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Syllabus

♣ The course focuses on the descriptive mathematical foundations of Convex Optimiza-
tion. Convex Optimization is a “solvable case” in Mathematical Programming – under mild
computability and boundedness assumptions; one can approximate global solutions to con-
vex optimization problems to whatever high accuracy with reasonable computational effort.
♠ Mathematics of Convex optimization is composed of

(a) descriptive foundations (existence of optimal solutions, optimality conditions, duality,
etc.),

(b) modeling (techniques allowing for posing the problem of interest as a convex opti-
mization program), and

(c) operational toolbox — algorithms.
Traditionally, Mathematical Programming/Conex Optimization courses focus on algorithms
and present descriptive foundations of Optimization at a minimal level sufficient to serve
the needs of designing and analyzing the algorithms.
This course is different: its emphasis is on descriptive foundations and to a lesser extent
– on modeling, with the algorithmic component reduced to a brief “executive summary”
of Interior Point Methods – the state-of-the-art techniques for processing “well-structured”
convex programs. Let me start with a brief historical excursion to motivate the emphasis
on descriptive foundations.

Linear Programming — the “starting point” and one of the cornerstones of Convex
Optimization — was discovered in the late 1940’s and from the very beginning was
equipped with a mighty solution algorithm, the Dantzig’s Simplex method, making LP a
“working entity,” not a wishful thinking.



For over 40 years, the Simplex method was the LP algorithm; those working on other
LP computational techniques were considered harmless city lunatics. As a result, the
Simplex method was the focus of university courses on LP (some professors were even
proud that they extracted the LP theory from this algorithm; in my opinion, this is
as meaningful as extracting the first principles of Mechanics from the civil engineering
manuals). Well, today, the default setting in all commercial LP solvers is Interior Point
methods.

♠ The morale: In Applied Math, the “algorithmic toolbox” is the most important com-
ponent, as far as applications are concerned; at the same time, it is the “most unstable”
component: for LP, it was pivoting algorithms during the first ∼50 years, is primarily Inte-
rior Point Methods in the last 25-30 years, and nobody knows what will the computational
“working horse” of LP in 15 years from now. In contrast, the descriptive component of LP
was, for all practical purposes, completed in the early 1950s and has remained intact since
then.
♠ I believe that as far as university education is concerned, it is important, along with “ready
to use” knowledge that will serve the student well immediately upon graduation, to provide
the students with “timeless” knowledge of foundations that will serve them well on the span
of their entire professional life. The Pythagoras’ Theorem, known as a “practical rule” for
at least 3500 years and as a theorem – for about 2300 years, still is as instructive and useful
as 2300 years ago; in contrast, how Babylonians, ancient Greeks, and Romans did their
Arithmetic, is of absolutely no importance today and is interesting only to those studying
the history of civilization.
♠ The contents, aside from the “executive summary” on Interior Point methods, represent
what is called Convex Analysis (this is the technical name of the descriptive foundations of
Mathematical Programming/Convex Optimization), including
• Basic results on the geometry of convex functions and sets (definitions, elementary proper-
ties, Caratheodory’s, Helly’s, Krein-Milman,. . . theorems, subdifferentials, Legendre trans-
form,. . . )



• Calculus of convexity
• Convex optimization problems in Mathematical Programming, cone-constrained, and conic
forms (definitions, basic properties, duality, optimality conditions,. . . )
• Saddle points and Sion-Kakutani Theorem
To get a complete impression of the descriptive component of the contents, see the course
textbook at https://www.isye.gatech.edu/~nemirovs/KKN.pdf
♠ Prerequisites. Formal prerequisites are the most basic Linear Algebra, Calculus, and
Real Analysis. The informal (and crucial!) prerequisite is the basic mathematical culture –
the ability to comprehend, create, and enjoy rigorous mathematical reasoning. To give an
example, the claim “2 x 2 = 5” does not witness the lack of mathematical culture; this is
just a miscalculation. In contrast, the claim “2 x 2 = triangle” (believe me, from time to
time, I hear in class something like this) does witness the lack of mathematical culture: one
should know that under any circumstances, rain or snow, the product of two reals is a real,
and not a triangle or a violin.
♠ To complete my informal Syllabus, let me present here my favorite Mathematical joke:

A team flying on a balloon lost their orientation. Suddenly a gust of wind brought them
closer to the ground, and they cried to a man they saw below: “Hey, where are we?”
After a short pause, they got the answer: You are on a balloon.” The next gust of wind
lifted the balloon, and as their journey continued, the leader of the team said: “This was
a mathematician. First, he thought before answering. Second, his answer was absolutely
correct. Third, it was absolutely useless.”

If you fully agree with the leader, then perhaps this course is not your best choice. As for
me, I would say that
• To get a helpful answer, ask a proper question: do not ask, “Where are we?”; ask, “What
is our location?”
• A useless answer, by definition, cannot be used and is therefore harmless. In contrast,
acting based on a seemingly useful incorrect answer, you can get into trouble. . .
Arkadi Nemirovski



Preface

A man searches for a lost wallet at the place where
the wallet was lost.
A wise man searches at a place with enough light...

♣ Where should we search for a wallet? Where is “enough light” – what Optimization can
do well?
The most straightforward answer is: we can solve well convex optimization problems.
The very existence of what is called Mathematical Programming stemmed from discovery of
Linear Programming (George Dantzig, late 1940’s) – a modeling methodology accompanied
by extremely powerful in practice (although “theoretically bad”) computational tool – Simplex
Method. Linear Programming, which is a special case of Convex Programming, still underlies
the majority of real life applications of Optimization, especially large-scale ones.



♠ When photography was invented in XIX Century, processing pictures was very sophisticated
and required skills and training.
• Kodak Company changed the situation completely by offering (1888) centralized processing
of films. Their slogan was

You press the button, we do the rest

♠ In the realm of Mathematical Programming, Convex Optimization is the area most close
to this slogan, with
“pressing the button” = creating convex optimization model of the problem at hand and
feeding this model with necessary data



♣ The major components of Convex Optimization as a science are
• Descriptive foundations – basic properties of convex sets and functions (their geome-

try, calculus, etc.), classification of convex optimization problems, existence and characteri-
zation of optimal solutions, etc.;

• Modeling – techniques allowing to recognize optimization problems which can be con-
verted to convex programs, and to carry out this conversion when it is possible;

• Algorithms – methods for numerical processing of convex optimization programs.
Note: Design and analysis of convex optimization algorithms is the major activity area in
Optimization due to its importance for applications.
However: Algorithms form the most unstable component of Optimization
For example,

• Since the birth of Linear and Mathematical Programming (late 1940’s) till mid-1990’s,
the Dantzig’s Simplex Method was the LP algorithm

• Since mid-1990’s, as a result of "Interior Point Revolution," the standard solvers for
LP and other well-structured convex problems are Interior Point Path-Following methods
(IPM’s) which have nothing to do with pivoting LP algorithms, like Simplex Method. Com-
mon belief is that Interior Point Revolution and progress in hardware nearly equally contribute
to the overall 106-fold acceleration of LP solvers

• Since ≈ 2010′s, IPM’s have been augmented with the completely different from IPM’s
First Order algorithms aimed at solving extremely large-scale convex problems which, due
to their huge sizes, are beyond the "practical grasp" of IPM’s.
Conclusion: in the time scale typical for sciences, the "convex optimization toolbox" rapidly
varies, and nobody knows what will be the "optimization working horses" in 15-20 years from
now.
In contrast: Descriptive foundations of Convex Optimization (basically completed in the
mid-1960’s) seem to be "eternal truths" forming a timeless backbone of Optimization, the
knowledge destined to underline development of Convex Optimization in the foreseen future
and beyond.



♣ Traditionally, university courses, undergraduate and graduate alike, mainly focus on "al-
gorithmic toolbox" of Optimization, presenting (if at all) the foundational knowledge at the
bare minimum sufficient to explain algorithms.
With this approach, the emphasis is at providing students with the “ready to use here and
now” knowledge.
♠ Our course is different: its emphasis is on descriptive foundations of Convex Optimiza-
tion (technical name: Convex Analysis), and to a lesser extent - on modeling; algorithms
will be represented by "executive summary" of IPM’s as applied to well-structured convex
problems – those of Linear and Semidefinite Programming.
The underlying rationale is to provide listeners with knowledge which will allow them to
comprehend and to carry out optimization-related research and, as far as Optimization is
concerned, will serve them on the entire span of their professional careers.

Note: While I intend to obey the standards of rigorousness of pure Math, the selection
of material has nothing to do with mathematical niceties, intention to be as general as
possible, and other attributes of ”science for the sake of science;” the selection of material
is motivated by the desire to provide listeners with the knowledge sufficient, to the best
of my professional judgement,to comprehend, to develop, and to apply convex optimization
models and algorithms.



♠ The contents:
• Basics of convex sets:

Instructive examples and “calculus” (convexity-preserving operations)
Theorems of Caratheodory and Helly
Topology of convex sets
Descriptive basics of Linear Programming – General Theorem of the Alternative and
Linear Programming duality

• Separation Theorem and its applications:
Extreme points, extreme rays, recessive directions
Finite-dimensional Krein-Milman Theorem
Geometry of polyhedral sets

• Basics on convex functions:
Instructive examples and “calculus”
Detecting convexity
Gradient Inequality and basics on subgradients
Maxima and minima
Legendre transform and Fenchel Duality

• Basic theory of Convex Optimization:
Lagrange Duality and Lagrange Duality Theorem for problems in
standard, cone-constrained, and conic form
Conic Programming and Conic Duality Theorem
Saddle points and Sion-Kakutani Theorem

• "Structure revealing" Conic representations of convex sets and
functions

• Executive summary on Interior Point methods for
Linear/Conic Quadratic/Semidefinite Programming



PART I.
Convex Sets



Lecture I.1

Metric Spaces

Definition
Convergence
Separability
Compactness
Continuity



Metric Spaces

♣ Let X be a set. A metric (a.k.a. distance) on X is a function d(x, y) : X×X → R which is
• positive: d(x, y) > 0 whenever x ̸= y and d(x, x) = 0 for all x
• symmetric: d(x, y) = d(y, x) ∀x, y
• satisfies Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z
♠ A set X equipped with metric is called metric space

Note: By Triangle inequality and symmetry, for x, y, x ∈ X it holds d(x, z) ≤ d(x, y) + d(y, z)
and d(y, z) ≤ d(y, x) + d(x, z) = d(x, y) + d(x, z), implying

Fact I.1 When d is a metric on X, for all x, y, z ∈ X it holds

|d(x, z)− d(y, z)| ≤ d(x, y).
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Examples:
• The real line R equipped with the distance d(x, y) = |x− y|
• The space Rn of n-dimensional column vectors with the uniform distance

d(x, y) = ∥x− y∥∞ := max
i≤n

|xi − yi|

♠ Remember: When speaking about R and Rn, we refer to the just defined metric spaces,
not just to linear spaces!
♠ Remember: Given metric space (X, d), we always treat subsets Y ⊂ X as metric spaces,
the metric being the restriction of metric d onto Y .
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Direct Product of Metric Spaces

♣ Passing from the metric space R to the metric space Rn is a special case of the following
construction:
♠ Direct product: Given metric spaces (X1, d1), ..., (Xm, dm), we can build their direct prod-
uct – the metric space (X1 ×X2 × ...×Xm, d), where
— the direct product X = X1×X2× ...×Xm of the sets Xk is the set of all k-element ordered
collections (x1, ..., xm) with xk ∈ Xk, 1 ≤ k ≤ m
— the distance d on X is defined as

d((x1, ..., xm), (y1, ..., ym)) = max
k

dk(xk, yk).
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Convergence

♣ Let (X, d) be a metric space. A sequence {xi ∈ X}i≥1 is called converging to x̄ ∈ X
(equivalent wording: xi converge to x̄ as i → ∞ or x̄ is the limit of {xi}i), notation:

x̄ = limi→∞ xi

if the distance from xi to x converges to 0 as i → ∞, that is, if for every ϵ > 0 and all large
enough values of i one has d(xi, x̄) ≤ ϵ.
A sequence {xi ∈ X}i which has a limit is called converging.
Examples:
• limi→∞ 1/i = 0
• A sequence {xi ∈ Rn}i≥1 converges to x̄ iff for every k ≤ n the sequence {xi

k}i≥1 of k-th
entries in xi converges, as i → ∞, to the k-th entry x̄k of x̄. More generally, a sequence
{(xi

1, ..., x
i
m)}i of points from the direct product of metric spaces converges iff its ”projections

on the factors” – the sequences {xi
k}i – converge in the respective factors, 1 ≤ k ≤ m.
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Fact I.2 1) The limit of a sequence, if any, is uniquely defined by the sequence
2) A converging sequence {xi} is a Cauchy sequence, meaning that d(xi, xj) converges to
zero as i, j → ∞: for every ϵ > 0 and for all large enough values of i, j it holds d(xi, xj) ≤ ϵ

♣ Metric space (X, d) is called complete, if every Cauchy sequence of points from X con-
verges (i.e., has a limit).
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Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk
[God made the integers, all else is the work of man] - Leopold Kronecker, 1886

♠

Fact I.3 [The Most Basic Fact of Analysis] R equipped with the standard distance d(x, y) =
|x− y| is a complete metric space

As an immediate corollary, Rn is a complete metric space. In fact, Direct product of finitely
many complete metric spaces if complete.
Comment: • All we need to count entities are natural numbers 0,1,2, ...
• The set N of natural numbers is equipped with two basic operations: addition and multi-
plication
— to make addition invertible, we extend N to the set Z of integers {0,±1,±2, ...}
— to make multiplication invertible as well, we next extend Z to the set Q of all rational
numbers.
• Q still is too narrow – we need roots (e.g., to measure the diagonal of unit square).
The next extension is the set of algebraic numbers – real roots of polynomials with rational
coefficients.
• Algebraic numbers sufficient for Algebra are unsufficient for Analysis, where completeness
is crucial. The real line R is the smallest complete extension of the set of rational (and of
algebraic) numbers.
♠ The journey from N to R took over 2000 years and was completed at the end of XIX
Century
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Closed and open sets

♣ Let a metric space (X, d) be given. A set Y ⊂ X is called
• closed, if the limit of every converging sequence of points from Y belongs to Y
• open, if along with every point ȳ ∈ Y , Y contains a ball of positive radius centered at ȳ:

∀ȳ ∈ Y ∃r > 0 : d(y, ȳ) ≤ r ⇒ y ∈ Y.

Examples:
• The empty set is both open and closed
• The segments [0,1] := {x ∈ R : 0 ≤ x ≤ 1} ⊂ R is closed;
the interval (0,1) := {x ∈ R : 0 < x < 1} ⊂ R is open;
the half-segment [0,1) := {x ∈ R : 0 ≤ x < 1} ⊂ R is neither closed nor open.
• The subset Z = {0,±1,±2, ...} of R are closed, and its complement R\Z = {x ∈ R :
x is not integer} is open
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Fact I.4 1) A set Y ⊂ X is closed iff its complement X\Y is open
2) The intersection of any family of closed sets, same as the union of finite family of closed
sets are closed
3) The intersection of finitely many open sets, same as the union of any family of open
sets, is open

Consequences:
• The closed d-ball of radius r ≥ 0 centered at x ∈ X – the set Br(x) = {x′ : d(x, x′)≤r} – is
closed.
Indeed, the complement of Br(x) is the set {x′ : d(x, x′) > r, and this set is open by Fact I.1.
• The open d-ball of radius r ≥ 0 centered at x ∈ X – the set B′

r(x) = {x′ : d(x, x′)<r} – is open (by Triangle
inequality).

Fact I.5 A subset in a complete metric space is closed iff it is complete
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Closure, Interior, Boundary

♣ Let (X, d) be metric space, and Y be a subset of X.
♠ The set Y ⊂ X is a part of some closed subset of X (e.g., the entire X). As a result, there exists the
smallest w.r.t. the inclusion closed set containing Y , specifically, the intersection of all closed sets containing
Y . This set is called the closure clY of Y .
Example: When X = R, one has cl {x : 0 ≤ x < 1} = {x : 0 ≤ x ≤ 1}.

Fact I.6 clY is composed of the limits of all converging sequences of points from Y .

Why Fact I.6 is not a tautology: clearly, a closed set containing Y contains the set Y of limits of converging
sequences of points of Y ⇒ to prove that Y = clY is the same as to prove that Y is closed, which is not
immediately evident: Y contains the limits of all converging sequences from Y ; why it contains the limits of
all converging sequences from Y – the set which can be larger than Y ?
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♣ Let (X, d) be metric space, and Y be a subset of X.
♠ Y ⊂ X contains an open subset (e.g., the empty set). As a result, there exists the largest w.r.t. the inclusion
open set contained in Y , specifically, the union of all open sets contained in Y . This set is called the interior
intY of Y .
Example: When X = R, one has int {x : 0 ≤ x < 1} = {x : 0 < x < 1}.

Fact I.7 intY is composed of all interior points of Y – points y belonging to Y along with d-ball Br(y) = {z :
d(y, z) ≤ r} of positive (perhaps, small and depending on y) radii.

♠ We clearly have intY ⊂ Y ⊂ clY . The complement clY \intY of the interior in the closure is called the
boundary ∂Y of Y .
Example: with X = R, we have

∂{x : 0 ≤ x ≤ 1} = ∂{x : 0 ≤ x < 1} = ∂{x : 0 < x ≤ 1} = ∂{x : 0 < x < 1} = {0,1}.

• clY is composed of all point of X which can be approximated to whatever high accuracy by points from Y
– points such that every d-ball of positive radius centered at the point contains points of Y

• intY is composed of all points which cannot be approximated to high enough accuracy by points from the
complement X\Y of Y in X (what is “high enough,” depends on the point)
• boundary ∂Y of Y is composed of all points of X which can be approximated to whatever high accuracy by
points from Y and by points from X\Y .
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Fact I.8 Consider metric spaces (Xk, dk), 1 ≤ k ≤ m, along with their direct product (X, d), and let Yk ⊂ Xk,
1 ≤ k ≤ m, and Y = Y1 × ...× Ym. Then
• Y is closed iff all Yk are so
• Y is open iff all Yk are so
• clY = [clY1]× ...× [clYm]

• intY = [intY1]× ...× [intYm]
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Countable sets

♣ A set X is called countable, if its elements can be assigned serial numbers – indexes from {1,2, ...} – in such
a way that different points from the set get different indexes.

Examples:
• Finite sets, including ∅
• Natural numbers N = {1,2, ...} and integers Z = {0,±1,±2....}
• Rational numbers Q.
To “index” Q, look one by one at the finite sets Qs of rationals p/q with |p|+ |q| ≤ s, s = 1,2, .... and list first
the elements of Q0, then still unlisted elements of Q1, then the still unlisted elements of Q2, and so on.

Facts:
• A nonempty set X is countable iff there exists a sequence {xi}i of its elements such that every x ∈ X is a
member of the sequence
• A subset of countable set is countable
• The union Q of a sequence {Qs}s of countable sets Qs is countable
Indeed, elements of Q can be assigned pairs of indexes s, i, with s being the index of the first of the sets Qr

containing the element, and i being the serial number of the element in Qs. We can now list the elements of
Q as follows: first those with s + i ≤ 1, next the yet unlisted elements with s + i ≤ 2, next the yet unlisted
elements of with s+ i ≤ 2, and so on.
• Finite direct product Q = Q1 × ...×Qm of countable sets Qi is countable.
Indeed, the sets Qs, s = 1,2, ..., composed of all collections (x1, ..., xm), xi ∈ Qi, with the sum, over i ≤ m, of
serial numbers of xi in Qi not exceeding s is finite, and Q is the union of the sets Qs over s = 1,2, ....
• R is not countable
Reals from [0.1) are sequences of digits 0,1,...,9, with sequences with all but finitely many terms equal to 9
excluded. Assuming that these reals can be assigned serial numbers 1,2,..., let us build a sequence of zeros
and ones as follows: i-th term in this sequence is 0, if i-th digit in i-th real differs from 0, and is 1 otherwise.
The resulting sequence is composed of digits 0 and 1 and differs from all our reals, which is a contradiction.
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Separable metric space

♣ A metric space (X, d) is called separable, if it either is empty, or there exists a countable
set Y ⊂ X such that every x ∈ X is the limit of a converging sequence of points from Y , or,
equivalently, such that X = clY .
Examples:
• Rn. Indeed, the set Qn of n-dimensional vectors is countable (as finite direct product of
the countable sets Q of rational numbers), and every x ∈ Rn is the limit of a sequence of
vectors with rational coordinates.
By similar reason,
• The (finite) direct product of separable metric spaces is separable.
• A subset Z of separable metric space (X, d) (considered as metric space with the metric
inherited from (X, d)) is separable, In particular, any subset of Rn is separable.
The claim is clearly true when Z = ∅. Assuming Z ̸= ∅, there exists a countable set Y such that X = clY .
For s = 1,2, ..., let us build set Zs ⊂ Z as follows: looking one by one at points from Y (in the order given
by the serial numbers of points in the countable set Y ), we look whether the d-ball of radius 1/s centered at
the current y ∈ Y intersects Z. If it is the case, we add to Zs (which initially is empty) a point z(y) from this
intersection, otherwise pass to the next y ∈ Y . As a result, we get a countable set Zs ⊂ Z such that every z ∈ Z

is at the d-distance at most 2/s from some point of Zs (namely, any point z(y) generated when processing
y ∈ Y with d(y, z) < 1/s; such an y exists, since Y is dense in X ⊃ Z; z is a candidate to the role of z(y), so
that z(y) is well defined, and d(z, z(y)) ≤ d(y, z(y))+ d(y, z) ≤ 2/s). The union W = ∪sZs is a countable, along
with all Zs, subset of Z, and every point of Z clearly is the limit of a sequence of points from W .
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Compact metric space

♠ A metric space (X, d) be a metric space is called compact, if every sequence of points
from X contains a converging subsequence.
• In the sequel, given metric space (X, d), we call a subset Y of X compact, if Y equipped
with the metric d reduced to Y is a compact metric space.
Example: • Finite metric space is compact
Note: • The entire R is not compact.

Fact I.9 • Direct product of (finitely many) compact metric spaces is a compact metric
space.

• When (X, d) is a compact metric space and Y ⊂ X, Y is compact iff Y is closed.
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Fact I.10 Metric space (X, d) is compact iff
A. The space is totally bounded – for every ϵ > 0, X can be covered by finite collection of
balls of radius ϵ (equivalently: X admits finite ϵ-net – a finite collection of points such that
every point from X is at the distance at most ϵ of some point from the collection)
B. The space is complete.
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Fact Metric space (X, d) is compact iff
A. The space is totally bounded – for every ϵ > 0, X can be covered by finite collection of balls of radius ϵ

(equivalently: admits finite ϵ-net – a finite collection of points such that every point from X is at the distance
at most ϵ of some point from the collection)
B. The space is complete.

Proof: ✓ In one direction: Let (X, d) be a compact metric space, and let us prove that A and B take place.

A: Given ϵ > 0, take a point x1 ∈ X; if the ball Bϵ(x1) contains X, {x1} is a finite ϵ-set of X, otherwise we
can find a point x2 with d(x1, x2) > ϵ. In the second case, it may happen that X ∈ Bϵ(x1) ∪ Bϵ(x2), so that
{x1, x2} is a finite ϵ-net, otherwise there exists x3 such that d(xi, xj) > ϵ for i ̸= j and 1 ≤ i, j ≤ 3. Proceeding
in the same fashion, we either terminate with finite ϵ-net, or generate a sequence {xi}i≥1 with d(xi, xj) > ϵ

for all i ̸= j. The second option is contradictory, since the sequence {xi} clearly does not have a converging
subsequence, which is impossible.

B: We should prove that a Cauchy sequence {xi} has a limit. This is immediate: by compactness, the sequence
has a converging subsequence, and clearly the limit of a converging subsequence of a Cauchy sequence is the
limit of this entire sequence as well.

✓ In the opposite direction: assume that A and B take place, and let us prove compactness, that is, that every
sequence {xi}i≥1 has a converging subsequence. Indeed, by A, for every k = 1,2, ... there exists a finite (1/k)-net
{uk

ℓ}ℓ≤Lk
. The union X of the L1 balls B1(u1

ℓ ) contains the entire sequence {xi} – let us call it "sequence 0,"
so that one of these balls contains its subsequence, let us call it "sequence 1." By similar argument, sequence
1 contains a subsequence, "sequence 2," belonging to one of the L2 balls B1/2(u

2
ℓ ), ℓ ≤ L2. Proceeding in

the same fashion, we build a collection of sequences k, k = 0,1,2, ..., which is nested – the next sequence
is a subsequence of the previous one, with sequence k belonging to a d-ball of radius 1/k. The sequence
{k-th term of sequence k}k≥1 is a subsequence of sequence 0 (i.e., the sequence {xi}) and by construction is
a Cauchy, and thus converging by B, sequence. Thus, {xi} indeed has a converging subsequence.

Corollary I.1 A compact metric space (X, d) is separable.
Indeed, for s = 1,2, ..., X admits a finite 1/s-net Y s. The union Y of finite sets Y 1, Y 2, ... is countable, and
clearly every x ∈ X is the limit of a sequence from Y .
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Fact I.11 A set X in Rn is compact iff it is bounded and closed.

Proof. ✓ In one direction: A compact subset Y in Rn must be totally bounded, and thus bounded, and
complete, and thus closed (as a complete subset of the complete metric space Rn, see Fact I.5)

✓ In the opposite direction: Let X be bounded and closed, and let us prove that X is compact. The bounded
set X ⊂ Rn clearly is totally bounded – assuming that X ⊂ BR(0) and given ϵ > 0, we can split BR(0) into
finitely many boxes {x : ikR/N ≤ xk ≤ (ik + 1)R/K,1 ≤ k ≤ N} with integer ik ∈ {−N,−N + 1, ..., N − 1} and
integer N ≥ R/ϵ. Selecting a point in every nonempty intersection of X and a box from the resulting finite
family, we get finite ϵ-net in X. Since X is closed and Rn is complete, X is complete by Fact I.5. Being totally
bounded and complete, X is compact by Fact I.13.

Illustrations:
• The following sets are compact:

∅, [0,1] := {x ∈ R : 0 ≤ x ≤ 1} ⊂ R, {x ∈ Rn : ∥x∥∞ ≤ 1}
• The following sets are non-compact:

Rn (n ≥ 1), [0,1) := {x ∈ R : 0 ≤ x < 1} ⊂ R, {x ∈ Rn : ∥x∥∞ < 1}
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Fact I.12 A metric space (X, d) is compact iff from every covering of X by open sets one
can extract a finite subcovering.

Proof. ✓ In one direction: Let the space be compact, and let {Uα}α be a covering of X by open sets. Let us
prove that one can select from this covering a finite subcovering.
A. First, let us prove that our claim is true when the given covering is a countable covering {U i}i≥1. Assuming
that we cannot extract from this covering a finite subcovering, for every k there exists a point xk ̸∈ ∪i≤kU

i. As
X is compact, the resulting sequence {xk} has a subsequence {xkj}j converging, as j → ∞, to some x̄. The
point x̄ belongs to some of the sets U i, say, to the set U k̄; this set is open, whence xkj → x̄ ∈ U k̄ implies that
xk
j ∈ U k̄ for all large enough j. This is the desired contradiction – by construction xk ̸∈ U k̄ whenever k ≥ k̄.

B. It remains to extract the desired result from its just established "countable covering" version. To this end
let us make a useful observation:
A separable metric space X, d(·) has a countable base – a countable collection {V ℓ}ℓ of open sets such that
every open set U in X is the union of all contained in U sets from the collection {V ℓ}. In particular, every
compact set has a countable base.
Indeed, as X is separable, X has a dense countable sub set {xi, i = 1,2, ...}. The collection of all open balls of
rational radii, each centered at a point from {xi}, is countable, and it clearly is a desired base.
C. Taken together, A and B immediately imply that from every open covering {Uα} of X one can extract a
finite subcovering. Indeed, let {V ℓ} be a countable base of X, and let L be the set of indexes of those V ℓ

which are contained each in its own set of the family {Uα}. As Uα is the union of all sets V ℓ from the base
contained in Uα and {Uα} form a covering of X, the countable collection {V ℓ}ℓ∈L is an open covering of X. By
A, this open covering admits a finite subcovering V ℓ

1 , ..., V
ℓ
J ; as V ℓ

j ⊂ Uαj for properly selected αj, the sets Uαj

form the desired finite subcovering of X by sets from the family {Uα}.

✓ In the opposite direction: Assume that every open covering of X admits selection of a finite subcovering,
and let us prove that every sequence {xi ∈ X}i≥1 has a converging subsequence. Assuming that the latter is
the case, there exists a sequence {xi ∈ X}i≥1 with no converging subsequences ⇒ For every y ∈ X there exists
r > 0 such that the centered at y open d-ball of radius r does not contain xi’s with large enough values of i.
The family of open balls {By, y ∈ X} forms an open covering of X, and therefore admits selection of a finite
subcovering By1, ... ByL. For every k, xk belongs to one of these L balls ⇒ at least one of the balls Byℓ, ℓ ≤ L,
contains xk for infinitely many values of index k. This is a desired contradiction – by construction, every ball
By contains xk for finitely many values of k !
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Fact I.13 Let (X, d) be a metric space. The following properties of the space are equivalent
to each other:
(i) (X, d) is compact
(ii) Every open covering of X admits selection of a finite subcovering
(iii) If every finite collection of sets from a family of closed subsets in X has a nonempty
intersection, all sets from the family have a nonempty intersection

Indeed, equivalence between (i) and (ii) is Fact I.12. To see the equivalence of (ii) and (iii), note that if {Fα}
is a collection of closed subsets of X, then the intersection of all sets from the family is empty iff the collection
of open subsets {X\Fα}α form an open covering of X.
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Continuity

♠ Let (X, d) and (Z, g) be metric spaces and F : X → Z be a mapping.
Definition F is called continuous at a point x̄ ∈ X, is for every sequence {xi ∈ X}i converging
to x̄, the sequence {F (xi)}i converges to F (x̄).
• F is called continuous, if F is continuous at every point x ∈ X.
Equivalent "ϵ – δ" definition of continuity: F is continuous at x iff for every ϵ > 0 there
exists δ > 0 such that

{x′ ∈ X, d(x, x′) ≤ δ} ⇒ g(F (x′), F (x)) ≤ ϵ.

Examples:
• Algebraic polynomial of n variables is continuous on Rn.
• A function F (x) = [F1(x); ...;Fm(x)] : X → Rm is continuous iff every one of the real-valued
functions Fk(x), k ≤ m, is continuous.
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Fact I.14 Let (X, d) and (Z, g) be metric spaces and F : X → Z. F is continuous
— iff the inverse image F−1(Y ) := {x : F (x) ∈ Y } of every open subset Y of Z is open, and
— iff the inverse image F−1(Y ) of every closed subset Y of Z is closed.

Note: Let (X, d) be a metric space. Then
A. If a real-valued function F : X → R is continuous, then the sublevel sets {x : F (x) ≤ a}
and superlevel sets {x : F (x) ≥ a} of F are closed for every a ∈ R (as inverse images of the
closed subsets {t : t ≤ a}, {t : t ≥ a} of R), while the sets {x : F (x) < a) and {x : F (x) > a},
a ∈ R, are open (as inverse images of open subsets of R).
In particular, the solution set {x ∈ Rn : aTαx ≤ bα ∀α ∈ A}, of every system of nonstrict linear
inequalities is closed (as the intersection of sublevel sets of continuous functions aTαx of x).
B. Vice versa, If F : X → R is a real-valued function such that for every a ∈ R both the
sublevel set {x : F (x) ≤ a} and the superlevel set {x : F (x) ≥ a} are closed (or, which is the
same, the complements to these sets {x : F (x) > a} and {x : F (x) < a} are closed), then F
is continuous.
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Fact I.15 1) Let (X, d) be a metric space, and (Z, g) be the direct product of metric spaces
(Zk, dk), 1 ≤ k ≤ m. Let also Fk : X → Zk be mappings. The mapping

F (x) = (F1(x), ..., Fm(x)) : X → Z

is continuous iff every one of Fk : X → Zk, k ≤ m, is so.
2) [continuity of composition] Let (X, d), (Y, e), (Z, h) be metric spaces and F : X → Y ,
G : Y → Z be mappings. Let also x̄ ∈ X, and Ȳ = F (x̄). Assume that the mapping F is
continuous at x̄, and the mapping G is continuous at ȳ. Then the composite mapping

H(x) := G(F (x)) : X → Z

is continuous at z̄.
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Fact I.16 Let (X, d) be compact and let F : X → Z be continuous. Then the image
F (X) = {y = F (x), x ∈ X} is a compact subset of Z.

Indeed, given an open covering {Uα}α of F (Y ), the sets F−1(Uα) are open (since F is
continuous) and clearly form a covering of X ⇒ for properly selected α1, ..., αK the sets Uαk

,
k ≤ K, form a covering of Y ⇒ the open covering {Uα}α of Y admits selection of finite
subcovering {Uαk

, k ≤ K} of Y ⇒ Y is compact.
♠ Corollary [Weierstrass Theorem] Let (X, d) be compact metric spaces nd F be continuous
real-valued function. Then F is bounded and attains its minimum and maximum on X.
Indeed, by Fact I.16, F (X) = {F (x) : x ∈ X} is a compact subset of R ⇒ F (X) is nonempty and is closed and
bounded by Fact 1.8 ⇒ F is bounded along with F (X). and attains its minimum and maximum at X, since a
nonempty, closed and bounded set Y of reals contains the smallest and the largest point.

Exercise: Prove the latter claim.
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Solution: Let us build a nested sequence of segments ∆k intersecting Y and with lengths converging to 0
as k → ∞. Namely, ∆0 = [a0, b0] be a segment containing the nonempty compact (and thus nonempty and
bounded!) set Y . Given segment ∆k = [ak, bk] intersecting Y , we set ck = 1

2
[ak + bk]. ∆k intersects Y ⇒ at

least one of the segments [ak, ck], [ck, bk] intersects Y . If [ak, ck] intersects with Y , we take it as ∆k+1, otherwise
we set ∆k+1 = [ck, bk].
By construction, the lengths of segments ∆k go to 0 as k → ∞, and the sequence {ak}k≥1 is nondecreasing
and is bounded from above (by any point y ∈ Y ).
Any nondecreasing bounded from above sequence of reals is a Cauchy sequence (why?); since R is complete,
such a sequence converges. In particular, ak converge to some ȳ as k → ∞. By construction ak ≤ y for all y ∈ Y
and all k ⇒ ȳ ≤ y for all y ∈ Y . On the other hand, selecting yk ∈ ∆k ∩Y (the latter intersection is nonempty!),
we get |yk − ak| ≤ bk − ak → 0, k → ∞, which combines with ȳ = limk→∞ ak to imply that ȳ = limk yk. Since Y is
closed, we conclude that ȳ ∈ Y . Thus, ȳ is the smallest of the reals in Y . Similar reasoning demonstrates that
among the reals from Y there exists the largest one.
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Uniform Continuity

♣ Let (X, d) and (Z, g) be metric spaces, and let F : X → Y be a continuous mapping.
♠ Continuity of F means that for every x ∈ X and every ϵ > 0 there exists δ > 0 such that

d(y, x) ≤ δ ⇒ g(F (y), F (x)) ≤ ϵ.

Given ϵ > 0, the "δ > 0" here is allowed to depend on x and can be arbitrarily small for
"bad" choices of x. Uniform continuity of F means that the for every ϵ > 0, a single δ > 0
"serves" all x ∈ X:
Definition: F : X → Y is called uniformly continuous, if for every ϵ > 0 there exists δ > 0
such that

{x, y ∈ X, d(x, y) ≤ ∆} ⇒ g(F (y), F (x)) ≤ ϵ.

A continuous mapping not necessarily is uniformly continuous (look at the real-valued func-
tion 1/x on the positive ray X = {x ∈ R : x > 0}).

Fact I.17 If (X, d) is compact and F : X → Y is continuous, F is uniformly continuous.

Proof. Assuming the opposite, there exists ϵ > 0 and a sequence of pairs {xi, yi}i such that d(xi, yi) → 0 as
i → ∞, while g(F (yi), F (xi)) > ϵ for all i. Since (X, d) is compact, {xi} has a converging subsequence {xij}j.
since d(xij , yij) → 0 as j → ∞, we have x̄ := limj→∞ xij = limj→∞ yij. Since F is continuous at x̄, we conclude
that F (x̄) = limj→∞ F (xij) = limj→∞ F (yij), contradicting g(F (xij), F (yij) > ϵ > 0 for all j.
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Norms

♠ A norm on Rn is a real-valued function ∥ · ∥ on Rn with the following properties:
• positivity: ∥x∥ is positive whenever x ̸= 0 and is zero when x = 0
• positive homogeneity: ∥λx∥ = |λ∥x∥ for every x ∈ Rn and λ ∈ R
• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rn.
Note: By Triangle inequality, ∥x∥ ≤ ∥x − y∥+ ∥y∥ and ∥y∥ ≤ ∥y − x∥+ ∥x∥, which combines
with homogeneity to imply

Fact I.18 For every norm ∥·∥ on Rn and all x, y ∈ Rn it holds |∥x∥ − ∥y∥| ≤ ∥x− y∥ ∀x, y ∈ Rn

Examples:
• The uniform (a.k.a. ℓ∞) norm ∥x∥∞ = maxk≤n |xk|
• The ℓ1-norm ∥x∥1 =

∑
k |xk|

The fact that ℓ1 and ℓ∞ norms indeed are norms is justified by trivial verification.
Note: ∥ · ∥1 and ∥ · ∥∞ are “extremes” of the family of ℓp-norms ∥ · ∥p, 1 ≤ p ≤ ∞. When
1 < p < ∞, ∥x∥p =

(∑
k |xk|p

)1/p.
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Note: ∥x∥∞ = limp→∞ ∥x∥p.

2D
p = 1:rhombus p = 2:circle p = ∞:square

3D
p = 1:octahedron p = 2:ball p = ∞:cube

Unit ∥ · ∥p-balls {x : ∥x∥p ≤ 1}



∥x∥p =
{ (∑

k |xk|p
)1/p

,1 ≤ p < ∞
maxk |xk| , p = ∞

Positivity and homogeneity of ∥ · ∥p are evident. Verifying Triangle inequality for 1 < 0 < ∞
requires some effort (for p ̸= 2 postponed till better times).
♠ To see that ℓ2 (a.k.a. "standard Euclidean") norm ∥x∥2 =

√∑
k x

2
k indeed is a norm

— We start with Cauchy inequality: |xTy| ≤ ∥x∥2∥y∥2 for all x, y ∈ Rn

Indeed, the inequality is evident when y = 0, and
∀(x, y ∈ Rn, y ̸= 0) :

(x− ty)T(x− ty) ≥ 0∀t ∈ R ⇔ f(t) := t2yTy − 2txTy + xTx ≥ 0 ∀t
⇒ [xTy]2 − [xTx][yTy] ≤ 0
"the discriminant of everywhere nonnegative quadratic trinomial
(f is a trinomial due to yTy > 0) is nonpositive"

⇒ |xTy| ≤
√
xTx
√

yTy

— By Cauchy inequality,
∥x+ y∥22 = xTx+2xTy + yTy ≤ xTx+2

√
xTx

√
yTy + yTy = [

√
xTx+

√
yTy]2

that is, ∥x+ y∥22 ≤ [∥x∥2+ ∥y∥2]2, implying the Triangle inequality.
Note: From the proof of Cauchy inequality it follows that when y ̸= 0, the inequality
|xTy| ≤ ∥x∥2∥y∥2 is equality iff the discriminant of the quadratic trinomial f is zero, that is,
iff f has a real root t̄, that is iff x is a real multiple of y.
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Norms and Metrics

♣ A norm ∥ · ∥ on Rn induces a distance:

d∥·∥(x, y) = ∥x− y∥

Fact I.19 d∥·∥(·, ·) indeed is a distance. This distance possesses two additional properties:
— it is shift-invariant: d∥·∥(x+ z, y + z) = d∥·∥(x, y) for all x, y, z ∈ Rn

— it is homogeneous: d∥·∥(λx, λy) = |λ|d∥·∥(x, y) for all x, y ∈ Rn and all λ ∈ R.
Vice versa, every shift-invariant and homogeneous distance d(·, ·) on Rn is of the form d∥·∥(·, ·)
for some, uniquely defined by the distance, norm ∥ · ∥.

Fact I.20 Every two norms ∥ · ∥, ∥ · ∥′ on Rn are equivalent, meaning that they are within
positive constant factors from each other: there exist positive constants c and C such that

∀x ̸= 0 : c ≤
∥x∥
∥x∥′

≤ C.

• As a corollary, all norm-induced distances on Rn result in the same notions of convergence,
open and closed sets, closure, interior, compactness, etc.

Note: Fact I.20 is characteristic for finite-dimensional linear spaces.
• As an additional corollary, invoking Fact I.19, we arrive at

Fact I.21 A norm ∥ · ∥ on Rn is continuous (and even uniformly continuous) function.
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Fact Every two norms ∥ · ∥, ∥ · ∥′ on Rn are equivalent, meaning that they are within positive constant factors
from each other: there exist positive constants c and C such that

∀x ̸= 0 : c ≤
∥x∥
∥x∥′

≤ C.

Proof. It suffices to verify that every norm ∥ · ∥ on Rn is equivalent to ∥ · ∥∞. Let ∥ · ∥ be a norm on Rn.
A. Denoting by ek, k ≤ n, the standard basic orths in Rn, we have

∥x∥ = ∥
∑
k

xke
k∥ ≤

∑
k

∥xke
k∥ =

∑
k

|xk|∥ek∥≤ ∥x∥∞max
k

∥ek∥,

that is, ∥x∥ ≤ C∥x∥∞ ∀x, with C =
∑

k
∥ek∥.

B. As a consequence of A, ∥x∥ is a continuous function of x. Indeed, |∥x∥ − ∥y∥| ≤ ∥x− y∥ ≤ C∥x− y∥∞, with
the first inequality given by Fact 1.15.
C, Consider the set X = {x ∈ Rn : ∥x∥∞ = 1}. This set clearly is nonempty, closed and bounded, and is
therefore compact. The function f(∗x) = ∥x∥ is continuous on this set and therefore attains its minimum on
the set (Weierstrass Theorem). Since f is positive outside of the origin, this minimum c is positive:

∥x∥∞ = 1 ⇒ ∥x∥ ≥ c > 0.

Both sides in this inequality are of the same homogeneity degree w.r.t.x., implying that

∀x : ∥x∥ ≥ c∥x∥∞,

Thus,

∀x ∈ Rn : ∥x∥ ≤ C∥x∥∞ & ∥x∥ ≥ c∥x∥∞ [C < ∞, c > 0]

⇒ ∥ · ∥ is indeed equivalent to ∥ · ∥∞
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Convex Sets

Definition. A set X ⊂ Rn is called convex, if X contains, along with every pair x, y of its
points, the entire segment [x, y] with the endpoints x, y:

x, y ∈ X ⇒ (1− λ)x+ λy ∈ X ∀λ ∈ [0,1].

Note: when λ runs through [0,1], the point (1 − λ)x+ λy ≡ x+ λ(y − x) runs through the
segment [x, y].
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♣ Immediate examples of convex sets in Rn:
• Rn

• ∅
• singleton {x}
• open unit box {x ∈ Rn : −1 < xi < 1, i ≤ n} and closed unit box {x ∈ Rn : −1 ≤ xi ≤ 1, i ≤ n}

Remember: The closure of a convex set is convex (why?)
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Examples of convex sets, I: Affine sets

Definition: Affine set M in Rn is a set which can be obtained as a shift of a linear subspace
L ⊂ Rn by a vector a ∈ Rn:

M = a+ L = {x = a+ y : y ∈ L} (1)

Note: I. The linear subspace L is uniquely defined by affine subspace M and is the set of
differences of vectors from M :

(1) ⇒ L = M −M = {y = x′ − x′′ : x′, x′′ ∈ M}

II. The shift vector a is not uniquely defined by affine subspace M ; in (1), one can take as
a every vector from M (and only vector from M):

(1) ⇒ M = a′ + L ∀a′ ∈ M.

Fact II.1 [Generic example of affine subspace] The set of solutions of a solvable system of
linear equations:

M is affine subspace in Rn

⇕
∅ ̸= M ≡ {x ∈ Rn : Ax = b} ≡ a︸︷︷︸

Aa=b

+ {x : Ax = 0}︸ ︷︷ ︸
KerA
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♣ By Fact II.1, affine subspace is convex, due to

Fact II.2 The solution set of an arbitrary (finite or infinite) system of linear inequalities is
convex:

X = {x ∈ Rn : aTαx ≤ bα, α ∈ A} ⇒ X is convex
In particular, every polyhedral set {x : Ax ≤ b} is convex.

Proof:
x, y ∈ X,λ ∈ [0,1]

⇔ aTαx ≤ bα, aTαy ≤ bα∀α ∈ A, λ ∈ [0,1]

⇒ λaTαx+ (1− λ)aTαy︸ ︷︷ ︸
aT
α [λx+(1−λ)y]

≤ λbα + (1− λ)bα︸ ︷︷ ︸
bα

∀α ∈ A

⇒ [λx+ (1− λ)y] ∈ X ∀λ ∈ [0,1].

Remark: Fact II.2 remains valid when part of the nonstrict inequalities aTαx ≤ bα are replaced
with their strict versions aTαx < bα.

Remark: The solution set
X = {x : aTαx ≤ bα, α ∈ A}

of a system of nonstrict inequalities is not only convex, it is closed (why?)
We shall see in the mean time that
• Vice versa, every closed and convex set X ⊂ Rn is the solution set of an appropriate
countable system of nonstrict linear inequalities:

X is closed and convex
⇓

X = {x : aTi x ≤ bi, i = 1,2, ...}
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Examples of convex sets, II: Unit balls of norms

Recall that a real-valued function ∥x∥ on Rn is called a norm, if it possesses the following
three properties:
♢ [positivity] ∥x∥ ≥ 0 for all x and ∥x∥ = 0 iff x = 0;
♢ [homogeneity] ∥λx∥ = |λ|∥x∥ for all vectors x and reals λ;
♢ [triangle inequality] ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all vectors x, y.
Proposition II.1 Let ∥·∥ be a norm on Rn. The unit ball of this norm – the set {x : ∥x∥ ≤ 1},
same as any other ∥ · ∥-ball {x : ∥x− a∥ ≤ r}, is convex.
Proof:

∥x− a∥ ≤ r, ∥y − a∥ ≤ r, λ ∈ [0,1]

⇒ r ≥ λ∥x− a∥+ (1− λ)∥y − a∥ = ∥λ(x− a)∥+ ∥(1− λ)(y − a)∥
≥ ∥λ(x− a) + (1− λ)(y − a)∥ = ∥[λx+ (1− λ)y]− a∥

⇒ ∥[λx+ (1− λ)y]− a∥ ≤ r ∀λ ∈ [0,1].
Note: By the same argument, for a norm ∥ · ∥, the open ∥ · ∥-ball of radius r ≥ 0 – the set
{x′ ∈ Rn : ∥x′ − x∥ < r} – is convex.
Note: By Fact I.21, a norm ∥·∥ on Rn is continuous, implying by Fact I.14 that the ∥·∥-balls
{x : ∥x− a∥ ≤ r} are closed, while open ∥ · ∥-balls {x : ∥x− a∥ < r} indeed are open.
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Fact II.3 The unit ball B of a norm ∥ · ∥ on Rn remembers the norm:

∀x : ∥x∥ = inf{t > 0 : t−1x ∈ B}

Fact II.4 [characterization of ∥ · ∥-balls] A set V in Rn is the unit ball of a norm iff V is
(a) convex and symmetric w.r.t. 0: V = −V ,
(b) bounded and closed (i.e., is compact), and
(c) satisfies 0 ∈ intV .

2.6



Examples of convex sets, III: Ellipsoid

Definition: An ellipsoid in Rn is a set X given by
♢ positive definite and symmetric n× n matrix Q (that is, Q = QT and uTQu > 0 whenever
u ̸= 0),
♢ center a ∈ Rn,
♢ radius r > 0
via the relation

X = {x : (x− a)TQ(x− a) ≤ r2}.

3D ellipsoid
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X = {x : (x− a)TQ(x− a) ≤ r2}.

Fact II.5 An ellipsoid is convex.

Proof. Since Q is symmetric positive definite, by Linear Algebra Q = (Q1/2)2 for uniquely defined symmetric
positive definite matrix Q1/2. Setting ∥x∥Q = ∥Q1/2x∥2, we clearly get a norm on Rn (since ∥ · ∥2 is a norm and
Q1/2 is nonsingular). We have

(x− a)TQ(x− a) = [(x− a)TQ1/2][Q1/2(x− a)]
= ∥Q1/2(x− a)∥22 = ∥x− a∥2Q,

so that X is a ∥ · ∥Q-ball and is therefore a convex set.
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Examples of convex sets, IV: ϵ-neighbourhood of convex set

Fact II.6 Let ∥ · ∥ be a norm in Rn and M be a nonempty convex set in Rn, ∥ · ∥ be a norm,
and ϵ ≥ 0. Then the set

X = {x : dist∥·∥(x,M) ≡ inf
y∈M

∥x− y∥ ≤ ϵ}

is convex.

blue: M magenta and blue: X red and blue: X cyan and blue: X

∥ · ∥ = ∥ · ∥1 ∥ · ∥ = ∥ · ∥2 ∥ · ∥ = ∥ · ∥∞
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Fact II.6 Let ∥ · ∥ be a norm in Rn and M be a nonempty convex set in Rn, ∥ · ∥ be a norm,
and ϵ ≥ 0. Then the set

X = {x : dist∥·∥(x,M) ≡ inf
y∈M

∥x− y∥ ≤ ϵ}

is convex.
Proof: x ∈ X if and only if for every ϵ′ > ϵ there exists y ∈ M such that ∥x− y∥ ≤ ϵ′. We now have

x, y ∈ X,λ ∈ [0,1]

⇒ ∀ϵ′ > ϵ∃u, v ∈ M : ∥x− u∥ ≤ ϵ′, ∥y − v∥ ≤ ϵ′

⇒ ∀ϵ′ > ϵ∃u, v ∈ M :
λ∥x− u∥+ (1− λ)∥y − v∥︸ ︷︷ ︸
≥∥[λx+(1−λ)y]−[λu+(1−λ)v]∥

≤ ϵ′ ∀λ ∈ [0,1]

⇒ ∀ϵ′ > ϵ ∀λ ∈ [0,1]∃w = λu+ (1− λ)v ∈ M :
∥[λx+ (1− λ)y]− w∥ ≤ ϵ′

⇒ λx+ (1− λ)y ∈ X ∀λ ∈ [0,1]
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Convex Combinations and Convex Hulls

Definition: A convex combination of m vectors x1, ..., xm ∈ Rn is their linear combination∑
i

λixi

with nonnegative coefficients and unit sum of the coefficients:

λi ≥ 0 ∀i,
∑
i

λi = 1.
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Fact II.7 A set X ⊂ Rn is convex iff it is closed w.r.t. taking convex combinations of its
points:

X is convex
⇕

xi ∈ X,λi ≥ 0,
∑
i

λi = 1 ⇒
∑
i

λixi ∈ X.

Proof, ⇒: Assume that X is convex, and let us prove by induction in k that every k-term convex combination
of vectors from X belongs to X. Base k = 1 is evident. Step k ⇒ k + 1: let x1, ..., xk+1 ∈ X and λi ≥ 0,
k+1∑
i=1

λi = 1; we should prove that
k+1∑
i=1

λixi ∈ X. Assume w.l.o.g. that 0 ≤ λk+1 < 1. Then

k+1∑
i=1

λixi = (1− λk+1)
( k∑

i=1

λi

1− λk+1
xi︸ ︷︷ ︸

∈X

)
+λk+1xk+1 ∈ X.

Proof, ⇐: evident, since the definition of convexity of X is nothing but the requirement for every 2-term
convex combination of points from X to belong to X.
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Fact II.8 The intersection X =
⋂

α∈A
Xα of an arbitrary family {Xα}α∈A of convex subsets of

Rn is convex.

Proof: evident.

Corollary II.1 Let X ⊂ Rn be an arbitrary set. Then among convex sets containing X (which
do exist, e.g. Rn) there exists the smallest one, namely, the intersection of all convex sets
containing X.

Definition: The smallest convex set containing X is called the convex hull Conv(X) of X.
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Fact II.9 [convex hull via convex combinations] For every subset X of Rn, its convex hull
Conv(X) is exactly the set X̂ of all convex combinations of points from X.

Proof. 1) Every convex set which contains X contains every convex combination of points from X as well.
Therefore Conv(X) ⊃ X̂.
2) It remains to prove that Conv(X) ⊂ X̂. To this end, by definition of Conv(X), it suffices to verify that the
set X̂ contains X (evident) and is convex. To see that X̂ is convex, let x =

∑
i

νixi, y =
∑
i

µixi be two points

from X̂ represented as convex combinations of points from X, and let λ ∈ [0,1]. We have

λx+ (1− λ)y =
∑

i

[λνi + (1− λ)µi]xi,

i.e., the left hand side vector is a convex combination of vectors from X.
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Examples of convex sets, V: simplex

Definition A collection of m+1 points xi, i = 0, ...,m, in Rn is called affine independent, if
no nontrivial combination of the points with zero sum of the coefficients is zero:

x0, ..., xm are affine independent
⇕

m∑
i=0

λixi = 0 &
∑
i

λi = 0 ⇒ λi = 0,0 ≤ i ≤ m

Motivation: Let X ⊂ Rn be nonempty.
I. The intersection of all affine subspaces containing X is an affine subspace. This clearly is
the smallest affine subspace containing X; it is called the affine span (or affine hull) Aff(X)
of X.
Compare: The intersection of all linear subspaces containing X is a linear subspace. This
clearly is the smallest linear subspace containing X; it is called the linear span Lin(X) of X.

2.16



II. It is easily seen that the affine span Aff(X) of X is nothing but the set of all affine
combinations of points from X, that is, linear combinations with unit sum of coefficients:

Aff(X) = {x =
∑
i

λixi : xi ∈ X,
∑
i

λi = 1}.

Compare: It is easily seen that the linear span Lin(X) of X is nothing but the set of all
linear combinations of points from X:

Lin(X) = {x =
∑
i

λixi, xi ∈ X}
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III. m+1 points x0, ..., xm are affinely independent iff every point x ∈ Aff({x0, ..., xm}) of their
affine span can be uniquely represented as an affine combination of x0, ..., xm:∑

i

λixi =
∑
i

µixi &
∑
i

λi =
∑
i

µi = 1 ⇒ λi ≡ µi

Compare:
• Vectors y1, ..., yk are called linearly independent if no nontrivial linear combination of these
vectors is zero: ∑

i

λiyi = 0⇒ λi = 0 ∀i

• k vectors y1, ..., yk are linearly independent iff every point y ∈ Lin({y1, ..., yk}) of their linear
span can be uniquely represented as a linear combination of y1, ..., yk:∑

i

λiyi =
∑
i

µiyi ⇒ λi ≡ µi
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♣ When x0, ..., xm are affinely independent, the coefficients λi in the representation

x =
m∑

i=0

λixi [
∑
i

λi = 1]

of a point x ∈ M = Aff({x0, ..., xm}) as an affine combination of x0, ..., xm are uniquely defined
by x and are called the barycentric coordinates of x ∈ M taken w.r.t. affine basis x0, ..., xm

of M .

Fact II.10 Let X ⊂ Rn be a nonempty set. Then M := Aff(X) has affine basis composed
of points from X. Moreover, every affinely independent collection of vectors from X can be
augmented by vectors from X to yield an affine basis of M .

Compare:
Let X ⊂ Rm. Then L = Lin(X) admits a linear basis composed of vectors from X. Moreover,
every linearly independent collection of vectors from X can be augmented by vectors from
X to yield a linear basis of Lin(X).
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Definition: m-dimensional simplex ∆ with vertices x0, ..., xm is the convex hull of m + 1
affine independent points x0, ..., xm:

∆ = ∆(x0, ..., xm) = Conv({x0, ..., xm}).
Examples: A. 2-dimensional simplex is given by 3 points not belonging to a line and is the
triangle with vertices at these points.
B. Let e1, ..., en be the standard basic orths in Rn. These n points are affinely independent,
and the corresponding (n−1)-dimensional simplex is the standard (a.k.a probabilistic) simplex
∆n = {x ∈ Rn : x ≥ 0,

∑
i

xi = 1}.

C. Adding to e1, ..., en the vector e0 = 0, we get n + 1 affine independent points. The
corresponding n-dimensional simplex is ∆+

n = {x ∈ Rn : x ≥ 0,
∑
i

xi ≤ 1}.

• Simplex with vertices x0, ..., xm is convex (as a convex hull of a set), and every point from
the simplex is a convex combination of the vertices with the coefficients uniquely defined by
the point.

point, m = 0 segment, m = 1 triangle, m = 2 tetrahedron, m = 3
Simplexes
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Examples of convex sets, VI: cones

Definition: A nonempty subset K of Rn is called conic, if it contains, along with every point
x, the entire ray emanating from the origin and passing through x:

K is conic
⇕

K ̸= ∅ & ∀(x ∈ K, t ≥ 0) : tx ∈ K.

A convex conic set is called a cone.

Examples: A. Nonnegative orthant

Rn
+ = {x ∈ Rn : x ≥ 0}

B. Lorentz cone

Ln = {x ∈ Rn : xn ≥
√

x2
1 + ...+ x2

n−1}

[Boundary of] 3D Lorentz cone L3

Lorentz cone is the epigraph of the standard Euclidean norm on Rn−1:

Ln = {[x′;xn] ∈ Rn−1 ×R : xn ≥ ∥x′∥2}.
It is immediately seen that the epigraph {[x′;xn] ∈ Rn−1 ×R : xn ≥ ∥x′∥} of a norm on Rn−1 is a cone.
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C. Semidefinite cone Sn
+. This cone “lives” in the space Sn of n × n symmetric matrices and is composed of

all positive semidefinite symmetric n × n matrices, that is, matrices A ∈ Sn producing nonnegative quadratic
forms: xTAx ≥ 0∀x

{(x, y, z) ∈ R3 :

[
z x y
x z 0
y 0 z

]
⪰ 0} {(x, y, z) ∈ R3 :

[
x 0 0
0 y 0
0 0 z

]
⪰ 0}

3D Lorentz cone {z ≥
√

x2 + y2} Nonegative orthant {x ≥ 0, y ≥ 0, z ≥ 0}

{(x, y, z) ∈ R3 :

[
z x y
x z x
y x z

]
⪰ 0} random 3D cross-section of S3

+

[boundaries of] Several 3D cross-sections of S3
+
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D. The solution set {x : aTαx ≤ 0 ∀α ∈ A} of an arbitrary (finite or infinite) homogeneous system of nonstrict
linear inequalities is a closed cone. In particular, so is a polyhedral cone {x : Ax ≤ 0}.
Note: Every closed cone in Rn is the solution set of a countable system of nonstrict homogeneous linear
inequalities.

Cones A – D are closed.

Remember: The closure of a cone is a cone (why?)

Fact II.11 A nonempty subset K of Rn is a cone iff
♢ K is conic: x ∈ K, t ≥ 0 ⇒ tx ∈ K, and
♢ K is closed w.r.t. addition:

x, y ∈ K ⇒ x+ y ∈ K.

Proof, ⇒: Let K be convex and x, y ∈ K, Then 1
2
(x+ y) ∈ K by convexity, and since K is conic, we also have

x+ y ∈ K. Thus, a convex conic set is closed w.r.t. addition.
Proof, ⇐: Let K be conic and closed w.r.t. addition. In this case, a convex combination λx + (1 − λ)y of
vectors x, y from K is the sum of the vectors λx and (1− λ)y; since K is conic, both these vectors belong to
K along with x, y. It follows that λx+(1− λ)y ∈ K, since K is closed w.r.t. addition. Thus, a conic set which
is closed w.r.t. addition is convex.
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Origin Ray of x1-axis Quadrant of x1x2-plane Ice-cream cone
{x = 0} {x1 ≥ 0, x2 = x3 = 0} {x1 ≥ 0, x2 ≥ 0, x3 = 0} {x3 ≥

√
x2
1 + x2

2}
Several cones in R3

♣ Cones form an extremely important class of convex sets with properties “parallel” to those
of general convex sets. For example,
♢ Intersection of an arbitrary family of cones again is a cone. As a result, for every nonempty
set X, among the cones containing X there exists the smallest cone Cone (X), called the
conic hull of X.
By definition Cone (∅) = {0}
♢ A nonempty set is a cone iff it is closed w.r.t. taking conic combinations of its elements
(i.e., linear combinations with nonnegative coefficients).
♢ The conic hull of a set X ⊂ Rn is exactly the set of all conic combinations of elements of
X.
Note: we use the standard convention sum of vectors xi ∈ Rn taken over an empty set of
indexes i has a value, namely, the origin.
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Conic and Perspective Transforms

♣ Let X ⊂ Rn be a nonempty convex set.
♠ Conic transform ConeT(X) of X is the conic hull of the set X+ = X × {1} = {[x; 1] : x ∈
X} ⊂ Rn+1.
• ConeT(X) is a cone living in the half-space {[x; t] ∈ Rn

x ×R1
t : t ≥ 0} of Rn+1.

• the only point of ConeT(X) of the form [x; 0] is the origin
• points [x; t] ∈ ConeT(X) with t > 0 are exactly the points with x/t ∈ X, or, equivalently,
the points of the form [ty; t] with y ∈ X, and,

ConeT(X) = {t[x; 1] : t ≥ 0, x ∈ X}

Indeed, points [x; t] ∈ ConeT(X) with t > 0 are exactly the points [x; t] =
∑

i
λi[xi; 1] with xi ∈ X and λi ≥ 0.

For such a point,
∑

i
λi = t ⇒ y := t−1

∑
i
λix

i︸ ︷︷ ︸
=x

∈ X (X is convex!) and [x; t] = [ty; t]. Vice versa, when

[x; t] = [ty; t] with y ∈ X and t > 0, then [x; t] = t [y; 1]︸︷︷︸
∈X∗

⇒ [x; t] ∈ Cone (X+) = ConeT(X).

⇒ Cross-section Πt = {x : [x; t] ∈ ConeT(X)} is
– tX, when t > 0
– {0}, when t = 0
– ∅, when t < 0.
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Geometrically: to get ConeT(X), we
— place Z in the hyperplane t = 0 of Rn+1 = Rn

x × R1
t and "lift" it along the t-axis to get

X+

— take the union of emanating from the origin rays of Rn+1 crossing X+; thus union is
ConeT(X).

Conic transform
a) conic transform of segment X is the angle AOB
b) conic transform of ray X is the angle AOB with

relative interior of the ray OB excluded

♠ The ”nonzero part” ConeT(X)\{0} of the conic transform of X is called the perspective
transform of X:

Persp(X) =ConeT(X)\{0} = {[x; t] : t > 0, t−1x ∈ X}
The perspective transform of X is convex along with X.
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♠ Conic transform of a closed nonempty convex set not necessarily is closed (see example
b) on the previous plot.

Fact II.12 Let X be a closed nonempty convex set and α > 0. Then
• The part of ConeT(X) in the half-space {[x; t] : t ≥ α} is closed
• ConeT(X) is closed iff X is bounded.

♠ Let X ⊂ Rn be nonempty and convex. The closed conic transform of X is, by definition,
the closure of ConeT(X).
• ConeT(clX) = ConeT(X)
• When X is closed, the parts of ConeT(X) and ConeT(x) in the domain t > 0 of Rnx ×R1

t
are the same.
Examples:
• X = {a} ∈ Rn ⇒ ConeT(X) = ConeT(X) = R+ · [a; 1]
• X is the unit ball of norm ∥ · ∥ ⇒ ConeT(X) = ConeT(X) is the epigraph of ∥ · ∥
• X ⊂ Rn is a closed cone ⇒ ConeT(X) = [X × {t > 0}] ∪ {0}, ConeT(X) = X ×R+

2.27



Recessive directions and recessive cone

♣ Let X be a nonempty, convex, and closed set in Rn.
♠ A vector d ∈ Rn is called a recessive direction of X, if X contains a ray directed by d:

∃x̄ ∈ X : x̄+ td ∈ X ∀t ≥ 0

Examples:
• d = 0 is a recessive direction for every X
• every vector d = [d1; d2] ∈ R2 with d1 ≥ 0 is a recessive direction of the right half-plane
X = {[x1;x2] : x1 ≥ 0} ⊂ R2.

Fact II.13 If X contains a ray directed by d, it contains all parallel rays emanating from
points from X:

∃x̄ : x̄+ td ∈ X, ∀t ≥ 0 ⇒ ∀(x ∈ X, t ≥ 0) : x+ rd ∈ X

Indeed, let d ∈ Rn and x̄ ∈ X be such that x̄+ td ∈ X for all t ≥ 0, and let x ∈ X. Given t ≥ 0, the points x̄+ it

and x belong to the convex set X

⇒ xi = (1− 1/i)x+ (1/i)[x̄+ itd = [x+ (1/i)(x̄− x)] + td ∈ X

As i → ∞, xi ∈ X converge to x+ td. Since X is closed we get x+ td ∈ X, Q.E.D.
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♠ The set Rec(X) of all recessive directions of a nonempty closed convex set X is called
the recessive cone of X. From Fact II.13 it follows that

Fact II.14 Rec(X) is a closed cone such that

X + Rec(X) = X.

As an immediate corollary,

Fact II.15 A nonempty closed convex set A contains a line a + R · d directed by d ̸= 0 iff
0 ̸= ±d ∈ Rec(X), and for such a d, every line directed by d and intersecting X is contained
in X.

Note The set of d ∈ Rn such that {a}+R · d ⊂ X for some a is a linear subspace, called the
recessive subspace of X. Nonzero directions of lines contained in X are exactly the nonzero
vectors, if any, from the recessive subspace of X. The recessive subspace of nonempty
closed convex set X is the same as the recessive subspace of the cone Rec(X) and is
Rec(X) ∩ [−Rec(X)].
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Examples of recessive cones:
• When X is bounded, Rec(X) = {0}
• When X is a closed cone, Rec(X) = X
• When X = {[x; t] ∈ R2 : t ≥ x2}, Rec(X) is the ray {[0; t] : t ≥ 0}

Fact II.16 The recessive cone of a nonempty polyhedral set X = {x : Ax ≤ b} is the poly-
hedral cone {d : Ad ≤ 0} given by homogeneous versions of the linear inequalities specifying
X

Indeed, b ≥ A[x+ td] for all t ≥ 0 iff b ≥ Ax & 0 ≥ Ad
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Fact II.17 Let X be a nonempty closed convex set in Rn. Then
1. When X is unbounded, the ∥ · ∥2-unit recessive directions of X are exactly the asymptotic
directions of X – the ∥·∥2-unit vectors d ∈ Rn such that d = limi→∞ xi/∥xi∥2 for some diverging
(i.e., with ∥xi∥2 → ∞ as i → ∞) sequence {xi}i of vectors from X.
2. X is bounded iff Rec(X) is trivial: Rec(X) = {0}

Proof 1) ✓Let X be unbounded. When d ∈ Rec(A) is a ∥ · ∥2-unit vector and xi = x ∗ id, i = 1,2, ... form a
diverging sequence, and ∥xi∥=1

2 xi converge to d as i → ∞ ⇒ d is an asymptotic direction of X
✓Vice versa, let d be an asymptotic direction of X, and {xi ∈ X} be a diverging sequence with d =
limi→∞ xi/∥xi∥2. For t ≥ 0 and all but finitely many values of i we have ∥xiix1∥2 > t ⇒ vectors for these i
xi
t = x1 + t(xi − x1)/∥xi − x1∥ are convex combinations of x1 ∈ X and xi ∈ X and thus belong to X (X is

convex!). Since {xi} − i is diverging, xi
t → x1 + td as i → ∞ ⇒ x1 + td ∈ X (X is closed!) ⇒ d ∈ Rec(X).

2) When X is bounded, we clearly have Rec(X) = {0}. When X is unbounded, we can select a diverging
sequence {xi ∈ X}i; the sequence xi/∥xi∥2 of ∥ · ∥2-unit vectors is bounded; passing to a subsequence, we may
assume that xi/∥xi∥2 → d, as i → ∞. d is an asymptotic direction of X, and by 1), d ∈ Rec(X). Thus, the cone
Rec(X) contains unit vector and this is different from the trivial cone {0}.
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♣ How to visualize the recessive cone?

a) conic transform of segment X is the angle AOB
b) conic transform of ray X is the angle AOB with

relative interior of the ray OB excluded
♠ Let X ⊂ Rn be a nonempty closed convex set. As we remember, the cross-sections

Πt = {x : [x; t] ∈ ConeT(X)}, Πt = {x : [x; t] ∈ ConeT(X)}
for t ̸= 0 coincide with each other:

t ̸= 0 ⇒ Πt = Πt =
{

tX , t > 0
∅ , t < 0

and Π0 = {0}.
Question: What is Π0 ?
Answer: Π0 = Rec(X).
Indeed, ✓When d ∈ Rec(X), x ∈ X, and t > 0, we have x + t−1d ∈ X ⇒ [tx + d; t] ∈ ConeT(X) ⇒ [d; 0] =

limt→+0[tx+ d; t] ∈ clConeT(X) = ConeT(X) ⇒ d ∈ Π0.
✓Vice versa, if [d; 0] ∈ ConeT(X)), then [d,0] = limi→∞[yi; ti] with ti > 0 and xi := yi/ti ∈ X. When
d ̸= 0 the sequence {xi ∈ X}i is diverging due to ti → +0 and tixi = yi → d ̸= 0 as i → ∞, whence also
ti∥xi∥2 → ∥d∥2 > 0 as i → ∞ ⇒ xi/∥xi∥2 = [tixi]/[ti∥xi∥2] → d/∥d∥2 as i → ∞ ⇒ d/∥d∥2 is an asymptotic direction
of X ⇒ d/∥d∥2 ∈ Rec(X) (Fact II.17) ⇒ d ∈ Rec(X), Q.E.D.
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♠ Closed conic transform of a nonempty convex set X ⊂ Rn is a closed cone which lives in
the half-space Rn ×R+ of RN

x ×Rt and does not belong to the subspace t = 0 of the latter
space. This observation can be inverted:

Fact II.18 Let K be a closed cone contained in Rn × R+ and not contained in Rn × {0}.
Then K is the closed conic transform of a nonempty closed convex set, specifically, the set

X = {x ∈ Rn : [x; 1] ∈ K}.

Indeed, under the premise of Fact, K contains a vector with positive last entry, and since K is a cone, it contains
a vector with last entry equal to 1 ⇒ X is nonempty (and clearly closed along with K. Now, ConeT(X) is
the smallest cone containing X+ = X × {1}, whence ConeT(X) = clConeT(X) is the smallest closed cone
containing X+. By construction of X, the closed cone K contains X+ and therefore ConeT(X) ⊂ K. To prove
the inverse inclusion K ⊂ ConeT(X), note that by construction of X, every point [x; t] ∈ K with t > 0 is a
positive multiple of a point from X+ and therefore belongs to ConeT(X) and thus to ConeT(X). It remains
to note that as K contains a vector [x̄; t̄] with positive t̄ and lives in Rn×R+, every point [x; t] ∈ K is the limit,
as i → ∞, of the points [x+ x̄/i; t+ t̄/i] which are vectors from K with positive last entries and thus belong to
ConeT(X). Consequently, K ⊂ clConeT(X) = ConeT(X). □
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Calculus of Convex Sets and Cones
♣ The standard Calculus starts with "raw materials" – a handful of simple univariate func-
tions like ≡ 1, ≡ x, exp, log, sin, etc., for which we compute derivatives "by bare hands" –
according to the definition of the derivative. To make Calculus indeed working, these raw
materials are augmented by calculus rules stating what happens with the derivatives when
carrying out operations preserving, under appropriate assumptions, differentiability (summa-
tion, multiplication, division, taking superpositions, etc.).
The convex sets, the situation is similar. We already possess a fistful of examples of convex
sets. It is time to outline basic convexity-preserving operations

Fact II.19 The following operations preserve convexity of sets:

1) Taking intersection: If Xα ⊂ Rn, α ∈ A, are convex sets, so is
⋂

α∈A
Xα

• If all Xα are cones, so is
⋂

α∈A
Xα.

2) Taking direct product: If Xℓ ⊂ Rnℓ, 1 ≤ ℓ ≤ L, are convex sets, so is the set

X = X1 × ...×XL

≡ {x = (x1, ..., xL) : xℓ ∈ Xℓ,1 ≤ ℓ ≤ L}
:= Rn1+...+nL

• If all Xℓ are cones, so is X1 × ...×XL.

3) Taking weighted sums: If X1, ..., XL are nonempty convex sets in Rn and λ1,...,λL are
reals, then the set

λ1X1 + ...+ λLXL

:= {x = λ1x1 + ...+ λLxL : xℓ ∈ Xℓ,1 ≤ ℓ ≤ L}
is convex.
• If all Xℓ are cones, so is λ1X1 + ...+ λLXL
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4. Taking affine image: Let X ⊂ Rn be convex and x 7→ A(x) = Ax + b be an affine
mapping from Rn to Rk. Then the image of X under the mapping – the set

A(X) := {y = Ax+ b : x ∈ X}
is convex.
• If X is a cone and A(x) = Ax is linear, then A(X) is a cone.

5. Taking inverse affine image: Let X ⊂ Rn be convex and y 7→ A(y) = Ay + b be an
affine mapping from Rk to Rn. Then the inverse image of X under the mapping – the set

A−1(X) := {y : Ay + b ∈ X}
is convex.
• If X is a cone and A(y) = Ay is linear, then A−1(X) is a cone.
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Illustration: Consider a factory which can utilize at various intensities n types of pro-
duction processes, consuming k types of resources and producing m types of products.
Given the available volumes of resources r = [r1; ...; rk] and requested volumes of products
p = [p1; ...; pm], the management should decide on production plan – vector x = [x1; ...;xn] of
intensities at which the production processes will be used. A production plan x = [x1; ...;xn]
is feasible if and only if x, r, and d satisfy the system of constraints

Dx ≥ d [demand must be satisfied]
Rx ≤ r [resource bounds must be obeyed]
x ∈ X [technological feasibilty constraints]

(S)

Assume that the set X of feasible production plans is convex.
Question: What is the convexity status of the set of implementable pairs (r, d), that is, the
set RD = {(r, d) : ∃x : (x, r, d) satisfy (S)} ?

Answer: RD is convex.
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Dx≥d (a), Rx≤r (b), x∈X (c)
RD = {(r, p) : ∃x : (x, r, d) satisfy (a), (b), (c)}

Claim: When X is convex, so is RD.
Indeed,

• the set S of solutions (x, r, d) to the system of linear constraints (a), (b) is polyhedral and thus convex,

• the set X = {(x, r, d) : x ∈ X} is the direct product of convex sets X, Rk
r and Rm

d and thus is convex,

⇒ the set

XS = X ∩ S = {(x, r, d) : x, r, d satisfy (a), (b) and x ∈ X}
is convex as intersection of two convex sets

⇒ the set RD is convex as the image of the set XS under the linear mapping (x, r, d) 7→ (r, d).
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Calculus of Closed Convex Sets

♣ Many important results of Convex Analysis require not just convexity, but also closedness
of the sets involved. This is how Calculus of convex sets changes when we want to preserve
not just convexity, but also cloyedness:
♠ "Good" operations: taking intersections, direct products, inverse affine images

Fact II.20 The following operations preserve convexity and closedness of sets:

1) Taking intersection: If Xα ⊂ Rn, α ∈ A, are closed convex sets, so is
⋂

α∈A
Xα

2) Taking direct product: If Xℓ ⊂ Rnℓ, 1 ≤ ℓ ≤ L, are closed convex sets, so is the set

X = X1 × ...×XL

≡ {x = (x1, ..., xL) : xℓ ∈ Xℓ,1 ≤ ℓ ≤ L}
⊂ Rn1+...+nL

3) Taking inverse affine image: Let X ⊂ Rn be convex and closed, and y 7→ A(y) = Ay+ b
be an affine mapping from Rk to Rn. Then the inverse image of X under the mapping –
the set

A−1(X) = {y : Ay + b ∈ X}
is convex and closed (as the inverse image of a closed set under a continuous mapping).
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♠ Problematic operations: taking weighted sums and affine images
A. Taking weighted sums: "As is", a weighted sum of closed nonempty convex sets
not necessarily is closed. For example, the sets X1 = {x ∈ R2 : x1 < 0, x2 ≥ −1/x1} and
X2 = {x ∈ R2 : x1 > 0, x2 ≥ 1/x1} are nonempty, closed and convex:

while their sum is a nonclosed set – the interior {x ∈ R2 : x2 > 0} of the upper half-plane.
However,

Fact II.21 If X1, ..., XL are nonempty closed sets in Rn, with at most one of the sets un-
bounded, and λ1,...,λL are reals, then the set

Y = λ1X1 + ...+ λLXL

is closed. If, in addition, all Xℓ is convex, so is Y (this we already know).

Indeed, let X1, ..., XL be nonempty and closed, and X1, ..., XL−1 be bounded, and let
{yi =

∑L

ℓ=1
λℓx

i
ℓ}i, xi

ℓ ∈ Xℓ,

be a converging sequence of points from Y . To prove that the limit ȳ of the sequence belongs to Y , assume
w.l.o.g. that λL ̸= 0. Since X1, ..., XL−1 are bounded, passing to a subsequence, we can assume that the
L− 1 sequences {xi

ℓ}i, ℓ ≤ L− 1, converge. Since {yi}i converges as well and λL ̸= 0, the sequence {xi
L}i also

converges ⇒ ȳ =
∑

ℓ
lim
i→∞

xi
ℓ︸ ︷︷ ︸

∈Xℓ=clXℓ

∈ Y.
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B. Taking affine images: The affine image of a closed convex set not necessarily is closed,
e.g., the projection of the above closed convex set X1 = {x ∈ R2 : x1 < 0, x2 ≥ −1/x1} is the
non-closed set {s ∈ R : s < 0}.

Examples of closed convex sets with non- closed projections:
Left: The projection of the closed blue set onto the x-axis is the nonnegative ray with the origin
excluded
Right: The projection of the 3D ice-cream cone onto the 2D plane tangent to the cone along the
ray [OA) is half-plane with all points on the boundary line MN , except for O, excluded.

However: Affine image of a closed and bounded convex set X is closed (as the image of
a compact set under continuous mapping), or, more generally (see Fact II.23 below)

Let X ⊂ Rn be a nonempty closed convex set and x 7→ A(x) = Ax+ b : Rn → Rm be
an affine mapping such that Ker(A) ∩ Rec(X) = {0}. Then A(X) is closed.

Note: We shall eventually see that as applied to polyhedral (and thus closed) operands, all
basic convexity-preserving operations preserve polyhedrality, and thus preserve closedness.
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Calculus of Recessive Cones

♣ What happens with recessive cones of nonempty closed convex sets under convexity-
preserving operations with the sets?
♠ "Good" operations: taking intersections, direct products, and inverse affine images

Fact II.22 The following operations with nonempty closed convex sets act naturally on
their recessive cones:
1) Taking intersection: Let Xα ⊂ Rn, α ∈ A, be closed convex sets such that X :=

⋂
αXα ̸=

∅. Then X is a closed convex set with Rec(X) =
⋂

α Rec(α).
2) Taking direct product: If X1, ..., XL are nonempty closed convex sets, then so is X1 ×
...×XL, and

Rec(X1 × ...×XL) = Rec(X1)× ...× Rec(XL).

3) Taking inverse affine image: Let X ⊂ Rn be a nonempty closed convex set and
y → A(y) := Ay + b : Rm → Rn be an affine mapping such that the inverse image Y =
{y : A(y) ∈ X} of X is nonempty. Then Y is a nonempty closed convex set, and Rec(Y ) is
the inverse image {d : Ad ∈ Rec(X)} of Rec(X) under the linear part y 7→ Ax of the affine
mapping A.

This is evident.
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♠ Problematic operations: taking weighted sums and affine images.
Taking affine images and weighted sums of nonempty closed convex sets acts poorly on the
recessive cones of the sets.
A. When taking affine image A(X) = {y = Ax + b : x ∈ X} of a nonempty closed convex
set X ⊂ Rn under affine mapping A(x) = Ax + b : Rn → Rm, the image ARec(X) of the
recessive cone of X under the linear part of the mapping clearly belongs to the recessive
cone of the closure of A(X) (A(X) is nonempty and convex, but not necessarily is closed).
However. ARec(X) can be negligibly small as compared to Rec(clA(X)). For example,
when X = {[x; t] ∈ R2 : t ≥ x2} and A([x; t]) = x, we have Rec(X) = {[0; t] : t ≥ 0}
⇒ ARec(X) = {0}, while A(X) = R ⇒ Rec(clA(X)) = R.
However:

Fact II.23 Let X ⊂ Rn be a nonempty closed convex set and A(x) = Ax + b : Rn → Rm

be an affine mapping. Assume that KerA ∩ Rec(X) = {0}. Then A(X) is closed, and
Rec(A(X)) = ARec(X). In particular, linear image AK of a closed cone K not intersecting
[KerA]\{0} is closed.

To see that Y := A(X) is closed, assume that Y ∋ yi → ȳ as i → ∞ and ȳ ̸∈ Y , and let us lead this assumption
to a contradiction. We have yi = Axi+ b with xi ∈ X, and the sequence {xi} diverges (since otherwise the limit
x̄ of a converging subsequence of {xi} were a point from X (X is closed!), and Y ∋ A(x̄) = limiA(Xi) = ȳ,
which is a contradiction. Since {xi} diverges and {A(xi)} converges, (every) asymptotic direction h of {xi}
satisfies Ah = 0 (why) ⇒ KerA ∩ Rec(X) ̸= ∅, which is a desired contradiction.
Let us prove that ARec(X) = Rec(Y ) We already know that ARec(X) ⊂ Rec(Y ). Now let h ∈ Rec(Y ), and
let us prove that h ∈ ARec(X). There is nothing to prove when h = 0. Now let h ̸= 0, and let y0 ∈ Y . We
have yi := y0 + ih = Axi + b for some xi ∈ X ⇒ {xi} diverges along with {yi} diverges. Selecting i1 < i2 < ... to
ensure that xis/∥xis∥2 → d ∈ Rec(X) as i → ∞. We have 0 ̸= d ∈ Rec(X) ⇒ Ad ̸= 0

⇒ 0 ̸= Ad = lim
s

Axis/∥xi
s∥2 = lim

s
[yi − b]/∥xis∥2 = lim

s

[
[y0 − b]/∥xis∥2︸ ︷︷ ︸

→0

+
is

∥xis∥2
h
]

⇒ h is positive multiple of Ad ⇒ h ∈ ARec(X), Q.E.D.
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B. When taking the sum X = X1 + ... + XL of nonempty closed convex sets Xℓ ⊂ Rn, the
sum Rec(X1)+ ...+Rec(XL) of their recessive cones clearly belongs to the recessive cone of
the closure clX of X (X is nonempty and convex, but not necessarily is closed). However,
Rec(X1) + ... + Rec(XL) can be a negligibly small part of Rec(clX), as is the case when
X1 = {[x; t] ∈ R2 : t ≥ x2} and X2 = {[x; t] ∈ R2 : t ≤ −x2}, where Rec(X1) = {[0; t] : t ≥ 0},
Rec(X2) = {[0; t] : t ≤ 0}, whence Rec(X1) + Rec(X2) = {[0; t] : t ∈ R}, while X1 +X2 = R2

and thus Rec(X1 +X2) = R2.
However:

Fact II.24 When X1, ..., XL are nonempty closed convex sets in Rn and at most one of the
sets is unbounded, X := X1 + ... + XL is a nonempty closed convex set, and Rec(X) =
Rec(X1) + ...+ Rec(XL).

Indeed, X clearly is nonempty and convex, and is closed by Fact II.21. Assuming that X1, ..., XL−1 are bounded,
a diversing sequence {xi ∈ X}i is of the sum of L − 1 bounded, along with Xℓ, sequences {xi

ℓ ∈ Xℓ}i, ℓ < L,
and diverging sequence {yi ∈ XL}i ⇒ asymptotic direction, if any, of {xi}i is the asymptotic direction of
{yi ∈ XL}i, implying by Fact II.17.1 that Rec(X) ⊂ Rec(XL) = Rec(X1) + ...+ Rec(XL). The inverse inclusion
Rec(X1) + ...+ Rec(X − L) ⊂ Rec(X) is stated in B.
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♠ Situation with recessive cones of affine images and weighted sums somehow improves
when assuming the operands to be (V,R)-sets defined as follows:
Let V ⊂ Rn be a nonempty bounded set in Rn and R ⊂ Rn be a cone. We say that a convex
set X is a (V,R)-set, if X ⊂ V + R and {v}+ R ⊂ X for some v ∈ V (neither one of V,R,X
is assumed to be closed).
Example: When R is a cone, every convex subset of ϵ-neighborhood of R is (V,R)-set
for properly selected V (e,g., centered at the origin 2ϵ-ball of the norm underlying the
neighborhood).
It is immediately seen that (V,R)-sets are well suited for "major part" of our convexity
calculus:

Fact II.25
1. If Xℓ ⊂ Rℓ, ℓ ≤ L, are (Vℓ, Rℓ)-sets, then their direct product X = X1 × ... × XL is
(V1 × ...× VL, R1 × ...×RL)-set
2. If X ⊂ Rn is a (V,R)-set and A(X) = Ax+ b : Rn → Rm is an affine mapping, then A(X)
is (A(V ), AR)-set.
3. If Xℓ ⊂ Rn, ℓ ≤ L, are (Vℓ, Rℓ)-sets and λ1, ..., λL are reals, the set X := λ1X1 + ...+ λLXL

is (λ1V1 + ...+ λLVL, λ1R1 + ...+ λLRL)-set.
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Let us make the following observation:

Fact II.26 Let X ⊂ Rn be a (V,R)-set. Then

Rec(clX) = clR.

Indeed, under our premise X := clX is nonempty closed and convex (since X is nonempty and convex), and
for some v ∈ V we have v + R ⊂ X ⇒ R ⊂ R := Rec(X). All we need is to prove that R = clR. To this end
it suffices to verify that if d ∈ R is a ∥ · ∥2-unit vector, then dinclR. By Fact II.15, there exists a diverging
sequence {x̄i ∈ X}i with asymptotic direction d. As X is dense in X, we can approximate x̄i with xi ∈ X to
convert {x̄i}i into diverging sequence {xi ∈ X}i with the same asymptotic direction d.As X is (V,R)-set,e have
xi + ri with4 vi ∈ V and ri ∈ R. Since {xi}i is diverging and V is bounded, the sequence {ri}i is diverging, and
its asymptotic direction is the same d as for {xi}i ⇒ R ∋ ri/∥ri∥2 → d as i → ∞ ⇒ d ∈ clR, Q.E.D.
• Combining Facts II.25, II.26, we get techniques for computing the recessive cones of (the
closures of) affine images and weighted sums of (V,R)-sets.
Note: We shall eventually see that when restricting the "calculus of recessive cones" onto
polyhedral sets, no difficulties occur.
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Nice Topological Properties of Convex Sets

♣ Whenever X ⊂ Rn, we have
intX ⊂ X ⊂ clX

In general, the discrepancy between intX and clX can be pretty large. E.g., let X ⊂ R be
the set of irrational numbers in [0,1]. Then intX = ∅, clX = [0,1], so that intX and clX
differ dramatically.

♠ Fortunately, a convex set is perfectly well approximated by its closure (and by interior, if
the latter is nonempty).

Fact II.27 Let X ⊂ Rn be a convex set. Then
(i) Both intX and clX are convex
(ii) If intX is nonempty, then intX is dense in clX, density of a set Y in a set X meaning
that every point from X can be approximated to whatever high accuracy by points of Y .
Formally: Y is dense in X ⇔ Every point from X is the limit of a converging sequence of
points from Y .
Moreover,

x ∈ intX, y ∈ clX ⇒ λx+ (1− λ)y ∈ intX ∀λ ∈ (0,1] (!)
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• Claim (i): Let X be convex. Then both intX and clX are convex
Proof. (i) is nearly evident. Indeed, to prove that intX is convex, note that for every two points x, y ∈ intX
there exists a common r > 0 such that the ∥ · ∥2-balls Bx, By of radius r centered at x and y belong to X.
Since X is convex, for every λ ∈ [0,1] X contains the set λBx +(1− λ)By, which clearly is nothing but the ball
of the radius r centered at λx+ (1− λ)y. Thus, λx+ (1− λ)y ∈ intX for all λ ∈ [0,1].
Similarly, to prove that clX is convex, assume that x, y ∈ clX, so that x = limi→∞ xi and y = lim

i→∞
yi for

appropriately chosen xi, yi ∈ X. Then for λ ∈ [0,1] we have

λx+ (1− λ)y = lim
i→∞

[λxi + (1− λ)yi]︸ ︷︷ ︸
∈X

,

so that λx+ (1− λ)y ∈ clX for all λ ∈ [0,1].
• Claim (ii): Let X be convex and intX be nonempty. Then intX is dense in clX; moreover,

x ∈ intX, y ∈ clX ⇒ λx+ (1− λ)y ∈ intX ∀λ ∈ (0,1] (!)

Proof. It suffices to prove (!). Indeed, let x̄ ∈ intX (the latter set is nonempty). Every point x ∈ clX is the
limit of the sequence xi =

1
i
x̄+

(
1− 1

i

)
x. Given (!), all points xi belong to intX, thus intX is dense in clX.

Proof of (!): Let x ∈ intX, y ∈ clX, λ ∈ (0,1]. Let us prove that λx+ (1− λ)y ∈ intX.
x ∈ intX ⇒ ∃r > 0 : Br(x) := {y : ∥y − x∥2 ≤ r∥ ⊂ X.
y ∈ clX ⇒ y = limi→∞ yi with yi ∈ X
Let

Bi := λBr(x) + (1− λ)yi = {z = [λx+ (1− λ)yi]︸ ︷︷ ︸
zi

+λh : ∥h∥∞ ≤ r} = Bρ(zi), ρ = λr > 0.

Br(x) ⊂ X, yi ∈ X, X is convex ⇒ Bi ⊂ X.
Since zi → z = λx+ (1 − λ)y as i → ∞, the ∥ · ∥2-balls Bi = Bρ(zi) for large enough i contain the ∥ · ∥2-ball of
radius ρ/2 centered at z ⇒ z ∈ intX.
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♣ Let X be a convex set. It may happen that intX = ∅ (e.g., X is a segment in 3D); in
this case, interior definitely does not approximate X and clX. What to do?
A natural way to overcome this difficulty is to pass to relative interior, which is the interior
of X taken w.r.t. the affine hull Aff(X) of X rather than w.r.t. Rn. This affine hull,
geometrically, is just certain Rm with m ≤ n; replacing, if necessary, Rn with this Rm, we
arrive at the situation where intX is nonempty.
Implementation of the outlined idea goes through the following
Definition: [relative interior and relative boundary] Let X be a nonempty convex set and
M = Aff(X). The relative interior rintX of X is the set of all points x ∈ X such that a
centered at x ball in M of a positive radius is contained in X:

rintX = {x : ∃r > 0 : {y ∈ Aff(X), ∥y − x∥2 ≤ r} ⊂ X}.
The relative boundary ∂rX of X is, by definition, clX\rintX.
Note: Aff(X) is closed, so that rintX ⊂ X ⊂ clX ⊂ Aff(X) and ∂rX ⊂ Aff(X).

Fact II.28 Let X ⊂ Rn be a nonempty convex set. Then rintX ̸= ∅.

Thus, replacing, if necessary, the original “universe” Rn with a smaller geometrically similar
universe, we can reduce investigating an arbitrary nonempty convex set X to the case where
this set has a nonempty interior (which is nothing but the relative interior of X). In particular,
our results for the “full-dimensional” case imply

Fact II.29 For a nonempty convex set X, both rintX and clX are convex sets such that
∅ ̸= rintX ⊂ X ⊂ clX ⊂ Aff(X)

and rintX is dense in clX (implying, in particular, that cl rintX = clX). Moreover, whenever
x ∈ rintX, y ∈ clX and λ ∈ (0,1], one has

λx+ (1− λ)y ∈ rintX.
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Fact II.28 The relative interior of a nonempty convex set X is nonempty.
Proof. By Fact II.10. Let m be the dimension of the linear space parallel to M = Aff(X), When m = 0, X is
a singleton, and clearly rint (X) = X ̸= ∅. Now let m > 0. By Fact II.10, M admits an affine basis x0, x1, ..., xm

composed of vectors from X, so that

M =

{
x : ∃λ0, ..., λm :

∑m

ℓ=0
λℓx

ℓ = x∑m

ℓ=0
λℓ = 1

}
.

Solution to the system of linear equalities ∑m

ℓ=0
λℓx

ℓ = x∑m

ℓ=0
λℓ = 1

(S)

in variables λ exists when x ∈ M and is unique (since x0, ..., xm are affinely independent), that is, the vectors
yℓ = [xℓ; 1], 0 ≤ ℓ ≤ m, are linearly independent. Therefore by Linear Algebra the solution λ(x) to the system
of equations

m∑
ℓ=0

λℓy
ℓ = [x; 1]

(which exists whenever x ∈ M) is an affine, and thus continuous, function of x ∈ M

⇒ with x̄ = 1
m+1

∑m

ℓ=0
xℓ ∈ M , all close enough to x̄ points from M have their barycentric coordinates positive,

and thus belong to X (due to X being convex and xℓ ∈ X, ℓ ≤ L) ⇒ All close enough to z̄ points from M

belong to X ⇒ x̄ ∈ rintX ⇒ rintX ̸= ∅. x̄ ∈ rintX, Q.E.D.
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♣ In general, the “gap” between rintX and clX can be dramatic. For example, when X is
the set of rational numbers from [0,1], we have rintX = ∅, clX = [0,1], ∂rX = [0.1]. In
contrast, for a convex set X, passing from rintX to cl requires "tiny adjustment" – taking
radial closure.
♠ Let X ⊂ Rn be a nonempty convex set which is not a singleton, let M = Aff(X), and let
z ∈ intX. Given a nonzero vector e belonging to the linear space L parallel to m, the ray
Re = {x+ te : t ≥ 0} belongs to M , and the quantity

te = sup{t : z + te ∈ X}
so that 0 < te ≤ +∞ and the points x+ te
— belong to X when 0 ≤ t < te
— do not belong to X when t > te.
Whether the point x+ tee belongs or does not belong to X, it depends on e and X
• To pass from X to rintX, it suffices to remove from the intersections of X with the rays
Re those of the points x+ tee (for all e with te < ∞) which belong to X
• To pass from X to clX, it suffices to add to the intersections of X with the rays Re those
of the points x+ tee (for all e with te < ∞) which do not belong to X
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For example, to pass from X to clX, we look at all rays in Aff(X) emanating from z and
add to X all “missing” – not contained in X from the very beginning – boundary points, like
A and B, of the intersections of rays with X.

z A

B
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Embedded story: Truss Topology Design, I

♣ In the sequel, we from time to time speak about a particular application of Convex
Optimization – Truss Topology Design allowing to illustrate and "visualize" many (by far
not all!) of the abstract constructions we deal with.
We start with building the TTD model.
♠ Truss is a mechanical construction composed of thin elastic bars connected with each
other at nodes

Trusses
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• When affected by a load – collection of external forces acting at the nodes – the con-
struction deformates until the reaction forces caused by extensions/contractions of bars
compensate the external load (”static equilibrium.”)
• At equilibrium, the truss capacitates certain potential energy – the compliance. The com-
pliance measures rigidity of the truss w.r.t. the load: the smaller compliance, the better the
construction withstands the load.
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♠ Mathematical Model of the TTD problem is as follows. Given are:
• The set of tentative nodes – a 2D (planar truss) or 3D (spatial truss) finite grid of points,
where the would-be bars can be connected with each. Some of the nodes in the grid are
fixed by boundary conditions and cannot move, other (free nodes) can move in 2D, resp.,
3D.
♢ The nodal grid specifies the space V of virtual displacements – the linear space of block-
vectors. The blocks are indexed by free nodes and are virtual displacements of the nodes in
the embedding "physical" space Rd (d = 2 for planar, and d = 3 for spatial trusses). We set
M = dimV.
♢ The set of N tentative bars – pairs of distinct nodes allowed to be linked by bars
♢ The set of K loading scenarios xk - vectors from V with blocks representing physical
external forces acting at the nodes
♢ The total volume W of bars.
• What we want is to minimize the worst, over the loading scenarios. compliance of the
truss.
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♠ Our "guinea pig" will be design of planar console with the "given are" as follows:

9× 9 nodal grid 3024 tentative bars
•: fixed nodes

• 9× 9 grid of tentative nodes with the 9 most left nodes fixed (they are "in the wall") and
the remaining 72 nodes free (m := dimV = 2× 72 = 144)
• we allow for every pair of nodes with at least one node free to be linked by a bar (resulting
in N = 3024 tentative bars)
• there is just one loading scenario, with unit external force applied at the middle node in
the most right column of nodes and "looking down"
• total truss volume is W = 1000
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TTD Model

♠ In linearly elastic model of a truss the TTD problem is as follows:
• "Ground structure" (the grid of tentative nodes plus boundary conditions plus the list
of tentative bars) specifies vectors bi ∈ V = RM indexed by tentative bars i = 1,2, ..., N ;
augmented with a truss – a collection t = {ti ≥ 0, i ≤ N} of volumes of N tentative bars.
Vectors bi specify the stiffness matrix

A(t) =
N∑

i=1

tibib
T
i

of truss t. When the "physical displacements" of the nodes form a vector v ∈ V, the
collection of reaction forces caused by deformation of the truss is −A(t)v, and the potential
energy capacitated in the truss is 1

2
vTA(t)v

⇒ The equilibrium displacement vf of truss t under external load f ∈ V satisfies

A(t)vf = f, (∗)
and the compliance is

Compl(t, f) =
1

2
vTf A(t)vf =

1

2
fTvf

Note: When (∗) has no solutions, no equilibrium exists – the truss is crushed by load f .
(∗) may have multiple solutions, meaning that the equilibrium displacement if not uniquely
defined; however, wee shall see that the compliance is well defined – all solutions to (∗)
result in the same value of the compliance.
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♠ Here is the justification of the last "Note:"

Fact II.30 Let f ∈ V and t ∈ RN
+ be given, and let

F (v) = fTv −
1

2
vTAv : V → R [A = A(t) =

∑
i
tibibTi ]

(i) Maximizers of F over v ∈ V are exactly the solutions to the equation

Av = f ; (∗)

and when this equation is unsolvable supv F (v) = +∞;
(ii) When (∗) is solvable and vf is a solution, it holds

max
v

F = F (vf) =
1

2
vTf Avf =

1

2
fTvf ;

As a result, the compliance Compl(t, f) of truss t under the load f is well defined iff f is bounded from above,
in which case Compl(t, f) = maxv F (x)
(ii) A real τ satisfies τ ≥ Compl(t, f) if and only if the matrix[

A(t) f
fT 2τ

]
is positive semidefinite, As a result, the TTD problem with loading scenarios f1, ..., fK can be posed as

min
τ,t

{
τ :
[

A(t) fk
fT
k 2τ

]
⪰ 0, ≤ l, t ≥ 0,

∑
i

ti = W

}
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Proof. Given f ∈ V and t ∈ RN
+ and setting A = A(T ) =

∑
−itibibTi , let A = UDiag{λ1, .., λM}UT be the

eigenvalue decomposition of A. Note that A ⪰ 0 due to t ≥ 0 ⇒ λj ≥ 0∀j.
Substituting v = Uu and setting ϕ = Uf , equilibrium equation Av = f becomes UDiag{λ}UTUu = Uϕ, that is,
it is nothing but the system

λjuj = ϕj, 1 ≤ j ≤ M. (!)
We also have

Φ(u) := F (Uu) =
∑

j

[ϕjuj −
1

2
λju

2
j ] [F (v) = fTu− 1

2
vTAv]

We see that F (or, which is the same, Φ is bounded from above iff ϕj = 0 for all j with λj = 0. In this case,
by high school algebra, the maximizers of Φ are exactly the solutions to (!), and

max
u

Φ(u) =
1

2

∑
j

λjϕ
2
j .

⇒ F is bounded from above iff the equation Av = f is solvable, and when it is the case, the maximizers of F
are exactly the solutions vf to this equation, and

max
v

F (v) =
1

2
vTf Avf =

1

2
fTvf = Compl(t, f),

as claimed in (i) and (ii).
To verify (iii) note that by (i-ii), for a real τ the relation τ ≥ Compl(t, f) is the same as τ ≥ F (v) for all v, that
is, as

2τ − 2fTv + vTAv ≥ 0 ∀v. (!!)
Substituting v = z/s with s ̸= 0, (!!) is the same as

2τs2 − 2sfTz + zTAz ≥ 0 ∀(s ̸= 0, z),

which by continuity and replacing z with −z is equivalent to

2τs2 +2sfTz + zTAz ∀s, z,

that is, nothing but
[

A f
fT 2τ

]
⪰ 0, Q.E.D.
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♠ How it works:

♣ Typically, in TTD with rich list of tentative bars, just a small fraction of them get positive volumes in the
optimal truss ⇒ TTD is not merely about optimal bar sizing, it indeed is about Topology Design!
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Main Theorems on Convex Sets, I: Caratheodory Theorem

♣ Definition [dimension of a nonempty set]
• Dimension dimL of a linear subspace L of Rm is the linear dimension of L the common
cardinality of linear bases of L.
• Dimension dimM of an affine subspace M in Rn is the just defined dimension of the parallel
to M linear subspace – the common cardinality of all affine bases in M minus 1
• Dimension dimX of a nonempty subset X of Rn is the just defined dimension of the affine
span Aff(X) of X — the maximum number of affinely independent vectors from X minus 1.
Note: Some subsets of Rn are in the scopes of several "branches" of this definition; for
these sets, all applicable "branches" yield the same value of the dimension.
Examples: • The dimension of a singleton is 0.
• The dimension of Rn is n.
• The affine dimension of an affine subspace M = {x : Ax = b} is n− Rank(A).
• The dimension of the triangle Conv{x1, x2, x3} with affinely independent (or, which is the
same, not belonging to a common line) x1, x2, x3 is 2.
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♠ Caratheodory Theorem Let ∅ ̸= X ⊂ Rn. Then every point x ∈ Conv(X) is a convex
combination of at most dim (X) + 1 points of X.
Proof
1o. We should prove that if x is a convex combination of finitely many points x1, ..., xk of X, then x is a convex
combination of at most m+ 1 of these points, where m = dim (X). The claim is trivial in the case of m = 0
where X is a singleton. Assuming m > 0 and replacing, if necessary, Rn with Aff(X), it suffices to consider the
case of m = n.
2o. Consider a representation of x as a convex combination of x1, ..., xk with minimum possible number of
nonzero coefficients; it suffices to prove that this number is ≤ n + 1. Let, on the contrary, the “minimum
representation” of x have p > n+1 positive coefficients. W.l.o.g.sume that the first p coefficients are positive,
so that the representation is

x =

p∑
i=1

λix
i [λi > 0,

∑
i

λi = 1]

.
3o. Consider the homogeneous system of linear equations in p variables δi

(a)
p∑

i=1

δixi = 0 [n linear equations]

(b)
∑
i

δi = 0 [single linear equation]

Since p > n+1, this system has a nontrivial solution δ. Observe that for every t ≥ 0 one has

x =

p∑
i=1

[λi + tδi]︸ ︷︷ ︸
λi(t)

xi&
∑

i

λi(t) = 1.

♢ When t = 0, all coefficients λi(t) are nonnegative.
♢
∑

i
δ0 = 0 and δ ̸= 0 ⇒ some of δi are negative ⇒ for some i, λi(t) → −∞ as t → ∞

⇒ there exists the largest t = t∗ ≥ 0 for which λi(t) ≥ 0 for all i; by maximality, some of λi(t∗) are zeros
⇒ In the representation x =

∑p

i=1
λi(t∗)xi as a convex combination of xi the number of nonzero terms in the

right hand side is < p, contradicting to minimality of the representation
∑p

i=1
λixi of x as a convex combination

of xi.
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Note: Given m,n with 1 ≤ m ≤ n, we can point out m + 1 affinely independent points
x1, ..., xm+1 in Rn. We have dim {x1, ..., xm+1} = m and the vector x̄ = 1

m+1

∑m+1
i=1 xi has

exactly one representation as a convex combination of xi, and this representation involves
all m+1 of the xi’s
⇒ Caratheodory Theorem is sharp
♠ Caratheodory Theorem, Conic version Let ∅ ̸= X ⊂ Rn. Then every vector from the
conic hull Cone (X) of X is a conic combination of at most m = dimX vectors from X.
Proof. The claim is trivially true when X is a singleton, or, which is the same, when m = 0. Assuming m ≥ 1,
Aff(Cone (X)) is m-dimensional linear subs[pace of Rn, and, similarly to the case of the plain Caratheodory
Theorem, we lose nothing when assuming that this linear space is the entire Rn, i.e. that m = n.
Given x ∈ Cone (X), consider the minimal in the number of terms representation x =

∑p

i=1
λixi of x as a

conic combination of vectors from X. We should prove that p ≤ n. Assuming the opposite, consider the
homogeneous system of linear equations

p∑
i=1

δix
i = 0

in variables δ. Since p > n, this system has a nontrivial solution δ; replacing, if necessary, δ with −δ, we may
further assume that some of δi are negative.
For every t ≥ 0, we have x =

∑
i
λi(t)xi with λi(t) = λi + tδi. Same as in the proof of Caratheodory Theorem,

λi(0) ≥ 0, and for large t some of λi(t) are negative, implying that there exists the largest t = t∗ for which
λi(t) ≥ 0 for all i. By maximality of t∗, some of λi(t∗) are zero, implying that the number of nonzero terms in
the representation x =

∑p

i=1
λi ∗ t∗)xi of x as a conic combination of xi is less than p, contradicting the origin

of p.

Note: Similarly to the plain Caratheodory Theorem, Caratheodory Theorem in Conic form
is sharp.
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Illustration I: Blending teas. The story goes as follows:
Supermarkets sell 99 different herbal teas; every one of them is certain blend of 26 herbs
A,...,Z. In spite of such a variety of marketed blends, John is not satisfied with any one of
them; the only herbal tea he likes is their mixture, in the proportion

1 : 2 : 3 : ... : 98 : 99

Once it occurred to John that in order to prepare his favorite tea, there is no necessity to
buy all 99 marketed blends; a smaller number of them will do. With some arithmetics, John
found a combination of 66 marketed blends which still allows to prepare his tea. Do you
believe John’s result can be improved?
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Answer: In fact, just 26 properly selected market bends are enough.
Indeed, let us represent a blend by its unit weight portion, say, 1g. Such a portion can be
identified with 26-dimensional vector x = [x1; ...;x26] with nonnegative entries summing up
to 1, where xi is the weight, in grams, of herb #i in the portion. Clearly, we have

x ∈ R26
+ &

∑
i

xi = 1.

When mixing market blends x1, x2, ..., x99 to get unit weight portion x of mixture, we take
λi ≥ 0 grams of market blend xi, i = 1, ...,99, and mix them together, that is,

x =
∑
i

λixi.

Looking at the weights of both sides, we get
∑

i λi = 1.
The bottom line: blend x can be obtained by mixing market blends x1, ..., x99 if and only if
x ∈ Conv{x1, ..., x99}.
By Caratheodory Theorem, every blend which can be obtained my mixing market blends can
be obtained by mixing m+1 of them, where m is the affine dimension of the affine span of
x1, ..., x99. In our case, this span belongs to the 25-dimensional affine plane

{x ∈ R26 :
∑
i

xi = 1}

that is, m ≤ 25.
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♣ Illustration II: Matrix game, or Caratheodory Theorem in casino. The story goes as
follows. There are two players, A and B. Player A selects her move from {1,2, ...,m}, player
B selects her move from {1, ..., n}. With selected moves i, j, A pays to B the sum Mij. The
rues of the game – m,n and the matrix M = [Mij] i≤m

j≤n

are known to both players, and they
select their moves simultaneously, not knowing the selection of the adversary.
A is interested to minimize the money she pays, B is interested to maximize the money she
gets..
Question: What should the selections of rational players be?
Answer is easy when M has a saddle point – there is a cell i∗, j∗ such that the entry Mi∗,j∗

is minimal in its column and maximal in its row. Such a point is an equilibrium: A has no
incentive to deviate from i∗ when B sticks to j∗, and B has no incentive to deviate from j∗
when A sticks to i∗ – these deviations cannot improve their outcomes. Thus, saddle point
is a pair of player’s moves such that no player can improve her position by her unilateral
action.
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However: Matrices with saddle points are "rare commodity." What to do when the matrix
M has no saddle points?
An instructive answer was given by John von Neumann and Oskar Morgenstern in their
groundbreaking text Theory of Games and Economic Behavior (1944) – they proposed to
look at the situation where the game is played repeatedly, round by round, and the players use
mixed strategies – select their moves in consecutive rounds at random, in an iid fashion, from
respective distributions x ∈ ∆m = {x ∈ Rm

+ :
∑

i xi = 1} , and y ∈ ∆n = {y ∈ Rn
+ :

∑
j yj = 1}.

What matters for the players in the long run, are their expected payments/rewards per
round, that is, the quantity

xTMy;

player A is interested to minimize this quantity by selecting x ∈ ∆m, and player B is interested
to maximize the quantity in y ∈ ∆n. It turns out that In mixed strategies, there always is an
equilibrium: there exist x∗ ∈ ∆m and y∗ ∈ ∆n such that

∀(x ∈ ∆m, y ∈ ∆n) : xTMy∗ ≥ xT
∗My∗ ≥ xT

∗My.

Solving Matrix game in mixed strategies is quite meaningful in many applications, including
military ones; however, other things being equal, we would prefer the mixed strategies to be
as sparse as possible – the less nonzero entries, the better.
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♠ Caratheodory Theorem implies the following nice result: There always exists a pair of
optimal mixed strategies x∗, y∗ with no more than Rank (M) + 1 nonzero entries each.
Indeed, Linear Algebra teaches us that an m× n matrix M of rank r can be represented as

M = LTR, L ∈ Rr×m, R ∈ Rr×n.

It follows that the expected payment/reward of the players, their mixed strategies being x,
y, is

xTMy = [Lx]T [Ry],

meaning that what matters for the players, are not their mixed strategies x and y per se, but
the linear images Lx, Ry, living in Rr, of these strategies. In particular, whenever (x∗, y∗) is
a solution to the game in mixed strategies, so is every other pair (x̂, ŷ) of mixed strategies,
provided that Lx̂ = Lx∗ and Rŷ = Ry∗. Now, Lx∗ is a vector from Rr which is a convex
combination of columns of L; by Caratheodory, we can get the same vector Lx∗ by taking
convex combination of at most r+1 columns of L, that is, can find a mixed strategy x̂ with
at most r + 1 nonzero entries such that Lx̂ = Lx∗. Similarly, we can find a mixed strategy
ŷ with at most r + 1 nonzero entries such that Rŷ = Ry∗, thus obtaining a sparse solution
(x̂.ŷ) to our game.
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♣ Caratheodory Theorem in War on terror. Consider the following Colonel’s Blotto
game:
• There are L locations, G good guys and B bad guys. Every day good guys distribute
themselves between the locations, in teams of at most g guys each, to prevent attacks of
bad guys, and bad guys distribute themselves between the locations, in teams of at most b
guys each, to carry out terror attacks.
• The loss from an attack of a team of β ≤ b bad guys on a location ℓ defended by a team
of γ ≤ g good guys is M ℓ

γβ, where M ℓ, ℓ ≤ L, are given (g +1)× (b+1) matrices. The good
guys want to reduce the total loss, the bad guys want to increase it.

What are rational policies of good and bad guys ?
♠ A pure strategy of good guys can be identified with an ordered collection ξ = (ξ1, ..., ξL)
of integers from the range {0,1, ..., g} summing up to G (ξℓ is the size of the good team in
location ℓ). Similarly, a pure strategy of bad guys can be identified with an ordered collection
η = (η1, .., ηL) of integers from the range {0,1, ..., b} summing up to B.
Denoting by X ,Y the sets of pure strategies of good and of bad guys and introducing matrix
M with rows indexed by ξ ∈ X , columns indexed by η ∈ Y and entries

Mξ,η =
L∑

ℓ=1

M ℓ
ξℓ,ηℓ

,

the total loss of good guys when they are using pure strategy ξ, and their adversaries – pure
strategy η, is Mξ,η

⇒ Rational behaviour of players is to use mixed strategies forming a saddle point of the
matrix game with matrix M
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However: What are the sizes of M, that is, the cardinalities of X and Y? Here are some
answers

L G = B g = b Card(X ) Card(Y)

20 40 2 1 1
20 40 3 12,049,586,631 12,049,586,631
20 40 4 5,966,636,799,745 5,966,636,799,745
20 40 5 81,987,009,993,775 81,987,009,993,775
20 40 6 293,752,173,960,574 293,752,173,960,574
20 40 7 575,564,255,892,036 575,564,255,892,036
20 40 8 835,252,578,607,640 835,252,578,607,640
20 40 9 1,033,320,390,014,830 1,033,320,390,014,830

However: M ℓ are (g+1)× (b+1) matrices; setting r = min[g, b]+ 1, we can represent M ℓ

as M ℓ = AT
ℓ Bℓ with r × (g +1) matrix Aℓ and r × (b+1) matrix Bℓ ⇒

M ℓ
pq = ColTp [Aℓ]Colq[Bℓ], 0 ≤ p ≤ g,0 ≤ q ≤ b

⇒ Mξ,η =
∑L

ℓ=1M
ℓ
ξℓ,ηℓ

=
[
Colξ1[A1]; ...;ColξL[AL]

]T︸ ︷︷ ︸
LT

ξ

[Colη1[B1]; ...;ColηL
[BL]]︸ ︷︷ ︸

Rη

⇒ M = LTR, L ∈ R[rL]×Card(X ), R ∈ R[rL]×Card(Y)

Thus, while the row and column sizes of M can be astronomically large, the rank of M is
quite moderate – at most min[g, b]L+L ⇒ By Caratheodory, good and bad guys have quite
sparse equilibrium mixed strategies – those which are mixtures of at most min[g, b]L+L+1
pure strategies.
Note: On a closest inspection, we can find efficiently both the pure strategies participating
in the equilibrium, and the probabilities at which these strategies should be used.
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Application: Whether the convex hull of a closed set is closed?

♠ The convex hull of a closed set not necessarily is closed – look what happens when the
set is a line augmented by a single point not on the line.
However: When X ⊂ Rn is closed and bounded, Conv(X) is closed (and of course is
bounded) ⇒

Fact II.31 The convex hull of a compact set is compact.

Indeed, let X be compact and {xi ∈ Conv(X)}i be a converging sequence; we should prove that the limit x̄ of the
sequence belongs to Conv(X). By Caratheodory Theorem, we have xi =

∑n+1

j=1
λj
ix

j
i with λi

j ≥ 0,
∑

j
λi
j = 1,and

xj
i ∈ X. By compactness of [0,1] and X, passing to a subsequence, we may assume that the 2(n + 1)

sequences {λi
j}i, {xi

i}i converge: as i → ∞, we have λi
j → λj, xj

i → xj, j ≤ n + 1. Note that xj ∈ X since X

is compact and therefore closed. We clearly have λj ≥ 0,
∑

j
λj = 1, and xi =

∑
j
λi
jx

j
i →

∑
j
λjxj as i → ∞

⇒ x̄ =
∑

j
λjxj ∈ Conv(X).
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Note: In contrast to convex hull, the conic hull of a compact set X not necessarily is closed,
even when X is convex – look what happens if X is the circle of radius 1 centered at the
point [1; 0] in R2.:

The "conic hull" analogy of the above observation is as follows:

Fact II.32 Let X ⊂ Rn be a nonempty compact set which can be "separated from the
origin," meaning that there exists a linear form fTx on Rn with positive minimum α over
x ∈ X. Then Cone (X) is a closed cone.

Cone (X) always is a cone; all we need is to prove its closedness. Let points xi ∈ Cone (X) converge to x̄ as
i → ∞; we should prove that x̄ ∈ Cone (X). By Caratheodory Theorem in conic form, we have xi =

∑n

j=1
λj
ix

j
i

with λj
i ≥ 0 and xj

i ∈ X. We have fT x̄ = limi→∞ fTxi ⇒ the sequence {
∑

j
λj
if

Txj
i}i is bounded. The terms

in this sequence are ≥ α
∑

j
λj
i ≥ 0, implying, due to α > 0 and λj

i ≥ 0, that the sequences {λj
i}i, j ≤ n, are

bounded. With this in mind and since X is compact, we can pass to a subsequence of values of i to ensure
that the sequences {λj

i}i and {xj
j}i, 1 ≤ j ≤ n, converge. The latter, by the same argument as in the convex

hull case, implies that x̄ ∈ Cone (X).
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Embedded story: Truss Topology Design, II

♣ Question: In TTD with totally M degrees of freedom of the nodes and K loading sce-
narios, how many actual bars there should be in optimal truss?

M = 144, N = 3024,K = 1

Answer: KM +1 bars are enough.
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Question: In TTD with totally M degrees of freedom of the nodes and K loading scenarios, how many actual
bars there should be in optimal truss?
Answer: KM +1 bars are enough.
Indeed, let ti be the bar volumes in an optimal truss, and vk be the equilibrium displacement under k-th loading
scenario fk, so that

∑
i

ti

W︸︷︷︸
λi≥0

 [bTi v
1]bi

[bTi v
2]bi
...

[bTi v
K]bi


︸ ︷︷ ︸

xk

=
1

W

 f1

f2

...
fK


︸ ︷︷ ︸

f

and
∑

i
λi = 1 ⇒ KM-dimensional vector f is convex combination of N vectors xi with weights λi.

By Caratheodory Theorem, f is a convex combination of xi with coefficients λ∗
i and at most M + 1 nonzeros

among λ∗
i . Setting t∗i = λ∗

iW , we get a truss t∗ of total volume W , and
∑

i
λ∗
ix

i = f says that vk are equilibrium
displacements of truss t∗ under load fk, k = 1, ...,K, so that the compliance of t∗ w.r.t. every one of loading
scenarios fk is the same as the compliance of truss t. Thus, t∗ is another optimal truss, and the number of
bars of positive volume in this truss is at most KM +1.
Note: When a load every free node of truss is affected by a nonzero external force, the number of positive
volume bars in a truss capable to withstand the load should be of order of M , since every free node should
be incident to aa bar of nonzero volume. Thus,our upper bound on the number of bars of positive volumes
in a (properly selected) optimal truss is, in general, tight as far as the dependence of the total number M of
degrees of freedom of the nodal set.
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Shapley-Folkman Theorem

♣ Preliminaries. Let us make the following simple and useful observations:

Fact II.33 Taking convex hull commutes with taking direct product: when Xℓ ⊂ Rnℓ, 1 ≤
ℓ ≤ L, are nonempty sets, one has

Conv(X1 × ...×XL) = Conv(X1)× ...× Conv(XL).

Proof. Applying induction in L, all we need to prove is that If X ⊂ Rn, Y ⊂ Rm are nonempty sets, then
Conv(X × Y ) = Conv(X)× Conv(Y ).
Indeed, let xi ∈ X, yi ∈ Y , and let λi ≥ 0 be such that

∑
i
λi = 1. We have

∑
i
λi[xi; yi] = [

∑
i
λixi;

∑
i
λiyi] ∈

Conv(X)×Conv(Y ) ⇒ Conv(X×Y ) ⊂ Conv(X)×Conv(Y ). Vice versa, when x =
∑

i
λixi with λi ≥ 0,

∑
i
λi = 1

and y =
∑

j
µjyj with µj ≥ 0,

∑
j
µj = 1, we have [

∑
i
λixi;

∑
j
µjyj] = [

∑
i,j

λiµjxi;
∑

i,j
λiµjyj] =

∑
i,j

λiµj[xi; yj]

and λiµj ≥ 0,
∑

i,j
λiµj = 1 ⇒ Conv(X)× Conv(Y ) ⊂ Conv(X × Y ).

Fact II.34 Taking convex hull commutes with taking affine image: if X ⊂ Rn is a nonempty
set, x 7→ A(x) := Ax+ b : Rn → Rm is an affine mapping, and A(Y ) = {A(x), x ∈ Y } ⊂ Rm is
the image of U ⊂ Rn under the mapping, then

Conv(A(X)) = A(Conv(X)).

Proof: evident.

2.74



As a corollary, we have

Fact II.35 Taking convex hull commutes with taking weighted sum of sets: if Xℓ ⊂ Rn,
1 ≤ ℓ ≤ L, are nonempty sets and λ1, ..., λL are reals, then

Conv(λ1X1 + ...+ λLXL) = λ1Conv(X1) + ...+ λLConv(XL).

Indeed, setting A([x1; ...xL]) =
∑

ℓ
λℓx

ℓ : Rn × ..×Rn︸ ︷︷ ︸
L

→ Rn, we get a linear mapping such that λ1X1+...+λLXL =

A(X1 × ...×XL), and it remains to use Facts II.14-15.

Note: Facts II.14-16 remain true when replacing taking convex hull with taking affine span
(but not with taking linear span or conic hull – look what happens with Fact II.33 when
L = 2 and X1 = X2 = {1} ⊂ R).
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♠ Shapley-Folkman Theorem Let X1, ..., XN be nonempty sets in Rd, and let

x ∈ Conv(X1) + ...+ Conv(XL) [= Conv(X1 + ...+XL) by Fact II.35]

Then x can be represented as the sum x = x1 + ... + xL where at most d of the terms
xℓ belong to the convex hulls of the respective Xℓ, and all remaining terms belong to the
respective Xℓ.
Proof. We have x =

∑L

ℓ=1

[∑
i≤I

λℓ
ix

ℓ
i

]
with xℓ

i ∈ Xi, λℓ
i ≥ 0,

∑
i
λℓ
i = 1. Consider the (L + d)-dimensional

vectors yℓi = [

ℓ−1︷ ︸︸ ︷
0; ...; 0; 1; 0; ...; 0︸ ︷︷ ︸

L

;xℓ
i]. We have∑

ℓ≤L,i≤I

λℓ
i = y := [1; ...; 1︸ ︷︷ ︸

L

;x]

⇒ y is a conic combination of yℓi ⇒ y is a conic combination of yℓi with at most L + d nonzero coefficients
(Caratheodory Theorem in Conic form)

⇒ x =
∑

ℓ

∑
i
µℓ
ix

ℓ
i & µℓ

i ≥ 0∀ℓ, i &
∑

i
µℓ
i = 1 ∀ℓ

Besides this, denoting by dℓ the number of nonzeros among µℓ
1, µ

ℓ
2, ..., µ

ℓ
i, we have

∑
ℓ
dℓ ≤ L+d and dℓ ≥ 1 (due

to
∑

i
µℓ
i = 1).

⇒ Setting L = {ℓ : dℓ > 1} and m = Card(L), we have

L+ d ≥
∑

ℓ
dℓ =

∑
ℓ∈Ldℓ +

∑
ℓ ̸∈L

dℓ︸ ︷︷ ︸
L−m

≥ 2m+ (L−m) = L+m

⇒ m ≤ d.
We see that

X =
∑L

ℓ=1

∑
i
µℓ
ix

ℓ
i︸ ︷︷ ︸

xℓ

with xℓ ∈ Conv(Xℓ) and xℓ ̸∈ Xℓ for at most d values of ℓ, Q.E.D.
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♠ Comment. Shapley-Folkman Theorem demonstrates certain "convexification property"
of arithmetic summation of sets. Specifically, consider L nonempty sets Xℓ in Rd, and
assume that every one of them is contained in the unit Euclidean ball. Now consider the
set X = X1 + ... + XL and its convex hull X̂ = Conv(X) = Conv(X1) + ... + Conv(XL) (the
equality is due to Fact II.35). Of course, X ⊂ X̂. Shapley-Folkman Theorem implies that
every point from X̂ is at the ∥ · ∥2-distance ≤ d from some point of X. Taking into account
that the linear sizes of X can (and typically will) be of order of L, it is prudent to say that
when d is fixed and L grows, the nonconvex set X becomes relatively more and more dense
part of its convex hull.

Black dots: the finite set V = V1 + V2 + V3, where Vi, i = 1,2,3, are the vertices of concentric perfect m-
side polygons with ratio of linear sizes 4 : 2 : 1. Bold broken line: boundary of the perfect m-side polygon
Conv(V1) + Conv(V2) + Conv(V3). Left: m = 16; right: m = 32.
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Illustration: Consider a company producing d types of products on L factories. Given
some time period, technologically achievable vectors of product outputs at factory ℓ form a
nonempty set Xℓ ⊂ Rn, while the total product output should be at least a given demand
p ∈ Rd.
• The ideal management goal is to select xℓ ∈ Xℓ in such a way that

∑
ℓ x

ℓ ≥ p. When Xℓ

are nonconvex, achieving this goal could be a computationally difficult problem, while the
convexified version of this problem Find xℓ ∈ Conv(Xℓ) such that

∑
ℓ x

ℓ ≥ p typically is easy.
• In principle, we can enforce factory ℓ to produce as an output a convex combination

∑
i λixi

of outputs xi ∈ Xℓ; to this end, it suffices to use technological process resulting in output xi

for fraction λi of the time period in question. However, this “mixed policy” from the practical
viewpoint is much more involving than producing a single output from Xℓ.
• Shapley-Folkman Theorem says that if the convexified problem is solvable, then it admits
a solution with at most d difficult to implement mixed policies.
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Radon & Helly Theorems

Radon Theorem Let x1, ..., xm be m ≥ n+2 vectors in Rn. One can split the set {1, ...,m}
of indexes of the vectors into two nonempty and non-overlapping groups A, B such that
Conv({xi : i ∈ A}) ∩ Conv({xi : i ∈ B}) ̸= ∅.

Coloring 4 points from R2 to make convex hulls of red and of blue points intersecting
Proof. Consider the homogeneous system of linear equations in m variables δi:{ ∑m

i=1
δixi = 0 [n linear equations]∑m

i=1
δi = 0 [single linear equation]

Since m ≥ n+2, the system has a nontrivial solution δ. Setting
I = {i : δi > 0}, J = {i : δi ≤ 0},

we split indices {1, ...,m} into two nonempty (due to δ ̸= 0,
∑
i

δi = 0) groups such that∑
i∈Iδixi =

∑
j∈J[−δj]xj, γ =

∑
i∈I δi =

∑
j∈J −δj > 0

whence ∑
i∈I

δi

γ
xi︸ ︷︷ ︸

∈Conv({xi:i∈I})

=
∑

j∈J

−δj

γ
xj︸ ︷︷ ︸

∈Conv({xj:j∈J})

.
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Helly Theorem Let A1, ..., AM be convex sets in Rn. Assume that every n+1 sets from the
family have a point in common. Then all M sets have point in common.
• In particular, if every 2 of a finite collection of segments on the real axis have a point in
common, all the segments have a common point (evident). If every 3 of a finite collection
of triangles on the plane have a point in common, then all the triangles have a common
point (why???)
Proof: induction in M .
Base M ≤ n+1 is trivially true.
Step: Assume that for certain M ≥ n+1 our statement hods true for every M-member family of convex sets,
and let us prove that it holds true for M +1-member family of convex sets A1, ..., AM+1.
♢ By inductive hypotheses, every one of the M +1 sets

Bℓ = A1 ∩A2 ∩ ... ∩Aℓ−1 ∩Aℓ+1 ∩ ... ∩AM+1

is nonempty. Let us choose xℓ ∈ Bℓ, ℓ = 1, ...,M +1.
♢ By Radon Theorem, the collection x1, ..., xM+1 can be split in two sub-collections with intersecting convex
hulls. W.l.o.g., let the split be {x1, ..., xJ−1} ∪ {xJ , ..., xM+1}, and let

z ∈ Conv({x1, ..., xJ−1})
⋂

Conv({xJ , ..., xM+1}).

Claim: z ∈ Aℓ for all ℓ ≤ M +1, so that A1 ∩ ... ∩AM+1 ̸= ∅
Indeed, for ℓ ≤ J − 1, the points xJ , xJ+1, ..., xM+1 belong to the convex set Aℓ, whence

z ∈ Conv({xJ , ..., xM+1}) ⊂ Aℓ.

For ℓ ≥ J, the points x1, ..., xJ−1 belong to the convex set Aℓ, whence

z ∈ Conv({x1, ..., xJ−1}) ⊂ Aℓ.

The inductive step is over and thus the proof of Helly Theorem is complete.
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Refinement: Assume that A1, ..., AM are convex sets in Rn and that
♢ the union A1∪A2∪ ...∪AM of the sets belongs to an affine subspace P of affine dimension
m
♢ every m+1 sets from the family have a point in common
Then all the sets have a point in common.
Proof We can think of Aj as of sets in P , or, which is the same, as sets in Rm and apply the Helly Theorem!
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What about infinite collections {Aα}α∈A ?

• When trying to extend Helly Theorem from finite to infinite collections of convex sets, we
meet two immediate obstacles:
• Things can go wrong when the sets Aα are not closed. E.g. for the collection {Ai =
(0,1/i)}i≥1 of convex subsets of R, intersection of sets from every finite subcollection is
nonempty, but the intersection of all Ai is empty
• Things can go wrong when the intersections of sets from finite subcollections can “run to
infinity,” as is the case for collection {Ai = [i,∞)}i≥1 of convex subsets of R. Here again
intersection of sets from every finite subcollection is nonempty, but the intersection of all Ai

is empty.
♠ It turns out that these are the only two obstacles for Helly Theorem to be applicable to
infinite collections of convex sets.
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Helly Theorem II: Let Aα, α ∈ A, be a family of convex sets in Rn such that every n + 1
sets from the family have a point in common.
Assume, in addition, that
♢ the sets Aα are closed
♢ one can find finitely many sets Aα1, ..., AαM

with a bounded intersection.
Then all sets Aα, α ∈ A, have a point in common.
Proof. By Helly Theorem, every finite collection of the sets Aα has a point in common, and it remains to
apply the following standard fact from Analysis:
Let Bα be a family of closed sets in Rn such that
♢ every finite collection of the sets has a nonempty intersection;
♢ in the family, there exists finite collection, say, Bα1, ..., BαN , with bounded intersection B = ∩i≤NBαi.
Then all sets from the family have a point in common.
Indeed, B is a closed and bounded subset of Rn, and as such is compact; the sets Bα = B ∩ Bα are closed
subsets of the compact set B, and every finite intersection of these sets is nonempty. By Fact I.13, ∩αBα ̸= ∅,
so that ∩αBα = ∩αBα ̸= ∅.
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Exercise: We are given a function f(x) on a 7,000,000-point set X ⊂ R. At every 7-point
subset of X, this function can be approximated, within accuracy 0.001 at every point, by
appropriate polynomial of degree 5. To approximate the function on the entire X, we want
to use a spline of degree 5 (a piecewise polynomial function with pieces of degree 5). How
many pieces do we need to get accuracy 0.001 at every point?
Answer: Just one. Indeed, let Ax, x ∈ X, be the set of coefficients of all polynomials of
degree 5 which reproduce f(x) within accuracy 0.001:

Ax =
{
p = (p0, ..., p5) ∈ R6 : |f(x)−

5∑
i=0

pixi| ≤ 0.001
}
.

The set Ax is polyhedral and therefore convex, and we know that every 6+1 = 7 sets from
the family {Ax}x∈X have a point in common. By Helly Theorem, all sets Ax, x ∈ X, have a
point in common, that is, there exists a single polynomial of degree 5 which approximates
f within accuracy 0.001 at every point of X.
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Exercise: We should design a factory which, mathematically, is described by the following
Linear Programming model:

Dx ≥ d [d1, ..., d1000: demands]
Rx ≤ r [r1 ≥ 0, ..., r10 ≥ 0: amounts of resources of various types]
Cx ≤ c [other constraints]

(F )

The data D,R,C, c are given in advance. We should buy in advance resources ri ≥ 0,
i = 1, ...,10, in such a way that the factory will be capable to satisfy all demand scenarios
d from a given finite set D, that is, (F ) should be feasible for every d ∈ D. Amount ri of
resource i costs us airi with 0 ̸= a ≥ 0.
It is known that in order to be able to satisfy every single demand from D, it suffices to
invest $1 in the resources.
How large should be investment in resources in the cases when D contains
♢ just one scenario?
♢ 3 scenarios?
♢ 10 scenarios?
♢ 2024 scenarios?
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Answer: D = {d1} ⇒ $1 is enough
D = {d1, d2, d3} ⇒ $3 is enough
D = {d1, ..., d10} ⇒ $10 is enough
D = {d1, ..., d2024} ⇒ $10 is enough!
Indeed, for d ∈ D let Rd be the set of all nonnegative r ∈ R10 which cost exactly $10 and
result in solvable system

Dx ≥ d
Rx ≤ r
Cx ≤ c

(F [d])

in variables x. The set Rd is convex.
Indeed, setting X = {x : Cx ≤ c} and invoking Illustration to Fact II.10, we conclude that the set

RD = {(d′, r) : ∃x : x ∈ X,Dx ≥ d′, Rx ≤ r}

is convex. Intersecting RD with the convex set {(d′, r) : d′ = d, r ≥ 0,
∑

j
ajrj = 10}, we get a convex set, and

Rd is just the projection of this convex set onto the space of r-variables.
We claim that every 10 sets of the family {Rd : d ∈ D} have a common point.
Indeed, given 10 scenarios d1, ..., d10 from D, we can meet demand scenario di (i.e., make (F [di]) feasible)
investing in resources at most $1, that is, for i ≤ 10 there exists r̃i ≥ 0 such that

∑
j
aj r̃ij ≤ 1 and with r = r̃i,

the system (F [di]) is feasible. The latter property remains intact when replacing r = r̃i with r ≥ r̃i, and since
0 ̸= a ≥ 0 and the cost of r̃i is at most $1, we can ≥-increase r̃i to make the cost of the resulting vector ri to
be exactly $1. Thus, for every i ≤ 10 we can meet demand scenario di with vector of resources ri ≥ 0 of cost
$1. It remains to note that the vector of resources r1 + ...+ r10 is nonnegative, meets every one the demand
scenarios di, i ≤ 10, and costs $ 10, that is, it belongs to every one of the sets Rdi. i ≤ 10.
Convex sets Rd ⊂ R10, d ∈ D, belong to 9-dimensional affine plane {r ∈ R10 :

∑
j ajrj = 10}.

Since every 10 of these sets have a point in common, all these sets have a point r in common.
r costs $10, and with this r, every one of the systems (F [d]), d ∈ D, is solvable.
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Exercise: Consider an optimization program

c∗ = min
{
cTx : gi(x) ≤ 0, i = 1, ...,2024

}
with 11 variables x1, ..., x11. Assume that the constraints are convex, that is, every one of
the sets

Xi = {x : gi(x) ≤ 0}, i = 1, ...,2024

is convex. Assume also that the problem is solvable with optimal value 0.
Clearly, when dropping one or more constraints, the optimal value can only decrease or
remain the same.
♢ Is it possible to find a constraint such that dropping it, we preserve the optimal value?
Two constraints which can be dropped simultaneously with no effect on the optimal value?
Three of them?
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Answer: You can drop as many as 2024 − 11 = 2013 appropriately chosen constraints
without varying the optimal value!
Assume, on the contrary, that every 11-constraint relaxation of the original problem has
negative optimal value. Since there are finitely many such relaxations, there exists ϵ < 0
such that every problem of the form

min
x

{cTx : gi1(x) ≤ 0, ..., gi11(x) ≤ 0}

has a feasible solution with the value of the objective < −ϵ. Since this problem has a feasible
solution with the value of the objective equal to 0 (namely, the optimal solution of the
original problem) and its feasible set is convex, the problem has a feasible solution x with
cTx = −ϵ. In other words, every 11 of the 2024 sets

Yi = {x : cTx = −ϵ, gi(x) ≤ 0}, i = 1, ...,2024

have a point in common.
The sets Yi are convex (as intersections of convex sets Xi and an affine subspace). If c ̸= 0,
then these sets belong to affine subspace of affine dimension 10, and since every 11 of them
intersect, all 2024 intersect; a point x from their intersection is a feasible solution of the
original problem with cTx < 0, which is impossible.
When c = 0, the claim is evident: we can drop all 2024 constraints without varying the
optimal value!
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Polyhedrality & Fourier-Motzkin Elimination

♣ Definition: A polyhedral set X ⊂ Rn is a set which can be represented as

X = {x : Ax ≤ b},
that is, as the solution set of a finite system of nonstrict linear inequalities.
♠ Definition: A polyhedral representation of a set X ⊂ Rn is a representation of X of the
form:

X = {x : ∃w : Px+Qw ≤ r},
that is, a representation of X as the a projection onto the space of x-variables of a polyhedral
set X+ = {[x;w] : Px+Qw ≤ r} in the space of x,w-variables.
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Rotated 3D cube and its 2D projection (hexagon)
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♠ Examples of polyhedral representations:
• The set X = {x ∈ Rn :

∑
i |xi| ≤ 1} admits the p.r.

X =

x ∈ Rn : ∃w ∈ Rn :
−wi ≤ xi ≤ wi,

1 ≤ i ≤ n,∑
iwi ≤ 1

 .

• The set
X =

{
x ∈ R6 : max[x1, x2, x3] + 2max[x4, x5, x6]
≤ x1 − x6 +5

}
admits the p.r.

X =

x ∈ R6 : ∃w ∈ R2 :
x1 ≤ w1, x2 ≤ w1, x3 ≤ w1

x4 ≤ w2, x5 ≤ w2, x6 ≤ w2

w1 +2w2 ≤ x1 − x6 +5

 .
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Whether a Polyhedrally Representable Set
is Polyhedral?

♣ Question: Let X be given by a polyhedral representation:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r},
that is, as the projection of the solution set

Y = {[x;w] : Px+Qw ≤ r} (∗)
of a finite system of linear inequalities in variables x,w onto the space of x-variables.
Is it true that X is polyhedral, i.e., X is a solution set of finite system of linear inequalities
in variables x only?
Theorem III.1 Every polyhedrally representable set is polyhedral.
Proof is given by the Fourier — Motzkin elimination scheme which demonstrates that the projection of the
set (∗) onto the space of x-variables is a polyhedral set. Elimination step: eliminating a single slack variable.
Given set (∗), assume that w = [w1; ...;wm] is nonempty, and let Y + be the projection of Y on the space of
variables x,w1, ..., wm−1:

Y + = {[x;w1; ...;wm−1] : ∃wm : Px+Qw ≤ r} (!)
Let us prove that Y + is polyhedral. Indeed, let us split the linear inequalities

pTi x+ qTi w ≤ ri, 1 ≤ i ≤ I
defining Y into three groups:

• black – the coefficient at wm is 0
• red – the coefficient at wm is > 0
• blue – the coefficient at wm is < 0

Then

Y =

{
[x;w] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci , i is black
wm ≤ ai(x,w1, ..., wm−1) := aTi x+ bTi [w1; ...;wm−1] + ci , i is red
wm ≥ ai(x,w1, ..., wm−1) := aTi x+ bTi [w1; ...;wm−1] + ci , i is blue

}
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Y =

{
[x;w] :

aTi x+ bTi [w1; ...;wm−1] ≤ ci , i is black
wm ≤ ai(x,w1, ..., wm−1) := aTi x+ bTi [w1; ...;wm−1] + ci , i is red
wm ≥ ai(x,w1, ..., wm−1) := aTi x+ bTi [w1; ...;wm−1] + ci , i is blue

}
Clearly, a collection x,w1, ...., wm−1 cam be augmented by wm+1 to yield a point from y iff the collection
satisfies all black inequalities and every blue lower bound ai(x,w!, ..., wm−1) on wm is ≤ every red upper bound
aj(x,w1, ...., wm−1) on wm:

Y + := {x,w1, ..., wm−1 : ∃wm : [x;w1; ...;wm] ∈ Y } =

{
x,w1, ..., wm−1 :

aTi x+ bTi [w1; ...;wm−1] ≤ ci , for all black i
ai(x,w1, ..., wm−1) ≤ wm ≤ for all blue i
aj(x,w1, ..., wm−1) and all red j

}
,

implying that Y + is polyhedral. Iterating the process, we conclude that X = {x : ∃w1, ..., wm : [x;w1; ...;wm] ∈ Y
is polyhedral, Q.E.D.
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♣ As an immediate consequence, we get
Corollary III,1 Convex hull Conv(X) of a finite set X = {a1, ..., aN} ⊂ Rn is a polyhedral set.
Indeed, there is nothing to prove when X = ∅. When X is nonempty, Conv(X) is polyhedral representable:

Conv(X) = {x ∈ Rn : ∃λ ∈ RN : λ ≥ 0,
∑

i

λi = 1, x =
∑

i

λia
i}

and therefore is polyhedral.
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♣ As another immediate consequence of Theorem III.1, let us build a finite algorithms for
solving LO problems.
Given an LO program

Opt = max
x

{
cTx : Ax ≤ b

}
, (!)

observe that the set of values of the objective at feasible solutions can be represented as

T = {τ ∈ R : ∃x : Ax ≤ b, cTx− τ = 0}
= {τ ∈ R : ∃x : Ax ≤ b, cTx ≤ τ, cTx ≥ τ}

that is, T is polyhedral representable. By Theorem III.1, T is polyhedral, that is, T can be
represented by a finite system of linear inequalities in variable τ only. It immediately follows
that if T is nonempty and is bounded from above, T has the largest element. Thus, we have
proved
Corollary III.2 A feasible and bounded LO program admits an optimal solution and thus is
solvable.
Moreover, Fourier-Motzkin elimination scheme suggests a finite algorithm for solving an
LO program, where we
• first, apply the scheme to get a representation of T by a finite system S of linear inequalities
in variable τ ,
• second, analyze S to find out whether the solution set is nonempty and bounded from
above, and when it is the case, find out the optimal value Opt ∈ T of the program,
• third, use the Fourier-Motzkin elimination scheme in the backward fashion to find x such
that Ax ≤ b and cTx = Opt, thus recovering an optimal solution to the problem of interest.
Bad news: The resulting algorithm is completely impractical, since the number of inequali-
ties we should handle at a step usually rapidly grows with the step number and can become
astronomically large when eliminating just tens of variables.
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Calculus of Polyhedrality

♣ Polyhedral sets are convex. All basic convexity-preserving operations as applied to poly-
hedral sets preserve polyhedrality. Moreover, as applied to polyhedral representations, the
corresponding "calculus" is extremely simple and fully algorithmic. Then basics of this cal-
culus is as follows:
A. Taking finite intersections: Let X1, ..., XK be polyhedral sets in Rn given by polyhedral
representations:

Xk = {x ∈ Rn : ∃wk : Pkx+Qkwk ≤ rk}, k ≤ K.

Then the intersection X =
⋂
k

Xk of Xk is polyhedral set with polyhedral representation

X = {x : ∃w = [w1; ...;wK] : Pkx+Qkw
k ≤ rk}, k ≤ K.

B. Taking direct products: Let Xk ⊂ Rnk, k ≤ K, be polyhedral sets given by polyhedral
representations:

Xk = {xk ∈ Rnk : ∃wk : Pkxk +Qkwk ≤ rk}, k ≤ K.

Then the direct product X = X1 × ...×XK of Xk is polyhedral set with polyhedral represen-
tation

X = {x = [x1; ...;xK] : ∃w = [w1; ...;wK] : Pkxk +Qkwk ≤ rk, k ≤ K}.
C. Taking affine image: Let X ⊂ Rn, be a polyhedral set given by polyhedral representa-
tion:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r}.
and A(X) = Ax+ b : Rn → Rm be affine mapping. Then the image A(X) = {A(x) : x ∈ X∥ ⊂
Rm} of X under the mapping is polyhedral set with polyhedral representation

A(X) = {y ∈ Rm : ∃[x;w] : Px+Qw ≤ r & y −Ax ≤ b, −y +Ax ≤ −b︸ ︷︷ ︸
y=Ax+b

}.
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D. Taking inverse affine image: Let X ⊂ Rn, be a polyhedral set given by polyhedral
representation:

X = {x ∈ Rn : ∃w : Px+Qw ≤ r}.
and A(y) = Ay + b : Rm → Rn be affine mapping. Then the inverse image A−1(X) = {y :
A(y) ∈ X∥ ⊂ Rm} of X under the mapping is polyhedral set with polyhedral representation

A−1(X) = {y ∈ Rm : ∃w : PAy +Qw ≤ r − Pb}.
E. Arithmetic summation: Let Xk ⊂ Rn, k ≤ K, be polyhedral sets given by polyhedral
representations:

Xk = {x ∈ Rn : ∃wk : Pkx+Qkwk ≤ rk}, k ≤ K.

Then the arithmetic sum X = X1 + ... + XK of Xk is polyhedral set with polyhedral repre-
sentation

X = {x : ∃[x1; ..., xK;w1; ...;wK] : Pkxk +Qkwk ≤ rk, x = x1 + ...+ xK}.
F. Taking closed conic transform. Let X be a nonempty polyhedral set given by poly-

hedral representation:
X = {x : ∃u : Px+Qu ≤ r}

The closed conic transform ConeT(X) = cl {[x; t] : t > 0, x/t ∈ X} is polyhedral with polyhe-
dral representation

ConeT(X) = {[x; t] : ∃u : Px+Qu ≤ tr & t ≥ 0}



Indeed, denoting X the right hand side set in the latter equality, observe that X is a polyhedral cone and as
such is closed. Besides this, the perspective transform Persp(X) = {[x : t] : t > 0.x/t ∈ X} clearly is nothing
but the intersection of X with the half-space t > 0, and thus Persp(X) ⊂ X, and as X is closed, we get
ConeT(X) = clPersp(X) ⊂
overlineX. To prove that this inclusion is equality, let [x; t] ∈ X, so that

Px+Qu ≤ tr (a)

for some u, and t ≥ 0; When t > 0, (a) says that P (x/t)+Q(u/t) ≤ r, that is, x/t ∈ X„ whence {[x; t] ∈ Persp(X).
Now let t = 0. As X is nonempty, there exists ā and ū such that P x̄+Qū ≤ r., which combines with Px+Qu ≤ 0
to imply that

[x+ λx̄[+Q[u+ λū] ≤ λr, ∀λ > 0
which, as have already seen, implies that [x + λx̄;λ] ∈ Persp(X). Passing to limit as λ]to + 0, we get [x; 0] ∈
clPersp(X). Thus, whenever [x; t] ∈ X, we have [x; t] ∈ clPersp(X) = ConeT(X), that is, X ⊂ ConeT(X).
The opposite inclusion has been already proved, and we end up with X ⊂ ConeT(X), Q.E.D. ]small
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Theory of Systems of Linear Inequalities, I: Homogeneous Farkas Lemma

♣ Consider a homogeneous linear inequality

aTx ≥ 0 (∗)
along with a finite system of similar inequalities:

aTi x ≥ 0, 1 ≤ i ≤ m (!)

♣ Question: When (∗) is a consequence of (!), that is, every x satisfying (!) satisfies (∗) as well?
Observation: If a is a conic combination of a1, ..., am:

∃λi ≥ 0 : a =
∑

i

λiai, (+)

then (∗) is a consequence of (!).
Indeed, (+) implies that

aTx =
∑

i

λia
T
i x ∀x,

and thus for every x with aTi x ≥ 0∀i one has aTx ≥ 0.
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aTx ≥ 0 (∗)
aTi x ≥ 0, 1 ≤ i ≤ m (!)

Homogeneous Farkas Lemma: (∗) is a consequence of (!) if and only if a is a conic combination of a1, ..., am.
♣ Equivalently: Given vectors a1, ..., am ∈ Rn, let K = Cone {a1, ..., am} = {

∑
i
λiai : λ ≥ 0} be the conic hull of

the vectors. Given a vector a,
• it is easy to certify that a ∈ Cone {a1, ..., am}: a certificate is a collection of weights λi ≥ 0 such that∑

i
λiai = a;

• it is easy to certify that a̸∈Cone {a1, ..., am}: a certificate is a vector d such that aTi d ≥ 0 ∀i and aTd < 0.
Proof of HFL: All we need to prove is that If a is not a conic combination of a1, ..., am, then there exists d
such that aTd < 0 and aTi d ≥ 0, i = 1, ...,m.
Fact: The set K = Cone {a1, ..., am} is polyhedral representable:

Cone {a1, ..., am} =
{
x : ∃λ ∈ Rm : x =

∑
i
λiai

λ ≥ 0

}
.

⇒ By Fourier-Motzkin, K is polyhedral:

K = {x : dTℓ x ≥ cℓ,1 ≤ ℓ ≤ L}.

Observation I: 0 ∈ K ⇒ cℓ ≤ 0 ∀ℓ
Observation II: λai ∈ Cone {a1, ..., am} ∀λ > 0 ⇒ λdTℓ ai ≥ cℓ ∀λ ≥ 0 ⇒ dTℓ ai ≥ 0∀i, ℓ.
Now, a ̸∈ Cone {a1, ..., am} ⇒ ∃ℓ = ℓ∗ : dTℓ∗a < cℓ∗ ≤ 0⇒ dTℓ∗a < 0.
⇒ d = dℓ∗ satisfies aTd < 0, aTi d ≥ 0, i = 1, ...,m, Q.E.D.
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Theory of Systems of Linear Inequalities, II
Theorem of Alternative

♣ A general (finite!) system of linear inequalities with unknowns x ∈ Rn can be written down
as

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

Question: How to certify that (S) is solvable?
Answer: A solution is a certificate of solvability!
Example: To certify that the system

−4u −9v +5w > 1.99
−2u +6v ≥ −2
7u −5w ≥ 1

is solvable, it suffices to note that u = 1
7
, v = −2

7
, w = 0 is a solution.

Question: How to certify that S is not solvable?
Answer: ???
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aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

Question: How to certify that S is not solvable?
Conceptual sufficient insolvability condition:
If we can lead the assumption that x solves (S) to a contradiction, then (S) has no solutions.
Example: To certify that the system

−4u −9v +5w > 2
−2u +6v ≥ −2
7u −5w ≥ 1

has no solutions, it suffices to point out that aggregating the inequalities of the system with
weights 2,3,2, we get a contradictory inequality:

2× −4u −9v +5w > 2
+

3× −2u +6v ≥ −2
+

2× 7u −5w ≥ 1
0 · u +0 · v +0 · w > 0

By how we aggregate, every solution to the system must solve the aggregated inequality.
The latter has no solutions ⇒ so is the system.
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aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

“Contradiction by linear aggregation:” Let us associate with inequalities of (S) nonneg-
ative weights λi and sum up the inequalities with these weights. The resulting inequality

[
m∑

i=1

λiai

]T
x


>
∑
i

λibi,
ms∑
i=1

λi > 0

≥
∑
i

λibi,
ms∑
i=1

λi = 0
(C)

by its origin is a consequence of (S), that is, it is satisfied at every solution to (S).
Consequently, if there exist λ ≥ 0 such that (C) has no solutions at all, then (S) has no
solutions!
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Question: When a linear inequality

dTx

{
>
≥ e

has no solutions at all?
Answer: This is the case if and only if d = 0 and

— either the sign is ">", and e ≥ 0,

— or the sign is "≥", and e > 0.
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Conclusion: Consider a system of linear inequalities

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

in variables x, and let us associate with it two systems of linear inequalities in variables λ:

TI :



λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

If one of the systems TI, TII is solvable, then (S) is unsolvable.
Note: If TII is solvable, then already the system

aTi x ≥ bi, i = ms +1, ...,m

is unsolvable!
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General Theorem of Alternative: A system of linear inequalities

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

is unsolvable iff one of the systems

TI :



λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑

i=1
λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

is solvable.
Note: The subsystem

aTi x ≥ bi, i = ms +1, ...,m

of (S) is unsolvable iff TII is solvable!
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TI :



λ ≥ 0
m∑

i=1

λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑

i=1

λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

Proof. We already know that solvability of one of the systems TI, TII is a sufficient condition for unsolvability
of (S). All we need to prove is that if (S) is unsolvable, then one of the systems TI, TII is solvable.
Assume that the system

aTi x > bi, i = 1, ...,ms

aTi x ≥ bi, i = ms +1, ...,m
(S)

in variables x has no solutions. Then every solution x, τ, ϵ to the homogeneous system of inequalities

τ −ϵ ≥ 0
aTi x −biτ −ϵ ≥ 0, i = 1, ...,ms

aTi x −biτ ≥ 0, i = ms +1, ...,m

has ϵ ≤ 0.
Indeed, in a solution with ϵ > 0 one would also have τ > 0, and the vector τ−1x would solve (S).
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TI :



λ ≥ 0
m∑

i=1

λiai = 0

ms∑
i=1

λi > 0

m∑
i=1

λibi ≥ 0

TII :



λ ≥ 0
m∑

i=1

λiai = 0

ms∑
i=1

λi = 0

m∑
i=1

λibi > 0

Situation: Every solution to the system of homogeneous inequalities

τ −ϵ ≥ 0
aTi x −biτ −ϵ ≥ 0, i = 1, ...,ms

aTi x −biτ ≥ 0, i = ms +1, ...,m
(U)

has ϵ ≤ 0, i.e., the homogeneous inequality

−ϵ ≥ 0 (I)

is a consequence of system (U) of homogeneous inequalities. By Homogeneous Farkas Lemma,
the vector of coefficients in the left hand side of (I) is a conic combination of the left hand side vectors of
coefficients of (U):

∃λ ≥ 0, ν ≥ 0 :

∑m

i=1
λiai = 0 [coefficients at x]

−
∑m

i=1
λibi + ν = 0 [coefficient at τ ]

−
∑ms

i=1
λi − ν = −1 [coefficient at ϵ]

Assuming that λ1 = ... = λms = 0, we get ν = 1, and therefore λ solves TII. In the case of
ms∑
i=1

λi > 0, λ clearly

solves TI.
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Corollaries of GTA

♣ Principle A: A finite system of linear inequalities has no solutions iff one can lead it to
a contradiction by linear aggregation, i.e., an appropriate weighted sum of the inequalities
with “legitimate” weights is either a contradictory inequality

0Tx > a [a ≥ 0]

or a contradictory inequality
0Tx ≥ a [a > 0]
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♣ Principle B: [Inhomogeneous Farkas Lemma] A linear inequality

aTx ≤ b

is a consequence of solvable system of linear inequalities

aTi x ≤ bi, i = 1, ...,m

iff the target inequality can be obtained from the inequalities of the system and the identically
true inequality

0Tx ≤ 1

by linear aggregation, that is, iff there exist nonnegative λ0, λ1, ..., λm such that

a =
m∑

i=1
λiai

b = λ0 +
m∑

i=1
λibi

⇔


a =
m∑

i=1
λiai

b ≥
m∑

i=1
λibi


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Linear Programming Duality Theorem

♣ The origin of the LP dual of a Linear Programming program

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is the desire to get a systematic way to bound from below the optimal value in (P ).
The conceptually simplest bounding scheme is linear aggregation of the constraints:
Observation: For every vector λ of nonnegative weights, the constraint

[ATλ]Tx ≡ λTAx ≥ λT b

is a consequence of the constraints of (P ) and as such is satisfied at every feasible solution
of (P ).
Corollary III.3 For every vector λ ≥ 0 such that ATλ = c, the quantity λT b is a lower bound
on Opt(P ).
♣ The problem dual to (P ) is nothing but the problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

of maximizing the lower bound on Opt(P ) given by Corollary III.3.
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♣ The origin of (D) implies the following
Weak Duality Theorem: The value of the primal objective at every feasible solution of
the primal problem

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

is ≥ the value of the dual objective at every feasible solution to the dual problem

Opt(D) = max
λ

{
bTλ : λ ≥ 0, ATλ = c

}
(D)

that is,

x is feasible for (P )
λ is feasible for (D)

}
⇒ cTx ≥ bTλ

In particular,
Opt(P ) ≥ Opt(D).
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♣ LP Duality Theorem: Consider an LP program along with its dual:

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

Then
♢ Duality is symmetric: the problem dual to dual is (equivalent to) the primal
♢ The value of the dual objective at every dual feasible solution is ≤ the value of the primal
objective at every primal feasible solution
♢ The following 5 properties are equivalent to each other:

(i) (P ) is feasible and bounded (below)
(ii) (D) is feasible and bounded (above)
(iii) (P ) is solvable
(iv) (D) is solvable
(v) both (P ) and (D) are feasible

and whenever they take place, one has Opt(P ) = Opt(D).
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Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

♢ Duality is symmetric
Proof: Rewriting (D) in the form of (P ), we arrive at the problem

min
λ

{
−bTλ :

[
AT

−AT

I

]
λ ≥

[
c
−c
0

]}
,

with the dual being

max
u,v,w

{
cTu− cTv +0Tw :

u ≥ 0, v ≥ 0, w ≥ 0,
Au−Av + w = −b

}
⇕

max
x=v−u,w

{
−cTx : w ≥ 0, Ax = b+ w

}
⇕

min
x

{
cTx : Ax ≥ b

}
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♢ The value of the dual objective at every dual feasible solution is ≤ the value of the primal objective at every
primal feasible solution
This is Weak Duality
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♢ The following 5 properties are equivalent to each other:
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

Indeed, by origin of Opt(P ), the inequality

cTx ≥ Opt(P )
is a consequence of the (solvable!) system of inequalities

Ax ≥ b.

By Principle B, the inequality is a linear consequence of the system:

∃λ ≥ 0 : ATλ = c & bTλ ≥ Opt(P ).

Thus, the dual problem has a feasible solution with the value of the dual objective ≥ Opt(P ). By Weak Duality,
this solution is dual optimal, and Opt(D) = Opt(P ).
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♢ The following properties are equivalent to each other:
(D) is solvable (iv)

⇓
(D) is feasible and bounded above (ii)

Evident
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♢ The following 5 properties are equivalent to each other:
(D) is feasible and bounded above (ii)

⇓
(P ) is solvable (iii)

Implied by already proved relation
(P ) is feasible and bounded below (i)

⇓
(D) is solvable (iv)

in view of primal-dual symmetry
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♢ The following 5 properties are equivalent to each other:
(P ) is solvable (iii)

⇓
(P ) is feasible and bounded below (i)

Evident
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We proved that

(i) ⇔ (ii) ⇔ (iii) ⇔ (iv)
and that when these 4 equivalent properties take place, one has

Opt(P ) = Opt(D)

It remains to prove that properties (i) – (iv) are equivalent to

both (P ) and (D) are feasible (v)

♢ In the case of (v), (P ) is feasible and below bounded (Weak Duality), so that (v)⇒(i)
♢ in the case of (i)≡(ii), both (P ) and (D) are feasible, so that (i)⇒(v)
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Optimality Conditions in LP

Theorem III.2 Consider a primal-dual pair of feasible LP programs

Opt(P ) = min
x

{
cTx : Ax ≥ b

}
(P )

Opt(D) = max
λ

{
bTλ : ATλ = c, λ ≥ 0

}
(D)

and let x, λ be feasible solutions to the respective programs. These solutions are optimal
for the respective problems
♢ iff cTx− bTλ = 0 [“zero duality gap”]
as well as
♢ iff [Ax− b]i · λi = 0 for all i [“complementary slackness”]
Proof: Under Theorem’s premise, Opt(P ) = Opt(D), so that

cTx− bTλ = cTx− Opt(P )︸ ︷︷ ︸
≥0

+Opt(D)− bTλ︸ ︷︷ ︸
≥0

Thus, duality gap cTx− bTλ is always nonnegative and is zero iff x, λ are optimal for the respective problems.
• The complementary slackness condition is given by the identity

cTx− bTλ = (ATλ)Tx− bTλ = [Ax− b]Tλ

Since both [Ax− b] and λ are nonnegative, duality gap is zero iff the complementary slackness

[Ax− b]iλi = 0 ∀i

holds true.
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Shadow Prices

♣ Optimality conditions in LP tell us an instructive and nontrivial story. For the sake of this story, let us
replace [A, b] with −[A, b], resulting in

Opt(P ) = min
x

{
cTx : Ax ≤ b

}
(P )

Opt(D) = max
λ

{
−bTλ : c+ATλ = 0, λ ≥ 0

}
(D)

[A = [aT1 ; ...; a
T
m]]

and optimality conditions for a feasible solution x∗ to (P ) becoming

∃λ∗ ≥ 0 :
{

c+
∑

i
λ∗
iai = 0 [Karush-Kuhn-Tucker equation]

λ∗
i [bi − aTi x∗] = 0,1 ≤ i ≤ m [complementary slackness]

♠ To tell the story, let us interpret
— cTx as the loss (minus profit) incurred when implementing a decision x ∈ Rn,
— aTi x as the amount of resources of type i (manpower, raw materials of different types, etc.) required to
implement a decision x,
— bi - as the amount of resources of type i in your possession.
With this interpretation. (P ) becomes the problem of selecting a decision obeying given upper bounds on the
resources and minimizing under these restrictions your loss.
♠ Consider now another decision-making environment, where the resources can be bought and solved at per-
unit prices λi ≥ 0 ("shadow prices"). You, as before, have at your possession bi units of resource i, i ≤ m, and
are allowed to make a whatever decision x ∈ Rn, but should, on the top of your "actual loss" cTx, buy aTi x− bi
units of resource i which is in shortage (i.e., aTi x > bi) and sell bi−aTi x units of resource i which is in abundance
(i.e., aTi x ≤ bi). In this model, your total loss incurred by a decision x ∈ Rn is

[cTx+
∑

i

λi[a
T
i x− bi] =

[
c+
∑

i

λiai

]T

x−
∑

i

λibi.

As before, you want to minimize your total loss.

3.33



Opt(P ) = min
x

{
cTx : Ax ≤ b

}
(P )

Opt(D) = max
λ

{
−bTλ : c+ATλ = 0, λ ≥ 0

}
(D)

[A = [aT1 ; ...; a
T
m]]

• Original loss: vTx • New loss: cTx+
∑

i
λi[aTi x− bi], λi ≥ 0.

Let us make two observations:
A. The new environment is better for you than the initial one: whenever x is feasible for (P ), your new loss is
≤ the "actual loss" cTx, with the new loss equal to the initial one iff the complementary slackness holds, that
is, iff λi[aTi x− bi] = 0 for all i
B. Your new loss is just linear in x, and you can make it as negative as you wish, unless [c +

∑
i
λiai = 0; in

this latter case, your new loss is equal to −
∑

i
λibi identically in x, and every x minimizes it.

As an immediate corollary, we see that
If x∗ is a feasible solution to (P ) such that for some nonnegative shadow prices λ∗

i satisfying the complementary
slackness condition λ∗

i [bi − aTi x∗ = 0 for all i, x∗ is an unconstrained minimizer of your new loss (that is,
c+
∑

i
λ∗
i = 0), then x∗ is an optimal solution to (P ).

Indeed, were there a feasible solution x̄ to (P ) with cT x̄ < cTx∗, the new loss cTx+
∑

i
λ∗
i [a

T
i x− bi] as evaluated

at x = x̄ would be ≤ cT x̄ < cTx∗ (as the new loss underestimates the actual one at every feasible solution to
(P )). This is impossible, since by complementary slackness the new loss as evaluated at x∗ is the same as the
actual one, and x∗ minimizes this new loss over all decisions x ∈ Rn.

♠ We see that the existence of nonnegative shadow prices λ∗
i which, taken together with a feasible solution x∗

to (P ), satisfy complementary slackness and the condition c+
∑

i
λ∗
iai = 0, is sufficient for x∗ to be an optimal

solution to (P ).
We immediately see that what the above sufficient condition wants from the shadow prices is exactly to be
feasible for (D) and to be linked to x∗ via complementary slackness, so that LP optimality conditions say to
us that the above sufficient condition for primal optimality of a primal-feasible solution x∗ is in fact necessary
and sufficient.
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Helly Theorem: Alternative proof

♣ Here we present an alternative proof of Helly Theorem; this proof does not use Radon
Theorem.
Polyhedral version of Helly Theorem: Let Ai = {x : Pix ≤ pi}, i ≤ N , be a family of
polyhedral sets in Rn with N ≥ n + 1. If every n + 1 sets from the family have a points in
common, then all sets from the family have a common point.
Proof. All we need to prove is that If ∩i≤NAi = ∅, then the intersection of properly selected k ≤ n + 1 sets
from the family is empty as well.
Thus, assume that ∩iAi = ∅, that is, the system of linear inequalities

Pix ≤ pi, i ≤ N (∗)

in variables x ∈ Rn has no solutions. By General Theorem of Alternative this means that the weighted sum,
with nonnegative weights, of inequalities from the system is a contradictory inequality 0Tx ≤ β with β < 0. This
is the same as to say that the vector f = [0; ...; 0, β] is a conic combination of the n + 1-dimensional vectors
of coefficients of our inequalities (n coefficients at variables in the left hand side of inequality augmented by
its right hand side). By Caratheodory Theorem in conic form, we can select from our scalar inequalities at
most n+1 in such a way that f is a conic combination of the selected vectors, implying, by the same General
Theorem of Alternative, that the system composed of selected inequalities has no solutions. This, in turn,
implies that system of vector inequalities (∗) has at most n+1-element infeasible subsystem, that is, properly
selecting at most (n+1) of the sets Ai, we get a collection with empty intersection. Q.E.D.
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From polyhedral to general case. To extract from the just proved Helly Theorem for
polyhedral sets Helly Theorem per se, consider the family of N ≥ n+1 convex sets Ai ⊂ Rn,
and assume that every n+1 of these sets have a point in common; we want to prove that
all N sets have a common point.
Let I be the set of all collections ι = {i1, ..., in+1} of n+1 distinct from each other indexes
from I = {1, ..., N}. By our premise, for ι ∈ I there exists xι ∈ ∩i∈ιAi. For i ∈ I, let us set
Bi = Conv{xι : ι ∈ I & i ∈ ι}. Then
• Bi is polyhedral (Corollary III.1),
• Bi ⊂ Ai (since xι ∈ Ai when i ∈ ι and Ai is convex), and
• every n+1 of the sets Bi, i ∈ I, have a point in common
[indeed, given i1, ..., in+1 ∈ I, there exists ι ∈ I with is ∈ ι, s ≤ n+1, whence by construction xι ∈ ∩sBis]
Applying Polyhedral Helly Theorem, we conclude that ∩i∈IBi ̸= ∅, and since ∩iAi ⊃ ∩iBi, ∩iAi

is nonempty as well, Q.E.D.

3.36



Lecture I.4
Separation and Extreme Points

Separation Theorem
Supporting planes and Extreme points
Krein-Milman Theorem
Dual cone
Extreme rays and Krein-Milman Theorem in conic form
Dubovitski-Milutin Lemma
Polar of a convex set
Geometry of polyhedral sets



Separation Theorem
♣ Every linear form f(x) on Rn is representable via inner product:

f(x) = fTx

for appropriate vector f ∈ Rn uniquely defined by the form. Nontrivial (not identically zero)
forms correspond to nonzero vectors f .
♣ A level set

M =
{
x : fTx = a

}
(∗)

of a nontrivial linear form on Rn is affine subspace of affine dimension n−1; vice versa, every
affine subspace M of affine dimension n−1 in Rn can be represented by (∗) with appropriately
chosen f ̸= 0 and a; f and a are defined by M up to multiplication by a common nonzero
factor.
(n− 1)-dimensional affine subspaces in Rn are called hyperplane.
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M =
{
x : fTx = a

}
(∗)

♣ Level set (∗) of nontrivial linear form splits Rn into two parts:

M+ = {x : fTx ≥ a}
M− = {x : fTx ≤ a}

called closed half-spaces given by (f, a); the hyperplane M is the common boundary of these
half-spaces. The interiors M++ of M+ and M−− of M− are given by

M++ = {x : fTx > a}
M−− = {x : fTx < a}

and are called open half-spaces given by (f, a). We have

Rn = M−
⋃

M+ [M−
⋂

M+ = M ]

and
Rn = M−−

⋃
M
⋃

M++

4.2



♣ Definition. Let T, S be two nonempty sets in Rn.
(i) We say that a hyperplane

M = {x : fTx = a} (∗)
separates S and T , if
♢ S ⊂ M−, T ⊂ M+ (“S does not go above M , and T does not go below M”)
and
♢ S ∪ T ̸⊂ M .
(ii) We say that a nontrivial linear form fTx separates S and T if, for properly chosen a, the
hyperplane (∗) separates S and T .

S

T

Red hyperplane 2x1 +3x2 = 6 separates cyan set S and green set T
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Examples: The linear form x1 on R2

1) separates the sets
S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} :

T

S

{x1 = 0}
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The linear form x1 on R2...
2) separates the sets

S = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0},
T = {x ∈ R2 : x1 + x2 ≥ 0, x2 ≤ 0} :

TS

{x1 = 0}
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The linear form x1 on R2...
3) does not separate the sets

S = {x ∈ R2 : x1 = 0,1 ≤ x2 ≤ 2},
T = {x ∈ R2 : x1 = 0,−2 ≤ x2 ≤ −1} :

S

T

x =01
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The linear form x1 on R2...
4) separates the sets

S = {x ∈ R2 : x1 = 0,0 ≤ x2 ≤ 2},
T = {x ∈ R2 : 0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 1} :

S

T

x =01
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Observation: A linear form fTx separates nonempty sets S, T iff

sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy
(∗)

In the case of (∗), the associated with f hyperplane separating S and T are exactly the
hyperplane

{x : fTx = a} with sup
x∈S

fTx ≤ a ≤ inf
y∈T

fTy.
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Fact IV.1 [Separation Theorem] Two nonempty convex sets S, T can be separated iff their
relative interiors do not intersect.

Note: In this statement, convexity of both S and T is crucial!

.S

T
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Proof, ⇒: (!) If nonempty convex sets S, T can be separated, then rint S
⋂

rint T = ∅
Lemma. Let X be a convex set, f(x) = fTx be a linear form and a ∈ rintX. Then

fTa = max
x∈X

fTx ⇔ f(·)
∣∣∣
X

= const.

♣ Lemma ⇒ (!): Let a ∈ rint S ∩ rint T . Assume, on contrary to what should be proved,
that fTx separates S, T , so that

sup
x∈S

fTx ≤ inf
y∈T

fTy.

♢ Since a ∈ T , we get fTa ≥ sup
x∈S

fTx, that is, fTa = max
x∈S

fTx. By Lemma, fTx = fTa for all

x ∈ S.
♢ Since a ∈ S, we get fTa ≤ inf

y∈T
fTy, that is, fTa = min

y∈T
fTy. By Lemma, fTy = fTa for all

y ∈ T .
Thus,

z ∈ S ∪ T ⇒ fTz ≡ fTa,

so that f does not separate S and T , which is a contradiction.
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Lemma. Let X be a convex set, f(x) = fTx be a linear form and a ∈ rintX. Then

fTa = max
x∈X

fTx ⇔ f(·)
∣∣∣
X

= const.

Proof. Shifting X, we may assume a = 0. Let, on the contrary to what should be proved, fTx be non-constant
on X, so that there exists y ∈ X with fTy ̸= fTa = 0. The case of fTy > 0 is impossible, since fTa = 0 is
the maximum of fTx on X. Thus, fTy < 0. The line {ty : t ∈ R} passing through 0 and through y belongs to
Aff(X); since 0 ∈ rintX, all points z = −ϵy on this line belong to X, provided that ϵ > 0 is small enough. At
every point of this type, fTz > 0, which contradicts the fact that max

x∈X
fTx = fTa = 0.
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Proof, ⇐: Assume that S, T are nonempty convex sets such that rint S ∩ rint T = ∅, and let us prove that S,
T can be separated.
Step 1: Separating a point and a convex hull of a finite set. Let S = Conv({b1, ..., bm}) and T = {b} with
b ̸∈ S, and let us prove that S and T can be separated.
Indeed,

S = Conv(b1, ..., bm) =

{
x : ∃λ :

λ ≥ 0,
∑

i
λi = 1

x =
∑

i
λibi

}
is polyhedral representable and thus is polyhedral:

S = {x : aTℓ x ≤ αℓ, ℓ ≤ L}.

Since b ̸∈ S, for some ℓ̄ we have

aT
ℓ̄
b > αℓ̄ ≥ sup

x∈S
aT
ℓ̄
x

which is the desired separation.
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Step 2: Separating a point and a convex set which does not contain the point. Let S be a nonempty
convex set and T = {b} with b ̸∈ S, and let us prove that S and T can be separated.
10. Shifting S and T by −b (which clearly does not affect the possibility of separating the sets), we can assume
that T = {0} ̸⊂ S.
20. Replacing, if necessary, Rn with Lin(S), we may further assume that Rn = Lin(S).
Recall that ever nonempty subset X of Rn is separable (Lecture I.1), that is, there exists a countable subset
{xi, i ≥ 1} of X dense in X – such that every point of X is the limit of a sequence of points from the subset.
Let {xi ∈ S}i be a countable set which is dense in S. Since S is convex and does not contain 0, we have

0 ̸∈ Conv({x1, ..., xi}) ∀i

whence

∃fi : 0 = fT
i 0 > max

1≤j≤i
fT
i xj. (∗)

By scaling, we may assume that ∥fi∥2 = 1.
The sequence {fi} of unit vectors possesses a converging subsequence {fis}∞s=1; the limit f of this subsequence
is, of course, a unit vector. By (∗), for every fixed j and all large enough s we have fT

is
xj < 0, whence

fTxj ≤ 0 ∀j. (∗∗)

Since {xj} is dense in S, (∗∗) implies that fTx ≤ 0 for all x ∈ S, whence

sup
x∈S

fTx ≤ 0 = fT0.
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Situation: (a) Lin(S) = Rn

(b) T = {0}
(c) We have built a unit vector f such that

sup
x∈S

fTx ≤ 0 = fT0. (!)

By (!), all we need to prove that f separates T = {0} and S is to verify that

inf
x∈S

fTx < fT0 = 0.

Assuming the opposite, (!) would say that fTx = 0 for all x ∈ S, which is impossible, since Lin(S) = Rn and f
is nonzero.
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Step 3: Separating two non-intersecting nonempty convex sets. Let S, T be nonempty convex sets
which do not intersect; let us prove that S, T can be separated.
Let Ŝ = S − T and T̂ = {0}. The set Ŝ clearly is convex and does not contain 0 (since S ∩ T = ∅). By Step 2,
Ŝ and {0} = T̂ can be separated: there exists f such that

sup
x∈S

fT s−inf
y∈T

fTy︷ ︸︸ ︷
sup

x∈S,y∈T
[fTx− fTy] ≤ 0 = inf

z∈{0}
fTz

inf
x∈S,y∈T

[fTx− fTy]︸ ︷︷ ︸
inf
x∈S

fTx−sup
y∈T

fTy

< 0 = sup
z∈{0}

fTz

whence

sup
x∈S

fTx ≤ inf
y∈T

fTy

inf
x∈S

fTx < sup
y∈T

fTy
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Step 4: Completing the proof of Separation Theorem. Finally, let S, T be nonempty convex sets with
non-intersecting relative interiors, and let us prove that S, T can be separated.
As we know, the sets S′ = rint S and T ′ = rint T are convex and nonempty; we are in the situation when these
sets do not intersect. By Step 3, S′ and T ′ can be separated: for properly chosen f , one has

sup
x∈S′

fTx ≤ inf
y∈T ′

fTy

inf
x∈S′

fTx < sup
y∈T ′

fTy
(∗)

Since S′ is dense in S and T ′ is dense in T , inf’s and sup’s in (∗) remain the same when replacing S′ with S
and T ′ with T . Thus, f separates S and T .
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♣ Alternative proof of Separation Theorem starts with separating a point T = {a} and a
closed convex set S, a ̸∈ S, and is based on the following fact:

Let S be a nonempty closed convex set and let a ̸∈ S. There exists a unique closest
to a point in S:

ProjS(a) = argmin
x∈S

∥a− x∥2

and the vector e = a− ProjS(a) separates a and S:

max
x∈S

eTx = eTProjS(a) = eTa− ∥e∥22 < eTa.
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Proof: 10. The closest to a point in S does exist. Indeed, let xi ∈ S be a sequence such that

∥a− xi∥2 → inf
x∈S

∥a− x∥2, , i → ∞

The sequence {xi} clearly is bounded; passing to a subsequence, we may assume that xi → x̄ as i → ∞. Since
S is closed, we have x̄ ∈ S, and

∥a− x̄∥2 = lim
i→∞

∥a− xi∥2 = inf
x∈S

∥a− x∥2.

20. The closest to a point in S is unique. Indeed, let x, y be two closest to a points in S, so that ∥a− x∥2 =
∥a− y∥2 = d. Since S is convex, the point z = 1

2
(x+ y) belongs to S; therefore ∥a− z∥2 ≥ d. We now have

=∥2(a−z)∥2
2
≥4d2︷ ︸︸ ︷

∥[a− x] + [a− y]∥22+

=∥x−y∥2︷ ︸︸ ︷
∥[a− x]− [a− y]∥22

= 2∥a− x∥22 +2∥a− y∥22︸ ︷︷ ︸
4d2

whence ∥x− y∥2 = 0.
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30. Thus, the closest to a point b = ProjS(a) in S exists, is unique and differs from a (since a ̸∈ S). The
hyperplane passing through b and orthogonal to a− b separates a and S:

a

b

b'p

S

Indeed, if there were a point b′ ∈ S “above” the hyperplane, the entire segment [b, b′] would be contained in S
by convexity of S. Since the angle ∠abb′ is < π/2, performing a small step from b towards b′ we stay in S and
become closer to a, which is impossible!
With e = a− ProjS(a), we have

x ∈ S, f = x− ProjS(a)
⇓

ϕ(t) ≡ ∥e− tf∥22 = ∥a− [ProjS(a) + t(x− ProjS(a))]∥22
≥ ∥a− ProjS(a)∥22 = ϕ(0),0 ≤ t ≤ 1
⇒ 0 ≤ ϕ′(0) = −2eT(x− ProjS(a))

⇓
∀x ∈ S : eTx ≤ eTProjS(a) = eTa− ∥e∥22.
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♣ Separation of sets S, T by linear form fTx is called strict, if

sup
x∈S

fTx < inf
y∈T

fTy

Geometrically: For properly selected δ > 0 and a, S and T are separated by the stripe
{x : a− δ ≤ fTx ≤ a+ δ}:

sup
x∈S

fTx ≤ a− δ < a+ δ ≤ inf
y∈T

fTy

Fact IV.2 Let S, T be nonempty convex sets. These sets can be strictly separated iff they
are at positive distance:

dist(S, T ) = inf
x∈S,y∈T

∥x− y∥2 > 0.
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Proof, ⇒: Let f strictly separate S, T ; let us prove that S, T are at positive distance. Otherwise we could find
sequences xi ∈ S, yi ∈ T with ∥xi − yi∥2 → 0 as i → ∞, whence fT(yi − xi) → 0 as i → ∞. It follows that the sets
on the axis

Ŝ = {a = fTx : x ∈ S}, T̂ = {b = fTy : y ∈ T}
are at zero distance, which is a contradiction with

sup
a∈Ŝ

a < inf
b∈T̂

b.

Proof, ⇐: Let T , S be nonempty convex sets which are at positive distance 2δ:

2δ = inf
x∈S,y∈T

∥x− y∥2 > 0.

Let

S+ = S + {z : ∥z∥2 ≤ δ}
The sets S+ and T are convex and do not intersect, and thus can be separated:

sup
x+∈S+

fTx+ ≤ inf
y∈T

fTy [f ̸= 0]

Since

sup
x+∈S+

fTx+ = sup
x∈S,∥z∥2≤δ

[fTx+ fTz]

= [sup
x∈S

fTx] + δ∥f∥2,

we arrive at

sup
x∈S

fTx < inf
y∈T

fTy
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Quiz Below S is a nonempty convex set and T = {a}.

Statement True?
If T and S can be separated
then a ̸∈ S
If a ̸∈ S, then T and S can be
separated
If T and S can be strictly
separated, then a ̸∈ S
If a ̸∈ S, then T and S can be
strictly separated
If S is closed and a ̸∈ S, then T
and S can be strictly separated
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Supporting Planes and Extreme Points

♣ Definition. Let Q be a closed convex set in Rn and x̄ be a point from the relative
boundary of Q. A hyperplane

Π = {x : fTx = a} [f ̸= 0]

is called supporting to Q at the point x̄, if the hyperplane separates Q and {x̄}:

sup
x∈Q

fTx ≤ a ≤ fT x̄ [⇔ supx∈Q fTx = a = fT x̄ due to x̄ ∈ Q]

inf
x∈Q

fTx < fT x̄

Equivalently: Hyperplane Π = {x : fTx = a} supports Q at x̄ iff the linear form fTx attains
its maximum on Q, equal to a, at the point x̄ and the form is non-constant on Q.
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cyan: supporting hyperplane cyan and green: supporting hyperplanes

cyan: supporting hyperplane cyan: NOT a supporting hyperplane

Q: blue set in 2D; a: red point
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Fact IV.3 Let Q be a convex closed set in Rn and x̄ be a point from the relative boundary
of Q. Then
♢ There exist at least one hyperplane Π which supports Q at x̄;
♢ For every such hyperplane Π, the set Q ∩Π has dimension less than the one of Q.

Proof: Existence of supporting plane is given by Separation Theorem. This theorem is applicable since

x̄ ̸∈ rintQ ⇒ {x̄} ≡ rint {x̄} ∩ rintQ = ∅.

Further,

{Q ∩Π︸ ︷︷ ︸
x̄∈

̸= ∅ & Q ̸⊂ Π} ⇒ {Aff(Q) ̸⊂ Π} ⇒ {Aff(Π ∩Q) ⊂ [Aff(Q) ∩Π] ⫋ Aff(Q)},

and if two distinct affine subspaces (in our case, Aff(Π∩Q) and Aff(Q)) are embedded one into another, then
the dimension of the embedded subspace is strictly less than the dimension of the embedding one.
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Extreme Points

♣ Definition. Let Q be a convex set in Rn and x̄ be a point of Q. The point is called
extreme, if it is not a convex combination, with positive weights, of two points of X distinct
from x̄:

x̄ ∈ Ext(Q)
⇕

{x̄ ∈ Q} &

{
u, v ∈ Q,λ ∈ (0,1)
x̄ = λu+ (1− λ)v

}
⇒ u = v = x̄

}
Equivalently: A point x̄ ∈ Q is extreme iff it is not the midpoint of a nontrivial segment in
Q:

x̄± h ∈ Q ⇒ h = 0.

Equivalently: A point x̄ ∈ Q is extreme iff the set Q\{x̄} is convex.

Equivalently: A point x̄ ∈ Q is extreme, if in every representation x̄ =
∑

i λixi of the point
as a convex combination of points xi ∈ Q, for all terms with λi > 0 it holds xi = x̄.
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Examples:

1. Extreme points of [x, y] are ... x

y

z

2. Extreme points of △ABC are ... A B

C

3. Extreme points of the ball {x : ∥x∥2 ≤ 1} are ...
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Quiz, answers

1. Extreme points of [x, y] are the endpoints x and y

2. Extreme points of △ABC are the vertices A, B, C

3. Extreme points of the ball {x : ∥x∥2 ≤ 1} are the points {x : ∥x∥2 = 1} on the boundary
of the ball.
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Theorem [Krein-Milman] Let Q be a closed convex and nonempty set in Rn. Then
♢ Q possesses extreme points iff Q does not contain lines;
♢ If Q is bounded, then Q is the convex hull of its extreme points:

Q = Conv(Ext(Q))

so that every point of Q is convex combination of extreme points of Q.

Note: If Q = Conv(A), then Ext(Q) ⊂ A. Thus, extreme points of a closed convex bounded
set Q give the minimal representation of Q as Conv(...).
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Proof of KM, A. Let us prove that If closed convex set Q does not contain lines, then Q has extreme points:
Ext(Q) ̸= ∅

Fact IV.4 Let S be a closed convex set and Π = {x : fTx = a} be a hyperplane which supports S at certain
point. Then

Ext(Π ∩ S) ⊂ Ext(S).

Proof of Fact IV.4. Let x̄ ∈ Ext(Π ∩ S); we should prove that x̄ ∈ Ext(S). Assume, on the contrary, that x̄
is a midpoint of a nontrivial segment [u, v] ⊂ S. Then fT x̄ = a = max

x∈S
fTx, whence fT x̄ = max

x∈[u,v]
fTx. A linear

form can attain its maximum on a segment at the midpoint of the segment iff the form is constant on the
segment; thus, a = fT x̄ = fTu = fTv, that is, [u, v] ⊂ Π∩S. But x̄ is an extreme point of Π∩S – contradiction!
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♠ Let Q be a nonempty closed convex set which does not contain lines. In order to build an extreme point of
Q, apply the Purification algorithm.
It generates a sequence Q = S0 ⊃ S1 ⊃ S2 ⊃ ... of shrinking closed convex nonempty sets which starts from
S0 = Q, along with points xt ∈ St, and is such that
A: all extreme points of St, if any, are extreme points of St−1 (and therefore are extreme points of S0 = Q),
and
B: whenever St is not a singleton, St+1 is well defined and is of dimension strictly less than the dimension of
St.
Taking for granted that there is an algorithm capable to produce sequence with these properties, observe that
the sequence S0 ⊃ St ⊃ ... is finite by B (dimension of St strictly decreases when passing from St to St+1,
and this cannot last indefinitely) and the concluding set SK in this sequence is a singleton (again by B). In
particular, SK has extreme point:

SK = {x̄} ⇒ Ext(SK) = {x̄}
and by A this extreme point is an extreme point of Q ⇒ Ext(Q) ̸= ∅, Q.E.D.
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♠ This is how Purification works:
• We start with S0 = Q and select as x0 an arbitrary point of S0

• Given St, and xt ∈ St we check whether St is a singleton; if yes, we terminate, otherwise we
— find a point xt+1 on the relative boundary of St

— build a hyperplane Πt supporting St at xt+1, and set St+1 = St ∩Πt Note: By construction, St+1, when defined,
is a nonempty closed convex subset of St, with dim (St+1) < dim (St) (by Fact IV.3) and Ext(St+1) ⊂ Ext(St)
(by Fact IV.4), so that we do ensure A and B.

♠ Paying debts: How to find a point on the relative boundary of a non-singleton nonempty closed convex set
not containing lines?
• To find a point xt+1 on the relative boundary of a non-singleton closed convex set St ∋ xt, we take a direction
h ̸= 0 parallel to Aff(St). Since St ⊂ Q, St does not contain lines
⇒ replacing if necessary h with −h, we can assume that the ray

{xt + sh : s ≥ 0}

is not contained in St, which combines with closedness of St to imply that the largest s = s̄ such that xt+sh ∈ St

is well defined
⇒ xt+1 = xt + s̄h is a point from the relative boundary of St
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Note: Assume you are given a linear form gTx which is bounded from above on Q. Then in the Purification
algorithm one can easily ensure that gTxt+1 ≥ gTxt. Thus,

Fact IV.5 If Q is a nonempty convex closed set in Rn which does not contain lines and gTx is a linear form
which is bounded above on Q, then for every point x0 ∈ Q there exists (and can be found by Purification) a
point x̄ ∈ Ext(Q) such that gT x̄ ≥ gTx0. In particular, if gTx attains its maximum on Q, then a maximizer can
be found among extreme points of Q.
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Proof of KM, B. Let us prove that if a closed convex set Q contains lines, it has no extreme points.
Indeed, when Q contains a line and v ∈ Q, then Q contains the parallel line passing through v (Fact II.15) ⇒ v
is not extreme point of Q ⇒ Ext(Q) = ∅.
Proof of KM, C. It remains to verify that if a nonempty closed convex set Q is bounded, then Q =
Conv(Ext(Q)).
The inclusion Conv(Ext(Q)) ⊂ Q is evident. Let us prove the opposite inclusion, i.e., prove that every point
of Q is a convex combination of extreme points of Q.
Induction in k = dimQ. Base k = 0 (Q is a singleton) is evident.
Step k 7→ k+1: Given (k+1)-dimensional closed and bounded convex set Q and a point x ∈ Q, we can use the
construction for finding a relative boundary point from the Purification algorithm to represent x as a convex
combination of two points x+ and x− from the relative boundary of Q. Let Π+ be a hyperplane which supports
Q at x+, and let Q+ = Π+ ∩Q. As we know, Q+ is a closed convex set such that

dimQ+ < dimQ, Ext(Q+) ⊂ Ext(Q), x+ ∈ Q+.

Invoking inductive hypothesis, x+ ∈ Conv(Ext(Q+)) ⊂ Conv(Ext(Q)). Similarly, x− ∈ Conv(Ext(Q)). Since
x ∈ [x−, x+], we get x ∈ Conv(Ext(Q)).

x

x+

x-
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♠ Slightly modifying the argument used in item C in the proof of KM, we can prove the
following nice statement: the Purification Algorithm combines with induction in dimension
to yield

Fact IV.6 Let Q ⊂ be a nonempty closed convex set not containing lines. Then the set
Ext(X) of extreme points of X is nonempty and

Q = Conv(Ext(Q)) + Rec(Q). (∗)

The fact that for Q in question, Ext(Q) is nonempty, is part of the KM. To prove (∗), we use induction
in dimQ. Base is evident, and the reasoning at the inductive step is modified as follows. Given that Q is
nonempty, closed, convex, and does not contain lines and that (∗) holds true when dimQ = k ≥ 0, we want
to prove that (∗) holds true when dimQ = k + 1. The fact that the left hand side in (∗) contains the right
hand one is due to Fact II.14 combined with the evident inclusion Conv(Ext(Q)). All we need to complete
the inductive step is to prove the opposite inclusion holds true. Thus, given x ∈ Q, we want to prove that
x ∈ Conv(Ext(Q) + Rec(Q). To this end we select a nonzero h ∈ Aff(Q) (such an h exists since
dimQ > 1)). As Q does not contain lines, we can, replacing, if necessary, h with −h, further assume that
h ̸∈ Rec(Q). With this in mind, we can apply one step of Purification algorithm to get a relative interior point
x+ of Q such that x+ = x + t+h for some t+ ≥ 0. Specifying Q+ as in item C of the proof of KM, we get a
nonempty closed subset Q+ of Q with dimQ+ ≤ K and Ext(Q+) ⊂ Ext(Q). In addition, Q+ does not contain
lines due to Q+ ⊂ Q. Applying inductive hypothesis, we conclude that there exists v+ ∈ Conv(Ext(Q+)) and
r+ ∈ Rec(Q+) ⊂ Rec(Q) (the latter "⊂" is due to Q+ ⊂ Q) such that x+ = v+ + r+. Now, two cases are
possible: (a) −h ∈ Rec(Q), and (b) −h ̸∈ Rec(Q). In the case of (a), we have

x = x+ + t+[−h]− v+︸︷︷︸
∈Ext(Q)

+[r+ + t+[−h]]︸ ︷︷ ︸
∈Rec(Q)

(note that t+ ≥ 0 and we are in the case of h ∈ Rec(Q)), that is, x is in the right hand side set of (∗).
In the case of (b), −h ̸∈ Rec(R), and we can apply the construction just described to −h in the role of h to
get a point x− = x− t−h with t− ≥ 0 such that x− = v− + r− ∈ Conv(Ext(Q)) + Rec(Q)). Since x is a convex
combination of x+ and x−, and both these points belong to the (convex!) right hand side of (∗), we get
x ∈ Conv(Ext(Q)) + Rec(Q), Q.E.D.
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Extreme points and maximizers of linear forms

♣ Let Q be a nonempty closed convex set not containing lines and of positive dimension.
♠ An extreme point of Q is on the relative boundary of Q (since dimQ > 0), and every point
of ∂rQ is a maximizer of non-constant on Q linear form (the one coming from a hyperplane
supporting Q at the point) ⇒ An extreme point of Q is among maximizers of a properly
selected non-constant linear form.
♠ The reverse also is true:
• If linear form fTx attains its maximum over x ∈ Q, then all extreme points of Argmaxx∈Q fTx
(the latter set, when nonempty, is a nonempty closed convex set not containing lines and
as such does have extreme points) are extreme points of Q.
Indeed, there is nothing to prove when the form is constant on Q. When fTx is non-constant on Q and
v ∈ Argmaxx∈Q fTx, the hyperplane Π = {x : fTx = fTv} supports Q at v and Argmaxx∈Q fTx = Π ∩Q; by Fact
IV.4, the extreme points of Π ∩Q are extreme points of Q.

As a corollary,

Fact IV.7 If a linear form attains its maximum over Q at a unique point, the maximizer is
an extreme point of Q.

Question: To which extent Fact IV.7 characterizes extreme point of Q – whether it is true
that every extreme point of Q is the unique maximizer of properly selected linear form?
The answer in general is "no:"

v is not the unique maximizer of a linear form on Q
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The answer becomes "yes," when Q is polyhedral:

Fact IV.8 For a nonempty polyhedral set Q, v ∈ Ext(Q) iff v is the unique maximizer, on
Q, of properly selected linear form.

Indeed, there is nothing to prove when dimQ = 0. Now let dimQ > 0. We already know that the unique
maximizer, on Q, of a linear form. To prove the opposite, let Q = {x : aTi x ≤ bi, i ≤ m} and v ∈ Ext(Q). Let
I = {i : aTi v = bi}. Then I ̸= ∅ (were I empty, we would have v ∈ intQ, while all extreme points of closed
convex set Q of positive dimension are in ∂rQ). Note that v is the unique solution to the system aTi x = bi, i ∈ I;
otherwise there would exist h ̸= 0 such that aTi h = 0, i ∈ I, implying that v ± th ∈ Q for all small positive v,
which is impossible. Setting f =

∑
i∈I ai, the linear form fTx everywhere on Q is ≤ β =

∑
i
bi and equals to β

at v. Moreover, for every x ∈ Q with fTx = β it holds aTi x = bi. i ∈ I, whence by the above x = v ⇒ v is the
unique maximizer of fTx over x ∈ Q.
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Calculus of extreme points

A. When taking intersections or inverse affine images of closed convex sets, there are no
simple rules expressing the extreme point of the result in terms of the extreme points of the
operands.
B. Everything is fine with taking direct product: Whenever Qk ⊂ Rnk are nonempty closed
convex sets, one has

Ext(Q1 × ...×QK) = Ext(Q1)× ...× Ext(QK).

C. Situation with taking arithmetic sums is good: In every representation of an extreme
point v of the sum Q of nonempty convex sets Q1, ..., QK as v =

∑K
k=1 vk with vk ∈ Qq, every

vk is an extreme point of Qk.
Indeed, were vk not an extreme point of Qk for some k, there would exist h ̸= 0 such that vk ±h ∈ Qk, implying
v ± h ∈ Q, which is impossible.
Of course, when summing up extreme points of Qk, the result not necessary is an extreme
point of Q (look what happens when K = 2 and Q1 = Q2 = [0,1]).
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D. When taking image A(X) = {ax + b : x ∈ Q} of a closed nonempty set Q under affine
mapping A(x) = Ax + b, simple examples show that the image A(v) of v ∈ Ext(Q) not
necessarily is an extreme point of A(A). Similarly, it may happen that some or all extreme
points of A(Q) are not images of extreme points of Q (look what happens when projecting
the stripe 0 ≤ x1 ≤ 1 in R2 onto the x1-axis). However,

Fact IV.9 If Q ⊂ Rn is a nonempty closed convex set not containing lines and x 7→ Ax+ b :
Rn → Rm is an affine mapping, then every point v ∈ Ext(A(Q)) is A(u) for certain u ∈ Ext(Q).

Indeed, let v ∈ Ext(A(Q)), and let V = {u ∈ Q : A(u) = v}. Then V is a nonempty closed convex set not
containing lines (since Q ⊃ V does not contain lines), and therefore has an extreme point u. We claim that
u ∈ Ext(Q) (this is all we need, as v = A(u) due u ∈ V ). Indeed, assuming u±h ∈ Q and setting g = Ah, we get
v±Ah ∈ A(Q), whence Ah = 0 since v is an extreme point of A(Q). As Ah = 0 we have A(u± h) = A(u) = v,
which combines with u± h ∈ Q to imply u± h ∈ V . As u ∈ Ext(V ), we get h = 0. Thus, u ∈ Ext(Q).
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Cones revisited: Dual cone

♣ Given a cone K ⊂ Rn, its dual cone K∗ is the set of all vectors making nonnegative inner
products with all vectors from K

K∗ = {y : yTx ≥ 0 ∀x ∈ K}
K∗ clearly is a closed cone, and [clK]∗ = K∗
Examples:
• [Rn]∗ = {0}, [{0}]∗ = Rn

• [Rn
+]∗ = Rn

+

• A linear subspace L in Rn is a cone, and L∗ = L⊥

• The cone dual to ∠AOB is ∠COD, and vice versa

−−→
OCT−−→OB = 0 =

−→
OAT−−→OD
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• By Homogeneous Farkas Lemma, For A ∈ Rm×n, the dual of the polyhedral cone
K = {x : Ax ≥ 0} = {x : Ax ∈ Rm

+}, the dual is the polyhedral cone K∗ = ATRm
+ = {y :

∃λ ≥ 0 : y = ATλ}
• For a nonempty convex set X ⊂ Rn, the dual of the conic transform ConeT(X) =
Cone ({[x; 1] : x ∈ X}) is the cone ConeT∗(X) = {[−y; s] ∈ Rn

y ×R1
s : supx∈X yTx ≤ s}.

Indeed, [−y; s] makes nonnegative inner products with all vectors from Cone ({[x; 1] : x ∈ X}) iff it makes
nonnegative inner products with all vectors [x; 1] with x ∈ X, i.e., iff s− yTx ≥ 0 for all x ∈ X.
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K∗ = {y : yTx ≥ 0 ∀x ∈ K}

Fact IV.10 For a cone K ⊂ Rn it holds

[K∗]∗ = clK.

In particular, twice taken dual of a closed cone is this cone itself.

✓By definition of K∗, every vector from K makes a nonnegative inner product with every vector from K
⇒ K ⊂ [K∗]∗ ⇒ clK ⊂ [K∗]∗.
✓To prove the inverse inclusion, let x ∈ [K∗]∗; assuming that x ̸∈ clK, we arrive at a contradiction as follows:
x ̸∈ clK ⇒ {x} and clK are nonempty convex sets at positive distance ⇒ they can be strictly separated: for
some y, we have

yTx < inf
v∈clK

yTv.

Since clK is a cone and infv∈clK yTv > −∞, we have 0 = infv∈clK yTv > yTx ⇒ y ∈ K∗ and yTx < 0, contradicting
x ∈ [K∗]∗.
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Fact IV.11 Let K ⊂ Rn be a closed cone. Then
(i) intK∗ ̸= ∅ iff K is pointed
(ii) Whenever y ∈ intK∗, there exists cy < ∞ such that

x ∈ K ⇒ ∥x∥2 ≤ cy[y
Tx] (∗)

(iii) When K is nontrivial, one has

intK∗ = {y : yTx > 0 ∀x ∈ K\{0}}

(i): assuming that K is not pointed: ±d ∈ K for some d ̸= 0, we get ±yTd = 0 for all y ∈ K∗, implying due to
d ̸= 0 that intK∗ = ∅. Vice versa, let intK∗ = ∅, and let us prove that K is not pointed. As intK∗ = ∅, Lin(K∗)

is a proper linear subspace.
Indeed, assuming that Lin(K∗) = Rn, there exists a basis f1, ..., fn of Rn with fi ∈ K∗ ⇒ ∅ ̸=
intConv(0, f1, f2, ..., fn} ⊂ K∗ – contradiction!
Since Lin(K∗) is a proper linear subspace, there exists a nonzero d ∈ [Lin(K∗)]⊥ ⇒ d is orthogonal to every
y ∈ K∗ ⇒ ±d ∈ [K∗]∗ = K; since d ̸= 0, K is not pointed, as claimed.
(ii) When y ∈ intK∗, for some ry > 0 we have y + h ∈ K∗ for all h with ∥h∥2 ≤ ry ⇒ yTx + hTx ≥ 0 for every
x ∈ K ⇒ yTx− ry∥x∥2 = minh:∥h∥2≤ry[y + h]Tx ≥ 0 for every x ∈ K ⇒ (∗) holds true with cy = r−1

y .
(iii) ✓Let y be such that yTx > 0 for all x ∈ K\{0}, and let us prove that y ∈ intK∗. There is nothing to prove
when K = {0}, that is, K∗ = Rn. Assuming K ̸= {0} and setting α = minx∈K:∥x∥2=1 y

Tx, we get α > 0 (as the
minimum, taken over compact nonempty set, of a continuous function positive on the set). By homogeneity,
yTx ≥ α∥x∥2 for all x ∈ K, whence y + h)Tx ≥ 0 for all x ∈ K and all h with ∥h∥2 ≤ α ⇒ centered at y ∥ · ∥2-ball
of radius α > 0 is contained in K∗ ⇒ y ∈ intK∗.
✓Vice versa, if y ∈ intK, then ∥x∥2 ≤ cy[yTx] for all x ∈ K and some cy by (ii) ⇒ yTx > 0 whenever x ∈ K\{0}.
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♣ The "conic analogy" of extreme points are extreme rays defined as follows:
Let K ⊂ Rn be a closed cone. A nonzero vector d ∈ K is called extreme direction of K, if in
every representation d = d1 + d2 of d as the sum of two vectors from K, both d1 and d2 are
nonnegative multiples of d.
The ray R · d spanned by an extreme direction d is called extreme ray of K.
Examples: • Extreme directions of Rn

∗ are positive multiples of the standard basic orth
⇒ the extreme rays are the nonnegative rays of the coordinate axes.
Indeed, an extreme direction d is a nonzero nonnegative vector such that when d = d1 + d2 with di ≥ 0, then
d1 and d2 are nonnegative multiples of d. This indeed is the case when d ≥ 0 has exactly one positive entry
dℓ > 0; in this case dij + d2j = 0 for all j ̸= ℓ, and since both summands are ≥ 0, we get d1j = d2j = 0, j ̸= ℓ ⇒ di

are nonnegative multiples of d. On the other hand, when d has at least 2 nonzero entries, say, d! > 0, d2 > 0,
then d = [d1; 0; ...; 0] + [0; d2; d3; ...; dn], both terms in the right hand side are not nonnegative multiples of d.
• Extreme rays of the Lorentz cone {[x; t] : t ≥ ∥x∥2} of dimension > 1 are the rays of the
form {[te; t] : t ≥ 0} with ∥e∥2 = 1
• Rn and {0} have no extreme rays.
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Extreme rays and bases

♣ Let K ⊂ Rn be a closed cone. Set of the form

By = {x ∈ K : yTx = 1}
– intersection of K with a hyperplane not passing through the origin – is called a base of
K, when By is nonempty and contains a positive multiple of every nonzero vector from K.
Example: Bases of Rn

+ are exactly the sets {x ≥ 0 : yTx = 1} stemming from y > 0.
Note: Trivial cone K has no bases!
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Fact IV.12 Let K ⊂ Rn be a nontrivial closed cone. Then
(i) By = {x ∈ K : yTx = 1} is a base of K iff y ∈ intK∗. When K is pointed, By is a base iff
By is nonempty and bounded
(ii) K possesses bases iff K is pointed and nontrivial, i.e., iff K is nontrivial and intK∗ ̸= ∅
(iii) A base By of K, if any, is a closed and bounded convex set, and there exists one-to-one
correspondence between extreme rays of K and extreme points of By: nontrivial emanating
from the origin rays in K are exactly nonnegative multiples of points from By, and the ray
R+ · v with v ∈ By is extreme ray of K iff v is an extreme point of By.

Cone and its base
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• K is a nontrivial closed cone. Then
(i) By = {x ∈ K : yTx = 1} is a base of K iff y ∈ intK∗. When K is pointed, By is a base iff By is nonempty
and bounded
Proof of (i): When y ∈ intK∗, yTx > 0 for every nonzero x ∈ K (Fact IV.11.iii) ⇒ By intersects every nontrivial
ray in k emanating from the origin ⇒ By is a base of K. Vice versa, if By is a base of K and yTx > 0 for all
nonzero x ∈ K, implying that y ∈ intK∗ by the same Fact IV.11.iii (recall that K is assumed to be nontrivial);
the first "iff" is proved.
Next, let K be pointed. ✓ If By is a base, then y ∈ intK∗ (by the already proved part of (i)); nonbusiness
of By is part of the definition of a base, and roundedness stems from Fact IV.11.ii. ✓Vice versa, let By be
nonempty and bounded, and let us prove that By is a base. We already know that to this end it suffices to
verify that y ∈ intK∗; invoking Fact IV.11.iii, all we need to verify that yTv > 0 for every v ∈ K\{0}. Assuming
the opposite, let v ∈ K be such that 0 ̸= v and yTv ≤ 0, that yTv ≤ 0 for some v ∈ K\K, and let us lead this
assumption to a contradiction. Since By ̸= ∅. there exists u ∈ K with yTu = 1. Note that v is not proportional
to u.
Indeed, assuming v = λu, λ cannot be neither positive (since yTu = 1, yTv ≤ 0), nor 0 (since v ̸= 0), nor
negative (since K is pointed and u, v ∈ K).
Now, yTu = 1, yTv ≤ 0 ⇒ yTd = 0 for some d ∈ [u, v], and d ̸= 0 (since u ̸= 0 and v is not proportional to u)
⇒ 0 ̸= d ∈ Rec(By) ⇒ the nonempty closed convex set By is unbounded, which is a desired contradiction.
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• K is a nontrivial closed cone. Then
(ii) K possesses bases iff K is pointed and nontrivial, i.e., iff intK∗ ̸= ∅

Proof of (ii): By (i), K possesses bases iff intK∗ ̸= ∅, which is the same as to say that K is pointed
and nontrivial (Fact IV.11.i).
• K is a nontrivial closed cone. Then
(iii) A base By of K, if any, is a closed and bounded convex set, and there exists one-to-one correspondence
between extreme rays of K and extreme points of By: nontrivial emanating from the origin rays in K are
exactly nonnegative multiples of points from By, and the ray R+ · v with v ∈ By is extreme ray of K iff v is an
extreme point of By.
Proof of (iii): Let By be a base of K. ✓Let R+ · d be an extreme ray. It intersects By ⇒ we can assume that

d ∈ By. To prove that d ∈ Ext(By), let d± h ∈ By ⇒ yTh = 0. We have d =
1

2
[d+ h︸ ︷︷ ︸
d1

+
1

2
[d− h︸ ︷︷ ︸
d2

and d1, d2 ∈ K as

By ⊂ K ⇒ di = λid, i = 1,2. As 1 = yTd = yT [d+ h] = 2yTd1 = 2λ1yTd, we get λ1 = 1
2
⇒ d1 := 1

2
[d+ h] = 1

2
d

⇒ h = 0. Thus, d ∈ By and d± h ∈ By ⇒ h = 0 ⇒ d ∈ Ext(By).
✓Vice versa, let d ∈ Ext(By), and let us prove that d is an extreme direction of K. Assuming that d = d1 + d2

with d1, d2 ∈ K, to see that d1, d2 are nonnegative multiplies of d, it suffices to consider the case when both d2

and d2 are nonzero, so that λi = yTdi > 0. We have 1 = yTd = yT(d1 + d2 ⇒ λ1 + λ2 = 1 ⇒ with f i = λ−1
i di we

get yTf i = 1 and f i ∈ K, i = 1,2 ⇒ d = d1 + d2 = λ1f1 + λ2f2 ⇒ d ∈ Ext(By) is a convex combination, with
positive coefficients, of f1 ∈ By and f2 ∈ By ⇒ f1 = f2 = d ⇒ di = λid, i = 1,2, Q.E.D.
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♠

Fact IV.13 [Krein-Milman Theorem in Conic form] Let K ⊂ Rn be a closed cone. K
possesses extreme rays iff K is nontrivial and pointed, and in this case K is the conic hull
of the set R of its extreme rays.

✓When K is nontrivial and pointed, if has a base B which is a nonempty compact convex set (Fact IV.12)
⇒ Ext(B) ̸= ∅ & B = Conv(Ext(B)) (TM) ⇒ K = Conv(B) ⊂ Cone (R) (Fact IV.12.iii).
✓When K is trivial, it clearly has no extreme rays. When K is nontrivial and is not pointed, it has no extreme
rays as well. Indeed, let e ̸= 0 be a direction of a line contained in K and d be a nonzero direction in K. Then
{d}+R · e ⊂ K ⇒ of s, and when e and t is large, at least one of d± is not a nonnegative multiple of d ⇒ d is
not and extreme direction of K.
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Dubovitski–Milutin Lemma

♠ Let K1, ...,KL be closed cones in Rn. We have

Fact IV.14 The cone dual to the intersection K = ∩ℓK
ℓ of the cones Kℓ is the closure of

the sum of the duals Kℓ
∗ of the cones:

K∗ :=
[
∩ℓK

ℓ
]
∗ = cl

(
K1

∗ + ...+K∗
L

)
(∗)

In words: Vectors f such that the linear form fTx is nonnegative for x running through the
intersection of closed cones Kℓ, ℓ ≤ L, are exactly the vectors which can be approximated,
to whatever high accuracy, by sums of the form

∑
ℓ f

ℓ with f ℓ producing nonnegative on the
respective cones Kℓ linear forms [f ℓ]Tx.

Proof. ✓When f =
∑

ℓ
f ℓ with f ℓ ∈ Kℓ

∗, then clearly f ∈ K∗, implying that the right hand side set in (∗) is
contained in the left hand side one.
✓To prove the inverse inclusion, assume that there is f ∈ K∗ which does not belong to the right hand side
set M and let us lead this assumption to a contradiction. Since M is a closed cone, Separation Theorem says
that there exists x such that fTx ≤ inff ℓ∈K∗

ℓ
,ℓ≤L[

∑
ℓ
f ℓ]Tx, that is,

fTx <
∑

ℓ

inf
f ℓ∈K∗

ℓ

[f ℓ]Tx. (∗)

In particular, every one of inff ℓ is finite, implying that it is 0 (Kℓ
∗ is a cone!). Thus, for every ℓ it holds

x ∈ [Kℓ
∗]∗ = Kℓ, where the equality is due to Fact IV.10. Thus, x ∈ K = ∩ℓK

ℓ and the right hand side in (∗) is
zero, that is, fTx < 0 - the desired contradiction with f ∈ K∗. □
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When Kℓ, ℓ ≤ L, are closed cones, one has

[∩ℓKℓ]∗ = cl
(
K1

∗ + ...+KL
∗
)
. (∗)

♠ It can be shown by examples that in general, one cannot get rid of taking the closure
in (∗), which would be crucial in many applications. Dubovitski-Milutin Lemma presents a
simply looking sufficient condition allowing to get rid of taking closure.

Fact IV.15 [Dubovitski-Milutin Lemma] Let L ≥ 2, and let M1, ...,ML,M = ∩ℓM
ℓ be cones

in Rn with the duals M1
∗ ,..., ML

∗ , M∗, and let

M1 ∩ intM2 ∩ ... ∩ intML ̸= ∅ (!)

Then, setting Kℓ = clM ℓ (whence Kℓ
∗ = M ℓ

∗), we have
(i) clM = K := [∩ℓKℓ]

[
⇒ M∗ = K∗

]
, and

(ii) the cone M1
∗ + ...+ML

∗ is closed, implying by Fact IV.14 that

M∗ = M1
∗ + ...+ML

∗ .

In words: In the case of (!) a linear form fTx is nonnegative on the intersection of cones
M ℓ iff the form can be represented as the sum of linear forms nonnegative on the respective
cones M ℓ.
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Let M1, ...,ML,M = ∩ℓM
ℓ be cones in Rn with the duals M1

∗ ,..., ML
∗ , M∗, and let

M1 ∩ intM2 ∩ ... ∩ intML ̸= ∅ (!)

Then, setting Kℓ = clM ℓ (whence Kℓ
∗ = M ℓ

∗), we have
(i) clM = K := [∩ℓKℓ]

[
⇒ M∗ = K∗

]
, and

(ii) the cone M1
∗ + ...+ML

∗ = [K1
∗ + ...+KL

∗ ] is closed.

Proof. (i): A point in the (nonempty!) set in (∗) can be approximated to whatever high accuracy by point
from rintM1, implying due to the structure of the set that there exists a point x̄ ∈ rintM1 ∩ intM2 ∩ ... ∩ML.
Now, clearly clM ⊂ ∩ℓclM ℓ. To prove the inverse inclusion, we need to prove that if x ∈ ∩ℓclM ℓ, then x ∈ clM .
Indeed, by Fact II.29 the points xi = (1/i)x̄+ (1− 1/i)x i = 1,2..., belong to M ℓ, ℓ ≤ L, and therefore belong
to M ⇒ x = limi→∞ xi ∈ clM , as claimed. (i) is proved.
(ii): There is nothing to prove when L = 1. When L > 1, for every ℓ ∈ {2, ..., L}, applying Fact IV.11.ii to
x̄ ∈ intM ℓ = intKℓ in the role of y and Kℓ

∗ in the role of K, we conclude that there exists cℓ < ∞ such that
∥f ℓ∥2 ≤ cℓ[f ℓ]T x̄ for all f ℓ ∈ Kℓ

∗ = M ℓ
∗. Now we are ready to prove that Q := M1

∗ + .... + ML
∗ is closed. Indeed,

let fi =
∑L

ℓ=1
f ℓ
i with f ℓ

i ∈ M ℓ
∗ converge as i → ∞ to some f ∈ Q, observe that the sequences {[f ℓ

i ]
T x̄}i are

nonnegative and their sum converges as i → ∞ to fT x̄. implying that the sequences are bounded: for some real
B and all ℓ, i it holds 0 ≤ [f ℓ

i ]
T x̄ ≤ B, implying for ℓ ≥ 2 that the sequences {f ℓ

i }i are bounded: ∥f ℓ
i ∥2 ≤ cℓB for

all i and all ℓ ≥ 2. Passing to a subsequence, we may assume w.l.o.g. that for ℓ ≥ 2 the limits f ℓ = limi→∞ f ℓ
i

exist. Since
∑L

ℓ=1
f ℓ
i → f as i → ∞, the limit f1 = limi→∞ f1

i exists as well, f =
∑L

ℓ=1
f ℓ and f ℓ ∈ M ℓ

∗ (cones M ℓ
∗

are closed!) ⇒ f ∈ Q, Q.E.D.
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Note: In the polyhedral case, DML holds "unconditionally:"

Fact IV.16 When M1, , , , ,ML are polyhedral cones in Rn, then the cone M1
∗ + ... + ML

∗ is
closed, so that

[∩ℓM
ℓ]∗ = M1

∗ + ..+ML
∗ .

Indeed, the duals of polyhedral cones are polyhedral, and the sum of polyhedral cones is polyhedral and thus
is closed; it remains to apply Fact IV.14.

♠ As a corollary of Dubovitski-Milutin Lemma, we get the following useful

Fact IV.17 Let L ≥ 2, and let Kℓ be closed cones in Rn with duals Kℓ
∗, ℓ ≤ L, and let

K1
∗ ∩ intK2

∗ ∩ ... ∩ intKL
∗ ̸= ∅. Then the cone K1 + ...+KL is closed.

Indeed, it suffices to apply item (ii) of DML to the cones M ℓ = Kℓ
∗.
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♠ Another useful corollary of DML is as follows. Let M+ ⊂ Rn be a closed cone, y 7→ Ay :
Rn → Rn be a linear map, and let M = {y : Ay ∈ M+} be the inverse image of M+ under the
mapping, so that M is a closed cone in Rm. Observe that

ATM+
∗ ⊂ M∗; (∗)

indeed, if f ∈ M+
∗ , then [ATf ]Ty = fT [Ay] ≥ 0 whenever y ∈ M . For numerous applications,

it is important to know when (∗) is an equality Observe that this is the case iff

[M+ ∩ E]∗ = M+
∗ + E∗, E = ImA (∗∗)

(as usual K∗ is the dual of a cone K).
Indeed, f ∈ M∗ must be orthogonal to KerA ⊂ M , which by Linear Algebra means that f = ATg for some g, so
that

M∗ = {ATg : gTAy ≥ 0∀y ∈ M},
that is,

M∗ = {ATg : gTAy ≥ 0∀y ∈ M},= {ATg : gTx ≥ 0 ∀x ∈ [M+ ∩ E]} = AT
(
[M+ ∩ E]∗

)
(a)

(the first equality in (a) has been just explained, the third is evident, and the second is due to AM = M+∩E by
definitions of E and M). By (a), equality M∗ = ATM+

∗ means that whenever g ∈ [M+
∗ ∩E]∗, so that f = ATg ∈ M∗,

we have also ATg = ATh with h ∈ M+
∗ , or, which is the same, for every g ∈ [M+ ∩E]∗ there exists h ∈ M+

∗ such
that ATg = ATh, or, which again is the same, exists h ∈ M+

∗ such that h − g ∈ KerAT = [ImA]⊥ = E⊥ = E∗.
The bottom line is that M∗ = ATM+

∗ iff [M+ ∩ E]∗ = M+
∗ + E∗, as claimed in (∗∗).

Applying DML and its polyhedral version, we arrive at

Fact IV.18 When M+ ⊂ Rn is a closed cone, A ∈ Rn×m, and M = {y : Ay ∈ M+}, we always
have ATM∗

+ ⊂ M∗, with equality taking place iff the cone M+
∗ + [ImA]⊥ is closed. The latter

definitely is the case when M+ is polyhedral, same as when

ImA ∩ intM+ ̸= ∅.
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"Inhomogeneous case"

Fact IV.19 Let L ≥ 2 closed convex sets Q1, ..., QL in Rn be given, and let Q = ∩ℓQ
ℓ ̸= ∅.

• If a vector [f ;α] ∈ Rn
x ×R1

α can be decomposed as

[f ;α] = [f1;α1] + ...+ [fL;αL]

with sup
x∈Qℓ

[f ℓ]Tx ≤ αℓ, then

sup
x∈Q

fTx ≤ α,

Equivalently: If f =
∑

ℓ f
ℓ, then supx∈Q fTx ≤

∑
ℓ supx∈Qℓ[f ℓ]Tx

• When the sum over ℓ ≤ L of the cones {[−y; s] : supx∈Qℓ yTx ≤ s} is closed, which definitely
is the case when

Q1 ∩ intQ2 ∩ ... ∩ intQL ̸= ∅, (!)

same as when all Qℓ are polyhedral, the above "If" can be strengthened to "Iff"
In other words: When the sum over ℓ ≤ L of the cones {[−y; s] : supx∈Qℓ yTx ≤ s} is closed,
which definitely is the case when (!) takes place, same as when all Qℓ are polyhedral, the
relation

sup
x∈Q

fTx ≤ α

takes place if and only if f can be decomposed as f = f1 + ...+ fL in such a way that∑
ℓ

sup
x∈Qℓ

[f ℓ]Tx ≤ α.
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Proof. Let M ℓ, M be closed conic transforms of Qℓ and Q = ∩ℓQ
ℓ:

M ℓ = clCone (Qℓ × {1}) = cl {t[x; 1] : x ∈ Qℓ, t ≥ 0}, ,M ℓ = clCone (Qℓ × {1}) = cl {t[x; 1] : x ∈ Q}
so that M ℓ are closed cones. Observe that M = ∩ℓM

ℓ. Indeed, as Qℓ and therefore Q are closed, and Q is
nonempty.We know from the story of closed conic transforms of closed convex sets that setting Qt := {x :
[x; t] ∈ M}„ Qℓ

t := {x : [x : t] ∈ M ℓ}, we have
t > 0 ⇒ Qt = {x : x/t ∈ Q}, Qℓ

t := {x : [x : t] ∈ M ℓ} = {x : x/t ∈ M ℓ}
& Q0 = Rec(Q), Qℓ

0 = Rec(Qℓ)
& t < 0 ⇒ Qt = Qℓ

t = ∅,
that is, Qt = ∩ℓQ

ℓ
t for all t, whence M = ∩ℓMℓ.

Next, we have
M ℓ

∗ = {[−y; s] : ts− yTx ≥ 0∀[x, ; t] ∈ M ℓ} = {[−y; s] : ts− yTx ≥ 0∀(t > 0/x = tz : z ∈ Qℓ}
= {[−y; s] : s− yTz ≥ 0 ∀z ∈ Qℓ}
= {[−y; s] : supz∈Qℓ yTz ≤ s}.

and similarly
M∗ = {[−y; s] : sup

y∈Q
yTz} ≤ s}

By Fact IV.14, we conclude that
(!) Whenever the cone M1

∗ + ...+ML
∗ is closed, we have

M∗ = M1
∗ + ...+ML

∗ ,

which combines with the description of M∗ and M∗
ℓ to imply that when the cone M1

∗ + ... + ML
∗ is closed,

relation supx∈Q fTx ≤ α holds true iff there exist fℓ, αℓ such that
f = f1 + ...+ fL & α = α1 + ...+ αL.

✓Assume, first, that the intersection Q ∩ intQ1 ∩ ... ∩ intQL is nonempty, and let x̄ be a point from this
intersection. Then clearly [x̄; 1] ∈ M1 ∩ intM2 ∩ ... ∩ML, and therefore by DML we have

M∗ = M1
∗ + ...+ML

∗ ,

so that the right hand side cone is closed; applying (!), we arrive at the "nonpolyhedral" part of Fact.
✓Now let Qℓ be polyhedral. Then the cones M ℓ, M are polyhedral as well (Fact F in Calculus of polyhedrality),
and therefore the cone M1

∗ +...+ML
∗ is polyhedral and thus is closed. Applying (!), we arrive at the "polyhedral"

part of Fact. □
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Illustration. A state x ∈ Rn of certain system is a point of the nonempty polyhedral set
Q = {x : Aℓx ≤ bℓ, ℓ ≤ L}. When in state x, the "tax" fTx should be paid. It is known that
budget α is sufficient to pay the tax, whatever be the state x ∈ Q: fTx ≤ α for all x ∈ Q.
Question: Can we "decentralize taxation," that is, instead of paying the tax by central
authority which, provided with budget α, observes the state x of the system and pays the
tax fTx, use L agents, ℓ-th of them observing Aℓx and paying tax λT

ℓ Aℓx? Can we specify
vectors λℓ and distribute the budget α as α =

∑
ℓ αℓ in such a way that

∑
ℓ λ

T
ℓ Aℓx ≡ fTx and

λT
ℓ Aℓx ≤ αℓ for all x ∈ Q?

Answer: Yes, we can.
Let Qℓ = {x : Aℓx ≤ bℓ}, so that Q = ∩ℓQ

ℓ. Observe that

[ConeT(Qℓ)]∗ = {[−y; s] : sup
x∈Qℓ

yTx ≤ s} = {[−y; s] : Aℓx ≤ bℓ ⇒ yTx ≤ s} = {[−y; s] : ∃λ ≥ 0 : y = AT
ℓ λ, λ

T bℓ ≤ s}

where the last equality is by Inhomogeneous Farkas Lemma (applicable since Qℓ ̸= ∅ due to Q ̸= ∅). We see
that the cones {[−y; s] : supx∈Qℓ yTx ≤ s} are polyhedral, so that their sum over ℓ is polyhedral as well, and
thus is closed. Applying Fact IV.19, we conclude that as supx∈Q fTx ≤ α, we can represent f as

∑
ℓ
f ℓ with∑

ℓ
supx∈Qℓ[f ℓ]Tx︸ ︷︷ ︸

α∗
ℓ

≤ α. Under the circumstances, f ℓ = AT
ℓ λℓ with properly selected λℓ ≥ 0, and since

∑
ℓ
α∗
ℓ ≤ α,

we can find αℓ ≥ α∗
ℓ such that

∑
ℓ
αℓ = α. Thus,

∑
ℓ
λT
ℓ Aℓx ≡ fTx and supx∈Qℓ λT

ℓ Aℓx ≤ αℓ with
∑

ℓ
αℓ = α –

decentralized taxation indeed is possible.
Note: "Decentralization of taxation" is readily given by LP Duality: our story says that the optimal value in the
feasible LP program Opt = maxx{fTx : x ∈ Qℓ := {u : Aℓu ≤ bℓ}, ℓ ≤ L} does not exceed α ⇒ the dual problem
minλ{

∑
ℓ
λT
ℓ b

ℓ :
∑

ℓ
AT

ℓ λℓ = f, λℓ ≥ 0, ℓ ≤ L} is solvable with optimal solution λ∗ ≥ 0 satisfying
∑

ℓ
AT

ℓ λ
∗
ℓ︸︷︷︸

f ℓ

= f and∑
ℓ
[bℓ]Tλ∗

ℓ︸ ︷︷ ︸
βℓ

= Opt. As λ∗
ℓ ≥ 0, maxx∈Qℓ[f

ℓ]Tx ≤ βℓ, which is all we need due to
∑

ℓ
βℓ = Opt ≤ α. The advantage

of our initial argument is that it works when Qℓ are convex rather than polyhedral, at the price of assuming
Q1 ∩ intQ2 ∩ ... ∩ intQL ̸= ∅ instead of ∩ℓQ

ℓ ̸= ∅.
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Calculus of dual cones

Fact IV.20 The following claims are true:
A. Involutive property: The dual [K∗]∗ of the dual K∗ of a cone K is clK.
B. Taking intersection When Kℓ, ℓ ≤ L, are closed cones in Rn, one has[⋂

ℓ
Kℓ
]
∗
= cl

(
K1

∗ + ...+KL
∗
)
.

When K1 ∩ intK2 ∩ ... ∩ intKL ̸= ∅, taking closure in the right hand side can be omitted.
C. Summation: The dual of the sum of finitely many cones in Rn is the intersection of
their duals. More generally, let Kα, α ∈ A, be a family of cones in Rn. Then[

Cone
(⋃

α∈A
Kα
)]

=
⋂

α∈A
Kα

∗

Indeed, y belongs to the left hand side set iff yTx ≥ 0 for all x ∈ ∪αKα, i.e., iff y ∈ ∩αKα
∗ .

D. Taking direct products When Kℓ ⊂ Rnℓ, ℓ ≤ L, are cones, one has[
K1 × ...×KL

]
∗ = K1

∗ × ...×KL
∗

E. Taking linear image: Let K ⊂ Rn be a cone and AK = {Ax, x ∈ K} be the linear image
of K under linear mapping x 7→ Ax : Rn → Rm. Then

[AK]∗ = [AT ]−1K∗ := {z : ATz ∈ K∗}
Indeed, {zTy ≥ ∀y ∈ AK} ⇔ {zTAx ≥ 0∀x ∈ K} ⇔ ATz ∈ K∗
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F. Taking inverse linear image: Let K ⊂ Rn be a closed cone and A−1K = {y : Ay ∈ K}
be the inverse image of K under linear mapping y 7→ Ay : Rm → Rn. Then[

A−1K︸ ︷︷ ︸
Q

]
∗ = clATK∗.

When [ImA]⊥ ∩K = {0}, taking the closure in the right hand side can be omitted.
Indeed, when z = ATu, u ∈ K∗, and v := Ay ∈ K, one has zTy = uTAy = uTv ≥ 0 ⇒ [ATK∗ ⊂ Q∗ ⇒ clATK∗ ⊂ Q∗
Vice versa, when z ̸∈ clATK∗, there exists linear from wTu of u ∈ Rm strictly separating z from ATK∗;

zTw < inf
u∈K∗

wTATu ⇒ zTw < 0 & Aw ∈ [K∗]∗ = K ⇒ w ∈ A−1K and zTw < 0z ̸∈ [A−1K]∗ = Q∗,

hence clATK∗ ⊃ Q∗. Finally, when [ImA]⊥ ∩K = {0}, the cone ATK∗ is closed (Fact II.23).
Remark: if K,L ⊂ Rn are closed cones and L∩K∗ ̸= ∅, then [−L∗]∩K = {0},. As a result, in
the situation if item F, [ImA]∩ intK∗ ̸= ∅ implies [ImA]⊥∩K = {0}, whence ATK∗ = [A−1K]∗.
Indeed, let f ∈ L ∩ intK∗ and h ∈ [−L∗] ∩K, As f ∈ intK∗ and h ∈ K, we have fTh ≥ 0 and fTh = 0 only when
h = 0; on the other hand, as f ∈ L and h ∈ [−L∗], we have fTh ≤ 0, which combines with fTh ≥ 0 to imply
that fTh = 0, whence h = 0, Q.E.D.
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Calculus of extreme rays

A. When taking intersections or inverse linear images of nontrivial closed pointed cones,
there are no simple rules expressing the extreme rays of the result in terms of the extreme
rays of the operands.
B. Everything is fine with taking direct product: Whenever Kℓ ∈ Rnℓ, ℓ ≤ L, are nontrivial
closed pointed cones, extreme rays of their direct product K = K1 × ...×KL are exactly the
rays generated by block-vectors d1, ..., dL] with exactly one nonzero block that is an extreme
direction of the respective factor Kℓ.
C. Situation with taking arithmetic sums is good: When the sum K = K1 + ... + KL of
nontrivial closed pointed cones is closed and pointed, in every representation of an extreme
direction d = d1+ ...+dK of K as the sum of directions dℓ ∈ Kℓ, all nonzero terms are positive
multiples of d and are extreme directions of respective cones Kℓ.
Indeed, when d is an extreme direction of K, all dℓ should be nonnegative multiples of d (as dℓ ∈ Kℓ ⊂ K.
Besides it, if, say d1 is nonzero, then d1 is an extreme direction of K1; otherwise, we would have d1 = d11++d12
with d11, d

1
2 ∈ K1 with d11 and d12 that are not nonnegative multiples of d1, or, which is the same, of d, implying

representation d = d1+[d12+d2+ ...+dL of d as the sum of two vectors, d11 and f , from K, which is impossible,
as d is an extreme direction of K, and d1! is not a positive multiple of d.
However: not every extreme direction of a factor Kℓ is an extreme direction of K (look
what happens when K1 = {x ∈ R2

+ : x1 ≤ x2} and K2 = {x ∈ R2
+ : x1 ≥ x2}).
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D. When taking linear image K+ = AK of a nontrivial closed pointed cone K, simple
examples show that the image AR of an extreme ray R of K is not an extreme ray of clK+;
this may happen even when K+ is closed, pointed, and nontrivial. However,

Fact IV.21 If K ⊂ Rn is a nontrivial closed pointed cone and its linear image K+ = AK is
nontrivial, closed, and pointed as well, then every extreme ray R of K+ is the image of an
extreme ray of K under the same linear mapping.

Indeed, let R be an extreme ray of K+, and R = {x ∈ K : Ax ∈ R}. Then R is nontrivial (as AR = R ̸= {0})
closed pointed cone and therefore it possesses extreme rays and is the conic hull of their union; not all these
rays are in KerA, as AR ̸= {0}. Let R̄ be an extreme ray of R not belonging to KerA; then AR̄ = R, and
all we need to verify is that R̄ is an extreme ray of K. Assuming the opposite, there exist d1, d2 ∈ K such
that d = d1 + d2 is a generator of R̄ and d1, d2 are not nonnegative multiples of d. We have Ad = Ad1 + Ad2

with Ad1, Ad2 ∈ K+. Now, R is an extreme ray of K+ and Ad is a generator of R ⇒ Ad1, Ad2 are nonnegative
multiples of Ad ⇒ Ad1, Ad2 ∈ R ⇒ d1, d2 ∈ R, contradicting the fact R̄ is an extreme ray of R.
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Polar of a convex set

♣ Definition. The polar of a nonempty convex set M ⊂ Rn is the set

Polar(M) := {y ∈ Rn : yTx ≤ 1, ∀x ∈ M}.
Examples:
• Polar(Rn) = {0}
• Polar({0}) = Rn

• Given a linear subspace in L ⊆ Rn, we have Polar(L) = L⊥ (why?)
• When K ⊂ Rn is a cone, Polar(K) = −K∗ (why?)
• The polar of the unit Euclidean ball B = {x ∈ Rn : ∥x∥2 ≤ 1} is B itself (why?)
• Let M ⊂ Rn be nonempty convex set and D be a nonsingular n × n matrix. Then,
Polar(DM) = D−TPolar(M).
• Let E = {x : xTCx ≤ 1}, C ≻ 0, be an ellipsoid centered at the origin. . Then Polar(E) =
{x : xTC−1x ≤ 1}, i.e., the polar of E is another n-dimensional ellipsoid centered at the origin.
Elementary properties of polars: Let M ⊂ Rn be a nonempty convex set.
• Polar(M) is a closed convex set containing the origin
• Polar of a set remains intact when passing from the set to the closure of the convex full
of the union of the set and the origin:

Polar(M) = Polar(clConv(M ∪ {0}))
• Passing to polars reverts inclusions: when ∅ ̸= M ⊂ M ′ ⊂ Rn, one has Polar(M ′) ⊂
Polar(M).
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♠ The polar of a nonempty convex set is a closed convex set containing the origin. In fact,
every set of the latter type is a polar:

Fact IV.22 Let Q ⊂ Rn be a closed convex set containing the origin. Then Polar(A) is a
closed convex set containing the origin, and

Q = Polar(Polar(Q)) (!)

Thus, polars of nonempty convex sets are exactly closed convex sets containing the origin,
and twice taken polar of a convex set M is the closure of Conv(M ∪{0}. In particular, every
closed convex set containing the origin is a polar, specifically, it is the polar of its polar.

Let M ⊂ Rn be a nonempty convex set. We have Q := Polar(M) = {y : yTx ≤ 1∀x ∈ M}, implying that
M := Polar(Q) ⊃ M . Besides this, M clearly contains the origin and is closed and convex, whence M ⊃
M̂ := clConv(M ∪ {0}). Let us prove that in fact M = M̂ . Indeed, assume the opposite and let us lead this
assumption to a contradiction. Let a ∈ M\M̂ . As M̂ is nonempty, closed, and convex and a ̸∈ M̂ , {a} and M̂
can be strictly separated: there exists y such that

sup
x∈M̂

yTx < yTa.

As 0 ∈ M̂ , we conclude that yTa > 0; passing from y to y = y/(yTa), we arrive at

α := sup
x∈M̂

yTx < yTa = 1.

As M ⊂ M̂ , we get yTa = 1 > α ≥ supx∈M yTx. Selecting θ > 1 such that θα ≤ 1 and setting ŷ = θy, we get

ŷTa > 1 ≥ sup
x∈M

ŷTx (∗)

The second inequality in (∗) says that ŷ ∈ Polar(M), and as a ∈ Polar(Polar(M)) and ŷ ∈ Polar(M), we have
ŷTa ≤ 1, contradicting the first inequality in (∗); this is the desired contradiction.
The bottom line of our consideration is that for a nonempty convex set M , Polar(Polar(M)) = clConv(M∪{0}).
As a result, when M is a closed convex set containing the origin, it is a polar – namely, the polar of its polar.
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More facts about polars

♣ Let M ⊂ Rn be a closed convex set containing the origin.
A. Question: When Polar(M) is bounded?
Answer: Polar(M) is bounded iff M contains a neighborhood of the origin.
Recalling that M is the polar of its polar, this is the same as M is bounded iff Polar(M)
contains a neighborhood of the origin.
Proof of the first claim: ✓When r > 0 and Br := {x : ∥x∥2 ≤ r} ⊂ M , we have Polar(M) ⊂ Polar(Br) = {x ∈
Rn : ∥x∥2 ≤ 1/r} ⇒ Polar(M) is bounded. ✓Now let 0 ̸∈ intM , and let us prove that Polar(M) is unbounded.
If Lin(M) ̸= Rn, there is a nonzero vector v orthogonal to Lin(M), implying that R · v ⊂ Polar(M), and thus
Polar(M) is unbounded, as claimed. Now let Lin(M) = Rn. As 0 ∈ M , we have Aff(M) = Lin(M) = Rn, and as
0 ̸∈ intM , 0 is a point on the boundary of the full-dimensional closed convex set M . As such, 0 is a maximizer,
over x ∈ M , of a nonconstant linear form vTx, that is, 0 ̸= v and vTx ≤ 0∀x ∈ M ⇒ Polar(M) contains the
nontrivial ray R+ · v and thus is unbounded. □

B. Question: Let M be polyhedral. Is it true that the polar of M is polyhedral?
Answer: Yes, The polar of a nonempty polyhedral set M is polyhedral, and a polyhedral
representation

M = {x : ∃u : Px+Qu ≤ r}
of the set induces explicit polyhedral representation of its polar:

Polar(M) =
{
y : ∃λ : P Tλ = y,QTλ = 0, rTλ ≤ 1, λ ≥ 0

}
.

Indeed, we have

Polar(M) = {y : supx∈M yTx ≤ 1} =
{
y : maxx,u{yTx : Px+Qu ≤ r} ≤ 1

}
=

{
y : minλ{rTλ : P Tλ = y,QTλ = 0, λ ≥ 0} ≤ 1

}
[LP Duality Theorem]

=
{
y : ∃λ : P Tλ = y,QTλ = 0, rTλ ≤ 1, λ ≥ 0

}
.
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Geometry of Polyhedral Sets

♣ Definition: A polyhedral set Q in Rn is a subset in Rn which is a solution set of a finite
system of nonstrict linear inequalities:

Q is polyhedral ⇔ Q = {x : Ax ≥ b}.

♠ Every polyhedral set is convex and closed.
♣ In the sequel, the polyhedral sets in question are assumed to be nonempty.
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Extreme points of polyhedral sets

♣ Recall that every nonempty closed convex set not containing lines has extreme points.
Question: When a nonempty polyhedral set Q = {x : Ax ≤ b} contains lines? What are
these lines, if any?

Answer: Q contains lines iff A has a nontrivial kernel:

KerA ≡ {h : Ah = 0} ̸= {0}.
Directions of lines contained in Q are exactly the nonzero vectors from KerA.
Indeed, a line ℓ = {x = x̄+ th : t ∈ R}, h ̸= 0, belongs to Q iff

{∀t : A(x̄+ th) ≥ b} ⇔ {∀t : tAh ≥ b−Ax̄} ⇔ {Ah = 0 & x̄ ∈ Q}

Fact IV.23 A polyhedral set Q = {x : Ax ≤ b} always can be represented as

Q = Q∗ + L,

where Q∗ is a polyhedral set which does not contain lines and L is a linear subspace. In this
representation,
♢ L is uniquely defined by Q and coincides with Ker(A),
♢ Q∗ can be chosen, e.g., as

Q∗ = Q ∩ L⊥
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• Red stripe Q: polyhedral set containing lines
• red line L: the recessive subspace of Q
• Blue segment: Q∗ = Q ∩ L⊥

♠ Red stripe Q = blue segment Q∗ + red subspace L
♠ Blue segment Q∗: polyhedral set not containing lines
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Algebraic characterization of extreme point of polyhedral sets

Fact IV.24 Let Q = {x : aTi x ≤ bi, i ≤ m} be a polyhedral set in Rn, A point v ∈ Q is an
extreme point of Q iff v ∈ Q and among the constraints aTi x ≤ bi which are active at v –
are satisfied at v as equalities – there are n constraints with linearly independent vectors of
coefficients.

indeed, let v ∈ Ext(Q) and I = {i : aTi x = bi} be the set of indices of the constraints active at v. Let us prove
that among the vectors ai, i ∈ I, there are n linearly independent. Assuming the opposite, there exists h ̸= 0

such that aTi h = 0, i ∈ i. Setting d±t = v ± th, we get aTi d
±
t = bi for all i ∈ I; as ai6 < bi for i ̸∈ I, we have

aTi d
±
t ≤ bi for all small enough t > 0 ⇒ aTi ]v± th ≤ bi for all i and all small enough t > 0 ⇒ for these t, v± th ∈ Q,

contradicting v ∈ Ext(Q) due to h ̸= 0.
Vice versa, let Lin(ai : iiI} = Rn, and let us prove that v ∈ Ext(Q). To this end we need to verify that when
v ± h ∈ Q, then h = 0. Indeed, when v ± h ∈ Q, we have aTi [v ± h] ≤ bi, which for i ∈ reads bi ± aTi h ≤ bi
⇒ aTi h = 0 i ∈ I ⇒ h = 0 (as Rank{ai : i ∈ I} = n).

Corollary The number of extreme points of a polyhedral set is finite.
Indeed, among the constraints active at a given extreme point there are n constraints with linearly independent
vectors of coefficient ⇒ the set I of indices of constraints active at an extreme point v uniquely specifies the
point ⇒ the number of extreme points of Q = {x : aTi x ≤ bi, i ≤ m} does not exceed

(
m
n

)
.
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Polyhedral sets with MUST TO KNOW extreme points

A. Let k ≤ n be positive integers.
A.1. The extreme points of the set{

x ∈ Rn : 0 ≤ xi ≤ 1∀i,
∑

i
xi = k

}
are exactly Boolean vectors from the set, that is, 0/1 vectors with exactly k entries equal
to 1.
In particular, the extreme points of the “flat (a.k.a. probabilistic) simplex”

{x ∈ Rn : x ≥ 0,
∑

i xi = 1}
are the standard basic orth (set k = 1).
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A.2. The extreme points of the set{
x ∈ Rn : 0 ≤ xi ≤ 1 ∀i,

∑
i
xi ≤ k

}
are exactly Boolean vectors from the set, that is, 0/1 vectors with at most k entries equal
to 1.
In particular, the extreme points of the “full-dimensional simplex”

{x ∈ Rn : x ≥ 0,
∑

i xi ≤ 1}
are the standard basic orth and the origin (set k = 1).
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A.3. The extreme points of the set{
x ∈ Rn : |xi| ≤ 1 ∀i,

∑
i
|xi| ≤ k

}
are exactly the vectors with k nonzero entries equal to ±1 each.
In particular,
• the extreme points of the unit ℓ1-ball

{x ∈ Rn : ∥x∥1 ≤ 1} = {x ∈ Rn :
∑

i |xi| ≤ 1}
are the plus-minus standard basic orth (set k = 1).
• the extreme points of the unit ℓ∞-ball

{x ∈ Rn : ∥x∥∞ ≤ 1} = {x ∈ Rn : −1 ≤ xi ≤ 1 ∀i}
are ±1 vectors (set k = n).
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Proof of A.3;

Q =
{
x ∈ Rn : |xi| ≤ 1 ∀i,

∑
i
|xi| ≤ k

}
• The only nontrivial part of the claim is that every extreme point of Q is vector with entries 0, ±1 and exactly
k entries equal to ±1. If you do not see that the inverse is evident, look at the end of this insert.

Proof by bare hands: Let x̄ be an extreme point of Q. Then

1) x̄ has at most one “fractional entry” - entry of positive magnitude less than 1. Indeed, assuming that there
are at least two fractional entries, say, x̄1 and x̄2, let us set h = [ϵ;−ϵ; 0; ...; 0] when these entries are of the
same sign, and h = [ϵ; ϵ; 0; ...; 0], when these entries are of different signs. When ϵ > 0 is small enough, all
entries in x̄± h are of magnitude ≤ 1, and the sum of their magnitudes is the same as the sum of magnitudes
of entries in x̄, that is, x̄± h ∈ Q for these ϵ, which is impossible, since h ̸= 0.

2) x̄ has no fractional entries at all. Indeed, by 1) if there is a fractional entry, say, x1, all other entries are
of magnitude 0 or 1, and the sum of magnitudes of all entries is not integer. Consequently, the constraint∑

i
|xi| ≤ k at x̄ is satisfied strictly, and therefore the vectors x̄ ± h with h = [ϵ; 0; ...; 0] belong to Q for small

positive ϵ, which again is impossible.

3) The bottom line is that all entries in x̄ are 0,±1, and it remains to see that the number of ±1 entries, which
we know to be ≤ k due to x̄ ∈ Q, is exactly k. In the opposite case, x̄ has a zero entry (since k ≤ n), say, x1,
and x̄± [ϵ; 0; ...; 0] belongs to Q for all small positive ϵ, which again is impossible □



More intelligent proof: Let x̄ be an extreme point of Q. Multiplications by diagonal matrices with ±1 diagonal
entries are symmetries of Q – they map Q onto itself and therefore map extreme points onto extreme points.
As a result, we can assume w.l.o.g. that x̄ ≥ 0, and all we need to prove is that x̄ has k entries equal to 1 and
all remaining entries equal to 0. The set Q+ = {x ∈ Q : x ≥ 0} = {x : 0 ≤ xi ≤ 1,

∑
i
xi ≤ k} is contained in Q

and contains x̄, so that x̄ is an extreme point of Q+

I have used the following evident fact: if P ⊂ Q are convex sets and x̄ ∈ P is extreme point of Q,
then it is extreme point of P (otherwise x̄ would be the midpoint of a nontrivial segment contained
in P and therefore contained in Q).

By A.2, x̄ has only 0 and 1 entries with at most k entries equal to k. In fact the number of nonzero entries is
equal to k, since otherwise x̄ would not be an extreme point of Q (last item in the previous proof). □

Finally every vector x̄ with k entries of magnitude 1 and zero remaining entries is an extreme point of Q. By

symmetry, it suffices to verify that the vector x̄ with the first k entries of magnitude 1 and zero remaining
entries is an extreme point of Q. Indeed, x̄ ∈ Q, and assuming that x̄ ± h ∈ Q for some h, we conclude that
h1 = ... = hk = 0, since otherwise some of the first k entries either in x̄+ h, or in x̄− h would be of magnitude
> 1. We see that the total of magnitudes of entries in x̄+ h is

∑k

i=1
|x̄|i +

∑n

i=k+1
|hi| = k +

∑n

i=k+1
|hi|, and

since this total should be ≤ k, we conclude that
∑n

i=k+1
|hi| = 0, the bottom line being that h = 0. □



B. A doubly stochastic matrix is a square matrix with nonnegative entries and all row and
column sums equal to 1. n× n doubly stochastic matrices form a polytope Pn in the space
Rn×n of n× n matrices:

Pn = {[xij] ∈ Rn×n : xij ≥ 0∀(i, j),
∑
j

xij = 1 ∀i,
∑
i

xij = 1 ∀j}

Fact IV.25 [Birkhoff’s Theorem] The extreme points of Pn are exactly the Boolean matrices
from the set, that is, permutation matrices – those with exactly one nonzero entry, equal
to 1, in every row and in every column.

Note: Permutation matrices P are exactly the matrices of linear transformations x 7→ Px
which permute the entries in the argument. Such a matrix is specified by the corresponding
permutation, and there are n! of them.
Sketch of the proof: Claim: If x is an extreme point of P, then the matrix x has an entry equal to 1
⇒ all other entries in the row and the column of the unit entry are zeros
⇒ eliminating from x the row and the column of the unit entry, we get an (n− 1)× (n− 1) doubly stochastic
matrix.
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Claim: If x is an extreme point of the polytope P of doubly stochastic matrices, then matrix x has an entry
equal to 1
Proof: “As is”, P is given by 2n linear equalities stating that all row and all column sums in matrix x are equal
to 1 plus n2 inequalities xij ≥ 0.
• In fact, we can drop one of the equalities without changing P: if all column sums and all but one row sums
are equal to 1, then all row and column sums are equal to 1.
Indeed, the total of all n row sums is equal to the total of all n column sums – both these
totals are the sums of all entries in the matrix, and “In fact” follows.
⇒ We lose nothing when assuming that P is given by n2 inequalities xij ≥ 0 and 2n− 1 linear equalities.
• By algebraic characterization of extreme points, at an extreme point x̄ of P n2 of the above constraints
should become active
⇒ at least n2 − 2n+1 entries in x̄ are zeros
⇒ there is a column in x̄ with at least n− 1 zero entries, since otherwise the total # of zero entries would be
at most n(n− 2) < n2 − 2n+1

In the column with at least n − 1 zero entries the sum of entries is 1, implying that in this column there is
exactly one nonzero entry, and this entry is equal to 1.
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Application to Assignment problem. There are n jobs and n workers. Every job takes
one man-hour. The profit of assigning worker i with job j is cij. How to assign workers with
jobs in such a way that every worker gets exactly one job, every job is carried out by exactly
one worker, and the total profit of the assignment is as large as possible?
Solution: Assuming for a moment that a worker can distribute his time between several
jobs and denoting xij the fraction of activity of worker i spent on job j, we get a relaxed
problem

max
x

∑
i,j

cijxij : xij ≥ 0,
∑
i

xij = 1 ∀j,
∑
j

xij = 1 ∀i


The feasible set is polyhedral, nonempty and bounded
⇒ The feasible set is the convex hull of permutation matrices ⇒ Program is solvable, and
among the optimal solutions there are permutation matrices (since when maximizing a linear
function over the convex hull of a finite set, among the maximizers there clearly are points
from the set)
⇒ Relaxation is exact!
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Extreme directions of polyhedral cones: algebraic characterization

♣ Recall that every nontrivial pointed and closed cone has extreme rays, enough for the cone
to be the conic hull of the union of these ray. Extreme directions of nontrivial and pointed
polyhedral cones admit algebraic characterization resembling the algebraic characterization
of extreme points of polyhedral sets.

Fact IV.26 Let K = {x : aTi x ≤ 0, i ≤ m} be a nontrivial pointed polyhedral cone. A vector
d is an extreme direction of K iff
— 0 ̸= d ∈ K, and
— among the constraints aTi x ≤ 0 i ≤ m which are active at d – are satisfied at d as equalities
– there are n− 1 constraints with linearly independent vectors of coefficient.

Indeed, given d ∈ K\{0}, let I = {i : aTi d = 0}.
• Assume, first, that among the vectors ai, i ∈ OI, there are n − 1 linearly independent, and let us prove that
then d is an extreme direction. Thus, assuming that d = d1 + d2 with d1, d2 ∈ K, let us verify that d1, d2 are
nonnegative multiples of d. Indeed, for i ∈ I, we have 0 = aTi d = aTi d

1 + aTi d
2, and both terms in the latter

sum are nonpositive due to d1, d2 ∈ K ⇒ aTi d
1 = aTi d

2 = 0 for all i ∈ I. Since Rank{ai : i ∈ I∥ ≥ n − 1, the
linear subspace L = {h : aTi h = 0, i ∈ I} is of dimension at most 1; this dimension is exactly 1, since 0 ̸= d ∈ L.
It follows that d1, d2, as all vectors from L, are multiples of d; these multiples should be nonnegative, since
0 ̸= d ∈ K and K is pointed.
• Now assume that Rank{ai : i ∈ I} < n− 1, and let us prove that d is not an extreme direction. Indeed, under
the circumstances, the linear subspace L = {h : aTi h = 0, i ∈ I} is od dimension at least 2 ⇒ there exists h ∈ L

not proportional to d. Setting d±t = 1
2
[d ± th], we have d = d+t + d−t and aTi d

±
t = 0, i ∈ I. when i ̸∈ I, we have

aTi d < 0 and thus aTi d
±
t ≤ 0 for all small positive t ⇒ for properly selected t > 0 d±t ∈ K. As d = d+t + d−t and

d±t for t ̸= 0 is not a multiple of d along with h, d indeed is not an extreme direction, Q.E.D.

Corollary The number of extreme rays of a nontrivial pointed polyhedral cone is finite.
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Structure of polyhedral set

♣ We are ready to present the fundamental descriptive result on polyhedral sets:

Fact IV.27 [Structure of polyhedral set]
A. Nonempty polyhedral sets in Rn are exactly the sets X which can be obtained from finite
nonempty set {v1, ..., vM} ⊂ Rn of v-generators and finite (perhaps, empty) set {r1, ..., rM} ⊂
Rn of r-generators representing X according to

X = Conv({v1, ..., vM}) + Cone ({r1, ..., rN}) =

x =
∑
i

λivi +
∑
j

µjrj :

{
λ ≥ 0, µ ≥ 0∑

i λi = 1

 (∗)

In every representation (∗), Cone ({r1, ..., rN}) = Rec(X).
• In one direction: (∗) is a polyhedral representation of a (clearly, nonempty) set, and polyhedrally representable
sets are polyhedral.
• In the opposite direction: Let X be nonempty and polyhedral (and thus closed). Assume, first, that X does
not contain lines. By Fact IV.6, we have X = Conv(Ext(X))+Rec(X), and, as we already know, Ext(X( is a
nonempty finite set {v1, ..., vM}. Next, Rec(X) is a pointed (as X has no lines) polyhedral cone. When trivial,
we have Rec(X)Cone (∅), otherwise Rec(R) is the conic hull of the union of extreme rays, and as we already
know, the number of extreme rays is finite. Specifying {r1, ..., rN} as the set of generators of extreme rays
of Rec(X), we get Rec(X) = Cone ({r1, ...rN}) ⇒ X = Conv({v1, ..., vM}) + Cone ({r1, ..., rN}) (N = 0 when
Rec(X) = {0}).
When the polyhedral set X contains lines, we have X = X̂+Lin{f1, ..., fK} with not containing lines polyhedral
X̂ (Fact IV.23). As we just have seen, X̂ = Conv({v1, ..., vM})+Cone ({r1, ..., rN}) for properly selected v’s and
r’s⇒ X = Conv({v1, ..., vM}) + Cone ({r1, ..., rN ,±f1, ...,±fK}).
Finally, Fact II.26 states that for every representation X = V + R of a closed convex set X as the sum of a
bounded set V and closed cone R, one has R = Rec(X) ⇒ in representation (∗), Cone ({r1, ..., rN}) = Rec(X).
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B. Let X be a nonempty polyhedral set not containing lines. Then X has a representation

X = Conv{v1, ..., vM}+ Cone ({r1, ..., rN})︸ ︷︷ ︸
=Rec(X)

(!)

where one can select {v1, ..., vM} = Ext(X), and this selection if "minimal" – whenever (!)
takes place, one has Ext(X) ⊂ {v1, ..., vM}.
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Application: Extending calculus of polyhedrality

Fact IV.28 A polyhedral representation

X =
{
x : ∃u : [x;u] ∈ X+ := {[x;u] : Px+Qu ≤ r}

}
of a nonempty set X naturally induces polyhedral representation of the recessive cone of the
set:

Rec(X) = {h : ∃v : [h; v] ∈ Rec(X+)} = {h : ∃v : Px+Qv ≤ 0}

Indeed, by Fact IV.27 we have X+ = V + Rec(X+) with compact V . As X = ΠX+, where Π[x′u] = x is the
projection of the space (x, u) where X+ lives onto the space of x-variables where X lives, we have

X = ΠV +ΠRec(X+) (∗)

ΠV is bounded along with V , and, by polyhedrality, X and the cone ΠRec(X+) are closed ⇒ (∗) implies that
Rec(X) = ΠRec(X+) (Fact II.26), Q.E.D.
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Fact IV.29 A polyhedral representation

X = {x : ∃u : Px+Qv ≤ r}
of nonempty polyhedral set X ⊂ Rn naturally induces polyhedral representation of the closed
perspective transform

ConeT(X) = cl {[x; t] : t > 0, x/t ∈ X}
of X:

ConeT(X) = {[x; t] : ∃u : Px+Qu ≤ tr, t ≥ 0} (!)

Indeed, it suffices to verify that the cross-sections of both sides in (!) by a hyperplane Πt = {[x; t] : x ∈ Rn},
t ≥ 0, are the same. When t > 0, Πt ∩ ConeT(X) = {[x; t] : x/t ∈ X} (this is so for every nonempty closed
convex X), that is,

Πt ∩ConeT(X) = {[x; t] : x/t ∈ X} = {[x; t] : ∃u : Px/t+Qu ≤ r} = {[x; t] : ∃v : Px+Qv ≤ tr},

and the concluding set here is the intersection of the right hand side in (!) with Πt.
As we know from the story about visualization of the recessive cone, Π0 ∩ConeT(X) = Rec(X)× {0}, and by
Fact IV.28, one has

Rec(X)× {0} = {[x; 0] : ∃u : Px+Qu ≤ 0},
which again is the intersection of the right hand side set in (!) with Π0.

4.79



More on conic hulls

A. Recall that conic hull Cone (Y ) of a nonempty set Y ⊂ Rn is composed of all conic
combinations of vectors from Y , When Y s convex, taking single-term conic combinations
already is enough:

Fact IV.30 Let Y ⊂ Rn be nonempty convex set. Then Cone (Y ) is composed of nonneg-
ative multiples of vectors from Y .

Indeed, nonnegative multiples of vectors from Y belong to Cone (Y ). To prove that every conic combination
y =

∑
i
λiyi of vectors from Y is a nonnegative multiple of a vector from Y , note that this definitely is so when

all λi are zero. Otherwise
∑

i
λi > 0, and

y = [
∑

i

λi]ȳ, ȳ =
∑

i
λ̄iy

i, λ̄i = λi/
∑

j

λj.

ȳ is a convex combination of points from Y and thus is a vector from Y (Y is convex!), and y is a positive
multiple of ȳ. □

B. Let X ⊂ Rn be a nonempty closed convex set.
Cone (X) necessarily is closed even when X is polyhedral (look at the conic hull f the line
{x1 = 1} in R2 – this is the open right half-plane augmented with the origin). When
X is compact and does not contain the origin, Cone (X) s closed (Fact II.32 plus Sep-
aration Theorem); for compact X containing the origin, all bets are off (the conic hull
of the circle in R2 of radius 1 centered t [1; 0] is the same as the conic hull of the line
{x1 = 1}). When X is unbounded, Cone (X) can be non-close even when 0 ̸∈ intX, look at
x = {[x1;x2] ∋ R2

+ : x1x2 ≥ 1}).
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♠ The situation improves when X is polyhedral:

Fact IV.31 A polyhedral representation

X = {x : ∃u : Px+Qu ≤ r}
of a nonempty polyhedral set X ⊂ Rn naturally induces polyhedral representation of the
closure clCone (X) of the conic hull of X:

clCone (X) = X̃ := {x : ∃λ ≥ 0, v : Px+Qv ≤ λr}.

In one direction: when x =
∑

i
λixi is a conic combination of points from X, we have Pxi+Qui ≤ r for properly

selected ui, whence

P [
∑

i
λix

i] +Q[
∑

i
λiu

i] ≤ [
∑

i
λi]r

⇒ x ∈ X̃⇒ Cone (X) ⊂ X̃ ⇒ clCone (X) ⊂ X̃ (note that X̃ is polyhedral and thus is closed). Vice versa, let
x ∈ X̃, and let us prove that X ∈ clCone (X). As x ∈ x̃, there exists λ ≥ 0 and u such that

Px+Qu ≤ rλ.

Selecting x̄ ∈ X (X is nonempty!), for certain ū it holds

P x̄+Qū ≤ r.

⇒ For every ϵ > 0 it holds

P [x+ ϵx̄] +Q[u+ ϵū ≤ [λ+ ϵ]r
⇒ xϵ := [x+ ϵx̄]/[λ+ ϵ] ∈ X ⇒ xϵ ∈ Cone (xO). Since Cone (X) ∋ xϵ → x asϵ → +0, we have x ∈ clConeX.
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The "in addition" part is immediate: representing

X = Conv{v1, ..., vM}+ Cone {r1, ..., rN}, (!)

we see that when X is bounded (i.e., all ri are zero), then

Cone (X) = Cone ({v1, , , vM}),

which is polyhedral (and thus closed). Similarly, when 0 ∈ X, that is,∑
i
λ̄ivi +

∑
j
µ̄jrj = 0 [λ̄i ≥ 0,

∑
i
λ̄i = 1, µ̄j ≥ 0]

we have

Cone (X) = Cone ({v1, ..., vM , r1, ..., rN}) (∗)
(indeed, the left hand side in (∗) is a subset of the right hand side by 1). On the other hand, a point from
the right hand side is of the generic form

y =
∑

i≤M
λivi +

∑
j≤N

µjrj [λi ≥ 0, µj ≥ 0]

whence

y =
∑

i
[λi + λ̄j]vi +

∑
j
[µj + µ̄j]rj = (1+

∑
i
λi︸ ︷︷ ︸

κ

)ȳ,

.ȳ =
∑

i
λi+λ̄i

κ
vi +

∑
j

µj+µ̄j

κ
rj

By (!), ȳ ∈ Cone (X).,. implying that y ∈ Cone (X).. We have verified (∗), and thus know that Cone (X) is a
polyhedral, and thus closed, cone, Q.E.D.
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More on convex hulls
♣ The convex hull of the union of several polyhedral sets not necessarily is polyhedral (look what happens with
the union of the origin and the line x1 = 1 in R2. However,

Fact IV.32 Let Xℓ, 1 ≤ ℓ ≤ L, be nonempty polyhedral sets in Rn given by polyhedral representations
Xℓ = {x : ∃uℓ : Pℓx+Qℓu

ℓ ≤ rℓ}
Then

clConv

(⋃
ℓ

Xℓ

)
= X :=

{
x : ∃yℓ, uℓ, λℓ, ℓ ≤ L :

{
λℓ ≥ 0,

∑
ℓ
λℓ = 1

Pℓy
ℓ +Qℓuℓ ≤ λℓr

ℓ, ℓ ≤ L
x =

∑
ℓ
yℓ

}
In one direction: since Xℓ are convex and nonempty, we clearly have

clConv{∪ℓX
ℓ} = cl

{∑
ℓ
λℓx

ℓ : λℓ≥ 0,
∑

ℓ
λℓ = 1, xℓ ∈ Xℓ

}
= cl

{∑
ℓ
λℓx

ℓ : λℓ>0,
∑

ℓ
λℓ = 1, xℓ ∈ Xℓ

}︸ ︷︷ ︸
X

We claim that X ⊂ X. Indeed, let X ∋ x =
∑

ℓ
λℓx

ℓ with λℓ > 0,
∑

ℓ
λℓ = 1 and xℓ ∈ Xℓ. As xℓ ∈ Xℓ, there exists

vℓ such that Pℓx
ℓ +Qℓv

ℓ ≤ rℓ ⇒ setting yℓ = λℓx
ℓ, uℓ = λℓvℓ, we get Pℓy

ℓ +Qℓu
ℓ ≤ λℓr

ℓ and x =
∑

ℓ
yℓ ⇒ x ∈ X.

Now let us prove that X is dense in X. Let x̄ℓ ∈ Xℓ and v̄ℓ be such that Pℓx̄
ℓ + Qℓv̄

ℓ ≤ rℓ, and let ȳℓ = L−1x̄ℓ,
ūℓ = L−1v̄ℓ, λ̄ℓ = L−1 ⇒

(a) : Pℓȳ
ℓ +Qℓū

ℓ ≤ λ̄ℓr
ℓ, λ̄ℓ > 0,

∑
ℓ

λ̄ℓ = 1 n
√

Given x ∈ X, there exist yℓ, uℓ, λℓ such that
(b) : Pℓy

ℓ +Qℓu
ℓ ≤ λℓr

ℓ, λℓ ≥ 0,
∑

ℓ
λℓ = 1 and (c) : x =

∑
ℓ
yℓ

By (a) and (b) we have

∀ϵ ∈ (0,1) :

{
λϵ
ℓ := (1− ϵ)λℓ + ϵλ̄ℓ > 0,

∑
ℓ
λϵ
ℓ = 1

Pℓ[(1− ϵ)yℓ + ϵȳℓ] +Qℓ[(1− ϵ)uℓ + ϵūℓ] ≤ λ̄ℓr
ℓ⇒ xℓ

ϵ := [(1− ϵ)yℓ + ϵȳℓ]/λ̄ϵ
ℓ ∈ Xℓ, ℓ ≤ L

xϵ := [(1− ϵ)x+ ϵx̄] =
∑

ℓ
λ̄ϵ
ℓx

ℓ
ϵ

⇒ xϵ ∈ X for all ϵ > 0 and lim
ϵ→+0

xϵ = x ⇒ X is dense in the closed set X (X is polyhedral!) ⇒ clX = X

On the other hand, we knew from the start that clX = clConv(∪ℓX
ℓ) ⇒ cl {∪ℓX

ℓ} = X, Q.E.D.
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Applications to Linear Programming

♣ Consider a Linear Programming program

Opt(c) = max
x∈X

cTx, X = {x ∈ Rn : Ax ≤ b} (P )

♠ Assume that (P ) is feasible (this assumption imposes no restrictions on c). By Theorem
on the structure of polyhedral sets, X admits representation

X = Conv{{v1, ..., vM}) + Cone ({r1, ..., rN}) (∗)
where M > 0 and N ≥ 0. This representation says that (P ) reduces to a decoupled pair of
trivial problems

maxλ
{∑

i λicTvi : λ ≥ 0,
∑

iλi = 1
}

and maxµ
{∑

jµjcTrj : µ ≥ 0
}

making evident the following conclusions:
A. The domain of the optimal value Opt(c) – the set of c’s for which the optimal value is
finite – is exactly the same as the domain composed of c’s for which the problem is solvable,
and is the polyhedral cone

DomOpt(·) := {c : Opt(c) < ∞} = {c : cTrj ≤ 0, j ≤ N} = −[Cone ({r1, ..., .rN})]∗

B. In its domain, the Opt(·) is a piecewise linear convex function
c ∈ DomOpt(·) ⇒ Opt(c) = maxi≤M cTvi.

positively homogeneous of degree 1
C. For c ∈ DomOpt(·), the set of optimal solutions to (P ) is

Argmax
x∈X

cTx = Conv({vi, i ∈ Ic}) + Cone ({rj : j ∈ Jc})[
Ic = {i : cTvi = maxι cTvι}, Jc = {j : cTrj = 0}

]
If X does not contain lines, which happens iff KerA = {0}, then some of the optimal
solutions, if any, are extreme points of X.
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♣ Additional information on the dependence of the optimal value on the right hand side can
be obtained when looking at the dual to (P ) problem

Opt∗(b) = min
y∈Y

bTy, Y = {y : ATy = c, y ≥ 0} (D)

♠ Assume that (D) is feasible (this assumption imposes no restrictions on b). By Theorem
on the structure of polyhedral sets, Y admits representation

Y = Conv{{v∗1, ..., v∗M∗
}) + Cone ({r∗1, ..., r∗N∗

}) (∗)
where M∗ > 0 and N∗ ≥ 0. This representation says that (D) reduces to a decoupled pair of
trivial problems

minλ

{∑
i λibTv∗i : λ ≥ 0,

∑
iλi = 1

}
and minµ

{∑
jµjbTr∗j : µ ≥ 0

}
making evident the following conclusions:
A∗. The domain of the optimal value Opt∗(b) – the set of b’s for which the optimal value is
finite – is exactly the same as the domain composed of b’s for which the problem is solvable,
and is the polyhedral cone

DomOpt∗(·) := {b : Opt∗(b) > −∞} = {b : bTr∗j ≥ 0, j ≤ N∗} = [Cone ({r∗1, ..., .r∗N∗
}]∗

B∗. In its domain, Opt∗(·) is a piecewise linear concave function
b ∈ DomOpt∗(·) ⇒ Opt∗(b) = mini≤M∗ b

Tv∗i .
positively homogeneous of degree 1
C∗. For b ∈ DomOpt∗(·), the set of optimal solutions to (D) is

Argmin
y∈Y

bTy = Conv({v∗i , i ∈ I∗b }) + Cone ({r∗j : j ∈ J∗
b })[

I∗b = {i : bTv∗i = minι bTv∗ι }, J∗
b = {j : bTr∗j = 0}

]
Some of the optimal solutions, if any, are extreme point of Y .
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Note: As we have seen, the results on the structure of polyhedral sets (Fact IV.27) provide
detailed, basically complete, knowledge of the descriptive component of LP. Unfortunately,
the operational (i.e., computational) value of these results is nearly nonexisting – the lists
of extreme points and directions appearing in these results usually are astronomically large,
and producing these “generators” is incomparably more difficult than solving LP’s by existing
LP solvers, bad or good alike. "Astronomical" above should be understood literally – the
number of extreme points of the feasible domain of Transportation LP with 63 unit capacity
suppliers and 63 unit demand customers if 63! ≈ 2× 1087 – by 5 orders of magnitude larger
than the upper bound ≈ 1082 on the number of atoms in the universe.
FYI: Solving 63× 63 Transportation problem takes less than 1.5”
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Law of Diminishing Marginal Returns

♣ Consider a Linear Programming program

Opt∗(b) = max
x

{
cTx : Ax ≤ b

}
(P )

and assume that A, c are such that the dual problem is feasible. Then (P ) is solvable for all
b’s for which it is feasible, and the optimal value considered as the function Opt∗(b) takes
values in R ∪ {−∞} and is concave on its domain which is a polyhedral cone.
In addition, by evident reasons, the recessive cone of DomOpt∗ contains Rdim b

+ , and Opt∗(b)
on its domain is nondecreasing in b.
♠ It is natural to treat b as the vector of resources allocated to certain activity, and the value
of the objective – as the profit associated with "production plan" x. Assume that ∆ ≥ 0 is
a given "investment direction;" by investing t ≥ 0 dollars in the resources, you can increase
their "basic level" b̄ to b+ t∆. As a result, your optimal profit

Φ(t) = Opt∗(̄b+ t∆)

will become the larger, the larger t. As you gradually increase your investment t, starting
with t = 0, your profit can stay −∞ for some (or even all the) time, meaning that investment
t is not large enough to make the problem

max
x

{
cTx : Ac ≤ b̄+ t∆

}
feasible. Assuming that this does not happen for large enough investments t, there will be
the smallest t = t ≥ 0 resulting in Φ(t) > −∞; as Opt∗(·) is concave piecewise linear function
in its domain, your profit Φ(t) will be real-valued piecewise linear nondecreasing concave
function on the ray [t,+∞).
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♠ That the profit is nondecreasing, is a not so bad news (it hardly is a news – this is what is
expected from the very beginning). Concavity of the profit is a not so good news– it means
that your marginal return

Φ′(d) = lim
dt→+0

Φ(t+ dt)−Φ(t)

dt

is a nonincreasing function of t ∈ [t,∞) – return on investing $i in resources extra is the
smaller the more you have already invested. In Economics, this phenomenon is called the
Law of Diminishing Marginal Returns.

Profit vs invsetment
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Convex Functions: Definition

Definition: Let f be a real-valued function defined on a nonempty subset Dom f in Rn. f
is called convex, if
• Dom f is a convex set
• for all x, y ∈ Dom f and λ ∈ [0,1] one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Equivalently: Let f be a real-valued function defined on a nonempty subset Dom f in Rn.
The function is called convex, if its epigraph – the set

Epi{f} = {(x, t) ∈ Rn+1 : f(x) ≤ t}
is a convex set in Rn+1.
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convex function: graph on
[x; y] is below secant
z = λx+ (1− λ)y

f(z) ≤ h = λf(x) + (1− λ)f(y)

nonconvex function: graph on
[x; y] is not entirely below secant

z = λx+ (1− λ)y
f(z)>h = λf(x) + (1− λ)f(y)

epigraph of convex function

5.2



What does the definition of convexity actually mean?

♣ The inequality
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (∗)

where x, y ∈ Dom f and λ ∈ [0,1] is automatically satisfied when x = y or when λ = 0/1.
Thus, it says something only when the points x, y are distinct from each other and the point
z = λx + (1 − λ)y is a (relative) interior point of the segment [x, y]. What does (∗) say in
this case?
• Observe that z = λx+ (1− λ)y = x+ (1− λ)(y − x), whence

∥y − x∥ : ∥y − z∥ : ∥z − x∥ = 1 : λ : (1− λ)

Therefore
f(z) ≤ λf(x) + (1− λ)f(y) (∗)

⇕
f(z)− f(x) ≤ (1− λ)︸ ︷︷ ︸

∥z−x∥
∥y−x∥

(f(y)− f(x))

⇕
f(z)− f(x)

∥z − x∥
≤

f(y)− f(x)

∥y − x∥
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Similarly,
f(z) ≤ λf(x) + (1− λ)f(y) (∗)

⇕
λ︸︷︷︸

∥y−z∥
∥y−x∥

(f(y)− f(x)) ≤ f(y)− f(z)

⇕
f(y)− f(x)

∥y − x∥
≤

f(y)− f(z)

∥y − z∥
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Conclusion: f is convex iff for every three distinct points x, y, z such that x, y ∈ Dom f and
z ∈ [x, y], we have z ∈ Dom f and

f(z)− f(x)

∥z − x∥
≤

f(y)− f(x)

∥y − x∥
≤

f(y)− f(z)

∥y − z∥
(∗)

Note: From 3 inequalities in (∗):
f(z)−f(x)

∥z−x∥ ≤ f(y)−f(x)
∥y−x∥ , f(y)−f(x)

∥y−x∥ ≤ f(y)−f(z)
∥y−z∥ , f(z)−f(x)

∥z−x∥ ≤ f(y)−f(z)
∥y−z∥

every single one implies the other two.

• When traveling from x to y along [x, y], the overall average rate f(y)−f(x)
∥y−x∥ of change in f

is in-between the average rate f(z)−f(x)
∥z−x∥ of change "in the beginning" and the average rate

f(y)−f(z)
∥y−z∥ of change "in the end."
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♠ Examples:
• Functions convex on R:

•

x2, x4, x6, ...

•

exp{x}

• Nonconvex functions on R:

•

x3

•

sin(x)
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• Functions convex on R+:

•

xp, p ≥ 1

•

−xp, 0 ≤ p ≤ 1

•

x lnx

• Functions convex on R++ = intR+ = {x > 0}:

•

1/xp, p > 0
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• Functions convex on Rn:
• affine function f(x) = fTx
• A norm ∥ · ∥ on Rn is a convex function:

∥λx+ (1− λ)y∥ ≤ ∥λx∥+ ∥(1− λ)y∥ [Triangle inequality]
= λ∥x∥+ (1− λ)∥y∥ [homogeneity]
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Jensen’s Inequality

Fact V.1 [Jensen’s Inequality:] Let f(x) be a convex function. Then

xi ∈ Dom f, λi ≥ 0,
∑
i

λi = 1 ⇒

f(
∑
i

λixi) ≤
∑
i

λif(xi)

Proof:
xi ∈ Dom f

⇒ (xi, f(xi)) ∈ Epi{f} [definition of epigraph]
⇒ (

∑
i

λixi,
∑
i

λif(xi)) ∈ Epi{f} [convexity of Epi{f}]

⇒ f(
∑
i

λixi) ≤
∑
i

λif(xi) [definition of epigraph]

Interpretation: For a convex f and a finitely-valued random vector ξ taking values xi ∈
Dom f with probabilities λi, i ≤ I, the value f(

∑
i λixi) of f at the expectation

∑
i λixi of ξ is

≤ the expected value
∑

i λif(xi) of f(ξ).
Extension: Let f be convex, Dom f be closed and f be continuous on Dom f . Consider a
probability distribution Π supported on Dom f . Then

f(EΠ{x}) ≤ EΠ{f(x)}.
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Illustration: Nonnegativity of Kullback-Leibler distance

Fact V.2 Let p = {pi > 0}Ni=1, q = {qi > 0}Ni=1 be two discrete probability distributions.
Then the Kullback-Libeler distance ∑

i

pi ln
pi

qi

between the distributions is nonnegative.

Indeed, the function f(x) = − lnx, Dom f = {x > 0}, is convex. Setting xi = qi/pi, λi = pi we have

0 = − ln

(∑
i

qi

)
= f(

∑
i

pixi)

≤
∑
i

pif(xi) =
∑
i

pi(− ln qi/pi) [Jensen’s Inequality]

=
∑
i

pi ln(pi/qi)
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What is the value of a convex function outside its domain?

♣ Convention. To save words, it is convenient to think that a convex function f of
n variables is defined everywhere on Rn and takes real values and value +∞. With this
interpretation, f “remembers” its domain:

Dom f = {x : f(x) ∈ R} x ̸∈ Dom f ⇒ f(x) = +∞
and the definition of convexity becomes

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀(x, y ∈ Rn, λ ∈ [0,1])

where the arithmetics on the Extended Real Line R = R ∪ {+∞} ∪ {−∞} is given by the
following rules

• Summation: a+ b =


a+ b , [the usual sum], both summands are reals
+∞ ,one of the summands is real, another is +∞
+∞ ,both summands are +∞
−∞ ,one of the summands is real, another is −∞
−∞ ,both summands are −∞

undefined ,one of the summands is +∞, another is −∞
• Multiplication: The magnitude |a · b| of product a · b is

|a · b| =
{ |a||b| , [the usual product] when a,b are reals

+∞ ,one of the factors is ±∞, another is nonzero
0 ,one of the factors is zero

The sign of a ·b is given by the usual rule (and, of course, the sign of +∞ is "plus", the sign of −∞ is "minus").
For example 2 · 2 = 4, 2 · [+∞] = +∞, 0 · ±∞ = 0, −1 · ±∞ = ∓∞, [+∞] · [±∞] = ±∞.
• Comparison between reals is understood in the usual sense, any real is < +∞ and > −∞, and −∞ < +∞.
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Convexity of sublevel sets of convex functions

Fact V.3 Let f : Dom f → R be a convex function on convex domain Dom f . Then for
every real a the sublevel set

Leva(f) = {x ∈ Dom f : f(x) ≤ a}
of f is convex.

Indeed, if x, y ∈ Leva(f) and λ ∈ (0,1), then

f(z := λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λa+ (1− λ)a = a,

that is, λx+ (1− λ)y ∈ Leva(f).
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Calculus of Convex Functions

Fact V.4 The following operations with functions taking values in R∪ {+∞} preserve con-
vexity:
A. Taking conic combinations: When fi(x) : Rn → R∪{+∞}, i ≤ I, are convex functions,
and λi are nonnegative reals, the function

f(x) =
∑
i

λifi(x) : Rn → R ∪ {+∞}

is convex.
B. Taking supremum: The pointwise supremum f(x) = supα∈A fα(x) of convex functions
fα(·) : Rn → R ∪ {+∞}, α ∈ A is convex.
Indeed, Epi{f} = ∩αEpi{fα}
C. Affine substitution of argument: If f(x) : Rn → R ∪ {+∞} is convex function on Rn

and x = Ay + b is an affine mapping from Rm to Rn, then the function g(y) = f(Ay + b) is
convex on RK

D. Partial minimization: Let Q ⊂ Rn be a convex set and f(x,w) : Rn
x ×Rk

w → R ∪ {+∞}
be a convex function. Assume that the function g(x) = infw f(x,w) does not take value −∞
on Q. Then g is convex on Q.
Under our assumption, g : Q → R∪{+∞}. All we need is to verify is that when x, y ∈ Q with g(x) < ∞, g(y) < ∞,
and λ ∈ (0,1), one has f(z := λx+(1−λ)y) ≤ λf(x)+∗1−λ)f(y). For every ϵ > 0 there exist wx, wy such that
f(x,wx) ≤ g(x)+ϵ. f(y, wy) ≤ g(y)+ϵ ⇒ f(z, λwx+(1−λwy) ≤ λf(x,wx)+(1−λ)f(y, wy) ≤ λg(x)+(1−λ)g(y) = ϵ

⇒ g(z) ≤ λg(x) + (1− λ)g(y) + ϵ ⇒ g(z) ≤ λg(x) + (1− λ)g(y).
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E. Taking perspective transform: Let f(x) : Rn → R ∪ {+∞} be convex. Then so is the
perspective transform

F (x, τ) =

{
τf(x/τ) , τ > 0
+∞ , τ ≤ 0

of f .
Indeed,

Epi{F} = {[[x; τ ]; t] : τ > 0, τf(x/τ) ≤ t} = {[[x; τ ]; t] : τ > 0, f(x/τ) ≤ t/τ} = {[[x; τ ]; t] : τ > 0, [x; t]/τ ∈ Epi{f}}
= {[x; τ ; t] : [[x; t]; τ ] ∈ Persp{Epi{f}}

and the perspective transform of a convex set is convex.
Illustration: The function α ln(α/β) is convex in the quadrant {α > 0, β > 0}.
Indeed, the function is projective transformation of the convex function

f(β) =
{

− ln(β) , β > 0
+∞ , β ≤ 0
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F. Monotone superposition:

Fact V.5 [Monotone superposition] Let fi(x) : Rn → R ∪ {+∞}, i ≤ K, and F : RK →
R ∪ {+∞} be convex functions, and let

g(x) =

{
F (f1(x), ..., fK(x)) , x ∈ Dom fi, ∀i
+∞ ,otherwise

Assume that F (y1, ..., yK) is nondecreasing in every one of its arguments yk for which fk is
not affine. Then g is convex.

Indeed, let x, x′ ∈ Dom g and λ ∈ (0,1), and let us prove that g(z := λ(1− λ)x′) ≤ λg(x)+ (1− λ)g(x′). Indeed,
setting f = [f1; ...; fK], y = f(x), y′ = f(x′), zk = λfk(x) + (1− λ)fk(x′), we have by convexity/affinity of fk

zk

{
= fk(z) , fk is affine
≤ fk(z) ,otherwise ,

which combines with (partial) monotonicity of F to imply that g(z) ≤ F (λf(x) + (1− λ)f(x′)); taken together
with the convexity of F this implies that g(λx+(1−λ)x′) ≤ λF (f(x))+(1−λ)F (f(x′)) = λg(x)+(11−λ)g(x′),
Q.E.D.

Refinement: Let fk : Rn → R∪ {+∞}, k ≤ K and F : RK → R∪ {+∞} be convex functions,
and Y ⊂ Rk be a convex set such that f(x) ∈ Y whenever all fk(x) are finite. Let also K be
the set of indices k for which fk is not affine. Assume that F is nonincreasing in everyone
of yk, k ∈ K on Y only:

∀
(
y, y′ ∈ Y : yk = y′k, k ̸∈ K, yk ≤ y′k, k ∈ K

)
: F (y) ≤ F (y′).

Then g is convex.
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Illustration. Theorem on Superposition is not applicable to the composition g = F (f(x)) of
f(x) = x2 − 1 and F (y) = y2, and the composition is in fact nonconvex. Theorem remains
unapplicable when f(x) = x2 − 1 is replaced with f(x) = x2 + 1, but its Refinement works
(set Y = {y ≥ 0}), certifying the convexity of (x2 +1)2
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How to detect convexity?

♣ Convexity is one-dimensional property:

Fact V.6 • A set X ⊂ Rn is convex iff the set

{t : a+ th ∈ X}
is, for every (a, h), a convex set on the axis
• A function f : Rn → R ∪ {∞} is convex iff the univariate function

ϕ(t) = f(a+ th)

is, for every (a, h), a convex function on the axis.
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♣ When a function ϕ on the axis is convex?
Let ϕ be convex and finite on (a, b). This is exactly the same as

ϕ(z)− ϕ(x)

z − x
≤

ϕ(y)− ϕ(x)

y − x
≤

ϕ(y)− ϕ(z)

y − z

when a < x < z < y < b. Assuming that ϕ′(x) and ϕ′(y) exist and passing to limits as z → x+0
and z → y − 0, we get

ϕ′(x) ≤
ϕ(y)− ϕ(x)

y − x
≤ ϕ′(y)

that is, ϕ′(x) is nondecreasing on the set of points from (a, b) where it exists.
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Differential Criteria of Convexity

Fact V.7 A differentiable function f : (a, b) → R is convex on (a, b) iff its derivative f ′ is
nondecreasing on (a, b). A twice differentiable function f : (a, b) → R is convex on (a, b) iff
f ′′ is nonnegative everywhere on (a, b).

Indeed, we have just seen that when f is convex and real-valued on (a, b), the derivative is nondecreasing on
the set where it exists ⇒ when f is convex and differentiable on (a, b), f ′ is nondecreasing on (a, b). Vice versa,
let f be differentiable and f ′ be nondecreasing on (a, b). To prove that f is convex, we should verify that when
a < x < z < y < b, then

f(z)− f(x)

z − x
≤

f(y)− f(z)

y − z
(∗)

By the Mean Value Theorem the left hand side ratio if f ′(ξ) for some ξ ∈ (x, z), and the right hand side ratio
is f ′(η) for some η ∈ (z, y). Since f ′ is nondecreasing and η ≥ ξ, (∗) follows.
When f ′ is differentiable on (a, b), f ′ is nondecreasing on (a, b) iff f ′′ ≥ 0 on (a, b), which combines with the
already proved part of Fact to complete the proof.

♠ Recalling that a multivariate function is convex iff its restrictions on all lines are so, we
arrive at
Corollary Let f : A → R be a function defined on an open convex domain Q and let f be
twice continuously differentiable on Q. F is convex iff the second order directional derivative
d2

dt2

∣∣
t=0

f(x+ th) of f taken at any point x ∈ Q along any direction h ∈ Rn is nonnegative, or,
which is the same, iff

f ′′(x) ⪰ 0 ∀x ∈ Q.

♠ The above results allow to establish convexity of multivariate functions with convex, not
necessarily open, domains due to the following
Observation: Let f : Rn → R ∪ {+∞} be a function with convex domain Dom f . When f
is continuous on Dom f and is convex on rint Dom f , f is convex.
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Immediate consequences

♠ The differential criteria of convexity we have just established are sufficient to justify
convexity of all univariate functions, like x2k, k = 0,1, ..., exp{x}, xp : [0,∞) → R, p ≥ 1,
−xp : [0,∞) → R, 0 ≤ p ≤ 1, x lnx : [0,∞ → R claimed so far to be convex.
As a matter of fact, these univariate convex "row materials" plus Calculus of convexity
allow to establish convexity of typical convex functions arising in applications. There are
few "exceptions" – important convex functions for which convexity is established "by bare
hands" – via multivariate differential criteria.
Examples:
• The function f(x) = ln(

∑N
i=1 exp{xi}) is convex.

Indeed, given x ∈ Rn and n ∈ Rn and setting pi =
exp{xi}∑
j
exp{xj}

, so that
∑

i
pi = 1, direct computation shows

d2

dt2

∣∣
t=0

f(x+ th) =
∑

i

pih
2
i − (

∑
i

pihi)
2

We see that d2

dt2

∣∣
t=0

f(x + th) is the variance (expected square minus squared expectation) of random variable
taking values h1, ..., hN with probabilities p1, ..., pN , and variance is nonnegative.
Verification: (∑

i
pihi

)2
=
(∑

i

√
pi[

√
pihi]

)2
≤
(∑

i
pi
) (∑

i
pih2

i

)
≤
∑

i
pih2

i .

However: We can extract the convexity of f from Calculus of convexity:
Epi{f} = {[x; t] : ln(

∑
i
exp{xi}) ≤ t} = {[x; t] :

∑
i
exp{xi} ≤ exp{t}} = {[x; t] :

∑
i
exp{xi − t} ≤ 1},

and the concluding set is convex as the sublevel set of convex function.
Corollary: When ci > 0, the function g(y) = ln

(∑
i ci exp{aTi y}

)
is convex.

Indeed, g(y) = ln
(∑

i
exp{ln ci + aTi y}

)
is obtained from the convex function ln

(∑
i
exp{xi}

)
by affine substi-

tution of argument.
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• Let πi > 0,
∑

i πi ≤ 1. Then the function f(x) =
∏

i x
πi

i : Rn
+ → R is concave

(that is, the function −f(x) with the domain Rn
+ is convex).

]Indeed, f is continuous on Rn
+ ⇒ to establish convexity g(x) = −f(x), is suffices to prove that if x > 0, then

g′′(x) ⪰ 0. Indeed, given x ∈ intRn
+ and h ∈ Rn, direct computation results in

hT∇g(x) =
[∑

i
πi(hi/xi)

]
g(x)

hT∇2g(x)h =
[[∑

i
πi

hi

xi

]2
−
∑

i
πi

h2
i

x2
i

]
g(x)

We have g(x) ≤ 0 and [∑
i
πi
hi

xi

]2
≤
[∑

i
πi︸ ︷︷ ︸

∈[0,1]

]2 [∑
i
πi
h2
i

x2
i

]
≤
[∑

i
πi
h2
i

x2
i

]
⇒ hT∇2g(x)h ≥ 0.

• When πi > 0, the function f(x) =
∏

i x
−πi

i : intRn
+ → R is convex,

Indeed, the function ln(g(x)) =
∑

i
πi ln(1/xi) : intRn

+ → R is convex ⇒ g(x) = exp{convex function} is convex.
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Below boundedness and Lipschitz continuity of a convex function

Fact V.8 [EM, Proposition II.10.11] A convex function f : Rn → R∪{+∞} is below bounded
on every bounded subset of Rn

Fact V.9 [EM Theorem II.8.1] Let f be a convex function, and let K be a closed and
bounded set belonging to rint Dom f . Then f is Lipschitz continuous on K, that is, there
exists a constant L < ∞ such that

|f(x)− f(y)| ≤ L∥x− y∥2 ∀x, y ∈ K.

Note: All three assumptions on K are essential, as is shown by the following examples:
• f(x) = −

√
x, Dom f = {x ≥ 0}, K = [0,1]. Here K ⊂ Dom f is closed and

bounded, but is not contained in rint Dom f , and f is not Lipschitz continuous on K (as
limt→+0(f(0)− f(t))/t = ∞)
• f(x) = x2, Dom f = K = R. Here K is closed and belongs to rint Dom f , but is unbounded,
and f is not Lipschitz continuous on K (as limt→∞(f(t)− f(0))/t = +∞)
• f(x) = 1

x
, Dom f = {x > 0}, K = (0,1]. Here K is bounded and belongs to rintDomf , but is not closed, and

f is not Lipschitz continuous on K (as limt→+0 limτ→t+0(f(t)− f(τ))/(τ − t) = +∞)
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Gradient Inequality

Fact V.10 [Gradient Inequality] Let f : Rn → R∪{+∞} be a convex function and x ∈ Dom f
be such that f is differentiable at x, meaning that there exists a vector ∇f(x) such that

∀ϵ > 0∃δ > 0 : y ∈ Dom f & ∥y − x∥ ≤ δ ⇒ |f(y)− f(x)− (y − x)T∇f(x)| ≤ ϵ∥y − x∥.
Then

∀y : f(y) ≥ f(x) + (y − x)T∇f(x). (∗)

Proof. Let y ∈ Rn, and let us prove that (∗) takes place. There is nothing to prove when y = x or f(y) = +∞,
thus, assume that f(y) < ∞ and y ̸= x. Let is set zϵ = x+ ϵ(y − x), 0 < ϵ < 1. Then zϵ is an interior point of
the segment [x, y]. Since f is convex, we have

f(y)− f(x)

∥y − x∥
≥

f(zϵ)− f(x)

∥zϵ − x∥
=

f(x+ ϵ(y − x))− f(x)

ϵ︸ ︷︷ ︸
→(y−x)T f ′(x) as ϵ → +0

·
1

∥y − x∥

Passing to limit as ϵ → +0, we arrive at

f(y)− f(x)

∥y − x∥
≥

(y − x)Tf ′(x)

∥y − x∥
,

as required by (∗).
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Lecture II.2

Maxima and Minima of Convex Functions

Minimizing convex functions: Unimodality
Minimizing convex functions: Optimality conditions
Maxima of convex functions
Subgradients



Minimizing Convex Functions: Unimodality

Fact VI.1 [Unimodality] Let f : Rn → R ∪ {+∞} be a convex function and x∗ be a local
minimizer of f :

x∗ ∈ Dom f & ∃r > 0 : f(x) ≥ f(x∗) ∀(x : ∥x− x∗∥2 ≤ r).

Then x∗ is a global minimizer of f :

f(x) ≥ f(x∗) ∀x.

Proof. All we need to prove is that if x ̸= x∗ and x ∈ Dom f , then f(x) ≥ f(x∗). To this end let z ∈ (x∗, x). By
convexity we have

f(z)− f(x∗)

∥z − x∗∥
≤

f(x)− f(x∗)

∥x− x∗∥
.

When z ∈ (x∗, x) is close enough to x∗, we have f(z)−f(x∗)
∥z−x∗∥ ≥ 0, whence f(x)−f(x∗)

∥x−x∗∥ ≥ 0, that is, f(x) ≥ f(x∗), Q.E.D.

Fact VI.2 Let f : Rn → R ∪ {+∞} function. Then the set X∗ of global minimizers of f is
convex.

Indeed, when X∗ ̸= ∅, X∗ is the sublevel set Leva = {x : f(x) ≤ a := minx f(x) ∈ R}, and a sublevel set of a
convex function is convex (Fact V.3).
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When the minimizer of a convex function is unique?

Definition: A convex function f : Rn → R ∪ {+∞} is called strictly convex, if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

whenever x, y ∈ Dom f , x ̸= y and λ ∈ (0,1).
Note: If a convex function f has open domain and is twice continuously differentiable on
this domain with

hTf ′′(x)h > 0 ∀(x ∈ Dom f, h ̸= 0),

then f is strictly convex.

Fact VI.3 For a strictly convex function f a minimizer, if it exists, is unique.

Proof. Assume that X∗ = Argmin f contains two distinct points x′, x′′. By strong convexity,

f(
1

2
x′ +

1

2
x′′) <

1

2

[
f(x′) + f(x′′)

]
= inf

x
f,

which is impossible.
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Minimizing convex functions: Optimality conditions

Fact VI.4 [Optimality conditions in convex minimization] Let f : Rn → R ∪ {+∞} be a
convex function and x∗ ∈ Dom f be a point at which f is differentiable. x∗ is a minimizer of
f iff

∀x ∈ Dom f : [x− x∗]
T∇f(x∗) ≥ 0. (∗)

In one direction: let (∗) hold true. By Gradient inequality we have f(x) ≧ [s− s∗]T∇f(x∗), which combines with
(∗) to imply that f(x) ≥ f(x∗) for all x ∈ Dom f . The same inequality holds true when x ̸∈ Dom f , that is when
f(x) = +∞.

In the opposite direction: Let x∗ be a minimizer of f , and let us prove that (∗) holds. When x = x∗, (∗)
is trivially true. Now let x ∈ Dom f be different form x∗, and let xt = x∗ + t(x − x∗), As t ∈ (0,1), we have
xt ∈ Dom f and f(xt) ≥ f(x∗) ⇒ [x − x∗]T∇f(x∗) = limt→+0(f(xt) − f(x∗))/t ≥ 0, as claimed in (∗). Note that
this reasoning does not use the convexity of f and utilizes solely the convexity of Dom f , the differentiability
of f at x∗, and the fact that x∗ is a local minimizer of f .

6.3



♣ Equivalent reformulation:
• Radial and Normal cones, Let Q ⊂ Rn and x̄ ∈ Q.
– The radial cone TQ(x) of Q at x̄ is the cone Cone (Q − {x̄}) spanned by directions x − x̄
with x ∈ Q
– The normal cone NQ(x̄) of Q at x̄ is the negation of the cone dual to the radial cone TQ(x̄):

NQ(x̄) = {y ∈ Rn : yT(x̄− x) ≥ 0 ∀x ∈ Q}
Note: the radial cone not necessarily is closed; the normal cone is closed.
• Fact VI.4 can be reformulated as follows:

Fact VI.5 Let f : Rn → R∪{+∞} be a convex function and x∗ ∈ Dom f be a point at which
f is differentiable. x∗ is a minimizer of f iff

∇f(x∗) ∈ −NDomf(x∗). (!)

Let us look what (!) says in several standard situations.
Example I: x∗ ∈ intDom f. Here TDomf(x∗) = Rn ⇒ NDomx(x∗) = {0}, and (∗) becomes
the Fermat equation

∇f(x∗) = 0

– the necessary and sufficient condition for an interior point of the domain of a convex
function f to be a minimizer of the function.
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Example II: x∗ ∈ rintQ. Let L be the linear subspace parallel to Aff(Dom f), so that
L = Lin(Dom f −{x∗}) = TDom f(x∗), whence NDomf(x∗) = L⊥. Thus, Fact VI.5 states that
the necessary and sufficient condition for a point x∗ ∈ rint Dom f where a convex function f
is differentiable to me a minimizer of the function is

∇f(x) ∈ [Aff(Dom f)− {x∗}]⊥.
Equivalently: Let Aff(Q) = {x : Ax = b}. Then L = {x : Ax = 0}, L⊥ = {y = ATλ}, and the
optimality condition becomes

∃λ∗ :

∇
∣∣
x=x∗

[f(x) + (λ∗)T(Ax− b)] = 0
⇕

f ′(x∗) +
∑
i

λ∗
i∇(aTi x− bi) = 0

[A = [aT1 ; ...; a
T
m]]
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Example III: Dom f = {x : Ax− b ≤ 0} is polyhedral. Here

TDomf(x∗) =
{
h : aTi h ≤ 0 ∀i ∈ I(x∗) = {i : aTi x∗ − bi = 0}

}
. [A = [aT1 ; ...; a

T
m]]

By Homogeneous Farkas Lemma,

NDomf(x∗) ≡ {y : aTi h ≤ 0, i ∈ I(x∗) ⇒ yTh ≤ 0}
= {y =

∑
i∈I(x∗)

λiai : λi ≥ 0}

and the optimality condition becomes

∃(λ∗
i ≥ 0, i ∈ I(x∗)) : ∇f(x∗) +

∑
i∈I(x∗)

λ∗
iai = 0

or, which is the same:

∃λ∗ ≥ 0 :

 ∇f(x∗) +
m∑

i=1
λ∗
iai = 0 [Karush-Kuhn-Tucker equation]

λ∗
i (a

T
i x∗ − bi) = 0, i = 1, ...,m [complementary slackness]

The point is that in the convex case these conditions are necessary and sufficient for x∗ to
be a minimizer of f .
Note: The "common denominator" of Examples II – III is as follows: A point x∗ where a
convex function f with polyhedral domain is differentiable minimizes the function over the
domain if and only if it minimizes over this domain the linearization f(x) = f(x∗) + [x −
x∗]T∇f(x∗), taken at x∗, of the function.
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Example: Let us solve the problem

min
x

{
f(x) := cTx+

m∑
i=1

xi lnxi : x ≥ 0,
∑
i

xi = 1

}
.

The objective is convex, the domain Dom f = {x ≥ 0,
∑
i

xi = 1} is convex (and even

polyhedral). Assuming that the minimum is achieved at a point x∗ ∈ rintQ, the optimality
condition becomes

∇
[
cTx+

∑
i

xi lnxi + λ[
∑
i

xi − 1]

]
= 0

⇕
lnxi = −ci − λ− 1 ∀i

⇕
xi = exp{−1− λ} exp{−ci}

Since
∑
i

xi should be 1, we arrive at

xi =
exp{−ci}∑
j

exp{−cj}
.

At this point, the optimality condition is satisfied, so that the point indeed is a minimizer.
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Karush-Kuhn-Tucker conditions – an interpretation

♣ Informal interpretation of Karush-Kuhn-Tucker optimality conditions goes back to Joseph-Louis Lagrange
(1736 – 1813) and is as follows.
Optimization problem

min
x∈Rn

{f(x) : ai(x) ≤ 0, i = 1, . . . ,m}

can be interpreted as locating the equilibrium position of a particle that is moving through Rn while being
affected by an external force (like gravity) with potential f , meaning that
• When the position of the particle is x ∈ Rn, the force acting at the particle is −∇f(x).
• The domain in which the particle can actually travel is Q := {x ∈ Rn : ai(x) ≤ 0, i ≤ m}; think about areas
ai(x) > 0 as rigid obstacles that the particle cannot penetrate into.
• When the particle touches i-th obstacle (i.e., is in position x with ai(x) = 0), the obstacle produces a reaction
force directed along the inward normal −∇ai(x) to the boundary of the obstacle, so that the reaction force is
−λi∇ai(x); here λi ≥ 0 depends on the pressure on the obstacle exerted by the particle.
• At an equilibrium x∗ (which, by Physics, should minimize, at least locally, the potential f over Q), the total
of the forces acting at the particle should be zero, that is, for properly selected λi ≥ 0 one should have

−∇f(x∗)−
∑

i:ai(x∗)=0

λi∇ai(x
∗) = 0,

which is exactly what is said by our Karush-Kuhn-Tucker (KKT) optimality condition as applied to the problem
where the functions ai(x) = aTi x− bi are affine.
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Physical illustration of KKT optimality onditions for optimization problem
minx∈R2{f(x) : ai(x) ≤ 0, i = 1,2,3}.

White area represents the feasible domain Q, while ellipses A, B, C represent the sets
a1(x) ≤ 0, a2(x) ≤ 0, a3(x) ≤ 0. The point x is a candidate feasible solution located at
the intersection {u ∈ R2 : a1(u) = a2(u) = 0} of boundaries of A and B. g = −∇f(x)
is external force acting at particle located at x, p and q are reaction forces created by
obstacles A and B. The condition for x to be an equilibrium reduces to g + p+ q = 0,
as on the picture. Equilibrium condition g + p+ q = 0 translates to the KKT equation

∇f(x) + λ1a1(x) + λ2∇a2(x) = 0
holding for some nonnegative λ1, λ2.
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Maxima of convex functions

Fact VI.6 Let f be a convex function. Then
A. If f attains its maximum over Dom f at a point x∗ ∈ rint Dom f , then f is constant on
Dom f
Indeed, assuming that f(x) < f(x∗) for some x ∈ Dom f , y = x∗ + α[x∗ − x] ∈ Dom f for small α > 0 ⇒ x∗ is in
the relative interior of segment [x, y] ⊂ Dom f ⇒ f(x∗) ≤ λ f(x)︸︷︷︸

<f(x∗)

+(1−λ)f(y) for some λ ∈ (0,1) ⇒ f(y) > f(x∗)

– contradiction!
B. If Dom f is closed and does not contain lines and f attains its maximum on Dom f , then
among the maximizers there is an extreme point of Dom f
C. If Dom f is polyhedral and f is bounded from above on Dom f , then f attains its maximum
on Dom f .

• Good news: Maximizing convex function f over a bounded polyhedral set X ̸= ∅ reduces
to computing the function at finitely many extreme points of the set. For example, problem
maxx{f(x) : ∥x∥1 ≤ 1} is easy
• Bad news: For a bounded polyhedral X, the number of extreme points usually is astro-
nomically large, as is the case for the box X = {x : ∥x∥∞ ≤ 1}, making maximizing over
extreme points by looking at them one by one intractable. In general, maximizing convex
function is a computationally intractable task.
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Subgradients of convex functions

♣ Let f : Rn → R ∪ {+∞} be a convex function and x̄ ∈ intDom f . If f differentiable at x̄,
then, by Gradient Inequality, there exists an affine function, specifically,

h(x) = f(x̄) + [∇f(x̄)]T(x− x̄),

which underestimates f everywhere and coincides with f at x̄:

f(x) ≥ h(x)∀x & f(x̄) = h(x̄) (∗)
Affine function with property (∗) may exist also in the case when f is not differentiable at
x̄ ∈ Dom f . (∗) implies that

h(x) = f(x̄) + gT(x− x̄) (∗∗)
for certain g. Function (∗∗) indeed satisfies (∗) if and only if g is such that

f(x) ≥ f(x̄) + gT(x− x̄) ∀x (!)

Definition. Let f be a convex function and x̄ ∈ Dom f . Every vector g satisfying

f(x) ≥ f(x̄) + gT(x− x̄) ∀x (!)

is called a subgradient of f at x̄. The set of all subgradients, if any, of f at x̄ is called
subdifferential ∂f(x̄) of f at x̄.
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a b

A

B

Geometrically: A hyperplane supporting the epigraph Epi{f} of f at a point (x̄, f(x̄)) is,
at least for x̄ ∈ intDom f , the graph of an affine function h(x) = f(x̄) + gT(x − x̄) which
underestimates f everywhere and is equal to f at the point x = x̄.
The slope g of this affine function is a subgradient of f at x.
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Definition. Let f be a convex function and x̄ ∈ Dom f . Every vector g satisfying

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x (!)

is called a subgradient of f at x̄. The set of all subgradients, if any, of f at x̄ is called
subdifferential ∂f(x̄) of f at x̄.
Example I: By Gradient Inequality, if convex function f is differentiable at x̄, then ∇f(x̄) ∈
∂f(x̄). Moreover, if x ∈ intDom f , then ∇f(x) is the only element of ∂f(x).
To verify that ∂f(x) = {∇f(x)} when x ∈ intDom f , let g ∈ ∂f(x). Then for every h ∈ Rn and for all small
t > 0 we have x+ th ∈ Dom f , whence

f(x+ th)− f(x)

t
≥

[f(x) + tgTh]− f(x)

t
= gTh.

Passing to limit as t → +0, we get [∇f(x)− g]Th ≥ 0 for all h ∈ Rn, that is, g = ∇f(x), Q.E.D.
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Example II: Let f(x) = |x| : R → R. When x̄ ̸= 0, f is differentiable at x̄, whence
∂f(x̄) = f ′(x̄). When x̄ = 0, subgradients g are given by

|x| ≥ 0+ gx = gx ∀x,

that is, ∂f(0) = [−1,1].
Note: In the case in question, f has directional derivative

Df(x)[h] = lim
t→+0

f(x+ th)− f(x)

t

at every point x ∈ R along every direction h ∈ R, and this derivative is nothing but

Df(x)[h] = max
g∈∂f(x)

gTh

Example III: Consider feasible LP problem

Opt(c) = max
x

{
cTx : Ax ≤ b

}
(P [c])

and assume that Opt(c̄) < ∞, so that (P [x̄]) is solvable; let x̄∗ is an optimal solution to
P (x̄).
As we have seen, Opt(c) is a convex function. We have

Opt(c) ≥ cT x̄ = c̄T x̄+ x̄T [c− c̄] = Opt(c̄) + x̄T [c− c̄]

⇒ x̄ ∈ ∂Opt(c̄).
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♠ The most important fact about subgradients of convex functions f is that the subgradient
does exist at least at any point x ∈ rint Dom f .

Fact VI.7 Let f : Rn → R∪{+∞} be convex, Dom f be nonempty, and let L = Aff(Dom f)−
Aff(Dom f) be the linear subspace parallel to Aff(Dom f). Then
A. For every x ∈ Dom f , the subdifferential ∂f(x) is a closed convex set
B. If x ∈ rint Dom f , then ∂f(x) is nonempty
C. The multivalued mapping f 7→ ∂f(x) is locally bounded and closed on intDom f , meaning
that if Q ⊂ intDom f is a compact set, then for some L < ∞ it holds

∀(x ∈ Q, g ∈ ∂f(x)) : ∥g∥2 ≤ L,

and if a sequence {xi ∈ Q, gi ∈ ∂f(xi)}i converges, as i → ∞, to (x, g), then g ∈ ∂f(x).
D. Assume that x̄ ∈ Dom f is represented as lim

i→∞
xi with xi ∈ Dom f and that f(x̄) ≤

lim inf
i→∞

f(xi). If a sequence gi ∈ ∂f(xi) converges to certain vector g, then g ∈ ∂f(x̄).

E. Being a subgradient is a local property: if x ∈ rint Dom f and g is such that for certain
r > 0 one has

f(x) + gT(y − x) ≤ f(y) ∀(y ∈ Dom f, ∥y − x∥ ≤ r),
then g ∈ ∂f(x).
F. If x ∈ rint Dom f , then, for every h ∈ L, there exists the directional derivative taken at x
along direction h – the quantity

Df(x)[h] ≡ lim
t→+0

f(x+th)−f(x)
t

Df(x)[h] is a convex positively homogeneous, of degree 1, function of h ∈ L such that
Df(x)[h] = max

g∈∂f(x)
gTh (a)

f(x) +Df(x)[h] ≤ f(x+ h) (b)
∂Df(x)[0] = ∂f(x) (c)
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Proofs

A. For every x ∈ Dom f , the subdifferential ∂f(x) is a closed convex set
Indeed, ∂f(x) = {g : f(y) ≥ f(x) + gT(y − x)∀y ∈ Dom f} is the solution set of a (infinite) system of nonstrict
linear inequalities.
B. If x̄ ∈ rint Dom f , then ∂f(x̄) is nonempty
W.l.o.g. let Dom f be full-dimensional, so that x̄ ∈ intDom f . Consider the convex set

T = Epi{f} = {[x; t] : t ≥ f(x)}.

Since f is convex, it is continuous on intDom f , whence T has a nonempty interior. The point ȳ := [x̄; f(x̄]
clearly does not belong to this interior (as ȳ − [0; ϵ] ̸∈ Epi{f} for all ϵ > 0) whence S = {(x̄, f(x̄))} can be
separated from T : there exists (α, β) ̸= 0 such that

αT x̄+ βf(x̄) ≤ αTx+ βt ∀(x, t ≥ f(x)) (∗)

Clearly β ≥ 0 (otherwise (∗) will be impossible when x = x̄ and t > f(x̄) is large).
Claim: β > 0. Indeed, with β = 0, (∗) implies that

αT x̄ ≤ αTx ∀x ∈ Dom f (∗∗)

Since (α, β) ̸= 0 and β = 0, we have α ̸= 0; but then (∗∗) contradicts x̄ ∈ intDom f .
• Since β > 0, (∗) implies that if g = −β−1α, then

−gT x̄+ f(x̄) ≤ −gTx+ f(x) ∀x ∈ Dom f,

that is,

f(x) ≥ f(x̄) + (x− x̄)Tg ∀x.
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C. The multivalued mapping f 7→ ∂f(x) is locally bounded and closed on intDom f , meaning that if Q ⊂
intDom f is a compact set, then for some L < ∞ it holds

∀(x ∈ Q, g ∈ ∂f(x)) : ∥g∥2 ≤ L,

and if a sequence {xi ∈ Q, gi ∈ ∂f(xi)}i converges, as i → ∞, to (x, g), then g ∈ ∂f(x).
Given a compact set Q ⊂ intDom f , we can find ϵ > 0 such that the sets

Qϵ = {x ∈ Rn : dist(x,Q) := min
y∈Q

∥x− y∥2 ≤ ϵ}

(which is compact along with Q) is contained in intDom f (why?). As we know, f is Lipschitz continuous,
with some constant L, on Qϵ. It follows that

∀(x ∈ Q, g ∈ ∂f(x), h ∈ Rn, ∥h∥2 ≤ r) : gTh ≤ f(x+ h)− f(x) ≤ L∥h∥,

whence ∥g∥2 ≤ L. Thus, ∂g(x) ∈ {g : ∥g∥2 ≤ L∥ for all x ∈ Q. It remains to verify that if xi ∈ Q, gi ∈ ∂f(xi) and
xi → x and gi → g as i → ∞, then g ∈ ∂f(x)P , indeed, for every y and every i we have

f(y) ≥ f(xi) + [gi]T(y − xi). (!)

Since x = limi xi ∈ Q (as Q is compact and thus is closed) and Q ⊂ intDom f , f is continuous (and even
Lipschitz continuous) on Q, we have f(xi) → f(x) as i → ∞, and passing to limits as i → ∞ in (!), we get

f(y) ≥ f(x) ++gR(y − x).

This inequality holds true for every y, implying that g ∈ ∂f(x), Q.E.D.
D. Assume that x̄ ∈ Dom f is represented as lim

i→∞
xi with xi ∈ Dom f and that f(x̄) ≤ lim inf

i→∞
f(xi) If a sequence

gi ∈ ∂f(xi) converges to certain vector g, then g ∈ ∂f(x̄).
For every y ∈ Rn, we still have at our disposal (!) and thus the relation

f(y) ≥ lim inf
i→∞

f(xi) + gT(y − x)

which combines with the premise of D to imply that f(y) ≥ f(x) + gT(y − x). Since y is arbitrary, we get
g ∈ ∂f(x), Q.E.D.
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E. Being a subgradient is a local property: if x ∈ rint Dom f and g is such that for certain r > 0 one has

f(x) + gT(y − x) ≤ f(y) ∀(y ∈ Dom f, ∥y − x∥ ≤ r),

then g ∈ ∂f(x).
We want to prove that f(y) ≥ f(x) + gT(y − x) for any y. There is nothing to prove when f(y) = ∞, same as
when y = x, Assuming that x ̸= y and y ∈ Dom f , we can find a point z ∈ (x, y) such that ∥z− x∥2 ≤ r. Setting
e(w) = f(w) − gT(w − x), we get a convex function such that e(z) − e(x) ≥ 0 due to the origin of g, while by
convexity of e it holds

e(y)− e(x)

∥y − x∥2
≥

e(z)− e(x)

∥z − x∥2
≥ 0

that is, e(y) ≥ e(x), which is nothing but the desired inequality f(y)− gT(y − x) ≥ f(x).
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F. If x ∈ rint Dom f , then, for every h ∈ L, there exists the directional derivative taken at x along direction h –
the quantity

Df(x)[h] ≡ lim
t→+0

f(x+ th)− f(x)

t
Df(x)[h] is a convex positively homogeneous, of degree 1, function of h ∈ L such that

Df(x)[h] = max
g∈∂f(x)

gTh (a)

f(x) +Df(x)[h] ≤ f(x+ h) (b)
∂Df(x)[0] = ∂f(x) (c)

It is immediately seen that it suffices to prove F in the case when Dom f is full-dimensional, that is, when
L = Rn, which we assume from now on.
Given x ∈ intDom f and h ∈ Rn, we can find r > 0 such that x± rh ∈ Dom f , implying by convexity that

f(x)− f(x− rh)

r
≤

f(x+ th)− f(x)

t
, 0 < t < r, (!!)

and that the right hand side ratio is a nonincreasing function of t ∈ (0, r]. As this ratio is below bounded by
the left hand side of (!!), we conclude that the limit

D(x)[h] = lim
t→+0

f(x+ th)− f(x)

t

does exist. Next, setting ft(h) = f(x+th)−f(x)
t

, observe that for every R > 0 and all small enough t > 0, the
function ft(h) is convex on the ball {h : ∥h∥2 ≤ R}, implying that the pointwise limit, as t → +0, Df(x)[·] of
the functions ft(·) is convex. positive homogeneity, of degree 1, of Df(x)[·] is evident.
To prove (a), note that if g ∈ ∂f(x), then for all t > 0 and all h one has f(x+th)−f(x)

t
≥ gTh; passing to limits as

t → +0, we get Df(x)[h] ≥ gTh for all h and all g ∈ ∂f(x), whence

Df(x)[h] ≥ max
g∈∂f(x)

gTh. (a.1)
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If x ∈ rint Dom f , then, for every h ∈ L, there exists the directional derivative taken at x along direction h –
the quantity

Df(x)[h] ≡ lim
t→+0

f(x+ th)− f(x)

t
Df(x)[h] is a convex positively homogeneous, of degree 1, function of h ∈ L such that

Df(x)[h] = max
g∈∂f(x)

gTh (a)

f(x) +Df(x)[h] ≤ f(x+ h) (b)
∂Df(x)[0] = ∂f(x) (c)

♠ We have proved that

Df(x)[h] ≥ max
g∈∂f(x)

gTh. (a.1)

To prove the opposite inequality, let us fix h and select a small τ > 0 such that x+ τh ∈ intDom f , and select
gτ ∈ ∂f(x+ τh) (this is possible by B), By convexity of f , for 0 < t < τ we have

f(x+ th)− f(x)

t
≤

f(x+ τh)− f(x)

τ
≤ f(x+ τh)−

f(x+ τh) + gTτ (x− [x+ τh])

τ
= gTτ h.

whence, passing to limit as t → +0, we get

Df(x)[h] ≤ gTτ h. (a.2)

as τ → +0, ∥gτ∥2 remains bounded by C, thus„ we can find a sequence τ1 > τ2 > ... of positive reals converging
to 0 as i → ∞ and such that gi = gτi converge, as i → ∞, to some g. Noting that xi := x+τih → x as i → ∞ and
invoking the same C, we conclude that g ∈ ∂f(x). At the same time, from (a.2) it follows that gTh ≥ Df(x)[h],
which combines with (a.1) to imply (a).

6.20



If x ∈ rint Dom f , then, for every h ∈ L, there exists the directional derivative taken at x along direction h –
the quantity

Df(x)[h] ≡ lim
t→+0

f(x+ th)− f(x)

t
Df(x)[h] is a convex positively homogeneous, of degree 1, function of h ∈ L such that

Df(x)[h] = max
g∈∂f(x)

gTh (a)

f(x) +Df(x)[h] ≤ f(x+ h) (b)
∂Df(x)[0] = ∂f(x) (c)

To prove (b), it suffices to consider the case when x + h ∈ Dom f , By convexity of f , for 0 < t < 1 it holds
f(x+th)−f(x)

t
≤ f(x+h)−f(x)

1
; passing to limit as t → +0, we arrive at (b).

To prove (c), note that when intDom f contains the centered at the origin ball of radius r > 0 and g ∈ ∂Df(x)[0],
for h with ∥h∥2 =≤ r we have f(x) + gTh ≤ f(x) + Df(x)[h] ≤ f(x + h), with the last inequality given by (b);
the resulting inequality, in view of E, implies that g ∈ ∂f(x), that is ∂Df(x)[0] ⊂ ∂f(x). To verify the opposite
inclusion, note that by (a) for g ∈ ∂f(x) and every h ∈ Rn it holds Df(x)[h] ≥ gTh, that is, g ∈ ∂Df(x)[0].
Q.E.D.
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Elementary Calculus of Subgradients

♣ Disclaimer: All functions participating in the rules below are assumed to be convex.
• If gi ∈ ∂fi(x) and λi ≥ 0, then ∑

i

λigi ∈ ∂(
∑
i

λifi)(x)

• If gα ∈ ∂fα(x), α ∈ A,
f(·) = sup

α∈A
fα(·)

and
f(x) = fα(x), α ∈ A∗(x) ̸= ∅,

then every convex combination of vectors gα, α ∈ A∗(x), is a subgradient of f at x
• [Chain rule] If gi ∈ ∂fi(x), i = 1, ...,m, F (y1, ..., ym) is monotone w.r.t. every yi such that fi
is not affine, and d ∈ ∂F (f1(x), ..., fm(x)), then the vector

g :=
∑
i

digi

is a subgradient of the composition

G(ξ) =

{
F (f1(ξ), ..., fm(ξ)) , ξ ∈ ∩iDom fi
+∞ ,otherwise

at ξ = x.
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Chain rule: If gi ∈ ∂fi(x), i = 1, ...,m, F (y1, ..., ym) is monotone w.r.t. every yi such that fi is
not affine, and d ∈ ∂F (f1(x), ..., fm(x)), then the vector

g :=
∑
i

digi

is a subgradient of the composition

G(ξ) =

{
F (f1(ξ), ..., fm(ξ)) , ξ ∈ ∩iDom fi
+∞ ,otherwise

at ξ = x.
Under the premise of Chain rule, x ∈ Dom fi, i ≤ m, and y := [f1(x), ..., fm(x)] ∈ DomF . Let h ∈ Rn; we need
to prove that

G(x+ h) ≥ G(x) + gTh (∗)
There is noting to prove when x+ h ̸∈ DomG. Assuming that x+ h ∈ DomG, let I be the set of those i ≤ m
for which fi is not affine, and let us set

yi = fi(x), zi = fi(x+ h), ȳi = yi + gTi h, i ≤ m, h̄ = [gT1h; , , , ; g
T
mh].

As gi ∈ ∂fi(x), we have

ȳi

{
≤ zi , i ∈ I
= zi , i ̸∈ I

}
which combines with partial monotonicity of F to imply the first inequality in the following chain:

G(x+ h) = F (z1, ..., zm) ≥ F (ȳ1, ..., ȳm) = F ([y1; ...; ym] + h̄)
≥ F (y1, ..., ym) + dT h̄ [as d ∈ ∂F (y1, ..., ym)]
= G(x) +

∑
i
dih̄i = G(x) +

∑
i
digTi h

= G(x) + gTh,

whence g ∈ ∂G(x), Q.E.D.
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Hahn-Banach Theorem

♣ Here is the [finite-dimension version of] one of the cornerstones of Functional Analysis

Fact VI.8 [Hahn-Banach Theorem] Let n(x) : Rn → R be a convex positively homogeneous,
of degree 1, function and E ⊂ Rn be a linear subspace. Let also eTx be a linear function
which is dominated by n(x) on E:

eTx ≤ n(x) ∀x ∈ E.

Then there exists a linear function eTx : Rn → R which coincides with eTx on E and is
dominated by n(x) everywhere.
Canonical wording: A linear form dominated by n(·) on a linear subspace can be extended
from this subspace onto the entire Rn, the domination being preserved.

Note: We clearly have n[·] = Dn(0)[·]; with this in mind, the relation

Dn(0)[h] = max
g∈∂n(0)

gTh

becomes a special case of HBT – the one when E = R · h. Taking into account that for
convex f : Rn → R ∪ {+∞} and x ∈ intDom one has ∂Df(x)[·] = ∂f(x), HBT implies that
whenever x ∈ intDomF and E is a linear subspace, the linear form eTh satisfying

f(x+ h) ≥ f(x) + eTh ∀h ∈ E

– the subgradient of the restriction of f onto x + E taken at x – can be obtained from a
"full-dimensional" subgradient of f : there exists g ∈ ∂f(x) such that

fTh = eTh ∀h ∈ E.
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Proof of HBT: It suffices to prove the HBT for the case when E is of dimension n− 1 – given this fact, we
can extend linear form from E onto the entire Rn step by step, adding one dimension at a time. Thus let
dimE = n − 1, and let a ∈ Rn\E. An extension fTx of the linear form eTx from E onto the entire Rn is fully
determined by the quantity α = fTa: every x ∈ Rn can be uniquely decomposed as x = ta+ d with t ∈ R and
d ∈ E ⇒ fTx = αt+ eTd. To get an extension dominated by n(·), we need to select α in such a way that

∀(d ∈ E, t ∈ R) : αt+ eTd ≤ n(ta+ d) (∗)

When t = 0, the conclusion in (∗) holds true automatically, as eTx is dominated by n(x) on E. By homogeneity,
all we need to ensure a is to select α in such a way that

α+ eTd ≤ n(d+ a) ∀d ∈ E & −α+ eTr ≤ n(r − a)︸ ︷︷ ︸
⇔ α ≥ eTr − n(r − a)

∀r ∈ E.

An evident necessary and sufficient condition for the existence of the required α is

n(d+ a)− eTd ≥ −n(r − a) + eTr ∀r, d ∈ E,

that is,

n(d+ a) + n(r − a) ≥ eT [d+ r] ∀d, r ∈ E.
The latter inequality indeed takes place, since by convexity and positive homogeneity of n one has n(d+ a) +
n(r − a) ≥ n(d+ r), and n(d+ r) ≥ eT [d+ r] for all d, r ∈ E, Q.E.D.
Note: This proof straightforwardly combines with transfinite induction to imply the "true" infinite-dimensional,
HBT.
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Lecture II.3

Legendre Transform and Fenchel Duality

Back to metric spaces: lower semicontinity
Legendre transform
Hölder and Moment Inequalities
Support and Minkowski functions of convex sets

z = 1
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|x|5 + 4

5
|y|5/4



Preliminaries: Extended real line as a metric space

♣ Convex functions take values in the extended real line R ∪ {+∞}, concave ones – in
R ∪ {−∞}, and for our further developments it makes sense to equip the extended real line
R = R ∪ {+∞} ∪ {−∞} with metric (and thus with convergence).
A good way to do it is
• to select a strictly increasing continuous encoding function θ : R → R such that
limt→+∞ θ(t) = 1, limt→−∞ θ(t) = −1 e.g., θ(t) = 2

π
atan(t),

• to extend θ(·) from R onto R by setting θ(±∞) = ±1, and
• to use the resulting one-to-one correspondence t 7→ θ(t) : R → [−1,1] to "translate" the
standard metric on [−1,1] into the metric

d(t, t′) = |θ(t)− θ(t′)|

on R.
Note: Equipped with this metric, R becomes a compact metric space, as [−1,1] is so.
♠ As is immediately seen, the resulting convergence of sequences of points from R is as
follows:
A sequence {ti ∈ R}i converges to t ∈ R iff
— t ∈ R and for every reals a < t, a > t, all but finitely many terms in the sequence satisfy
a < ti < a,
— t = +∞ and for every real a, all but finitely many terms in the sequence satisfy a < ti,
— t = −∞ and for every real a, all but finitely many terms in the sequence satisfy ti < a

Note: The resulting notion of convergence (this is the only notion we will be interested in)
does not depend on the choice of the encoding function and is in full accordance with how
the sentence "ti → t ∈ R as i → ∞" is understood in Calculus.
Note: From now on, we treat R as a metric space, and can therefore speak about continuity
of functions defined on metric spaces and taking values in R.

7.1



lim inf and limsup

♠ Limiting points of a sequence {xi ∈ X}i of points in metric space (X, d) are, by definition,
the limits of converging subsequences of the sequence. It is immediately seen that
The set of limiting points of a given sequence is closed (and nonempty when the space is
compact).
As a result,
Among the limiting points of a sequence {xi ∈ [−1,1]} there are the minimal and the maximal
ones.
♠ The one-to-one correspondence, given by an encoding function, between R and [−1,1]
preserves convergence and order
⇒ Among the (nonempty) set of limiting points of a sequence {xi ∈ R} there is the smallest
one (the lower limit of the sequence lim inf i→∞ xi), and the largest one (the upper limit of
the sequence lim supi→∞ xi). The sequence converges iff

lim inf
i→∞

xi = lim sup
i→∞

xi,

in which case the common value of lim inf and lim sup is limi→∞ xi.
For example,
•lim inf i→∞(−1)i/i = limsupi→∞(−1)i/i = limi→∞(−1)i/i = 0
•lim inf i→∞(−1)i = −1, lim supi→∞(−1)i = 1,
•lim inf i→∞(−1)ii = −∞, lim supi→∞(−1)ii = +∞.
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Lower and upper semicontinuity

♣ Recall that a mapping f : X → Z (X,Z are metric spaces) is continuous iff the inverse
image of every open subset of Z is an open subset of X, or, which is the same, the inverse
image of every closed subset of Z is a closed subset in X.
♠ It is immediately seen that in the cases of Z = R and Z = R these continuity criteria can
be simplified as follows:
• A function f : X → R (f : X → R) is continuous iff for every real a, the set {x ∈ X : f(x) > a}
is open (or, equivalently, the set {x : f(x) ≤ a} is closed) and for every real a, the set
{x ∈ X : f(x) < a} is open (or, equivalently, the set {x : f(x) ≥ a} is closed).

♠ Functions f : X → R (f : X → R) satisfying "halves" of the latter characterisation have
names:
• A function f : X → R (f : X → R) is called lower semicontinuous (lsc), if for every real a
the set {x ∈ X : f(x) > a} is open (or, equivalently, the set {x : f(x) ≤ a} is closed)
• A function f : X → R (f : X → R) is called upper semicontinuous (usc), if for every real a
the set {x ∈ X : f(x) < a} is open (or, equivalently, the set {x : f(x) ≥ a} is closed)

Example: The function fα(x) =

{
0 , x ̸= 0
α , x = 0

: R → R is

– lower semicontinuous, iff α ≤ 0
– upper semicontinuous, iff α ≥ 0
– continuous, iff α = 0
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Lower semicontinuous functions with values in R ∪ {+∞}

Fact VII.1 Let f : X → R ∪ {+∞} be a function. The following three properties of f are
equivalent to each other:
A. f is lower semicontinuous
B. whenever xi ∈ X and x = limi xi, one has f(x) ≤ lim inf i f(xi)
Equivalently: whenever xi ∈ X converge to x and f(xi) → a ∈ R as i → ∞, one has f(x) ≤ a
C. the epigraph Epi{f} = {[x; t] : t ≥ f(x)} ⊂ X ×R is closed.

Proof:
A ⇒ B: Assume that f is lsc, x = limi xi, and a = lim inf i f(xi). Assume that f(x) > a, and let us lead this
assumption to contradiction. As f(x) > a, we have a ∈ R\{+∞}, and there exists b ∈ R : a < b < f(x). There
exists a subsequence {xij}j of {xi} such that f(xij) ≤ a as j → ∞ ⇒ all but finitely many of the points xij

belong to Xb = {x : f(x) ≤ b}. As f is lsc, Xb is closed, and as xij ∈ Xb for large j and xij → X as j → ∞, we
have x ∈ Xb, that is, f(x) ≤ b, which is a contradiction.
B ⇒ C: Assume that B is the case, and let [xi; ti] ∈ Epi{f} converge to [x; t] as i → ∞; we should prove that
[x; t] ∈ Epi{f}. Indeed, by B we have f(x) ≤ lim inf i f(xi) ≤ lim inf i ti = t.
C ⇒ A: Assume that C takes place, and let a ∈ R; we want to prove that the set Xa = {x : f(x) ≤ a} is closed.
Indeed, assuming the opposite, there exists a converging sequence {xi ∈ Xa} such that xi → x as i → ∞ and
f(x) > a. As f(xi) ≤ a, we have [xi; a] ∈ Epi{f}, and since Epi{f} is closed and [xi; a] → x; a] as i → ∞, we have
[x; a] ∈ Epi{f}, i.e., f(x) ≤ a, which is a contradiction.
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Basic properties of lsc functions

Fact VII.2 Let X be a metric space.
I. If fα : X → R ∪ {+∞}, i = 1, ..., I, are lsc and λi ≥ 0, then

f(x) =
∑
i

λifi(x) : X → R ∪ {+∞}

is lsc.
This is given by characterization B of lsc functions due to the evident relations (check them!) lim inf i λai =

λ lim inf i ai whenever λ ≥ 0, ai ∈ R∪{+∞}, and lim inf i[ai+ bi] ≤ lim inf i ai+lim inf bi whenever ai, bi ∈ R∪{+∞}
and lim inf i ai > −∞, lim inf i bi > −∞
2. If function fα : X → R ∪ {+∞}, α ∈ A, are lsc, so is f(x) = supα fα(x)
This is given by characterization C of lsc functions, as Epi{f} = ∩αEpi{f}
3. If X,Y are metric spaces, f : X → Y is continuous, and F : Y → R ∪ {+∞} is lsc, the
composition F (f(·)) is lsc
This is given by characterization B of lsc functions

4. Let X be a compact metric space and f : X → R∪{+∞} be lsc. Then infx∈X f(x) = f(x∗)
for some x∗ ∈ X; in particular, infX f > −∞.
Indeed, let a = infX f ∈ R. When a = +∞, the claim is clearly true. Now let a < ∞. For every real a > a, the
set Xa = {x : f(x) ≤ a} is closed (as f is lsc) and nonempty (as a > infX. Every finite collection of sets from the
family {Xa : a > a} clearly has a nonempty intersection, implying, by compactness of X, that X∗ := ∩a>aXa ̸= ∅
(Fact I.13), and clearly f(x) = a on X∗.
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Closed convex functions

♣ Convex lsc functions are nothing but functions f : Rn → R∪{+∞} with convex and closed
epigraph Epi{f}. "You can get much farther with a kind word and a gun than you can with
a kind word alone” – the convex lsc (a.k.a. closed convex) functions are much nicer than
merely convex ones.
♠ As we know, for a convex f : Rn → R ∪ {+∞} and x̄ ∈ rint Dom f one has ∂f(x̄) ̸= ∅,
implying that there exists an affine function dominated by f everywhere and equal to f at
x̄,, whence the pointwise supremum f of all affine functions dominated by convex function
f is equal to f on rint Dom f .
In fact f = f = +∞ outside of clDom f as well.
Indeed, there is nothing to prove when Dom f = ∅. When Dom f ̸= ∅ and x̄ ̸∈ clDom f , there exists a linear
form which strongly separates Dom f and x̄, or, which is the same, there exists an affine function a(·) such that
a(x̄) > 0 and a(x) ≤ 0 for x ∈ Dom f . Besides this, there exists affine function b(·) dominated by f ⇒ when
λ > 0, the affine function b(·) + λa(·) is dominated by f ⇒ f(x̄) ≥ b(x̄) + λa(x̄) → +∞, λ → ∞ ⇒ f(x̄) = +∞,
Q.E.D.
We see that a convex function f may differ from the supremum f of its affine minorants on
a "subtle" set – the relative boundary of Dom f only. The convex lsc functions are exactly
those for which f and f are the same.
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Fact VII.3 A function f : Rn → R ∪ {+∞} is convex lsc if and only if it is the pointwise
supremum of all affine functions dominated by f .

Proof. ✓ In one direction: the pointwise supremum of any family of affine functions is convex and lsc.
✓ In the opposite direction: Let f be convex and lsc, and let us prove that f is exactly the supremum f of
all affine functions dominated by f . There is nothing to prove when f ≡ +∞. Assuming f to be proper (i.e.,
Dom f ̸= ∅), we already know that f = f on rint Dom f and outside of clDom f , and all we need to verify is
that f(x̄) = f(x̄) when x̄ ∈ clDom f . As f ≤ f , the relation f(x̄) = f(x̄) folds true when f(x̄) = +∞. Now let
f(x̄) ∈ R. Selecting x′ ∈ rint Dom f , let xi = x′ + λi[x̄− x′] with 0 ≤ λi → 1− 0 as i → ∞. Then xi ∈ rint Dom f
(Fact II.29), whence

f(xi) = f(xi)≤ f(x′) + λi[f(x̄)− f(x′)]︸ ︷︷ ︸
f is convex!

→ f, i → ∞ & xi → x̄, i → ∞.

As f is lsc, we get f(x̄) ≤ f(x̄), implying that f(x̄) = f(x̄) due to f ≤ f . Q.E.D.
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Closure of a convex function

♣ Let f : Rn → R ∪ {+∞} be a convex function.
♠ f not necessarily is closed; for example, the epigraph of the characteristic function

ΥG(x) =

{
0 , x ∈ G
+∞ , x ̸∈ G

of a convex set G ⊂ Rn is G×R+ and is closed iff G is so.
However: There exist convex lsc functions (even affine ones) dominated by f ⇒ There
exists the largest convex lsc function which is dominated by f , specifically, the pointwise
supremum cl f (called closure of f) of all convex lsc functions dominated by f (recall that
the pointwise supremum of a whatever (nonempty) family of convex functions is convex,
and similarly for lsc functions). The geometry of cl f is as it should be:

Fact VII.4 For a convex function F , the epigraph of its closure cl f is exactly the closure
clEpi{x} of the epigraph of f :

Epi{cl f} = clEpi{f}. (∗)
Besides this, cl f is the pointwise supremum of affine functions dominated by f .
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For a convex function F , the epigraph of its closure cl f is exactly the closure clEpi{x} of the epigraph of f :
Epi{cl f} = clEpi{f}. (∗)

Besides this, cl f is the pointwise supremum of affine functions dominated by f .

✓To prove (∗), it suffices to prove that the set E = clEpi{f} is an epigraph of a function talking values in
R ∪ {+∞}. Indeed, assuming that E = Epi{f̃}, function f̃ is convex and closed along with E, and dominates
every closed convex function dominated by f (since the epigraph of such a function should be closed convex
set containing Epi{f} and thus containing E). As cl f is the largest closed convex function dominated by f , it
follows that {̃f} = cl f , and (∗) follows due to Epi{f̃} = E = clEpi{f}.
It remains to verify that E is an epigraph. The necessary and sufficient condition for a set E ⊂ Rn

x×Rt to be an
epigraph is to have as the intersection with any vertical line Lx = [x; t] : t ∈ R} either an empty set or a closed
ray {x; t : t ≥ ax} with ax ∈ R, As applied to E, this condition definitely holds true. Assuming E nonempty,
this closed convex set contains a ray directed by [0n×1; 1], and thus its intersection with a vertical line Lx is
either empty, or is a closed ray [{: t ≥ ax} with ax ∈ R, or is the entire line Lx; the latter option is impossible,
since convex function f is below bounded on every bounded set in Rn, that is, the intersection of Epi{f} with
the inverse image, under the projection [x; t] 7→ t, of a bounded set U in Rn is contained in a half-space of the
form {x, t] : t ≥ aU ∈ R}, and this property clearly remains intact when passing from Epi{f} to clEpi{f}. Thus,
E indeed is an epigraph, and (∗) is proved.
✓To prove the "Besides this" claim, note that as cl f ≤ f and cl f is the largest closed convex function
dominated by f , affine function dominated by cl f are exactly the same as affine functions dominated by f ,
and clf , as any closed convex function, is the pointwise supremum of its affine minorants (Fact VII.3).

Note: On a straightforward inspection, we have proved the following

Fact VII.5 Let f : Rn → R ∪ {+∞} be a function, not necessarily convex, which possesses
affine minorants. The pointwise supremum cl f of these minorants is the largest closed
convex function dominated by f , and

Epi{cl f} = clConv(Epi{f})
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Illustration: Discontinuous convex functions.

Left: Discontinuous convex usc function f with polyhedral domain Dom f = [0,1].
Note: f is convex and discontinuous: it "jumps up" at a boundary point of Dom f . "Jumps
up" at some points from the domain’s boundary is the only type of discontinuity allowed
for convex functions with polyhedral domains. In particular, every lsc convex function with
polyhedral domain is continuous on this domain.
Right: Discontinuous convex lsc function with non-polyhedral domain.
Note: The function is the supremum of all affine functions on the 2D plane which are ≤ 0
at the origin and are ≤ 1 on the circumference

C = {(x− 1)2 + y2 ≤ 1}.
.The function is convex lsc and discontinuous: it is 0 at the origin and is 1 at all distinct
from the origin points of C.
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Legendre Transform of convex function

♣ Let f : Rn → R ∪ {+∞} be a proper function, i.e., Dom f ̸= ∅.
• Question: When an affine function yTx− a is dominated by f?
• Answer: It is the case iff a ≥ yTx− f(x), i.e. iff

a ≥ f∗(y) := sup
x

[yTx− f(x)] = sup
x∈Domf

[yTz − f(x)] (!)

The function f∗(·) given by (!) takes values in R ∪ {+∞} (as f is proper) and is called the
Legendre (a.k.a. Fenchel) transform of f .
♠ Immediate observations:

Fact VII.6 Let function f : Rn → R∪ {+∞} be proper and possess affine minorants (e.g. f
is convex). Then
A. The Legendre transform f∗ of f is a proper lsc convex function, and

(f∗)∗(x) := sup
x

[xTy − f∗(y)] = sup
y∈Domf

[yTx− f∗(y)]

is the closure cl f(x) of f – the largest convex lsc function dominated by f .
in particular, when f is proper convex lsc, so is f∗, and f is the Legendre transform of f∗.
Indeed, function f∗ is proper (as f possesses affine minorants) convex lsc (as the supremum of nonempty family
of convex lsc functions). Setting {a ∈ R : yT ξ − a ≤ f(ξ) ∀ξ} = {a : a ≥ f∗(y)}, we have

sup
y

[yTx− f∗(y)] = sup
y,a

{yTx− a : a ≥ f∗(y)} = sup
y,a

{yTx− a : yT ξ − a ≤ f(ξ)∀ξ},

i.e., (f∗)∗(x) is the supremum, as evaluated at x, of all affine minorants of f , that is, cl f(x), Q.E.D.
When f is proper convex lsc, f = cl f , that is, (f∗)∗ = f .
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B. Let f (or, which is the same, f∗) be proper convex lsc. Then

Argmax
y

[xTy − f∗(y)] = ∂f(x)︸ ︷︷ ︸
(a)

& Argmax
x

[xTy − f(x)] = ∂f∗(y)︸ ︷︷ ︸
(b)

Indeed, if f(x) = +∞, then both ∂f(x) = ∅ and supy[x
Ty−f∗(y)] = f(x) = +∞, whence Argmaxy[xTy−f∗(y)] =

∅ = ∂f(x). When x ∈ Dom f , we have

ȳ ∈ Argmaxy[xTy − f∗(y)] ⇔ xT ȳ − f∗(ȳ) = f(x) ⇔ f(x) = xT ȳ − supξ[ξ
T ȳ − f(ξ)]

⇔ f(x) = xT ȳ + infξ[f(ξ)− ξTx] ⇔ infξ{f(ξ)− [f(x) + ȳT [ξ − x]]} = 0 ⇔ ȳ ∈ ∂f(x)

and we arrive at (a). Swapping f, f∗, the same reasoning results in (b).

C. For all x, y one has
xTy ≤ f(x) + f∗(y) (!)

If one of the functions f , f∗ is proper convex lsc (whence, by A, both f , f∗ are proper convex
lsc), inequality (!) is tight:

∀(x ∈ Dom f) : inf
y
(f(x) + f∗(y)− xTy) = 0︸ ︷︷ ︸

(c)

& ∀(y ∈ Dom f∗) : inf
x
(f(x) + f∗(y)− xTy) = 0︸ ︷︷ ︸

(d)

Moreover, when one of the functions f, f∗ (and then the other one as well) is proper convex
lsc, then a pair x, y makes (!) equality iff y ∈ ∂f(x), same as iff x ∈ ∂f∗(y).
Indeed, by the definition of Legendre transform, ∀(x, y) : f∗(y) ≥ xTy − f(x), implying (!). Now let one of f, f∗
be proper convex lsc; then both of these functions are so, and ∞ > f∗(y) = supx[y

Tx − f(x)] ⇔ ∞ > f∗(y) =

supx∈Domf [y
Tx− f(x)] is the same as y ∈ Dom f∗ ⇒ infx∈Domf [f∗(y)+ f(x)−xTy] = 0, which is (d). Swapping

f and F∗, we arrive at (c).
The "Moreover" part of C follows from B, since (!) combines with the definition of the Legendre transform
to imply that (!) is equality iff x ∈ Argmaxξ[yT ξ − f(ξ)], same as iff y ∈ Argmaxη[xTη − f∗(η)].
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♠ As a corollary of Fact VII.6.B,

Fact VII.7 A proper convex lsc function f : Rn → R∪{+∞} is below bounded iff 0 ∈ Dom f∗,
in which case

inf f = −f∗(0),

and the set of minimizers of f , if any, is

Argmin
x

f(x) = ∂f∗(0),

Indeed, f∗(0) = supx{−f(x)} = − infx f(x).
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Legendre transform of a polyhedral function

♠ Polyhedral functions. We call a function f : Rn → R ∪ {+∞} polyhedral, if it is proper
and its epigraph is a polyhedral set. A polyhedral representation

Epi{f} = {[x; t] : ∃u : Px+ tp+Qu ≤ r}
of the epigraph of f is called a polyhedral representation of f .
• A polyhedral function is proper, convex and lsc (as its epigraph is a polyhedral set and as
such is convex and closed).
♠ Calculus of convex sets immediately implies that the results of basic convexity-preserving
operations with functions – taking linear combinations, finite maxima, affine substitution
of arguments, as applied to polyhedral functions given by polyhedral representations are
polyhedral as well, with a polyhedral representation of the results readily given by those of
the operands. The same takes place for monotone superposition

f1, ..., fm, F 7→ {g(x) =

{
F (f1(x), ..., fm(x))) , fi(x) < ∞∀i
+∞ ,otherwise

when all fi and F are polyhedral, and F satisfies the standard convexity-preserving condition
"F (y1, , , .ym) is nondecreasing in every i for which fi is not affine."
♠ Polyhedrality is respected by Legendre transformation: given a polyhedral representation

t ≥ f(x) ⇔ ∃u : Px+ tp+Qu ≤ r,

we have

f∗(y) ≤ t ⇔ maxx[yTx− f(x)] ≤ t
⇔ maxx,τ{yTx− τ : τ ≥ f(x)} ≤ t
⇔ maxx,τ,u{yTx− τ : Px+ τp+Qu ≤ r} ≤ t
⇔ minλ{rTλ : P Tλ = y, pTλ = −1, QTλ = 0, λ ≥ 0} ≤ t [LP duality]
⇔ ∃λ : rTλ ≤ t, P Tλ = y, pTλ = −1, QTλ = 0, λ ≥ 0

and we end up with a polyhedral representation of f∗.
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"Classical case"

♠ Let f : Rn → R ∪ {+∞} be convex lsc function with domain intG, where G is a closed
convex set with a nonempty interior, and let f be twice continuously differentiable on intG
and strongly convex, meaning that

∀(x ∈ intG, h ̸= 0) :
d2

dt2
f(x+ th) > 0.

Note: Since Dom f = intG, so that f = +∞ on the boundary of G, and f is lsc, f is a
barrier for G:

xi ∈ intG, lim
i→∞

xi ∈ ∂G ⇒ f(xi) → ∞ as i → ∞

Assume also that
(!) Whenever the function yTx− f(x) is bounded from above, it achieves its maximum
Examples:
1. G = Rn is the entire space, f(x) = 1

2
xTQx− 2qTx with Q ≻ 0

2. G = {x : ∥x∥2 ≤ 1} is the unit Euclidean ball, f(x) = − ln(1− xTx)
3. G = {x : ∥x∥∞ ≤ 1} is the unit box, f(x) = −

∑
i ln(1− x2

i )
4. G = Rn

+ is the nonnegative orthant, f(x) = −
∑

i lnxi

5. G = Ln = {x : xn ≥
√

x2
1 + ...+ x2

n−1} is the Lorentz cone, f(x) = ln(x2
n − s21 − ...− x2

n−1)

6. G = Sn
+ := {x ∈ Sn : x ⪰ 0} is the semidefinite cone, f(x) = − lnDetx

Note: In some of these examples, strong convexity (and just convexity itself) of f and (!)
are not evident and require verification (for the time being, postponed).
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Fact VII.8 In the case in question, the domain of f∗ is open, and thus is intG∗ for a closed
convex set G∗, f∗ is twice continuously differentiable and strongly convex on intG∗, the
function xTy − f∗(y) attains its maximum in y whenever it is bounded from above, and the
mappings x 7→ ∇f(x) : x ∈ intG → Rn and y 7→ ∇f∗(y) : intG∗ → Rn establish inverse to each
other continuously differentiable correspondences between intG and intG∗.

Proof. ✓Observe, first, that the mapping x 7→ F ∗ x) := f ′(x) is a one-to-one mapping of intG onto intG∗.
Indeed, intG∗ is exactly the set of those y for which the function yTx − f(x) is above bounded, or, which is
the same by (!) and the Fermat rule, of those y for which y = ∇f(xy) for some xy. As f is strongly convex,
xy is uniquely defined by y. Vice versa, if x ∈ intG, we have Argmaxξ[[∇f(x)]T ξ − f(ξ)] = {x}, implying that
∇f(x) ∈ Dom f∗. The bottom line is that the mapping x 7→ y(x) := ∇f(x) : intG → Rn maps intG onto Dom f∗,
and this mapping is one-to-one (as when ∇f(x) = ∇f(x′) = y, the strongly convex function f(ξ)− yT ξ attains
its minimum on intG both at x and at x′, implying that x = x′).
✓The Jacobian of the continuously differentiable on its domain intG mapping f is the Hessian of f , and
therefore it is nondegenerate at every point from this domain. Applying the Inverse Function Theorem of
Calculus, nondegeneracy of the Jacobian of the one-to-one mapping F implies that the image F (intG) of
the domain of F (this image, as we know, is Dom f∗) is open, and the inverse F−1 of F is continuously
differentiable on intG∗. Now, when y ∈ intG∗ and x = F−1(y), that is, x ∈ intG and y = ∇f(x), we have
f∗(y) = maxξ[yT ξ− f(ξ)] = yTx− f(x) (by Fermat rule), that is, f∗(y) = yTF−1(y)− f(F−1(y)), implying that f∗
is continuously differentiable on intG∗. Finally, for our y and x we have f∗(y) = yTx − f(x), implying by Fact
VII.6.C that x = F−1(y) ∈ ∂f∗(y). As f∗ is continuously differentiable, ∂f∗(y) = {∇f∗(y)} ⇒ ∇f∗(y) = F−1(y).
Thus, ∇f∗(y) is continuously differentiable (⇒ f∗ is twice continuously differentiable), and the mappings
x 7→ F (x) = ∇f(x) and y 7→ F−1(y) = ∇f∗(y) establish one-to-one correspondence between intG and intG∗. By
Chain rule the Jacobians of F and of F ∗ −1 (i.e., the Hessians of f and of f∗) taken at the corresponding to
each other points x ∈ intG and y ∈ intG∗ are inverses of each other ⇒ f∗ is strongly convex on intG∗. Finally,
from our analysis, when the function xTy − f∗(y) is bounded from above (that is, x ∈ Dom (f∗)∗ = Dom f , the
function achieves its maximum (namely, at the point ∇f(x)). The proof is complete.
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How it works

1. f(x) = 1
2
xTQx− qTx [Q ≻ 0], Dom f = Rn ⇒ f∗(y) = 1

2
(y + q)TQ−1(y + q), Dom f∗ = Rn

∇f(X) = Qx− q, ∇f∗(y) = Q−1(y + q)

2. f(x) = − ln(1− xTx), Dom f = {x : xTx < 1} ⇒ f∗(y) = yTy√
yTy+1+1

− ln(
√

yTy +1+ 1)+ ln2, Dom f∗ = Rn,

∇f(x) =
x

1− xTx
, ∇f∗(y) =

y√
yTy +1+ 1

3. f(x) = −
∑

i
log(1 − x2

i ), Dom f = {x : ∥x∥∞ < 1} ⇒ f∗(y) =
∑

i

[
y2
i√

y2
i
+1+1

− ln(
√

y2i +1+ 1)+ ln2
]
,

Dom f∗ = Rn,

[∇f(x)]i =
2xi

1− x2
i

, [∇f∗(y)]i =
2yi√

y2i +1+ 1

4. f(x) = −
∑

i
lnxi, Dom f = intRn

+ = {x : x > 0} ⇒ f∗(y) = −
∑

i
ln(−yi)− n, Dom f∗ = −intRn

+

[∇f(x)]i = −1/xi, [∇f∗(y)]i = −1/yi

5. f(x) = − ln(x2
n−x2

1−...−x2
n−1) = − ln(xTJx), J = Diag{−1, ...,−1,1}. Dom f = intLn = {x : xn > 0, xTJx > 0}

⇒ f∗(y) = − ln(yTJy) + 2 ln(2)− 2, Dom f∗ = −intLn,

Df(x)[h] = 2hTJx/(xTJx), Df∗(y)[h] = 2hTJy/(yTJy)

6. f(x) = − lnDet(x), Dom f = intSn
+ = {x ∈ Sn : x ≻ 0} ⇒ f∗(y) = − lnDet(−y) + n. Dom f∗ = −intSn

Df(x)[h] = −Tr(x−1h), Df∗(y)[h] = −Tr(y−1h)
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Legendre transforms of smooth and of strongly convex functions

♣ A. Conjugate norms
♠ Let ∥ · ∥ be a norm on Rn. Its conjugate norm is defined as

∥y∥∗ = max
x

{yTx : ∥x∥ ≤ 1}

As is immediately seen, ∥ · ∥∗ indeed is a norm, and its unit ball is the polar of the unit ball of ∥ · ∥:

{y : ∥y∥∗ ≤ 1} = Polar ({x : ∥x∥ ≤ 1}) .

Since every closed convex set containing the origin is the polar of its polar, the conjugate of the conjugate
norm ∥ · ∥∗ is the original norm ∥ · ∥
Note: ∥ · ∥∗ is the smallest norm for which the inequality

yTx ≤ ∥x∥∥y∥∗ ∀x, y

holds true. This inequality is tight, meaning that for every x there exists nonzero y making this inequality an
equality, and similarly, for every y there exists a nonzero x making the inequality an equality.
Examples:
• The conjugate of ∥ · ∥2 is ∥ · ∥2 itself;
• The conjugate of ∥ · ∥1 is ∥ · ∥∞, and the conjugate of ∥ · ∥∞ is ∥ · ∥1.
More generally, we shall see in a while that
The conjugate of the norm ∥ · ∥p, 1 ≤ p ≤ ∞, is the norm ∥ · ∥q with q given by 1

p
+ 1

q
= 1.

Note: For L > 0. the functions L
2
∥x∥2 and 1

2L
∥y∥2∗ are Legendre transforms of each other.
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♣ B. Smooth and strongly convex functions
♠ Let f be a convex function, ∥ · ∥ be a norm on Rn, and L be a nonnegative real. We say that f is
(L, ∥ · ∥)-smooth, if Dom f = Rn and

∀(x, z ∈ Rn, e ∈ ∂f(x)) : f(z) ≤ f(x) + eT [z − x] +
L

2
∥z − x∥2.

It is easily seen that a convex function f : Rn → R is (L, ∥ · ∥)-smooth if and only if it is continuously
differentiable,and the mapping x 7→ ∇f(x) is Lipschitz continuous, with constant L, from the norm ∥ · ∥ to the
norm ∥ · ∥∗:

∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥ ∀x, y
same as if and only if f is continuously differentiable and

[x− y]T [∇f(x)−∇f(y)] ≤ L∥x− y∥2 ∀x, y.
A twice continuously differentiable function f : Rn → R is (L, ∥ · ∥)-smooth if and only if 0 ≤ d2

dt2

∣∣
t=0

f(x+ th) ≤
L∥h∥2 for all x, h.
For example: Convex quadratic function f = 1

2
xTQx − qTx + c (Q ⪰ 0) is (L, ∥ · ∥2)-smooth whenever the

eigenvalues of Q are upper-bounded by L.
♠ Let g : Rn → R ∪ {+∞} be a proper convex lsc function, ∥ · ∥∗ be the conjugate of a norm ∥ · ∥, and L be a
positive real. g is called (L, ∥ · ∥∗)-strongly convex, if for every ȳ ∈ Dom g it holds

∀(y ∈ Rn, e ∈ ∂g(ȳ)) : g(y) ≥ g(ȳ) + [y − ȳ]Te+
1

2L
∥y − ȳ∥2∗ .

It can be proved that a proper convex lsc function g is (L, ∥ · ∥∗)-strongly convex if and only if

[e′ − e]T [y′ − y] ≥
1

L
∥y′ − y∥2∗ ∀(y, y′ ∈ Dom g, e ∈ ∂g(y), e′ ∈ ∂g(y′))

A twice continuously differentiable on rint Dom g convex lsc function g is (L, ∥ · ∥∗)-strongly convex if and only
if d2

dt2

∣∣
t=0

g(y + th) ≥ L−1∥h∥2∗ for all y ∈ rint Dom g and all h from the linear subspace parallel to Aff(Dom g).

For example: Convex quadratic form f(x) = 1
2
xTQx− qTx+ c : Rn → R is (L, ∥ · ∥2)-strongly convex if and only

if Q ≻ 0 and all eigenvalues of Q are lower-bounded by L−1.
Note: When f is convex quadratic form with the matrix of the quadratic part equal to Q ≻ 0, f∗ is convex
quadratic form with the matrix of the quadratic part equal to Q−1. From the examples above, A quadratic
form with positive definite matrix of the quadratic part, the form is (L, ∥·∥2)-smooth if and only if the Legendre
transform f∗ of f is (L, ∥ · ∥2)-strongly convex.
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♠ The just outlined relation between the smoothness and strong convexity of convex quadratic form is a
particular case of the following general result:

Fact VII.9 The Legendre transform f∗ of an (L, ∥ · ∥)-smooth convex function f : Rn → R is (L, ∥ · ∥∗)-strongly
convex. Vice versa, if the Legendre transform of a convex function f : Rn → R is (L, ∥ · ∥∗)-strongly convex,
then f is (L, ∥ · ∥)-smooth.

Proof.
✓Let f : Rn → R be (L, ∥·∥)-smooth convex function, let ȳ ∈ Dom f∗ be such that ∂f∗(ȳ) ̸= ∅, and let x̄ ∈ ∂f∗(ȳ).
By Fact VII.6.B.(b), x̄ is a maximizer over x ∈ Rn of the function ȳTx − f(x), whence f∗(ȳ) = ȳT x̄ − f(x̄).
Besides this, as x̄ ∈ ∂f(ȳ), ȳ is a maximizer of yT x̄ − f∗(y) over y, whence ȳ ∈ ∂f(x̄) by Fact VII.6.B.(a)
⇒ f(x) ≤ f(x̄) + ȳT [x− x̄] + L

2
∥x− x̄∥2 (f is (L, ∥ · ∥)-smooth !)⇒

f∗(y) = supx[y
Tx− f(x)] ≥ supx{yTx− f(x̄)− ȳT [x− x̄]− L

2
∥x− x̄∥2}

= supx{[y − ȳ]T [x− x̄]− L
2
∥x− x̄∥2}+ yT x̄− f(x̄) = 1

2L
∥y − ȳ∥2∗ + yT x̄− f(x̄)

= 1
2L

∥y − y∗∥2∗ + [y − ȳ]T x̄+ [ȳT x̄− f(x̄)] = f∗(ȳ) + [y − ȳ]T x̄+ 1
2L

∥y − ȳ∥2∗
(recall that the Legendre transform of L

2
∥ · ∥2 is 1

2L
∥ · ∥2∗). Thus,

f∗(y) ≥ f∗(ȳ) + x̄T [y − ȳ] +
1

2L
∥y − ȳ∥2

whenever x̄ ∈ Argmaxx[ȳTx − f(x)] = ∂f∗(ȳ) (the latter relation is given by Fact VII.6.B.(b)). Thus, f∗ is
(L, ∥ · ∥∗)-strongly convex.
✓Vice versa, let f∗ be (L, ∥ · ∥∗)-strongly convex, and let us prove that f is (L, ∥ · ∥)-smooth. To verify
that Dom f = Rn, take y ∈ rint Dom f∗ and e ∈ ∂f∗(y); then f∗(z) ≥ f∗(z) := f∗(y) + eT [z − y] + 1

3L
∥z − y∥2∗,

implying that the function xTz − f∗(z) ≤ xTz − f∗(z) of z is bounded from above for every x, whence Dom f =
Dom (f∗)∗ = Rn. Now let x̄ ∈ Rn, ȳ ∈ ∂f(x̄). Then x̄ is a maximizer of ȳTx− f(x) over x, whence ȳ ∈ Dom f∗,
f(x̄) = ȳT x̄ − f∗(ȳ), and x̄ ∈ ∂f∗(ȳ) by Fact VII.6.B.(b). As f∗ is strongly convex and x̄ ∈ ∂f∗(ȳ), we have
f∗(y) ≥ f∗(ȳ) + x̄T [y − ȳ]T + 1

2L
∥y − ȳ∥2∗ for every y. Therefore, as f is the Legendre transform of f∗, we have

f(x) = supy[y
Tx− f∗(y)] ≤ supy

{
yTx− f∗(ȳ)− x̄T [y − ȳ]− 1

2L
∥y − ȳ∥2∗

}
= supy

{
[y − ȳ]T [x− x̄]− 1

2L
∥y − ȳ∥2∗

}
+ ȳT [x− x̄] + [ȳT x̄− f∗(ȳ)] = L

2
∥x− x̄∥2 + [x− x̄]T ȳ + f(x̄)

The resulting inequality holds true for every x ∈ Rn and every ȳ ∈ ∂f(x̄), implying that f is (L, ∥ · ∥)-smooth. □
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Example: Let f(x) = ln(
∑n

i=1 exi). As we know, f is convex. Moreover, f is (1, ∥ · ∥∞)-
smooth, since setting pi = exi/(

∑
j e

xj), we have pi > 0,
∑

i pi = 1, whence

d2

dt2

∣∣
t=0

f(x+ th) =
∑

i
pih

2
i − (

∑
i
pihi)

2 ≤
∑

i
pih

2
i ≤ ∥h∥2∞.

Direct computation shows that

f∗(y) =

{ ∑
i yi ln(yi) , y ∈ ∆ = {y ≥ 0 :

∑
i yi = 1}

+∞ , y ̸∈ ∆
,

and we conclude that f∗ is (1, ∥ · ∥1)-strongly convex – the fact playing important role in
the design of proximal First Order algorithms for minimizing convex functions over the
probabilistic simplex.
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Characteristic, Support, and Minkowski functions of convex sets

♣ Let a set X ⊂ Rn be convex and nonempty.
♠ The Characteristic function ΥX of X is

ΥX(x) =

{
0 , x ∈ X
+∞ , x ̸∈ X

As is immediately seen The characteristic function ΥX of a nonempty convex set X is proper
convex function with the domain X. ΥX is lsc iff X is closed, and one always has

clΥX = ΥclX
♠ The Support function SuppX(y) of X is the Legendre transform of the characteristic

function:
SuppX(y) = sup

x∈Rn

[yTx−ΥX(x)]= sup
x∈X

yTx.

As is immediately seen,
S.0. The support function of X is the same as the support function of clX, and the
Legendre transform of SuppX ≡ SuppclX is the characteristic function ΥclX of clX (as the
latter function is proper convex lsc with Legendre transform SuppclX),
S.1. SuppX(·) is proper convex lsc function which is positively homogeneous of degree 1:

∀(y ∈ DomSuppX, t ≥ 0) : SuppX(ty) = tSuppX(y).

S.2 SuppX(·) "remembers" the closure clX of X, specifically,

clX = ∂SuppX(0)

To verify S.2, note that the function ΥclX(·) is proper convex lsc, and the set of its minimizers is clX; it
remains to refer to Fact VII.7.

7.22



♠ S.1 can be inverted:

Fact VII.10 Every proper convex lsc function f : Rn → R∪{+∞} which is positively homo-
geneous of degree 1 is the support function of a nonempty closed convex set, namely, the
set ∂f(0).

Indeed, with f as stated we have
f∗(x) = sup

y∈Domf

[xTy − f(y)] = sup
y∈Domf,t≥0

[txTy − f(ty)] = sup
y∈Domf,t≥0

t[xTy − f(y)]

and the latter sup is either zero (when x is such that xTy ≤ f(y) for all y,) or +∞ (when xTy > f(y) for some
y), that is, f∗ is the characteristic function of Dom f∗, and since f∗ is proper, convex, and lsc, Dom f∗ is a
nonempty closed convex set, and f = (f∗)∗ is the support function of this set. This combines with S.2 to
imply that the set in question is ∂f(0).

Example I: Kullback-Leibler divergence. The function
x ln(x/y) : {x ≥ 0} × {y > 0} → R

is convex (as the projective transform of the convex function x lnx with the domain {x ≥ 0}).
This function is not lsc; the closure of the function (which we still denote x ln(x/y)) is
obtained by adding to the original domain the origin x = 0, y = 0 in R2 (call this extended
domain D), preserving the values of the function at its original domain and setting 0 ln(0/0) =
0. Note that x ln(y/x) is positively homogeneous of degree 1.
♠ The Kullback-Leibler divergence is the function

f(x, y) =
∑
i

xi ln(xi/yi) : Rn ×Rn → R ∪ {+∞}.

This is positively homogeneous of degree 1 proper convex lsc function (by Fact VII.2.I, the
sum of lsc functions is lsc). Direct computation shows that

∂f(0) = X := {(p, q) ∈ Rn ×Rn : qi < 0,1+ ln(−qi) ≥ pi,1 ≤ i ≤ n},
and therefore f∗ = ΥX .
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Example I continued: Typical applications of the KL divergence are in quantifying proximity
between probability distributions. As a result, the "actual" KL divergence is the restriction
of the KL divergence just defined onto the set of probabilistic vectors (x, y) (nonnegative
entries summing up to 1). This function is

KL(x, y) =

{ ∑
i xi ln(xi/yi) , x, y ∈ ∆n = {z ∈ Rn : z ≥ 0,

∑
i zi = 1}

+∞ ,otherwise

This function is not homogeneous, and its Legendre transform has nothing to do with the
above f∗ – its domain is the entire Rn (as is the case for the Legendre transform of any
proper convex function with bounded domain)

KL(r, s) := x ln
(

x
1−y

)
+ (1− x) ln

(
1−x
y

)
KL∗(·, ·)

Comment. When n = 2, the KL divergence f(x, y) restricted onto ∆2 becomes function
of two real variables r = x1, s = y2 with the unit square [0 ≤ r, s ≤ 1] (with vertices [1; 0]
and [0; 1] excluded) as the domain. This function is presented on the left picture, and its
Legendre transform is on the right picture.
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Example II. The support function of the ball BR(x̄) = {x : ∥x− x̄∥ ≤ R} (R > 0) is the scaled
linear perturbation of ∥ · ∥∗:

Suppx∈BR(x̄)(y) = R∥y∥∗ + x̄Ty.

This is a special case of the general fact as follows:

Fact VII.11 If f is a proper convex lsc function with Legendre transform f∗, A is nonsingular
n× n matrix, α > 0, and s, e ∈ Rn, then the function

g(x) = αf(A[x− s]) + eTx

is proper convex lsc with the Legendre transform

g∗(y) = αf∗(A
−T [y − e]/α) + sT [y − e]

Indeed,

g∗(y) = supx{yT − αf(Ax− s)− eTy} = α supx{[α−1[y − e]Tx− f(

z︷ ︸︸ ︷
A[x− s])}

= α supz{α−1[y − e]T [A−1z + s]− f(z)} = α
[
supz{[α−1A−T(y − e)]Tz − f(z) + α−1[y − e]Ts

]
= αf∗(A−T [y − e]/α) + sT [y − e]
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♠ Domain of support function.

Fact VII.12 The domain DomSuppX of the support function of a closed nonempty convex
set X ⊂ Rn is a cone (not necessarily closed) which is in-between the interior of the negation
of the cone dual to the recessive cone of X and this negation itself:

int (−[Rec(X)]∗) ⊂ DomSuppX ⊂ −[Rec(X)]∗. (∗)

First, SuppX is positively homogeneous of degree 1 proper convex function, whence D := DomSuppX is a cone.
Let K = −[Rec(X)]∗ = {y : yTh ≤ 0, ∀h ∈ Rec(X)}, and let x̄ ∈ X. ✓When y ̸∈ K, there exists h ∈ Rec(X)
with yTh > 0, implying that yT [x̄+ th] → ∞ as t → ∞ . Since x̄+R+h ∈ X due to x̄ ∈ X,, h ∈ Rec(X), we get
SuppX(y) = +∞, that is„ y ̸∈ D. The right inclusion in (∗) is proved.
✓To prove the left inclusion in (∗), let y ∈ intK, and let us prove that SuppX(y) < ∞. Indeed, as y ∈ intK,
for certain C and all h ∈ Rec(X) it holds

∥h∥2 ≤ C[−yTh] (!)
(Fact IV.11 ). Assume now, on the contrary to what should be proved, that yTxi → +∞ for some sequence
{xi ∈ X}. Then the sequence clearly diverges; let h be an asymptotic direction of the sequence, that is, for
some i1 < i2 < ... we have

∥xij∥2 → ∞ & xij/∥xij∥2 → h as j → ∞.
Passing to a subsequence, we can assume that xi/∥xi∥2 → h as i → ∞. Thus

xi = rih+ rid
i with ri = ∥xi∥2 → ∞, i → ∞, and di → 0, i → ∞..

Besides this, h is the ∥ · ∥2-unit vector from Rec(X), whence yTh ≤ −α < 0 by (!). We have

yTxi = riy
Th+ riy

Tdi ≤ −αri + ri∥y∥2∥di∥2;

as i → ∞, the right hand side in this inequality goes to −∞ since di → 0, i → ∞, and the left hand side goes
to +∞, which is the desired contradiction. .
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Quiz: Point out an unbounded closed nonempty convex set X such that
— DomSuppX is nonclosed
— DomSuppX is closed
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X is closed, Rec(X) = {[0; y] :≥ 0} X is closed,vRec(X) = {[0, y] : y ≥ 0}
DomSuppX = {[p; q] : q ≤ 0} = −[Rec(X)]∗ is closed DomSuppX = {[p; q] : q < 0} ∪ {[0,0]} is not closed

SuppX(p, q) =

{
−q , q ≤ 0, q + |p| ≥ 0

|p| − 2
√

−|p|q , q ≤ 0, q + |p| ≤ 0
+∞ , q > 0

SuppX(p, q) =

{
− p2

4q
, q < 0

0 , p = q = 0
+∞ ,otherwise
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Note:

Fact VII.13 The domain of the support function SuppX of a nonempty polyhedral set X is
a polyhedral cone, and the epigraph of the support function is polyhedral..

Indeed, when a nonempty X is given by polyhedral representation

X = {x ∈ Rn : ∃u : Px+Qy ≤ r},

one has

SuppX(y) ≤ t ⇔ maxx∈X yTx ≤ t

⇔ maxx,u
{
yTx : Px+Qu ≤ r

}
≤ t

⇔ minλ{rTλ : P Tλ = y,QTλ = 0, λ ≥ 0} ≤ t
[by LP duality]

⇔ ∃λ : rTλ ≤ t, P Tλ = y,QTλ = 0, λ ≥ 0
and we end up with explicit polyhedral representation of Epi{SuppX} given by homogeneous linear inequalities
(and thus being a polyhedral cone).
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♠ Subdifferential of the support function. Let X ⊂ Rn be a nonempty closed convex set.
As SuppX is the Legendre transform of proper convex semicontinuous function ΥX, Fact
VII.6.B states that

y ∈ DomSuppX ⇒ ∂SuppX(y) = Argmax
x∈X

xTy

In particular,
∂SuppX(0) = X

and for y ∈ DomSuppX\{0}, ∂Supp(ty) = ∂SuppX(y) for all t > 0 and, in addition,

∂SuppX(y) = {g ∈ ∂SuppX(0) : gTy = SuppX(y).}
Examples:
• The support function of the unit ∥ · ∥2-ball is ∥ · ∥2-norm; ∥ · ∥2, and

∂∥x∥2 =

{
{ξ : ∥ξ∥2 ≤ 1} , x = 0,
{x} = {∇∥x∥2} , x ̸= 0

• The support function of the unit ∥ · ∥1-ball is ∥ · ∥∞-norm;,∥ · ∥∞, and

∂∥x∥∞ =

{
ξ : ξi

{
= sign(xi) , xi ̸= 0
∈ [−1,1] , xi = 0

}
.

• The support function of the unit ∥ · ∥∞-ball is ∥ · ∥1-norm; ∥ · ∥1, and

∂∥x∥1 =


{ξ : ∥ξ∥∞ ≤ 1} , x = 0,{
ξ : ξi =

{
sign(xi) , |xi| = ∥x∥∞
0 , |xi| < ∥x∥∞

}
, x ̸= 0
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Minkowski function
♣ Let X ⊂ Rn be a closed convex set containing the origin.
♠ The Minkowski function MX(·) is defined as

MX(x) = inf
t>0

{
t : t−1x ∈ X

}
: Rn → R ∪ {+∞} [inf t∈∅ t = +∞]

Example: The Minkowski function of the unit ball {x : ∥x∥ ≤ 1} of a norm ∥ · ∥ is this norm.
• Clearly, The domain of Minkowski function is the radial cone of X taken at the origin:
DomMX = Cone (X), and in this domain the function is nonnegative and positively homo-
geneous of degree 1:

α ≥ 0, x ∈ DomMX ⇒ MX(αx) = αM(x) ≥ 0.

Besides this, as 0 ∈ X and X is convex, for τ > 0 the point τ−1x belongs to X iff t−1x ∈ X
for all t ∈ (0, τ ]. As a result,
• MX(x) = 0 iff tx ∈ X for all t ≥ 0, that is, iff x ∈ Rec(X).
♠ To understand the geometry of the Minkowski function, note that a point [x; t] belongs
to Epi{MX} iff x/τ ∈ X for all τ > t. As X is closed, we conclude that when t > 0,
[x; t] ∈ Epi{MX} iff x/t ∈ X. Besides this, as we have seen, [x; 0] ∈ Epi{MX} iff x ∈ Rec(X),
and Epi{MX} lives in the half-space {[x; t] : t ≥ 0}. The bottom line is that
• Epi{MX} is exactly the closed conic transform ConeT(X) = clCone (X×{1}) of the closed
convex set X.
As a result,

Fact VII.14 The Minkowski function MX of a closed convex set X ∋ 0 is a nonnegative
proper convex lsc function, positively homogeneous of degree 1, and its sublevel set {x :
MX(x) ≤ 1} is exactly X.

The last claim is due to the fact that
{x : MX(x) ≤ 1} = {x : [x; 1] ∈ Epi{MX}} = {x : [x; 1] ∈ ConeT(X)} = clX = X.
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♠ Question: What is the Legendre transform of MX ?
Answer: For a positively homogeneous, of degree 1, nonnegative proper convex lsc function
f , setting X = {x : f(x) ≤ 1), we have

f∗(y) = supx[y
Tx− f(x)] = supt≥0,x[y

T [tx]− f(tx)]
= supt≥0,x t[y

Tx− f(x)]

=

{
+∞ , supx[y

Tx− f(x)] > 0
0 , yTx ≤ f(x) ∀x

=

{
+∞ , ∃(x, f(x) ≤ 1) : yTx > 1
0 , yTx ≤ 1∀(x : f(x) ≤ 1)

= ΥPolar (X)(y).

In words:

Fact VII.15 The Legendre transform of a nonnegative proper convex homogeneous function
f is the characteristic function of the polar of the sublevel set {x : f(x) ≤ 1} of f .

• As a result,

Fact VII.16 The Legendre transform of the Minkowski function MX of a closed convex set
X ∋ 0 is the characteristic function of the polar Polar (X) of X.

♠ Combining the last two facts, we arrive at the following conclusion:

Fact VII.17 Every nonnegative proper lsc positively homogeneous of degree 1 function
f is a Minkowski function, specifically, the Minkowski function of the closed convex and
containing the origin set X = {x : f(x) ≤ 1} (X is indeed convex and closed, as a sublevel
set of a convex lsc function).
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♣ Let X ⊂ Rn be a closed convex set containing the origin, and let

X∗ := Polar (X) = {u : uTx ≤ 1 ∀u ∈ X}
♠ Domain and subdifferential of Minkowski function MX. We already know that the
domain of MX is the radial cone Cone (X) taken at the origin,
Subdifferential of MX at a point x ∈ DomMX is readily given by Fact VII.6 in view of the
fact that MX is the Legendre transform of the characteristic function of X∗, and we know
the structure of subdifferentials of support functions. Specifically,
• The subdifferential of MX taken at the origin is the polar X∗ of X:

∂MX(0) = X∗

• At a point x ̸= 0 from Dom MX the subdifferential is

∂MX(x) = Argmax
y

{
yTx : y ∈ X∗

}
When x ̸= 0 and t > 0, one has

∂MX(tx) = ∂MX(x) = {g ∈ X∗ : g
Tx = MX(x)}
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♠ Minkowski function of a polyhedral set. Let X be a polyhedral set containing the
origin. As we remember, the polar X∗ of X is polyhedral as well, and the support function
of X∗ – which is nothing but the Minkowski function of X is polyhedral. Assuming that X
is given by polyhedral representation

X = {x : ∃u : Px+Qu ≤ r},
let us compute "from scratch" a polyhedral representation of MX.
♣ First, let us convert representation of X into representation of X∗:

X∗ = {y : yTx ≤ 1 ∀x ∈ X} = {y : maxx∈X yTx ≤ 1} = {y : maxx,u
{
yTx : Px+Qu ≤ r

}
≤ 1}

= {y : minλ{rTλ : P Tλ = y,Qλ = 0, λ ≥ 0} ≤ 1} [LP duality]
= {y : ∃λ : rTλ ≤ 1, P Tλ = y,Qλ = 0, λ ≥ 0}

• Now we are ready to compute a polyhedral representation of MX (recall that it is the
Legendre transform of ΥX∗):

MX(x) ≤ t ⇔ maxy∈X∗ x
Ty :≤ t

⇔ maxy{yTx : ∃λ : P tλ = y,QTλ = 0, rTλ ≤ 1} ≤ t
⇔ maxy,λ{yTx : P Tλ = y,QTλ = 0, rTλ ≤ 1} ≤ t
⇔ minµ,ν,σ,γ{σ : Pµ+Qν + σr − γ = 0,−µ = x} ≤ t

[LP duality: µ, ν, γ(γ ≥ 0), σ(σ ≥ 0), are Lagrange multipliers
for the respective constraints P Tλ = 0, QTλ = 0, λ ≥ 0, rTλ ≤ 1]

⇔ minµ,ν,σ,γ{: σ, : Pµ+Qν + σr − γ = 0,−µ = x} ≤ t
⇔ min

ν,σ
{σ : Qν + σr − Px ≥ 0, σ ≥ 0r} ≤ t

⇔ ∃σ, υ : 0 ≤ σ ≤ t, Px+Qυ ≤ σr

and we end up with polyhedral representation of MX.
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MX(x) ≤ t⇔∃σ, υ : 0 ≤ σ ≤ t, Px+Qυ ≤ σr

Note: We could arrive at the above result without computations, just after some brief
thought .The point of the above derivation is to demonstrate that our Calculus of convexity
allows to get meaningful results without any thought at all.
Here are somehow relevant words of Gottfried Wilhelm Leibniz (1646-1716), great philoso-
pher and one of the founders of Calculus:

The only way to rectify our reasonings is to make them as tangible as those of
the Mathematicians, so that we can find our error at a glance, and when there are
disputes among persons, we can simply say: Let us calculate, without further ado,
to see who is right.
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Question: When the Minkowski function of a closed convex set X ∋ 0 is real-valued?
Answer: This is the case iff DomMX = Cone (X) = Rn, that is, iff 0 ∈ intX. In this case,
MX is a nonnegative convex positively homogeneous of degree 1 real-valued function on Rn.
By Fact VII.17 the inverse is also true: Every nonnegative convex real-valued function on
Rn is the Minkowski function of a closed convex set X such that 0 ∈ intX.
• A positively homogeneous, of degree 1, real-valued function on Rn is convex iff it is
subadditive, i.e., iff

f(x+ y) ≤ f(x) + f(y) ∀x, y
Indeed, for positively homogeneous of degree 1 real-valued f and λ ∈ (0,1) the inequality f(λx + (1 − λy) ≤
λf(x) + (1 − λ)f(y) is exactly the same as f(u + v) ≤ f(u) + f(v), u = λx, v = (1 − λ)y; as x, y run through
Rn, so do u, v. We see that the Minkowski function MX of a closed convex set X, 0 ∈ intX,
inherits some properties of a norm, specifically it is continuous (as every real-valued convex
function on Rn) and

• it is nonnegative and positively homogeneous, of degree 1,
• satisfies the Triangle Inequality MX(x+ y) ≤ MX(x) +MX(y), and
• has X as its unit ball: X = {x : MX(x) ≤ 1}

What is missing, is symmetry: MX(x) = MX(−x) (it takes place iff X = −X) and positivity:
MX(x) > 0 whenever x ̸= 0. To ensure positivity, we need Rec(X) = {0}, which for closed
convex X is the same as the boundedness of X.
♠ As a byproduct of our considerations, we can pay out our long-standing debt:

Fact VII.18 When 1 ≤ p ≤ ∞, the function ∥ · ∥p on Rn is a norm.

Indeed, when p < ∞, ∥ ·∥p is the Minkowski function of the set V = {x ∈ Rn :
∑

i
|xi|p ≤ 1}, which is the sublevel

set of convex continuous function, so that V is closed and convex; the facts that V = −V and 0 ∈ intV are
evident. The same reasoning works for p = ∞, with the unit box {x : |xi| ≤ 1, i ≤ n} in the role of V .
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Useful Inequalities – Young, Hölder, Moment

♣ Young’s Inequality. When p ∈ (1,∞) and q = p
p−1

(that is, 1
p
+ 1

q
= 1), one has

xy ≤
|x|p

p
+

|y|q

q
,

with inequality being equality iff y = |x|p−1sign(x), whence also x = |y|q−1sign(y).
Indeed, direct computation shows that if f(x) = |x|p/p, then f∗(y) = |y|q/q.
Extension: Let p1, ..., pk be positive reals such that

1

p1
+ ...+

1

pk
= 1.

Then

|x1x2...xk| ≤
|x1|p1

p1
+ ...+

|xk|pk

pk
. (∗)

Indeed, one can extract (∗) from Young’s Inequality by induction or, much easier, note that (∗) is trivially
true when some of xi are zeros; when all xi are nonzero, setting ξi = ln(|xi|), we have

|x1x2...xk| = exp{ξ1+ ...+ξk} = exp{
1

p1
[p1ξi]+ ...+

1

pk
[pkξk]} ≤

1

p1
exp{p1ξ1}+ ...+

1

pk
exp{pkξk} =

|x1|p1

p1
+ ...+

|xk|pk
pk

where ≤ is by convexity of the exponent and due to 1
pi
> 0 combined with 1

p1
+ ...+ 1

pk
= 1.
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pℓ > 0,
1

p1
+ ...+

1

pk
= 1 ⇒ |x1x2...xk| ≤

|x1|p1

p1
+ ...+

|xk|pk
pk

. (∗)

♣ Weighted ℓp norms. Let w1, ..., wn be positive weights, and let p ∈ [1,∞]. Weighted
ℓp-norm on Rn is defined as

∥x∥w,p =

{ (∑
iwi|xi|p

)1/p
,1 ≤ p < ∞

maxi |xi| = limp′→∞ ∥x∥ , p = ∞

The usual ∥ · ∥p is weighted ℓp-norm with unit weights.
Notation: In the sequel, for vectors x, x1, .., xk ∈ Rn and α > 0 we denote by
• |x| – the vector [|x1|; ...; |xn|] of magnitudes of entries in x,
• |x|α – the vector [|x1|α; ...; |xn|α], the entrywise α-power of |x|,
• x1 · ... · xk – the entrywise product of xℓ: [x1 · ... · xk]i = x1

i ...x
k
i , 1 ≤ i ≤ n.

♠ Let p1, ..., pk be positive reals such that 1
p1
+ ...+ 1

pk
= 1. By (∗) for every i we have

|wi[x
1 · ... · xk]i| = [w

1

p1

i |x1
i |][w

1

p2

i |x2
i |]...[w

1

pk

i |x
k
i |] ≤

k∑
ℓ=1

wi|xℓ
i|pℓ

pℓ
;

summing over i, we get

∥x1 · ... · xk
i ∥w,1 ≤

k∑
ℓ=1

∥xℓ
i∥

pℓ

w,pℓ

pℓ
. (∗∗)
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∥x1 · ... · xk∥w,1 ≤
k∑

ℓ=1

∥xℓ∥pℓw,pℓ

pℓ
. (∗∗)

As an immediate consequence, we arrive at
♣ Hölder Inequality. Let pℓ be positive reals such that 1

p1
+ ... + 1

pk
= 1. Then for any k

vectors xℓ, ℓ ≤ k, it holds

∥x1 · ... · xk∥w,1 ≤ ∥x1∥w,p1∥x2∥w,p2...∥xk∥w,pk
(!)

Indeed, (!) is trivially true when some of xℓ are zero. Assuming that it is not the case, note that both sides in
(!) are of homogeneity degree 1 w.r.t. every one of xℓ: when multiplying xℓ by θ, both sides in (!) are multiplied
by |θ|. As a result, to prove (!) when all xℓ are nonzero is the same as to prove the relation when ∥xℓ∥w,pℓ=1
for all ℓ, that is, to verify that

∥xℓ∥w,pℓ = 1 ∀ℓ ⇒ ∥x1 · ... · xk∥w,1 ≤ 1, (#)
which is immediate: by (∗∗), we have

∥x1 · ... · xk∥w,1 ≤
∑

ℓ

∥xℓ∥pℓw,pℓ

pℓ

and under the premise of (#) the right hand side in the latter inequality is 1.

Remark. It is immediately seen that (!) holds true when pℓ = ∞ for some ℓ, the corresponding
terms 1

pℓ
in the condition 1

p1
+ ...+ 1

pℓ
being set to 0.
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Illustration: Let the weights wi sum up to 1. Then

1 ≤ p ≤ r ≤ ∞ ⇒ ∥x∥p ≤ ∥x∥r. (∗)
Indeed, assuming 1 ≤ p < r < ∞ and setting α = r

p
, , β = α

α−1
, |x|π = [|x1|π; ...; |xn|π] and 1 = [1; ...; 1], we have

by Hölder Inequality

∥x∥pw,p = ∥[|x|p] · 1∥w,1 ≤ ∥|x|p∥w,α ∥1∥1/βw,β︸ ︷︷ ︸
=1

= ∥|x|pα∥1/αw,1 ,= ∥x∥p/rw,r

⇒ ∥x∥w,p ≤ ∥x∥w,r, as claimed in (∗). Thus, the conclusion in (∗) holds true whenever 1 ≤ p < r < ∞, and by
continuity – whenever 1 ≤ p ≤ r ≤ ∞.

Note: With unit weights, the dependence of ∥ · ∥p on p is completely opposite:

1 ≤ p ≤ r ≤ ∞, x ∈ Rn ⇒ ∥x∥q ≤ ∥x∥p ≤ n
1

p
−1

r∥x∥r.
Indeed, by continuity in r, p, it suffices to verify the conclusion when 1 ≤ p < r < ∞, and by homogeneity in x
– when ∥x∥p = 1. In this case, |xi| ≤ 1 for all i, which combines with r ≥ p to imply that |xi|r ≤ |xi|p, whence
∥x∥rr ≤ ∥x∥pp = 1, that is, ∥x∥r ≤ ∥x∥p = 1. Thus, ∥x∥r ≤ ∥x∥p. To upper-bound ∥x∥p via ∥x∥r, set α = r

p
∈ [1,∞)

and β = α
α−1

= r
r−p

. By Hölder Inequality,

∥x∥pp = ∥|x|p∥1 = ∥[|x|p] · 1∥1 ≤ ∥|x|p∥α∥1∥β = ∥|x|pα∥1/α1 n1/β = ∥x∥ppαn
r−p

r = ∥x∥prn1− p

r

⇒ ∥x∥p ≤ ∥x∥rn
r−p

pr

⇒ ∥x∥p ≤ n
1
p
−1

r ∥x∥q

.
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♣ Moment Inequality. Let a ∈ Rn be a nonzero vector, and w = (w1, ..., wn) be a collection
of positive weights. The function

f(ρ) = ln(∥a∥w,1/ρ) : [0,1] → R

is convex. In other words, when 0 ≤ ρ ≤ σ ≤ 1 and λ ∈ [0,1], one has

τ = λρ+ (1− λ)σ ⇒ ∥a∥w,1/τ ≤ ∥a∥λw,1/ρ∥a∥
1−λ.
w,1/σ (∗)

Indeed, by continuity, it suffices to verify (∗) when 0 < ρ < σ < 1 and λ ∈ (0,1). In this case, setting

x1 = |a|λ/τ , x2 = |a|(1−λ)/τ , α = λρ/τ, β = (1− λ)σ/τ, (1)

so that

|a|1/τ = x1 · x2 & α, β > 0. α+ β = 1,
we have

∥a∥1/τ
w,1/τ

= ∥|a|1/τ∥w,1 = ∥x1 · x2∥w,1

≤∥x1∥α
w,1/α

∥x2∥β
w,1/β

[by Hölder Inequality]

= ∥|a|λ/(τ/α)∥αw,1∥|a|(1−λ)/(τβ)∥βw,1 [see (1)]

= ∥|a|1/ρ∥λρ/τw,1 ∥|a|1/σ∥(1−λ)σ/τ
w,1 [see (1)]

= ∥a∥λ/τ
w,1/ρ

∥a∥(1−λ)/τ
w,1/σ

⇒ ∥a∥1/τ
w,1/τ

≤ ∥a∥λ/τ
w,1/ρ

∥a∥(1−λ)/τ
w,1/τ

⇒ ∥a∥w,1/τ ≤ ∥a∥λ
w,1/ρ

∥a∥1−λ
w,1/σ

, as claimed.
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Application: Conjugates of ℓp norms, 1 ≤ p

♣ We have seen that the standard norms ∥·∥p, 1 ≤ p ≤ ∞, are norms. The weighted ℓp-norms
are obtained from the standard ones by invertible linear transformation

∥x∥w,p = ∥Wx∥p, W = Diag{w1/p
1 , ..., w1/p

n }, p < ∞ & ∥ · ∥w,∞ = ∥ · ∥∞.

and therefore are norms themselves.
Question: What is the norm conjugate to ∥ · ∥p?
Answer: The conjugate of ∥ · ∥p is the norm ∥ · ∥q with q = p

p−1
, that is, with 1

p
+ 1

q
= 1.

Indeed, We know that the result is true when p = 1 or p = ∞. Now assume that 1 < p < ∞. By Hölder
Inequality, the weights being unit, for x, y ∈ Rn we have

|xTy| = ∥x · y∥1 ≤ ∥x∥p∥y∥q,

⇒ the conjugate to ∥ · ∥p norm ∥y∥∗p : = maxx{yTx : ∥x∥p ≤ 1} is ≤ ∥ · ∥q. On the other hand, given y with
∥y∥q = 1, setting xi = |yi|q−1sign(yi), and taking into account that p = q

q−1
, we have

∥x∥p = (
∑

i
|yi|(q−1)p)1/p = (

∑
i
|yi|[q−1] q

q−1)1/p = 1 & yTx =
∑

i

yi[|yi|q−1sign(yi)] =
∑

i

|yi|q = 1

⇒ ∥y∥∗p ≥ yTx = ∥y∥q whenever ∥y∥q = 1; by homogeneity, it follows that ∥ · ∥q ≤ ∥ · ∥∗p, the bottom line being
that ∥ · ∥∗p ≡ ∥ · ∥q, Q.E.D.
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♠ Let ∥ · ∥ and ∥ · ∥∗ be a norm on Rn, and its conjugate, and B, B∗ be the unit balls of these norms, so that

B∗ = {y : yTx ≤ 1∀x ∈ B} ⇔ B∗ = Polar (B) ⇔ B = Polar (B∗) ⇔ ∥x∥ = max
y

{yTx : y ∈ B∗} ⇒ (∥ · ∥∗)∗ = ∥ · ∥

Besides this,

∥ · ∥ = MB(·) ⇒ ∂
∣∣
x=0

∥x∥ = Polar (B) = B∗

∥ · ∥∗ = MB∗(·) ⇒ ∂
∣∣
y=0

∥y∥∗ = Polar (B∗) = B

For example,

1 ≤ p ≤ ∞ ⇒ Polar ({x ∈ Rn : ∥x∥p ≤ 1}) = {y ∈ Rn : ∥y∥q ≤ 1} [1
p
+ 1

q
= 1]
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TTD illustration

♠ Let us look at the compliance Compl(t, f) of truss t = [t1; ...; tN ] ∈ RN
+ w.r.t. load f ∈ Rm

as a function of t, f . By Fact II.30.ii, the epigraph of this function is the set

Epi{Compl(t, f)} := {[t; f ; τ ] : τ ≥ Compl(t, f), t ≥ 0} =
{
[t; f ; τ ] :

[
BDiag{t}BT f

fT 2τ

]
⪰ 0, t ≥ 0

}
where M ×N matrix B is given by the geometry of nodal grid.
♠ From now on, we make the following assumption:

BBT ≻ 0

This assumption means that a positive truss t > 0 can withstand whatever load:
Compl(t, f) < ∞ for all f .
Question: What can we say about the compliance?
A. The epigraph of Compl(t, f) is a closed convex cone ⇒ Compl(t, f) is a proper convex
lsc function, positively homogeneous of degree 1 and even in f . It is the Minkowski function
of the closed convex set

X = {[t, f ] : t ≥ 0,

[
BDiag{t}BT f

fT 2

]
⪰ 0}

containing the origin.
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B. Taking into account that for positive µ, ν the matrices[
BDiag{t}BT f

fT 2τ

] [
BDiag{µt}BT [νf ]

[νf ]T 2ν2τ/µ

]
are/are not positive semidefinite simultaneously (since the second is obtained from the
first by multiplication from the left and from the right by the nonsingular diagonal matrix
Diag{√µ, ...,

√
µ, ν/

√
µ}) we see that Compl(t, f) is homogeneous, of degree 2, in f-variable

and homogeneous, of degree -1, in t-variable:

µ > 0, ν ∈ R ⇒ Compl(µt, νf) =
ν2

µ
Compl(t, f).

C. The domain of the compliance is a (not necessarily closed) cone – the radial cone of X
taken at the origin. This cone definitely contains the open set

{[0N×1; 0M×1]} ∪
{
{t > 0} ×RM

f

}
,

since a truss t > 0 can withstand any load. Which points [t; f ] with a non-strictly positive
t ≥ 0 belong, and which do not belong to DomCompl, it depends on B.
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Compl(t, f) = MX(t, f), X = {[t, f ] : t ≥ 0,
[

BDiag{t}BT f
fT 2

]
⪰ 0}

D. What are the subdifferentials of Compl ? By our general theory, ∂Compl(0,0) is the polar
of the set X, and subdifferential of Compl at a nonzero points are cut off the subdifferential
Polar (X) at 0 by equality constraint

∂Compl(t, f) =
{
[α;β] ∈ Polar (X) : αT t+ βTf = Compl(t, f)

}
.

Let us find Polar (X).
✓First of all, we have

K := Epi{Compl} = {[t; f ; τ ] : t ≥ 0,
[

BDiag{t}BT f
fT 2τ

]
⪰ 0}

Observe that K is closed convex cone which lives in the half-space RN+M
t,f ×R+ . Setting X = {[t; f ] : [t; f ; 1] ∈

K}, we get

K = ConeT(X)
by Fact II.18. Now, [α;β] ∈ Polar (X) iff the linear form [−α;−β; 1]Tz of z is nonnegative on the set X ×{1} =
{z ∈ ConeT(X) : zM+N+1 = 1}, or, which is the same, is nonnegative on ConeT(X), or, which again is the
same, on ConeT(X) = K. The bottom line is that A vector [α;β] is a subgradient of Compl at the origin iff
the vector [−α;−β; 1] belongs to the dual to K cone K∗.
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✓To understand what K∗ is, note that
K = {[t; f ; τ ] : A[t; f ; τ ] ∈ K+},

A[t; f ; τ ] =
([

BDiag{t}BT f
fT 2τ

]
, t

)
, K+ = SM+1

+ ×RN
+

and the image space of A intersects the interior of the closed convex cone K+ (indeed, when t = [1; ...; 1],
f = 0, and τ = 1, A[t; f ; τ ] =

(
Diag{BBT ,2}, [1; ...; 1]

)
is an interior point of K+). Next, equipping SM+1 with

the Frobenius inner product

⟨A,B⟩ = Tr(AB) =
∑
i,j

AijBij,

and equipping SM+1 with orthonormal w.r.t this inner product basis, we can identify matrices from SM+1 with
vectors of their coefficients in this basis, thus identifying
— SM+1 with RK (K = M(M+1)

2
),

— the cone SM+1
+ (which is a regular cone in SM+1) – with certain regular cone S in RK,

— the space SM+1 × RN where the cone K+ lives with the space RK+N , the cone K+ itself – with the cone
K̃+ = S ×RN

+ ⊂ RK+N , and
— the linear mapping [t; f ; τ ] 7→ A[t; f ; τ ] – with linear mapping [t; f ; τ ] → A[t; f ; τ ] ∈ RK+N , where A is an
appropriately selected matrix.
• It is known that the semidefinite cone Sp

+ is self-dual w.r.t. the Frobenius inner product:

P ∈ Sp,Tr(PQ) ≥ 0∀Q ∈ Sp
+ ⇔ P ∈ Sp

+.

Consequently, the cone K̃+ is self-dual:

K̃+
∗ = K̃+

(as the product of two self-dual cones), and ImA ∩ intK+ ̸= ∅ implies that ImA ∩ int K̃+
∗ ̸= ∅. The latter, by

Remark in Fact IV.20.F, implies the first of the equalities to follow:

K∗ ≡ [A−1K̃+]∗ = AT K̃+
∗ = AT K̃+,

This translates to

[α;β;σ] ∈ K∗ ⇔ ∃
(
γ ∈ RN

+,

[
P q
qT r

]
∈ SM+1

+

)
:

{
αi = γi + [BTPB]ii

1 ≤ i ≤ N
β = 2q, σ = 2r
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✓Combining the above observations, we arrive at the following result:

∂Compl(0,0) = {[α;β] ∈ RN
α ×RM

β : [−α;−β; 1] ∈ K∗}

=
{
[α;β] ∈ RN ×RM : ∃P ∈ SM :

[
P −β/2

−βT/2 1/2

]
⪰ 0, αi + [BTPB]ii ≤ 0, i = 1, ..., N

}
.

=
{
[α;β] : ∃P ∈ SM :

[
2P β
βT 1

]
⪰ 0, αi + [BTPB]ii ≤ 0, i = 1, ..., N

}
(note that symmetric block matrices

[
P Q
QT R

]
and

[
P −Q

−QT R

]
are/are not positive semidefinite simulta-

neously (why?))

7.48



E. Now let us look at the optimal value in the TTD problem

Opt(f,W ) = min
t

{
Compl(t, f) : t ≥ 0,

∑
i

ti = W

}
as a function of f,W . We intend to consider this function in the domain

FW = {[f ;W ] : W > 0}

– the largest domain where the function could be of interest. Setting W = {[t;W ] ∈ RN
+×R+ : W =

∑
i
ti > 0},

we get a convex set, so that the function

C(t; f ;W ) = Compl(t, f) +ΥW(t,W ),

is convex (and of course, nonnegative) function such that

Opt(f,W ) = inf
t

C(t, f,W ) (∗)

Since C(t, f,W ) is convex and nonegative, Calculus of Convexity says that the function

Opt(f ;W ) : RM
f ×RW → R ∪ {+∞}

is convex; the domain of this function clearly is contained in FW. In fact, the domain is exactly FW. Indeed,
due to BBT ≻ 0, the set

Zf,W = {[t; τ ] : t ≥ 0,
∑

i

ti = W, τ ≥ Compl(t, f)}

is nonempty, and since the function Compl(t, f)− τ as a function of t; τ is lsc along with Compl(t, f), this set
is also closed. The function T (t, τ) ≡ τ is continuous and coercive on Zf,W – its sublevel sets {[t; τ ] ∈ Zt,W :
T (t, τ) ≤ q} are compact for every real a, the continuous function T (t, τ) attains its minimum on Zf,W by the
Weierstrass Theorem, implying that the TTD problem (∗) is solvable whenever W > 0, so that Opt(t,W ) is
a real-valued convex function with the open domain FW; as a result, the function Opt(f,W ) is real-valued
nonnegative convex and continuous on FT .
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♠ Additional useful information can be extracted from the homogeneity properties of Compl(t, f); these proper-
ties immediately imply that the function Opt(f,W ) is homogeneous, of homogeneity degree −1, in W -variable
and homogeneous, of degree 2, in f-variable.
• We could further investigate the closure of Opt(·, ·), which is a homgeneous, of homogeneity degree 1,
function of f,W , and thus is the Minkowski function of certain closed convex set containing the origin, identify
this set and its polar, etc., etc., but enough is enough...

What you see is a toy planar ground structure (left) and the optimal compliance Opt(f,50) as a function of
external force f running through the unit circle (right),

7.50



PART III.
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Lecture III.1
Convex Programming

Convex Programs in Mathematical Programming,
Cone-constrained and Conic Forms

Convex Theorems on Alternative
Lagrange Duality
Optimality conditions in Saddle Point and

Karush-Kuhn-Tucker forms



Mathematical Programming Problem

♣ Mathematical Programming problem (a.k.a Mathematical Programming program) reads:

min
x

f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X

 . (P )

In this problem, f , gi, hj are real-valued functions on the problem’s domain X which is a
nonempty subset in some Rn.
• x ∈ Rn is called decision vector, and its entries are called decision variables
• f is called the objective,and gi, hj are called constraints – inequality and equality con-
straints, respectively.
Note: The relations gi(x) ≤ 0, hj(x) = 0 also are called constraints; It always will be clear
from the context what "constraint" means under the circumstances – the relation or its left
hand side.
• A solution to (P ) is a whatever value of the decision vector. A solution is called feasible, if
it satisfies all the inequality and equality constraints, same as the domain constraint x ∈ X.
A solution which is not feasible is called infeasible.
• The set Feas(P ) of all feasible solutions to (P ) is called the feasible set of (P ); if this set
is nonempty, (P ) is called feasible, otherwise the problem is called infeasible.
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Opt(P ) = min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

x ∈ X

}
. (P )

• (P ) is called bounded, if the objective is below bounded on the feasible set (e.g., due to
the fact that the latter set is empty) and unbounded otherwise. The infimum of values on
the objective on the feasible set is called the optimal value Opt(P ) of problem (P ):

Opt(P ) =

{
+∞ ,Feas(P ) = ∅
inf{f(x) : x ∈ Feas(P )} ,otherwise

Thus, Opt(P ) = ∞ when (P ) is infeasible, Opt(P ) = −∞ when the problem is unbounded;.
When (P ) is feasible and bounded, Opt(P ) is a real a such that
— for every ϵ > 0, there exists a feasible solution with f(x) ≤ a+ ϵ, and
— there are no feasible solutions x with f(x) < a.
• A feasible solution x with f(x) = Opt(P ) is called an optimal solution to the problem. (P )
is called solvable, it the problem has optimal solutions, and is called insolvable otherwise.
Note: Solvable problem definitely is feasible and bounded, but not vice versa (look at the
problem minx∈R ex).
Convention: Whenever X = Rn, we take the liberty to omit writing the constraint x ∈ Rn

explicitly. Thus, "by default" – whenever the domain X is not explicitly specified – it is the
entire Rn.
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♠ Our terminology is adjusted to minimization problems and needs modification when speak-
ing about maximization problem

Opt(P ) = max
x

f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X

 . (P )

Specifically, a maximization problem is called bounded, if its objective is bounded from above
on the feasible set, and the optimal value in a maximization problem is the supremum of
the values of the objective on the feasible set.
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Convex problems in MP form

♣ A Mathematical Programming problem

Opt(P ) = min
x

f(x) :
(g1(x), g2(x), ..., gm(x)) ≤ 0

(h1(x), ..., hk(x)) = 0
x ∈ X

 . (P )

is called convex, if
• the domain X is a convex set
• the functions f, gi are convex (and, as always, real-valued) on X, and
• all equality constraints are linear.
Clearly, the feasible set of a convex problem is convex.
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Convex problems in Cone-constrained form

♣ The equality constraints in a convex MP problem

Opt(P ) = min
x

{
f(x) :

(g1(x), g2(x), ..., gm(x)) ≤ 0
(h1(x), ..., hk(x)) = 0

x ∈ X

}
. (P )

are linear and just say that a feasible solution should satisfy a system of linear inequalities

Ax− b ≤ 0 (∗)

representing equivalently the system of linear equations (h1(x), ..., hk(x)) = 0.
The inequality constraints say that at a feasible solution, the vector-valued function g(x) := [g1(x); ...; gm(x)]
should take value in - the negation −Rm

+ of the specific cone, the nonnegative orthant Rm
+. Moreover, g(x) is

"adjusted" to this specific cone real-valuedness and convexity of gi on X mean that g(x) is well-defined on X
and satisfies the relation

∀(x, y ∈ X,λ ∈ [0,1]) : λg(x) + (1− λ)g(y)− g(λx+ (1− λ)y) ∈ Rm
+.

Thus, convex program (P ) can be rewritten equivalently as

Opt(P ) = min
x

{f(x) : Ax− b ≤ 0, g(x) ∈ −K, x ∈ X}

where the system of linear constraints Ax − b ≤ 0 represents equivalently a system of linear equations, and K
is a specific regular (i.e., closed, pointed, convex and with a nonempty interior) cone (namely, Rm

+) adjusted
to the convex domain X and vector-valued function g via the relation

∀(x, y ∈ X,λ ∈ [0,1]) : λg(x) + (1− λ)g(y)− g(λx+ (1− λ)y) ∈ K.

It turns out that As far as Convex Programming is concerned, it is highly rewarding to
extend the MP formulation of a convex problem by allowing for (∗) to be a whatever system
of linear inequalities, and for K – to be a regular cone, not necessarily nonnegative orthant,
thus arriving at convex problems in cone-constrained form.
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Preliminaries, I: Vector inequalities

♣ In LP and MP, we all the time meet the relations like a ≥ b with vectors a, b. Although
denoted exactly as the "arithmetic" ≥ – relation between reals, coordinate-wise vector
inequality a ≥ b is a quite different beast: it means that a, b are vectors from some Rm such
that a− b belongs to a specific regular cone Rm

+.
To see the difference between the "arithmetic" and the coordinate-wise vector :≥, note that
the arithmetic ≥ is a complete order on R – for every two reals a, b, we either have a ≥ b,
or b ≥ a, or both, while the order induced by the vector ≥ on Rm, m > 1, is just partial: we
cannot compare vectors [0; 1] and [1; 0] in R2 !
♠ Given a regular (i.e., closed, pointed, and with a nonempty interior) cone K ⊂ Rm, we
associate with it vector inequality ≥ K – relation between vectors from Rm given by

[b ≤K a ⇔]a ≥K b ⇔ a− b ∈ K

Note: K = {a : a ≥K 0} is just the set of all K-nonnegative vectors.
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[b ≤K a ⇔]a ≥K b ⇔ a− b ∈ K

♠ Relation ≥K shares all basic properties of the coordinate-wise ≥, specifically
• ≥K is al partial order:

a ≥K a∀a reflexivity
a ≥K b & b ≥K a ⇒ a = b antisymmetry
a ≥K b, b ≥K c ⇒ a ≥K c transitivity

• ≥K is compatible with linear operations:

a ≥K b, c ≥K d ⇒ a+ c ≥K b+ d
a ≥K b,R ∋ λ ≥ 0 ⇒ λa ≥K λb

• One can pass to sidewise limits in ≥K:

ai ≥K bi, ai → a, bi → b as i → ∞ ⇒ a ≥K b.

• We can define a strict version a >K b of ≥K :

[b <K a ⇔]a >K b ⇔ a− b ∈ intK

Elementary arithmetics of ≥K and >K is the same as for usual ≥: the inequalities of the
same, up to strictness, type can be added, the result being strict if one of the operands is
so, inequalities are preserved when multiplying both sides by a nonnegative real (up to the
fact that >K becomes ≥K when the real is zero), strict inequality a >K b is stable - it remains
valid when a and b are subject to small enough perturbations, etc.
♠ Note: Taking inner products of both sides in a valid vector inequality a ≥K b with λ ∈ K∗,
we get a valid scalar inequality:

a ≥K b, λ ∈ K∗ ⇒ λTa ≥ λT b.

8.7



Preliminaries, II: Cone-convex functions

♣ Cone-convex functions. Let Q ⊂ Rn be a nonempty convex set, and K ⊂ Rm be a
regular cone. A function f : Q → Rm is called K-convex on Q, if

∀(x, y ∈ Q,λ ∈ [0,1]) : f(λx+ (−λ)y) ≤K λf(x) + (1− λ)f(y).

Examples: • When m = 1 and K = R+, K-convex functions are exactly the functions
convex and real-valued on Q
• When K = Rm

+, K-convex functions are exactly the vector-valued functions
f(x) = [f1(x); ...; fm(x)]

with convex real-valued on Q components f1, ..., fm
• The function f(X) = XTX : Rm×n → Sn is Sn

+-convex
Indeed, when X,Y ∈ Rm×n and λ ∈ (0,1), we have

λXTX + (1− λ)Y TY − [λX + (1− λ)Y ]T [[λX + (1− λ)Y ]
= λ(1− λ)XTX + λ(1− λ)Y TY − λ(1− λ)[XTY + Y TX] = λ(1− λ)[X − Y ]T [X − Y ] ⪰ 0.

♠ Immediate and crucial observation:

Fact VIII.1 A vector-valued function f : Q → Rm is K-convex on a convex set Q iff for every
ϕ ∈ K∗ the real-valued function

fϕ(x) = ϕTf(x)
is convex on Q. Thus, K-convexity of a vector-valued function f is equivalent to plain con-
vexity of certain family of real-valued functions associated with f

Indeed, as K = [K∗]∗, we have for x, y ∈ Q and λ ∈ [0,1]:
λf(x) + (1− λ)f(y)− f(λx+ ∗1− λ)y) ∈ K ⇔ ϕT [λf(x) + (1− λ)f(y)− f(λx+ ∗1− λ)y)] ≥ 0] ∀ϕ ∈ K∗
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Due to the above observation, significant part of known to us facts about convex functions
can be immediately extended to cone-convex ones:

♠ Epigraph characterization of K-convexity: A function f : Q → Rm defined on a convex
set Q ⊂ Rn is K-convex iff its "K-epigraph"

{(x, t) ∈ Rn
x ×Rm

y ) : x ∈ Q, f(x) ≤K t}
is a convex set.
♠ Calculus:
• An affine mapping x 7→ Ax+ b : Rn → Rm is K-convex, for every regular cone K ⊂ Rm, on
every nonempty convex set Q ⊂ Rn.
• If λi ≥ 0 and fi : Q → Rm are K-convex, so is

∑
i λifi. Moreover, if K is a regular cone in

Rk, Ki are regular cones in Rmi, the functions fi : Q → Rmi are Ki-convex, and mi×k matrices
Λi are (Ki,K)-nonnegative, meaning that ΛiKi ⊂ K, then the function

∑
iΛifi : Q → Rk is

K-convex,
• If Ki ⊂ Rmi, i ≤ I, are regular cones, Qi ⊂ Rni are convex sets, and functions fi : Qi → Rmi

are Ki-convex, the function

f(x1, ..., xI) = [f1(x
1); ...; fI(x

I)] : Q1 × ...×QI → Rm1+...+mI

is (K = K1 × ...×KI)-convex on Q = Q1 × ...×QI

• If Q is a convex set in Rn, K is a regular cone in Rm, f : Q → Rm is K-convex and y →
A(y) = Ay+b is an affine mapping from Rp to Rn such that the set A−1(Q) = {y : A(y) ∈ Q}
is nonempty, the function f(A(y)) is K-convex on A−1(Q).
But: Forget about taking pointwise maximum: since the order given by ≥K is incomplete
(unless K is one-dimensional), there is no such thing as the ≥K-maximum of two vectors.
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♠ Local regularity: A K-convex function f : Q → Rm is Lipschitz continuous on every
compact set X ⊂ rintQ.
Indeed, as K is regular, so is K∗; in particular, intK∗ ̸= ∅, thus we can find m linearly independent ϕℓ ∈ K∗, so
that p(z) = maxℓ |ϕT

ℓ z| is a norm on Rm. As ϕT
ℓ f are convex real-valued functions on Q, their restrictions on X

are Lipschitz continuous, with properly selected constant LX, with respect to the norm ∥ · ∥2 on the argument
space Rn, implying that p(f(x)− f(y)) ≤ LX∥x− y∥2 for all x, y ∈ X.

♠ "Gradient Inequality:" Let Q ⊂ Rn be a convex set, f : Q → Rm be K-convex and
differentiable at a point x ∈ Q function, and let J (x) ∈ Rm×n be the Jacobian of f at x, (i.e.,
the matrix of the linear mapping h 7→ Df(x)[h] : Rn → Rm). Then

∀y ∈ Q : f(y) ≥K f(x) + J (x)[y − x] (∗)
Indeed, for ϕ ∈ K∗ the real-valued on Q function fϕ(y) = ϕTf(y) is convex and differentiable at x, with

∇fϕ(x) = [J (x)]Tϕ, whence by the usual Gradient inequality
∀y ∈ Q : ϕTf(y) = fϕ(y)≥fϕ(x) + [∇fϕ(x)]T [y − x] = ϕT [f(x) + J (x)[y − x]],

and since this relation holds true for all ϕ ∈ K∗, (∗) follows.
Example: We shall see eventually that the fractional-quadratic function

f(X,Y ) = XTY −1X : Rm×n
X × {Y ∈ Sm : Y ≻ 0} → Sn

– the matrix analogy of the convex fractional-quadratic function t−1xTx : Rn
x × {t > 0} (this

function is convex – it is the perspective transform of the convex function xTx) is Sm
+-convex.

Here is how the Gradient Inequality looks for it:

∀(X,X ∈ Rm×n, Y ≻ 0, Y ≻ 0) :

XTY −1X ⪰ X
T
Y

−1
X + [X −X]TY

−1
X +X

T
Y

−1
[X −X]−X

T
Y

−1
[Y − Y ]Y

−1
X

= X
T
Y

−1
X +XTY

−1
X −X

T
Y

−1
Y Y

−1
X.
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Convex problem in cone-constrained form

♣ By definition, a cone-constrained convex problem reads

Opt(C) = min
xinX

{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
, (C)

where:
• the domain X is a nonempty convex set in some Rn

• the objective f : X → R is convex
• K is a regular cone in some Rm

• ĝ : X → Rm is a K-convex function
Note that

• A convex in the standard sense MP problem is a problem of the form (C) with the nonnegative orthant
of appropriate dimension in the role of K
• Vice versa, convex cone-constrained problem (C) can be reformulated as a convex MP problem

Indeed, K∗ is a regular cone, and the function
Φ(y) = maxz{zTy : z ∈ K∗, ∥z∥2 ≤ 1}

is a real-valued convex function which clearly is K-monotone: y ≤K y′ ⇒ Φ(y) ≤ Φ(y′), which
immediately implies that the function g(x) := Φ(ĝ(x)) : X → R is convex. Besides this, Φ(y) ≤ 0 iff
yTz ≤ 0 for all z ∈ K∗, that is, iff −y ∈ [K∗]∗ = K. ⇒ for x ∈ X it holds

ĝ(x) ≤K 0 ⇔ ĝ(x) ∈ −K ⇔ −ĝ(x) ∈ K ⇔ Φ(ĝ(x) ≤ 0 ⇔ g(x) ≤ 0.
The bottom line is that (C) is equivalent to the convex MP problem

minx∈X
{
f(x) : Ax− b ≤ 0, g(x) ≤ 0

}
.

• If ĝi : X → Rmi are Ki-convex problem, optimization problem

min
x∈X

{
f(x) : g(x) := Ax− b ≤ 0, ĝi(x) ≤Ki 0, i ≤ I

}
is equivalent to the convex cone-constrained problem

min
x∈X

{
f(x) : Ax− b ≤ 0, ĝ(x) := [ĝ1(x); ...; ĝI(x)] ≤K 0, K = K1 × ...×KI .

}
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Conic problems

♣ Conic problem reads

Opt(C) = min
x∈Rn

{
cTx : g(x) := Ax− b ≤ 0, Âx− b̂ ≤K 0

}
, (C)

where K is a regular cone in some Rn.
Thus, a conic problem is a cone-constrained problem where

• the domain X is the entire Rn

• the objective is linear, and
• the left hand side ĝ(x) = Âx− b̂ of the constraint ĝ(x) ≤K 0 is affine

Note: Conic problem automatically is a convex cone-constrained problem, as every affine
mapping is K-convex, whatever be a regular cone K. It can be easily verified that every
convex MP problem can be reformulated as a conic one (and vice versa, since conic problem
is a special case of a convex cone-constrained one, and problems of the latter type can be
rewritten as convex MPs).
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Motivation

♣ We have presented three "universal" ways to pose convex optimization problems – convex
MP, convex cone-constrained, and conic formulations.
Question: What for ??? Convex MP problem seems to be a clear enough entity; what for
all these regular cones, cone convexity, etc., etc.?
Answer is not so trivial. Of course, the proof of the pudding is in the eating, and we shall
taste the pudding we just have started to cook till the end of our course...
However, it makes sense to outline a short answer right now:

Conic formulation of a convex optimization problem is "structure-revealing," allowing
— in many cases – to get deep understanding of the problem at hand "on paper,"
prior to any number-crunching
—- in all cases – to utilize the revealed structure by solution algorithms, enabling
unified and efficient numerical treatment of seemingly quite different from each other
problems.

As for cone-constrained form of a convex problem, investigating it will allow us
to kill two birds with one stone – to arrive at basic duality results and optimality
conditions for both classical Convex MP and for Conic Programming simultaneously.
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♠ Convex problems have a lot of structure – otherwise, how could you know that your
problem is convex?
• MP form "summarizes" all the structure in convexity. It is enough to be able to solve,
under minimal computability and boundedness assumptions, convex MP’s in a theoretically
efficient manner.
• However: the corresponding "universal" algorithms of Convex Programming are "black-
box-oriented:" they learn the instance to be solved by computing the values and the deriva-
tives of the objective and the constraints at subsequently generated search points – what
else, computationally speaking, can you do with general-type functions, even convex ones?
In other words, all your detailed knowledge of problem’s structure and data (you definitely
possess this knowledge: how else could you be sure that the problem is convex?) is used
to compute local information – value and derivatives of the objective and constraints – at
various points. which is a very poor way to utilize your a priori knowledge of the problem.
In contrast: the LP Simplex method has no idea how to solve convex MP’s, just linear ones.
However, as applied to an LP„ it never computes values and gradients; it works directly on
problem’s data and converts it into the optimal solution.
This is how a high performance algorithm should work – it should be adjusted to problem’s
structure and utilize it to accelerate computations.
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However - what is problem’s structure? "Structure" has no formal definition, this is some-
thing we recognise in hindsight only. E.g., it is clear what is the structure of LP – it "sits"
in the very simple and transparent cone Rm

+ responsible for the coordinate-wise "≤", all the
rest are just linear functions.
In contrast, in convex MP "structure" sits in the word "convex;" of course, convex func-
tions are much better suited for optimization than general ones, but still – "convexity": is
an abstract notion; solution algorithm has no access to the specific reasons making your
problem convex and thus cannot utilize these reasons, just the outcome – convexity...
Conic problem is not much better. Of course, we understand where the structure sits - in
the regular cone K responsible for the vector inequality ≤K; all the rest, as in LP, are just
linear functions. However, a general regular cone has no more "visible structure" than a
general-type convex function, so what is the point?
The answer is highly unexpected and is, as it should be, "experimental," and not academic:
As a matter of fact, for all practical purposes, whatever it means, the entire Convex Pro-
gramming is in the scope of just three "magic" families of conic problems: those where the
cones are
— nonnegative orthants – finite direct products of nonnegative rays R+ on real line (LP), or
— finite direct products of Lorentz cones (Conic Quadratic Programming, CQP, a.k.a. Sec-
ond Order Conic Programming), or
— finite direct products of semidefinite cones (Semidefinite Programming, SDP)
♠ These three magic families of cones are well understood, and
• form a hierarchy – LP’s are special cases of CQP’s, which in turn are special cases of
SDP’s
• possess deep intrinsic mathematical similarity allowing for unified design of efficient solvers.
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♠ Practice demonstrates that as far as convex optimization models are concerned, users
usually are capable to utilize their private knowledge of their models to convert them into
an LP/CQP/SDP. After it is done, the structure is revealed, and you can start number-
crunching (or try to get understanding "on paper," utilizing powerful existing tools, primarily,
Conic Duality)
♣ In addition, there exists simple fully algorithmic "calculus" of representations of convex
sets and functions via magic cones, which in practice simplifies dramatically converting your
private knowledge into LP/CQP/SDP reformulation of your model. This calculus can –
and is — implemented in dedicated compilers ("Disciplined Convex Programming" — CVX
software designed by Michael Grant and Stephen Boyd, second–to-none in user-friendliness
and scope).
♣ Why all this? Why magic families of conic problems are enough for basically all applica-
tions of Convex Optimization?

A cow’s tail grows downward. I do not attempt to explain why the
cow’s tail grows downward. I merely cite the fact.
– Jack London, The End of the Story (1891)
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Convex Duality, I: Convex Theorem on Alternative

♣ Duality: Motivation. Consider a convex cone-constrained problem

Opt(P ) = min
x∈X

{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
, (P )

("primal problem"). As in LP, Convex duality is motivated by the desire to build a mechanism
for lower-bounding the optimal value of (P ). The mechanism is completely similar to the
one used in LP. We start with answering the following
Question: Given a real c, how to certify the relation c ≤ Opt(P )? In other word, how to
certify insolvability of the system of constraints

f(x) < c (a)
g(x) ≤ 0 (b)
ĝ(x) ≤K 0 (c)

x ∈ X (d)

(S)

in variables x?
Answer: A certificate is a collection of weights – weight 1 for (a), weight λ ∈ Rµ

+ for (b),

weight λ̂ ∈ K∗ for (c) – such that the aggregated system
f(x) + λ

T
g(x) + λ̂T ĝ(x) < c & x ∈ X (Σ)

has no solutions, or, which is the same, such that
inf
x∈X

[
f(x) + λ

T
g(x) + λ̂T ĝ(x)

]
≥ c (!)

8.17



f(x) < c (a)
g(x) ≤ 0 (b)
ĝ(x) ≤K 0 (c)

x ∈ X (d)

 (S)

inf
x∈X

[
f(x) + λ

T
g(x) + λ̂T ĝ(x)

]
≥ c (!)

♠ The resulting condition there exists aggregation weight λ = [λ; λ̂] which is legitimate:

[λ; λ̂] ∈ Λ := Rµ
+ ×K∗

satisfying (!)
is sufficient for infeasibility of (S). In the linear case (f is linear, K∗ = Rm

+, X = Rn) and
when the subsystem (b), (c) composed by nonstrict inequalities of (S) is feasible, GTA says
that this condition is also necessary. To get necessity in the general convex case, we need
(S) to satisfy the Relaxed Slater condition
♠ Slater/Relaxed Slater condition: We say that (S) satisfies
– Slater condition, if there exist x̄ ∈ rintX such that g(x̄) < 0 and ĝ(x̄) <K 0,
– Relaxed Slater condition, if there exist x̄ ∈ rintX such that g(x̄) ≤ 0 and ĝ(x̄) <K 0.

Fact VIII.2 [Cone-constrained Convex Theorem on Alternative] Let (S) be convex (i.e.,
X ⊂ Rn is nonempty and convex, f : X → R is convex, K ⊂ Rm is a regular cone, and
ĝ : X → Rm is K-convex) and satisfy Relaxed Slater condition. Then (S) is infeasible iff (!)
is feasible.

This is Theorem IV.16.13, the most technically involving fact in our textbook. Its proof
combines Separation Theorem and Dubovitski-Milutin Lemma.
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Convex Duality, II: Lagrange Duality Theorem

Consider convex cone-constrained problem

Opt(P ) = minx∈X
{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
,[

A : µ× n, Â : m× n
] (P )

CTA attracts our attention to the Lagrange function

L(x.λ) = f(x) + λ
T
g(x) + λ̂T ĝ(x) : X × Λ → R[

λ = [λ; λ̂].Λ = Rµ
+ ×K∗

]
of (P ), associated dual objective

L(λ) = inf
x∈X

L(x, λ) : Λ → R ∪ {−∞}

and the Lagrange Dual
Opt(D) = max

λ∈Λ
L(λ) (D)

of primal problem (P ), (in exception of our convention, the objective in (D) may take value −∞).
When λ ∈ Λ, the Lagrange function clearly underestimates the objective f of (P ) everywhere
on the feasible set Feas(P ) of (P ), implying that L(λ) ≤ Opt(P ) for all λ ∈ Λ, whence

• Opt(D) ≤ Opt(P ) [weak duality]
Moreover, assuming that (P ) satisfies the Relaxed Slater condition, for every real c < Opt(P ),
that is. such that the system of constraints

f(x) < c, g(x) ≤ 0, ĝ(x) ≤K 0, x ∈ X

in variables x is infeasible, the system of constraints L(λ) ≥ c, λ ∈ Λ in variables λ is feasible.
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Opt(P ) = min
x∈X

{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
(P )

Opt(D) = max
[λ;̂λ]∈Rµ

+
×K∗

{
L(λ) := inf

x∈X

[
f(x) + λ

T
g(x) + λ̂T ĝ(x)

]}
(D)

♠ We have arrived at the following

Fact VIII.3 [Lagrange Duality Theorem, cone-constrained form] Assume that (P ) is a feasi-
ble and bounded convex cone-constrained problem satisfying Relaxed Slater condition. Then
(D) is solvable, and

Opt(P ) = Opt(D)

Indeed, we always have Opt(P ) ≥ Opt(D) by weak duality. Now, under the premise of Theorem Opt(P ) is a
real, and of course the system of constraints

f(x) < Opt(P ), g(x) ≤ 0, ĝ(x) ≤K 0, x ∈ X

in variables x is infeasible. Applying CTA with c = Opt(P ), we conclude that the system of constraints

L(λ) ≥ Opt(P ), λ ∈ Λ

in variables λ has a solution λ∗. Note that λ∗ is a feasible solution to (D) with the value of the dual objective
≥ Opt(P ), while by weak duality Opt(D) ≤ Opt(P ). We see that Opt(P ) ≤ L(λ∗) ≤ Opt(D) ≤ Opt(P ), where
the second inequality is due to (D) being a maximization problem, and we conclude that Opt(P ) = Opt(D)
and that λ∗ is an optimal solution to (D). □

.
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Convex Programming Optimality Conditions, Saddle Point form

♣ Consider a convex cone-constrained problem

Opt(P ) = minx∈X
{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
, (P )

along with its Lagrange function

L(x.λ) = f(x) + λ
T
g(x) + λ̂T ĝ(x) : X × Λ → R

[
λ = [λ; λ̂].Λ = Rµ

+ ×K∗

]
A point (x∗, λ∗) is called a saddle point of the Lagrange function, if
— x∗ ∈ X, λ∗ ∈ Λ, and
— at point x∗, the function L(x, λ∗) of x ∈ X attains its minimum, and the function L(x∗, λ)
of λ ∈ Λ attains its maximum:

∀(x, λ) ∈ X × Λ : L(x, λ∗) ≥ L(x∗, λ∗ ≥ L(x∗, λ).
Immediate observation:

Fact VIII.4 When x ∈ X, the function L(x, λ) of λ ∈ Λ is bounded from above iff x ∈
Feas(P ), and for x ∈ Feas(P ), a point λ∗ = [λ∗; λ̂∗] ∈ Λ maximizes L(x, λ) in λ ∈ Λ iff x and
λ∗ are linked by complementary slackness:

λ
T
∗ g(x) = 0 & λ̂T

∗ ĝ(x) = 0,
or, which for x ∈ Feas(P ) and λ∗ ∈ Λ is the same, the relation λT

∗ [g(x); ĝ(x)] = 0,

Indeed, for a closed cone K, supϕ∈K∗ ϕ
Tz = +∞ iff z ̸∈ −K. When z ∈ −K, the supremum is 0 and is achieved

exactly at those ϕ ∈ K∗ for which ϕTz = 0. As
sup

[λ;̂λ]∈Rµ

+
×K∗

[λ
T
g(x) + λ̂T ĝ(x)] = sup

λ∈Rµ

+

λ
T
g(x) + sup

λ̂∈K∗
λ̂T ĝ(x),

we conclude that the left hand side sup is < +∞ iff g(x) ≤ 0 and ĝ(x) ≤K 0 (i.e., iff x ∈ Feas(P )), and the
maximizers in this case are exactly the pairs λ ∈ Rµ

+, λ̂ ∈ K∗ linked to x by complementary slackness, Q.E.D.
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Opt(P ) = min
x∈X

{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
(P )

Opt(D) = max
[λ;̂λ]∈Rµ

+
×K∗

{
L(λ) := inf

x∈X

[
L(x, λ) := f(x) + λ

T
g(x) + λ̂T ĝ(x)

]}
(D)

Fact VIII.5 [Optimality conditions for cone-constrained convex problem, saddle point form]
Consider convex cone-constrained problem (P ).

(i) Assume that x∗ ∈ X can be augmented by λ∗ ∈ Λ to yield a saddle point of the Lagrange
function. Then x∗ is an optimal solution to (P )
Indeed, under the premise of the claim, λ∗ is a maximizer of the function L(x∗, λ) in λ ∈ Λ = Rµ

+×K∗, implying
by Fact VIII.4 that x∗ is a feasible solution to (P ) linked to λ∗ by complementary slackness: λT

∗ [g(x∗); ĝ(x∗)] = 0.
Now let x be a feasible solution to (P ). We have

f(x) ≥ f(x) + λT
∗ [g(x); ĝ(x)] = L(x.λ∗) ≥ L(x∗, λ∗) = f(x∗) + λT

∗ [g(x∗); ĝ(x∗)]︸ ︷︷ ︸
=0

= f(x∗),

where the first inequality is due to [g(x); ĝ(x)] ∈ −[Rµ
+ × K] (x is feasible!) and λ∗ ∈ Λ = [Rµ

+ × K]∗, and the
second inequality holds true since (x∗, λ∗) is a saddle point of L. Thus, x∗ is an optimal solution to (P ), Q.E.D.

(ii) Assume that x∗ is an optimal solution and (P ) satisfies the Relaxed Slater condition.
Then x∗ can be augmented by λ∗ ∈ Λ to yield a saddle point of the Lagrange function.
Indeed, by the Lagrange Duality Theorem, under the premise of the claim (D) has an optimal solution λ∗ ∈ Λ,
and Opt(D) = Opt(P ) = f(x∗). Let us prove that (x∗, λ∗) is a saddle point of L. We have

f(x∗) = Opt(P ) = Opt(D) = L(λ∗) = inf
x∈X

{L(x, λ∗) ≡ f(x) + λT
∗ [g(x); ĝ(x)]} ≤ f(x∗) + λT

∗ [g(x∗); ĝ(x∗)] ≤ f(x∗)

where the last inequality is due to [g(x∗); ĝ(x∗)] ∈ Rµ
+ ×K and λ∗ ∈ Λ = [Rµ

+ ×K]∗. We see that the inequalities
in the above chain are equalities, implying that

λT
∗ [g(x∗); ĝ(x∗)] = 0 & inf

x∈X
L(x, λ∗) = f(x∗). (∗)

Due to x∗ ∈ Feas(P ) and λ∗ ∈ Λ, the first relation in (∗) implies that x∗ and λ∗ are linked by complementary
slackness, so that λ∗ maximizes L(x∗, λ) in λ ∈ Λ by Fact VIII.4.Taken together, relations (∗) say that x∗
minimizes L(x, λ∗) in x ∈ X. The bottom line is that (x∗, λ∗) is a saddle point of L, Q.E.D.
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Convex Programming Optimality Conditions, Karush-Kuhn-Tucker form

♣ We are about to translate Saddle point optimality conditions into something "more veri-
fiable." Consider a convex cone-constrained problem

Opt(P ) = minx∈X
{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
,[

A : µ× n
] (P )

along with its Lagrange function

L(x.λ) = f(x) + λ
T
g(x) + λ̂T ĝ(x) : X × Λ → R

[
λ = [λ; λ̂], Λ = Rµ

+ ×K∗

]
and let x∗ ∈ X be a point where f and ĝ are differentiable.
Question: When x∗ ∈ X is the x-component of a saddle point of the Lagrange function?
Answer: x∗ should be a Karush-Kuhn-Tucker (KKT) point of (P ), meaning that

x∗ is feasible for (P ), and there exists λ∗ ∈ Λ such that:
λT
∗ [g(x∗); ĝ(x∗)] = 0 [complementary slackness]

∇xL(x∗, λ∗) ∈ −NX(x∗) [KKT equation]
where

NX(x∗) = {h : hT [x∗ − x] ≥ 0∀x ∈ X}
is the taken at x∗ normal cone of X.

Indeed, (x∗, λ∗) ∈ X × Λ is a saddle point of L iff the following two conditions hold:
• λ∗ is a maximizer of L(x∗, λ) in λ ∈ Λ, which by Fact VIII.4 is the same as x∗ being feasible and x∗, λ∗ being
linked by complementary slackness, and
• x∗ is a minimizer of the function L(x, λ∗) in x ∈ X. This function is convex in x ∈ X (as (P ) is convex and
λ∗ ∈ Λ = Rµ

+ × K∗), and we are in the situation when the function is differentiable at x∗; consequently, x(

minimizes the function in x ∈ X iff the KKT equation holds true.
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Opt(P ) = minx∈X
{
f(x) : g(x) := Ax− b ≤ 0, ĝ(x) ≤K 0

}
, (P )

♠ With the observation just made in mind, Fact VIII.5 translates into

Fact VIII.6 [Optimality conditions for cone-constrained convex problem, KKT form] Con-
sider convex cone-constrained problem (P ), and let x∗ ∈ X be such that f , ĝ are differentiable
at x∗.

(i) If x∗ ∈ X is a KKT point of (P ), then x∗ is an optimal solution to (P ).
(ii) If x∗ is an optimal solution to (P ) and the .Relaxed Slater condition holds, x∗ is a

KKT point of (P ).
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Illustration I: Given ai > 0, 1 ≤ i ≤ n, let us solve the optimization problem

Opt = min
x

{∑
i
ai/xi : x > 0,

∑
i
xi ≤ 1

}
this is convex cone-constrained problem with X = {x ∈ Rn : x > 0} (more exactly, it becomes
such a problem when setting g(x) =

∑
ixi − 1 and, say, R = R+ and ĝ(x) ≡ −1 to respect

our cone-constrained format). Let us make an educated guess that there exists a KKT
point where the constraint g(x) ≤ 0 is active, and let us find this point. As the constraint
ĝ(x) ≤ 0 never is active, its Lagrange multiplier is 0, complementary slackness does not
impose additional to nonnegativity restrictions on the Lagrange multiplier for the constraint
g(x) ≤ 0 – we are looking at the point where the constraint is active!, the normal cone of
X at every point x ∈ X is the entire Rn, and the KKT equation reads

∇x(
∑

i
ai/xi + λ[

∑
i
xi − 1]) = 0 ⇔ {ai/x2

i = λ, i ≤ n}

Augmenting the KKT equation with our guessed
∑

ixi = 1, we immediately find λ and xi,
arriving at

λ = [
∑

i

√
ai]

2, xi =

√
ai∑

j
√
aj

, Opt =
[∑

i

√
ai

]2
,

and our computation shows that what we have found indeed is a KKT point, and thus, by
Fact VIII.6, the x we have found is an optimal solution to the problem.
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Illustration II: Given reals ai, i ≤ n, let us solve the problem

Opt = min
x

{∑
i
[xi ln(xi)− aixi] : x ≥ 0,

∑
i
xi = 1

}
.

(we have already solved this problem when illustrating optimality conditions in minimization
of a convex function over a convex set). What we have is a convex cone-constrained problem
with X = {x ∈ Rn : x ≥ 0,

∑
ixi = 1} and "dummy" g(x), ĝ(x), K, say, g(x) ≡ ĝ(x) = −1,

K = R+. As a result, complementary slackness releases us from looking for Lagrange
multipliers – they are zeros, With the educated guess that there is a KKT point in rintX,
where the radial cone is {h :

∑
ihi = 0, and the normal cone is R×[1; ...; 1], the KKT equation

is
∃µ ∈ R : ln(x1) + 1− ai = µ, 1 ≤ i ≤ n,

which combines with the feasibility requirement
∑

ixi = 1 to yield a solution:

xi = exp{ai}/
∑

j
exp{aj}, i ≤ n, Opt = − ln(

∑
j
exp{aj}).

Note that we have computed the Legendre transform of the function
∑

ixi ln(xi) restricted
onto the probabilistic simplex: it is ln(

∑
i exp{yi}).

Pay attention to how the existence of a verifiable sufficient optimality condition simplifies
our life: whatever guess we make, upon success – after a KKT point is found – we are done:
we have found an optimal solution. All’s well that ends well...

8.26



Application: Optimal value in parametric convex cone-constrained problem

♣ When speaking about the optimal value in LP as a function of the right hand side vector,
we have seen that the subgradient of this function is given by an optimal solution to the
dual problem. We are about to establish a "nonlinear analogy" of this fact.
Situation: Consider a parametric family of convex cone-constrained problems defined by a
parameter p ∈ P

Opt(p) := min
x∈X

{f(x, p) : g(x, p) ≤M 0}, (P [p])

where
• X ⊆ Rn, P ⊆ Rµ are nonempty and convex,
• M ⊂ Rν is a regular cone,
• f : X × P → R is convex, and g : X × P → Rν is M-convex

[to save notation, we stick to "single-constraint" formulation]
♠ Question: What is the status of the function Opt(·) : P → R ∪ {±∞} ?
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Opt(p) := min
x∈X

{f(x, p) : g(x, p) ≤M 0}, (P [p])

♠ We make the following assumption:
x ∈ X, p ∈ P are such that

• x is a KKT point of (P [p]) (⇒ x is an optimal solution to the problem)
• f(x, p) and g(x, p) are differentiable at the point [x; p], the derivatives being

Df([x; p])[[dx; dp]] = F T
x dx+ F T

p dp, Dg([x; p])[[dx; dp]] = Gxdx+Gpdp.

• Let µ ∈ M∗ be the Lagrange multiplier associated with x and (P[p]):

µTg(x, p) = 0 & [x− x]T [Fx +GT
xµ] ≥ 0, ∀x ∈ X. (∗)

Fact VIII.7 Under the circumstances, Opt(·) is a convex function on P taking values in
R ∪ {+∞} and finite at p, and the vector

Fp +GT
p µ

is a subgradient of Opt(·) at p:

Opt(p) ≥ Opt(p) + [p− p]T [Fp +GT
p µ], ∀p ∈ P.

Proof. ✓ f is convex ⇒

f(x, p) ≥ f(x, p) + F T
x [x− x] + F T

p [p− p], ∀(x ∈ X, p ∈ P ).

µ ∈ M∗, g is M-convex ⇒ µTg(x, p) : X × P → R is convex ⇒

µTg(x, p) ≥ µTg(x, p)︸ ︷︷ ︸
=0 by (∗)

+µTGx[x− x] + µTGp[p− p], ∀(x ∈ X, p ∈ P ).
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Df([x; p])[[dx; dp]] = F T
x dx+ F T

p dp, Dg([x; p])[[dx; dp]] = Gxdx+Gpdp (a.1)
f(x, p) ≥ f(x, p) + F T

x [x− x] + F T
p [p− p], ∀(x ∈ X, p ∈ P ) (a.2)

µ ∈ M∗ & : µTg(x, p) = 0 & [x− x]T [Fx +GT
xµ] ≥ 0, ∀x ∈ X (b)

µTg(x, p) ≥ µTGx[x− x] + µTGp[p− p], ∀(x ∈ X, p ∈ P ) (c)
Opt(p) := minx∈X{f(x, p) : g(x, p) ≤M 0}

Opt(p)?≥?Opt(p) + [p− p]T [Fp +GT
p µ], ∀p ∈ P (d)

Now let p ∈ P and x be feasible for (P [p]). Then,

f(x, p) ≥ f(x, p) + µTg(x, p)
[as µ ∈ M∗ & g(x, p) ≤M 0]
≥ f(x, p) + F T

x [x− x] + F T
p [p− p] + µTGx[x− x] + µTGp[p− p]

[by (a.2) and (c)]
= Opt(p) + (Fx +GT

xµ)
T [x− x] + (Fp +GT

p µ)
T [p− p]

≥ Opt(p) + (Fp +GT
p µ)

T [p− p],
[by (b)]

The resulting inequality holds true for all x feasible for (P [p]) ⇒ ? ≥? in (d) is ≥
✓ It remains to verify that Opt(·) is convex on P . As ? ≥? in (d) is ≥, Opt on P does not take value −∞. Let
p′, p′′ ∈ P ∩ Dom (Opt(·)) and λ ∈ [0,1], and let

p = λp′ + (1− λ)p′′

Given ϵ > 0, there exist x′, x′′ ∈ X:

g(x′, p′) ≤M 0, g(x′′, p′′) ≤M 0, f(x′, p′) ≤ Opt(p′) + ϵ, f(x′′, p′′) ≤ Opt(p′′) + ϵ.

Setting x = λx′ + (1− λ)x′′, by convexity of f and M-convexity of g, we have

g(x, p) ≤M 0, f(x, p) ≤ [λOpt(p′) + (1− λ)Opt(p′′)] + ϵ.

We conclude that

Opt(λp′ + (1− λ)p′′) ≤ λOpt(p′) + (1− λ)Opt(p′′) + ϵ ∀ϵ > 0,

and the convexity of Opt(·) follows, Q.E.D.
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♠ Standard Example:

Opt(p) := min
x∈X

{f(x) : g(x)− p ≤M 0}, (P [p])

In this case P = Rν, and Fact VIII.7 says that If X is convex, f : X → R is convex,
g : X → Rν ⊃ X is M-convex, and x is a KKT point of (P [p]), µ being the associated
Lagrange multiplier, then Opt(p) is convex on X and

∀(p ∈ P ) : Opt(p) ≥ Opt(x)︸ ︷︷ ︸
f(x)

−µT [p− p]

– minus the Lagrange multiplier µ certifying optimality of x for (P [p]) is a subgradient of
Opt(p) at p = p.
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Conic Programming and Conic Duality

♣ Conic problem is a cone-constrained problem where the objective is linear, the left hand
side ĝ(·) of the nonlinear constraint is affine, and the domain X is the entire space, that is,
a conic problem reads

Opt(P ) = min
x∈Rn

{
cTx : Ax ≤ b, Âx ≤K b̂

}
[
A : µ× n, Â : m× n

] (P )

where K ⊂ Rm is a regular cone. As an affine mapping is K-convex, whatever be a regular
cone K, the problem is a convex cone-constrained one.
♣ The Lagrange function of (P ) is

L(x, λ = [λ; λ̂]) = cTx+ λ
T
[Ax− b] + λ̂T [Âx− b̂] = [c+ATλ+ ÂT λ̂]Tx− bTλ− b̂T λ̂.

Consequently, the objective of the Lagrange dual problem is

L(λ = [λ; λ̂]) =

{
−bTλ− b̂T λ̂ , ATλ+ ÂT λ̂ = −c
−∞ , otherwiise

and the Lagrange dual problem itself becomes the conic dual problem

Opt(D) = max
λ=[λ;̂λ]

{
−[bTλ+ b̂T λ̂] : λ ≥ 0, λ̂ ∈ K∗, A

Tλ+ ÂT λ̂ = −c
}

(D)

of (P ). We see that The Lagrange dual of a conic problem is a conic problem itself.
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Opt(P ) = min
x∈Rn

{
cTx : Ax ≤ b, Âx ≤K b̂

}
] (P )

Opt(D) = max
λ;̂λ

{
−[bTλ+ b̂T λ̂] : λ ≥ 0, λ̂ ∈ K∗, ATλ+ ÂT λ̂ = −c

}
(D)

(D) becomes problem of the form (P ) when replacing maximization of −[bTλ + b̂T λ̂] with
minimization of bTλ+ b̂T λ̂, representing the equality constraints Aλ+ Âλ̂ = −c by inequalities

[AT ;−AT ]λ+ [ÂT ;−ÂT ]λ̂ ≤ [−c; c] (1)

and rewriting the constraints λ ≥ 0, λ̂ ∈ K∗ as

−λ ≤ 0 (2)
−λ̂ ≤K∗ 0 (3)

♠ Let us build the conic dual of the conic representation of (D). Denoting by u = [u+;u−] ≥
0, v ≥ 0, w ∈ [K∗]∗ = K the Lagrange multipliers for the constraints (1), (2), (3), respectively,
and recalling that [K∗]∗ = K, the conic dual of (D) becomes the problem

max
u±,v,w

{
−cT [u− − u+] : A[u− − u+] + v = b, Â[u− − u+] + w = b̂, u+ ≥ 0, u− ≥ 0, v ≥ 0, w ≥K

}
.

Eliminating v, w, setting x = u− − u+ , and passing from maximization of −cT [u− − u+] to
minimization of cT [u− − u+], the latter problem becomes

min
x

{
cTx : Ax− b ≤ 0, Âx− b̂ ≤K 0

}
,

which is nothing but (P ).
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Opt(P ) = min
x∈Rn

{
cTx : Ax ≤ b, Âx ≤K b̂

}
(P )

Opt(D) = max
λ;̂λ

{
−[bTλ+ b̂T λ̂] : λ ≥ 0, λ̂ ∈ K∗, ATλ+ ÂT λ̂ = −c

}
(D)

♣ We have established

Fact IX.1 [Primal-dual symmetry in Conic Programming] The conic duality is symmetric:
the conic dual to the conic dual (D) of (P ) is (equivalent to) the primal problem (P ).

♠ Combining primal-dual symmetry with the Lagrange Duality Theorem in cone-constrained
form, we arrive at

Fact IX.2 [Conic Duality Theorem] Consider a primal-dual pair (P ), (D) of conic problems.
Then

(̊i) [Primal-dual symmetry] Conic duality is symmetric: the problem dual to (D) is (equiv-
alent to) (P )

(̊ii) [Weak duality] One has Opt(D) ≤ Opt(P ).
(̊ii) [Strong duality] Assume that one of the problems (P ), (D) satisfies the Relaxed Slater

condition and is bounded. Then the other problem is solvable, and

Opt(P ) = Opt(D).

As a result, when both problems satisfy the Relaxed Slater condition, both are solvable with
equal optimal values. Finally, one has

Opt(P ) = Opt(D)

whenever one of the problems satisfies the Relaxed Slater condition, whether this problem
is or is not bounded.
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Conic Programming Optimality conditions

Opt(P ) = min
x∈Rn

{
cTx : Ax ≤ b, Âx ≤K b̂

}
] (P )

Opt(D) = max
λ;̂λ

{
−[bTλ+ b̂T λ̂] : λ ≥ 0, λ̂ ∈ K∗, ATλ+ ÂT λ̂ = −c

}
(D)

Fact IX.3 [Conic Programming Optimality conditions] Given a primal-dual pair (P ), (D)
of conic programs, assume that both satisfy the Relaxed Slater condition, and let x∗, λ∗ =
[λ∗; λ̂∗] be a pair of primal-dual feasible solutions. The pair is composed of optimal solutions
to the respective problems

• [Zero duality gap] Iff

DualityGap(x∗, λ∗) := cTx∗ −
[
−[bTλ∗ + b̂T λ̂∗]

]
≡ cTx∗ + bTλ∗ + b̂T λ̂∗ = 0

same as
• [Complementary slackness] Iff

λ
T
∗ [b−Ax∗] = 0 & λ̂T

∗ [̂b− Âx∗] = 0
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Opt(P ) = minx∈Rn

{
cTx : Ax ≤ b, Âx ≤K b̂

}
] (P )

Opt(D) = max
λ;̂λ

{
−[bTλ+ b̂T λ̂] : λ ≥ 0, λ̂ ∈ K∗, ATλ+ ÂT λ̂ = −c

}
(D)

DualityGap(x∗, λ∗) := cTx∗ + bTλ∗ + b̂T λ̂∗ = 0 [zero duality gap]
λ
T

∗ [b−Ax∗] = 0 & λ̂T
∗ [̂b− Âx∗] = [complementarry slackness]

Indeed, as both problems satisfy the Relaxed Slater condition, both are solvable with equal optimal values
Therefore
• One has

DualityGap(x∗, λ∗) =
[
cTx∗ − Opt(P )

]︸ ︷︷ ︸
≥0

+
[
Opt(D)−

[
[−bTλ∗ − b̂T λ̂∗]

]]︸ ︷︷ ︸
≥0

,

⇒ The duality gap as evaluated at a primal-dual feasible pair (x∗, λ∗) is nonnegative and is zero iff x∗ is primal-,
and λ∗ is dual optimal.
• For primal-dual feasible (x, λ = [λ; λ̂]) we have

DualityGap(x, λ) = cTx+ bTλ+ b̂T λ̂ = −[ATλ+ ÂT λ̂]Tx+ bTλ+ b̂T λ̂ = [b−Ax︸ ︷︷ ︸
≥0

]T λ︸︷︷︸
≥0

+[̂b− Âx︸ ︷︷ ︸
∈K

]T λ̂︸︷︷︸
∈K∗

⇒ The duality gap as evaluated at a primal-dual feasible pair (x, λ) vanishes iff x and λ are linked by comple-
mentary slackness.
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Illustration Steiner sum problem

♣ Steiner sum problem:

min
x∈Rn

∑m

i=1
∥x− ai∥2. [m > 1, a1, ..., am are distinct points in Rn]

Cover story (n = 2): There are m oil wells located at points a1, ..., am ∈ R2. Where should
one place an oil collector in order to minimize the total length of pipelines connecting the
wells to the collector?
♠ The problem can be reformulated as conic:

min
t1,..,tm,x

{∑m

i=1
ti : [x− ai; ti] ∈ Ln+1︸ ︷︷ ︸

⇔∥x−ai∥2≤ti

, i = 1, ...,m

}
(P )

Lorentz cones are self-dual, so that the problem dual to (S) is obtained by
— assigning the constraints [x− ai; ti] ∈ Ln+1 with Lagrange multipliers [yi; zi] ∈ Ln+1 giving
rise to the aggregated constraint∑

i

[
[x− ai]Tyi] + tizi

]
≥ 0 ⇔ [

∑
iy

T
i ]x+

∑
iziti ≥

∑
iy

T
i ai

— imposing on the multipliers the restriction that the left hand side in the aggregated
constraint is, identically in the primal variables x, ti, equal to the primal objective

∑
iti, which

amounts to ∑
iyi = 0, z1 = ... = zm = 1

and maximizing under this restriction the right hand side of the aggregated constraint.
Thus, the dual problem reads

max
y1,...,ym

{∑
i
aTi yi :

∑
i
yi = 0, ∥yi∥2 ≤ 1, i ≤ m

}
(D)
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Opt(P ) = min
t1,..,tm,x

{∑m

i=1
ti : [x− ai; ti] ∈ Ln+1, i = 1, ...,m

}
(P )

Opt(D) = max
y1,...,ym

{∑
i
aTi yi :

∑
i
yi = 0, ∥yi∥2 ≤ 1, i ≤ m

}
(D)

• (P ) clearly is solvable and strictly feasible ⇒ (D) is solvable and Opt(P ) = Opt(D).
• From optimality conditions it is easily seen that
— A point x distinct from a1, .., am is an optimal solution to the Steiner sum problem iff∑

i

ai − x

∥ai − x∥2
= 0.

— point x = aℓ is an optimal solution iff∥∥∥∥∑i ̸=ℓ

ai − x

∥ai − x∥2

∥∥∥∥
2

≤ 1.
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♠ In the simplest case of 3 points a1 = A, a2 = B, a3 = C in 2D plane, the optimal solution
is
— either the point from which all 3 sides of the triangle ∆ABC are seen at the angle 120o

(such a point exists if angles of the triangle are < 120o)
— or the vertex of the triangle corresponding to the angle ≥ 120o, if such an angle is present

∠CAB < 120o, ∠ABC < 120o, ∠BCA < 120o ∠ACB ≥ 120o

solutionO,∠AOB = ∠BOC = ∠COA = 120o solutionC

Note: Quoting “Fermat point” in Wikipedia, "This question [to minimize the sum of dis-
tances from a point to the vertices of triangle] was proposed by Fermat, as a challenge to
Evangelista Torricelli. He solved the problem in a similar way to Fermat’s [...] His pupil,
Viviani, published the solution in 1659.
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Consequences of Conic Duality Theorem

♣ Question: When a linear vector inequality

Ax ≥K b (I)

with regular cone K has no solutions?

Tautological answer: (I) has no solutions iff

b ̸∈ B := {b : Ax ≥K b} = ARn −K

Note: For λ ∈ K∗, the scalar inequality [ATλ]Tx ≥ bTλ is a consequence of (I). ⇒
♠ Immediate sufficient condition for infeasibility of (I): If by “admissible aggregation”
of (I) one can obtain a contradictory scalar inequality:

∃λ ≥K∗ 0 : ATλ = 0, λT b > 0. (II)

then (I) has no solutions.

Fact IX.4 Let
B = clB = cl [ARn −K]

be the set of b’s for which (I) is "almost solvable," meaning that appropriately chosen
arbitrarily small perturbations of b make (I) solvable.
(II) is solvable iff b ̸∈ B. Thus,
• if (II) is solvable, then (I) is unsolvable
• if (I) is solvable and B is closed (as is the case when the cone K is polyhedral), then (II)
is unsolvable,
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Ax ≥K b (I)
λ ≥K∗ 0, A

Tλ = 0, λT b > 0 (II)

Proof. All we need is to prove that (II) is solvable iff b ̸∈ B. ✓Let (II) be solvable for b = b. Then (II) remains
solvable for all small enough perturbations b of b, implying by Immediate sufficient condition for infeasibility of
(I) that all these perturbations are outside of B, whence b ̸∈ B. ✓Now let b ̸∈ B, and let us prove that (II) is
solvable. For f ∈ intK, consider the conic problem

Opt = min
x,t

{t : Ax− b+ tf ≥K 0}.

As b ̸∈ B, the t-components of feasible solutions are bounded away from 0, so that Opt > 0, and as f > 0, all
solutions (x = 0, t) with large positive t satisfy the >K-version of the constraint. By Conic Duality Theorem,
the dual . problem

max
λ

{bTλ : ATλ = 0, fTλ = 1, λ ≥K∗ 0}

is solvable with optimal value Opt > 0, implying that (II) is solvable, Q.E.D.

9.10



Ax ≥K b (I)
λ ≥K∗ 0, A

Tλ = 0, λT b > 0 (II)
B = ARn −K

♣ When K = Rm
+, Fact IX.4 says exactly the same as the General Theorem on Alternative:

a finite system of nonstrict linear inequalities has no solutions iff the stemming from some
λ ∈ Rm

+ scalar linear inequality λT [Ax− b] in variables x is contradictory. Moreover, Fact IX.4
states that if B is closed, the same holds true, provided λ ∈ Rm

+ = [Rm
+]∗ is replaced with

λ ∈ K∗. In this respect, note that B is the linear image of the closed cone M = Rn
x ×K under

the linear mapping [x; y] 7→ Â[x; y] ≡ Ax − y, so that by Fact II.23 a sufficient condition for
B to be closed is KerÂ ∩M = {0}, that is, A−1K = {0}.
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Ax ≥K b (I)
λ ≥K∗ 0, A

Tλ = 0, λT b > 0 (II)
B = ARn −K

♠ In general, B can be non-closed, meaning that there is a "gap" between insolvability of
(I) and solvability of (II) – both the systems can be infeasible.
Example: Let

Ax− b := [3; 4; 5] · x− [4;−3; 0] = [3x− 4; 4x+3;5x] ≥L3 0 (I)
A solution x should satisfy

25x2 ≥ (3x− 4)2 + (4x+3)2︸ ︷︷ ︸
25x2+25

& 5x ≥ 0

and clearly does not exist. However, with bϵ = [4;−3+ ϵ; 0], the inequality Ax− bϵ ≥L3 0 reads

25x2 ≥ (3x− 4)2 + (4x+3− ϵ)2︸ ︷︷ ︸
25x2−8ϵx+16+(3−ϵ)2

& x ≥ 0

and becomes solvable whenever ϵ > 0.
⇒ (I) almost solvable, albeit insolvable, which by Fact IX.4 implies that the alternative (II, which under the
circumstances is the system of constraints

3λ1 +4λ2 +5λ3 = 0, 4λ1 − 3λ2 > 0, λ3 ≥
√

λ2
1 + λ2

2

in variables λ has no solutions (check that this indeed is the case!)
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The geometry of this example is as follows. (I) wants to find a point in the intersection
of a straight line ℓ in 3 (red line on the picture) D which happens to be an asymptote of (a
branch of) the hyperbola (blue area on the picture) bounding the intersection of a 2D plane
Π ⊃ ℓ with the ice-cream cone L3. This intersection is empty ⇒ (I) is unsolvable. However,
appropriate, whatever small, shifts of ℓ do intersect L3, making (I) almost solvable and thus
making (II) infeasible.
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Question: When a scalar inequality
cTx ≥ d (S)

is a consequence of a vector inequality

Ax ≥M b (V)

where M is a regular cone ?
Answer:
A. If (S) can be obtained from (V ) and the trivial inequality 0 ≥ −1 by "admissible linear
aggregation:"

∃y ≥M∗ 0 : ATy = c & yT b ≥ d, (∗)
then (S) is a consequence of (V ).
This is evident.
B. If (S) is a consequence of (V ) and (V ) satisfies the relaxed Slater condition – M can be
decomposed as Rm

+ × K with regular cone K and Ax̄ − b ∈ Rm
+ × intK for some x̄, then (S)

can be obtained from (V ) by admissible linear aggregation.
Indeed, under the premise of B the conic problem

Opt(P ) = min
x

{
cTx : Ax ≥M b

}
satisfies the Relaxed Slater condition and Opt(P ) ≥ d, implying by Conic Duality Theorem that the optimal
solution to the dual problem

Opt(D) = max
y

(
bTy : ATy = c, y ∈ K∗

}
(D)

exists and satisfies bTy ≥ d, meaning that (∗) does take place.
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Geometry of primal-dual pair of conic problems

♣ Consider a primal-dual pair of conic problems (we slightly change notation and format)

Opt(P ) = minx

{
cTx : Ax− b ∈ K, Rx− r = 0

}
(P )

Ax− b ∈ K & Rx = r & y ∈ K∗ & ATy +RTs = c
⇒ cTx ≥ bTy + rTs

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

Assumption: The systems of linear equality constraints in (P ) and (D) are solvable:
∃x̄, [ȳ, s̄] : Rx̄ = r, AT ȳ +RT s̄ = c.

♠ Let us pass in (P ) from variable x to primal slack η = Ax−b. Whenever x satisfies Rx = r,
we have

cTx = [AT ȳ +RT s̄]Tx = ȳTAx+ s̄TRx = ȳT [Ax− b] + [bT ȳ + rT s̄]

⇒ (P ) is equivalent to the conic problem

Opt(P) = min
η

{
ȳTη : η ∈ [L − η̄] ∩K

}
, L = {Ax : Rx = 0}, η̄ = b−Ax̄[

Opt(P) = Opt(P )− [bT ȳ + rT s̄]
] (P)

Explanation: (P ) wants of η := Ax− b (a) to belong to K, and (b) to be representable as Ax− b for some x

satisfying Rx = r. (b) says that η should belong to the primal affine plane {Ax− b : Rx = r}, which is the shift
of the parallel linear subspace L = {Ax : Rx = 0} by a (whatever) vector from the primal affine plane, e.g., the
vector −η̄ = Ax̄− b.
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Opt(P ) = minx

{
cTx : Ax− b ∈ K, Rx = r

}
(P )

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

♠ Let us pass in (D) from variables [y; s] to variable y. Whenever [y; s] satisfies ATy+RTs = c,
we have

bTy + rTs = bTy + x̄TRTs = bTy + x̄T [c−ATy] = [b−Ax̄]Ty + cT x̄ = η̄Ty + cT x̄,

⇒ (D) is equivalent to the conic problem

Opt(D) = maxy
{
η̄Ty : y ∈ [L⊥ + ȳ] ∩K∗

}[
Opt(D) = Opt(D)− cT x̄

] (D)

Explanation: (D) wants of y (a) to belong to K∗, and (b) to satisfy ATy = c−RTs for some s. (b) says that y

should belong to the dual affine plane {y : ∃s : ATy+RTs = c}, which is the shift of the parallel linear subspace
L̃ = {y : ∃s : ATy +RTs = 0} by a (whatever) vector from the dual affine plane, e.g., the vector ȳ.
Elementary Linear Algebra says that L̃ = L⊥. Indeed,

[L̃]⊥ = {z : zTy = 0 ∀y : ∃s : ATy +RTs = 0} = {z : zTy +0Ts = 0 whenever ATy +RTs = 0}
= {z : ∃x : [zT ,0] = xT [AT , RT ]} = {z : ∃x : Ax = z,Rx = 0} = L.
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Opt(P ) = minx

{
cTx : Ax− b ∈ K, Rx = r

}
(P )

Opt(D) = maxy,s
{
bTy + rTs : y ∈ K∗, ATy +RTs = c

}
(D)

♣ Bottom line: Problems (P ), (D) are equivalent, respectively, to

Opt(P) = minη

{
ȳTη : η ∈ [L − η̄] ∩K

}
(P)

Opt(D) = maxy
{
η̄Ty : y ∈ [L⊥ + ȳ] ∩K∗

}
(D)[

L = {Ax : Rx = 0}, Rx̄ = r, η̄ = b−Ax̄, AT ȳ +RT s̄ = c
]

Note: When x is feasible for (P ), and [y; s] is feasible for (D), the vectors η = Ax− b, y are feasible for (P),
resp., (D), and

DualityGap(x; [y; s]):= cTx− bTy − rTs = [ATy +RTs]Tx− bTy − rTs = [Ax− b]Ty =ηTy

⇒ Geometrically, (P ), (D) are as follows: "geometric data" of the problems are the pair
of linear subspaces L, L⊥ in the space where K, K∗ live, the subspaces being orthogonal
complements to each other, and pair of vectors η̄, ȳ in this space.
• (P ) is equivalent to minimizing f(η) = ȳTη over the intersection of K and the

primal feasible plane MP which is the shift of L by −η̄
• (D) is equivalent to maximizing g(y) = η̄Ty over the intersection of K∗ and the

dual feasible plane MD which is the shift of L⊥ by ȳ
• taken together, (P ) and (D) form the problem of minimizing the duality gap

over feasible solutions to the problems, which is exactly the problem of finding
pair of vectors in MP ∩K and MD ∩K∗ as close to orthogonality as possible.

♣ Pay attention to the ideal geometrical primal-dual symmetry we observe.
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♣ Illustration: Primal-dual pair of conic problems on 3D Lorentz cone

Red: feasible set of (P) Blue: feasible set of (D)
P – optimal solution to (P); Q – optimal solution to (D).

• Pay attention to orthogonality of
−−→
OP to

−−→
OQ.
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Conic Duality – Postscriptum

♣ So far, our "universes" - the linear spaces where all the actions are taking place – were
the spaces Rn of n-dimensional column vectors equipped with the standard inner product
Rn ∋ x, y 7→ xTy ∈ R. This inner product was used on many occasions, e.g.

• when representing a linear mapping as multiplication by the corresponding matrix
• when representing a linear form as the inner product with an appropriate vector
• when defining the cone dual to a given cone
• when representing the derivative of a function by its gradient – the vector with inner

products with directions being the corresponding directional derivatives of the function,
• etc., etc.

♣ In fact, universes we can handle are Euclidean spaces – finite-dimensional linear spaces E
over reals equipped with inner products E ∋ x, y ⇒ ⟨x, y⟩E ∈ R with bilinear function ⟨x, y⟩E
(linear in x for y fixed and linear in y for x fixed) which is symmetric: ⟨x, y⟩ ≡ ⟨y, x⟩ and
"positive on the diagonal" ⟨x, x⟩E > 0 whenever x ̸= 0.
♠ Linear Algebra teaches that every Euclidean space E is equivalent to appropriate Rn,
meaning that for properly selected n (namely, equal to the linear dimension of E) there
exists one-to-one correspondence between E and Rn which preserves linear operations and
converts the inner product in E into the standard inner product on Rn; to establish this
correspondence, it suffices to build an orthonormal basis e1, .., en in E:

⟨ei, ej⟩E =

{
0 , i ̸= j
1 , i = j

which is always possible, and to pass from a vector from E to the vector of its coefficients
in this basis.
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♠ We tacitly used the possibility to "standardize" our universes when it made no harm.
When speaking about the cone of positive semidefinite matrices and conic programs on this
cone, this approach becomes inconvenient. Sn

+ lives in the Euclidean space Sn of symmetric
n× n matrices equipped with the Frobenius inner product

⟨x, y⟩ := Tr(xy) =
∑n

i,j=1
xijyij

♠ Of course, we could without any difficulty build an orthonormal basis in this space and identify Sn with
R

n(n+1)
2 , but what for? All we could get is notational havoc... It is much better to express all our constructions

in terms of linear operations and inner product, and understand what they become when dealing with Sn. This
is what happens:

• Linear mappings from Rk to Sn (for our needs, this is enough) are not represented by multiplication by
matrices; their natural representation is

x 7→ Ax =
∑k

i=1
xiAi, (∗)

where Ai ∈ Sn are "columns" of the mapping (cf. the usual representation Ax =
∑

k
xiColi[A] of a linear

mapping from Rk to Rn);
• Every linear mapping x 7→ Ax from Euclidean space E, ⟨·, ·⟩E to Euclidean space F, ⟨·, ·⟩F has its conjugate

– linear mapping y 7→ A∗y : F → E given by the identity

⟨y,Ax⟩F ≡ ⟨A∗y, x⟩E.

Note: As is immediately seen, the mapping conjugate to (∗) is

y 7→ A∗y ≡ [Tr(A1y); ...;Tr(Aky)] : S
n → Rk.

• The conjugate to a linear combination of linear mappings is the same linear combination of their conjugates,
the conjugate to the product (composition) AB of two mappings: AB(x) ≡ A(B(x)) is B∗A∗, and A is the
conjugate to A∗.

• When E,F are Rn, Rm with the standard inner products, and we represent a linear map A : E → F as
multiplication by m × n matrix: A(x) = Ax, A∗ is represented by AT : A∗(y) = ATy, and this is where the
transposes of matrices come to our constructions.
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• The dual of a cone K ⊂ E becomes

K∗ = {y ∈ E : ⟨y, x⟩E ≥ 0∀x ∈ K}.

It is immediately seen that the positive semidefinite cone Sn
+ = {X ∈ Sn : X ⪰ 0} is self-dual:

{Y ∈ Sn : Tr(Y X) ≥ 0 ∀X ∈ Sn
+} = Sn

+
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♣ Equipped with broader sight, let us build the dual to the SDP conic problem

Opt(P ) = minx∈Rn

{
cTx : Ax ≥ b, Aix ≡

∑
j xjAi

j ⪰ Bi, 1 ≤ i ≤ m
}[

Ai
j, B

i ∈ Smi

] (P )

To build the dual, we
• equip the system Ax ≥ 0 of scalar inequalities with Lagrange multiplier λ ∈ Rdim b

+ , and
LMI’s – with Lagrange multipliers Λi ∈ Smi

+
• take the inner products of both sides of our constraints with the corresponding Lagrange

multipliers and sum the results up, thus arriving at the scalar linear inequality

λTAx+
∑
i

Tr(ΛiAix) ≥ bTλ+
∑
i

Tr(Biλ) (∗)

which, by its origin, is a consequence of the system of constraints of (P )
• impose on the Lagrange multipliers the restriction for the left hand side in (∗) to be, as

a function of x, identically equal to cTx and maximize under this restriction (and initial "sign
restrictions") on the multipliers the right hand side in (∗), thus arriving at the dual problem

Opt(D) = max
λ,Λi

{
bTλ+

∑
i
Tr(BiΛi) : λ ≥ 0,Λi ⪰ 0, ATλ+

∑
i

A∗
iΛi = c

}
(D)

where for a linear mapping x 7→
∑

jxjAj : Rn → SN . the conjugate mapping Y 7→ A∗Y is given
by

Y 7→ A∗Y = [Tr(A1Y ); ...;Tr(AnY )] : SN → Rn.
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Truss Topology Design and Conic Duality

♣ The TTD problem reads

Opt(P ) = min
τ,r

{
τ :

[
BDiag{t}BT f

fT 2τ

]
⪰ 0, t ≥ 0,

∑
i ti = W

}
[
B = [b1, ..., bN ] ∈ RM×N , BBT ≻ 0

] (P )

(P ) is a conic problem involving the semidefinite cone SM+1
+ that is self-dual w.r.t. the inner

product

⟨A,B⟩ = Tr(AB) =
∑
i,j

AijBij

on the space SM+1.

A. It is easily seen that BBT ≻ 0 ⇒ the Relaxed Slater condition holds & (P ) is solvable.
B. Passing from problem (P ) to its conic dual (this is a purely mechanical process), we
arrive at the problem

max
V,g,θ,λ,µ

{
−2fTg −Wµ : 2θ = 1, bTi V bi + λi − µ = 0 ∀i, λ ≥ 0,

[
V g
gT θ

]
⪰ 0

}
Eliminating variable θ (fixed by the constraint 2θ = 1), and variables λi, the dual becomes

Opt(D) = max
V,g,µ

{
−2fTg −Wµ : bTi V bi ≤ µ = 0 ∀i, λ ≥ 0,

[
V g

gT 1
2

]
⪰ 0

}
(D)

By Conic Duality Theorem, (D) is solvable, and Opt(P ) = Opt(D).
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Opt(D) = max
V,g,µ

{
−2fTg −Wµ : bTi V bi ≤ µ = 0 ∀i,

[
V g
gT 1

2

]
⪰ 0
}

(D)

To proceed, we need

Fact IX.5 [Schur Complement Lemma] Consider symmetric block-matrix
[

Q Q
QT R

]
with

R ≻ 0, Then [
P Q
QT R

]
⪰ 0 ⇔ P −OR−1QT ⪰ 0.

Indeed, [
Q Q
QT R

]
⪰ 0 ⇔ [u; v]T

[
Q Q
QT R

]
[u; v] ≡ uTPu+2uTQv + vTRv ≥ 0∀u, v

⇔ uTPu+minv[2uTQv + vTRv] ≡ uTPu− uTQR−1QTu ≥ 0∀u⇔ [P −QR−1QT ] ⪰ 0

♠ The SCL allows to eliminate in (D) the matrix variable V – by the SCL, in a feasible
solution to (D) one has V ⪰ V = 2ggT , and replacing V with V , we preserve feasibility and
keep the value of the objective intact. The resulting problem reads

maxg,µ
{
−2fTg −Wµ : µ ≥ 2[bTi g]

2 ∀i
}

or, again applying the SCL,

Opt(D) = max
g,µ

{
−2fTg −Wµ :

[
µ bTi g

bTi g
1
2

]
⪰ 0 ∀i

}
(D)

which is solvable with Opt(D) = Opt(D) = Opt(P ). Besides, it is immediately seen that
(D) satisfies the Relaxed Slater condition.
Surprise # 1: The constraints in (D) involve the cone S2

+ only, and this cone, up to one-
to-one linear transformation of S2 = R3, is the 3D Lorentz cones! Thus, (D) is a Conic
Quadratic problem...
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Opt(D) = max
g,µ

{
−2fTg −Wµ :

[
µ bTi g

bTi g
1
2

]
⪰ 0 ∀i

}
(D)

C. Let us pass from (D) to its conic dual.
Note: Were (D) the conic dual (D) of our original problem (P ), the result would be known
in advance: by the symmetry of conic duality, we wold come bask to (P ). However, (D)
is not (D), it was obtained from (D) by partial optimization in variables V and λ, and
nobody knows in advance what this reduction does with the dual... Well, immediate purely
mechanical computation says that the dual to (D) is the problem

Opt(P ) = min
s,t,q

{
1

2

∑
i

si :
∑
i

ti = W,
∑
i

qibi = f,

[
ti qi
qi si

]
⪰ 0∀i

}
(P )

By Conic Duality Theorem, (P ) is solvable, and Opt(P ) = Opt(D) = Opt(D) = Opt(P ).
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Opt(P ) = min
s,t,q

{
1

2

∑
i

si :
∑
i

qibi = f,

[
ti qi
qi si

]
⪰ 0 ∀i,

∑
i

ti = W

}
(P )

D. Let us compare (P ) with our initial form of the TTD problem

Opt(P ) = min
τ,r

{
τ :

[
BDiag{t}BT f

fT 2τ

]
⪰ 0, t ≥ 0,

∑
i ti = W

}
(P )

While a candidate truss t in (P ) and variable t in (P ) are of the same dimension, and the
constraints of (P ) and those of (P ) impose the same restrictions t ≥ 0,

∑
i ti = W on t,

nobody told us that (P ) and (P ) equally well model the design of the optimal truss. What
we know is that

for a given t ≥ 0 with
∑

i
ti = W , the smallest τ which, taken together with t, yields a feasible

solution to (P ), is the compliance Compl(t, f), so that (P ) is the problem of minimizing Compl(t, f)
over trusses t of total bar volume W .

Similarly,
denoting by Compl(t, f) the minimal, over s, q resulting in a feasible for (P ) triple (s, t, q), value of
the objective 1

2

∑
i
si of (P ), (P ) is the problem of minimizing Compl(t, f) over trusses t of total bar

volume W .
All we do know is that the optimal values in (P ) and (P ) are the same, which in no sense
guarantees that Compl(t, f) ≡ Compl(t, f), and that solving (P ) to optimality, we indeed
have minimized Compl(t, f) over t.
However, an educated guess is that Opt(P ) = Opt(P ) is not a coincidence. And indeed, a
not too difficult reasoning heavily utilizing Optimality conditions yields
Surprise # 2: One has Compl(t, f) ≡ Compl(t, f).
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Opt(P ) = min
s,t,q

{
1

2

∑
i
si :
∑

i
qibi = f,

[
ti qi
qi si

]
⪰ 0∀i,

∑
i
ti = W

}
(P )

E. Observe that the nonlinear constraints
[

ti qi
qi si

]
⪰ 0 are nothing but the inequalities

q2i /ti ≤ si, where the convex function a2/b is extended from the its natural domain – the
half-plane b > 0 – onto the entire (a, b)-plane "by lover semicontinuity" - by setting 02/0 =
0,a2/0 = +∞ for a ̸= 0, and a2/b = +∞ for b < 0. As a result, (P ) becomes the problem

min
t,q

{
1

2

∑
i
q2i /ti :

∑
i
qibi = f, t ≥ 0,

∑
i
ti = W

}
(R)

(R) admits partial optimization in t, resulting in the problem

min
q

{
1

2W

[∑
i
|qi|
]2

:
∑

i
qibi = f

}
(!)

Surprise # 3: (!) is nothing but the LP problem
minq

{∑
i|q|i :

∑
iqibi = f

}
This is a kind of miracle - we reduced highly nonlinear problem to simply-looking LP.
ГЛЯДЯ НА МИР, НЕЛЬЗЯ НЕ УДИВЛЯТЬСЯ!
[Looking at the world, one cannot help but be surprised! – The 110th aphorism from the
collection of thoughts and aphorisms "The Fruits of Thought" (1854) by Kozma Prutkov.
"Kozma Prutkov was a collective pseudonym created by several Russian writers (Aleksey
Konstantinovich Tolstoy and the Zhemchuzhnikov brothers), the character they created was
known for his pompous, often absurd, and yet strangely insightful pronouncements. This
particular aphorism, while seemingly simple, has become one of their most enduring and
recognizable creations." – Gemini]
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♣ The "LP miracle," whatever surprising, is of restricted interest – it vanishes when
passing from the simplest single-load TTD to multi-load TTD and to other problems (like
Shape Design) of optimal design of linearly elastic mechanical structures. What is of actual
interest, is the alternative description of the compliance

Compl(t, f) = inf
q

{
1

2

∑
i
q2i /ti :

∑
i
qibi = f

}
(!)

Question: Can we derive (!) from the first principles of Mechanics, circumventing mathe-
matical stuff like taking twice conic duality, partial minimization, etc. ?
Answer: Yes and no

To understand what is going on, let us start with deriving the TTD model.
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♣ Consider the design of d-dimensional truss (d = 2 or d = 3)
♠ Let m be the number of free nodes in the original nodal grid, and let us assign the nodes serial numbers
α in such a way that the numbers of the m free nodes are 1,2, ...,m, and let pα ∈ Rd be the pre-deformation
position of node with serial number α ("node α" for short).
• Recall that the vectors v (nodal displacement), f (external load), and g ( reaction ) are M = md-dimensional
block vectors with m blocks of dimension d indexed by serial numbers of the free nodes; the α-th blocks vα, fα, gα
of these vectors are, respectively, physical displacements, external forces, and reaction forces corresponding to
node α.
♠ Consider i-th bar; assume it links free nodes α = α(i) and β = β(i), and let ℓ = ℓ(i) = ∥pα(i) − pβ(i)∥2 be the
length of the bar, e = e(i) = [pα(i) − pβ(i)]/ℓ(i) be the pre-deformation direction of the bar, and S = S(i) be the
(d− 1)-dimensional cross-sectional size of the bar ⇒ the d-dimensional volume of the bar is

ti = S(i)ℓ(i)
• As a result of nodal displacement v, in linear in v approximation of the actual physical phenomena, and with
properly selected length and force units,
— the post-deformation length of the bar is ℓ+ δ, δ = [vα − vβ]Te
— the caused by deformation reaction force at node α is −σSe, where the stress σ, by Hooke’s Law, is

σ = δ
ℓ
= [vα−vβ]Te

ℓ
The reaction force at node β is, of course, σSe
— the potential energy capacitated in the bar as the result of its deformation is

1
2
[Sσ]δ = 1

2
Sδ2/ℓ

• Let us define bi as the block-vector with m blocks, the nonzero ones being the α-th, equal to e(i)/ℓ, and β-th,
equal to −e(i)/ℓ Denoting by gi the contribution of bar i to the reaction g of the truss caused by deformation,
gi is block-vector with two nonzero blocks, α-th and β-th, given by

[gi]α = −[gi]β =− Sσe = S δ
ℓ
e = −S

[vα−vβ]Te
ℓ

e = −[Sℓ]
[
[vα − vβ]Te/ℓ

]
e/ℓ = −ti[bTi v][bi]α.

This expression for the "physical" reaction forces caused by deformation of i-th bar at its end-nodes α, β was
derived when both nodes α, β are free. If only one of them, say, α, is free, the expression still works, provided
vβ is set to 0 and bi is defined as the block-vector with just α-th block nonzero (and equal to e(i)/ℓ). Thus,
the contribution of i-th bar to the overall reaction g of the truss is gi = −ti[bibTi ]v, whence

g = −
[∑

i
tibib

T
i

]
v

as required in the TTD model.
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Let us define scaled tension in bar i as qi = tibTi v While defined in terms of a displacement v of the entire nodal
grid, qi depends solely on the "physical " displacements of the nodes linked by the bar:

qi = ti[e(i)]T [vα(i) − vβ(i)]/ℓ(i).

Note that
gi = −qibi, g = −

∑
i
qibi

and the energy capacitated in bar i is
1
2
S(i)δ2(i)/ℓ(i) = 1

2
S(i)

(
[vα(i) − vβ(i)]

Te(i)
)2

/ℓ(i) = 1
2
ℓ(i)S(i)︸ ︷︷ ︸

ti

[bTi v]
2 = 1

2
q2i /ti,

Note: qi has a transparent mechanical sense: it is the ℓ(i) times minus tension (minus reaction force acting
the end-node α(i) of bar i). In terms of these scaled tensions, the equilibrium deformation under load f and
the compliance Compl(t, f) – the capacitated in the truss under this deformation potential energy – are given,
respectively, by

∑
i
qibi = f and 1

2

∑
i
q2i /ti.

♠ Have we reached our goal to derive the representation

Compl(t, f) = inf
q

{
1

2

∑
i
q2i /ti :

∑
i
qibi = f

}
(!)

of the compliance from the first principles? — Absolutely not!
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♠ Have we reached our goal to derive the representation

Compl(t, f) = inf
q

{
1

2

∑
i
q2i /ti :

∑
i
qibi = f

}
(!)

of the compliance from the first principles? — Absolutely not!
• Of course, every real qi can be obtained as the scaled tension of i-th bar under certain
displacements of its nodes, same as any 3D vector can be obtained as the velocity of aircraft’s
passenger John Doe. However, all passengers of an aircraft are flying with the same velocity,
same as for t given, the N scaled tensions of bars stem from a displacement of the nodal
grid and thus form the linear image of the M-dimensional vector v of nodal displacements.
Thus, mechanically meaningful scaled tensions qi cannot be treated as independent decision
variables as we see them in (!) (think of Console design where N = 3024 and M = 72).
"Nearly all" feasible solutions to (!) have nothing to do with the displacements of the nodal
grid and thus make no actual mechanical sense.
However: At the optimum, qi do come from nodal displacements! These displacements
are the Lagrange multipliers for the equality constraints in (!) certifying optimality of the
optimal solution.
As a matter of fact, to the best of my knowledge, no one was brave (or crazy) enough to arrive at (!) "from
scratch" – from considerations originating in Mechanics, and the outlined circumstantial way to discover the
bar-force formulation (P ) of the TTD problem (and similar formulations of other Structural Design problems),
and (P ) was discovered exactly as explained - by twice taking conic duals and eliminating variables...
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Saddle Points

♣ We have spoken about saddle points of the Lagrange function. It is time to focus on
saddle points per se.
♣ Let X ⊂ Rn, Λ ⊂ Rm be nonempty sets, and let F (x, λ) be a real-valued function on X×Λ.
This function gives rise to two optimization problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

Game interpretation: Player I chooses x ∈ X, player II chooses λ ∈ Λ. With choices of
the players x, λ, player I pays to player II the sum F (x, λ). What should the players do to
optimize their wealth?
♢If Player I chooses x first, and Player II knows this choice when choosing λ, II will maximize
her profit, and the loss of I will be F (x). To minimize her loss, Player I should solve (P ),
thus ensuring herself loss Opt(P ) or less.
♢If Player II chooses λ first, and Player I knows this choice when choosing x, Player I will
minimize her loss, and the profit of Player II will be F (λ). To maximize her profit, Player II
should solve (D), thus ensuring herself profit Opt(D) or more.
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

For Player I, the second situation seems better, so that it is natural to guess that her
anticipated loss in this situation is ≤ her anticipated loss in the first situation:

Opt(D) ≡ sup
λ∈Λ

inf
x∈X

F (x, λ) ≤ inf
x∈X

sup
λ∈Λ

F (x, λ) ≡ Opt(P ).

This indeed is true:

Fact IX.6 One has Opt(D) ≤ Opt(P ).

Indeed, the claim is trivially true when Opt(P ) = ∞. When Opt(P ) < ∞, for every real a > Opt(P ) there
exists xa ∈ X such that F (xa, λ) ≤ a for all λ ⇒ F (λ) ≤ Opt(P ) for all λ ⇒ Opt(D) ≤ a. Thus, Opt(D) is ≤ a
whenever real a is > real Opt(P ), implying Opt(D) ≤ Opt(P ), □
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

♣ What should the players do when making their choices simultaneously?
A “good case” when we can answer this question is when F has a saddle point.
Definition: We call a point (x∗, λ∗) ∈ X × Λ a saddle point of F , if

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ).
In game terms, a saddle point is an equilibrium – no one of the players can improve her
wealth, provided the adversary keeps her choice unchanged.

F (x, λ) = −xλ F (x, λ) = x2 − λ2 + xλ
In both cases, F (x,0) ≥ F (0,0) ≥ F (0, λ) ⇒ (0,0) is a saddle point
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

Fact IX.7 [Existence and structure of saddle points] F has a saddle point iff both (P ) and
(D) are solvable with equal to each other real optimal values. In this case, the saddle points
of F are exactly the pairs (x∗, λ∗), where x∗ is an optimal solution to (P ), and λ∗ is an optimal
solution to (D). In addition, at every saddle point, (x∗, λ∗), F (x∗, λ∗) equals to the common
value of Opt(P ) and Opt(D).

Proof. ✓Assume that (x∗, λ∗) is a saddle point of F , and let us prove that x∗ solves (P ), λ∗ solves (D), and
Opt(P ) = Opt(D).
Indeed, we have

F (x, λ∗) ≥ F (x∗, λ∗) ≥ F (x∗, λ) ∀(x ∈ X,λ ∈ Λ)
whence

Opt(P ) ≤ F (x∗) = sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗)

Opt(D) ≥ F (λ∗) = inf
x∈X

F (x, λ∗) = F (x∗, λ∗)

Since Opt(P ) ≥ Opt(D), we see that all inequalities in the chain

Opt(P ) ≤ F (x∗) = F (x∗, λ∗) = F (λ∗) ≤ Opt(D)

are equalities. Thus, x∗ solves (P ), λ∗ solves (D) and Opt(P ) = Opt(D).
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Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

✓Assume that (P ), (D) have optimal solutions x∗, λ∗ and Opt(P ) = Opt(D), and let us prove that (x∗, λ∗) is
a saddle point. We have

Opt(P ) = F (x∗) = sup
λ∈Λ

F (x∗, λ) ≥ F (x∗, λ∗)

Opt(D) = F (λ∗) = inf
x∈X

F (x, λ∗) ≤ F (x∗, λ∗)
(∗)

Since Opt(P ) = Opt(D), all inequalities in (∗) are equalities, so that

sup
λ∈Λ

F (x∗, λ) = F (x∗, λ∗) = inf
x∈X

F (x, λ∗). □
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Existence of Saddle Points

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

Fact IX.8 [Sion-Kakutani Theorem] Let X ⊂ Rn, Λ ⊂ Rm be nonempty convex sets, with
X being compact, and let F (x, λ) : X × Λ → R be a continuous function which is convex in
x ∈ X and concave in λ ∈ Λ. Then

(i) One has
Opt(P ) = Opt(D)

(ii) Assume that Λ is closed and that for every real a there exists x̄a ∈ X such that the set

Λa : {λ ∈ Λ : F (x̄a, λ) ≥ a}
is bounded (e.g., Λ is bounded). Then F possesses a saddle point on X × Λ.

Note: Same as maximization of a function f can be reduced to minimization of −f , saddle point problem

max
λ∈Λ

min
x∈X

F (x, λ) ⇒
{

minx∈X supλ∈Λ F (x, λ) (P )
maxλ∈Λ infx∈X F (x, λ) (D)

is equivalent to the saddle point problem

max
x∈X

min
λ∈Λ

[−F (x, λ)] ⇒
{

minλ∈Λ supx∈X[−F (x, λ)] (P ′) ≡ (D)
maxx∈X infλ∈Λ[−F (x, λ)] (D′) ≡ (P )

Therefore the conclusion (i) in Sion-Kakutani Theorem holds true when instead of compactness of X, com-
pactness of Λ is assumed.
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♠ The key role in the proof of Sion-Kakutani Theorem is played by

Fact IX.9 [MinMax Lemma] Let X ⊂ Rn be a convex compact set and fi(x) : X → R,
i = 1, ...,m, be convex continuous functions. Then there exists µ∗ ≥ 0 with

∑
i

µ∗
i = 1 such

that
min
x∈X

max
1≤i≤m

fi(x) = min
x∈X

∑
i

µ∗
ifi(x)

Note: Setting ∆ = {µ ∈ Rm : µ ≥ 0,
∑

i µi = 1}, consider the convex-concave saddle point
problem

min
x∈X

max
µ∈∆

∑
i

µifi(x) ⇒


Opt(P ) = minx∈X F (x) := max

µ∈∆

∑
i

µifi(x)︸ ︷︷ ︸
≡maxi fi(x)

(P )

Opt(D) = maxµ∈∆F (µ) := minx∈X
∑

i µifi(x) (D)

MinMax Lemma states that Opt(D) = Opt(P ), or (since (P ) and (D) under the premise
of MinMax lemma clearly are solvable) that the convex-concave function

∑
i µifi(x) has a

saddle point on X ×∆.
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Proof of MinMax Lemma. Consider the optimization program

min
t,x

{t : fi(x)− t ≤ 0, i ≤ m, (t, x) ∈ X+} ,

X+ = {(t, x) : x ∈ X}
(P )

The optimal value in this problem clearly is

t∗ = min
x∈X

max
i

fi(x).

The program clearly is convex, solvable and satisfies the Relaxed Slater condition (which, due to the absence
of the "≤K-part, reduces to existence of a feasible solutions in rintX∗, which is evident). whence there exists
λ∗ ≥ 0 and an optimal solution (x∗, t∗) to (P ) such that (x∗, t∗;λ∗) is the saddle point of the Lagrange function
on X+ × {λ ≥ 0}:

min
x∈X,t

{
t+
∑
i

λ∗
i (fi(x)− t)

}
= t∗ +

∑
i

λ∗
i (fi(x∗)− t∗) (a)

max
λ≥0

{
t∗ +

∑
i

λi(fi(x∗)− t∗)

}
= t∗ +

∑
i

λ∗
i (fi(x∗)− t∗) (b)

(b) implies that t∗ +
∑
i

λ∗
i (fi(x∗)− t∗) = t∗. (a) implies that

∑
i

λ∗
i = 1. Thus, λ∗ ≥ 0,

∑
i
λ∗
i = 1 and

min
x∈X

∑
i

λ∗
i fi(x) = min

x∈X,t

{
t+
∑
i

λ∗
i (fi(x)− t)

}
= t∗ +

∑
i

λ∗
i (fi(x∗)− t∗) = t∗= min

x∈X
max

i
fi(x). □
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Proof of Sion-Kakutani Theorem.
1o As F is continuous on X and X is compact, we have

F (λ) = min
x∈X

F (x, λ) : Λ → R

Besides, F (·) is concave on Λ as the minimum of a family of concave functions of λ.

2o Let us start with proving the following

Fact IX.10 Let X, Λ be nonempty convex compact sets and G : X × Λ → R be continuous
function which is convex in x ∈ X and concave in λ ∈ Λ. Then G has a saddle point.

Proof. Indeed, G is a continuous function on a compact set, and is therefore uniformly continuous ⇒ the
objectives in the problems

Opt(P) = inf
x∈X

G(x)︷ ︸︸ ︷
sup
λ∈Λ

G(x, λ) (P)

Opt(D) = sup
λ∈Λ

inf
x∈X

G(x, λ)︸ ︷︷ ︸
G(λ)

(D)

are continuous on the problem’s domains and the right hand side sup and inf are achieved ⇒ (P), D) are
problems of maximization/minimization of continuous functions over nonempty compact sets and as such are
solvable. Thus, all we need to prove that G has a saddle point is the equality Opt(P) = Opt(D). This is what
we are about to do. Note that Opt(D) ≤ Opt(P) by Fact IX.6.
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By shifting G by a constant, assume w.l.o.g. that Opt(D) = 0, that is, Opt(P) ≥ 0, and let, for a contradiction,
ϵ := Opt(P) > 0. Then for every x ∈ X there exists λx ∈ Λ such that G(x, λx) ≥ ϵ; since G(·, λx) is continuous
on X, there is a neighborhood Ux of x such that G(x′, λx) ≥ ϵ/2 for all x′ ∈ Ux ∩X. As X is compact, we can
extract from the open covering ∪x∈XUx of X a finite subcovering: for properly selected integer m and points
xi ∈ X, 1 ≤ i ≤ m, we have X ⊂ ∪i≤mUxi. The latter means that setting fi(x) = G(x, λxi), i ≤ m, we get
convex continuous functions on X such that maxi≤m fi(x) ≥ ϵ/2 for every x ∈ X. Applying MinMax Lemma,
we conclude that there exist convex combination weights µi such that

∑
i
µifi(x) ≥ ϵ/2 for all x ∈ X. Setting

λ =
∑

i
µiλxi, we see that λ ∈ Λ and

∀x ∈ X : G(x, λ) ≥
∑

i

µiG(x, λxi) =
∑

i

µifi(x) ≥ ϵ/2,

with the first inequality due to the concavity of G(x, λ) in λ ∈ Λ. Thus, G(λ) ≥ ϵ/2, contradicting Opt(D) = 0.
□

Note: Looking how the equality Opt(D) = Opt(P) has been proved, we see that in fact we have proved a
bit more than was claimed; specifically, we have proved

(!) When X,Λ are nonempty and convex, X is compact (just X!) and the function G(x, λ) :
X×Λ → R is continuous, convex in x and concave in λ, then for every real a such that Opt(P) > a
(in the proof we used a = 0) one has Opt(D) > a as well.

It follows that under the premise of the Sion-Kakutani Theorem, one has Opt(P ) = Opt(D). Indeed, specifying
Λ as Λ and G as F , in the case of Opt(P ) = ∞ (!) says that Opt(D) = ∞ (as (!) as applicable with every real
a), when Opt(P ) ∈ R, we get Opt(D) = Opt(P ) by applying (!) to all a < Opt(P ) and taking into account
Fact IX.6; the same Fact IX.6 says that Opt(D) = Opt(P ) when Opt(P ) = −∞.
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3o. It remains to prove item (ii) of the Sion-Kakutani Theorem. We already know that the optimal values in
the optimization problems

Opt(P ) = inf
x∈X

F (x)︷ ︸︸ ︷
sup
λ∈Λ

F (x, λ) (P )

Opt(D) = sup
λ∈Λ

inf
x∈X

F (x, λ)︸ ︷︷ ︸
F (λ)

(D)

are equal to each other; therefore, in view of Fact IX.7 all we need to establish the existence of a saddle point
is to prove that under the premise of (ii) (P ) and (D) are solvable.
✓As we know from item 1o, F (λ) is a concave real-valued function of λ ∈ Λ. Besides this, from continuity of
F , and compactness of X it follows that F is continuous on every compact subset K of Λ (since the continuous
function F (x, λ) on the compact set X × K is uniformly continuous); as Λ is closed, we conclude that F is
continuous on Λ. By the premise of (ii), for every a ∈ R and some xa ∈ X the set

Λa = {λ ∈ Λ : F (xa, λ) ≥ a}

is bounded; as F (λ) ≤ F (xa, λ), the superlevel set {λ : F (λ) ≥ a} of F is bounded as well. As Λ is closed and
F is continuous, these bounded superlevel sets are closed and therefore are compact ⇒ (D) is solvable by the
Weierstrass Theorem; in particular, Opt(D) = Opt(P ) is a real.
✓Function F : X → R ∪ {+∞} is the supremum of a family F (x, λ), λ ∈ Λ of continuous real-valued functions
and as such is lsc; besides this, Opt(P ) = infx∈X F (x) is finite, implying that F is a proper lsc function. As X
is nonempty and compact, (P ) is solvable. □
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Illustration: Matrix Game

♣ Recall that in Matrix game the players operate with the quantity

F (x, y) = xTMy; [M ∈ Rm×n]

The first player want to minimize F over x ∈ ∆m = {x ∈ Rm
+ :

∑
i xi = 1}, and the second

player wants to maximize F over y ∈ ∆n. The equilibria are the saddle points (min in x ∈ ∆m,
max in Y ∈ ∆+) of F .
We see that Matrix game is a convex-concave Saddle Point problem on the direct product
of two convex compact sets and as such is solvable – the saddle points do exist. The
corresponding primal and dual problems are just LP’s:

Opt(P ) = minx∈∆m

[
maxy∈∆n

[ATx]Ty
]
= minx∈∆m

mint

{
t : t1n ≥ ATx

}
[1k = [1; ...; 1] ∈ Rk]

= minx,t

{
t : t1n −ATx ≥ 0, x ≥ 0,

∑
i xi = 1

}
(P )

Opt(D) = maxy∈∆n

[
minx∈∆m

[Ay]Tx
]
= maxy∈∆n

maxs {s : s1m ≤ Ay}
= maxy,s

{
s : Ay − s1m ≥ 0, y ≥ 0,

∑
j yj = 1

}
(D)

Denoting by y ∈ Rn
+, s ∈ R, µ ∈ Rm

+ the Lagrange multipliers for the constraints t1n−ATx ≥ 0,∑
i xi = 1, x ≥ 0 of (P ), the LP dual of the LP problem (P ) reads

max
y,s,µ

{
s : Ay − s1m − µ = 0,

∑
i

yi = 1, y ≥ 0, µ ≥ 0

}
,

which, after eliminating µ, is nothing but the LP problem (D)
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Conic representations: Motivation and Definition

♣ Recall that a polyhedral representation of a convex set X ⊂ Rn is

X = {x ∈ Rn : ∃u : Px+Qu ≤ r};
while polyhedrally representable set are polyhedral, the notion of a polyhedral representation
plays the central role both in calculus of polyhedrality, and in techniques for recognizing the
possibility to reduce an optimization problem to LP and carrying out this reduction when it
is possible, thus allowing to enjoy the power of LP solvers.
♠ Conic representations of convex sets and functions are aimed at recognizing the possibility
to reduce optimization problems to conic problems on "good," computationally friendly,
cones (primarily, from the "magic" families P/C/S) and to carry out the reduction when it
is possible, thus bringing the problems into the scope of powerful solvers.
♣ Conic representation of a set X ⊂ Rn is a representation of X of the form

X = {x ∈ Rn : ∃u : Px+Qu ≤K r}
where K is a regular cone.
Conic representation of a function f : Rn → R ∪ {+∞} is a conic representation of its
epigraph, the right hand side in an equivalence

t ≥ f(x) ⇔ ∃u : Px+ tp+Qu ≤K r,

where K is a regular cone.
Note: Sets/functions admitting conic representations automatically are convex!
Convention: In the sequel, we refer to a constraint of the form

Ax+ b ≤K Cx+ d

as to a conic constraint in variables x on (regular) cone K.
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♠ In the sequel we say that a conic constraint

Ax+ b ≤K Cx+ d

involving regular cone K is essentially strictly feasible (synonym: satisfies the Relaxed Slater
condition), of one can represent K as the direct product P×M with polyhedral factor P and
regular factor M in such a way that

[Cx̄+ d]− [Ax̄+ b] ∈ P× intM

for some x̄.
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♣ Immediate observations:
A. Conic representation

t ≥ f(x) ⇔ ∃u : Px+ tp+Qu ≤K r,

of a function immediately yields conic representations of its sublevel sets:

{x : f(x) ≤ a} = {x : ∃u : Px+Qu ≤K r − ap,

B. Conic representations

X = {x ∈ Rn : ∃u : PXx+QXu ≤KX
rX}

t ≥ f(x) ⇔ ∃v : Pfx+ tpf +Qfv ≤Kf
rf

of a set X ⊂ Rn and function f : Rn → R ∪ {+∞} imply straightforwardly to reformulate the
optimization problem

min
x∈X

f(x) (O)

as the conic problem

min
x,t,u,v

{
t :

[
PXx+QXu

Pfx+ tpf +Qfv

]
≤Kx×Kf

[
rX
rf

]}
(C)

on the cone Kx × Kf : the x-component of a feasible solution (x, t, u, v) to (C) is feasible
solution of (O) with the value of the objective ≤ t, and vice versa: every pair x, t with x
feasible for (O) and satisfying f(x) ≤ t can be extended to a feasible solution (x, t, u, v) to
(C). In particular, both problems have the same optimal values, simultaneously are/are not
solvable. and the x-part of an optimal solution, if any, to (C) is an optimal solution to (O).
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♣ Let us fix a family K of regular cones such that
• K is closed w.r.t. taking direct products:

Kℓ ∈ K, ℓ ≤ L ⇒ K1 × ...×KL ∈ K

• K is closed w.r.t. passing from a cone to its dual:

K ∈ K ⇒ K∗ ∈ K

Examples:
• P– the family of nonnegative orthants (i,e„ finite direct products of nonnegative rays R+);
conic problems on the cones from this family are the usual LP’s
• C– the family of finite direct products of Lorentz cones Lk = {x ∈ Rk : xk ≥

√
x2
1 : ... : x2

k−1},
k = 1,2, ...; conic problems on the cones from this family are called Conic Quadratic problems
(CQPs), or Second Order Conic (SOCP) problems
• S– the family of finite direct products of semidefinite cones Sk

+ = {x ∈ Sk : x ⪰ 0},
k = 1,2, ...; conic problems on the cones from this family are called Semidefinite problems
(SDP), or problems with Linear Matrix Inequalities (LMIs).
♠ We call sets/functions with conic representations utilizing cones from K K-representable (K-
r for short), and refer to the corresponding conic representations as to K-r.’s (pay attention
to the dot after "r").
♠ A concave function f : Rn → R ∪ {−∞} is called K-representable, if the convex function
−f is so; a K-representation of a concave function f is the hand side in an equivalence

t ≤ f(x) ⇔ ∃u : Px+ tp+Qu ≤K r,
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Note: By Fourier-Motzkin, every P-r set is polyhedral – it admits polyhedral description,
i.e., it can be described by finitely many nonstrict linear inequalities in the variables from the
space where the set lives; in this case, polyhedral representations allow for no more (and no
less!) than convenient and fully algorithmic calculus of polyhedrality.
Beyond P, conic representations play more significant role: there is no FM elimination
anymore, and a set X ⊂ Rn admitting, say, C-r

X = {x ∈ Rn : ∃u : Pkx+Qku ≤Lmk bk, k ≤ K}
not necessarily admits "Lorentz description"

X = {x ∈ Rn : Qℓx ≤Lnℓ qℓ, ℓ ≤ L}
– a C-r. without additional variables.
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Calculus of K-representability: Sets

Fact X.1 Basic convexity-preserving operations with sets preserve K-representability:
A. [Taking finite intersections] Kr.’s Xk = {x ∈ Rn : ∃uk : Pkx+Qkuk ≤Kk

rk} of sets Xk ⊂ Rn,
k ≤ K, induce K-r.

∩k≤KXk = {x : ∃u = [u1; ...;uK] : [P1; ...;PK]x+ [Q1u1; ...;QKuk] ≤K1×...×KK
[r1; ...; rK]}

of the intersection of the sets.
B. [Taking direct product] K-r.’s Xk = {x ∈ Rnk : ∃uk : Pkx + Qkuk ≤Kk

rk} of sets Xk ⊂ Rnk,
k ≤ K, induce K-r.

X1×...×XK =
{
x = [x1; ...;xK] ∈ Rn1+...+n−K : ∃u = [u1; ...;uK] : [P1x1; ...;PKxk] + [Q1u1; ...;QKuK] ≤K1×...×KK

[r1; ...; rK]
}

of the direct product of the sets,
C. [Taking affine image] K-r. X = {x : ∃u : Px+Qu ≤Kk

r} of a set X ⊂ Rn induces K-r.

A(X) = {y : ∃[x;u] : y = A(x), Px+Qu ≤K r} (∗)
of the image A(X) = {y = Ax+b : x ∈ X} of X under the affine mapping x 7→ A(x) = Ax+b :
Rn → Rm (note that y = A(x) is a conic constraint y ≤ A(x),−y ≤ −A(x) on R2m

+ ∈ K, so
that the constraints in (∗) form a conic constraint on the cone R2m

+ ×K belonging to K along
with K).
D. [Taking inverse affine image] K-r. X = {x : ∃uk : Px+Qu ≤K r} of a set X ⊂ Rn induces
K-r.

A−1(X) = {y : ∃u : P [Ay + b] +Qu ≤K r}
of the inverse image A−1(X) = {y : Ay + b ∈ X} of X under the affine mapping y 7→ A(y) =
Ay + b : Rm → Rn.
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E. [Summation] Kr.’s Xk = {x ∈ Rn : ∃uk : Pkx+Qkuk ≤Kk
rk} of sets Xk ⊂ Rn, k ≤ K, induce

K-r.

X1 + ...+XK =
{
x : ∃([x1; , , , ;xK], u = [u1; ...;uK]) : x = x1 : ...+ xK, Pkx

k ≤Kk
rk, k ≤ K

}
of the sum of the sets.
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♣ More advanced operations with convex sets "nearly preserve" K-representability:

Fact X.2 One has:
A. [Closedness] A convex set X given by K-r. X = {x : ∃u : Px+Qu ≤K r} not necessarily is
closed. It definitely if closed when bK s a polyhedral cone, same as when K is regular cone
and ImQ ∩K = {0}.
Indeed, by calculus of polyhedrality, when K is polyhedral, so is X, and polyhedral cones are closed. When K is
regular cone, what affects X is just the linear space ImQ, not Q itself ⇒ w.l.o.g. we can assume that Q is an
embedding: KerQ = {0}. X is the projection of the nonempty closed convex set X+ = {[x;u] : Px+Qu ≤K r}
in the (x, u)-space onto the plane of x-variables. By Fact II.23, a sufficient condition for this projection to be
closed is the triviality – K = {0} – of the intersection K of the kernel {0} × Rdimu of the mapping [x;u] 7→ x

and Rec(X+). We clearly have Rec(X+) = {[dx; du] : Pdx+Qdu ≤K 0}, resulting in K = {[0; du] : Qdu ≤K 0},
that is, K = {0} is the same as the validity of the implication [0; du] ∈ K ⇒ du = 0, which for embedding Q is
the same as ImQ ∩K = {0}.
B. [Passing from a set to its recessive cone] Let a nonempty set X be given by K-r. X =
{x : ∃u : Px+Qu ≤K r}. Then the K-r cone

R = {x : ∃u : Px+Qu ≤K 0}
is contained in Rec(clX). When K is polyhedral, same as when ImQ∩K = {0}, X is closed
and Rec(X) = R.
The first claim is evident. The "polyhedral" part of the second claim is given by calculus of polyhedrality.
Finally, when ImQ ∩ K = {0}, X is closed by item A. Same as in the proof of item A, we lose nothing when
assuming that Q is an embedding. The set X+ = {[x;u] : Px + Qu] ≤K r} is nonempty along with X, closed,
and its recessive cone clearly is R+ = {[xd; du] : Pdx+Qdu ≤K 0}. X is the image of X+ under the projection
[x;u] 7→ x. Same as in the proof of item A, assuming that Q is an embedding and ImQ ∩ K = {0}, the
intersection K of the kernel of this projection with the closed cone R+ is {0}, so that Rec(X) is , by Fact
II.23, exactly the projection R of R+ onto the x-space, Q.E.D.
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C. [Taking perspective transform] Let a nonempty set X be given by K-r. X = {x : ∃u :

Px+Qu ≤K r}, and assume that K contains 3D Lorentz cone L3 = {[α;β; γ] : γ ≥
√

α2 + β2}.
Then the K-r set

R = {[x; t] : ∃u, α : Px+Qu− tr ≤K 0 & [2; t− α; t+ α] ≥L3 0, α ≥ 0}
is K-r. of the perspective transform

Persp = {[x; t] : x/t ∈ X, t > 0}
of X. Indeed, as is immediately seen, the constraints [2; t − α; t + α] ≥L3 0, α ≥ 0 are exactly equivalent to
αt ≥ 1, α, t ≥ 0, that is,

R = {[x; t] : ∃u, α : Px+Qu− tr ≤K 0, t > 0} = {[x; t]; t > 0
&

∃v : P [x/t] +Qv ≤K r} = {[x; t] : t > 0, x/t ∈ X} = Persp(X).
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D. [Taking the closed conic transform] Let a nonempty set X be given by K-r. X = {x : ∃u :
Px+Qu ≤K r}. Then the K-r cone

R = {[x; t] : ∃u : Px+Qu− tr ≤K 0 & t ≥ 0}
is in-between the perspective transform Persp(X) = {[x, t] : t > 0, x/t ∈ X} of X and the
closed conic transform ConeT(X) = clPersp(X):

Persp(X) ⊂ R ⊂ ConeT(X).

In particular, when R is closed (which, by item A, definitely is the case when K is polyhedral,
same as when ImQ ∩K = {0}), R is the closed conic transform of X
Indeed, if [x; t] ∈ Persp(X), so that t > 0 and x/t ∈ X, we have P [x/t] + Qu ≤K r for some u, whence
Px + Q[tu] − tr ≤ K0, that is, [x; t] ∈ R. On the other hand, X ̸= ∅,m whence P x̄ + Qū ≤K r for some
x̄, that is [x̄; 1] ∈ R. Now let [x; t] ∈ R, so that Px + Qu − rt ≤K 0 for some u and t ≥ 0. We have
[x; t] = limϵ→+0[x+ ϵx̄; t+ ϵ]and P [x+ ϵx̄]+Q[u+ ϵū− [t+ ϵ]r ≤K 0, implying, due to , t+ ϵ > 0 whenever ϵ > 0,
that [x+ ϵt̄]/[t+ ϵ] ∈ X, that is, [x+ ϵx̄; t+ ϵ ∈ Persp(X), whence [x; t] = limϵ→+0[x+ ϵx̄; t+ ϵ] ∈ clPersp(X) =
ConeT(X). Thus, R ⊂ ConeT(X), in addition to the already proved Persp(X) ⊂ R. The "in addition" part of
the claim readily given by the already proved part of it. □
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E. [Taking convex hull of finite union] Let nonempty sets Xk ⊂ Rnk, k ≤ K, be given by K-r.’s
Xk = {x : ∃uk : Pkx+Qkuk ≤Kk

rk}. Then the K-r set

X =

x ∈ Rn : ∃y1, ..., yK, u1, ..., uK, λ1, ..., λK :

 λk ≥ 0,
∑

k λk = 1 (a)
Pkyk +Qkuk − λkrk ≤Kk

0, k ≤ K (b)∑
k yk = x (c)


is in-between the convex hull of ∪kXk and the closure of this convex hull:

Conv (∪kXk) ⊂ X ⊂ clConv (∪kXk)
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X =

{
x ∈ Rn : ∃y1, ..., yK, u1, ..., uK, λ1, ..., λK :

{
λk ≥ 0,

∑
k
λk = 1 (a)

Pkyk +Qkuk − λkrk ≤Kk
0, k ≤ K (b)∑

k
yk = xq (c)

}
✓Let us prove that Conv (∪kXk) ⊂ X. Let x =

∑
i
λkxk ∈ Conv (∪kXk) ⊂ (λk ≥ 0,

∑
k
λk = 1, xk ∈ Xk).

Setting I = {k : λk > 0} and yk = xk/λk, k ∈ I, for k ∈ I we have for properly selected vk: Pkxk + Qkvk ≤Kk
rk

⇒ Pkyk + Qkuk − λkrk ≤Kk
0 with uk := vk/λk, k ∈ I Setting yk = 0, uk = 0 for k ̸∈ I, we ensure (a) – (c)

⇒ x ∈ X.
✓Now let us prove that X ⊂ clConv (∪kXk). Let x ∈ X, and let us verify that x ∈ clConv (∪kXk)
As x ∈ X, there exist yk, λk, uk such that (see (a) – (c))

λk ≥ 0,
∑
k

λk = 1, Pkyk +Qkuk − λkrk ≤Kk
0, x =

∑
k

yk

As Xk are nonempty, we can find xk, vk such that

Pkxk +Qkvk − rk ≤Kk
0.

For ϵ ∈ (0,1), let

yk = xk/K, λk = 1/K, uk = vk/K
[
⇒ Pkyk +Qkuk − λkrk ≤Kk

0, k ≤ K
]

xϵ = (1− ϵ)x+ ϵ
∑

k
yk, yϵk = (1− ϵ)yk + ϵyk, λ

ϵ
k = (1− ϵ)λk + ϵλk, u

ϵ
k = (1− ϵ)uk + ϵuk

⇒


Pky

ϵ
k +Qku

ϵ
k − λϵ

krk = (1− ϵ) [Pkyk +Qkuk − λkrk] + ϵ
[
Pkyk +Qkuk − λkrk

]
≤Kk

0, k ≤ K

⇒ xϵ
k := yϵk/λ

ϵ
k ∈ Xk, k ≤ K

0 < λϵ
k,
∑

k
λϵ
k = (1− ϵ)

∑
k
λk + ϵ

∑
k
λk= 1∑

k
λϵ
kx

ϵ
k =

∑
k
yϵk = (1− ϵ)

∑
k
yk + ϵ

∑
k
yk = (1− ϵ)x+ ϵ

∑
k
yk= xϵ

We see that xϵ =
∑

k
λϵ
kx

ϵ
k ∈ Conv (∪kXk) and xϵ → x as ϵ → +0 ⇒ x ∈ clConv (∪kXk) □
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F. [Taking conic hull of finite union] Let nonempty sets Xk ⊂ Rnk, k ≤ K, be given by K-r.’s
Xk = {x : ∃uk : Pkx+Qkuk ≤Kk

rk}. Then the K-r cone

X =

x ∈ Rn : ∃y1, ..., yK, u1, ..., uK, λ1, ..., λK :

 λk ≥ 0 (a)
Pkyk +Qkuk − λkrk ≤Kk

0, k ≤ K (b)∑
k yk = x (c)


is in-between the conic hull of ∪kXk and the closure of this conic hull:

Cone (∪kXk) ⊂ X ⊂ clCone (∪kXk)

✓Let us prove that Cone (∪kXk) ⊂ X. Let x =
∑

i
λkxk ∈ Cone (∪kXk) ⊂ (λk ≥ 0, xk ∈ Xk). Let I = {k : λk > 0}.

When I = ∅, x = 0, and setting yk = 0, uk = 0, k ≤ K, we fir (a) – (c), that is, x ∈ X. When I ̸= ∅, setting
yk = xk/λk, k ∈ I, for k ∈ I we have for properly selected vk: Pkxk + Qkvk ≤Kk

rk ⇒ Pkyk + Qkuk − λkrk ≤Kk
0

with uk := vk/λk, k ∈ I Setting yk = 0, uk = 0 for k ̸∈ I, we ensure (a) – (c) ⇒ x ∈ X.
✓Now let us prove that X ⊂ clCone (∪kXk). Let x ∈ X, and let us verify that x ∈ clCone (∪kXk)
As x ∈ X, there exist yk, λk, uk such that (see (a) – (c))

λk ≥ 0, Pkyk +Qkuk − λkrk ≤Kk
0, x =

∑
k

yk

As Xk are nonempty, we can find xk, vk such that

Pkxk +Qkvk − rk ≤Kk
0.

For ϵ ∈ (0,1), let

yk = xk, λk = 1, uk = vk
[
⇒ Pkyk +Qkuk − λkrk ≤Kk

0, k ≤ K
]

xϵ = (1− ϵ)x+ ϵ
∑

k
yk, yϵk = (1− ϵ)yk + ϵyk, λ

ϵ
k = (1− ϵ)λk + ϵλk, u

ϵ
k = (1− ϵ)uk + ϵuk

⇒

{
Pky

ϵ
k +Qku

ϵ
k − λϵ

krk = (1− ϵ) [Pkyk +Qkuk − λkrk] + ϵ
[
Pkyk +Qkuk − λkrk

]
≤Kk

0, k ≤ K

⇒ xϵ
k := yϵk/λ

ϵ
k ∈ Xk, k ≤ K

0 < λϵ
k,
∑

k
λϵ
kx

ϵ
k =

∑
k
yϵk = (1− ϵ)

∑
k
yk + ϵ

∑
k
yk = (1− ϵ)x+ ϵ

∑
k
yk= xϵ

We see that xϵ =
∑

k
λϵ
kx

ϵ
k ∈ Cone (∪kXk) and xϵ → x as ϵ → +0 ⇒ x ∈ clCone (∪kXk) □
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G. [Taking polar] Let a nonempty set X be given by essentially strictly feasible K-r. X =

{x : ∃u : Px+Qu ≤K r}. Then the polar Polar (X) = {y : supx∈X yhTx} admit K-r.

Polar (X) = {y : ∃z : P Tz = y, rTz ≤ 1, z ≤K∗ 0} (∗)
Indeed, y ∈ Polar (X) iff the optimal value Opt in the problem maxx∈X yTx, or, which is the same, in the conic
problem maxx,u

{
yTx : Px+Qu ≤K r

}
is ≤ 1. We are in the situation when the latter problem satisfies the

Relaxed Slater condition ⇒ by Conic Duality Theorem, Opt ≤ 1 iff the conic dual problem

min
λ

{
−rTλ : P Tλ = −y, QTλ = 0, λK∗ ≥ 0

}
has a feasible solution with the value if the objective ≤ 1. As K∗ ∈ K along with K, (∗) indeed is a K-r. of
Polar (X).



Calculus of K-representability: Functions

Fact X.3 Basic convexity-preserving operations with functions preserve K-representability:
A. [Taking restriction onto K-r set] K-r.’s t ≥ f(x) ⇔ ∃u : Pfx+ tpf +Qfu ≤K rf of a function
f : Rn → R ∪ {∞} and a set

X = {x : ∃v : PXx+QXu ≤KX
rx} ⊂ Rn

induce K-r. of the restriction f
∣∣
X
(x) =

{
f(x) , x ∈ X
+∞ ,otherwise of f onto X:

t ≥ f
∣∣
X
(x) ↔ ∃u, v : PXx+QXv ≤KX

rX, Pfx+ tpf +Qfu ≤Kf
0

- B. [Taking conic combinations] K-r.’s t ≥ fk(x) ⇔ ∃uk : Pkx + tpk + Qkuk ≤Kk
rk, k ≤ k,

of functions fk : Rn → R ∪ {+∞} induce K-r. of their conic combination with coefficients
αk > 0:

t ≥
∑
k

αkfk(x) ⇔ ∃t1, ..., tK, u1, ..., uK : Pkx+ tkpk +Qkuk ≤Kk
rk, k ≤ K,

∑
k

αktk ≤ t

B. [Direct summation] K-r.’s t ≥ fk(xk) ⇔ ∃uk : Pkxk + tpk +Qkuk ≤Kk
rk, k ≤ k, of functions

fk : Rnk → R ∪ {+∞} induce K-r. of the direct sum
∑

k fk(xk) of the functions:

t ≥
∑
k

fk(tk) ⇔ ∃t1, ..., tK, u1, ..., uK : Pkxk + tkpk +Qkuk ≤Kk
rk, k ≤ K,

∑
k

tk ≤ t

C. [Affine substitution of variables] K-r. t ≥ f(x) ⇔ ∃u : Px + tp + Qu ≤K r of a function
f : Rn → R ∪ {∞} induces K-r.

t ≥ f(A(y)) ⇔ ∃u : PA(y) + tp+Qu ≤K r

of f with the affine mapping y 7→ A(y) = Ay + b : Rm → Rn.
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D. [Monotone superposition] Let
— functions fk : Rn → R ∪ {+∞} be affine fk(x) = aTk x+ bk for k < K and given by K-r.’s

t ≥ fk(x) ⇔ ∃uk : Pkx+ tpk +Qkuk ≤Kk
rk

for K ≤ k ≤ K,
— set Y ⊂ Rm be given by K-r. Y = {y : ∃w : Ay +Bw ≤K c,
— function F : Rm → R ∪ {+∞} be given by K-r. t ≥ F (y) ⇔ ∃v : Pq + tp+Qv ≤M r.
Assume that whenever x ∈ ∩kDom fk, the function f(x) = [f1(x); ...; fm(x)] takes values in
Y , and that F is nonincreasing in its arguments yk, K ≤ k ≤ K on Y :

y, y′ ∈ Y, yk = y′k, k < K, yk ≤ y′k, K ≤ k ≤ K ⇒ F (y) ≤ F (y′)

Then the composition

G(x) =

{
F (f(x)) , x ∈ ∩kDom fk
+∞ ,otherwise

is K-r:

t ≥ G(x) ⇔ ∃sk, k ≤ K,uk,K ≤ k ≤ K,w, v :
sk = aTx+ bk ,1 ≤ k < K [says that fk(x) = sk]
Pkx+ skpk +Qkuk ≤Kk

rk ,K ≤ k ≤ K [says that fk(x) ≤ sk]
A[s1; ...; sK] +Bw ≤K c [says that [s1; ...; sK] ∈ Y ]
P [s1; ...; sK] + tp+Qv ≤M r [says that F (s1, ..., sK) ≤ t]

E. [Characteristic function] The characteristic function χX of a K-r set

X = {x ∈ Rn : ∃u : Px+Qy] ≤K r}
is K-r:

t ≥ χX(x) ⇔ ∃u : Px+Qu ≤K r, t ≥ 0
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♠ Some calculus rules require minor additional assumptions

Fact X.4 One has
A. [Closedness] Let f : Rn → R ∪ {+∞} be given by Kr.

Epi{f} = {[x; t] : ∃u : Px+ tp+ u ≤K r}
When K is polyhedral, same as when ImQ ∩K = {0}, f is lsc.
Indeed, a function with values in R ∩ {+∞} is lsc iff its epigraph is closed, and it remains t refer to Fact X.2.

B. [Partial minimization] Let function f(x, y) : Rn
x ×Rmy → R ∪ {+∞} be given by K-r.

t ≥ f(x, y) ⇔ ∃u : Pxx+ Pyy + tp+Qu ≤K r.

Assume that infy f(x, y), whenever it is < +∞, is achieved. Then g(x) = infy f(x, y) is K-r:

t ≥ f(x) ⇔ ∃y, u : Pxx+ tp+ [Pyy +Qu] ≤K r.

C. [Support function] Support function of a set

X = {x : ∃u : Px+Qu ≤K r}
essentially strictly feasible K-r. is K-r:

t ≥ SuppX(y) ⇔ ∃λ : P Tλ = y,QTλ = 0, rTλ ≤ t, λ ≥K0
0 (∗)

I̊ndeed, t ≥ Supp(x) iff the optimal value Opt in the problem supx∈X yTx, or, which is the same, in the conic
problem maxx,u{yTx : Px + Qu ≤K r} is ≤ t. Under the premise of item C, this problem satisfies the Relaxed
Slater condition ⇒ by Conic Duality Theorem, Opt ≤ t iff the conic dual

min
λ

{rTλ : P Tλ = y,QTλ = 0, λ ≥K∗ 0}

of the above conic problem has a feasible solution with the value of the objective ≤ t, resulting in (∗),
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D. [Legendre transform] Let a function f : Rn → R ∪ {+∞} be given by essentially strictly
feasible K-r.

t ≥ f(x) = {[x; t] : ∃u : Px+ tp+Qu ≤K r}
Then the Legendre transform f∗(y) = supx[y

Tx− f(x)] is K-r:

t ≥ f∗(y) ⇔ ∃λ : P Tλ = y, pTλ = −1, QTλ = 0, rTλ ≤ t, λ ≥K∗ 0 (!)

Indeed, t ≥ f∗(y) iff the optimal value Opt in the problem supx[y
Tx− f(x)], or, which is the same, in the conic

problem
max
x,u,s

{yTx− s : Px+ st+Qu ≤K r︸ ︷︷ ︸
says that s ≥ f(x)

}

is ≤ t. Under the premise of item D, this problem satisfies the Relaxed Slater condition ⇒ by Conic Duality
Theorem, Opt ≤ t iff the conic dual

min
λ

{rTλ : P Tλ = y, pTλ = −1, QTλ = 0, λ ≥K∗ 0}

has a feasible solution with the value of the objective ≤ t, resulting in (!).

E. [Perspective transform] Let a function f : Rn → R ∪ {+∞} be given by K-r.

t ≥ f(x) ⇔ {[x; t] : ∃u : Px+ tp+Qu ≤K r}

and assume that K contains 3D Lorentz cone L3 = {[α;β; γ] : γ ≥
√

α2 + β2}. Then the
perspective transform

F (x, τ) =

{
τf(x/τ) , τ > 0
+∞ ,otherwise

of f is K-r:

t ≥ F (x, τ) ⇔ ∃u, α : Px+ tp+Qu− τr ≤K 0, [2; τ − α; τ + α] ≥L3 0, α ≥ 0.

Indeed, the constraints [2; τ − α; τ + α] ≥L3 0, α ≥ 0 are equivalent to t ≥ 0, α ≥ 0, tα > 0 ⇒
∃u, α : Px+ tp+Qu− τr ≤K 0, [2; τ − α; τ + α] ≥L3 0, α ≥ 0 ⇔ ∃u : Px+ tp+Qu− τr& τ > 0
⇔ ∃u : P [x/τ ] + [t/τ ]p+Q[u/τ ] ≤K r & τ > 0 ⇔ f(x/τ) ≤ t/τ & τ > 0 ⇔ F (x, τ) ≤ t.



K-representability : Raw materials

♣ Rules of Grammar (or of Calculus) become useful after we get at our disposal "raw
materials" these rules can be applied to: dictionary of words (or of elementary functions
with "bare hands" computed derivatives) which we keep in our memory. Situation with
P/C/S-representability is similar: we need a dictionary of "elementary" functions/sets of
this type.

In contrast to Calculus of K-representability completely independent of what is the family
K of regular cones we are speaking about, the raw materials do depend on the family.
♣ Let us start with several general observations.
A. Assume we are given two families of regular cones K and M, both closed w.r.t. taking
direct products and passing from a cone to its dual, and let every cone K from K admit
M-representation:

K = {x : ∃u : Px+Qu ≤M r} [M ∈ M]

Then every K-representable set/function is M-representable. Given M-r.’s of cones from K,
we can immediately convert a K-r. of a set/function into its M-r.
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B. P/C/S Hierarchy: Nonnegative orthants are C-representable; Lorentz cones are S-
representable.
Indeed, R+ is the same as L1, so that the finite direct products of positive rays – nonnegative
orthants – are direct products of Lorentz cones as well.

To see that a Lorentz cone Ln is S-r, we need the following

Fact X.5 The Lorentz cone Ln admits S-r., specifically,

Ln = {x ∈ Rn : Arrow(x) :=


xn x1 ... xn−1

x1 xn
... . . .

xn−1 xn

 ⪰ 0}.

✓Let x ∈ Ln; then either x = 0, whence Arrow(x) = 0 ⪰ 0, or xn > 0, so that the South-Eastern block xnIn−1

in Arrow(x) is ≻ 0. The Schur complement to this block in Arrow(x) is

xn −

∑n−1

i=1
x2
i

xn
≥ 0 [due to xn > 0 & x2

n ≥ x2
1 + ...+ x2

n−1]

and Arrow(x) ⪰ 0 by Schur Complement Lemma.
✓Vice versa, Let Arrow(x) ⪰ 0, and let us verify that x ∈ Ln. As xn is a diagonal element of ⪰ 0-matrix, we
have xn ≥ 0. If xn = 0, then x = 0 (By Sylvester, 2× 2 principal minors in a ⪰ 0-matrix are nonnegative ⇒ if a
diagonal entry in a positive semidefinite matrix is 0, all entries in its row and column are zeros as well. And if
x = 0,then, of course, x ∈ Ln. When xn > 0, Schur Complement Lemma as applied to Arrow(x) ⪰ 0 says that

xn ≥
∑n−1

i=1
x2
i

xn
, which combines with xn > 0 to imply that xn ≥

√
x2
1 + ...+ x2

n−1 ⇒ x ∈ Ln. □

10.18



C. The next observation is a bit surprising:

Fact X.6 As far as Lorentz representability is concerned, we need nothing but finite direct
products of 1D and 3D Lorentz cones. Specifically, let C be the family of finite direct products
of nonnegative rays and copies of L3. Then the cone Ln, for every n, is C-representable.

Indeed, it suffices to consider the case when n − 1 = 2K is an integer power of 2 (as for every K = 0,1, ...
and every positive integer n < N := 2K + 1, the cone Ln is the inverse image of LN under the linear mapping
R ∋ x 7→ [0; ...; 0;x] ∈ RN). Here is a C-r. of L2K+1:

x2K+1 ≥ 2K
√

x2
1+, , ,+x2

2K

⇕
∃ukℓ, 1 ≤ k ≤ K − 1,1 ≤ ℓ ≤ 2K−k :

u1,1 ≥
√

x2
1 + x2

2, u1,2 ≥
√

x2
3 + x2

4, u1,3 ≥
√

x2
5 + x2

6, ..., u1,2K−1 ≥
√

x2
2K−1

+ x2
2K

u2,1 ≥
√

u2
1,1 + u2

1,2, u2,2 ≥
√

u2
1,3 + u2

1.4, ..., u2,2K−2 ≥
√

u2
1,2K−1−1

+ u2
1,2K−1

...............................................................................................................

uK−1,1 ≥
√

u2
K−2,1 + u2

K−2,2, uK−1,2 ≥
√

u2
K−2,3 + u2

K−2.4

x2K+1 ≥
√

u2
K−1,1 + u2

K−1,2
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D. The next observation is much more surprising: in a sense, C does not exist as an
independent entity.

Fact X.7 [Fast polyhedral approximation of Lorentz cone] For every n and every ϵ, 0 < ϵ <
1/2, one can point out a polyhedral set L+ given by an explicit system of homogeneous
linear inequalities in variables x ∈ Rn, t ∈ R, w ∈ Rk:

L+ = {[x; t;w] : Px+ tp+Qw ≤ 0} (!)

such that
• the number of inequalities in the system (≈ 2n ln(1/ϵ)) and the dimension of the slack

vector w (≈ 0.7n ln(1/ϵ)) do not exceed O(1)n ln(1/ϵ)
• the projection

L = {[x; t] : ∃w : Px+ tp+Qw ≤ 0}
of L+ on the space of x, t-variables is in-between the Second Order Cone and (1+ϵ)-extension
of this cone:

Ln+1 := {[x; t] ∈ Rn+1 : ∥x∥2 ≤ t} ⊂ L ⊂ Ln+1
ϵ := {[x; t] ∈ Rn+1 : ∥x∥2 ≤ (1 + ϵ)t}.

In particular, we have

B1
n ⊂ {x : ∃w : Px+ p+Qw ≤ 0} ⊂ B1+ϵ

n
Br

n = {x ∈ Rn : ∥x∥2 ≤ r}

Note: When ϵ = 1.e-17, your laptop does not distinguish between r = 1 and r = 1 + ϵ.
Thus, for all practical purposes, the n-dimensional Euclidean ball admits explicit polyhedral
representation with ≈ 28n variables w and ≈ 79n linear inequality constraints.
For proof, see section 2.5 in [LMCO] (A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization
2020/2021/2022/2023/2024 https://www2.isye.gatech.edu/~nemirovs/LMCOLN2024Spring.pdf)
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Note: A straightforward representation X = {x : Ax ≤ b} of a polyhedral set X satisfying

B1
n ⊂ X ⊂ B1+ϵ

n

requires at least N = O(1)ϵ−
n−1

2 linear inequalities. With n = 100, ϵ = 0.01, we get

N ≥ 3.0e85 ≈ 300,000× [# of atoms in universe]

With “fast polyhedral approximation” of B1
n, a 0.01-approximation of B100 requires just 922

linear inequalities on 100 original and 325 additional variables.
♠ Illustration: Approximating 2D unit circle by projecting "high-dimensional" polytope:

Dumension of # of linear Quality of Sides in equal quality
## polytope inequalities approximation polygonal approximation

1 10 12 5.e-3 16
2 13 18 3.e-4 127
3 19 30 7.e-8 8,192
4 31 54 4.e-15 34,200,93
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♣ With fast polyhedral approximation of the cone Ln+1 = {[x; t] ∈ Rn+1 : ∥x∥2 ≤ t}, Conic
Quadratic Optimization programs “for all practical purposes” become LO programs. For
example, the program

minimize cTx subject to
Ax = b
x ≥ 0(

8∑
i=1

|xi|3
)1/3

≤ x
1/7
2 x

2/7
3 x

3/7
4 +2x1/5

1 x
2/5
5 x

1/5
6

5x2 ≥ 1
x1/2

1 x2
2

+ 2
x1/3

2 x3
3x

5/8
4 x1 x2

x2 x3 x4

x4 x5 x6

x6 x7

 ⪰ 8I

can be in a systematic fashion converted to Conic Quadratic Programming and thus "for
all practical purposes" is just an LP program.

10.22



♠ More surprises: Exponent ex which lives in our mind is defined on the real axis and
rapidly grows/goes to zero as x → ∞/x → −∞. The exponent which lives in your laptop
is a different beast: it is a function with bounded domain.; according to your computer,
e759 = ∞, and e−759 = 0. ln(e750) = ∞, And as it should be with this arithmetic, the log
which lives in your laptop is a function with bounded range,
It turns out that the exponent and the logarithm which live in computer are, for all practical
purposes, polyhedral functions: given ϵ ∈ (0,1/2), you can build polyhedral representations
of functions Exp and Ln which approximate exp with relative accuracy ϵ, and ln with absolute
accuracy ϵ in their “computer domains." These polyhedral representations are explicit and
use just O(ln(1/ϵ)) variables...
Historical note: Once upon a time... Fast polyhedral approximation of Lorentz cone was
discovered circa 2000 when trying to process numerically about 100 CQP’s with ≈1000
decision variables and conic quadratic constraints. This was done in course of a case study
aimed at investigating the then-new methodology of Robust Linear Programming. At that
time, in contrast to today, solvers capable to handle CQP’s of these sizes were nonexistent,
and fast polyhedral approximation allowed to process the CQP’s by commercial LP solvers,
quite powerful even in these old times.
Paupertas omnes artes perdocet, ubi quem attingit [Poverty teaches all arts, wherever it
touches.– Titus Maccius Plautus (254 BC - 184 BC) , Roman comedian]
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C-representable functions and sets

♣ Let us list several useful C-r functions and sets (for their explicit C-r.’s, see Lecture 2 in
[LMCO])
♠ Functions:
• Euclidean norm ∥ · ∥2: t ≥ ∥x∥2 ⇔ [x; t] ∈ Ldimx+1

• Squared Euclidean norm xTx: t ≥ xTx ⇔ [2x; t− 1; t+1] ∈ Ldimx+2

• Univariate power functions:
(max[x; 0])π : R → R [π ≥ 1]; −xπ : R+ → R [0 ≤ π ≤ 1]; x−π : intR+ → R [π > 0]

with rational π
• Concave algebraic monomial f(x) = xπ1

1 xπ2

2 ...xπn
n : Rn

+ → R with positive rational πi,
∑

i πi ≤ 1

• Convex algebraic monomial f(x) = x−π1

1 x−π2

2 ...x−πn
n : intRn

+ → R with positive rational πi

• p-norm ∥x∥p with rational p ∈ [1,∞]
• Fractional-quadratic function xTx/s : Rn ×R+ → R ∪ {+∞}:

t ≥ xTx/s ⇔ [2x; t− s; t+ s] ∈ Ln+2
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♠ Sets:
• Rotated Lorentz cone

{[x;α;β] ∈ Rn+2 : xTx ≤ αβ, α, β ≥ 0} = {[x;α;β] : [2x, β − α, β + α] ∈ Ln+2}

• Epigraph of compliance Compl(t, f) – the set {[t; f ; τ ] :
[

BDiag{t}BT f
fT 2τ

]
}
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S-representable sets and functions: Preliminaries

♣ In Semidefinite Programming with its tremendous expressive abilities, two facts are of
paramount importance. The first is the already known to us Fact IX.5 :

[Schur Complement Lemma] Consider symmetric block-matrix
[

Q Q
QT R

]
with R ≻

0, Then [
P Q
QT R

]
⪰ 0 ⇔ P −OR−1QT ⪰ 0.

The other one is

Fact X.8 [S-Lemma] Let homogeneous quadratic inequality

xTAx ≥ 0 (A)

be strictly feasible: ∃x̄ : x̄TAx̄ > 0. A homogeneous quadratic inequality

xTBx ≥ 0 (B)

is a consequence of (A) iff it can be obtained by summing up a nonnegative multiple of (A)
and an identically true homogeneous quadratic inequality, or, which is the same.

∃λ ≥ 0 : B ⪰ λA.
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xTAx ≥ 0 ⇒ xTBx ≥ 0
⇕

∃λ ≥ 0 : B ⪰ λA

Some comments are in order.
♠ S-Lemma resembles the Homogeneous Farkas Lemma. HFL says that a homogeneous
linear inequality is a consequence of a finite system of homogeneous linear inequalities iff
the target inequality can be obtained by taking weighted sum, with nonnegative weights,
of the inequalities from the system. One could add also "and adding an identically true
homogeneous linear inequality," but it does not change anything – the only identically true
homogeneous linear inequality is 0Tx ≥ 0 , and adding it does not help.
S-Lemma is a similar statement but for homogeneous quadratic inequalities. with iwo
important caveats:
• "a system" is now restricted to be a single homogeneous quadratic inequality and is
assumed to be strictly feasible; the first restriction is severe, the second – of no actual
importance;
• "adding identically true homogeneous quadratic inequality" now does help – there are
plenty of identically true homogeneous quadratic inequalities, namely, those of the form
xTCx ≥ 0 with C ⪰ 0.
• Of course, the possibility to get the target inequality as a weighted sum of inequalities from
the system and identically true inequality as a sufficient condition for the target inequality
to be a consequence of the system is absolutely evident and has nothing to do with what
are the inequalities in question and how many of them are there in the system. However,
the actual power of HFL and S-Lemma stems from the fact that under their premises the
simple condition in question is necessary. In this respect situation with quadratic inequalities
is intrinsically worse than with linear ones: already the "two inequalities in the system"
version of S-Lemma fails to be true in general...
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• In spite of its seemingly heavily restricted, as compared to the HFL, scope, S-Lemma is
an indispensable tool in SDP.
♠ S-Lemma admits inhomogeneous version:

Fact X.9 [Inhomogeneous S-Lemma] Assume that the quadratic inequality

xTBx+2bTx+ β ≥ 0 (B)

is a consequence f strictly feasible quadratic inequality

xTAx+2bTx+ α ≥ 0 (A)

iff the homogeneous version
xTBx+2tbTx+ βt2 ≥ 0

of (B) is a consequence of the homogeneous version

xTAx+2taTx+ αt2 ≥ 0

of (A), that is (by the plain S-Lemma) iff

∃λ ≥ 0 :

[
B b
bT β

]
≥ λ

[
A a
aT α

]
.

For the proof of the latter fact, see section 18.4 in our Lecture Notes. An intelligent proof
of S-lemma follows.
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The sufficiency of the condition

∃λ : B ⪰ λA (∗)
for the validity of the implication xTAx ≥ 0 ⇒ xTBx ≥ 0 is evident: in the case of (∗), the quadratic form xTBx
everywhere majorates the quadratic form xTAx and therefore is nonnegative at every x where the latter form
is so.
To prove the necessity, consider pair of implications

∀
(
x ∈ Rn, xTAx ≥ 0

)
: xTBx ≥ 0 (!)

∀
(
X ∈ Sn

+,Tr(AX) ≥ 0
)
: Tr(BX) ≥ 0 (!!)

Note: xTQx = Tr(AxxT) for all x ∈ Rn and all Q ∈ Sn ⇒ (!) is weaker than (!!): (!!) says that Tr(BX) ≥ 0
whenever X ⪰ 0 is such that Tr(AX) ≥ 0, and (!) says the same, but only for those X ⪰ 0 which are
representable as xxT , that is, for rank 1 matrices X ⪰ 0.
• It is immediately seen that (∗) is a necessary (and sufficient) condition for the validity of (!!). Indeed, consider
the SDP problem

Opt = min
X

{Tr(BX) : Tr(AX) ≥ 0, X ⪰ 0} .

(!!) says exactly that Opt ≥ 0. When the inequality xTAx ≥ 0 is strictly feasible, the above SDP satisfies the
Relaxed Slater condition (why?) ⇒ by Conic Duality Theorem, Opt ≥ 0} iff the optimal value in the dual
problem

max
λ,Λ

{Tr(0n×nΛ) : B = λA+Λ, λ ≥ 0,Λ ⪰ 0}

is solvable with optimal value ≥ 0, that is, iff (∗) holds true.
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∃λ : B ⪰ λA (∗)
∀
(
x ∈ Rn, xTAx ≥ 0

)
: xTBx ≥ 0 (!)

∀
(
X ∈ Sn

+,Tr(AX) ≥ 0
)
: Tr(BX) ≥ 0 (!!)

• We see that all we need in order to prove that (∗) is necessary for the validity of (!) is to verify that the
implications (!) and (!!) are equivalent to each other; given that (!) is weaker than (!!), this is the same as to
verify that
(!!!) Whenever (!) holds true, so is (!!), that is, if xTBx ≥ 0 whenever xTAx ≥ 0, then Tr(BX) ≥ 0 for every
X ⪰ 0 such that Tr(AX) ≥ 0.

Here is the demonstration: Let (!)) and hold true, and let X ⪰ 0 be such that Tr(AX) ≥ 0; we should prove
that Tr(BX) ≥ 0. Let

X1/2AX1/2 = UDiag{λ}UT [⇔ Diag{λ} = UT [X1/2AX1/2]U

be the eigenvalue decomposition of the symmetric matrix x, and let ζ be a Rademacher random vector of
dimension n, that is, entries in ζ are independent of each other and take values ±1 with probabilities 1/2. Let
us set ξ = X1/2Uζ. Then

ξTAξ = ζTUTX1/2AX1/2Uζ = ζTUT [X1/2AX1/2]Uζ = ζTUT [UDiag{λ}UT ]Uζ
= ζTDiag{λ}ζ ≡︸︷︷︸

a

Tr(Λ) = Tr(UTX1/2AX1/2UT) =︸︷︷︸
b

Tr(A[X1/2UTUX1/2]) = Tr(AX) ≥ 0

where a ia due to all realizations of ζ being vectors with ±1 entries, and b is due to the following nice property
of trace:

Whenever rectangular matrices P,Q are such that PQ makes sense and is a square matrix, it holds
Tr(PQ) = Tr(QP ). In (B), we use this property for P = UTX1/2 and Q = AX1/2UT .

As ξTAξ ≥ 9 for all realizations of ξ, we have

0 ≤E{ξTBξ} = E{ζTUTX1/2BX1/2Uζ} = E{ζTUT [X1/2BX1/2]Uζ} = E{
∑

i,j
ζiζj[UT [X1/2BX1/2]U ]ij}

=
∑

i,j
E{ζiζj}[UT [X1/2BX1/2]U ]ij = Tr(UT [X1/2BX1/2]U) = Tr(B[X1/2U ][UTX1/2]) = Tr(BX),

i.e., Tr(BX) ≥ 0, Q.E.D.
For "bare hands" proof of S-Lemma, based on Optimality conditions in Mathematical Programming, see
section 21.3.1 of Lecture Notes.
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S-representable sets and functions: Majorization Principle

♣ To proceed we need some basic facts on symmetric functions and Majorization principle.
♠ Symmetric functions. A function f : Rn → R ∪ {+∞} is called symmetric, if its values
remain intact under permutation of entries in the argument: that is,

∀(x ∈ Rn, σ ∈ Σn) : f(xσ) = f(x),[
Σn : set of all n! permutations of 1, ..., n, [xσ]i = xσ(i), i = 1, ..., n

]
Examples include:

∑
i xi,

∏
i xi, the sum sk(x) of the k ≤ n largest entries in x,...

Fact X.10 Let f : Rn → R∪{+∞} be a convex symmetric function, π be a doubly stochastic
n× n matrix, and let x ∈ Rn. Then

f(πx) ≤ f(x).

Indeed, by Birkhoff Theorem, π is a convex combination of permutation matrices ⇒ πx ∈ Conv({xσ, σ ∈ Σn})
⇒ f(πx) ≤ maxσ f(xσ) (as f is convex) ⇒ f(πx) ≤ f(x) (as f(xσ) = f(x) for all σ due to the symmetry of f).
□
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♠ Majorization principle provides characterization of points you can get by multiplying a
given x by doubly stochastic matrices (or, which is the same, describes Conv({xσ, σ ∈ Σn}):

Fact X.11 Let x ∈ Rn, A vector y ∈ Rn can be represented as πx with doubly stochastic π
iff

sk(y) ≤ sk(x), k < n & sn(y) = sn(x),

where sk(z) is the sum of k largest entries in z

Proof of the "only if" part (for the proof of the "if" part, see the proof of Theorem II.7.15 in Lecture
Notes). Observe that sk(x) is convex – it is the maximum of linear functions

∑
i∈I xi taken over all k-element

subsets of the index set {1,2, ..., n}; and of course sk is symmetric. Therefore if y = πx with doubly stochastic
π, by Fact X.10 for every k ≤ n it holds sk(y) ≤ sk(x), and of course sn(y) =

∑
i
yi = 1Tπx =

∑
i
xi = sn(x).

Note: For x, y ∈ Rm, the condition sk(y) ≤ sk(x), k ≤ m, is necessary and sufficient for
existence of double-stochastic matrix π such that y ≤ πx.
Proof: ✓ If part: The functions sk(·) clearly are monotone, so that when y ≤ πx with double-stochastic π, we
have sk(y) ≤ sk(πx), and the latter quantity, as we know, is ≤ sk(x).
✓Only if part: Let sk(y) ≤ sk(x), k ≤ m. Let xt be obtained from x by decreasing by t the smallest entry in
x and keeping the remaining entries intact. We have sk(xt) = sk(x), k < m, and sm(xt) = sm(x) − t. Setting
t = sm(x) − sm(y), we get sk(xt) ≥ sk(y), k < m, and sm(xt) = sm(y). By Majorization principle, y = πxt for
some double-stochastic matrix π, and πxt ≤ πx since xt ≤ x ⇒ y ≤ πx.
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♣ To prepare ourselves to what follows, let us answer the following question: as it was
already explained, sk is the maximum of

(
n
k

)
linear forms, whence its epigraph admits poly-

hedral description – polyhedral representation with no additional variables – with
(
n
k

)
linear

inequalities. Does it admit a shorter P-r,? The answer is positive:

Fact X.12 Whenever k ≤ n, one has

t ≥ sk(x) ⇔ ∃z ∈ Rn, s ∈ R : x ≤ z + s1, z ≥ 0,
∑
i

zi + ks ≤ t [x ∈ Rn]

where 1, as always, is the all-ones vector of the context-specified dimension (in our case, of
dimension n).

Indeed, from the original description of sk as the maximum of linear form it follows that sk is ≤-nondecreasing,
and, moreover, sk(x) = maxI xTeI, where ei ∈ Rn is a Boolean vector with eIi = 1 exactly for i ∈ I, and I runs
through the set of k-element subsets of {1, ..., n}. As we remember, eI are exactly the extreme points of the
bounded polyhedral set Xk = {u ∈ Rn : 0 ≤ ui ≤ 1 ∀i,

∑
i
ui = k}, yielding the first equality in the following

computation

sk(x) = maxu{xTu : 0 ≤ ui ≤ 1∀i,
∑

i
ui = k}

= mins,z{
∑

i
zi + ks : z ≥ 0, x ≤ z + s1}

where the second equality is due to LP duality (z is the vector of Lagrange multipliers for the bounds ui ≤ 1, s –
for the equality constraint

∑
i
ui = k; the multipliers for the lower bounds ui ≥ 0 admit immediate elimination).

□
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Preliminaries on eigenvalues

♣ Must to know: eigenvalues. Aside of their definition and Eigenvalue Decomposition
Theorem (see, e..g., Appendix D in Lecture Notes), you should remember that
• for a matrix A ∈ Sn,

λ(A) = [λ1(A); ...;λn(A)]

stands for the vector of eigenvalues of A taken with their multiplicities in the non-ascending
order:

λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A).

Sometimes we shall write λmax(A) instead of λ1(A) and λmin(A) instead of λn(A).
Note: Eigenvalues are rotationally invariant: Λ(X) = λ(UXUT) for orthogonal U .
♠ ⪰-monotonicity of eigenvalues. The vector-valued function X 7→ λ(X) : Sn → Rn is
⪰-monotone:

X ′ ⪰ X ⇒ λ(X ′) ≥ λ(X).

This fact is one of the consequences of Variational Characterization of Eigenvalues of sym-
metric matrix – the single most important fact about eigenvalues of symmetric matrices,
essentially more informative than their initial algebraic definition.

♠ [Variational Characterization of Eigenvalues] For an n × n symmetric matrix A
one has

λi(A) = min
E∈Ei

max
e∈E,∥e∥2=1

eTAe, 1 ≤ i ≤ n,

where Ei is the family of all linear subspaces of Rn of dimension n− i+1.



♠ Eigenvalues: convexity status. As a matter of fact, λmax(X) is convex function of
X ∈ Sn, λmin(x) = −λmax(−X) is concave; intermediate eigenvalues have no definite convexity
status. And of course Sn(X) = Tr(X) is just linear. What is convex, are the sums

Sk(X) =
∑
i≤k

λi(X)

of k ≤ n of the largest eigenvalues (whence the sum of k ≤ n smallest eigenvalues, that is,
the function −Sk(−X) is concave). Convexity of Sk will play the central role in specifying
"S–raw materials," this is why we start with deriving S-r. of Sk.
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Fact X.13 The function Sk(X) : Sn → R (k ≤ n) is ⪰-nondecreasing and is S-r:

Sk(X) ≤ t ⇔ ∃s, Z :

 (a) ks+ Tr(Z) ≤ t
(b) Z ⪰ 0
(c) X ⪯ Z + sIm

Pay attention to similarity of this S-r. of Sk(X) = sk(λ(X)) and our P-r. of sk(x); the first
is inspired by the second via the following idea which sometimes (not always!) works: think
of vectors x ∈ Rn as of diagonal entries of diagonal matrices X ∈ Sn (and thus - vectors of
eigenvalues of X) do what you need to do, and then erase the word "diagonal" and look
what happens...
Proof. We should prove that
• If a pair X, t can be extended, by properly chosen s, Z, to a solution of (a) – (c), then Sk(X) ≤ t;
• If Sk(X) ≤ t, then the pair X, t can be extended by properly chosen s, Z, to a solution of (a) – (c).
✓Let us prove that if a pair X, t can be extended, by properly chosen s, Z, to a solution of (a) – (c), then
Sk(X) ≤ t. Indeed, let (X, t, s, Z) solve (a) – (c). Then

X ⪯ Z + sIm [by (c)]

⇒ λ(X) ≤ λ(Z + sIm) = λ(Z) + s

[
1
...
1

]
[by ⪰-monotonicity of eigenvalues]

⇒ Sk(X) ≤ Sk(Z) + sk

⇒ Sk(X) ≤ Tr(Z) + sk

[
since Sk(Z) ≤ Tr(Z)
due to (b)

]
⇒ Sk(X) ≤ t [by (a)]
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Sk(X) ≤ t ?⇔? ∃s, Z :

{
(a) ks+ Tr(Z) ≤ t
(b) Z ⪰ 0
(c) X ⪯ Z + sIm

✓Now let us prove that if Sk(X) ≤ t, then X, t can be augmented by s, Z to satisfy (a) – (c). Indeed, let
Sk(X) ≤ t, let X = UDiag{λ}UT , λ = λ(X), be the eigenvalue decomposition of X. Setting

s = λk, Z = U


λ1 − λk

. . .
λk−1 − λk

0
. . .

0


︸ ︷︷ ︸

Diag{λ(Z)}

UT ,

we have
Z ⪰ 0,

Diag{λ(X)} ≤ Diag

{
λ(Z) + s

[
1
...
1

]}
⇒ X ⪯ Z + sIm,

t ≥ Sk(X) = ks+ Tr(Z),
so that (t,X, s, Z) solves the system of LMIs

(a) ks+ Tr(Z) ≤ t
(b) Z ⪰ 0
(c) X ⪯ Z + sIm

Q.E.D.

10.36



S-representability of functions of eigenvalues

Fact X.14 Let f(x) be a symmetric convex function on Rm. Then the function

F (X) = f(λ(X))

is convex on Sm, and, moreover,

F (X) = max
U :UTU=I

f(Dg(UXUT)).

[Dg(A) – vector of diagonal entries of square matrix A]
(∗)

Proof: It suffices to verify (∗); indeed, given (∗), F (·) is convex as the upper bound, w.r.t. orthogonal U , of
the family of (clearly convex) functions fU(·). For properly chosen orthogonal U we have

UXUT = Diag{λ(X)} ⇒ max
U :UTU=I

f(Dg(UXUT)) ≥ f(λ(X)).

To prove the opposite inequality, observe that every matrix of the form UXUT with orthogonal U is of the
form V Diag{λ(X)}V T with orthogonal V as well. Now,

[Dg(UXUT)]i = [V Diag{λ(X)}V T ]ii =
∑

j
V 2
ijλj(X),

that is, Dg(UXUT) = πλ(X) for the double stochastic matrix π = [V 2
ij ]i,j. Therefore, by Fact X.10,

f(Dg(UXUT)) = f(πλ(X)) ≤ f(λ(X)) □ .
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Examples: For every symmetric matrix X with the vector of eigenvalues λ one has
• The sum of k largest diagonal entries of X does not exceed Sk(X) = λ1 + ...+ λk

[f(x) = max
i1<i2<...<ik

[xi1 + ...+ xik] is the sum of k largest entries in x]

• The sum of k smallest diagonal entries in X is at least the sum of k smallest of λi’s
• If X ≻ 0, then the product of the k smallest diagonal entries in X is at least the product
of the k smallest of λi’s. In particular, the product of all diagonal entries in X is ≥ Det(X).
[g(x) = min

i1<i2<...<ik
[lnxi1 + ... + lnxik] is the sum of logs of k smallest entries in x > 0,

f(x) = −g(x)]
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♣ Combining S-representability of Sk(·) and Majorization Principle, we arrive at the following
important result:

Fact X.15 [SDP-r.’s of symmetric S-r functions of eigenvalues] Let f(x) be a S-r symmetric
function on Rm. Then the function

F (X) = f(λ(X)) : Sm → R ∪ {+∞}
is S-r with S-r. readily given by S-r. of f . In particular, the following functions are S-r with
explicit S-r.’s
• −Detπ(X), X ∈ Sm

+ (π ∈ (0, 1
m
] is rational);

• Det−π(X), X ≻ 0 (π > 0 is rational);
• |X|π = ∥λ(X)∥π, X ∈ Sm (π ∈ [1,∞) is rational or π = ∞).

Proof. Let

t ≥ f(x) ⇔ ∃u : A(t, x, u) ⪰ 0.
Then

t ≥ F (X) ⇔ t ≥ f(λ(X)) ⇔ ∃(y ∈ Rm, π ∈ Pm) :


y1 ≥ y2 ≥ ... ≥ ym
f(y) ≤ t
λ(X) = πy
[since f(πy) ≤ f(y)]

⇒ t ≥ F (X) ⇔ ∃y ∈ Rm :


y1 ≥ y2 ≥ ... ≥ ym, f(y) ≤ t
sk(λ(X)) ≤ y1 + ...+ yk, k < m
sm(λ(X)) = y1 + ...+ ym
[by Majorization Principle]

⇒ t ≥ F (X) ⇔ ∃(y ∈ Rm, u) :


y1 ≥ y2 ≥ ... ≥ ym, A(y, t, u) ⪰ 0
Sk(X) ≤ y1 + ...+ yk︸ ︷︷ ︸
SD-representable!

, k < m

Tr(X) = y1 + ...+ ym

□
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S-representability of functions of singular values

♣ Must to know: singular values. Linear Algebra says that an m × n matrix A admits
singular value decomposition (svd)

A = UDV T ,

where U is m×m, and V is n× n orthogonal matrix:

UTU = Im, V
TV = In,

and D is m × n is diagonal matrix with nonnegative diagonal entries, diagonality meaning
that the only nonzero entries are among Dii,1 ≤ i ≤ r = min[m;n]. These diagonal entries
are called singular values of A.
When taken in the non-ascending order, singular values form a vector

σ(A) = [σ1(A); ...σr(A)], σ1(A) ≥ σ2(A) ≥ ... ≥ σr(A) [r = min[m,n]]

which, in contrast to the svd, are uniquely defined by A. In other words, A can be represented
as

A =
r∑

i=1

σi(A)uiv
T
i ,

where the vectors ui, 1 ≤ i ≤ r, form an orthonormal system in Rm, and the vectors vi form
an orthonormal system in Rn.
Note: σ(X) = σ(XT), and σ(X) is rotationally invariant: σ(X) = σ(UXV T) for orthogonal
U, V .
• When A is symmetric, the singular values of A are the magnitudes of the eigenvalues.
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♠ Singular values of A ∈ Rm×n are closely related to eigenvalues of the symmetric (m+n)×
(m+ n) matrix

S(A) =

[
A

AT

]
,

linearly depending on A; specifically, the eigenvalues of S(A) are the r = min[m,n] singular
values of A, r negations of these singular values, and m+ n− 2r zeros.
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♠ Combining the latter fact with calculus of S-r.’s with our results on S-r.’s of eigenvalues
of symmetric matrices, we get "for free" S-r.’s of functions of singular values:

Fact X.16 Let m,n be positive integers, r = min[m,n], and f : Rr
+ → R ∪ {+∞} be a

symmetric, convex nondecreasing function. Then the function

F (X) = f(σ(X)) : Rm×n → R ∪ {+∞}
is convex, and an S-r. of f induces straightforwardly an S-r. of F . In particular, the
following functions of X ∈ Rm×n are S-r with explicit S-r.’s:

• spectral norm σ1(X) = ∥X∥ := maxx{∥X∥2 : ∥x∥2 ≤ 1}:

t ≥ ∥X∥ ⇔

 Im X

XT In

 ⪰ 0

• the sum Σk(X) =
∑k

i=1 σi(X) of k ≤ r largest singular values
• the Shatten p-norm ∥X∥Sh,p = ∥σ(X)∥p, p ∈ [1,∞]; this function is convex (and is indeed

a norm); it is S-r with explicit S-r. when p is rational

Note: Shatten 2-norm, a.k.a. Frobenius norm, is just
√

Tr(XXT) =
√∑

i,j X
2
ij, and Shatten

norms are rotationally invariant: ∥X∥Sh,p = ∥UXV T∥Sh,p for orthogonal U, V ; besides this,
∥X∥Sh,p = ∥XT∥Sh,p.
Note: Same as for the usual ℓp-norm, the conjugate of ∥X∥Sh,p is ∥X∥Sh,q,

1
p
+ 1

q
= 1, and

"matrix Hölder inequality" reads

Tr(XY T) ≤ ∥X∥Sh,p∥Y ∥Sh,q,
1

p
+

1

q
= 1 [X,Y ∈ Rm×n, p, q ∈ [1,∞]]
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SDP-representability and polynomials

♣ We associate with univariate algebraic polynomial

p(s) = p0 + p1s+ ...+ pds
d [pi ∈ R]

of degree ≤ d the vector p = [p0; ...; pd] ∈ Rd+1. Similarly, we associate with univariate
trigonometric polynomial

p(s) = p0 +
d∑

ℓ=1

[p2ℓ−1 cos(ℓs) + p2ℓ sin(ℓs)] [pi ∈ R]

of degree ≤ d the vector of its coefficients p = [p0; ..., p2d] ∈ R2d+1.
♠ Given a set ∆ ⊂ R (∆ can be a segment, a ray, the entire reals axis, or a finite union of
segments and rays) and nonnegative integer d the sets Pd(∆), Td(∆) of vectors of coefficients
of algebraic/trigonometric polynomials of degree ≤ d which are nonnegative on ∆. Clearly,
Pd(∆) and Td(∆) are closed convex cones. A remarkable fact, due to Yu. Nesterov, is

Fact X.17 The cones Pd(∆), Td(∆) are S-r with explicit S-r.’s — they are images of the
semidefinite cone SD

+ of appropriate dimension under explicitly given linear mapping.

For example

P2d(R) = {p ∈ R2d+1 : ∃[P ] 0≤i≤d

0≤j≤d

∈ Sd+1
+ : pk =

∑
i,j:i+j=k

Pij}

This is a direct consequence of the remarkable algebraic fact which states that a univariate
(unfortunately, just univariate!) algebraic polynomial of degree ≤ 2d is everywhere nonneg-
ative iff it is the sum of squares of polynomials of degree ≤ d (in fact, just two of them).
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♠ As a result of S-representability of Pd and Td,
• finding the minimum of an algebraic polynomial p(s) over a segment ∆ reduces to SDP

max
t

{t : p(·)− t ∈ Pd(∆)}

and similarly for finding the minimum of a trigonometric polynomial
• design specification q(s) ≤ p(s) ≤ q(s), s ∈ ∆, on the coefficients of variable trigonomet-

ric polynomial of degree ≤ d, q, q being given trigonometric polynomials of degree ≤ d (these
specifications arise when designing controllers and arrays of antennae) – a specific infinite
system of linear constraints on p – reduces to LMI constraints

p− q ∈ Td(∆), q − p ∈ Td(∆)
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SDP representability of some matrix-valued functions

♣ Some important functions F taking values in Sm are S-representable, meaning that their
⪰-epigraphs

{[x, Y ] : Y ⪰ F (x)}
are S-representable, so that the constraints F (X) ⪯ A are representable by LMIs.
Examples include

• ⪰-convex quadratic form F (X) = AXQQTXTAT + BXC + CTXTBT + D of rectangular
matrix X ∈ Rp×q, with coefficients D ∈ Sm, Q,A,B,C of appropriate size. Indeed, by Schur
Complement Lemma (SCL for short),

Y ⪰ F (X) ⇔
[

Y −BXC − CTXTBT −D AXQ
XTATQT I

]
⪰ 0

• fractional-quadratic function F (U, V ) = UV −1UT : Rp×q
U × intSq

+ → Sp. By SCL,

Y ⪰ F (U, V ) ⇔ ∃W ∈ Sq :

[
Y U
UT V

]
⪰ 0,

[
V Iq
Iq W

]
⪰ 0︸ ︷︷ ︸

says that V ≻ 0
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• matrix square root F (X) = X1/2 : Sn
+ → Sn This function is ⪰-concave, so that what is

S-r, is the ⪰-hypograph of F :

X ⪰ 0, Y ⪯ X1/2,⇔ ∃U ⪰ 0 :

[
X U
U I

]
& Y ⪯ U

Note: F (X) is not only ⪰-concave, it is also ⪰-monotone on Sn
+: whenever 0 ⪯ Z ⪯ X, one

has Z1/2 ⪯ X1/2. This (not that trivial!) fact combines with S-representability of X1/2 to
imply ⪰-monotonicity and S-representability of the functions X1/2k

: Sn
+ → Sn, k = 1,2, ....

Taking into account that ln(s) = limk→∞ 2k[s1/2
k − 1], this implies ⪰-monotonicity and ⪰-

concavity of matrix logarithm ln(X) of X ≻ 0 – symmetric matrix Y such that eY = X,
where the matrix exponent eX is given by the standard definition

eX = lim
k→∞

(I +X/k)k =
∞∑
i=0

1

i!
Xi.

Note that eX for any X ∈ Sn, and ln(X) for X ≻ 0, share with X its eigenvectors, and their
eigenvalues, as it should be, are

λi(eX) = eλi(X), λi(ln(X)) = ln(λi(X)),

and, of course, eln(X) ≡ X for X ≻ 0.
Note: eX is neither ⪰-monotone, nor ⪰-convex, unless n = 1. However, Tr(eX) =

∑
i e

λi(X)

is ⪰-monotone (along with λ(X)) and convex (as a symmetric convex function of λ(X), see
Fact X.15).
• I do not know whether the (minus) matrix entropy X ln(X) : Sn

+ → Sn is or is not ⪰-convex;
its trace, called the (minus) von Neumann, or quantum, entropy is convex by Fact X.15.
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Funny fact: For X,Y ∈ Sn, the sets

{(X,Y ) : X ⪰ 0,0 ⪯ Y ≤ X1/2}
and

{(X,Y ) : X ⪰ 0, Y ⪰ 0, Y 2 ⪯ X}
are both convex and S-r with explicit S-r.’s, but differ from each other (unless n = 1), and
the second set is a "negligible part" of the first one. The reason is that when n ≥ 2, the
function X 7→ X2 : Sn

+ → Sn is not ⪰-monotone.
Illustration:

X =

[
1

1

]
X =

[
1

0.1

]
X =

[
1

0.01

]
X =

[
1

0.001

]
• What you see: 3D domains of entries x, y, z in matrix

[
x z
z y

]
satisfying 0 ⪯ Y, Y 2 ⪯ X

(dark blue) and 0 ⪯ Y ⪯ X1/2 (dark blue and cyan). Note that left-most domain is just the
set {x, y, z : 0 ⪯

[
x z
z y

]
⪯ I} – it is half of rotated ice-cream cone.

Morale: Be careful! Matrices do not commute, repealing many guesses inspired by our
experience with reals!
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Miscellaneous
♣ Let us look at two useful SDP-representable sets
♠ Let A,B ∈ Sn

+ and a, b ∈ Rn with b ∈ ImB. Consider the ellipsoid

E = E(A, a) := {x = Au+ a, uTu ≤ 1}
(this is called "image representation;" E is an ellipsoid in ImA) along with elliptic cylinder

C = C(B, b) = {x : ∥b−Bx∥2 ≤ 1}
(this is called "inequality representation;" elliptic cylinder is a full-dimensional ellipsoid when
B ≻ 0, otherwise it is either the direct product of KerB and an ellipsoid in ImB or is empty.
Question: When E ⊂ C ?
Answer [Boyd et al] This is the case iff there exist λ ∈ R such that the matrix inequality 1− λ aTB − bT

λI AB
Ba− b BA I

 ⪰ 0 (∗)

holds true.
This is an easy consequence of S-Lemma; for proof, see, e.g., section 3.7.3 in [LMCO].
Note: For E fixed, (∗) is an LMI in variable λ and in the parameters B, b of C. For C fixed, (∗) is an LMI in
variable λ and in the parameters A, a of E. Thus, both the facts that
— a varying ellipsoid is contained in a fixed elliptic cylinder
— a varying elliptic cylinder contains a fixed ellipsoid
are semidefinite representable!
This fact is instrumental in SDP formulations of various problems related to extremal ellisoids/elliptic cylinders
containing/contained in given sets, e.g. minimum volume ellipsoid containing the union of a given finite
collections of points/ellipsoids ("outer ellipsoidal approximation"), or the maximum volume ellipsoid contained
in the intersection of finitely many ellipsoids/elliptic cylinders ("inner ellipsoidal approximation"), see section
3.7 in [LMCO].

10.48



Illustration: Inner and outer elliptic approximation

What you see are 7 ellipses (blue) and
• the smallest area ellipse (dotted green) containing the union of the blue ellipses
• the largest area ellipse (dotted red) contained in the intersection of the blue ellipses

Pay attention: twice shrunk outer ellipse (dashed green) is inside the convex hull (yellow) of the union of
blue ellipses; twice enlarged inner ellipse (dashed red) contains the intersection (light blue) of the blue ellipses.
This is the 2D case of the following nice result:

Frits John Theorem: Shrinking by factor n the smallest volume ellipsoid containing n-dimensional
solid X (comapct convex set with nonempty interior), you get an ellipsoid contained in X. Enlarging
by factor n the largest volume ellipsoid contained in X, you get an ellipsoid containing X (in both
cases, we keep the centers of the ellipsoids intact and preserve the directions of the axes).

• The factors are sharp for n-dimensional simplex. When X is centrally symmetric, the factors reduce to
√
n,

the new factors being sharp for n-dimensional box.
Note: It is difficult to find the smallest volume ellipsoid containing the intersection of several given ellipsoids,
same as it is diffuclt to find the largest volume ellipsoid contained in the convex hull of the union of several
given ellipsoids. The diffculties stem from the intractability of the corresponding analysis problem – cheking
whether a given ellipsoid contains the intersection/is contained in the convex hull of a given family of ellipsoids.
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♠ Consider an infinite system of LMI’s

S(x)−QT∆TR(x)−RT(x)∆Q ⪰ 0 ∀(∆, ∥∆∥ ≤ 1) (∗)
in variables x ∈ Rn, with the left hand side taking values in some Sm, where Q ̸= 0, P , Z,
R(x), S(x) are matrices of appropriate sizes with S(x) and R(x) affine in x, variable matrix
∆ is a “perturbation," and ∥ · ∥ stands for the spectral norm.
The following fact due to Boyd et al (for proof, see, e.g., section 3.3 in [LMCO]) is a simple
consequence of S-Lemma:

The set of feasible solutions to (∗) is S-r: x is feasible for (∗) iff it can be extended
by a real λ to solve the LMI[

S(x)− λQTQ RT(x)
R(x) λI

]
⪰ 0

Note: The fact that the feasible set of (∗) admits and explicit S-r. is useful in various
applications, e.g., in synthesis of linear controllers for uncertainty-affected Linear Dynamical
Systems.
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Concluding remarks

♣ You could get the impression that what pretends to be a "rich list of raw materials for
the calculus of well-structured convex sets and functions" is (perhaps aside from polyhedral
sets and several C-r.’s of algebraic functions) rather esoteric; I do not think you frequently
hear the word "eigenvalue" in your ISyE classes.
• Note: ISyE is about "soft engineering;" our researchers and students are dealing with
quantitative models of extremely complex industrial and societal situations (logistics, supply
chain, healthcare, inventory management, multistage decision making,...). These models
typically are structurally simple (and where to take knowledge and data allowing to specify a
structurally rich model in healthcare?), and difficulties come from potentially huge problems’
sizes, and from stochasticity and other forms of data uncertainty (when planning develop-
ment of electricity generation and distribution, what can you say about future demands for
electricity, would-be annual precipitations, climate, wind intensity, etc., etc., on the 10-year
time horizon?). As for OR-related research at ISyE, it primarily focuses on design and anal-
ysis of algorithms.
• Hard-core engineering is different: here optimization is aimed at systems governed by well
understood laws giving rise to structurally rich quantitative models (not always easy for
numerical processing). Newton and Coulomb Laws are above Congress and in the Millenia
to come will stay the same as they were Millenia ago...

Страна не та уже давно, а скорость звука все та же, что при батюшке-царе
Тимур Шаов, современный русский бард

[The country is not the same anymore, but the speed of sound is still the same as it was
under the Tsar-Father – Timur Shaov, contemporary Russian bard]
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• As for eigenvalues, you, consciously or unconsciously, meet with them every day when
springing on springs, playing your guitar, driving your car, traveling by air, listening to music,
speaking by your phone, running your computer, undergoing CT scans, and so on.
• In fact, every one of C/S representations we have seen gives rise to a wide spectrum of
convex (and thus computation-friendly) optimization models in Control, Engineering, Com-
munications, Signal Processing, Medical Imaging, Statistics, etc., etc. List of these models
includes, but not reduces to

• stability analysis of uncertainty-affected dynamical systems (cars, aircrafts,...) and syn-
thesis of controllers for these systems

• design of mechanical structures (buildings, bridges, aircrafts,...) optimizing their dy-
namical stability (ability to withstand, to the extend possible, earthquakes like the recent
one that devastated Turkey) and static stability (small deformation under load)

• design of arrays of antennae capable to send/receive energy along (narrow cones around
of) prescribed directions,

• optimal signal recovery in Communications
• phase retrieval with applications in X-ray crystallography, transmission electron mi-

croscopy, and coherent diffractive imaging
• optimizing chips aimed at improving the clock speed of computer’s CPU
• design of efficient Signal Processing and Statistical recovery procedures
• sparsity-oriented image recovery in Medical Imaging and beyond
• computing extremal ellipsoids, with applications ranging from efficient algorithms for

low-dimensional black-box-oriented convex minimization to approximating reachability do-
mains of dynamical systems and stable integration of Ordinary Differential Equations

• .........................................................................................
This list has been continuously extending over decades, in significant part due to the pio-
neering research of Prof. Stephen Boyd from Stanford University; I highly recommend the
wonderful book Stephen Boyd and Lieven Vandenberghe, Convex Optimization
https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf. Some of the models can be found in [LMCO]
https://www2.isye.gatech.edu/~nemirovs/LMCOLN2024Spring.pdf
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МАТЕМАТИКА наука о величинах и количествах; все, что можно выразить цифрою, принадлежит
математике. Математика чистая, занимается величинами отвлеченно; Математика прикладная,
прилагает первую к делу, к предметам.
Владимир Даль (1801—1872) Толковый словарь живаго великорускаго языка

MATHEMATICS is the science of magnitudes and quantities; everything that can be expressed numerically
belongs to mathematics. Pure mathematics, deals with quantities abstractly; applied mathematics, applies the
former to business, to objects.
Vladimir Dal (1801-1872) Explanatory dictionary of the living Great Russian language

♠ Illustrations of applying Convex Optimization "to business, to objects" to follow are
neither the most advanced nor the most important ones; their "common denominator" is,
first, that once upon a time I worked on them, and second, that they allow for visualization.
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Illustration: Antenna Design

♣ Consider linear antenna array composed of 24 harmonic oscillators forming an equidistant
grid.
• with proper actuation (selecting amplitudes and initial phases of the 24 interfering harmonic
oscillations), we can control directional distribution of the energy send by the antenna, e.g.,
concentrate it in a narrow cone around a prescribed direction:

Diagram of 24-element linear antenna array
Directional distribution of energy vs. the angle

between a direction and the direction of the array

♠ Selecting "actuation weights" to maximize energy concentration in a given cone of interest,
we end up with the diagram as follows:
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Optimal design, energy concentration C = 74.8%
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• However: Actuation weights are characteristics of physical devices and therefore cannot
be implemented exactly as computed. This is what happens with random implementation
errors of small relative magnitude ρ:

ρ = 10−6, C = 35.5% ρ = 10−3, C = 1.8%
Sample of 100 diagrams with implementation errors

C: average energy concentration

♠ Robust design immunizes the solution against implementation errors:

ρ = 10−6, C = 55.3% ρ = 10−3, C = 18.8% ρ = 10−2, C = 10.3%
Robust design, sample of 100 diagrams with implementation errors
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Illustration: Controlling Peak-to-Peak Gain

♣ External disturbances affecting (discrete time) linear dynamical system on time horizon
1,2, ..., T enforce the consecutive system’s states to deviate from their nominal values. This
phenomenon is quantified by peak-to-peak gain – the worst-case, over the disturbances,
ratio of the maximum, over time, of magnitudes of state deviations to the maximum, over
time, of magnitudes of the disturbances:

Gain = sup
∥sequence of states unde zero control∥∞

∥sequence of distrubances∥∞
♠ Design of linear controllers accounting for peak-to-peak gain is an old and not so easy-
to-solve problem in Control.
♠ SDP offers computation-friendly way to handle the peak-to-peak gain.
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• Peak-to-peak gain:
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SDP-synthesized control
In blue, from top to bottom: perturbations in states/outputs/controls (on the synthesized control
plots) vs. time. In the left pane: random harmonic oscillation disturbance, in the right pane: “bad
disturbance.” In green: ∥ · ∥2-norms of states, outputs and controls, respectively

Cruise flight of Boeing 747 (linearized model)
4 states, 2 outputs, 2 controls, 2 disturbances (wind)
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Illustration: Stabilizing Linear System with unknown dynamics

♣ Consider a discrete time linear time-invariant dynamical system

xt+1 = Axt +But + dt, t = 0,1,2, ..., (S)

where
• xt ∈ Rnx is system’s state,
• ut ∈ Rnu is control,
• xt ∈ Rnx is external disturbance

at time instant t.
♠ In Control, the standard design specification is to ensure stability: with identically zero
disturbances, the controller must ensure convergence of the states to 0 as t → ∞. A widely
used way to ensure stability is to specify a stabilizing static feedback xt 7→ ut = Fxt making
the resulting closed loop system

xt+1 = [A+BF ]xt + dt

stable.
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xt+1 = Axt +But + dt, t = 0,1,2, ..., (S)

Note: We restrict ourselves (and this is a severe restriction!) to the case when the states
are observable "in real time" – we see xt when generating ut. In more general settings, what
we see when generating ut is the output Cxt, where C, same as A and B, specify the system.
In this case, linear controller to be designed is ut = FCxt. In what follows, we consider the
case C = I of fully observable states.
♠ Linear Algebra says a linear dynamical system

xt+1 = Axt (A)

is stable iff the spectral radius ρ(A) – the maximum of modulae of the eigenvalues of A
is < 1. Equivalent, and more convenient for us, criterion of stability is the existence of
Lyapunov stability certificate – a positive definite matrix U and γ < 1 such that

ATUA ⪯ γU. (!)

Sufficiency of (!) for the stability is clear: as U ≻ 0, the quantity ∥x∥U =
√
xTUx is a norm, and (!) says that

in this norm, the mapping x 7→ Ax is a contraction: ∥Ax∥U ≤ √
γ∥x∥U , implying that in the norm ∥ · ∥U , every

trajectory of (A) approaches the origin exponentially fast.

{U ≻ 0 & ATUA ⪯ γU} ⇒ [A]tx0 → 0, t → ∞ ∀x0

♠ We see that designing a stabilising static feedback F for (S) reduces to finding U ≻ 0 and
γ < 1 such that

[A+BF ]TU [A+BF ] ⪯ γU.
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Find U ≻ 0, γ < 1, F : [A+BF ]TU [A+BF ] ⪯ γU.

♠ To achieve our goal, observe that we can treat γ as a given real rather than as a variable.
Indeed, set γ = 0.9 and try to find the required U and F ; upon success, you are done,
otherwise set γ = 0.99 and repeat your attempt; in the case of failure, try γ = 0.999, and
so on. If you are not in business after 6=10 attempts, forget about stabilizing your system
by static linear feedback — for all practical purposes, this is impossible.
♠ With the above remark in mind, our goal becomes to solve the system

U ≻ 0, [A+BF ]TU [A+BF ] ⪯ γU (∗)
in variables U ∈ Snx, F ∈ Rnu×nx. We are about to reduce this system to an equivalent system
of Linear Matrix Inequalities.
• (∗) can be rewritten as[

U−1/2[A+BF ]U−1/2
]T [

U1/2[A+BF ]U−1/2
]
≤ γI

or, which is the same, as
∥U1/2[A+BF ]U−1/2]∥ ≤ √

γ
where ∥ · ∥ is the spectral norm. As the spectral norm remains intact when passing from a
matrix to its transpose, the target can be rewritten as

∥U−1/2[A+BF ]TU1/2∥ ≤ √
γ

and therefore as [
U1/2[A+BF ]U−1/2

] [
U−1/2[A+BF ]TU1/2

]
⪯ γI

that is, as U1/2[A+BF ]U−1[A+BF ]TU1/2 ⪯ γI, which is the same as

[A+BF ]V [A+BF ]T ⪯ γV.

where V = U−1. Note that V ≻ 0 is exactly the same as U ≻ 0.
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Find V ≻ 0, F : [A+BF ]V [A+BF ]T ⪯ γV. (∗)
♠ Our target matrix inequality is homogeneous in V ⇒ the restriction V ≻ 0 can be safely
modeled as V ⪰ I. Passing from F to new variable G = FV , (∗) becomes the system of
matrix inequalities

V ⪰ I & AV AT +BGAT +AGTBT + [BG]V −1[BG]T ⪯ γV.

Introducing "matrix upper bound" W onto [BG]V −1[BG]T :

W ⪰ [BG]V −1[BG]T ⇔
[

W BG
[BG]T V

]
⪰ 0

(equivalence is due to the Schur Complement Lemma), we end up with a system of Linear
Matrix Inequalities

V ⪰ I & AV AT +BGAT +AGTBT +W ⪯ γV &

[
W BG

[BG]T V

]
⪰ 0;

in matrix variables V,G,W ; The matrix inequality of interest is solvable iff the resulting
system is so, and a solution V,G,W to the latter system induces the solution

V, F = GV −1

to (∗). The associated stability certificate is U = V −1.
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xt+1 = Axt +But + dt, t = 0,1,2, ..., (S)

♣ The above story is just a preamble to the question which we actually want to address:
How to stabilize (S) in the case when we know B, bur do not know A ?
This is one of the basic questions in Control, and there are various answers to it, depending
primarily on what we assume about the disturbances. The characteristic properties of "an-
swer" I am about to present are:

• my answer is absolutely "non-scientific" – I am not going to prove anything (and even
did not try to do it - I think that without restrictive assumptions on disturbances, like their
iid stochastic nature with positive definite covariance matrix, to justify the approach formally
is just impossible)

• the underlying rationale seems to be reasnable
• the resulting control policy is computation-friendly and thus is implementable, and, most

importantly, it seems to work.
• As an excuse for me giving up science, here is an appropriate citation:

"Shall I refuse my dinner because I do not fully understand the process of digestion?"
Oliver Heaviside (1850-1925), British physicist and mathematician, in relation to
invented by him operational calculus which worked, in spite of years of absence of
rigorous justification.

♠ Main assumption: Disturbances are uncertain-but-bounded: for some known in advance
δ ≥ 0 it holds

∥dt∥∞ ≤ δ, t = 0,1, ...
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Besides this, we assume that we have a priori bounds A, A on the entries of A:

Aij ≤ Aij ≤ Aij ∀i, j
These bounds can be loose ⇒ the assumption is not too restrictive. On the other hand, it
allows to take into account some a priori information on A, e.g., the one that (S) comes
from finite-difference equation zt+1 =

∑nx−1
τ=0 ατzt−τ + ut +∆t, so that (S) is the system zt−nx+2

...

...
zt+1


︸ ︷︷ ︸

xt+1

=


1

1
. . .

1
αnx−1 αnx−2 αnx−3 · · · α0


 zt−nx+1

...

...
zt

+

 0
...
0
1

ut +

 0
...
0
∆t


︸ ︷︷ ︸

dt
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xt+1 = Axt +But + dt, ∥dt∥∞ ≤ δ, t = 0,1,2, ..., (S)
♠ Main observation: Assume that we have somehow generated controls at instants 0,1, ..., t − 1 and have
observed x0, x1, ..., xt. At time t, when ut should be generated, we know something about the matrix A, namely,
that it satisfies the system of linear inequalities

Aij ≤ Aij ≤ Aij ∀i, j & ∥xτ+1 −Axτ −Buτ∥∞ ≤ δ, 0 ≤ τ ≤ t− 1 (Pt)

♠ There are at least two ways to utilize this information when generating ut:
A. Find the best possible upper entrywise bounds U t+1 and lower entrywise bounds Lt+1 on x̄t+1 := Axt:

U t+1
i = maxA

{∑
j
Aij[xt]j : A satisfies (Pt)

}
Lt+1
i = minA

{∑
j
Aij[xt]j : A satisfies (Pt)

}
so that upper and lower entrywise bounds on xt+1−dt are U t+1+But and Lt+1+But, and select ut minimizing,
say,

max
[
∥U t+1 +But∥p, ∥Lt+1 +But∥p

]
B. Find somehow the "most central" point At in the solution set At of (Pt), e.g., specify Ā as the Tschebyshev
center of At – as the A-component of the solution to the LP problem

max
s,A

{s : [Aij + s]i,j ∈ At, [Aij − s]i,j ∈ At}

After At is found, try to find the feedback Ft stabilizing the system obtained from (S) by replacing unknown
matrix A with its "estimate" At. Upon success, set ut = Ftxt, otherwise specify ut according to Recipe A.

The rationale behind the proposed control policy is extremely simple. The larger are the states, the more
information on A is stored in the system of constraints (Pt), and, consequently, the better is the estimate
At of A, and when it is good enough, our control is as it would be, were we knowing A in advance. This
phenomenon is a "common denominator" of numerous identification problems in linear models with additive
noise/disturbance: were identification of A our only goal, the best way to solve it would be generating at
random huge controls ("flying aircraft to Moon"). Of course, in reality you hardly would like to fly to Moon
and back to learn the aircraft’s dynamics when flying to Moon and using your knowledge to control the aircraft
after coming back. The policy we have outlined is more natural: do not care to identify A, act as if the current
estimate of the matrix were precise; if you are wrong, "the nature" hopefully will take care of improving your
estimate well before visiting Moon.
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How It Works

♠ I am about to present results of several numerical experiments. In these experiments,
• A was generated as an unstable (with spectral radius slightly greater than 1) matrix stabilizable by static

feedback, with the best achievable with such a feedback spectral radius of the "closed loop" matrix A + BF
close, but not too close, to 1 (I used the value 0.95, corresponding to γ = 0.952),

• I used δ = 0.1, and there were two modes for generating dt: the "extreme," where dt’s were generated as
random vectors with entries ±δ, with probability θ for a particular entry to be equal to δ, and "modulated,"
where the entries in the vectors produced by "extreme" generation were further multiplied by random factors
uniformly distributed on [0,1]. In both cases, the entries of disturbances were i.i.d. samples drawn from the
distribution just described.
♠ The results of my experiments are as follows (T : time horizon; A(t): recovery of A at step t):
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nx = 7, nu = 1 nx = 5, nu = 2 nx = 7, nu = 2
t = 1 7.745/5.048
t = 32 2.955/1.657
t = 64 2.295/1.402
t = 128 1.684/1.301
t = 256 0.677/0.442

t = 1 1136/24.21
t = 32 308.7/4.293
t = 64 3.865/4.293
t = 128 4.351/4.293
t = 256 0.824/1.068

t = 1 1.140/5.623
t = 32 6.871/3.905
t = 64 2.353/3.905
t = 128 5.190/2.691
t = 256 1.669/1.994

max{∥A−A(t)∥ : t ≥ 32} = 0.212 max{∥A−A(t)∥ : t ≥ 32} = 0.0084 max{∥A−A(t)∥ : t ≥ 32} = 2.1e-11
max{∥A−A(t)∥ : t ≥ 128} = 0.092 max{∥A−A(t)∥ : t ≥ 128} = 0.0073 max{∥A−A(t)∥ : t ≥ 128} = 4.9e-13

"modulated" generation "modulated" generation "extreme" generation

Magnitudes of states vs time, T = 256 Red: zero control, Back: proposed control policy (pay attention to
the log-scale along the y-axis)
In the tables: max{∥xs∥∞ : t ≤ s ≤ 256} for the proposed control policy (blue) and similar quantity (red) for
the "ideal" feedback control – one you would use were A known in advance; both controls are used on the
same sequence of disturbances.
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♠ This is how our policy works when the dynamical system stems from a finite-difference equation:
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nx = 7, nu = 1 nx = 5, nu = 1 nx = 7, nu = 2
t = 1 3.738/1.527
t = 32 1.888/0.330
t = 64 0.717/0.330
t = 128 0.513/0.330
t = 256 0.504/0.330

t = 1 2.564/1.735
t = 32 0.383/0.216
t = 64 0.270/0.186
t = 128 0.291/0.156
t = 256 0.055/0.083

t = 1 2.492/1.174
t = 32 2.162/1.174
t = 64 2.162/1.174
t = 128 0.985/0.829
t = 256 0.818/0.619

max{∥A−A(t)∥ : t ≥ 32} = 0.024 max{∥A−A(t)∥ : t ≥ 32} = 0.013 max{∥A−A(t)∥ : t ≥ 32} = 2.65e-11
max{∥A−A(t)∥ : t ≥ 128} = 0.018 max{∥A−A(t)∥ : t ≥ 128} = 0.010 max{∥A−A(t)∥ : t ≥ 128} = 1.51e-12

"modulated" generation "modulated" generation "extreme" generation

Magnitudes of states vs time, T = 256 Red: zero control, Black: proposed control policy (pay attention to
the log-scale along the y-axis)
In the tables: max{∥xs∥∞ : t ≤ s ≤ 256} for the proposed control policy (blue) and similar quantity (red) for
the "ideal" feedback control – one you would use were A known in advance; both controls are used on the
same sequence of disturbances.
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xt+1 = Axt +But + dt, ∥dt∥∞ ≤ δ, t = 0,1,2, ..., (S)

♣ In fact, the outlined control policy can be easily extended to the case where both the
open loop matrix A and the actuation matrix B are unknown. However, now the policy

• does not work when A is a general type matrix
• still works when the dynamical system stems from a finite-difference equation (B(t):

recovery of B at time t):
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t = 1 1.136/1.174
t = 64 0.107/0.299
t = 128 0.107/0.920
t = 256 0.101/0.127

t = 1 2.103/0.942
t = 64 0.611/0.440
t = 128 0.414/0.414
t = 256 0.227/0.227

max{∥A−A(t)∥ : t ≥ 32} = 0.351 max{∥A−A(t)∥ : t ≥ 32} = 9.7e-12
max{∥B −B(t)∥ : t ≥ 32} = 0.154 max{∥B −B(t)∥ : t ≥ 32} = 2.1e-12

Magnitudes of states vs time, T = 256 Red: zero control, Black: proposed control policy (pay attention to
the log-scale along the y-axis)
In the tables: max{∥xs∥∞ : t ≤ s ≤ 256} for the proposed control policy (blue) and similar quantity (red) for
the "ideal" feedback control – one you would use were A known in advance; both controls are used on the
same sequence of disturbances.
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xt+1 = Axt +But + dt, ∥dt∥∞ ≤ δ, t = 0,1,2, ..., (S)
Strange phenomena: Numerical experimentation raises several questions:
♠ Why the policy in question works when B is known, still works when B is unknown and (S) stems from a
finite-difference equation, and does not work when B is unknown and A is a general-type matrix?
♠ Recall that with the policy on question, the control at time t is generated according to option B ("step
B"), provided it is available (i.e., certain SDP program is feasible), otherwise option A ("step A") is used.
Experiments say that

• when B is known, all steps, except for ≈ 5 at the very beginning, are B-steps
• when B is unknown (and (S) stems from a finite-difference equation – otherwise our policy does not work),

all steps, except for ≈ 5 at the very beginning, are A-steps
• when B is known and A is a general type matrix, forbidding to use the option B crushes the policy.

Why all this?
♣ If you have nothing better to do, you could think how to explain these phenomena. I have no idea why they
take place.
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Morale: Меньше знаешь - крепче спишь [the less you know, the better you sleep] Detailed information is not
a must for happy living. You may succeed not knowing much! Except you are a graduate student.

More seriously: My empirical observation
The proposed policy works reasonably well when B is known, same as when B is
unknown and the system stems from a finite-difference equation.

is supported, without a single exception, by few tens of simulations.
However: The "common denominator" in all these simulations is the way how the disturbances were generated.
I have strong doubts that the above empirical observations are applicable to observations of essentially different
nature.
Note: "Unreliability" of empirical conclusions based on "passive learning" seems to be unavoidable. I prefer
not to live in a house built by a whatever successful practitioner who have never heard about earthquakes...
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Illustration: Change point detection
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Frames from a noisy “movie”

Question: When the picture starts to change?

10.70



Illustration: Detecting presence of signal in time series

♣ Some of the signals below are pure Gaussian noise, some are the sums of this noise and
5 harmonic oscillations of unknown frequencies and amplitudes.
• Can you decide who is who?

0 20 40 60 80 100 120 140
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100 120 140
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10.71



♠ This is how the previous signals look in the frequency domain:

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

♠ A provably good test: Claim that signal is present if the maximum magnitude of the
Fast Fourier Transform of observation is above a properly selected level (depending solely on
the noise’s intensity, the length of the time series, and the required false alarm probability).
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Illustration: Recovery in Generalized Linear Model
♣ We want to recover 2D image x from noisy observation y of nonlinear transformation of
x:

y = [κ ⋆ x]1/2 + σξ

κ: known 2D kernel, ∥κ1∥1 = 1 ⋆: 2D convolution
x: 2D image to be recovered [·]1/2: entrywise square root
ξ: white Gaussian noise σ: 1.2 ≈ 0.075

√
∥x∥∞
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SAA recovery
X : nonnegative part of Total Variation ball

SAA recovery
X : nonnegative orthant
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Illustration: Image reconstruction from blurred noisy observations
♣ We want to recover 2D image from noisy observation of its 2D convolution with known
"blurring kernel." This amounts to recovering a large vector x∗ from its noisy observation
y = Ax∗ + σξ (A is known sensing matrix, ξ is white Gaussian noise - zero mean, unit
covariance).

True image Observation, σ =6.400 Recovery
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True image Observation, σ =0.128 Recovery
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True image Observation, σ =6.400 Recovery
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True image Observation, σ = 0.128
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Illustration: Predicting sparse sum of harmonic oscillations observed in noise

♣ Given noisy observations of a sparse sum of harmonic oscillations with unknown frequencies
and amplitudes, we want to predict the future value of the sum.

o: true signal � : observations
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o: true signal � : observations ∗: forecast

Note: Recovering routine has no idea what are the frequencies and the amplitudes of
oscillations; in fact, they cannot be recovered at all, but a provably consistent forecast is
nevertheless possible!
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Signal: 5 harmonic components, minimal wav elength 1.9, a= 0.50 
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o: true signal � : observations ∗: forecasts
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Illustration: Denoising sparse sum of high-frequency harmonics

♠ Given noisy observations of a mixture of 2D harmonic waves with unknown amplitudes,
wavelengths and directions of wavefronts, we want to denoise the mixture.

Note: Here again, the recovering routine has no idea about the amplitudes, wavelengths,
and directions of wavefronts of interfering waves!
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Illustration: Inner & outer ellipsoidal approximations of reachable sets

♠ Given continuous time linear dynamical system

d

dt
x(t) = Ax(t) +Bu(t) + f(t), x(0) = 0

with control u(·) subject to norm bound ∥u(t)∥2 ≤ 1 for all t, we want to approximate by
ellipsoids, from inside and from outside, the set of states which can be reached at time t.

Inner (green) and outer (blue) elliptic approximations of reachable sets of
continuous time linear dynamical systems under norm-bounded control

vs. time

(a) d
dt

[
x1(t)
x2(t)

]
=
[

0 1
−1 0

] [
x1(t)
x2(t)

]
+ u(t)

[
0

0.05

]
, x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

(b) d
dt

[
x1(t)
x2(t)

]
=
[

0 − sin(t)
sin(t) 0

] [
x1(t)
x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+
[

10
10

]
, x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30

(c) d
dt

[
x1(t)
x2(t)

]
=
[

cos(t) − sin(t)
sin(t) cos(t)

] [
x1(t)
x2(t)

]
+ u(t)

[
cos(t)
sin(t)

]
+
[

10
10

]
, x(0) = 0, |u(·)| ≤ 1, 0 ≤ t ≤ 30
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Interior Point Methods for LP and SDP

♣ Interior Point Methods (IPM’s) are state-of-the-art theoretically and practically efficient
polynomial time algorithms for solving well-structured convex optimization programs, pri-
marily Linear, Conic Quadratic and Semidefinite ones.
Modern IPMs were first developed for LP, and the words “Interior Point” are aimed at stress-
ing the fact that instead of traveling along the vertices of the feasible set, as in the Simplex
algorithm, the new methods work in the interior of the feasible domain.
♠ Basic theory of IPMs remains the same when passing from LP to SDP
⇒ It makes sense to study this theory in the more general SDP case.
Note: For proofs of the facts to follow, see A. Nemirovski, Introduction to Linear Opti-
mization. WorldScientific 2024 https://www2.isye.gatech.edu/~nemirovs/WSLOPostPrint.pdf
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Primal-Dual Pair of SDP Programs

♣ Consider an SDP program in the form

Opt(P ) = min
x

{
cTx : Ax :=

∑n

j=1
xjAj ⪰ B

}
(P )

where Aj, B are m×m block diagonal symmetric matrices of a given block-diagonal structure
ν = (ν1, ..., νK) (i.e., with a given number K and given sizes νk, k ≤ K, of diagonal blocks).
(P ) can be thought of as a conic problem on the self-dual and regular positive semidefinite
cone Sν

+ in the space Sν of symmetric block diagonal m × m matrices with block-diagonal
structure ν.
Note: In the diagonal case (with the block-diagonal structure in question, all diagonal blocks
are of size 1), (P ) becomes a LP program with m linear inequality constraints and n variables.

♠ Standing Assumption A: The mapping x 7→ Ax has trivial kernel, or, equivalently, the
matrices A1, ..., An are linearly independent.

11.2



Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
[Aj, B ∈ Sν]

(P )

♠ The problem dual to (P ) is

Opt(D) = max
S∈Sν

{Tr(BS) : S ⪰ 0,Tr(AjS) = cj ∀j} (D)

Recall where (D) comes from. The cone Sν
+ of positive semidefinite matrices

from Sν is self-dual ⇒ when x is feasible for (P ) and 0 ⪯ S ∈ Sν, one has∑
j

Tr(SAj)xj = Tr(S[Ax]) ≥ Tr(SB).

Imposing on S, in addition to S ∈ Sν
+, the restriction Tr(SAj) = cj, j ≤

n, Tr(SB) becomes a lower bound on Opt(P ), and (D) is the problem of
maximizing this lower bound.

♠ Standing Assumption B: Both (P ) and (D) are strictly feasible (i.e., have feasible
solutions satisfying the "≻" versions of the LMIs).
Notation: In the sequel, m =

∑
i νi
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Opt(P ) = min
x

{
cTx : Ax :=

∑n

j=1
xjAj ⪰ B

}
(P )

Opt(D) = max
S∈Sν

{Tr(BS) : S ⪰ 0,Tr(AjS) = cj ∀j} (D)

♠ Let C ∈ Sν satisfy the equality constraint in (D). Passing in (P ) from x to the primal
slack X = Ax−B, (P ) becomes the problem

Opt(P) = min
X∈Sν

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
LP = {X = Ax} = Lin{A1, ..., An}

C : Tr(AiC) = ci, i ≤ n

(P)

while (D) is the problem

Opt(D) = max
S∈Sν

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
LD = L⊥

P = {S ∈ Sν : Tr(AjS) = 0, 1 ≤ j ≤ n}
(D)

• Since (P ) and (D) are strictly feasible, both problems are solvable with equal optimal
values, and a pair of feasible solutions X to (P) and S to (D) is composed of optimal
solutions to the respective problems iff Tr(XS) = 0.
Note: x is feasible for (P ) iff X = Ax−B is feasible for (P). When x is feasible for (P ), S
is feasible for (D) and X = Ax− b„ one has
DualityGap(x, S) := cTx− Tr(BS) =

∑
i xiTr(AiS)− Tr(BS) = Tr([Ax]S)− Tr(BS)= Tr(XS)

⇒ Conclusion: For primal-dual feasible pair of solutions x to (P ) and S to (D), the sum of
their non-optimalities in the respective problems is Tr(XS), where X = Ax−B is the feasible
solution to (P) induced by x. The necessary and sufficient condition for the pair (x, S) to
be composed of optimal solutions to the respective problems is Tr(XS) = 0.
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Opt(P ) = min
x

{
cTx : Ax :=

∑n

j=1
xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
Fact: For positive semidefinite X,S, Tr(XS) = 0 if and only if XS = SX = 0.
✓ Indeed, XS = 0 clearly implies Tr(XS) = 0. ✓Vice versa, let X ⪰ 0, S ⪰ 0 and Tr(XS) = 0. We have

0 = Tr(XS) = Tr(X1/2X1/2S) = Tr(X1/2SX1/2)
[as Tr(AB) = Tr(BA) whenever AB makes sense and is square]

⇒ X1/2SX1/2 = 0 [as X1/2SX1/2 ⪰ 0]
⇒ 0 = X1/2S1/2S1/2X1/2 = [X1/2S1/2][X1/2S1.2]T

⇒ X1/2S1/2 = 0 [as
∑

i,j
[X1/2S1/2]2ij = Tr([X1/2S1/2][X1/2S1.2]T)]

⇒ XS =X1/2[X1/2S1/2]S1/2 = 0
⇒ SX =[XS]T = 0

♠ We have arrived at

Fact XI.18 Assuming (P ), (D) strictly feasible, feasible solutions X for (P) and S for (D)
are optimal for the respective problems if and only if

XS = SX = 0
(“SDP Complementary Slackness”).
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Logarithmic Barrier for the Semidefinite Cone Sν
+

Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
♣ A crucial role in building IPMs for (P ), (D) is played by the logarithmic barrier for the
positive semidefinite cone:

K(X) = − lnDet(X) : intSν
+ → R
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Back to Basic Analysis: Gradient and Hessian

♣ Consider a smooth (3 times continuously differentiable) function f(x) : D → R defined on
an open subset D of Euclidean space E with inner product ⟨·, ·⟩.
♠ The first order directional derivative of f taken at a point x ∈ D along a direction h ∈ E
is the quantity

Df(x)[h] := d
dt

∣∣
t=0

f(x+ th)
Fact: For a smooth f , Df(x)[h] is linear in h and thus

Df(x)[h] = ⟨∇f(x), h⟩ ∀h
for a uniquely defined vector ∇f(x) called the gradient of f at x.
If E is Rn with the standard Euclidean structure, then

[∇f(x)]i =
∂
∂xi

f(x), 1 ≤ i ≤ n
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♠ The second order directional derivative of f taken at a point x ∈ D along a pair of
directions g, h is defined as

D2f(x)[g, h] = d
dt

∣∣
t=0

[Df(x+ tg)[h]]

Fact: For a smooth f , D2f(x)[g, h] is bilinear and symmetric in g, h, and therefore
D2f(x)[g, h] = ⟨g,∇2f(x)h⟩ = ⟨∇2f(x)g, h⟩∀g, h ∈ E

for a uniquely defined linear mapping h 7→ ∇2f(x)h : E → E, called the Hessian of f at x.
If E is Rn with the standard Euclidean structure, then

[∇2f(x)]ij =
∂2

∂xi∂xj
f(x)

Fact: Hessian is the derivative of the gradient:
∇f(x+ h) = ∇f(x) + [∇2f(x)]h+Rx(h), ∥Rx(h)∥ ≤ Cx∥h∥2 ∀(h : ∥h∥ ≤ ρx), ρx > 0

Fact: Gradient and Hessian define the second order Taylor expansion
f̂(y) = f(x) + ⟨y − x,∇f(x)⟩+ 1

2
⟨y − x,∇2f(x)[y − x]⟩

of f at x which is a quadratic function of y with the same gradient and Hessian at x as those
of f . This expansion approximates f around x, specifically,

|f(y)− f̂(y)| ≤ Cx∥y − x∥3 ∀(y : ∥y − x∥ ≤ ρx), ρx > 0
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Back to SDP
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
K(X) = − lnDetX : Sν

++ := {X ∈ Sν : X ≻ 0} → R

Fact: K(X) is a smooth function on its domain Sν
++ = {X ∈ Sν : X ≻ 0}. The first- and

the second order derivatives of this function taken at a point X ∈ DomK along directions
H,G ∈ Sν are given by

DK(X)[H] := d
dt

∣∣
t=0

K(X + tH)
= −Tr(X−1H)

[
⇔ ∇K(X) = −X−1

]
D2K(X)[H,G] := d

dt

∣∣
t=0

DK(x+ tG)[H]
= Tr(X−1HX−1G)

[
⇔ [∇2K(X)]H = X−1HX−1

]
d2

dt2

∣∣
t=0

K(X + tH) = D2K(X)[H,H]
= Tr(H[X−1HX−1]) = Tr([X−1/2HX−1/2]2)

In particular, K is strongly convex:
X ∈ DomK,0 ̸= H ∈ Sν ⇒ d2

dt2

∣∣
t=0

K(X + tH) > 0
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♠ Additional properties of K(·):
• ∇K(tX) =−[tX]−1 = −t−1X−1 =t−1∇K(X)
• The mapping X 7→ −∇K(X) = X−1 maps the domain Sν

++ of K onto itself and is self-
inverse:

S = −∇K(X) ⇔ X = −∇K(S) ⇔ XS = SX = I
• The function K(X) is an interior penalty for the positive semidefinite cone Sν

+: whenever
points Xi ∈ DomK = Sν

++ converge to a boundary point of Sν
+, one has K(Xi) → ∞ as

i → ∞.
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Primal-Dual Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)

K(X) = − lnDet(X)

♠ Let
X = {X ∈ LP −B : X ≻ 0}
S = {S ∈ LD + C : S ≻ 0}.

be the (nonempty!) sets of strictly feasible solutions to (P) and (D), respectively. Given
path parameter µ > 0, consider the functions

Pµ(X) = Tr(CX) + µK(X) : X → R
Dµ(S) = −Tr(BS) + µK(S) : S → R

.

Fact: For every µ > 0, the function Pµ(X) achieves its minimum at X at a unique point
X∗(µ), and the function Dµ(S) achieves its minimum on S at a unique point S∗(µ). These
points are related to each other:

X∗(µ) = µS−1
∗ (µ) ⇔ S∗(µ) = µX−1

∗ (µ)
⇔ X∗(µ)S∗(µ) = S∗(µ)X∗(µ) = µI

♠ We associate with (P), (D) the primal-dual central path – the curve {X∗(µ), S∗(µ)}µ>0;
for every µ > 0, X∗(µ) is a strictly feasible solution to (P), and S∗(µ) is a strictly feasible
solution to (D).
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Duality Gap on the Central Path
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)

⇒
{

X∗(µ) ∈ [LP −B] ∩ Sν
++

S∗(µ) ∈ [LD + C] ∩ Sν
++

}
: X∗(µ)S∗(µ) = µI

Observation: On the primal-dual central path, the duality gap is
Tr(X∗(µ)S∗(µ)) = Tr(µI) = µm.

Therefore sum of non-optimalities of the strictly feasible solution X∗(µ) to (P) and the
strictly feasible solution S∗(µ) to (D) in terms of the respective objectives is equal to µm
and goes to 0 as µ → +0.
⇒ Our ideal goal would be to move along the primal-dual central path, pushing the path
parameter µ to 0 and thus approaching primal-dual optimality, while maintaining primal-dual
feasibility.
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♠ Our ideal goal is not achievable – how could we move along a curve? A realistic goal
could be to move in a neighborhood of the primal-dual central path, staying close to it.
A good notion of “closeness to the path” is given by the proximity measure of a triple
µ > 0, X ∈ X , S ∈ S to the point (X∗(µ), S∗(µ)) on the path:

dist(X,S, µ) =
√

Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr(X1/2[X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]
[
X1/2[X−1 − µ−1S]X1/2

]
)

=
√

Tr([X1/2[X−1 − µ−1S]X1/2]2)

=
√

Tr([I − µ−1X1/2SX1/2]2).

Note: We see that dist(X,S, µ) is well defined and dist(X,S, µ) = 0 iff X1/2SX1/2 = µI, or,
which is the same,

SX = X−1/2[X1/2SX1/2]X1/2 = µX−1/2X1/2 = µI,
i.e., iff X = X∗(µ) and S = S∗(µ).
Note: In the LP case, dist(X,S, µ) =

√∑
i[1−XiiSii/µ]2.

Note: We have
dist(X,S, µ) =

√
Tr(X[X−1 − µ−1S]X[X−1 − µ−1S])

=
√

Tr([I − µ−1XS][I − µ−1XS])

=
√

Tr(
[
[I − µ−1XS][I − µ−1XS]

]T
)

=
√

Tr([I − µ−1SX][I − µ−1SX])

=
√

Tr(S[S−1 − µ−1X]S[S−1 − µ−1X]),
⇒ The proximity is defined in a symmetric w.r.t. X, S fashion.
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Fact: Whenever X ∈ X , S ∈ S and µ > 0, one has
Tr(XS) ≤ µ[m+

√
mdist(X,S, µ)]

Corollary. Let us say that a triple (X,S, µ) is close to the path, if X ∈ X , S ∈ S, µ > 0 and
dist(X,S, µ) ≤ 0.1. Whenever (X,S, µ) is close to the path, one has

Tr(XS) ≤ 2µm,
that is, if (X,S, µ) is close to the path, then X is at most 2µm-nonoptimal strictly feasible
solution to (P), and S is at most 2µm-nonoptimal strictly feasible solution to (D).
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How to Trace the Central Path?

♣ The goal: To follow the central path, staying close to it and pushing µ to 0 as fast as
possible.
♣ Question. Assume we are given a triple (X̄, S̄, µ̄) close to the path. How to update it
into a triple (X+, S+, µ+), also close to the path, with µ+ < µ?
♠ Conceptual answer: Let us choose µ+, 0 < µ+ < µ̄, and try to update X̄, S̄ into
X+ = X̄ + ∆X, S+ = S̄ + ∆S in order to make the triple (X+, S+, µ+) close to the path.
Our goal is to ensure that

X+ = X̄ +∆X ∈ LP −B & X+ ≻ 0 (a)
S+ = S̄ +∆S ∈ LD + C & S+ ≻ 0 (b)

Gµ+(X+, S+) ≈ 0 (c)
where Gµ(X,S) = 0 expresses equivalently the augmented slackness condition XS = µI. For
example, we can take

Gµ(X,S) = S − µX−1, or
Gµ(X,S) = X − µS−1, or
Gµ(X,S) = XS + SX − 2µI, or...
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X+ = X̄ +∆X ∈ LP −B & X+ ≻ 0 (a)
S+ = S̄ +∆S ∈ LD + C & S+ ≻ 0 (b)

Gµ+(X+, S+) ≈ 0 (c)

♠ Since X̄ ∈ LP − B and X̄ ≻ 0, (a) amounts to ∆X ∈ LP , which is a system of linear
equations on ∆X, and to X̄ + ∆X ≻ 0. Similarly, (b) amounts to the system ∆S ∈ LD of
linear equations on ∆S, and to S̄ + ∆S ≻ 0. To handle the troublemaking nonlinear in
∆X,∆S condition (c), we linearize Gµ+ in ∆X and ∆S:

Gµ+(X+, S+) ≈ Gµ+(X̄, S̄)

+
∂Gµ+

(X,S)

∂X

∣∣∣∣
(X,S)=(X̄,S̄)

∆X +
∂Gµ+

(X,S)

∂S

∣∣∣∣
(X,S)=(X̄,S̄)

∆S

and enforce the linearization, as evaluated at ∆X, ∆S, to be zero. We arrive at the Newton
system {

∆X ∈ LP , ∆S ∈ LD
∂Gµ+

∂X
∆X +

∂Gµ+

∂S
∆S = −Gµ+

(N)

(the value and the partial derivatives of Gµ+(X,S) are taken at the point (X̄, S̄)).
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♠ We arrive at conceptual primal-dual path-following method where one iterates the updates

(Xi, Si, µi) 7→ (Xi+1 = Xi +∆Xi, Si+1 = Si +∆Si, µi+1)

where µi+1 ∈ (0, µi) and ∆Xi,∆Si are the solution to the Newton system{
∆Xi ∈ LP , ∆Si ∈ LD
∂G(i)

µi+1

∂X
∆Xi +

∂G(i)
µi+1

∂S
∆Si = −G(i)

µi+1

(Ni)

and G(i)
µ (X,S) = 0 represents equivalently the augmented complementary slackness condition

XS = µI and the value and the partial derivatives of G(i)
µi+1 are evaluated at (Xi, Si).

♠ Initialized by a close to the path triple (X0, S0, µ0), this conceptual algorithm should
• be well-defined: (Ni) should remain solvable, Xi should remain strictly feasible for (P),

Si should remain strictly feasible for (D), and
• maintain closeness to the path: for every i, (Xi, Si, µi) should remain close to the path.

Under these limitations, we want to push µi to 0 as fast as possible.
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Example: Primal Path-Following Method
Opt(P ) = min

x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
♣ Let us choose

Gµ(X,S) = S + µ∇K(X) = S − µX−1

Then the Newton system becomes
∆Xi ∈ LP ⇔ ∆Xi = A∆xi

∆Si ∈ LD ⇔ A∗∆Si = 0
A∗U = [Tr(A1U); ...;Tr(AnU)]

(!) ∆Si + µi+1∇2K(Xi)∆Xi = −[Si + µi+1∇K(Xi)]

(Ni)

♠ Substituting ∆Xi = A∆xi and applying A∗ to both sides in (!), we get
(∗) µi+1 [A∗∇2K(Xi)A]︸ ︷︷ ︸

H

∆xi = −
[
A∗Si︸ ︷︷ ︸
=c

+µi+1A∗∇K(Xi)
]

∆Xi = A∆xi

Si+1 = µi+1

[
∇K(Xi)−∇2K(Xi)A∆xi

]
The mappings h 7→ Ah, H 7→ ∇2K(Xi)H have trivial kernels ⇒ H is nonsingular ⇒ (Ni) has
a unique solution given by

∆xi = −H−1
[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi

Si+1 = Si +∆Si = −µi+1

[
∇K(Xi) +∇2K(Xi)A∆xi

]
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
⇒

 ∆xi = −H−1
[
µ−1
i+1c+A∗∇K(Xi)

]
∆Xi = A∆xi

Si+1 = Si +∆Si = −µi+1

[
∇K(Xi) +∇2K(Xi)A∆xi

]
♠ Xi = Axi −B for a (uniquely defined by Xi) strictly feasible solution xi to (P ). Setting

F (x) = K(Ax−B),
we have A∗∇K(Xi) = ∇F (xi), H = ∇2F (xi)
⇒ The above recurrence can be written solely in terms of xi and F :{

µi 7→ µi+1 < µi

xi+1 = xi − [∇2F (xi)]−1
[
µ−1
i+1c+∇F (xi)

]
Xi+1 = Axi+1 −B
Si+1 = −µi+1

[
∇K(Xi) +∇2K(Xi)A[xi+1 − xi]

] (#)

Recurrence (#) is called the primal path-following method.
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
♠ The primal path-following method can be explained as follows:
• The barrier K(X) = − lnDetX induces the barrier F (x) = K(Ax−B) for the interior P o of
the feasible domain of (P ).
• The primal central path

X∗(µ) = argminX=Ax−B≻0 [Tr(CX) + µK(X)]
induces the path

x∗(µ) ∈ P o: X∗(µ) = Ax∗(µ) + µF (x).
Observing that

Tr(C[Ax−B]) + µK(Ax−B) = cTx+ µF (x) + const,
we have

x∗(µ) = argminx∈P o Fµ(x), Fµ(x) = cTx+ µF (x).
• The method works as follows: given xi ∈ P o, µi > 0, we
— replace µi with µi+1 < µi

— convert xi into xi+1 by applying to the function Fµi+1(·) a single step of the Newton
minimization method

xi 7→ xi+1 − [∇2Fµi+1(xi)]−1∇Fµi+1(xi)
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
Fact. Let (X0 = Ax0 − B,S0, µ0) be close to the primal-dual central path, and let (P ) be
solved by the Primal path-following method where the path parameter µ is updated according
to

µi+1 =
(
1− 0.1√

m

)
µi. (∗)

Then the method is well defined and all triples (Xi = Axi −B,Si, µi) are close to the path.
♠ With the rule (∗) it takes O(

√
m) steps to reduce the path parameter µ by an absolute

constant factor. Since the method stays close to the path, the duality gap Tr(XiSi) of i-th
iterate does not exceed 2mµi.
⇒ The number of steps to make the duality gap ≤ ϵ does not exceed O(1)

√
m ln

(
1+ 2mµ0

ϵ

)
.
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minx,y

−x− 0.025y :

 1 x y
x 1 y
y y 1

 ⪰ 0


Red: feasible set of a toy SDP (K = S3

+).
Magenta: the primal central path
Blue "+": iterates xi of the Primal Path-Following method.

Itr# Objective Gap Itr# Objective Gap
1 -0.010003 1.5e+02 20 -1.024917 2.9e-04
5 -0.158040 9.4e+00 25 -1.024997 8.9e-06
10 -0.937196 2.9e-01 30 -1.025000 2.8e-07
15 -1.022733 9.2e-03 32 -1.025000 7.0e-08

Objective and Duality Gap along the iterations
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♣ The Primal path-following method is yielded by Conceptual Path-Following Scheme when
the Augmented Complementary Slackness condition is represented as

Gµ(X,S) := S + µ∇K(X) = 0.
Passing to the representation

Gµ(X,S) := X + µ∇K(S) = 0,
we arrive at the Dual path-following method with the same theoretical properties as those of
the primal method. the Primal and the Dual path-following methods imply the best known
so far complexity bounds for LP and SDP.
♠ In spite of being “theoretically perfect”, Primal and Dual path-following methods in practice
are inferior as compared with the methods based on less straightforward and more symmetric
forms of the Augmented Complementary Slackness condition.
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♠ The Augmented Complementary Slackness condition is
XS = SX = µI (∗)

Fact: For X,S ∈ Sν
++, (∗) is equivalent to

XS + SX = 2µI
Indeed, all we need to prove is that if X,S ∈ Sν

++ and XS + SX = 2µI, then XS = SX. Under our premise
we have SX2 = 2µX −XSX is symmetric ⇒ SX2 = [SX2]T = X2S. Thus, S commutes with X2 and therefore
commutes with every polynomial of X2, in particular with X (X is a polynomial of X2 due to X ≻ 0).

Fact: Let Q ∈ Sν be nonsingular, and let X,S ≻ 0. Then XS = µI iff

QXSQ−1 +Q−1SXQ = 2µI

Indeed, it suffices to apply the previous fact to the matrices X̂ = QXQ ≻ 0, S̃ = Q−1SQ−1 ≻
0.
♠ In practical path-following methods, at step i the Augmented Complementary Slackness
condition is written down as

Gµi+1(X,S) := QiXSQ−1
i +Q−1

i SXQi − 2µi+1I = 0
with properly chosen varying from step to step nonsingular matrices Qi ∈ Sν.
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Explanation: Let Q ∈ Sν be nonsingular. The Q-scaling X 7→ QXQ is a one-to-one linear mapping of Sν onto
itself, the inverse being the mapping X 7→ Q−1XQ−1. Q-scaling is a symmetry of the positive semidefinite cone
– it maps the cone onto itself.
⇒ Given a primal-dual pair of semidefinite programs

Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)

and a nonsingular matrix Q ∈ Sν, one can pass in (P) from variable X to variables X̂ = QXQ, while passing in
(D) from variable S to variable S̃ = Q−1SQ−1. The resulting problems are

Opt(P) = min
X̂

{
Tr(C̃X̂) : X̂ ∈ [L̂P − B̂] ∩ Sν

+

}
(P̂)

Opt(D) = max
S̃

{
Tr(B̂S̃) : S̃ ∈ [L̃D + C̃] ∩ Sν

+

}
(D̃)[

B̂ = QBQ, L̂P = {QXQ : X ∈ LP}, C̃ = Q−1CQ−1, L̃D = {Q−1SQ−1 : S ∈ LD}
]

• P̂ and D̃ are dual to each other, the primal-dual central path of this pair is the image of the primal-dual path
of (P), (D) under the primal-dual Q-scaling

(X,S) 7→ (X̂ = QXQ, S̃ = Q−1SQ−1)

Q preserves closeness to the path, etc.
Writing down the Augmented Complementary Slackness condition as

QXSQ−1 +Q−1SXQ = 2µI (!)

we in fact
• pass from (P), (D) to the equivalent primal-dual pair of problems (P̂), (D̃)

• write down the Augmented Complementary Slackness condition for the latter pair in the simplest primal-dual
symmetric form

X̂S̃ + S̃X̂ = 2µI,
• “scale back” to the original primal-dual variables X,S, thus arriving at (!).

Note: In the LP case Sν is composed of diagonal matrices, so that (!) is exactly the same as the “unscaled”
condition XS = µI.
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Gµi+1(X,S) := QiXSQ−1
i +Q−1

i SXQi − 2µi+1I = 0 (!)

With (!), the Newton system becomes
∆X ∈ LP , ∆S ∈ LD

Qi∆XSiQ
−1
i +Q−1

i Si∆XQi +QiXi∆SQ−1
i +Q−1

i ∆SXiQi

= 2µi+1I −QiXiSiQ
−1
i −Q−1

i SiXiQi

♣ Theoretical analysis of path-following methods simplifies a lot when the scaling (!) is
commutative, meaning that the matrices X̂i = QiXiQi and Ŝi = Q−1

i SiQ
−1
i commute.

Popular choices of commutative scalings are:
• Qi = S

1/2
i (“XS-method,” S̃ = I)

• Qi = X
−1/2
i (“SX-method, X̂ = I)

• Qi =
(
X−1/2(X1/2SX1/2)−1/2X1/2S

)1/2 (famous Nesterov-Todd method, X̂ = S̃).
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Opt(P ) = min
x

{
cTx : Ax :=

∑n
j=1xjAj ⪰ B

}
(P )

⇔ Opt(P) = min
X

{
Tr(CX) : X ∈ [LP −B] ∩ Sν

+

}
(P)

Opt(D) = max
S

{
Tr(BS) : S ∈ [LD + C] ∩ Sν

+

}
(D)[

LP = ImA, LD = L⊥
P

]
Fact: Let a strictly-feasible primal-dual pair (P ), (D) of semidefinite programs be solved
by a primal-dual path-following method based on commutative scalings. Assume that the
method is initialized by a close to the path triple (X0, S0, µ0 = Tr(X0S0)/m) and let the
policy for updating µ be

µi+1 =
(
1− 0.1√

m

)
µi.

The the trajectory is well defined and stays close to the path.
As a result, every O(

√
m) steps of the method reduce duality gap by an absolute constant

factor, and it takes O(1)
√
m ln

(
1+ mµ0

ϵ

)
steps to make the duality gap ≤ ϵ.
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♠ To improve the practical performance of primal-dual path-following methods, in actual
computations
• the path parameter is updated in a more aggressive fashion than µ 7→

(
1− 0.1√

m

)
µ;

• the method is allowed to travel in a wider neighborhood of the primal-dual central path
than the neighborhood given by our “close to the path” restriction dist(X,S, µ) ≤ 0.1;
• instead of updating Xi+1 = Xi+∆Xi, Si+1 = Si+∆Si, one uses the more flexible updating

Xi+1 = Xi + αi∆Xi, Si+1 = Si + αi∆Si

with αi given by appropriate line search.
♣ In practice, IPM’s produce high accuracy solutions in few tens (like 30) iterations ⇒
practical scope of IPMs is restricted by our abilities to solve Newton systems. Roughly
peaking – if the structure and size of the Newton system allows to assemple and solve the
system in reasonable time, we are able to process the problem in reasonable time as well.
♣ The constructions and the complexity results we have presented are incomplete — they
do not take into account the necessity to come close to the central path before starting
path-tracing and do not take care of the case when the pair (P), (D) is not strictly feasible.
All these “gaps” can be easily closed via the same path-following technique as applied to
appropriate augmented versions of the problem of interest.
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min
x

{cTx : x ∈ X} [X = {x ∈ R3 : Ax ≤ b}]

Illustration: Primal path-following method on an LP minx{cTx : x ∈ X} with bounded feasible domain
X = {x ∈ R3 : Ax ≤ b}.

• Log-barrier K(y) = − lnDet{Diag{y}) for nonnegative orthant induces barrier F (x) = −
∑

i
ln([b − Ax]i) for

X.
• Every vector g ∈ R3 induces central path

xg(µ) = argmin
x∈intX

[gTx+ µF (x)]

As µ → +0, the path converges to a minimizer of gTx over X; as µ → +∞, the path converges to the analytic
center xF = argminx∈intX F (x) of X.
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min
x

{cTx : x ∈ X} [X = {x ∈ R3 : Ax ≤ b ∈ R6}]

♠ In the primal space:
Given a starting point x̄ ∈ intX, we solve the LP of interest as follows:

• first, we trace the central path xg(µ) given by g = −∇F (x̄) and push µ to +∞ in order
to come close to xF . The path xg passes through x̄ = xg(1) ⇒ no difficulties to start its
tracing;

• after coming close to xF , we come close to an easy-to-find point on the "path of inter-
est" xc(µ) and switch to tracing this path as µ → +0, thus approaching the optimal solution
to the LP.
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On the picture:
• magenta, green, cyan, blue: paths from 4 starting points to the analytic center
• red: path of interest — from the analytic center to the optimal solution.

Note: In our LP, there is a vertex of the feasible set with nearly the same value of the
objective as at the optimal vertex. Were these values exactly equal, the path of interest would
converge to something in-between these vertices – in LP with multiple optimal solutions,
the central path converges to the analytic center of the optimal face, the barrier for the face
being obtained from F (x) = −

∑
i ln([b − Ax]i) by dropping out the terms which are ≡ +∞

on the face). With the actual data, the path goes to this "in-between" point until it "feels"
the difference between the "nearly optimal" and the optimal vertex and then makes a sharp
turn and moves towards the optimal vertex.
♠ With Primal Path-following method, we first trace the "centering" path by increasing
from iteration to iteration the path parameter by an appropriate factor, and then start to
trace the path of interest, decreasing the parameter by the same factor.
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primal paths dual path

min
x

{cTx : x ∈ X} [X = {x ∈ R3 : Ax ≤ b}]

In dual space (right)
• When tracing the primal path leading from the analytic center of X to the optimal

solution ( red path on the left), we generate also the dual central path leading to the dual
optimal solution.

• The dual central path lives in the intersection of the dual feasible plane
D = {λ : ATλ = c} ⊂ R6

of dimension 3 with the nonnegative orthant {λ ∈ R6 : λ ≥ 0}. Projecting R6
λ onto the space

of the last three entries in λ (restricted on D, this projection is a one-to-one mapping),
— R6

+ becomes the nonnegative orthant in R3 (extreme rays – black dotted rays))
— the dual feasible set becomes the shift (light blue) of some cone with three extreme rays
— the dual central path becomes the straight line (bold red) going from ∞ to the unique
extreme point of the dual feasible set.
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