ̸= C ⊆ Rn and x ∈ Rn be given.

1. Is it always true that Aff(C − {x}) = Aff(C)− {x}?
Solution: This is always true. Let y ∈ Aff(C − {x}). Then, there are λi’s with

∑
i λi = 1 and

zi ∈ C − {x}, such that y =
∑
i λizi. Since zi ∈ C − {x}, there are xi ∈ C such that zi = xi − x.

Therefore, y =
∑
i λi(xi − x) =

∑
i λixi−x ∈ Aff(C)−{x}. Similarly, if y ∈ Aff(C)−{x}, then there

are λi’s with
∑
i λi = 1 and xi ∈ C, such that y =

∑
i λixi − x =

∑
i λi(xi − x) ∈ Aff(C − {x}).

Therefore, Aff(C − {x}) = Aff(C)− {x}.
2. Is it always true that Lin(C − {x}) = Aff(C)− {x}?

Solution: The equality Lin(C − {x}) = Aff(C)− {x} is not always true, because if x ̸∈ Aff(C), the

set Aff(C)−{x} does not contain the zero vector, but the set Lin(C −{x}) always contains the zero

vector.

3. Do your answers to the previous questions change if you further assume x ∈ Aff(C)?

Solution: The answer to the first question does not depend on whether or not x ∈ Aff(C) holds.

On the other hand, when x ∈ Aff(C), the answer to the second question changes and the relation

Lin(C − {x}) = Aff(C) − {x} always holds. This is because Aff(C) − {x} is an affine subspace that

contains the zero vector, therefore it is a linear subspace. Since it also contains all the elements of

C −{x}, it holds that Lin(C −{x}) ⊆ Aff(C)−{x}. For the other direction, we can use the equality
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Aff(C−{x}) = Aff(C)−{x} we have shown before. Therefore, we have Aff(C)−{x} = Aff(C−{x}) ⊆
Lin(C − {x}). Thus, Lin(C − {x}) = Aff(C)− {x} when x ∈ Aff(C).

Exercise A.6. Suppose that we are given n sets E1, E2, . . . , En in R100 that are distinct from each
other and they satisfy

E1 ⊂ E2 ⊂ . . . ⊂ En.

How large can n be, if

1. every one of Ei is a linear subspace?
2. every one of Ei is an affine subspace?
3. every one of Ei is a convex set?

Solution: The answers are: 101 in items 1 and 2 (dimensions of Ei should grow with i and be integers

from the range 0 – 100); in item 3, n can be arbitrary large (take Ei = {x ∈ R100 : ∥x∥2 ≤ i}).

Exercise A.7. Prove that the Triangle inequality in the Euclidean norm, i.e., ∥x+y∥2 ≤ ∥x∥2+∥y∥2,
holds true as an equality if and only if x and y are nonnegative multiples of some vector (which
always can be taken to be x+ y).

Solution: Observe, first, that x, y are nonnegative multiples of some vector iff they are nonnegative

multiples of x+y. Next, the Triangle inequality in ∥·∥2 holds true as equality if and only if x⊤x+2x⊤y+

y⊤y = ∥x+ y∥22 = (∥x∥2 + ∥y∥2)2 = ∥x∥22 + 2∥x∥2∥y∥2 + ∥y∥22, or, which is the same, x⊤y = ∥x∥2∥y∥2.
The latter relation clearly holds true when x, y are nonnegative multiples of some vector. Now let

x⊤y = ∥x∥2∥y∥2, and let us prove that x and y are nonnegative multiples of some vector. There is

nothing to prove when either x, or y, or both, are zero. Now assume that x ̸= 0, y ̸= 0. Setting

f = x/∥x∥2, g = y/∥y∥2, we arrive at the situation when ∥f∥2 = ∥g∥2 = 1, and x⊤y = ∥x∥2∥y∥2
translates to f⊤g = 1. Consequently, ∥f − g∥22 = ∥f∥22 + ∥g∥22 − 2f⊤g = 0, that is, f = g, so that x and

y are positive multiples of f = g. ■
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Exercise B.1. Mark in the list below those sets which are closed and those which
are open (the sets are in Rn, ∥ · ∥ is a norm on Rn, n > 0):

1. All vectors with integer coordinates.

Solution: closed

2. All vectors with rational coordinates.

Solution: neither closed, nor open

3. All vectors with positive coordinates.

Solution: open

4. All vectors with nonnegative coordinates.

Solution: closed

5. {x ∈ Rn : ∥x∥ < 1}.
Solution: open

6. {x ∈ Rn : ∥x∥ = 1}.
Solution: closed

7. {x ∈ Rn : ∥x∥ ≤ 1}.
Solution: closed

8. {x ∈ Rn : ∥x∥ ≥ 1}.
Solution: closed

9. {x ∈ Rn : ∥x∥ > 1}.
Solution: open

10. {x ∈ Rn : 1 < ∥x∥ ≤ 2}.
Solution: neither closed, nor open

Exercise B.2. Consider the function f(x1, x2) : R
2 → R defined as

f(x1, x2) =

{
x2
1−x2

2

x2
1+x2

2
, if (x1, x2) ̸= 0,

0, if x1 = x2 = 0.

Check whether this function is continuous on the following sets:

1. R2

Solution: f is not continuous on the set
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2. R2 \ {0}
Solution: f is continuous on the set

3. {x ∈ R2 : x1 = 0}
Solution: f is not continuous on the set (note that in this domain we have f(x) = −1 whenever

x2 ̸= 0 and f(x) = 0 whenever x2 = 0)

4. {x ∈ R2 : x2 = 0}
Solution: f is not continuous on the set (note that in this domain we have f(x) = 1 whenever x1 ̸= 0

and f(x) = 0 whenever x1 = 0)

5. {x ∈ R2 : x1 + x2 = 0}
Solution: f is continuous on the set

6. {x ∈ R2 : x1 − x2 = 0}
Solution: f is continuous on the set

7. {x ∈ R2 : |x1 − x2| ≤ x4
1 + x4

2}
Solution: f is continuous on the set.

Exercise B.3. Let f : Rn → Rm be a continuous mapping. Among the following
statements, mark those which are always true:

1. If U is an open set in Rm, then so is the set f−1(U) := {x ∈ Rn : f(x) ∈ U}.
Solution: true

2. If U is an open set in Rn, then so is the set f(U) = {f(x) : x ∈ U}.
Solution: not always true (take f ≡ 0)

3. If F is a closed set in Rm, then so is the set f−1(F ) = {x ∈ Rn : f(x) ∈ F}.
Solution: true

4. If F is a closed set in Rn, then so is the set f(F ) = {f(x) : x ∈ F}.
Solution: not always true (take f(x) = exp{x} : R → R and look at f(R)).

Exercise B.4. Prove that in general none of Theorems B.25, B.29, and B.31 remains
valid when

1. X is closed, but not bounded;

Solution: Take the mapping x 7→ exp{x} : X := R → R, so that X is closed and f is continuous

on X. Here:

• f is unbounded on X, and f(X) is not closed, in contrast to the conclusion of Theorem B.25

• f is not uniformly continuous on X, in contrast to the conclusion of Theorem B.29

• f does not achieve its minimum on X, in contrast to the conclusion of Theorem B.31

2. X is bounded, but not closed.

Solution: Take the mapping x 7→ 1
x

: X := (0, 1) → R, so that X is bounded and f is continuous

on X. Here:

• f is unbounded on X, and f(X) is not closed, in contrast to the conclusion of Theorem B.25

• f is not uniformly continuous on X, in contrast to the conclusion of Theorem B.29

• f does not achieve its minimum on X, in contrast to the conclusion of Theorem B.31
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Exercise D.1.

1. Find the dimension of Rm×n and point out a basis in this space.

Solution: The dimension ismn, and a basis is, e.g., the basis
{
eif

⊤
j : i ≤ m, j ≤ n

}
, where e1, ..., em

and f1, ..., fn are the standard basic orths in Rm, resp., Rn

2. Build an orthonormal basis in Sm.

Solution: An orthonormal basis in Sm is composed of m matrices eie
⊤
i and

m(m−1)
2

matrices
1√
2
[eie

⊤
j + eje

⊤
i ], 1 ≤ i < j ≤ m, where ei are the standard basic orths in Rm.

Exercise D.2. In the space Rm×m of square m ×m matrices, there are two interesting subsets:
the set Sm of symmetric matrices

{
A : A = A⊤} and the set Jm of skew-symmetric matrices

{A = [Aij ] : Aij = −Aji, ∀i, j}.
1. Verify that both Sm and Jm are linear subspaces of Rm×m.

Solution: This is evident.

2. Find the dimension of Sm and point out a basis in Sm.

Solution: The dimension of Sm is
m(m+1)

2
, the basis for Sm was built in Exercise D.1.2.

3. Find the dimension of Jm and point out a basis in Jm.

Solution: The dimension of Jm is
m(m−1)

2
(note that all of the diagonal entries of the matrices in

Jm must be zero), an orthonormal basis for Jm is, e.g., 1√
2
[eie

⊤
j − eje

⊤
i ], 1 ≤ i < j ≤ m.

4. What is the sum of Sm and Jm? What is the intersection of Sm and Jm?

Solution: Their sum is the entire Rm×m, and their intersection is {0}.

Exercise D.3. Is the “3-factor” extension of Fact D.1 valid, at least in the case of square matrices
X,Y, Z of the same size? That is, for square matrices X,Y, Z of the same size, is it always true that
Tr(XY Z) = Tr(Y XZ)?

Solution: Beyond the trivial case of 1× 1 matrices, this is wrong, as is immediately shown by numerical

experimentation.

Exercise D.4. Given P ∈ Sp, Q ∈ Rr×p, and R ∈ Sr, consider the matrices

A =

[
P Q⊤

Q R

]
, B =

[
P −Q⊤

−Q R

]
, C =

[
R Q
Q⊤ P

]
, D =

[
R −Q

−Q⊤ P

]
.

Prove that λ(A) = λ(B) = λ(C) = λ(D). Thus, the matrices A,B,C,D simultaneously are/are
not positive semidefinite. As a consequence, the Schur Complement Lemma says that when R ≻ 0,
we have A ⪰ 0 if and only if P −Q⊤R−1Q ⪰ 0; since A ⪰ 0 if and only if C ⪰ 0, we see that the
same lemma says that when P ≻ 0, we have A ⪰ 0 if and only if R−QP−1Q⊤ ⪰ 0.
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Solution: Indeed, the matrices are rotations of each other:

B = UAU⊤, C = V AV ⊤, D =WAW⊤

where

U =

[
−Ip

Ir

]
, V =

[
Ir

Ip

]
, W =

[
−Ir

Ip

]
,

and clearly the matrices U, V,W are orthogonal.

Exercise D.5. Let Sn++ := intSn+ = {X ∈ Sn : X ≻ 0}, and consider X,Y ∈ Sn++. Then, X ⪯ Y
holds if and only if X−1 ⪰ Y −1 (the ⪰-antimonotonicity of X−1, X ∈ Sn++). Is it true that from
0 ≺ X ⪯ Y it always follows that X−2 ⪰ Y −2?

Solution: For Z ≻ 0, we clearly have Z ⪯ In if and only if Z−1 ⪰ In, and therefore for X ≻ 0, Y ≻ 0

we have

X ⪯ Y ⇐⇒ Y −1/2XY −1/2 ⪯ In ⇐⇒ Y 1/2X−1Y 1/2 ⪰ In ⇐⇒ X−1 ⪰ Y −1.

Numerical experimentation shows that 0 ≺ X ⪯ Y not always implies that X−2 ⪰ Y −2.

Exercise D.6. Let A,B ∈ Sn be such that 0 ⪯ A ⪯ B. For each one of the following, either prove
the statement or produce a counter example:

1. A2 ⪯ B2;

Solution: We can verify (with Mathematica) that for n = 2, taking

A =

[
1 0.5

0.5 1

]
, B =

[
2 0.5

0.5 1

]
gives a counterexample to the claim.

2. 0 ⪯ A1/2 ⪯ B1/2.

Solution: This is always true.

Note that

B −A =
1

2

[
(B1/2 +A1/2)(B1/2 −A1/2) + (B1/2 −A1/2)(B1/2 +A1/2)

]
.

Hence, B−A ∈ Sn+ implies (B1/2+A1/2)(B1/2−A1/2)+(B1/2−A1/2)(B1/2+A1/2) ∈ Sn+. Because

B1/2 −A1/2 is a symmetric matrix, we can rewrite it in terms of its eigenvector decomposition as

B1/2 −A1/2 = UDU⊤,

where U is an orthogonal matrix and D is a diagonal matrix. Then, by defining X := 2U⊤(B−A)U

and Y := U⊤(B1/2 +A1/2)U , we observe that

X = Y D +DY (∗)

holds. Because B−A ∈ Sn+, we haveX ∈ Sn+ (see Fact D.31). Likewise Y ∈ Sn+ because B1/2+A1/2 ∈
Sn+ (since both A and B are positive semidefinite). In addition, observe that

A′ := Y −D = 2U⊤A1/2U

B′ := Y +D = 2U⊤B1/2U.
(∗∗)

Therefore, both A′ and B′ are in Sn+. Finally, let us consider the diagonal elements of the matrices

X, Y , A′ and B′. From (∗), (∗∗) we see that

Xii = 2YiiDii

A′
ii = Yii −Dii

B′
ii = Yii +Dii
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Because all of X, Y , A′ and B′ are in Sn+, we have all these diagonal elements are nonnegative and

Yii ≥ 0 for all i ∈ [m]. In particular, we have Yii ≥ |Dii| for all i. Then for any j ∈ [m] such that

Djj ̸= 0, we have Yjj > 0. Moreover, from Xjj = 2YjjDjj and Yjj > 0, we deduce that Djj ≥ 0 as

well. This then implies that D has a nonnegative diagonal, and hence B1/2 −A1/2 ∈ Sn+ as desired.

An alternative proof of “⪰-monotonicity” of the square root of a positive semidefinite matrix is
given in Example IV.20.5 in section 20.2.

Exercise D.7. A matrix A ∈ Sn is called diagonally dominant if it satisfies the relation

aii ≥
∑

j ̸=i
|aij |, i = 1, . . . , n.

Prove that every diagonally dominant matrix A is positive semidefinite.

Solution: Let x be an eigenvector of A with eigenvalue λ, and let xi be the entry of x with the maximum

absolute value. As x is an eigenvector, x ̸= 0 and so xi ̸= 0. Replacing, if necessary, x with −x, we can

assume that xi > 0. Then, as x is an eigenvector of A with eigenvalue λ, we deduce from Ax = λx that

aiixi +
∑

j ̸=i
aijxj = λxi.

Moreover, using the fact that xi > 0 is the largest magnitude coordinate in x, we get∑
j ̸=i

aijxj ≤
∣∣∣∑

j ̸=i
aijxj

∣∣∣ ≤∑
j ̸=i

|aijxj | ≤ xi
∑

j ̸=i
|aij | ≤ aiixi.

Combining these two relations, we arrive at

λxi = aiixi +
∑

j ̸=i
aijxj ≥ aiixi −

∣∣∣∑
j ̸=i

aijxj

∣∣∣ ≥ 0.

This means that λ ≥ 0, and since the eigenvalue λ was arbitrary, all eigenvalues of A are non-negative,

and hence A ⪰ 0.

Exercise D.8. Prove the following matrix analogy of the scalar inequality ab ≤ a2+b2

2
for a, b ∈ R:

AB⊤ +BA⊤ ⪯ AA⊤ +BB⊤, ∀A,B ∈ Rm×n.

Solution: Note that we can rewrite this expression as

AA⊤ −AB⊤ −BA⊤ +BB⊤ = (A−B)(A−B)⊤.

Then, the positive semidefiniteness of this matrix is immediate.

Exercise D.9.

1. Let Ik denote the k× k identity matrix, and let A be an m× n matrix. Prove that the following
three properties are equivalent to each other:

• A⊤A ⪯ In;
• AA⊤ ⪯ Im;

•
[
Im A
A⊤ In

]
⪰ 0.

Solution: By the Schur Complement Lemma,

X =

[
Im A

A⊤ In

]
⪰ 0 ⇐⇒ Im −AA⊤ ⪰ 0.

Invoking the concluding comment in Exercise D.4, X ⪰ 0 ⇐⇒ In −A⊤A ⪰ 0.

2. Let A1, . . . , Ak be n× n matrices such that

A⊤
1 A1 + . . .+A⊤

k Ak ⪯ In.

For each of the following, either prove the statement or produce a counter example:

• A1A
⊤
1 + . . .+AkA

⊤
k ⪯ In;
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Solution: When n = 1, the claim clearly is true; when k = 1, it is true due to item 1 of Exercise.

When k > 1 and n > 1, the claim is wrong in general: set κ = min[k, n], Ai = ee⊤i with unit e,

the first κ basic orths of Rn in the role of ei when i ≤ κ, and ei = 0 for κ < i ≤ k. With this

setup,
∑
i A

⊤
i Ai =

∑κ
i=1 eie

⊤
i ⪯ In, while

∑
i AiA

⊤
i = κee⊤ ̸⪯ In.

•


A1A

⊤
1 A1A

⊤
2 · · · A1A

⊤
k

A2A
⊤
1 A2A

⊤
2 · · · A2A

⊤
k

...
...

. . .
...

AkA
⊤
1 AkA

⊤
2 · · · AkA

⊤
k

 ⪯ Ikn.

Solution: Observe that by the Schur Complement Lemma and the concluding comment in Exercise

D.4 we have

In − (A⊤
1 A1 + . . .+A⊤

k Ak) ⪰ 0

⇐⇒


In A⊤

1 . . . A⊤
k

A1

... Ikn
Ak

 ⪰ 0

⇐⇒ Ikn −


A1

...

Ak

[A⊤
1 . . . A⊤

k

]
= Ikn −


A1A⊤

1 A1A⊤
2 · · · A1A⊤

k

A2A⊤
1 A2A⊤

2 · · · A2A⊤
k

...
...

. . .
...

AkA
⊤
1 AkA

⊤
2 · · · AkA

⊤
k

 ⪰ 0,

which is exactly what is required.
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