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Preface

Convex optimization serves as a cornerstone in various fields of science, engineer-
ing, and mathematics, offering powerful tools for solving a wide range of practical
problems. With the latest advancements in data sciences and engineering, convex
optimization has flourished into a vibrant and rapidly evolving field.

This textbook aims to introduce fundamental theory necessary to establish a
robust foundation for doing research on convex optimization. In particular, we
have selected to cover both the indispensable basics suited for beginners — rooted
in centuries-old research on convexity — as well as modern facets of convex op-
timization, e.g., cone-constrained conic programming, targeting more advanced
readers.

Our emphasis is on foundations and mathematical prerequisites that underpin
(primarily Convex) Optimization Theory, and not operational aspects like Mod-
eling and Algorithms. This deliberate choice stems from our desire of emphasiz-
ing “timeless and essential classics” and providing an accessible, self-contained,
concise, rigorous, yet practical mathematical toolkit. Our goal is to illuminate
the entrance to the field of convex optimization, offering readers the background
necessary to engage with and comprehend the state-of-the-art “operational” op-
timization literature, like excellent books [BV04), Nes18]. While applications and
algorithms naturally evolve with changing trends and advancements, they will
always rely on these timeless foundational blocks. Overall, we view the primary
purpose of this book as learning and teaching as opposed to an extensive reference
to be kept on shelf by experts.

To an expert in the field: the primary focus of this book is Convex Analysis
and the basic theory of convex optimization. Convex Analysis boasts a rich
and profound theoretical framework, chronicled in classical treatises such as
[Roc70, IT79, [HUL93|. However, our approach and presentation style in this
textbook (textbook, not an academic monograph!) are tailored to meet the needs
of those new to the subject. In particular, we deliberately present the classical
results at the level of generality suited to the practical needs of optimization-
related research, as we understand it, rather than at full generality provided by
their authors. These “savings in generality” allow us to make the statements and
proofs more accessible to beginners. While we have condensed the scope com-
pared to the classical treatises, we have strived to maintain rigor and cover the

X
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fundamental descriptive mathematical groundwork that we believe is necessary
for mastering the state-of-the-art research in Convex Optimization models and
algorithms. With regards to convex optimization theory, once again our emphasis
is on timeless building blocks such as duality and optimality conditions.

Our intended audience, are students, practitioners, researchers with back-
grounds in mathematics, operations research, engineering, computer science, data
sciences, statistics, and economics.

As prerequisites all we assume is basic knowledge of Linear Algebra and Calcu-
lus. In fact, we do not anticipate a deep, “ready-to-use” mastery of these subjects
either; rather, we expect a basic mathematical culture. To clarify our expecta-
tions, consider the following: asserting that 2 x 2 = 5 does not necessarily indicate
a deficiency in mathematical culture; it may simply be a miscalculation. In con-
trast, claiming that 2 x 2 is a triangle or a violin (occasionally encountered, albeit
perhaps figuratively rather than literally, in our teaching experience) does signify
a lack of mathematical culture: under any circumstance, the product of two real
numbers should invariably yield another real number and cannot be a triangle or
a violin.

Our choice of material is driven by years of experience teaching graduate-level
courses on Nonlinear and Convex Optimization. We have organized this material
into four main parts:

e basics on convex sets — instructive examples, “calculus” (convexity-preserving
operations), main theorems on convex sets such as Caratheodory and Helly
theorems, topology of convex sets, “descriptive basics” of Linear Programming
(General Theorem on Alternative, Linear Programming duality),

e separation theorem and its applications — extreme points, extreme rays, reces-
sive directions, and (finite-dimensional) Krein-Milman Theorem, structure of
polyhedral sets,

e basics on convex functions — instructive examples, detecting convexity, “cal-
culus,” subgradient inequality and preliminaries on subgradients, maxima and
minima, Legendre transformation,

e basic theory of Convex Optimization — Lagrange Duality and Lagrange Duality
Theorem for problems in standard form and in cone-constrained form, Conic
Programming and Conic Duality Theorem, optimality conditions in Mathe-
matical Programming, and convex-concave saddle points and Sion-Kakutani
Theorem.

We envision that in a semester-long (14-15 weeks) course on convex optimiza-
tion, this material may cover about 40% or 60% of the course for building the
foundational blocks before moving to other parts (modeling and/or algorithms)
of convex optimization. In a course focusing more on nonlinear aspects and going
beyond convexity, an instructor may elect to skip Chapters 2, 3 and 7, and pay
attention to Chapter 22. For a course more geared towards linear and/or combi-
natorial optimization, an instructor may opt to use specific material from Parts
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I and II. Finally, a course focusing on Conic and Semidefinite Programming can
benefit from the material in Chapters 14, 16, 18, 19 and 21.

For reader’s convenience, the elementary facts from Linear Algebra, Calculus,
Real Analysis, and Matrix Analysis are summarized in the appendices of the
textbook (reproducing, courtesy of World Scientific Publishing Co., appendices
A — C in [Nem24]). In contrast to the main body of the textbook, these appen-
dices usually do not feature accompanying proofs, which are readily available
in standard undergraduate textbooks covering the respective subjects (see e.g.,
[Ax115] Edw12l [Gel89, [Pas22l, Rud13 [Str06]). A well-prepared reader may opt for
a “fast-forward” approach by initially reviewing these appendices before delving
into the main body of the book. Alternatively, they may commence their reading
journey from Part 1, referring back to the appendices as necessary.

Certain sections in our text, with titles starting with ¥, delve into more advanced
and specialized topics, such as Conic, Perspective, and Legendre transforms,
Majorization, Cone-convexity, Cone-monotonicity, among others. Although these
starred sections hold significance in their respective domains, they are designed
to be optional and can be skipped over depending on the goals of the reader.

Our exposition adheres to the usual standards of rigor needed to present math-
ematical subjects. Accordingly, we provide complete formal proofs for all of the
theorems, propositions, lemmas, and the like. In addition to these, we include
formal statements of similar nature labeled as “Facts” scattered throughout a
chapter, but without accompanying proofs. The claims made in these “Facts”
are also compulsory part of our exposition, and their knowledge is as manda-
tory for mastering the material as the knowledge of theorems, propositions, etc.
Nonetheless, the statements within “Facts” are sufficiently elementary to be eas-
ily verified by a diligent reader. In essence, “Facts” serve as embedded exercises,
and we firmly believe that engaging with these exercises as they appear in the
text provides valuable hands-on practice for effective learning. This active partic-
ipation is an indispensable facet of mastering the presented material and honing
mathematical skills. At the same time, we recognize the importance of providing
access to detailed self-contained proofs of “Facts.” To this end, nearly al]ﬂ “Facts”
are repeated, this time with accompanying proofs, at the end of the respective
chapters.

The exercises are crafted to align with our educational objective of fostering
hands-on learning and providing ample practice opportunities at various difficulty
levels. In particular, they are categorized into three types. The traditional (and
simpler in our opinion) “Test Yourself” exercises enable readers to evaluate their
grasp of the material presented in the main body of the textbook. In addition to
these, we also offer “Try Yourself” (marked with [TrYs]) type of exercises which
typically require readers to prove something, aimed at fostering and assessing

1 few exceptions are absolutely straightforward and presented as Facts solely for the sake of further
references.
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their creative skills. Finally, our “Educate Yourself” (marked with [EdY's]) exer-
cises address topics that we deem significant, extending beyond the core material
covered in the textbook’s main body. An illustrative example for this latter type
of exercises is the investigation of conic representations of convex sets and func-
tions, along with the calculus associated with these representations. This plays
a crucial role in formulating and solving “well-structured” convex optimization
problems, particularly those involving Second Order Conic and Semidefinite pro-
grams. Some simple “Test yourself” (i.e., without any marks such as [TrYs] or
[EAYs]) exercises originated and evolved from [BTN| Nem24]. We provide a sep-
arate solution manual for “Try Yourself” and “Educate Yourself” exercises.

Acknowledgements. The main body of this textbook existed for about 25 years,
in a more restricted form, as appendices to the graduate course on Modern Con-
vex Optimization taught by the second author first at TU Delft (1998) and then
at Georgia Institute of Technology (since 2003). The first author was fortunate to
have been a student at Georgia Tech thoroughly enjoying this material, and later
on she adopted this material and has been teaching a similar course at Carnegie
Mellon University (since 2012). These appendices originate from the descriptive
part of graduate course “Optimization II” designed in 1980’s by Prof. Aharon
Ben-Tal and for over 20 years taught by him at the Technion — Israel Institute
of Technology. This course was “inherited” and taught, in re-designed form, by
the second author first at the Technion, and then - at Georgia Institute of Tech-
nology. It is our pleasure to acknowledge hereby, with the deepest gratitude, the
instrumental role played by Prof. Ben-Tal in selecting and structuring significant
part of the material to follow. Besides this, we are greatly indebted to Dr. Sergei
Gelfand for the idea to convert these appendices into a “standalone” textbook.

Fatma Kuling-Karzan, Tepper Business School, Carnegie Mellon University
Arkadi Nemirovski, H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology

September 2024
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Main Notational Conventions

N,Z,Q, R, C stand for the set of all, respectively, nonnegative integers, integers,
rational numbers, real numbers, and complex numbers.

Vectors and matrices. By default, all vectors are column vectors.

e The space of all n-dimensional vectors with real entries is denoted by R”,
the set of all m x n matrices with real entries is denoted by R™*"; notation
N7 ..., C™*"is interpreted similarly, where we restrict the entries to belong to
the respective number domains. The set of symmetric n X n matrices is denoted
by S™. By default, all vectors and matrices have real entries, and when speaking
about R" and S” (R™*"), n (m and n) are positive integers.

By default, notation like x; (or y;) refers to i-th entry of context-specified
vector x (or k-th entry of context-specified vector y). Similarly, notation like
x;; (or Yi,) refers to (i, 7)-th entry of context-specified matrix x (or (k,¢)-th
entry of context-specified matrix Y').

e Sometimes, “MATLAB notation” is used to save space: a vector with coordi-
nates xq,...,T, is written down as

x=[x1;... 2,
1
(pay attention to semicolon “;”). For example, | 2 | is written as [1;2;3].
3

More generally,
— if A4,...,A,, are matrices with the same number of columns, we write
[Ay;...;A,] to denote the matrix obtained by writing A, beneath A;, As
beneath A,, and so on.
—if Ay,..., A, are matrices with the same number of rows, then [A,,..., A,,]
stands for the matrix obtained by writing As to the right of A;, A3 to the right
of A,, and so on.

Examples:
oAlz{i é 2],A2:[7 8§ 0] = [Ayd)= % g 2
8 9
e [3 2o [3] = s[4 21
o [1,2,3,4] = [1;2;3:4]7
o [[1,2:3,4],[5,6:7,8] — H }{ gH:Hiig]
]

= [1,2,5,6;3,4,7,8

e We follow the standard convention that the sum of vectors over an empty set
of indexes, i.e., 30, &%, where ' € R”, has a value — it is the origin in R".
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Intervals in R". Given two vectors z,y € R", we use the notation [z, y| to denote
the segment in R™ that connects x and y, where both endpoints are included,
Le., [z,y] :={ Az 4+ (1 =Ny : 0 <X < 1}. Similarly, we define the open segment
(x,y) ={Ax+(1—-Ny: 0<A<1}in R" without the endpoints.

Semidefinite order. Relations A = B, B < A, A—B >~ 0,B—A <0 all
mean the same, namely, that A, B are real symmetric matrices of the same size
such that the difference A — B is positive semidefinite. Positive definiteness of
the difference of A — B is expressed by every one of the relations A = B, B < A,
A-B>0,B—A<0.

Diag and Dg. For z € R", Diag{x} stands for diagonal n x n matrix with the

entries of x on the diagonal. For a collection X1, ..., Xk of rectangular matrices,
X3

Diag{Xi,..., Xx} = stands for block-diagonal matrix with diag-
Xk

onal blocks X7, ..., Xk. For an n x n matrix X, Dg{X} stands for n-dimensional
vector composed of diagonal entries of X.

Extended real axis. We follow the standard conventions on operations of sum-
mation, multiplication, and comparison in the “extended real line” R U {400} U
{—0o0}. These conventions are as follows:

e Operations with real numbers are understood in their usual sense.

e The sum of +00 and a real number, same as the sum of +oo and +oo is +oc.
Similarly, the sum of a real number and —oo, same as the sum of —oo and —oco
is —o0o. The sum of 400 and —oo is undefined.

e The product of a real number and +o0 is 400, 0 or —oo, depending on whether
the real number is positive, zero or negative, and similarly for the product of
a real number and —oo. The product of two “infinities” is again infinity, with
the usual rule for assigning the sign to the product.

e Finally, any real number is < 400 and > —oo, and of course —oo < oco.

Abbreviations. From time to time we use the following abbreviations:
a.k.a. for “also known as”
iff for “if and only if”
w.l.o.g. for “without loss of generality”
w.r.t. for “with respect to”

Symbols [TrYs] and [EdYs] mark respectively “try yourself” and “educate
yourself” exercises.
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Convex sets in R" — From First
Acquaintance to Linear Programming
Duality






1

First acquaintance with convex sets

1.1 Definition and examples

In the school geometry a figure is called convex if it contains, along with every
pair of its points z,y, also the entire segment [z,y| linking the points. This is
exactly the definition of a convex set in the multidimensional case; all we need
is to say what “the segment [z, y| linking the points z,y € R"” is. We state this
formally in the following definition.

Definition I.1.1 [Convex set]
1) Let z,y be two points in R™. The set

[T,y ={ A+ (1-Ny: 0< A< 1}

is called a segment with the endpoints z, y.
2) A subset M of R™ is called convex, if it contains, along with every pair
of its points x,y, also the entire segment [x,y]:

z,yeM, 0<A<1 = M+ (1-ANye M.

The definition of a segment [z;y| is in full accordance with our “real life ex-
perience” in 2D or 3D: when A € [0,1], the point z(\) = Az + (1 — Ny =
x4+ (1 — A)(y — x) is the point where you arrive when traveling from z directly
towards y after you have covered the fraction (1—\) of the entire distance from x
to y, and these points compose the “real world segment” with endpoints z = z(1)
and y = z(0).

Note that an empty set is convex by the exact sense of the definition: for the
empty set, you cannot present a counterexample to show that it is not convex.
A closed ray given by a direction 0 # d € R™ is also convex:

R.(d):={td€R": t>0}.

Note also that the open ray given by {td € R™: t > 0} is convex as well.
3



4 First acquaintance with convex sets

d)

a)

| -

h)

e)

Figure 1.1. a — d): convex sets; e — h): nonconvex sets

We next continue with a number of examples of convex sets.

1.1.1 Affine subspaces and polyhedral sets

We start with a simple and important fact.

Proposition 1.1.2 The solution set of an arbitrary (possibly, infinite) sys-
tem

ax <b,, acA (1.1)
of nonstrict linear inequalities with n unknowns z, i.e., the set
S = {xER”:aZxﬁbmaeA}

1S convex.

Proof. Consider any z/,2” € S and any A € [0,1]. As 2/,2” € S, we have

alx’ < b, and alz"” < b, for any a € A. Then, for every a € A, multiplying the

inequality a2z’ < b, by ), and the inequality a]x” < b, by 1 — A, respectively,
and summing up the resulting inequalities, we get a ! [Az’'+ (1 —\)z”] < b,. Thus,
we deduce that Az’ + (1 — \)z” € S. ]

Note that this verification of convexity of S works also in the case when in the
definition of S some of nonstrict inequalities a!x < b, are replaced with their
strict versions a] z < b,.

Recall that linear and affine subspaces can be represented as the solution sets
of systems of linear equations (Proposition [A.47)). Consequently, from Proposi-

tion [L1.2l we deduce that such sets are convex.
Example 1.1.1 All linear subspaces and all affine subspaces of R™ are convex.

&

Another important special case of Proposition is the one when we have
a finite system of nonstrict linear inequalities. Such sets have a special name as
they are frequently encountered and studied.



1.1 Definition and examples 5

Definition I.1.3 [Polyhedral set] A set in R"™ is called polyhedral if it is the
solution set of a finite system

Ax <b

of m nonstrict linear inequalities with n variables (i.e., A is an m x n matrix)
for some nonnegative integer m.

Based on this definition and as an immediate consequence of Proposition [I.1.2
we arrive at our second generic example of convex sets.

Example 1.1.2 Any polyhedral set in R"™ is convex. &

Remark I.1.4 Note that every set given by Proposition is not only convex,
but also closed (why?). In fact, Separation Theorem (see Theorem [I1.6.3]) implies
the following:

Every closed convex set in R™ is the solution set of an infinite system
a; x <b;,i=1,2,..., of nonstrict linear inequalities.

¢
Remark 1.1.5 Replacing some of the nonstrict linear inequalities a!z < b, in
system ([1.1) with their strict versions a/x < b, preserves, as we have already
mentioned, convexity of the solution set, but can destroy its closedness. &

1.1.2 Unit balls of norms

Let || - || be a norm on R™ i.e., a real-valued function on R satisfying the three
characteristic properties of a norm (section [B.1.1)), specifically:

1. Positivity: ||z|| > 0 for all z € R", and ||z|| = 0 if and only if z = 0;
2. Homogeneity: For € R™ and A € R, we have || Az|| = |Al]|z||;
3. Triangle inequality: For all z,y € R™, we have ||z + y|| < [|z|| + |ly]|-

Fact 1.1.6 The unit ball of a norm || - ||, i.e., the set
{zreR": [z <1},
same as every other || - ||-ball
B.(a):={z € R": |z —a] <},

(here a € R™ and r > 0 are fixed) is convex.
In particular, Euclidean balls (|| - ||-balls associated with the standard Eu-
clidean norm ||z||y := V& Tz) are convex.

The standard examples of norms on R" are the /,-norms

(X0 |)?, i 1<p<oo

max |, if p = o0.

], =
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These indeed are norms (which is not clear in advance; for proof, see page m
and for more details — page [216)). When p = 2, we get the usual Euclidean norm.
When p =1, we get

n
Izl = fail,
i=1

and its unit ball is the hyperoctahedron
V:{xER": Z|$z’§1}
i=1
When p = oo, we get

2]l = max |z,

and its unit ball is the hypercube

V={zeR": -1<z,<1,1<i<n},

/

see Figure 1.2.

\
/

Figure 1.2. || - ||,-balls in 2D, p = 1 (diamond), p = 2 (circle), p = oo (box).

Remark 1.1.7 As we have already mentioned, the fact that the ¢, norms,
1 < p < o0, indeed are norms, is not completely trivial and will be proved in
full generality later. What is evident, is that || - ||, does possess properties of
positivity and homogeneity; what requires effort, is the triangle inequality. There
are, however, two special cases, i.e., p = 1 and p = oo, where this inequality
is easy. Indeed, from high school you know that for reals a,b it always holds
la 4+ b] < |a| + |b|. It follows that

oyl =3l 4 wal < 3 (il + Jal) = D Jal + 3 lil = N2l + [y,
and
1z + ylloo = max|a; + yi| < max{|zi] +Jyil} < max {Ji] + |y;[}
= max |z;] + max |y;| = [|2]oo + [Yloo-

Triangle inequality for Euclidean norm || - || should be already known to the
reader; this is an immediate consequence of Cauchy-Schwarz inequality |z "y| <

|z||2]|y|l2, see section [B.1.1] &



1.2 Inner description of convex sets: convexr combinations and convex hull 7

Fact 1.1.8 Unit balls of norms on R™ are exactly the same as convex sets
V in R™ satisfying the following three properties:

(i) V is symmetric with respect to the origin: x € V = —z € V;
(ii) V is bounded and closed;
(iii) V contains a neighborhood of the origin, i.e., there exists r > 0 such that
the centered at the origin Euclidean ball of radius r — the set {x € R™ :
|z]|]2 < r} — is contained in V.

Any set V satisfying the outlined properties is indeed the unit ball of a
particular norm given by

lz|lv = i]gf {t: t'x eV, t>0}. (1.2)

1.1.3 Ellipsoids

Fact 1.1.9 Let Q be an n x n matrix which is symmetric (i.e., @ = Q") and
positive definite (i.e., z"Qz > 0 for all x # 0). Then, for every nonnegative
r, the Q-ellipsoid of radius r centered at a, i.e., the set

{zeR": (x—a)' Q(x—a) <r’}

is convex.

1.1.4 Neighborhood of a convex set

Example [.1.3 Let M be a nonempty convex set in R", and let ¢ > 0. Then,
for every norm || - || on R", the e-neighborhood of M, i.e., the set

— n. o _ <
M, {yeR - inf [y $||_e}

is convex. O
Justification of Example is left as an exercise at the end of this Part (see

Exercise .

1.2 Inner description of convex sets: convex combinations and convex
hull

1.2.1 Convex combinations

Recall the notion of linear combination x of vectors z',...,z™; this is a vector
represented as

m

i

T = 5 Axt,
i=1
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where A; € R are the coefficients. By including a specific restriction on which
coefficients can be used in this definition, we arrive at important special types of
linear combinations. For example, an affine combination is a linear combination
where the sum of the coefficients is equal to 1. Given a nonempty set X, the
smallest (w.r.t. inclusion) affine plane containing X is composed of all affine
combinations of the points of X, see section Another beast in this genre is
convexr combination.

Definition 1.1.10 [Convex combination] A convex combination of vectors

xb, ..., 2™ is a linear combination

m
T = E Azt

i=1

with nonnegative coefficients summing up to 1:

A>0,Vi=1....m, > \=L
=1

Equivalently, convex combination is an affine combination with nonnegative co-
efficients.

By Linear Algebra, a nonempty set X C R” is a linear (or an affine) sub-
space if and only if X is closed with respect to taking all linear, respectively, all
affine combinations of its elements. Convex combinations play similar role when
speaking about convex sets.

Fact 1.1.11 A set M C R™ is convex if and only if it is closed with respect
to taking all convex combinations of its elements. That is, M is convex if and
only if every convex combination of vectors from M is again a vector from
M

Hint: Note that assuming A, ..., A, > 0, one has

m

Z)\imi = Azt 4+ A2+ A3 +...+ ) Z/umi, where p; :

=1 1=2

Ai
IR VIEED VT

(cf. Corollary [A.39).

1.2.2 Convex hull

Recall that taking the intersection of linear subspaces results in another linear
subspace. The same property holds true for convex sets as well (why?).

Proposition 1.1.12 Let {M,}, be an arbitrary family of convex subsets of
R”. Then, their intersection

M:ﬂMa
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is also convex. ‘

As an immediate consequence of Proposition [[.1.12] we come to the notion of
convex hull Conv(M) of a subset M C R”™ (cf. the notions of linear/affine span):

Definition 1.1.13 [Convex hull] For any M C R", the convexr hull of M
[notation: Conv(M)] is the intersection of all convex sets containing M (and
thus, by Proposition [[.1.12] Conv(M) is the smallest (w.r.t. inclusion) convex
set containing M).

By Linear Algebra, the linear span of a set M — the smallest (w.r.t. inclusion)
linear subspace containing M — can be described in terms of linear combinations:
this is the set of all linear combinations of points from M. Analogous results hold
for affine span of (nonempty) set and affine combinations of points from the set as
well. We have an analogous description of convex hulls via convex combinations
as well:

Fact 1.1.14 [Convex hull via convex combinations] For a set M C R",

Conv(M) = {the set of all convex combinations of vectors from M} .

We will see in section[7.3|that when M is a finite set in R", Conv (M) is a bounded
polyhedral set. Bounded polyhedral sets are also called polytopes.
We next continue with a number of important families of convex sets.

1.2.3 Simplex

Definition 1.1.15 [Simplex] The convex hull of m + 1 affinely indepen-
dent points z°,..., 2™ is called the m-dimensional simplex with the vertices
20 ..., x™. (See section for affine independence.)

Consider an m-dimensional simplex with vertices z°,...,2™. Then, based on
section every point z from this simplex admits exactly one representation
as a convex combination of these vertices. The coefficients \;, ¢ = 0,...,m, used
in the convex combination representation of x form the unique solution to the
system of linear equations given by

This system in variables ); is feasible if and only if z € M = Aff({z°,...,2™}),
and the components of the solution (the barycentric coordinates of x) are affine
functions of x € Aff(M). The simplex itself is composed of points from M with
nonnegative barycentric coordinates.
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1.2.} Comnes

We next examine a very important class of convex sets.
A nonempty set K C R" is called conic if it contains, along with every point
x € K, the entire ray R, (z) = {tz : t > 0} spanned by the point:

reK = trekK, Vt>NO.

Note that based on our definition, any conic set is nonempty and it always con-
tains the origin.

Definition 1.1.16 [Cone| A cone is a nonempty, convex, and conic set.

Fact 1.1.17 A set K C R" is a cone if and only if it is nonempty and

e is conic, ie., z € K,t >0 = tx € K; and
e contains sums of its elements, i.e., z,y € K — x+y € K.

Example 1.1.4 The solution set of an arbitrary (possibly, infinite) system of
homogeneous linear inequalities with n unknowns z, i.e., the set

K:{xGR": alx >0, VaEA},

is a cone.
In particular, the solution set of a finite system composed of m homogeneous
linear inequalities

Ax >0

(A is m x n matrix) is a cone. A cone of this latter type is called polyhedmﬂ
Specifically, the nonnegative orthant R := {x € R™ : x > 0} is a polyhedral
cone. o

Note that the cones given by systems of linear homogeneous nonstrict inequal-
ities are obviously closed. From Separation Theorem (see Theorem we will
deduce the reverse as well, i.e., every closed cone is the solution set to such a
system. Thus, Example is the generic example of a closed convex cone.

We already know that a norm ||-|| on R" gives rise to specific convex sets in R",
namely, balls of this norm. In fact, a norm also gives rise to another important
convex set.

Proposition 1.1.18 For any norm || - || on R"™, its epigraph, i.e., the set

K= {[z:t] e R : ¢ > |z}

is a closed cone in R™*1.

L The “literal” interpretation of the words “polyhedral cone” should be “a set of the form {z : Az < b}
which is a cone;” this is not exactly the terminology just introduced. Luckily, there is no collision: a
polyhedral set X = {z : Ax < b} is a cone if and only if X = {z : Az < 0}, see Exercise [[1.32
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Proof. Obviously, K is nonempty as [z;t] = [0;0] is in K. Also, K is a conic
set as any norm || - || is positively homogeneous. Moreover, the closedness of K
with respect to summation is readily given by the Triangle inequality: consider
two points [x;t] € K and [2/;t'] € K. Then, t > ||z|| and ¢’ > ||2’|| which imply
t+t' > ||x||+]|2|| > ||lz+2'||. Thus, [z+2';t+t] € K. Invoking Fact we see
that K is a cone. In order to see that K is closed recall that |- || is continuous (see
Fact. Thus, for any sequence of points [z%;¢;] € K converging to a point [z; t]
as i — oo, we have [||z*||;¢;] — [||z|;¢] and therefore ¢ > ||z|. This establishes
that the limit of any converging sequence from K belongs to K, proving that K
is closed. |

A particular case of Proposition states that the epigraph of Euclidean
norm, i.e.,

L™ := {[z;t] e R"™ 1 ¢t > ||z},

is a closed cone. This is the second-order, (or Lorentz or ice cream) cone (see
Figure 1.3), and it plays a significant role in convex optimization.

Figure 1.3. [Boundary of] 3D Lorentz cone L?

To complete our first acquaintance with cones, we also mention the semidefinite
cone ST “living” in the space S™ of real symmetric m x m matrices and composed
of positive semidefinite matrices from S™, i.e.,

ST :={X e R™"™: X=X" a"Xa>0, Va e R™};

see section

Cones form a very important family of convex sets, and one can develop theory
of cones absolutely similar (and in a sense, equivalent) to that of all convex sets.
For example, by introducing the notion of conic combination of vectors z', ..., z"
as a linear combination of these vectors with nonnegative coefficients, we can eas-
ily prove the following statements completely similar to those for general convex
sets, with conic combination playing the role of convex ones:

e A set is a cone if and only if it is nonempty and is closed with respect to taking
conic combinations of its elements;
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e Intersection of a family of cones is again a cone; in particular, for every set
K C R™ there exists the smallest (w.r.t. inclusion) cone containing K, called the
conic hull of K:

Definition 1.1.19  [Conic hull] For any K C R", the conic hull of K [nota-
tion: Cone(K)] is the intersection of all cones containing K. Thus, Cone(K)
is the smallest (w.r.t. inclusion) cone containing K.

e We can describe the conic hull of a set X C R” in terms of its conic combina-
tions:

Fact 1.1.20 [Conic hull via conic combinations] The conic hull Cone(K) of
a set K C R™ is the set of all conic combinations (i.e., linear combinations
with nonnegative coefficients) of vectors from K:

N
Cone(K) = {xGR":EINEO,)\Z-ZO,xiéK,igN:m:ZAix’}.

i=1

Note that here we use the standard convention: the sum of vectors over an empty
set of indexes, like Z?:1 2%, has a value — it is the origin of the space where vectors
live. In particular, the set of conic combinations of vectors from empty set is {0},
in full accordance with Definition [L1.19

1.3 Calculus of convex sets

Calculus of convex sets is, in a nutshell, the list of operations which preserve
convexity.

Proposition 1.1.21 The following operations preserve convexity of sets:

1. Taking intersection: if M,, a € A, are convex sets, so is their intersection
N M,,.

2. Taking direct product: if M; C R™ and M, C R™ are convex sets, so is
their direct product, i.e., the set
My x My :={z =[z";2’] e R" x R =R™"™ : 2! € My, 2° € My} .

3. Arithmetic summation and multiplication by reals: if My, ..., M} are non-
empty convex sets in R™ and Ay, ..., A\, are arbitrary reals, then the set

k
MM+ . 4+ A\ M, = {Z)\ixi: xieMi,izl,...,k}

i=1

is convex.
Warning: “Linear combination A\{M; + ... + A, M, of sets” as defined
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above is just a notation. When operating with these “linear combinations
of sets,” one should be careful. For example. while is it true that M; +
Mg = Mg + M1 and that M1 + (MQ + M3) = (M1 + MQ) + Mg, and
even that A(M; + My) = AM; + AM,, it is, in general, not true that
(Al + )\Q)M - AlM + )\QM

4. Taking image under an affine mapping: if M C R™ is convex set and x —
A(xz) = Az + b is an affine mapping from R"™ into R™ (where A € R™*"
and b € R™), then the image of M under the mapping A(-), i.e., the set

AM) :={A(x): =€ M},

is convex.

5. Taking inverse image under affine mapping: if M C R™ is a convex set
and y — A(y) = Ay + b is an affine mapping from R™ to R™ (where
A e R™™ and b € R"), then the inverse image of M under the mapping
A(+), i.e., the set

AN (M) :={yeR™: Ay) e M},

1S convex.

The (completely straightforward) verification of this proposition is left to the
reader.

1.3.1 Calculus of closed convex sets

Numerous important convexity-related results require not just convexity, but also
closedness of the participating sets. Therefore, it makes sense to think to which
extent the “calculus of convexity” as presented in Proposition is preserved
when passing from general convex sets to closed convex sets. Here are the answers:

1. Taking intersection: if M,, a € A, are closed convex sets, so is the set (| M,.

2. Taking direct product: if M; C R™ and M, C R™ are closed convex sets, so
is the set

M, x My = {x = [:131;1‘2] ceR" xR =R™™2: gl e M, 2% € Mg}.

3. Arithmetic summation of nonempty closed convex sets M;, 1 < i < k, preserves
convexity, but not necessarily preserves closedness. However, it does preserve
closedness when at most one of the sets is unbounded.

An example of a pair of closed convex sets with non-closed sum is M; = {z €
R?:z, > 0,2 > 1/2,}, My = {z € R? : 2, = 0}. The sum of these two closed
sets clearly is the open upper halfplane {z € R? : x; > 0} (why?) and is not
closed.

Let us verify that if at most one of nonempty closed convex sets is unbounded,
then the sum of the sets is convex (this we already know from calculus of
convexity) and closed. Closedness is given by the following observation:
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the sum of nonempty closed sets, convex or not, with at most one of the
sets unbounded, is closed.

To justify this observation, it clearly suffices to verify its validity for a pair
of sets, M; and M,. Assuming both sets are nonempty and closed and M,
is bounded, we should prove that if a sequence {x + y'}; with z' € M, and
y' € M, converges as i — oo, the limit Zlg&(:vl + y%) belongs to M, + Ms.

Since M;, and thus the sequence {z'};, is bounded, passing to a subsequence
we may assume that the sequence {z'}; converges, as i — oo, to some z. Since
the sequence {z’ + y'}; converges as well, the sequence {y’}; also converges to
some y. As M, and M, are closed, we have x € M,, y € M,, and therefore
ilirgo(:vi—f—yi):x—l-yeMlﬂ—Mg, |

4. Multiplication by a real: For a nonempty closed convex set M and a real A,
the set AM is closed and convex (why?).

5. Image under an affine mapping of a closed convex set M is convex, but not
necessarily closed; it is definitely closed when M is bounded.
As an example of closed convex set with a non-closed affine image consider
the set {[z;y] € R*: z,y > 0, zy > 1} (i.e., a branch of hyperbola) and its
projection onto the z-axis. This set is convex and closed, but its projection
onto the z-axis is the positive ray {z > 0} which is not closed. Closedness of
the affine image of a closed and bounded set is the special case of the general
fact:

the image of a closed and bounded set under a mapping that is continuous
on this set is closed and bounded as well (why?).

6. Inverse image under affine mapping: if M C R™ is convex and closed and
y — A(y) = Ay + b is an affine mapping from R™ to R", then the set

AN M) :={yeR™: Aly) € M}

is a closed convex set in R™. Indeed, the convexity of A~!(M) is given by the
calculus of convexity, and its closedness is due to the following standard fact:

the inverse image of a closed set in R™ under continuous mapping from
R™ to R" is closed (why?).

We see that the “calculus of closed convex sets” is somehow weaker than the
calculus of convexity per se. Nevertheless, we will see that these difficulties dis-
appear when restricting the operands of our operations to be polyhedral, and not
just closed and convex.

1.4 Topological properties of convex sets

Convex sets and closely related objects - convex functions - play the central role
in Optimization. To play this role properly, the convexity alone is not sufficient;
we need convexity and closedness.
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1.4.1 The closure

It is clear from definition of a closed set that the intersection of a family of closed
sets in R™ is also closed (see Fact [B.13). From this fact it follows that for every
subset M of R™ there exists the smallest (w.r.t. inclusion) closed set containing
M. This leads us to the following definition.

Definition 1.1.22 [Closure] Given a set M C R™, the closure of M [no-
tation: cl M or cl(M)] is the smallest (w.r.t. inclusion) closed set (i.e., the
intersections of all closed sets) containing M.

From Real Analysis, we have the following inner description of the closure of
a set in a metric space (and, in particular, in R™).

Fact 1.1.23 The closure of a set M C R"™ is exactly the set composed of the
limits of all converging sequences of elements from M.

Example 1.1.5 Based on Fact [[.1.23] it is easy to prove that, e.g., the closure
of the open Euclidean ball

{r eR": |lx—all <r} [wherer > 0]

is the closed Euclidean ball {z € R": ||z — al|s < r}.
Another useful application example is the closure of a set defined by strict
linear inequalities, i.e.,

M:={z€eR": alx <b,, a € A}.

Whenever such a set M is nonempty, then its closure is given by the nonstrict
versions of the same inequalities:

clM:{fL‘ER”: alxﬁba,aeA}.

Note here that nonemptiness of M in this last example is essential. To see this,
consider the set M = {x € R: x <0, —x < 0}. Clearly, M is empty, so that its
closure also is the empty set. On the other hand, if we ignore the nonemptiness
requirement on M and apply formally the above rule, we would incorrectly claim
that M ={z e R: =<0, —z <0} = {0}. &

1.4.2 The interior

Consider a set M C R™. Recall from Definition that a point z € M is an
interior point of M, if some neighborhood of the point is contained in M, i.e., if
there exists a ball of positive radius centered at x which is contained in M:

Ir>0: By(z)={yeR": |ly—z|<r} C M.
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Definition 1.1.24 [Interior] The set of all interior points of a given set
M C R"™ is called the interior of M [notation: int M or int(M)] (see Defini-

tion [B.10)).

Example 1.1.6 We have the following sets and their corresponding interiors:

e The interior of an open set is the set itself.

e The interior of the closed ball {x € R": ||z —allx <r} (r >0ormn > 1) is the
open ball {x € R": ||z — a2 < r} (why?).

e The interior of the standard full-dimensional simplex

{MER”: pu>0, Zuiﬁl}

i=1
is composed of all vectors u with p; > Oforalli =1,...,nand with >, p; <1
(why?).

e The interior of a polyhedral set {x € R" : Az < b} with matrix A not contain-
ing zero rows is the set {x € R": Ax < b} (why?).
Note that here the requirement that the set is polyhedral, i.e., defined by a
finite system of linear inequalities is critical. In particular, this statement is
not, generally speaking, true for solution sets of infinite systems of linear in-
equalities. For example, the following set defined by an infinite system of linear
inequalities

1
M = {xER: r < —, n:1,2,...}
n
is nothing but the nonpositive ray R_ = {x e R: 2 <0}, ie., M = R_.

Thus, int M = {z € R: x <0}, i.e., the negative ray. On the other hand, the
following set defined by the strict versions of these inequalities

1
M = {CEER: < —, n:1,2,...}
n

define the same nonpositive ray, i.e., M’ = {x € R: z <0}. Hence, M’ #
int M for this set M defined by an infinite system of inequalities. &

The following observation is evident:

Fact 1.1.25 For any set M in R", its interior, int M, is always open, and
int M is the largest (with respect to the inclusion) open set contained in M.

The interior of a set is, of course, contained in the set, which, in turn, is
contained in its closure:

int M C M C cl M. (1.3)
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Definition 1.1.26 [Boundary] For any M C R"™, the boundary of M is the
set

bd M =clM \ int M,

and the points on the boundary are called boundary points of M.

The boundary points of M are exactly the points from R”™ which can be approx-

imated to whatever high accuracy both by points from M and by points from
outside of M (check it!).

Given a set M C R", it is important to note that the boundary points not
necessarily belong to M, since M = cl M need not necessarily hold in general. In
fact, all boundary points belong to M if and only if M = cl M, i.e., if and only
if M is closed.

The boundary of a set M C R™ is clearly closed as bd M = cl M N(R™\ int M)
and both sets cl M and R™ \ int M are closed (note that the set R™ \ int M is
closed since it is the complement of an open set). In addition, from the definition
of the boundary, we have

M C (int M Ubd M) = cl M.

Therefore, any point from M is either an interior or a boundary point of M.

1.4.3 The relative interior

Many of the constructions in Optimization possess nice properties in the interior
of the set the construction is related to and may lose these nice properties at the
boundary points of the set. This is why in many cases we are especially interested
in interior points of sets and want the set of these interior points to be “sufficiently
dense.” What should we do if it is not the case, for example if there are no interior
points at all (e.g., if we are looking at a segment in the plane)? It turns out that
in these cases we can use a good surrogate of the “normal” interior, namely the
relative interior defined as follows.

Definition 1.1.27 [Relative interior] Let M C R" be nonempty. We say
that a point x € M is relative interior for M if M contains the intersection
of a small enough ball centered at z with Aff(M), i.e., if there exists r > 0
such that

(B,(z) N Af(M)) = {y € R" : y € AB(M), [ly —all < r} € M.

The relative interior of M [notation: rint M] refers to the set of all relative
interior points of M.
By definition, the relative interior of empty set is empty.

Example 1.1.7 We have the following sets and their corresponding relative
interiors:
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e The relative interior of a singleton is the singleton itself (since a point in the
0-dimensional space is the same as a ball of a positive radius).

e More generally, the relative interior of an affine subspace is the subspace itself.

e Given two distinct point x # y in R”, the interior of a segment [x,y] is empty
whenever n > 1. In contrast to this, the relative interior of this set is always
(independent of n) nonempty and it is precisely the interval (z,y), i.e., the
segment without the endpoints. &

Geometrically speaking, the relative interior is the interior we get when we
treat M C R" as a subset of its affine hull (the latter, geometrically, is nothing
but R*, k being the affine dimension of Aff(M)).

We can play with the notion of the relative interior in basically the same way
as with the one of interior. Namely, for any M C R", since Aff(M) is closed
and contains M, it contains also the smallest closed set containing M, i.e., cl M.
Therefore, we have the following analogies of inclusions, cf. (1.3):

rint M C M CclM [C Aff(M)). (1.4)

We can also define the relative boundary.

Definition 1.1.28 [Relative boundary]| For any M C R", its relative bound-
ary [notation: rbd M] is defined as the set rbd M = cl M \ rint M.

Note that for any M C R", we naturally have rbd M is a closed set contained
in Aff(M), and, as for the “actual” interior and boundary, we have

rint M C M CclM =rint M Urbd M.

Of course, if Aff(M) = R", then the relative interior becomes the usual interior,
and similarly for boundary. Note that Aff(M) = R™ for sure is the case when
int M # & (since then M contains a ball B, and therefore the affine hull of M is
the entire R™, which is the affine hull of B).

1.4.4 Nice topological properties of convex sets

An arbitrary set M C R™ may possess very pathological topology. In particular,
both inclusions in the chain

rint M C M CclM

can be very “loose.” For example, let M be the set of rational numbers in the
segment [0, 1] C R. Then, rint M = int M = & since every neighborhood of every
rational number contains irrational numbers. On the other hand, cl M = [0, 1].
Thus, rint M is “incomparably smaller” than M, cl M is “incomparably larger”
than M, and M is contained in its relative boundary (by the way, what is this
relative boundary?).

The following theorem demonstrates that the topology of a convex set M is
much better than what it might be for an arbitrary set.
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Theorem 1.1.29 Let M be a convex set in R". Then,

(i) The interior int M, the closure cl M and the relative interior rint M are
convex.

(i) If M is nonempty, then its relative interior rint M is nonempty.

(iii) The closure of M is the same as the closure of its relative interior,
i.e., clM = cl(rint M). (In particular, every point of cl M is the limit of a
sequence of points from rint M.)

(iv) The relative interior remains unchanged when we replace M with its
closure, i.e., rint M = rint (cl M).

Moreover, (iii) and (iv) imply that

(v) The relative boundary remains unchanged when we replace M with its
closure.

We will use the following basic result to prove this theorem (we will present
the proof of this lemma after the proof of the theorem).

Lemma 1.1.30 Let M be a convex set in R". Then, for any « € rint M and
y € cl M, we have

[z,y) ={(1—=Nz+Ay: 0< A< 1} Crint M.

Proof of Theorem (i): Prove yourself!

(ii): Let M be a nonempty convex set, and let us prove that rint M # @. By
translation, we may assume that 0 € M. There is nothing to prove when M = {0},
in which case rint M = {0} is nonempty. Now assume that M contains, along with
the origin, a nonzero vector. Furthermore, we may assume that the linear span
of M, i.e., Lin(M), is the entire R". Indeed, as far as linear operations and the
Euclidean structure are concerned, Lin(M ), as every other linear subspace in R",
is equivalent to R* for a certain k. Since the notion of relative interior deals only
with linear and Euclidean structures, we lose nothing thinking of Lin(M) as of
R” and taking it as our universe instead of the original universe R". Thus, in the
rest of the proof of (ii), we assume that 0 € M and Lin(M) = R"; what we need
to prove is that the interior of M (which in our case is the same as relative interior
of M) is nonempty. Note that since 0 € M, we have Aff(M) = Lin(M) = R".

As Lin(M) = R", we can find n linearly independent vectors a',...,a™ in M.
Let us also set a® := 0. The n + 1 vectors a,...,a™ belong to M. Since M is
convex, the convex hull of these vectors, i.e.,

A= {x:i)\iai: A >0, i)\izl}:{x:iuiai: >0, i”i<1}
=0 =0 =1

i=1

also belongs to M. Note that the set A is the image of the standard full-
dimensional simplex

{MER”: >0, Zuiél}

i=1
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under the linear transformation pu — Ay, where A is the matrix with the columns
a',...,a". Recall from Example that the standard simplex has a nonempty
interior. Since A is nonsingular (due to the linear independence of a',..., a"),
multiplication by A maps open sets onto open ones, so that A has a nonempty
interior. Since A C M, the interior of M is nonempty.

(iii): The statement is evidently true when M is empty, so we assume that
M # @. We clearly have cl(rint M) C cl M due to rint M C M. Thus, all we
need to complete the proof of (iii) is to verify that every y € cl M is the limit of
a sequence of points y* € rint M. Indeed, pick x € rint M (recall that from part
(ii) we have rint M # @) and set y* := (1 —1/i)y + (1/i)z. By Lemma we
have y° € rint M, and clearly y = Zlg& y’, completing the verification of (iii).

(iv): The statement is obviously true when M is empty, so we assume that
M # @. Since M C cl M, we always have rint M C rint (cl M). To prove the
reverse inclusion, consider any z € rint (cl M), and let us prove that z € rint M.
Let z € rint M (from part (ii), we already know that rint M # &). As x and z
are in Aff(M), for any ¢t € R, the vectors z' := z+¢(z —x) belong to Aff(M), and
when t approaches 1, z' approaches z. Since z € rint (cl M), it follows that there
exists € > 0 such that y := z!7¢ € ¢l M. It remains to note that z = (1 — \)y + Az
with A = % € (0,1), and therefore z = (1 —\)y + Az € rint M by Lemma

e
(recall that x € rint M, y € c1 M). ]

Remark 1.1.31 We see from the proof of Theorem [[.1.29(iii) that to get the
closure of a (nonempty) convex set, it suffices to take its “radial” closure, i.e., to
take a point x € rint M, take all rays in Aff(M) starting at = and look at the
intersection of such a ray ¢ with M; such an intersection will be a convex set on
the line which contains a one-sided neighborhood of x, i.e., is either a segment
[,9°], or the entire ray ¢, or a half-interval [x,y"). In the first two cases we do
not need to do anything; in the third case, we need to add y* to M. After all
rays are looked through and all “missed” endpoints 3* are added to M, we obtain
cl M. To understand the role of convexity in this result, look at the nonconvex set
of rational numbers from [0, 1]. The interior (= relative interior) of this ”highly
percolated” set is empty, the closure is [0, 1], and there is no way to restore the
closure in terms of the interior. &

Proof of Lemma [I.1.30. Given that x € M, let us denote Aff(M) = = + L,
where L is the linear subspace parallel to Aff(M). Then,

M CAff(M)=x+ L.
Let B be the unit Euclidean ball in L, i.e., B = {he€ L: |hls <1}. Since
x € rint M, there exists a positive radius r such that
x+rBC M. (1.5)

Now consider any A € [0,1), and let z := (1 — Az + A\y. As y € cl M, we have

y = lim y* for certain sequence of points from M. By setting z* := (1 — X))z + Ay,
1—00

we get 2 — z as i — oo. Then, from (1.5) and the convexity of M, it follows

that the sets Z; := {(1 — \)2’ + \y* : 2’ € z + rB} are contained in M. Clearly,
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Z,; is exactly the set z* +7'B, where r' := (1 — \)r > 0. Thus, z is the limit of the

sequence z*, and 7’-neighborhood (in Aff(M)) of every one of the points z* belongs

to M. For every 0 < r” < 7’ and for all 7 such that 2* is close enough to z, the

r’-neighborhood of z* contains the r”-neighborhood of z; thus, a neighborhood

(in Aff(M)) of z belongs to M, hence z € rint M. |
A useful byproduct of Lemma is as follows:

Corollary 1.1.32 Let M C R" be convex. Then, every convex combination
> \ix’ of points ” € cl M such that at least one term with positive coefficient
is associated with z* € rint M is in fact a point from rint M.

Another useful byproduct of Lemma, is as follows. Let M;,, k < K, be a
finite collection of subsets of R™. The closure of the union of these sets is the union
of their closures: cl(Uy<xgMy) = Up<k cl M; (why?). Now let us ask ourselves
similar question about intersection: what is the relation between clNy<x M) and
Nk<x cl M, 2 The set Ng<k cl M, is closed and clearly contains Ny<x M, and thus
always contains the closure of the latter set:

cl ( N Mk> C () M. (1.6)
k<K k<K
In general, this inclusion can be “loose” — the right hand side set in can
be much larger than the left hand side one, even when all M, are convex. For
example, when K = 2, M, = {z € R? : 2, = 0} is the x;-axis, and M, = {x €
R? : 2o > 0} U {[0;0]}, both sets are convex, their intersection is the singleton
{0}, so that cl(M; N M) = cl{0} = {0}, while the intersection of cl M; and cl M,
is the entire x;-axis, which is simply M;. In this example the right hand side
in is “incomparably larger” than the left hand side one. However, under
suitable assumptions we can also achieve equality in (|1.6]).

Proposition 1.1.33 Consider convex sets M, C R", k < K.

(1) If ﬂk:<K rint Mk # J, then Cl(mkSKMk) = ﬂkSK Cle, i.e., holds
an equality.

(ii) Moreover, if K > 2 and My Nint M; Nint My N ... Nint Mg # @,
then we have ), ., rint M, # &, i.e., the premise (and thus the conclusion)
in (i) holds true, so that cl(Np<xM}) = Np<x cl M.

Proof. (i): To prove that under the premise of (i) inclusion is equality is
the same as to verify that under the circumstances given x € N, cl My, one has
x € cl (NgMy). Indeed, under the premise of (i) there exists z € Ny, rint Mj,. Then,
for every k we have T € rint M, and = € cl M}, implying by Lemma, that
the set A := [Z,z) = {(1 = A\)Z + Az : 0 < XA < 1} is contained in M. Since
A C My, for all k, we have A € N My, and thus cl A C ¢l (NgMy). It remains to
note that x € cl A.

(ii): Let T € Mg Nint My N ... Nint Mx_1. As T € int M}, for all k < K, there
exists an open set U C Ny M such that £ € U. As & € Mg C cl Mg, by
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Theorem T is the limit of a sequence of points from rint M, so that there
exists T € UNrint Mg . Due to the origin of U, we have Z € rint M}, for all k < K,
so that the premise of (i) indeed takes place. ]

1.5 % Conic and perspective transforms of a convex set

Let X C R" be a nonempty convex set. We can “lift” it to R"*! by passing to
the set

Xt :={ln1]eR"xR: z e X}.
Now let us look at the conic hull of X, given by
ConeT(X) := Cone(X™)
_{ [zt e R* xRy 3(I, A >0, 2' € X, Vi <I): }
N T = Zq:gl At t = Zig[ Ai f

We will call this the conic transform of X, see Figure 1.4. Note that this set
is indeed a cone. Moreover, all vectors [z;t] from this cone have ¢ > 0, and,
importantly, the only vector with ¢ = 0 in the cone ConeT(X) is the origin in
R™*! (this is what you get when taking trivial — with all coefficients zero — conic
combinations of vectors from X).

2 A B t

[/ / e

X

o .

Figure 1.4. Conic transform
a) conic transform of segment X is the angle AOB
b)  conic transform of ray X is the angle AOB with
relative interior of the ray OB excluded

All nonzero vectors [z;t] from ConeT(X) have ¢ > 0 and form a convex set which
we call the perspective transform Persp(X) of X:

Persp(X) := {[z;t] € ConeT(X) : t > 0} = ConeT(X) \ {011}

The name of this set is motivated by the following immediate observation:
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Proposition 1.1.34 [Perspective transform of a nonempty convex set| Let
X be a nonempty convex set in R™. Then, its perspective transform admits
the representation

Persp(X) ={[z;t] e R" xR: t >0, z/t € X}. (1.7)

In other words, to get Persp(X), we pass from X to X* (i.e., lift X to
R™) and then take the union of all rays {[sz;s] e R" x R: s >0, x € X}
emanating from the origin (with origin excluded) and passing through the
points of X,

Proof. Let X := {[z;t] € R” xR: t>0, z/t € X}, so that the claim in the
proposition is Persp(X) = X. Consider a point [2;¢] € X. Then, ¢t > 0 and
y:=z/t € X, and thus we have [x,t] = t[y; 1] so that the point [z;¢] from Xisa
single-term conic combination — just posmve multiple — of the point [y;1] € XT.
As this holds for every point [z;¢] € X we conclude X C Persp(X). To verify

the opposite inclusion, recall that every point [x;t] € Persp(X) is of the form
>, N’ >0 N] with 2" € X, A\ >0, and ¢ = >, \; > 0. Then,

[Z)\:z: Z/\}—t[z (\i/t)z"; 1}—t[y,1],

where y := Y_,(\;/t)z". Note that y € X as it is a convex combination of points
from X and X is convex. Thus, [z;t] is such that ¢ > 0 and y = =/t € X, that is,
X D Persp(X) as desired. O

As a byproduct of Proposition we conclude that the right hand side set
in is convex whenever X is convex and nonempty — a fact not so evident
“from scratch.”

Note that X is geometrically the same as X, and moreover we can view X
as simply the intersection of ConeT(X) (or Persp(X)) with the hyperplane ¢t = 1
in R” x R.

Example 1.1.8

1. ConeT(R™) = {[z;t] e R"™ :t > 0} U {0,41}, and
Persp(R"™) = {][z; t] 6 Rt > 0}
2. ConeT(R?) = {[z;t] e R : ¢t >0} U{0,41}, and
Persp( R" {[J;, R”Jrl t>0}.
3. Given any norm H H on R" let B be its unit ball. Then, we have ConeT(B) =
{lz;t] e R* 2t > ||zl }, and Persp(B) = {[t;z] € R*™': ¢t > ||z||, t > 0}.
¢

Note that in all three examples in Example the set X of which we are
taking conic and perspective transforms is not just convex, but also closed. How-
ever, in the first two examples, the conic transform is a non-closed cone, while in
the third example the conic transform is closed, albeit in all three cases the inter-
sections of ConeT(X) with half-space {[z;t] € R"™! : ¢ > a} is closed, provided
a > 0. There is indeed a general fact underlying this phenomenon.
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Proposition 1.1.35 Let X C R" be a nonempty convex set. Then, we have
the following:

(i) For @ > 0, define H, := {[z;t] € R"™ :¢ > a}. When X is closed,
ConeT(X) N H, = Persp(X) N H, and this intersection is closed for any
a > 0.

(ii) Moreover, the cone ConeT(X) is closed if and only if X is closed and
bounded. In fact, ConeT(X) is closed if and only if cl (Persp(X)) = ConeT(X).

Proof. (i): When o > 0, we clearly have ConeT(X) N H, = Persp(X) N H,.
To see that these intersections are closed whenever X is closed, invoking it
suffices to prove that when {[z;¢;]};>1 is a converging sequence such that t; > «
and z'/t; € X, then the limit [x;¢] of this sequence satisfies z/t € X and t > «.
Since t; — t as i — oo and t; > « holds for all i, we clearly have ¢ > «. Moreover,
we have that the converging sequence y' := z'/t; is in X thus x'/t; — =/t as
i — oo and the point x/t is in X since X is closed.

(ii): First, we assume that nonempty convex set X is closed and bounded, and
we will prove that ConeT(X) is closed, that is, whenever a sequence {[z’; ;] };>1 of
points from ConeT(X) converges, the limit of the sequence belongs to ConeT(X).
Indeed, consider such a sequence along with its limit [z;¢]. When ¢ > 0, all but
finitely many terms of the sequence belong to the half-space H,/;, and as by part
(i) ConeT(X) N Hyy is closed, we have [z;t] € ConeT(X). When ¢ = 0, then
either (a) ¢; = 0 for infinitely many values of 4, or (b) t; > 0 for all but finitely
many values of 7. In the case of (a) infinitely many terms in our sequence are of
the form [0,,;0] (since whenever [y; 0] € ConeT(X) we must have y = 0 as well),
so that [z;t] = 0,41 € ConeT(X). In the case of (b) for all large enough i we
have t; > 0 and 2'/t; € X, and since t; — 0 as i — oo and X is bounded we
deduce z* — 0 as ¢ — oco. Then, this together with ¢; — 0, i — oo, implies that
[;t] = [0,,41;0], and we again have [z;t] € ConeT(X). Thus, whenever X is a
nonempty closed and bounded set, ConeT(X) is closed.

Now assume that ConeT(X) is closed, and let us prove that X is closed and
bounded. Clearly, X is closed if and only if X is closed, and since X' is the
intersection of the closed set ConeT(X) with the hyperplane ¢t = 1in R" xR, X
is indeed closed. it remains to prove that X is bounded. Assume for contradiction
that X is unbounded. Then, we can find a sequence z* € X, i > 1, with [|z*|]; —
o0 as i — 00. Passing to a subsequence, we can assume that the || - [[;-unit vectors
& = x'/||z"||2 converge to some unit vector £. Setting t; := 1/||x*||2, we have
ti >0,t; — 0asi— oo, and £'/t; = 2’ € X, so that [';¢;] € ConeT(X). Since
ConeT(X) is closed and by construction [£%;¢;] — [£;0] as i — oo, we should have
[€;0] € ConeT(X), which is impossible as ||£]|o = 1.

The final claim, i.e., ConeT(X) is closed if and only if cl (Persp(X)) = ConeT(X),
follows immediately as well. Indeed, whenever X is nonempty and convex, we have
Persp(X) = ConeT(X) \ {0,,41} and clearly 0,1 € cl(Persp(X)), implying that
cl(ConeT (X)) = cl(Persp(X)). As a result, whenever X is nonempty and convex,
ConeT(X) is closed if and only if ConeT(X) = cl(Persp(X)). ]
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For a nonempty convex set X, let us also define the closure of ConeT(X), i.e.,
the set

ConeT(X) :=cl{[z;t] e R"xR: t >0, z/t € X}.

Clearly, ConeT(X) is a closed cone in R"™! containing X *. Moreover, it is im-
mediately seen that ConeT(X) is the smallest (w.r.t. inclusion) closed cone in
R which contains X and that this cone remains intact when extending X
to the closure of X. We will refer to ConeT(X) as the closed conic transform
of X. In some cases, ConeT(X) admits a simple characterization. An immediate
illustration of this is as follows:

Fact 1.1.36 Let K be a closed cone and let the set
X ={zeR": Az —-be K}
be nonempty. Then, ConeT(X) = {[z;t] e R" x R: Az —bt € K, t > 0}.

For useful additional facts on closed conic transforms, see Exercise [[II.121-3.

1.6 Proofs of Facts

Fact [I.1.6] The unit ball of a norm || - ||, i.e., the set
{reR": [lzf| <1},
same as every other || - ||-ball
By(a) :={z e R": |z —al <1},
(here a € R™ and r > 0 are fixed) is convex.

In particular, Euclidean balls (]| - ||-balls associated with the standard Euclidean
norm ||z||2 := vV Tz) are convex.
Proof. Let us prove that the set Q := {z € R" : ||z — a|| < r} is convex. For any z’,z" € Q
and A € [0, 1], we have
[A2” + (1= N)a” —al| = [IA(2" — a) + (1 = A)(z" - a)
<A =a)ll+ 11 =N —a)|
= Al —al| + (1 =Nz’ —a|| <M+ (1 =Nr =7

Here, the first inequality follows from Triangle inequality, and the second equality follows from
homogeneity of norms, and the last inequality is due to z’,2"" € Q. Thus, from ||Az" + (1 —
AN)z” — al| < r, we conclude that Az’ + (1 — \)z” € Q as desired. [ ]

Fact [I.1.8] Unit balls of norms on R™ are exactly the same as convex sets V' in R"
satisfying the following three properties:

(i) V is symmetric with respect to the origin: z € V = —z € V;
(i) V is bounded and closed;
(iii) V contains a neighborhood of the origin, i.e., there exists > 0 such that the
centered at the origin Euclidean ball of radius r — the set {z € R" : ||z|[» < 7}
— is contained in V.
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Any set V satisfying the outlined properties is indeed the unit ball of a particular
norm given by

||y =inf{t >0:t"'z € V}. (1.2

Proof. First, let V' be the unit ball of a norm || - ||, and let us verify the three stated properties.
Note that V' = —V due to ||z|| = || — z||. V is bounded and contains a neighborhood of the
origin due to equivalence between | - || and || - |2 (Proposition [B.3]). Moreover, V is closed. To
see this note that || - || is Lipschitz continuous with constant 1 with respect to itself since by
Triangle inequality and due to ||z — y|| = ||y — z|| we have

Mzl =Nyl < llz = yll, Vz,y € R,
which implies by Proposition @ that there exists L. < oo such that
Nzl = llylll < Ly ylle = yll2,  Vo,y € R,

that is, || - || is Lipschitz continuous (and thus continuous). And of course for any a € R, the
sublevel set {x € R" : f(z) < a} of a continuous function is closed.

For the reverse direction, consider any V possessing properties (i —iii). Then, as V is bounded
and contains a neighborhood of the origin, the function ||-||v is well defined, it is positive outside
of the origin and vanishes at the origin. Moreover, | - ||y is homogeneous — when the argument
is multiplied by a real number A, the value of the function is multiplied by |A| (by construction
and since V = =V).

Now, let us show that the relation V' = {y € R" : ||y|lv < 1} holds. Indeed, the inclusion
V C {y : |lyllv < 1} is evident. So, we will verify that ||y|lv < 1 implies y € V. Consider
any y such that ||y]lv < 1 and let ¢ := ||y||v (note that ¢ € [0,1]). There is nothing to prove
when ¢ = 0, which due to the boundedness of V implies that y = 0 and V' contains the origin.
When ¢ > 0, then, by definition of || - ||v, there exists a sequence of positive numbers {¢;} that
converges to ¢ as i — oo such that y* = ti_ly € V. Then, as V is closed, § :=t 'y € V. And
since 0 < t < 1, y = t¥ is a convex combination of the origin and §. As both 0 € V and y € V
and V is convex, we conclude y € V.

Let us now check that || - ||v satisfies the Triangle inequality. As ||-||v is nonnegative, all we have
to check is that [z +yllv < [zl + |yllv when & # 0, y # 0. Setting 7 = z/I|z]lv, 7 := u/llsllv.
we have by homogeneity ||Z||v = ||g]lv = 1. Then, from the relation V = {y € R" : |ly||lv < 1}
we deduce £ € V and §y € V. Now, as V' is convex and z,y € V, we have

1 lzllv lyllv

(@ +y) = zZ+ gev.
lllv =+ llyllv lzllv +llyllv = llzllv + llyllv
That is, . m(x + y)H < 1. Then, once again by homogeneity of || - ||y we conclude that
v
e +yllv < llzllv +llyllv- u

Fact Let @ be an n x n matrix which is symmetric (i.e., @ = Q") and positive
definite (i.e., " Qx > 0 for all & # 0). Then, for every nonnegative r, the Q-ellipsoid
of radius r centered at a, i.e., the set

{zeR": (z—a)' Qx—a)<r?}

is convex.

Proof. Note that since Q is positive definite, the matrix P := Q/? (see section for the
definition of the matrix square root) is well-defined and positive definite. Then, we have P is
nonsingular and symmetric, and

{xER”: (:Efa)TQ(;cfa)gvg}:{xGR": (:cfa)TPTP(:vfa)Sﬁ}
={zeR": ||[P(z—a)|2<r}.

Now, note that whenever ||-|| is a norm on R™ and P is a nonsingular n X n matrix, the function
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x +— ||Pz|| is a norm itself (why?). Thus, the function ||z||¢ := /2T Qz = |[|Q*/?z||2 is a norm,
and the ellipsoid in question clearly is just the || - ||g-ball of radius r centered at a. |
Fact [I.T.1T] A set M C R" is convex if and only if it is closed with respect to taking
all convex combinations of its elements. That is, M is convex if and only if every

convex combination of vectors from M is again a vector from M.
Hint: Note that assuming A{,..., A, > 0, one has

Ai
)\2+/\3+ A

Z izt = Mzt + A2+ Xs+...+An) Zuixz, where p;

i=1 i
Proof. There is nothing to prove when M is empty, so we assume M # @. If M is closed with
respect to taking arbitrary convex combinations of its points, it is closed with respect to taking
2-point combinations, which is exactly the same as to say that M is convex. For the reverse
direction, let M be convex. We will prove that a point given as a convex combination of N points
from M is itself in M by induction on N. The claim is clearly true when N = 1 (independent
of what M is) and is true when N = 2 (since M is convex). Suppose now that the claim is true
for some N > 2. Consider (N 4 1)-term convex combination = = > +' A
M. If &y =1, we have z=2z'€ M. When A\ < 1, we have

N
1 Ai
T = M\T —|—(1—)\1)(E 1_)\1 )

- N N . -
Define Z := ;" , 1= )\1 z'. As YL, A = 1 — A1, we see that 7 is an N-term convex combination

ix' of points z* from

of points from M and thus belongs to M by the inductive hypothesis. Hence, z = A\ z* +(1-\)Z
is convex combination of z',Z € M, and as M is convex we conclude € M. This completes

the inductive step. |
Fact [I.1.14{ [Convex hull via convex combinations] For a set M C R”,
Conv(M) = {the set of all convex combinations of vectors from M} .

Proof. Define M := {the set of all convex combinations of vectors from M }. Recall that a con-
vex set is closed with respect to taking convex combinations of its members (Fact |[.1.11)); thus

any convex set containing M also contains M. As by definition Conv(M) is the intersection of
all convex sets containing M, we have Conv(M) D M. It remains to prove that Conv(M) C M.
We start with the claim that M is convex. By Fact |L.1.11{ M is convex if and only if every convex

combination of points from M is also in M. Indeed this criteria holds for M: let z' € M for
i=1,...,N and consider a convex combination of these points, i.e.,

Z)\,a:,

where \; > 0 and Z 1Ai=1 Foreachi=1,...,N, as e ]\7 by definition of ﬂ, we have

=1

z :Z;\Ilpum 7Whereac Je M, i >Oandzj ‘1 tij = 1. Then, we arrive at
N N N; N N N;
S D DR 9) SR
i=1 i=1 j=1 i=1 j=1
Clearly, v;,; 1= Aipts,; is nonnegative for all 4, j. Moreover,
N
D) INTES 9 SLVHES D DI V!
=1 j=1 =1 j=1 =1

where the third and fourth equalities follow from Z;.V:il wi; = 1 for all ¢ and Zfil A= 1,
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respectively. Therefore, & = vazl Zj\;’l miji‘j is nothing but a convex combination of points
from M, and thus & € M proving that M is convex. Clearly, we also have M O M, and so by
definition of Conv(M), we deduce M O Conv(M), as desired. |

Fact [.LI.T7] A set K C R" is a cone if and only if it is nonempty and

e is conic,ie., x € K,t >0 = tx € K, and
e contains sums of its elements, i.e.,, z,y € K — z+y € K.
Proof. Suppose K is nonempty and possesses the above properties. Let us prove that K is a
cone. The first property already states that K is conic, so we will show that K is convex. For
any =,y € K and X € [0, 1], we have

A+ (1-Ny=z+7,

where Z := Az and § := (1 — A)y. As A € [0,1], 2,y € K and K is conic, we have Z,7 € K.
Moreover, since K contains sum of its elements, we conclude Az + (1 — Ny = (Z+7) € K, i.e.,
K is convex.

For the reverse direction, if K is a cone, then by definition K is nonempty, conic and convex.
Then, for any z,y € K, as K is convex we have %x + %y € K, and as K is conic we arrive at
z+y=2(3z+1y) € K. |

Fact [1.1.20] [Conic hull via conic combinations] The conic hull Cone(K) of a
set K C R" is the set of all conic combinations (i.e., linear combinations with
nonnegative coefficients) of vectors from K:

N
Cone(K)=<{z€R": AN>0, )\ >0,2' € K,i < N:x = Z)\ixi
i=1
Proof. The case of K = & is trivial, see the comment on the value of an empty sum after the
statement of Fact When K # @, this fact is an immediate corollary of Fact |
Fact [I.1.23] The closure of a set M C R" is exactly the set composed of the limits

of all converging sequences of elements from M.

Proof. Let M be the set of the limit points of all converging sequences of elements from M.
We need to show that cl M = M. Let us first prove cl M 2 M. Suppose x € M. Then, x is the
limit of a converging sequence of points {z'} € M C cl M. Since cl M is a closed set, we arrive
at x € cl M.

For the reverse direction, note that by definition cl M is the smallest (w.r.t. inclusion) closed
set that contains M, so it suffices to prove that M is a closed set satisfying M D M. It is easy
to see that M O M holds as for any © € M, the sequence {xz} where z¢ = z is a converging
sequence of points from M with the limit 2 and thus by definition of M we deduce z € M.
Now, consider a converging sequence of points {acl} C M, and let us prove that the limit Z of
this sequence belongs to M. For every i, since the point z* € M is the limit of a sequence of
points from M, we can find a point y* € M such that ||z — ||z < 1/i. The sequence {y’} is
composed of points from M and clearly has the same limit as the sequence {z'}, so that Z is

the limit of a sequence of points from M and as such belongs to M. |

Fact [I.1.36] Let K be a closed cone, and let the set
X:={zeR": Az —-be K}

be nonempty. Then, ConeT(X) = {[z;t] e R" xR : Az —bt € K, ¢t > 0}.
Proof. Define X := {[z;t] e R"" xR : Az — bt € K, t > 0}; so, we should prove that X =
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ConeT(X). Recall that ConeT(M) := cl{[z;t] e R" x R: t >0, =/t € M} for any nonempty
convex set M. Note that for the given set X, its perspective transform is
Persp(X) = {[z;t] e R" xR: t >0, A(z/t) —be K}
={[z;t] eR" xR: t >0, Ax — bt € K},

where the last equality follows from K being conic. So, Persp(X) C )/(:, and by taking the
closures of both sides we arrive at ConeT(X) = cl(Persp(X)) C cl()?) — X, where the last
equality follows as X clearly is closed. Hence, ConeT(X) C X. To verify the opposite inclusion,
consider [z;t] € X and let us prove that [z;t] € ConeT(X). Let Z € X (recall that X is
nonempty). Then, [Z;1] € X. Moreover, as X is a cone and the points [z;t] and [Z; 1] belong to
)?, we have zc 1= [z + €T;t + €] € X for all € > 0. Also, for € > 0, we have t + € > 0 and so
ze € X implies @Tle)(m +€Z) € X, which is equivalent to ze = [z + €Z;t + €] € Persp(X). Finally,
as [z;t] = lime 40 2z, we have [z;t] € cl(Persp(X)) = ConeT(X), as desired. [ ]



2

Theorems of Caratheodory, Radon, and
Helly

We next examine three theorems from Convex Analysis that have important
consequences in Optimization.

2.1 Caratheodory Theorem

Let us recall the notion of dimension from Linear Algebra. First of all, we define
the dimension of a linear subspace. This is precisely the number of linearly inde-
pendent vectors spanning the linear subspace. In the case of an affine subspace,
we talk about its affine dimension, which is precisely the dimension of the linear
subspace that is underlying (parallel) to the given affine subspace. Based on these
notions, we are now ready to define dimension of a nonempty set M.

Definition I.2.1 [Dimension of a nonempty set] Given a nonempty set M C
R", its dimension (also referred as its affine dimension) [notation: dim(M)]
is defined as the affine dimension of Aff(M), or, which is the same, linear
dimension of the linear subspace parallel to Aff(M).

Remark 1.2.2 Note that some subsets of R" are in the scopes of several defi-
nitions of dimension. Specifically, linear subspace is also an affine subspace, and
similarly, an affine subspace is a nonempty set as well. It is immediately seen that
if a set is in the scope of more than one definition of dimension, all applicable
definitions attribute the set with the same value of the dimension. &

As an informal introduction to what follows, draw several points (“red points”)
on the 2D plane and a take a point (“blue point”) in their convex hull. You will
observe that whatever your selection of red points and the blue point in their
convex hull, this point will belong to a properly selected triangle with red vertices.
The general fact is as follows.

Theorem 1.2.3 [Caratheodory Theorem] Consider a nonempty set M C
R", and let m := dim(M). Then, every point z € Conv(M) is a convex
combination of at most m + 1 points from M.

Proof. Let E := Aff(M). Then, dim(E) = m. The claim we want to prove is
trivially true when m = 0, thus assume that m > 0. Replacing, if necessary, the

30
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embedding space R" of M with F (the latter is, geometrically, just R™), we can
assume without loss of generality that m =n > 0.
Let € Conv(M). By Fact [I.1.14] on the structure of convex hull, there exist

zb, ...,z from M and convex combination weights )i, ..., Ay such that

N N
:U:Z/\iaci, where )\iZO,Vizl,...,N,Z)\Z—:L
=1 =1

Among all such possible representations of x as a convex combination of points
from M, let us choose one with the smallest possible N, i.e., involving fewest
number of points from M. Let this representation of x be the above convex
combination. We claim that N < m + 1; proving this claim is all we need to
complete the proof of Caratheodory Theorem.

Let us assume for contradiction that N > m + 1. Now, consider the following
system in N variables p1, ..., uy:

N _ N
Zﬂil’lzov ZMZO-
i=1 i=1

This is a system of m + 1 scalar homogeneous linear equations (recall that we are
in the case of m = n, that is, ' € R™). As N > m + 1, the number of variables
in this system is strictly greater than the number of equations. Therefore, this
system has a nontrivial solution, say d1,...,dy, i.e.,

N N
D St =0, Y 6 =0, and [5;;...;6x] # 0.
=1 i=1

Then, for every t € R, we have the following representation of x as a linear
combination of the points z!,..., z":
N
Z()‘i +t6;)x" = .
i=1
For ease of reference, let us define \;(t) := \; +¢J; for all i and for all ¢ € R. Note
that for any ¢t € R, by the definition of A\; and §;, we always have
N N N N
Z)\i(t) = Z()‘i +15;) = Z)\i +tz5i =1
i=1 i=1 i=1 i=1
Moreover, when t = 0, \;(0) = \; for all 4, and thus this is a convex combination
as all \;(0) > 0 for all 7. On the other hand, from the selection of ¢;, we know
that vazl d; = 0 and [0;;...;dn5] # 0, and thus at least one entry in § must be
negative. Therefore, when t is large, some of the coefficients \;(t) will be negative.
There exists, of course, the largest ¢ = ¢* for which A\;(t) >0 foralli=1,...,N
holds, and for ¢ = t* at least some of \;(t) are zero. Specifically, when setting
I=:={i: §; <0},

AZ . . )\Z . —
i*Eargmin{‘(”: ze[‘}, and t*::mm{(s‘: 1el },
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we have \;(t*) > 0 for all ¢ and A\;«(¢*) = 0. This then implies that we have
represented x as a convex combination of less than N points from M, which
contradicts the definition of N (being the smallest number of points x* needed in
the convex combination representation of x). [ |

Remark 1.2.4 Caratheodory Theorem is sharp: for every positive integer n,
there is a set of n+ 1 affinely independent points in R™ (e.g., the origin and the n
standard basic orths) such that certain convex combination of these n 4 1 points
(specifically, their average) cannot be represented as a convex combination using
strictly less than n 4 1 points from the set. &

Let us see an instructive corollary witnessing the power of Caratheodory The-
orem.

Corollary 1.2.5 Let X C R" be a closed and bounded set. Then, Conv(X)
is closed and bounded as well.

Proof. There is nothing to prove when X is empty. Now let X be nonempty,
closed and bounded, and define Y := Conv(X). Boundedness of Y is evident. In
order to verify that Y is closed, let {z'};>; be a converging sequence of points
from Y. By Caratheodory Theorem, every one of vectors z’, being a convex
combination of vectors from X, has a representation of the form z* = Z::ll ALt
of at most n+1 vectors z! from X, i < n+1, where \! are the corresponding convex
combination weights. Since X is bounded, passing to a subsequence t; <ty < ...,
we can assume that the sequences {z}*},>; and {\/*},>, converge as s — oo for
every ¢ < n + 1, the limits being, respectively, vectors z; and reals \;. We clearly
have lim;_, . 2t = lim,_, o Z?:ll Negle = Z?:ll \;z;. In addition, as X is closed,
x; = lim,_o x¥* € X. Moreover, clearly \; > 0 and Z:.:rll A; = 1. The bottom
line is that lim; ., zt = Z?jll Aix; is a convex combination of points from X and
thus belongs to Y as Y = Conv(X). ]

Remark 1.2.6 Note that the convex hull of a closed unbounded set is not always
closed. For example, consider the set X = {[0;0]} U {[u;v] € R% : uwv = 1} which
is closed and unbounded, and we have Conv(X) = {[u;v] € RZ : u > 0,0 > 0} U
{[0; 0]} which is not closed. &

Let us see a concrete illustration, taken from [Nem24], of Caratheodory Theo-
rem.

2.1.1 Caratheodory Theorem, Illustration

Suppose that a supermarket sells 99 different market blend herbal teas, and every
herbal tea is a certain blend of 26 herbs A,...,Z. In spite of such a variety of
marketed blends, John is not satisfied with any one of them; the only herbal tea
he likes is their mixture, in the proportion

1:2:3:...:98:99.
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Once it occurred to John that in order to prepare his favorite tea, there is no
necessity to buy all 99 market blends; a smaller number of them will do. With
some arithmetics, John found a combination of 66 marketed blends which still
allows to prepare his tea. Do you believe John’s result can be improved?
Answer: In fact, just 26 properly selected market blends are enough.
Ezxplanation: Let us represent a blend by its unit weight portion, say, 1g. Such

a portion can be identified with 26-dimensional vector x = [zy;...;x], where
x; is the weight, in grams, of herb #i in the portion. Clearly, we have z €
R and % #; = 1. When mixing market blends z', 22, ..., 2% to get unit

weight portion = of mixture, we take \; > 0 grams of market blend 27, j =
1,...,99, and mix them together, that is, z = Z?ilx\jxj. Since the weight of
the mixture represented by z is 1 gram and A;s corresponds to the weight (in
grams) of market blends 27 used in z, we get Z?il)\j = 1. The bottom line is
that blend x can be obtained by mixing market blends z?,..., 2% if and only if
x € Conv{z',... 2%}

Then, by Caratheodory Theorem, every blend which can be obtained by mixing
market blends can be obtained by mixing m + 1 of them, where m is the affine

dimension of the affine span of z!,...,2%. In our case, this span belongs to the
25-dimensional affine plane {x eRP®: Y 1, = 1} that is, m < 25. [ ]

Caratheodory Theorem admits a “conic analogy” as follows:

Fact 1.2.7 [Caratheodory Theorem in conic form] Let a € R™ be a conic

combination (linear combination with nonnegative coefficients) of N vectors

a',...,a”. Then, a is a conic combination of at most m vectors from the

collection at, ..., a".

2.2 Radon Theorem

As an informal introduction to what follows, draw 4 arbitrary yet distinct from
each other points on the plane and try to color some of them in red, and remaining
in blue in such a way that the convex hull of red points will intersect the convex
hull of the blue ones. Experimentation will suggest that this is always possible.
The general fact is as follows.

Theorem 1.2.8 [Radon Theorem] Let z* € R", i < N, where N > n + 2.
Then, there exists a partition TUJ = {1,..., N} of the index set {1,..., N}
into two nonempty disjoint (I NJ = @) sets I and J such that

Conv ({z':i€I})NConv ({2’ :j € J})# @.

Proof. Consider the following system of homogeneous equations in N variables
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M1y oy UN

N
Z pi = 0.
i=1

Note that as 2' € R", this system has n + 1 scalar linear equations. Moreover, as
the premise of the theorem states that N > n + 1, we deduce that this system of
equations has a nontrivial solution Aj,..., Ay:

N

N
DXt =0, > A=0, and[\;...;\x] #O.
=1

i=1
Let I := {i: \; >0} and J := {i: \; <0}. Then, I and J are nonempty and
form a partition of {1,..., N} (since the sum of all \;’s is zero and not all \,;’s
are zero). Moreover, we have

a:= Z)‘i = Z(—)\j) > 0.
iel jeJd
Then, by setting

Ai . j .
a; ;= —, foriel, and B; := —=2, for j € J,
a a

we get
i€l jeJ

In addition, we also have,

i j 1 i j 1 al i
i€l JjeJ el jedJ i=1

We conclude that the vector Y «;z* = > ;27 is the desired common point of

iel jeJ

Conv ({z’ : i € I}) and Conv ({27 : j € J}). [ ]
Remark [.2.9 Same as in Caratheodory Theorem, the bound in Radon Theorem
is sharp: for every positive integer n, there exist n+1 points in R™ (e.g., the origin
and the n standard basic orths) which cannot be split into two disjoint subsets
with intersecting convex hulls. &

2.3 Helly Theorem

What follows is a multidimensional extension of the nearly evident fact:

Given finitely many segments [a;, b;] on the line such that every two of
the segments intersect, we can always find a point common to all the
segments.
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Multidimensional extension of this fact is as follows.

Theorem 1.2.10 [Helly Theorem, I] Let F := {Si,..., Sy} be a finite family
of convex sets in R™. Suppose that for every collection of at most n + 1 sets
from this family, the sets from the collection have a point in common. Then,
all of the sets S;, i < N, have a common point.

Proof. We will prove the theorem by induction on the number N of sets in
the family. The case of N < n 4 1 holds immediately due to the premise of
the theorem. So, suppose that the statement holds for all families with certain
number N > n + 1 of sets, and let S1,..., Sy, Sy,1 be a family of N 4 1 convex
sets which satisfies the premise of Helly Theorem. We need to prove that the
intersection of the sets Si,..., Sy, Snyi1 is nonempty.

For each i < N 4 1, we construct the following N-set families

fi = {517827"'7Si—175’i+17"'7SN+1}7 VZ§N+17

where the N-set family F' is obtained by deleting from our N + 1-set family the
set S;. Note that each of these N-set families F* satisfies the premise of the Helly
Theorem, and thus, by the inductive hypothesis, the intersection of the members
of F' is nonempty:

Ti::51ﬁSgﬁ...ﬂSi_lﬂSiHﬂ...ﬁSNH%@, VZSN—FI

For each i < N + 1, choose a point z* € T* (recall that T is nonempty!). Then,
we have N + 1 points 2z € R". As N > n+ 1, we have N +1 > n + 2 and by
Radon Theorem, we can partition the index set {1,..., N+1} into two nonempty
disjoint subsets I and J in such a way that certain convex combination x of the
points z°, ¢ € I, is a convex combination of the points 27, 7 € J, as well. Let
us verify that z belongs to all the sets Si,...,Sy.1, which will complete the
inductive step. Indeed, select any index ¢* < N + 1 and let us prove that x € S;«.
We have either i* € I or ¢* € J. Suppose first that * € I. Then, all the sets
T7, j € J, are contained in S;- (since S;- participates in all intersections which
give T* with i # ¢*). Consequently, all the points 7, j € J, belong to S;-, and
therefore x, which is a convex combination of these points, also belongs to .S5;-
(recall that all S; are convex!), as required. Suppose now that * € J. In this
case, a similar reasoning shows that all the points !, ¢ € I, belong to S;., and
therefore x, which is a convex combination of these points z¢, i € I, belongs to
S;-. The induction and the proof are complete. |

For an alternative proof of Theorem which does not utilize Radon The-
orem, see Exercise [[.23]

Remark 1.2.11 Helly Theorem admits a small and immediate refinement as
follows:

Let F := {S1,...,Sxy} be a family of N nonempty convex sets in R",
and let m be the dimension of | J, . S;. Assume that for every collection
of at most m+ 1 sets from the family, the sets from the collection have a
point in common. Then, all sets from the family have a point in common.
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The justification of this claim follows from viewing S; as subsets of £ = Aff(U,S;)
rather than R™ and applying the standard Helly Theorem. &

Remark 1[.2.12 Same as Caratheodory and Radon Theorems, Helly Theorem
is sharp: for every positive integer n, there exists a finite family of convex sets
in R™ such that every n of them have a common point, but all of them have no
common point. Indeed, take n + 1 affinely independent points z',...,z" ™! in R"
(say, the origin and the n basic orths in R™) and n + 1 convex sets Si,...,5,11
with S; being the convex hull of points z!,..., 27! 2t ... 2"t Every n of
these sets have a point in common (e.g., the common point of Sy, S3, S, ..., S,11
is £?), but there is no point common to all n + 1 sets (why?). &

2.3.1 Helly Theorem, Illustration A

E| Suppose that we need to design a factory which, mathematically, is described
by the following set of constraints in variables x € R™:

AII}‘ Z d [dl, ey d1000: demands]
Bx < f [fi1>0,...,fio > 0: amounts of resources of various types] (F)
Cx < ¢, [other constraints]

where Az > d with a vector d € R'%% represents the demand constraints, Bx < f
with a vector f € R!? corresponds to availability of various resources, and the
constraint C'x < ¢ represents various additional restrictions. The data A, B,C, ¢
are given in advance, but the demand d € R'%% is unknown and we are asked to
determine the resource availability levels f € R!°. In particular, we are asked to
buy in advance the resources f; > 0,¢=1,...,10, in such a way that the factory
will be able to satisfy all demand scenarios d from a given finite set D, that is,
(F) should be feasible for every d € D. The unit cost of resource i is given to us
as a; > 0, that is, f; amount of resource i costs us a; f; dollars.

It is known that for every single demand scenario d € D proper (depending on
the scenario d) investment of at most $1 in resources suffices to meet the demand
d.

How large should the investment in resources be in the following cases when D
contains

1. just one scenario?
2. 3 scenarios?
3. 10 scenarios?
4. 100,000 scenarios?

Answer: We claim that in these scenarios the following investment amounts will
suffice:

1. $1 investment is enough.
2. $3 investment is enough.

I The illustration to follow is taken from [Nem24].
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3. $10 investment is enough.
4. $10 investment is enough.

Ezplanation:

Cases 1 — 3: In these cases, we know that every scenario d from D can be met
by a vector of resources f; € R’ incurring a cost of at most $1. We lose nothing
when assuming that f; costs exactly $1, since if d is met by a vector of resources
f of cost < $1, it is met by every vector f’ > f, and since per-unit costs of
resources are positive, we can select [’ to cost exactly $1. Thus, when we are
given scenarios d!, ..., d" from D, we can meet every one of them with the vector
of resources f := fg + ...+ fg, since f > fq for every ¢ = 1,..., k. Then, due
to the structure of our model, f meets demand scenario d’.

Case 4: We claim that $10 investment is always enough no matter what the
cardinality of D is. To see this, for every d € D, we define the sets

Sld, fl ={xeR": Az >d, Bx < f, Cx <c},
Fy={feRY: f>0, a'f=10, S[d, f] #2}.

Based on these definitions, F; is precisely the set of vectors f € R such that
their cost a ' f is exactly $10 and the associated polyhedral set S|f, d] is nonempty,
that is, the resource vector f allows to meet the demand d. Note that the set Fy
is convex as it is the linear image (in fact just the projection) of the convex set

{feRY, zeR": f>0, a' f=10, z €S, f]}.

The punchline in this illustration is that every 10 sets of the form F,; have a
common point. Suppose that we are given 10 scenarios d, ..., d*° from D. Then,
we can meet demand scenario d* by investing $1 in properly selected vector of
resources fg € RI%. As we proceeded in the cases 1-—3, by investing $10 in the
single vector of resources f := fg + ...+ fqpo, we can meet every one of the
scenarios d', ..., d", whence f € FyuN...NFyo. Since all 100,000 sets Fy, d € D,
belong to the 9-dimensional affine plane in R composed of vectors of cost $10
(ie., Fy C{f € R : a'f =10} for all d € D) and every 10 of these sets Fy
have a point in common, all these sets have a common point, say f., see Remark
That is, f, € F,; for all d € D, and thus by definition of F};, we deduce that
every one of the sets S[d, f.], d € D, is nonempty, that is, the vector of resources
f« (which costs $10) allows us to satisfy every demand scenario d € D. [ |

2.3.2 Helly Theorem, Illustration B

Consider an optimization problem

. T .
= : . < == e
Opt, Inin {c¢"z: gi(x) <0, i=1,...,1000}

with 11 variables z1,...,2;; and convex constraints, i.e., every one of the sets

X, ={zeR": g(z) <0}, i=1,...,1000,
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is convex. Suppose also that the problem is solvable with optimal value Opt, = 0.

Clearly, when dropping one or more constraints, the optimal value can only de-

crease or remain the same.

Is it possible to find a constraint such that even if we drop it, we preserve the

optimal value? Two constraints which can be dropped simultaneously with no

effect on the optimal value? Three of them?

Answer: We can in fact drop as many as 1000 — 11 = 989 appropriately chosen

constraints without changing the optimal value!

Ezxplanation: The case of ¢ = 0 is trivial - here one can drop all 1000 constraints

without varying the optimal value! Therefore, from now on we assume ¢ # 0.
Assume for contradiction that every 1l-constraint relaxation of the original

problem has negative optimal value. Since there are finitely many such relax-

ations, there exists € < 0 such that every problem of the form

ngn {ch PG (.Z') S 07 <5 Qi (f]?) S 0}

has a feasible solution with the objective value < —e. Besides this, such an 11-
constraint relaxation of the original problem has also a feasible solution with the
objective equal to 0 (namely, the optimal solution of the original problem), and
since its feasible set is convex (as the intersection of the convex feasible sets of
the participating constraints), the 11-constraint relaxation has a feasible solution
x with ¢"2 = —e. In other words, every 11 of the 1000 convex sets

Y, :={z e R": c'x = —e, g;(z) <0}, i=1,...,1000

have a point in common. Now, consider the hyperplane H := {z € R : ¢'z =

—e}. Note that ¥; C H for all i. Moreover, as ¢ # 0, dim(H) = 10 and thus
dim(U; 2" Y;) < dim(H) = 10. Since every 11 of these sets Y; have a nonempty
intersection and dim({J}2)’ ¥;) < 10, all of them have a point in common. In
other words, the original problem should have a feasible solution with negative

objective value, which is not possible as Opt, = 0. ]

2.3.3 % Helly Theorem for infinite families of convex sets

In Helly Theorem as presented above we dealt with a family of finitely many
convex sets. To extend the statement to the case of infinite families, we need to
slightly strengthen the assumptions, essentially, to avoid complications stemming
from the following two situations:

e lack of closedness: every two (and in fact — finitely many) of convex sets A; =
{reR:0<z<1/i},i=1,2,..., have a point in common, while all the sets
have no common point;

e “intersection at 0o”: every two (and in fact — finitely many) of the closed convex
sets A, ={r € R:x >i},i=1,2,..., have a point in common, while all the
sets have no common point.

Resulting refined statement of Helly Theorem for a family of (possibly) in-
finitely many sets is as follows:
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Theorem 1.2.13 [Helly Theorem, II] Let F be an arbitrary family of convex
sets in R™. Assume that

(i) for every collection of at most n + 1 sets from the family, the sets from
the collection have a point in common;
and

(ii) every set in the family is closed, and the intersection of the sets from a
certain finite subfamily of the family is bounded (e.g., one of the sets in the
family is bounded).
Then, all the sets from the family have a point in common.

Proof. By (i), Theorem implies that all finite subfamilies of F have
nonempty intersections, and also these intersections are convex (since intersec-
tion of a family of convex sets is convex by Proposition ; in view of (ii)
these intersections are also closed. Adding to F intersections of sets from finite
subfamilies of F, we get a larger family /' composed of closed convex sets, and
sets from a finite subfamily of this larger family again have a nonempty intersec-
tion. Moreover, from (ii) it follows that this new family contains a bounded set
Q. Since all the sets are closed, the family of sets

{QNQ :Q € F}

forms a nested family of compact sets (i.e., a family of compact sets with nonempty
intersection of sets from every finite subfamily). Then, by a well-known theorem
from Real Analysis such a family has a nonempty intersectio. ]

2.4 Proofs of Facts

Fact |I.2.7| [Caratheodory Theorem in conic form| Let a € R™ be a conic combi-
nation (linear combination with nonnegative coefficients) of N vectors a', ..., a".
Then, a is a conic combination of at most m vectors from the collection a', ..., a".
Proof. The proof follows the same lines as the proof of the “plain” Caratheodory Theorem. Con-
sider the minimal, in terms of the number of positive coefficients, representation of a as a conic
combination of a', ..., a"; w.l.o.g., we can assume that this is the representation a = Zf(zl Aiat,
Xi > 0,7 < K. We need to prove that K < m. Assume for contradiction that K > m. Con-
sider the system of m scalar linear equations Zfil §;a' = 0 in variables §. The number K of
unknowns in this system is larger than the number m of equations. Thus, this system has a

nontrivial solution §. Passing, if necessary, from 6 to —9, we may further assume that some

2 Here is the proof of this Real Analysis theorem: assume for contradiction that the intersection of the
compact sets Qq, o € A, is empty. Choose a set Qy* from the family; for every € Q4+ there is a
set Q% in the family which does not contain = (otherwise z would be a common point of all our
sets). Since Q7 is closed, there is an open ball V, centered at x which does not intersect Q*. The
balls Vi, € Qq*, form an open covering of the compact set Qq*. Since Q=+ is compact, there
exists a finite subcovering Vy,,...,Vzy of Qq+ by the balls from the covering, see Theorem
Since Q*i does not intersect V., we conclude that the intersection of the finite subfamily
Qax,Q%L, ..., Q"N is empty, which is a contradiction.
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of &; are strictly negative. Define A;(t) := \; + td; for all i. Note that for all ¢t > 0 we have
a = 3K, Ni(t)a'. Let t* be the largest ¢t > 0 for which all \;(t) are nonnegative (t* is well
defined, since for large ¢ some of \;(t), i.e., those corresponding to §; < 0, will become negative),
we get a = %, Ai(t*)a’ with all coefficients A;(t*) nonnegative and at least one of them zero,

contradicting the origin of K. |
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Polyhedral representations and
Fourier-Motzkin elimination

3.1 Polyhedral representations

Recall that by definition a polyhedral set X in R™ is the solution set of a finite
system of nonstrict linear inequalities in variables z € R™:

X={zeR": Az<b}={zeR": ¢/z<b,1<i<m}.

We call such a representation of X its polyhedral description. A polyhedral set
is always convex and closed (Proposition [[.1.2)). We next introduce the notion of
polyhedral representation of a set X C R”.

Definition 1.3.1 A set X C R” is called polyhedrally representable if it
admits a representation of the form

X={zeR": Jue R" Az + Bu<c}, (3.1)

where A, B are m x n and m X k matrices and ¢ € R™. A representation
of X of the form of (3.1)) is called a polyhedral representation of X, and the
variables u € R¥ in such a representation are called extra variables.

Geometrically, a polyhedral representation of a set X C R™ is its repre-
sentation as the projection {x eR": Jue R"[x;u] € Y} of a polyhedral set
Y = {(z,u) e R" x R¥: Az + Bu < ¢}. Here, Y lives in the space of n+ k vari-
ables z € R™ and u € R*, and the polyhedral representation of X states that X
can be obtained by applying to the points of Y the linear mapping (the projec-
tion) [z;u] — z : R"** — R™ of the (n + k)-dimensional space of (x,u)-variables
(the space where Y lives) to the n-dimensional space of z-variables where X lives.

41
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Figure 3.1. Polyhedral representation of hexagon in xy-plane
as the projection of rotated 3D cube onto the plane

Note that every polyhedrally representable set is the image under a linear
mapping (even a projection) of a polyhedral, and thus convex, set. It follows that
a polyhedrally representable set is definitely convex (Proposition [I.1.21]).

Example 1.3.1 Every polyhedral set X = {z € R": Az < b} is polyhedrally
representable: a polyhedral description of X is nothing but a polyhedral repre-
sentation with no extra variables (k = 0). Vice versa, a polyhedral representation
of a set X with no extra variables (k = 0) clearly is a polyhedral description of
the set (which therefore is polyhedral). O

Example 1.3.2 Consider the set X = {xz € R": >""" | |z;| < 1}. Note that this
initial description of X is not of the form {z € R": Az < b}. Thus, from this
description of X, we cannot immediately say whether it is polyhedral or not.
However, X admits a polyhedral representation, e.g., the following representation

X = xER”:EIuGR”:—uiniSui,lgign,Zuigl . (3.2)
N————

— |zi|<u; =1

Note that the set X in question can be described by a system of linear inequalities
in x-variables only, namely, as

X = {:U eR": Zeix‘i <1,¥(e e{-1,+1}),1<i< n)},
=1
thus, X is polyhedral. However, the above polyhedral description of X (which in
fact is minimal in terms of the number of inequalities involved) requires 2" in-
equalities — an astronomically large number when 7 is just few tens. In contrast,
the polyhedral representation of the same set given in requires only n extra
variables u and 2n + 1 linear inequalities on x,u and so the “complexity” of this
representation is just linear in n. &

Example 1.3.3 Given a finite set of vectors a',...,a™ € R", consider their
conic hull Cone{a',...,a™} = {> 7" \ia’ : X\ > 0} (see section[1.2.4]). From this
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definition, it is absolutely unclear whether this set is polyhedral. In contrast to
this, its polyhedral representation is immediate:

Cone{al,...,am} = {x eR": X R: 33:2/\1%}
i=1

-A<0
=qzeR": INeR™ -7 Na; <0
—z 4> hia; <0

In other words, the original description of X is nothing but its polyhedral repre-
sentation (in slight disguise), with A;’s in the role of extra variables. &

3.2 Every polyhedrally representable set is polyhedral
(Fourier-Motzkin elimination)

A surprising and deep fact is that the situation in Example above is quite
general.

Theorem 1.3.2 Every polyhedrally representable set is polyhedral.

Proof: Fourier-Motzkin Elimination. Recalling the definition of a polyhe-
drally representable set, our claim can be rephrased equivalently as follows:

The projection of a polyhedral set Y in a space R;lj;’“ of (z,wu)-variables
onto the subspace R of x-variables is a polyhedral set in R™.

Note that it suffices to prove this claim in the case of exactly one extra variable
since the projection which reduces the dimension by & — “eliminates” k extra
variables — is the result of k subsequent projections, every one reducing the
dimension by 1, “eliminating” the extra variables one by one.

Thus, consider a polyhedral set with variables x € R™ and v € R, i.e.,

Vi={(z,u) e R"": a/z+bu<c, 1<i<m}.
We want to prove that the projection of Y onto the space of z-variables, i.e.,
X:={zeR": JueR: Az + bu < ¢},

is polyhedral. To see this, let us split the indices of the inequalities defining Y
into three groups (some of these groups can be empty):

e inequalities with b; = 0: Iy := {i : b; = 0}. These inequalities with index i € I,
do not involve u at all;

e inequalities with b; > 0: I, := {i : b; > 0}. An inequality with index i € I, can
be rewritten equivalently as u < b; '[c; — a; 2], and it imposes a (depending on
x) upper bound on u;
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e inequalities with b; < 0: I_ := {i: b; < 0}. An inequality with index ¢ € I_ can
be rewritten equivalently as u > b; '[c; — a; 2], and it imposes a (depending on
x) lower bound on u.

We can now clearly answer the question of when x can be in X, that is, when
x can be extended, by some u, to a point (z,u) from Y this is the case if and
only if, first, = satisfies all inequalities with ¢ € I, and, second, the inequalities
with ¢ € I, giving the upper bounds on u specified by x are compatible with the
inequalities with ¢ € I_ giving the lower bounds on u specified by x, meaning
that every lower bound is less than or equal to every upper bound (the latter is
necessary and sufficient to be able to find a value of u which is greater than or
equal to all lower bounds and less than or equal to all upper bounds). Thus,

a; x < ¢, Vi e I }

X = {x €R": bit(c; —ajx) <b'(c,—alx), Viel , Vkel,.

We see that X is given by finitely many nonstrict linear inequalities in z-variables
only, as claimed. |

The outlined procedure for building polyhedral descriptions (i.e., polyhedral
representations not involving extra variables) for projections of polyhedral sets is
called Fourier-Motzkin elimination.

3.2.1 Some applications

As an immediate application of Fourier-Motzkin elimination, let us take a linear
program (LP) min{c'z : Az < b} and look at the set T' of possible objective

values at feasible solutions [[] (if any):
T:= {tER: JreR"c'z=t, Axﬁb}.

Rewriting the linear equality ¢z = ¢ as a pair of opposite inequalities, we see
that T is polyhedrally representable, and the above definition of T' is nothing
but a polyhedral representation of this set, with z in the role of the vector of
extra variables. By Fourier-Motzkin elimination, 7' is polyhedral — this set is
given by a finite system of nonstrict linear inequalities in variable ¢ only. Thus,
we immediately see that T is

1. either empty (meaning that the LP in question is infeasible),

2. or is a below unbounded nonempty set of the form {t € R : —oo <t < b} with
b e RU{+0o0} (meaning that the LP is feasible and unbounded),

3. or is a below bounded nonempty set of the form {t e R:a <t < b} witha € R
and +0o > b > a. In this case, the LP is feasible and bounded, and its optimal
value is a.

Note that given the list of linear inequalities defining 7" (this list can be built
algorithmically by Fourier-Motzkin elimination as applied to the original poly-
hedral representation of T'), we can easily detect which one of the above cases

1 See section for the definitions of feasible/bounded/solvable LPs and their optimal values
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indeed takes place, i.e., we can identify the feasibility and boundedness status
of the LP and to find its optimal value. When it is finite (case 3. above), we
can use the Fourier-Motzkin elimination backward, starting with t = ¢ € T and
extending this value to a pair (¢,x) with t = a = ¢"z and Az < b, that is, we
can augment the optimal value by an optimal solution. Thus, we can say that
Fourier-Motzkin elimination is a finite Real Arithmetics algorithm which allows
to check whether an LP is feasible and bounded, and when it is the case, allows
to find the optimal value and an optimal solution.

On the other hand, Fourier-Motzkin elimination is completely impractical since
the elimination process can blow up exponentially the number of inequalities.
Indeed, from the description of the process it is clear that if a polyhedral set
is given by m linear inequalities, then eliminating one variable, we can end up
with as much as m?/4 inequalities (this is what happens if there are m/2 indices
in I,, m/2 indices in I_ and I, = &). Eliminating the next variable, we again
can “nearly square” the number of inequalities, and so on. Thus, the number of
inequalities in the description of T' can become astronomically large even when
the dimension of x is something like 10.

The actual importance of Fourier-Motzkin elimination is of theoretical nature.
For example, the Linear Programming (LP)-related reasoning we have just carried
out shows that

every feasible and bounded LP problem is solvable, i.e., it has an optimal
solution.

(We will revisit this result in more details in section. This is a fundamental
fact for LP (and in fact not necessarily true for other types of optimization
problems, not even convex ones in general, see Remark , and the above
reasoning (even with the justification of the elimination “charged” to it) is, to
the best of our knowledge, the shortest and most transparent way to prove this
fundamental fact. Another application of the fact that polyhedrally representable
sets are polyhedral is the Homogeneous Farkas Lemma to be stated and proved in
section this lemma will be instrumental in numerous subsequent theoretical
developments.

3.3 Calculus of polyhedral representations

The fact that polyhedral sets are exactly the same as polyhedrally representable
ones does not nullify the notion of a polyhedral representation. The point is
that a set can admit “quite compact” polyhedral representation involving extra
variables and require astronomically large, completely meaningless for any prac-
tical purpose, number of inequalities in its polyhedral description (think about
Example and the associated set when n = 100). Moreover, polyhe-
dral representations admit a kind of “fully algorithmic calculus.” Specifically, it
turns out that all basic convexity-preserving operations (cf. Proposition
as applied to polyhedral operands preserve polyhedrality. Moreover, polyhedral
representations of the results are readily given by polyhedral representations of
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the operands. Here is the “algorithmic polyhedral analogy” of Proposition [[.1.21}

1. Taking finite intersection: Let M;, 1 < i < m, be polyhedral sets in R"™ given
by their polyhedral representations
M, = {:L‘ eR": Ju' e R¥: A,z + Byu' < ci}, 1<i<m.

Then, the intersection of the sets M; is polyhedral with an explicit polyhedral
representation, i.e.,
ﬂ?;l M; . .
={zeR":Ju=[u';..;um] e R\ TFn: Az + Biu' < ', 1 <i<m}.
2. Taking direct product: Let M; C R™, 1 <4 < m, be polyhedral sets given by
polyhedral representations
M, = {azl eR™:Ju' e RF: Az’ + Bou' < ¢}, 1<i<m.
Then, the direct product
My x...x My, ={z=[z"..;2" 2" € M;, 1 <i<m}
of the sets is a polyhedral set with explicit polyhedral representation, i.e.,

M, x...x M,
= lah g am e Rt Jy = [ul; L um] € Rbohe e
o Ax'+Bu <, 1<i<m

3. Arithmetic summation and multiplication by reals: Let M; C R", 1 < ¢ < m,
be polyhedral sets given by polyhedral representations

M;={xeR": 3’ e R": Aw + B/ <}, 1<i<m,

and let Ay, ..., \; be reals. Then, the set \;M; + ...+ A\, M, = {z = Mzt +
cooF Apz™ 2t € My, 1 < i < m} is polyhedral with explicit polyhedral
representation, specifically,

MM+ ...+ A M,

[ zeR": Iz e R"u' € R¥ 1 <i<m):

- <Y Nzt x>y ot Axt 4+ Bu' <, 1<i<m [’

4. Taking the image under an affine mapping: Let M C R™ be a polyhedral set
given by polyhedral representation
M = {xER”: EIuERk:Ax—i—Bugc},
and let P(x) = Pz + p: R" — R™ be an affine mapping. Then, the image of
M under this mapping, i.e., P(M) := {Pz+p: x € M}, is a polyhedral set
with explicit polyhedral representation given by
y< Px—+0p

PM)={ycR™: JzcR" ucR:{ y>Pr+p
Ax+ Bu<c



8.8 Calculus of polyhedral representations 47

5. Taking the inverse image under affine mapping: Let M C R™ be polyhedral
set given by polyhedral representation

M={zeR": EIuGRk:A:U—i-Bugc},

and let P(y) = Py +p : R™ — R" be an affine mapping. Then, the inverse
image of M under this mapping, i.e., P~} (M) :={y e R™: Py+pe M}, is
a polyhedral set with explicit polyhedral representation given by

P M)={yeR": Jue R*: A(Py+p)+Bu<c}.

Note that the rules for intersection, taking direct products and taking inverse
images, as applied to polyhedral descriptions of operands, lead to polyhedral de-
scriptions of the results. In contrast to this, the rules for taking sums with coeffi-
cients and images under affine mappings heavily exploit the notion of polyhedral
representation: even when the operands in these rules are given by polyhedral
descriptions, there are no simple ways to point out polyhedral descriptions of the
results.

Absolutely straightforward justification of the above calculus rules is the sub-
ject of Exercise

Finally, we note that the problem of minimizing a linear form c
M given by its polyhedral representation, i.e.,

M:{xGR": EIuGRk:A:E—i—Bugc},

Tx over a set

can be immediately reduced to an explicit LP program, namely,

min {CTx : Az + Bu < c} .
A reader with some experience in Linear Programming definitely used a lot of
the above “calculus of polyhedral representations” when building LPs (perhaps
without a clear understanding of what in fact is going on, same as Moliere’s
Monsieur Jourdain all his life has been speaking prose without knowing it).
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General Theorem of the Alternative and
Linear Programming Duality

4.1 Homogeneous Farkas Lemma

Let aq,...,ay be vectors from R™, and let a be another vector from R". Here,
we address the question: when does a belong to the cone spanned by the vectors
ai,...,ay, i.e., when can a be represented as a linear combination of a; with
nonnegative coefficients? We immediately observe the following evident necessary
condition:

N
if a:ZAiai [where \; > 0,i=1,...,N],
=1

then every vector h that has nonnegative inner products with all a;’s
should also have nonnegative inner product with a:

N
{a: > Xa;, with X\; >0, Vi, and h'a; >0, w} — h'a>0.

i=1
In fact, this evident necessary condition is also sufficient. This is given by the
Homogeneous Farkas Lemma.

Lemma 1.4.1 [Homogeneous Farkas Lemma (HFL)] Let a,a,,...,ay be
vectors from R". The vector a is a conic combination of the vectors a; (linear
combination with nonnegative coefficients), i.e., a € Cone{ay,...,ay}, if and
only if every vector h satisfying h"a; > 0,7 =1,..., N, satisfies also h"a > 0.
In other words, a homogeneous linear inequality

a"h>0
in variable h is a consequence of the system
a, h >0, 1<i<N

of homogeneous linear inequalities if and only if it can be obtained from the
inequalities of the system by “admissible linear aggregation” — taking their
weighted sum with nonnegative weights.

Proof. The necessity — the “only if” part of the statement — was proved before
the Homogeneous Farkas Lemma was formulated. Let us prove the “if” part of
the lemma. Thus, we assume that h"a > 0 is a consequence of the homogeneous

48
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system h'a; > 0 Vi, i.e., every vector h satisfying h'a; > 0 Vi satisfies also
hTa > 0, and let us prove that a is a conic combination of the vectors a,.

An “intelligent” proof goes as follows. The set Cone{ay,...,ay} of all conic
combinations of ai,...,ay is polyhedrally representable (see Example and
as such is polyhedral (Theorem . Hence, we have

Cone{ay,...,an} = {z € R": pjTachj,lngJ}. (4.1)
Now, observe that 0 € Cone {as,...,ay}, and thus we conclude that b; < 0 for
all j <J. Moreover, since \a; € Cone {ay,...,ay} for every i and every A > 0, we

deduce \p; a; > b; for all i, and all A > 0, whence p]a; > 0 for all 7 and j. For
every j, the relation pjTai > 0 for all ¢ implies, by the premise of the statement
we want to prove, that pJa > 0. Then, as 0 > b; for all j, we see that pla > b;
for all j, meaning that a indeed belongs to Cone {ay,...,ax} due to (4.1). |

This very short and elegant proof of Homogeneous Farkas Lemma is a nice
illustration of the power of Fourier-Motzkin elimination.

4.2 Certificates for feasibility and infeasibility

Consider a (finite) system of scalar inequalities with n unknowns. To be as general
as possible, we do not assume for the time being the inequalities to be linear, and
we allow for both non-strict and strict inequalities in the system, as well as for
equalities. Since an equality can be represented by a pair of non-strict inequalities,
our system can always be written as

filz) 40,  i=1,...,m, (S)

where every (; is either the relation “>” or the relation “>”, and we assume
m > 1, which is the only case of interest here.
The most basic question about (S) is

(Q) Does (S) have a solution, i.e., is (S) feasible?

Knowing how to answer the question (Q) enables us to answer many other
questions. For example, verifying whether a given real number a is a lower bound
on the optimal value Opt™ of a linear program

min {c'z: Az > b} (LP)
is the same as verifying whether the system
—c'z+a>0
Az —b>0

has no solutions.
The general question (Q) above is too difficult, and it makes sense to pass from
it to a seemingly simpler one:

(Q') How do we certify that (S) has, or does not have, a solution?

Imagine that you are very smart and know the correct answer to (Q) ; how can



50 General Theorem of the Alternative and Linear Programming Duality

you convince everyone that your answer is correct? What can be an “evident for
everybody” validity certificate for your answer?

If your claim is that (S) is feasible, a certificate can be just to point out a
solution z* to (S). Given this certificate, one can substitute z* into the system
and check whether z* is indeed a solution.

Suppose now that your claim is that (S) has no solutions. What can be a
“simple certificate” of this claim? How can one certify a negative statement? This
is a highly nontrivial problem not just for mathematics; for example, in criminal
law, how should someone accused in a murder prove his innocence? The “real life”
answer to the question “how to certify a negative statement” is discouraging: such
a statement normally cannot be certiﬁedﬂ In mathematics, the standard way to
justify a negative statement A, like “there is no solution to such and such system
of constraints” (e.g., “there is no solutions to the equation z° + y® = 2° with
positive integer variables x,y,2”) is to lead the opposite to A statement, i.e.,
A (in our example, “the solution exists”), to a contradiction. That is, assume
that A is true and derive consequences until a clearly false statement is obtained;
when this happens, we know that A is false (since legitimate consequences of a
true statement must be true), and therefore A must be true. In general, there is
no recipe for leading to contradiction something which in fact is false; this is why
certifying negative statements usually is difficult.

Fortunately, finite systems of linear inequalities are simple enough to allow
for a recipe for certifying their infeasibility: we start with the assumption that
a solution exists and then demonstrate a contradiction in a very specific way
— by taking weighted sum of the inequalities in the system using nonnegative
aggregation weights to produce a contradictory inequality.

Let us start with a simple illustration: we would like to certify infeasibility of
the following system of inequalities in variables u, v, w:

S5u —6v —dw > 2
+4v 2w > -1
—5u +7w > 1

Let us assign these inequalities with “aggregation weights” 2, 3,2, multiply the
inequalities by the respective weights and sum up the resulting inequalities:

2x 5u —6v —4w > 2

+
3% +4v —2w > -1

+
2% | —bu +7Tw > 1
(%) O-u +0-v 40-w > 3

The resulting aggregated inequality () is contradictory, it has no solutions at

L This is where the court rule “a person is presumed innocent until proven guilty” comes from —
instead of requesting from the accused to certify the negative statement “I did not commit the
crime,” the court requests from the prosecution to certify the positive statement “The accused did
commit the crime.”
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all. At the same time, (x) is a consequence of our system — by construction of
(%), every solution to the original system of three inequalities is also feasible to
(x). Taken together, these two observations say that the system has no solutions,
and the vector [2;3;2] of our aggregation weights can be seen as an infeasibil-
ity certificate — taking weighted sum of inequalities from the system with the
corresponding nonnegative weights, we lead the system to a contradiction.

As applied to a general system of inequalities (S), a similar approach to certify-
ing infeasibility would be to assign the inequalities with nonnegative aggregation
weights, multiply them by these weights and sum up the resulting inequalities,
arriving at an aggregated inequality, which, due to its origin, is a consequence
of system (S), meaning that every solution to the system solves the aggregated
inequality as well. It follows that when the aggregated inequality is contradictory,
i.e., it has no solutions at all, the original system (S) must be infeasible as well.
When this happens, the collection of weights used to generate the contradictory
consequence inequality can be viewed as an infeasibility certificate for (S).

Let us look what the outlined approach means when (S) is composed of finitely
many linear inequalities:

{a/z Qb i=1,...,m} [where ; is either “>” or “>"]. (S)

In this case the “aggregated inequality” is linear as well:

(i)\iaZ) z 0 i)\ibi, (Comb(\))

where €2 is “>” whenever \; > 0 for at least one ¢ with ; = “ > ", and  is “>”
otherwise. Now, when can a linear inequality

d'z Qe

be contradictory? Of course, it can happen only when d = 0. Furthermore, in
this case, whether the inequality is contradictory depends on the relation 2 and
the value of e: if Q = “ > 7 then the inequality is contradictory if and only if
e >0, and if Q = “ > 7 then it is contradictory if and only if e > 0. We have
established the following simple result:

Proposition 1.4.2 Consider a system of linear inequalities in unknowns
x e R™

(S)

T o

a; x>b;, i=1,...,mg,

T c

a;, x>b;, i=ms+1,...,m.

Let us associate with (S) two systems of linear inequalities and equations
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with unknowns A € R™:

a A >0,

Eb)) S ha; = 0, (@ A =0
Ti: (1) Yot Abi > 0, T - (b) Zﬁl)\iai - 0,

(dl) fﬁfl)\i ; 0. (CH) Zi:y\ibi > 0.

If at least one of the systems 7y, Ty is feasible, then the system (S) is infea-
sible.

4.3 General Theorem of the Alternative

Proposition states that in some cases it is easy to certify infeasibility of
a system of linear inequalities: a “simple certificate” is a solution to another
system of linear inequalities. Note, however, that the existence of a certificate of
this latter type so far is only a sufficient, but not a necessary, condition for the
infeasibility of (S). A fundamental result in the theory of linear inequalities is
that this sufficient condition is in fact also necessary:

Theorem 1.4.3 [General Theorem of the Alternative (GTA)] Consider the
notation and setting of Proposition System (S) has no solutions if and
only if at least one of the systems 7T; or 7y is feasible.

Proof. GTA is a more or less straightforward corollary of the Homogeneous
Farkas Lemma. Indeed, in view of Proposition all we need to prove is that
if (S) has no solution, then at least one of the systems 7y, or Ty is feasible.
Thus, assume that (S) has no solutions, and let us look at the consequences. Let
us associate with (S) the following system of homogeneous linear inequalities in
variables z, T, €:

(a) T —e > 0,
(b) ajz —bT —e > 0, i=1,...,m, (4.2)
() ajz —bT > 0, i=mg+1,...,m.

First, we claim that in every solution to , one has € < 0. Indeed, assuming
that has a solution z, 7, e with € > 0, we conclude from (4.2la) that 7 > 0.
Then, from (£.2]b — ¢) it will follow that 77'z is a solution to (S), while we
assumed (S) is infeasible. Therefore, we must have ¢ < 0 in every solution to

14.2).

Now, we have that the homogeneous linear inequality
—e>0 (4.3)

is a consequence of the system of homogeneous linear inequalities (4.2)). Then, by
Homogeneous Farkas Lemma, there exist nonnegative weights v, A;, i =1,...,m,
such that the aggregated inequality from (4.2)) using these weights results in
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precisely the consequence inequality (4.3), i.e.,

(a) 2211)\1'%‘ = 0,
(0) =X Aibi+v = 0, (4.4)
(€ =X A-v = -L

Recall that by their origin, v and all A; are nonnegative. Now, it may happen
that Ay, ..., A, are zero. In this case v = 1 by (4.4lc), and relations (4.4a — b)

say that A1,..., A, is a solution for 7i;. In the remaining case (that is, when not
all A1,..., A, are zero, or, which is the same, when > \; = 1 — v > 0), the
same relations (4.4 — b) say that Aq,...,\,, is a solution for 7;. |

Remark 1.4.4 We have derived GTA from Homogeneous Farkas Lemma (HFL).
Note that HFL is nothing but a special case of GTA. Indeed, identifying when a
linear inequality a'z < b is a consequence of the system aiTa?i <b,1<i<m
(this is the question answered by HFL in the case of b =b; = ... = b,, = 0) is
exactly the same as identifying when the system of inequalities

a'z>b, ar<b, 1=1,...,m (%)
in variables z is infeasible, and what in the latter case is said by GTA, is exactly
what HFL states: when b =b; = ... =b,, = 0, the system (x) is infeasible if and
only if the vector a is a conic combination of the vectors ag, ..., a,. Thus, it is
completely sensible that GTA, in full generality, was derived from its indepen-
dently justified special case, HFL. &

4.4 Corollaries of GTA

Let us explicitly state two very useful principles derived from the General Theo-
rem of the Alternative:

A. A system of finitely many linear inequalities
a;x b, i=1,...,m [where Q; € {“>7,«>"}]

has no solutions if and only if one can aggregate the inequalities of the system
in a linear fashion (i.e., multiplying the inequalities by nonnegative weights,
summing the resulting inequalities and passing, if necessary, from an inequality
a'x > b to the inequality a'x > b) to get a contradictory inequality, namely,
either the inequality 0"z > 1, or the inequality 0"z > 0.

B. A linear inequality
ag x Qo by [where Qo € {“>7,“>"}]
in variables x is a consequence of a feasible system of linear inequalities
a;x Qi by, i=1,...,m, [where Q; € {“>7,%>"}]

if and only if it can be obtained by linear aggregation with nonnegative weights
from the inequalities of the system and the trivial identically true inequality
0Tz > —1.
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In fact, when all £2; in B are non-strict, B can be reformulated equivalently as
follows.

Proposition 1.4.5 [Inhomogeneous Farkas Lemma] Linear inequality
a'z<b
is a consequence of the feasible system of linear inequalities
a?xgbi, 1<i<m

if and only if there exist nonnegative aggregation weights \;, i = 1,...,m,
such that

m m

a=Y XNa; and b>> Ab.
i=1 i=1

We would like to emphasize that the preceding principles are highly nontrivial
and very deep. Consider, e.g., the following system of 4 linear inequalities in two
variables u, v:

These inequalities clearly imply that
u® + v <2, (1)

which in turn implies, by the Cauchy-Schwarz inequality, the linear inequality
utv <2

u+v=1xu+1xv<VI2+12/u2+02< (V2)?=2. )

The concluding inequality v+ v < 2 is linear and is a consequence of the original
feasible system, and so we could have simply relied on Principle B to derive it.
On the other hand, in the preceding demonstration of this linear consequence
inequality both steps (!) and (!!) are “highly nonlinear.” It is absolutely unclear
a priori why the same consequence inequality can, as it is stated by Principle B, be
derived from the system in a “linear” manner as well (of course it can — it suffices
just to sum up two inequalities v < 1 and v < 1). In contrast, Inhomogeneous
Farkas Lemma predicts that hundreds of pages of whatever complicated (but
correct!) demonstration that such and such linear inequality is a consequence
of such and such feasible finite system of linear inequalities can be replaced by
simply demonstrating weights of prescribed signs such that the target inequality
is the weighted sum, with these weights, of the inequalities from the system and
the identically true linear inequality. One shall appreciate the elegance and depth
of such a result!

Note that the General Theorem of the Alternative and its corollaries A and
B heavily exploit the fact that we are speaking about linear inequalities. For ex-
ample, consider the following system of two quadratic and two linear inequalities
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in two variables:

(@) u®>>1,

(b) v*>1,

(¢) u>0,

(d) v=>0,
along with the quadratic inequality

(e) wuv>1.

The inequality (e) is clearly a consequence of (a) — (d). However, if we extend the
system of inequalities (a) — (b) by all “trivial” (i.e., identically true) linear and
quadratic inequalities in 2 variables, like 0 > —1, u? +v? > 0, u? + 2uv +v* > 0,
u? — 2uv + v? > 0, etc., and ask whether (e) can be derived in a linear fashion
from the inequalities of the extended system, the answer will be negative. Thus,
Principle B fails to be true already for quadratic inequalities (which is a great
sorrow — otherwise there would be no difficult problems at all!).

4.5 Application: Linear Programming Duality

We are about to use the General Theorem of the Alternative to obtain the ba-
sic results of the Linear Programming (LP) duality theory. To do so, we first
introduce some basic terminology about mathematical programming problems.

4.5.1 Preliminaries: Mathematical and Linear Programming
problems

A (constrained) Mathematical Programming problem has the following form:

e X,
(P)  mind @) g(@) = [n@)ig@] 0§, (45)
h(z) = [hi(x);...;he(z)] =0

where

e [domain] X is called the domain of the problem,

e [objective| f is called the objective (function) of the problem,

e [constraints] g;, i = 1,...,m, are called the (functional) inequality constraints,
and hj, j =1,...,k, are called the equality constmint.

We always assume that X # @ and that the objective and the constraints are
well-defined on X. Moreover, we typically skip indicating X when X = R".
We use the following standard terminology related to (4.5

2 Rigorously speaking, the constraints are not the functions g;, hj, but the relations g;(x) < 0,
hj(x) = 0. We will use the word “constraints” in both of these senses, and it will always be clear
what is meant. For example, we will say that “z satisfies the constraints” to refer to the relations,
and we will say that “the constraints are differentiable” to refer to the underlying functions.
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e [feasible solution] a point z € R" is called a feasible solution to (4.5), if z € X,
gi(x) <0, =1,...,m, and hj(z) =0, j = 1,...,k, ie., if  satisfies all
restrictions imposed by the formulation of the problem.

— [feasible set] the set of all feasible solutions is called the feasible set of the
problem.

— [feasible problem] a problem with a nonempty feasible set (i.e., the one which
admits feasible solutions) is called feasible (or consistent).

e [optimal value] the optimal value of the problem refers to the quantity

Ont {inf {f(x): z € X, g(x) <0, h(x) =0}, if the problem is feasible,
pt:=q

+00, if the problem is infeasible.

— [below boundedness] the problem is called below bounded, if its optimal value
is > —o0, i.e., if the objective is bounded from below on the feasible set.

e [optimal solution| a point x € R™ is called an optimal solution to (4.5)), if x is
feasible and f(z) < f(z') for any other feasible solution z’, i.e., if

xz € Argmin{f(z') : 2’ € X, g(2') <0, h(z') =0}.

— [solvable problem] a problem is called solvable, if it admits optimal solutions.
— [optimal set] the set of all optimal solutions to a problem is called its optimal
set.

Remark 1.4.6 It is crucial to note that the solvability of a mathematical pro-
gramming problem is a much stronger statement than its mere feasibility and
below boundedness. By its definition, a solvable optimization problem with a
minimization type objective is always feasible and below bounded. However, the
reverse is not true in general, even when the problem is convex. For example,
consider the optimization problem given by

min {exp(z) : = € R}.

Clearly, this problem is feasible, and its optimal value is equal to 0, so it is
bounded from below. On the other hand, this problem admits no optimal solution
x € R achieving the objective value of 0.

That said, there is one important class of optimization problems, namely linear
programs, where feasibility and below boundedness together imply solvability. In
particular, recall from section that every feasible and below bounded LP is
also solvable. This fundamental fact about LP problems is due to the structure
of polyhedral sets, which guarantees that the projection (by Fourier-Motzkin
Elimination) of a polyhedral set is always closed. &

Remark [.4.7 In the above description of a Mathematical Programming prob-
lem and related basic notions, like feasibility, solvability, boundedness, etc., we
“standardize” the situation by assuming that the objective should be minimized,
and the inequality constraints are of the form g;(x) < 0. Needless to say, we
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can also speak about problems where the objective should be maximized and/or
some of the inequality constraints are of the form g;(x) > 0. There is no difficulty
to reduce these “more general” forms of optimization problems to our standard
form: maximizing f(z) is the same as minimizing — f(x), and the constraint of
the form g;(x) > 0 is the same as the constraint —g;(x) < 0. While this standard-
ization is always possible, from time to time we take the liberty to speak about
maximization problems and/or >-type constraints. With this in mind, it is worth
to mention that when working with maximization problems, we should update
the notions of optimal value, problem’s boundedness, and optimal solution. For
a maximization problem,

e the optimal value is the supremum of the values of the objective at feasible
solutions, and is, by definition, —oo for infeasible problems, and

e boundedness means boundedness of the objective from above on the feasible
set (or, which is the same, the fact that the optimal value is < 4+00),

e optimal solution is a feasible solution such that the objective value at this
solution is greater than or equal to the objective value at every feasible solution.

Needless to say, when “standardizing” a maximization problem, i.e., replacing
maximization of f(z) with minimization of —f(z), boundedness and optimal
solutions remain intact while the optimal value “is negated,” i.e., real number a
becomes —a, and 0o becomes Foo. &

Linear Programming problems. A Mathematical Programming problem
(P) is called Linear Programming (LP) problem, if

e X = R" is the entire space,

e f.g1,...,9m are real-valued affine functions on R™, that is, functions of the
form a"x + b, and

e there are no equality constraints at all.

Note that in principle we could allow for linear equality constraints h;(z) :=
aij + b; = 0. However, a constraint of this type can be equivalently represented
by a pair of opposite linear inequalities a; z + b; < 0, —a/x — b; < 0. To save
space and words (and, as we have just explained, with no loss in generality), in
the sequel we will focus on inequality constrained linear programming problems.

4.5.2 Dual to an LP problem: the origin
Consider an LP problem

.
ay

L
Qg

Opt =min{c'z: Az —b>0} |where A= e R™"| . (LP)

CLT

m

The motivation for constructing the problem dual to an LP problem is the desire
to generate, in a systematic way, lower bounds on the optimal value Opt of (LP).
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Consider the problem
min {f(z): gi(z) >b;, i=1,...,m}.

An evident way to bound from below a given function f(z) in the domain given
by a system of inequalities

gi(x) >b;, i=1,...,m, (4.6)

is offered by what is called the Lagrange duality. We will discuss Lagrange Duality
in full detail for general functions in Part [[V] Here, let us do a brief precursor
and examine the special case when we are dealing with linear functions only.

Lagrange Duality:

e Let us look at all inequalities which can be obtained from (4.6)) by
linear aggregation, i.e., the inequalities of the form

Z vigi(w) > Z Yibi (4.7)
1=1 1=1

with the “aggregation weights” y; > 0 for all i. Note that the inequality
(4.7), due to its origin, is valid on the entire set X of feasible solutions

of (6.

e Depending on the choice of aggregation weights, it may happen that
the left hand side in is < f(x) for all x € R". Whenever this
is the case, the right hand side Y ;" | y;b; of is a lower bound on
f(z) for any x € X. It follows that
e The optimal value of the problem

3 : y >0, (a)
mfx{i_zl Yib; S vigi(w) < f(x), Yo € R* (D) } (4.8)

is a lower bound on the values of f on the set of feasible solutions to
the system (4.6]).

Let us now examine what happens with the Lagrange duality when f and g;
are homogeneous linear functions, i.e., f(z) = ¢'z and g;(z) = a/ x for all i =
1,...,m. In this case, the requirement b) merely says that ¢ = >"" | y;a; (or,
which is the same, ATy = ¢ due to the origin of the matrix A). Thus, problem
becomes the Linear Programming problem

max{b'y: A'y=c, y>0}, (LP*)
Y
which is called the LP dual of (LP).
By the construction of the dual problem (LP*), we immediately have

[Weak Duality] The optimal value in (LP*) is less than or equal to the
optimal value in (LP).

In fact, the “less than or equal to” in the latter statement is “equal to,” provided
that the optimal value Opt in (LP) is a number (i.e., (LP) is feasible and below
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bounded, in which case Fourier Motzkin elimination guarantees that Opt is a real
number). To see that this indeed is the case, note that a real number a is a lower
bound on Opt if and only if ¢"x > a holds for all z satisfying Az > b, or, which
is the same, if and only if the system of linear inequalities

—c'r>—a, Axr>0b (Sa) :

has no solution. Then, by General Theorem of the Alternative we deduce that at
least one of a certain pair of systems of linear inequalities does have a solution.
More precisely,

(*) (S,) has no solutions if and only if at least one of the following
two systems of linear inequalities in m + 1 unknowns has a solution:

(@) A=A 5A] > 0,

T (b) —Xoc+ >t Na; = 0,

b (1) —Xoa+ > m Nk >0,

(dp) Ao > 0

or

(@) X=[o; A5 5Am] > 0,

T (b) —Xoc— Yt Na; = 0,

(cn) —Xoa — Yo Nb; > 0.

Now assume that (LP) is feasible. We first claim that under this assumption
(S.) has no solutions if and only if T; has a solution. The implication “7; has a
solution = (8,) has no solution” is readily given by the preceding remarks. To
verify the inverse implication, assume that (S,) has no solution and the system
Az > b has a solution, and let us prove that then 77 has a solution. If 7; has no
solution, then by (*), 7;; must have a solution. Moreover, since any solution to
Tir where Ay > 0 is also a solution to 7y as well, we must have Ay = 0 for (every)
solution to 7T;. But, the fact that 7i; has a solution A with Ag = 0 is independent
of the values of ¢ and a; if this fact would take place, it would mean, by the same
General Theorem of the Alternative, that, e.g., the following instance of (S,):

0"z >—1, Az >b

has no solution as well. But, then we must have the system Ax > b has no solution
— a contradiction to the assumption that (LP) is feasible.

Now, if 77 has a solution, this system has a solution with Ay = 1 as well (to see
this, pass from a solution A to the one A/ \g; this construction is well-defined, since
Ao > 0 for every solution to 7;). Now, an (m + 1)-dimensional vector A = [1;y]
is a solution to 7y if and only if the m-dimensional vector y solves the following
system of linear inequalities and equations

Y
[ATy =] Y v
by

(D)

AN,
o

We summarize these observations below.
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Proposition 1.4.8 If system (D) in unknowns y, a associated with the LP
program (LP) has a solution (7, a), then a is a lower bound on the optimal
value in (LP). Vice versa, if (LP) is feasible and a is a lower bound on
the optimal value of (LP), then a can be extended by a properly chosen
m-dimensional vector y to a solution to (D).

We see that the entity responsible for lower bounds on the optimal value of
(LP) is the system (D): every solution to the latter system induces a bound of
this type, and in the case when (LP) is feasible, all lower bounds can be obtained
from solutions to (D). Now note that if (y,a) is a solution to (D), then the pair
(y,b"y) also is a solution to the same system, and the lower bound 5"y on Opt
is not worse than the lower bound a. Thus, as far as lower bounds on Opt are
concerned, we lose nothing by restricting ourselves to the solutions (y,a) of (D)
with a = b"y. The best lower bound on Opt given by (D) is therefore the optimal
value of the problem

maX{bTy cAly=c, y> 0} )
Yy
which is nothing but the dual to (LP) problem given by (LP*). Note that (LP*)

is also a Linear Programming problem.
All we know about the dual problem so far is the following:

Proposition 1.4.9 Whenever y is a feasible solution to (LP*), the corre-
sponding value of the dual objective by is a lower bound on the optimal
value Opt in (LP). If (LP) is feasible, then for every real number a < Opt
there exists a feasible solution y of (LP*) with by > a.

4.5.3 Linear Programming Duality Theorem

Proposition is in fact equivalent to the following complete statement of LP
Duality Theorem.

Theorem 1.4.10 [Duality Theorem in Linear Programming] Consider a lin-
ear programming problem

min {c'z: Az > b}, (LP)
along with its dual
max {bTy cAly=c, y> 0}. (LP*)
y

Then,
1) [Primal-dual symmetry] The dual problem is an LP program, and its

dual is equivalent to the primal problem;
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2) [Weak duality] The value of the dual objective at every dual feasible
solution is less than or equal to the value of the primal objective at every
primal feasible solution, so that the dual optimal value is less than or equal
to the primal one;

3) [Strong duality] The following 5 properties are equivalent to each other:

(i) The primal is feasible and bounded below.

(ii) The dual is feasible and bounded above.
(iii) The primal is solvable.
(iv) The dual is solvable.

(v) Both primal and dual are feasible.
Moreover, if any one of these properties (and then, by the equivalence just
stated, every one of them) holds, then the optimal values of the primal and
the dual problems are equal to each other.

Finally, if at least one of the problems in the primal-dual pair is feasible,
then the optimal values in both problems are the same, i.e., either both are
finite and equal to each other, or both are 400 (i.e., primal is infeasible and
dual is not bounded above), or both are —oo (i.e., primal is unbounded below
and dual is infeasible).

There is one last remark we should make to complete the story of primal
and dual objective values given in Theorem in fact it is possible to have
both primal and dual problems infeasible simultaneously (see Exercise . This
is the only case when the primal and the dual optimal values (+o0c0 and —oo,
respectively) differ from each other.

Proof. 1) This part is quite straightforward: writing the dual problem (LP*) in
our standard form, we get

I,
min{ —b'y : AT |y — c| >0,
Y —AT —c

where I,,, is the m x m identity matrix. Applying the duality transformation to
the latter problem, we come to the problem

o OO

§
max 4 07+ e n+(=o) ¢ z
§+ An— AC

which is clearly equivalent to (LP) (after we set 2 = ( — n and eliminate &).

2) This part follows from the origin of the dual and is thus immediately given
by Proposition [.4.9]

3) We prove the following implications.

(i) = (iv): If the primal is feasible and bounded below, its optimal value Opt
(which of course is a lower bound on itself) can, by Proposition be (non-
strictly) majorized by a quantity b'y*, where y* is a feasible solution to (LP*).
Then, of course, b'y* = Opt by already proven statement of item 2). On the

v IvIvV

—b
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other hand, by Proposition the optimal value in the dual is less than or
equal to Opt. Thus, we conclude that the optimal value in the dual is attained
and is equal to the optimal value in the primal.

(iv) = (ii): This is evident by the definition of solvability.

(ii) = (iii): This implication, in view of the primal-dual symmetry, follows from
the already justified implication (i) = (iv).

(iii) == (i): This is evident by the definition of solvability.

We have shown that (i)=(ii)=(iii)=(iv) and that the first (and consequently
each) of these four equivalent properties implies that the optimal value in the
primal problem is equal to the optimal value in the dual one. All that remains
is to prove the equivalence between (i)—(iv) and (v). This is immediate: (i)—(iv),
of course, imply (v); vice versa, in the case of (v) the primal is not only feasible,
but also bounded below (this is an immediate consequence of the feasibility of
the dual problem, see part 2)), and (i) follows.

It remains to verify that if one problem in the primal-dual pair is feasible, then
the primal and the dual optimal values are equal to each other. By primal-dual
symmetry it suffices to consider the case when the primal problem is feasible. If
also the primal is bounded from below, then by what has already been proved
the dual problem is feasible and the primal and dual optimal values coincide
with each other. If the primal problem is unbounded from below, then the primal
optimal value is —oo and by Weak Duality the dual problem is infeasible, so that
the dual optimal value is —oo. ]

An immediate corollary of the LP Duality Theorem is the following necessary
and sufficient optimality condition in LP.

Theorem 1.4.11 [Necessary and sufficient optimality conditions in Linear
Programming] Consider an LP program (LP) along with its dual (LP*) as in
Theorem A pair (z,y) of primal and dual feasible solutions is composed
of optimal solutions to the respective problems if and only if we have

yil[Ax —b]; =0, i=1,...,m, [complementary slackness]
or equivalently, if and only if

c'r—b'y=0. [zero duality gap]

Proof. Indeed, the “zero duality gap” optimality condition is an immediate con-
sequence of the fact that the optimal values in the primal and the dual are equal
to each other whenever one of the problems is feasible, see Theorem As a
result, denoting by Opt the common optimal value of (LP) and (LP*), the duality
gap, when evaluated at a pair (x,y) composed of primal feasible solution x and
dual feasible solution 7, is the sum of two nonnegative quantities ¢'z — Opt and
Opt — by, and thus is nonnegative and vanishes if and only if x is primal opti-
mal, and y is dual optimal. The equivalence between the “zero duality gap” and
the “complementary slackness” optimality conditions is given by the following
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computation: whenever x is primal feasible and y is dual feasible, we have
y' (Az—b)=(ATy) 'z —b'y=c'z by,

where the second equality follows from dual feasibility (i.e., ATy = ¢). Thus, for a
primal-dual feasible pair (z, ), the duality gap vanishes if and only if y " (Ax—b) =
0, and the latter, due toy > 0 and Axz—b > 0, happens if and only if y;,[Ax—b]; = 0
for all ¢, that is, if and only if the complementary slackness takes place. |

Geometry of primal-dual pair of LP problems. Consider primal-dual pair
of LP problems

minger- {¢'2 : Az — b > 0} (LP)
max,ern {0y : ATy =c, y >0} (LP*)

as presented in section and assume that the system of equality constraints
in the dual problem is feasible, so that there exists 3 € R™ such that AT = c.
It turns ouﬂ that the pair (LP), (LP*) possesses nice and transparent geometry.
Specifically, the data of the pair give rise to the following geometric entities:

e a pair of linear subspaces £, £, in R™ which are orthogonal complements to
each other
[£ =TIm(A), L, =Ker(A")],

e a pair of shift vectors d,d, € R™
[d="b, d. = -],

which in turn give rise to

e the pair of convex sets Q = [£L —d]NRT, Q. = [L, —d]NR}
[where R = {u € R™ : u > 0}].

To solve (LP), (LP*) to optimality is exactly the same as to find orthogonal to
each other vectors £ € Q and &, € Q.. Such a pair &, &, gives rise to primal-dual
optimal pair(s) (z*,y*) (one can take as x* any x such that Az —b = £ and
set y* = &, ), and every primal-dual optimal pair (z*,y*) can be obtained in this
manner from a pair of orthogonal to each other vectors £ € Q, &, € Q.. The
required pairs &, &, exist if and only if both the sets Q and Q, are nonempty.

For illustration, see Figure 4.1.

3 for derivations, see Exercise addressing Conic Duality, of which LP duality is a special case.
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0

Figure 4.1. Geometry of primal-dual LP pair, m =3
Q: AABC; Q.: ray DD’; &: point A; £.: point D
Pay attention to orthogonality of the ray E}d the plane of
the triangle and orthogonality of vectors OA and OD.
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Exercises for Part 1

5.1 Elementaries

Exercise I.1 Mark in the following list the sets which are convex:

1.

=

© PN -

10.
11.

12

13

14

15

16.

{zeR? 21 +i22<1,i=1,...,10}

{z € R? 1 af + 2imyao + %23 < 1,i=1,...,10}
{x€R2:x%—i—ixlxz—l—izxg§1,i:1,...,10}
{z € R® 1 27 + bwyzo + 423 < 1}

{x € R : 22 4222 + 322 + ...+ 1023, <1000z, — 9995 + 998x3 — ... + 992z9 — 991:010}

{x cR?: exp{z1} < :rg}
{x eR?: exp{x1} > xg}
{zeR": 3" 27 =1}
{zeR": >0 27 <1}
{zeR": 30 27 >1}

{xeR":‘maf( xigl}
{:rER": max xizl}
{xERn:i:r?ii.)inxi: }
{xGR":_mi{l miﬁl}
{ )

re€R": min x;>1

{J;GR": min :cizl}
i=1,...,n

Exercise 1.2 Mark by T those of the following claims which always are true.

© 0N o W

= e
NN = O

The linear image Y = {Az : € X} of a linear subspace X is a linear subspace.

The linear image Y = {Az : « € X} of an affine subspace X is an affine subspace.
The linear image Y = {Az : € X} of a convex set X is convex.

The affine image Y = {Az 4+ b: z € X} of a linear subspace X is a linear subspace.
The affine image Y = {Az 4+ b: z € X} of an affine subspace X is an affine subspace.
The affine image Y = {Az +b: 2 € X} of a convex set X is convex.

The intersection of two linear subspaces in R is always nonempty.

The intersection of two linear subspaces in R" is a linear subspace.

The intersection of two affine subspaces in R" is an affine subspace.

The intersection of two affine subspaces in R"™, when nonempty, is an affine subspace.

. The intersection of two convex sets in R" is a convex set.
. The intersection of two convex sets in R"™, when nonempty, is a convex set.

65
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Ezercises for Part I

Exercise 1.3 [TrYs] Prove that the relative interior of a simplex with vertices O, y™ s
exactly the set

{i)\zyz Y >0, i)\l = 1}.
1=0 1=0

Exercise 1.4 Which of the following claims is true:

1.
2.

The set X = {z : Az < b} is a cone if and only if X = {x : Az <0}.
The set X = {z : Az < b} is a cone if and only if b = 0.

Exercise 1.5 Suppose K is a closed cone. Prove that the set X = {z: Az — b € K} is a cone
if and only if X = {z: Az € K}.

Exercise 1.6 [TrYs] Prove that if M is a nonempty convex set in R™ and € > 0, then for every
norm || - || on R", the e-neighborhood of M, i.e., the set

e = Mo —z|| <
M= {yers inf lly ol <.

is convex.

Exercise 1.7 Which of the following claims are always true? Explain why/why not.

W

5.

The convex hull of a bounded set in R™ is bounded.

The convex hull of a closed set in R™ is closed.

The convex hull of a closed convex set in R™ is closed.

The convex hull of a closed and bounded set in R™ is closed and bounded.
The convex hull of an open set in R™ is open.

Exercise 1.8 [TrYs] [This exercise together with its follow-up, i.e., Exercise and Exercise
[[9) are the most boring exercises ever designed by the authors. Our excuse is that There is no
royal road to geometry (Euclid of Alexandria, c. 300 BC)]

Let A, B be nonempty subsets of R™. Consider the following claims. If the claim is always
(i.e., for every data satisfying premise of the claim) true, give a proof; otherwise, give a counter

example.

1. If A C B, then Conv(A4) C Conv(B).

2. If Conv(A) C Conv(B), then A C B.

3. Conv(AN B) = Conv(A) N Conv(B)

4. Conv(AN B) C Conv(A) N Conv(B).

5. Conv(A U B) C Conv(A) U Conv(B)

6. Conv(AU B) D Conv(A) U Conv(B)

7. If A is closed, so is Conv(A).

8. If A is closed and bounded, so is Conv(A).
9. If Conv(A) is closed and bounded, so is A.

Exercise 1.9 [TrYs] Let A, B,C be nonempty subsets of R"™ and D be a nonempty subset of
R™. Consider the following claims. If the claim is always (i.e., for every data satisfying premise
of the claim) true, give a proof; otherwise, give a counter example.

Uk o=

Conv(A U B) = Conv(Conv(A) U B).

Conv(A U B) = Conv(Conv(A) U Conv(B)).

Conv(AU B UC) = Conv(Conv(AU B) U C).

Conv(A x D) = Conv(A) x Conv(D).

When A is convex, the set Conv(A U B) (which is always the set of convex combinations
of several points from A and several points from B), can be obtained by taking convex
combinations of points with at most one of them taken from A, and the rest taken from B.
Similarly, if A and B are both convex, to get Conv(A U B), it suffices to add to AU B all
convex combinations of pairs of points, one from A and one from B.



5.2 Around ellipsoids 67

6. Suppose A is a set in R"™. Consider the affine mapping « — Pz +p : R" — R™, and
the image of A under this mapping, i.e., the set PA+ p := {Px +p : © € A}. Then,
Conv(PA + p) = P Conv(A) + p.

7. Consider an affine mapping y — P(y) : R™ — R"™ where P(y) := Py + p. Recall that
given a set X € R™, its inverse image under the mapping P(-) is given by P™(X) := {y €
R™: P(y) € X}. Then, Conv(P™(A4)) = P7'(Conv(A)).

8. Consider an affine mapping y — P(y) : R™ — R™ where P(y) := Py-+p. Then, Conv(P~*(A))
P~!(Conv(A)).

Exercise 1.10 [TrYs] Let X1, X2 € R" be two nonempty sets, and define Y := X; U X2 and

Z := Conv(Y). Consider the following claims. If the claim is always (i.e., for every data satisfying

premise of the claim) true, give a proof; otherwise, give a counter example.

Whenever X; and X> are both convex, so is Y.

Whenever X; and X2 are both convex, so is Z.

Whenever X; and X2 are both bounded, so is Y.

Whenever X; and X2 are both bounded, so is Z.

Whenever X; and X5 are both closed, so is Y.

Whenever X; and X3 are both closed, so is Z.

Whenever X; and X, are both compact, so is Y.

Whenever X; and X2 are both compact, so is Z.

Whenever X; and X2 are both polyhedral, so is Y.

10. Whenever X; and X2 are both polyhedral, so is Z.

11. Whenever X; and X2 are both polyhedral and bounded, so is Y.
12. Whenever X; and X3 are both polyhedral and bounded, so is Z.

Exercise .11 Consider two families of convex sets given by {F;, }icr and {G;};cs. Prove that
the following relation holds:

Conv < U (F;n Gj)) C Conv (U [G; N Conv(Uingi)]) .

i€l, jeJ JjeJ

NSOt W

©

Exercise 1.12 Let C1,C2 be two nonempty conic sets in R™ i.e., for each ¢ = 1,2, for any
rz € C; and t > 0, we have t - x € C; as well. Note that C1, C2 are not necessarily convex. Prove
that

1. Ci + C2 # Conv(Cy U C2) may happen if either C; or Cs (or both) is nonconvex.

2. C1 4 C2 = Conv(Ci U Cs) always holds if C1,C5 are both convex.

3. CinCy = Uae[oyl](acl N (1 — a)Cs2) always holds if C1,C5 are both convex.

Exercise 1.13 [TrYs] Let X C R" be a convex set with int X # @, and consider the following
set

K :=cl{[z;t]: t>0,z/t e X}.

Prove that the set K is a closed cone with a nonempty interior.

5.2 Around ellipsoids

Exercise .14 Verify each of the following statements:

1. Any ellipsoid F € R" is the images of the unit Euclidean ball B, = {z € R" : ||z|2 < 1}
under a one-to-one affine mapping. That is, £ C R"™ can be represented as £ = {z :
(x —¢)'C(x —¢) < 1} with C = 0 and ¢ € R if and only if it can be represented as
E = {c+ Du : u € B,} with nonsingular D, and in the latter representation D can be
selected to be symmetric positive definite.
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2. Given C' > 0, D > 0 and ¢,d € R, the ellipsoid Ec = {z : (z —¢) Oz —¢) < 1} is
contained in the ellipsoid Ep := {z : (z —¢)" D(x — ¢) < 1} if and only if C = D. If the
ellipsoid Ec is contained in the ellipsoid Ef, = {x : (x — d) " D(x —d) < 1}, then C = D.

3. For a set U C R", let Vol(U) be the ratio of the n-dimensional volume of U and the n-
dimensional volume of the unit ball B,,. Then, for an n-dimensional ellipsoid E represented
as {x = ¢+ Du: |ju||2 < 1} with nonsingular D we have

Vol(E) = |Det(D)],
and when E is represented as {z : (z —¢)' C(z — ¢) < 1} with C' = 0, we have
Vol(E) = Det™/2(C).

Exercise 1.15 Given C > 0, an ellipsoid {z : (z —a)  C(xz — a) < 1} is the solution set of
quadratic inequality =" Cz — 2(Ca) "z + (a' Ca — 1) < 0. Prove that the solution set E of any
quadratic inequality f(z) := ' Cz—c'x+0 < 0 with positive semidefinite matrix C is convex.

5.3 Truss Topology Design

Exercise 1.16 [EAYs] [First acquaintance with Truss Topology Design|

Preamble. What follows is the first exercise in a “Truss Topology Design” (TTD) series ((other
exercises in it are [[IT.9] TV.11] [V 28)). The underlying “real life” mechanical story is simple
enough to be told and rich enough to illustrate numerous constructions and results presented in
the main body of our textbook — ranging from Caratheodory Theorem to semidefinite duality,
demonstrating on a real life example how the theory works.

Trusses. Truss is a mechanical construction, like railroad bridge, electric mast, of Eiffel Tower,
composed of thin elastic bars linked with each other at nodes — points from physical space (3D
space for spatial, and 2D space for planar trusses).

Figure 5.1. Pratt Truss Bridge

When truss is subject to external load — collection of forces acting at the nodes — it starts to
deform, so that the nodes move a little bit, leading to elongations/shortenings of bars, which, in
turn, result in reaction forces. At the equilibrium, the reaction forces compensate the external
ones, and the truss capacitates certain potential energy, called compliance. Mechanics models
this story as follows.

e The nodes form a finite set p1,...,px of distinct points in physical space R? (d = 2 for
planar, and d = 3 for spatial constructions). Virtual displacements of the nodes under the
load are somehow restricted by “support conditions;” we will focus on the case when some of
the nodes “are fixed” — cannot move at all (think about them as being in the wall), and the
remaining “are free” — their virtual displacements form the entire R%. A virtual displacement
v of the nodal set can be identified with a vector of dimension M = dm, where m is the
number of free nodes; v is block vector with m d-dimensional blocks, indexed by the free
nodes, representing physical displacements of these nodes.

e There are N bars, i-th of them linking the nodes with indexes a; and §; (with at least one
of these nodes free) and with volume (3D or 2D, depending on whether the truss is spatial
or planar) t;.



5.8 Truss Topology Design 69

e An external load is a collection of physical forces — vectors from R? — acting at the free nodes
(forces acting at the fixed nodes are of no interest — they are suppressed by the supports).
Thus, an external load f can be identified with block vector of the same structure as a virtual
displacement — blocks are indexed by free nodes and represent the external forces acting at
these nodes. Thus, displacements v of the nodal set and external loads f are vectors from
the space V of virtual displacements — M-dimensional block vectors with m d-dimensional
blocks.

e The bars and the nodes together specify the symmetric positive semidefinite M x M stiffness
matrix A of the truss. The role of this matrix is as follows. A displacement v € V of the nodal
set results in reaction forces at free nodes (those at fixed nodes are of no interest — they are
compensated by supports); assembling these forces into M-dimensional block-vector, we get
a reaction, and this reaction is —Av. In other words, the potential energy capacitated in truss
under displacement v € V of nodes is évTAv, and reaction, as it should be, is the minus
gradient of the potential energy as a function of v El At the equilibrium under external load
f, the total of the reaction and the load should be zero, that is, the equilibrium displacement
satisfies

Av=f (5.1)

Note that may be unsolvable, meaning that the truss is crushed by the load in question.
Assuming the equilibrium displacement v exists, the truss at equilibrium capacitates potential
energy %’UTAU; this energy is called compliance of the truss w.r.t. the load. Compliance is
convenient measure of rigidity of the truss with respect to the load, the less the compliance
the better the truss withstands the load.

Let us build the stiffness matrix of a truss. As we have mentioned, the reaction forces originate
from elongations/shortenings of bars under displacement of nodes. Consider i-th bar linking
nodes with initial — prior to the external load being applied — positions a; = p., and b; = pg;,
and let us set

di = ||b; — aill2, e; = [b; — as]/d.
Under displacement v € V of the nodal set,

e positions of the nodes linked by the bar become a; + v, b; + v” | where v is ~v-th block
—~ —~

da db
in v — the displacement of y-th node

e as a result, elongation of the bar becomes, in the first-order in v approximation, e; [db — da],
and the reaction forces caused by this elongation by Hooke’s Lawﬂ are

d71S;eef [db—da]  at node # a;
—d; *Sieief [db—da] at node # B
0 at all remaining nodes

where S; = t;/d; is the cross-sectional size of i-th bar. It follows that when both nodes linked
by i-th bar are free, the contribution of i-th bar to the reaction is

—tibib;v,

This is called linearly elastic model; it is the linearized in displacements approximation of the actual
behavior of a loaded truss. This model works the better the smaller are the nodal displacements as
compared to the inter-nodal distances, and is accurate enough to be used in typical real-life
applications.

Hooke’s Law says that the magnitude of the reaction force caused by elongation/shortening of a bar
is proportional to Sd~16, where S is bar’s cross-sectional size (area for spatial, and thickness for
planar truss), d is bar’s (pre-deformation) length, and ¢ is the elongation. With units of length
properly adjusted to bars’ material, the proportionality coefficient becomes 1, and this is what we

assume from now on.
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where b; € V is the vector with just two nonzero blocks:

— the block with index a; — this block is e;/d; = [b; — a;]/||bi — ai||§, and

— the block with index f; — this block is —e;/d; = —[bi — as]/||bi — a4|3.

It is immediately seen that when just one of the nodes linked by i-th bar is free, the contri-
bution of i-th bar to the reaction is given by similar relations, but with one, rather than 2,
blocks in b; — the one corresponding to the free among the nodes linked by the bar.

The bottom line is that The stiffness matriz of a truss composed of N bars with volumes t;,
1<i<N, is

A=A(t):=> tib;b],

where b; € V = RM are readily given by the geometry of nodal set and the indezes of nodes
linked by bar i.

Truss Topology Design problem. In the simplest Truss Topology Design (T'TD) problem,
one is given

e a finite set of tentative nodes in 2D or 3D along with support conditions indicating which
of the nodes are fixed and which are free, and thus specifying the linear space ¥V = RM of
virtual displacements of the nodal set,

e the set of N tentative bars — unordered pairs of (distinct from each other) nodes which are
allowed to be linked by bars, and the total volume W > 0 of the truss,

e An external load f € V.

These data specify, as explained above, vectors b; € R™, i =1,..., N, and the stiffness matrix
N

A(t) = tib;b] = BDiag{t1,...,tn}B" €8V [B = [b1,...,bx]]
i=1

of truss, which under the circumstances can be identified with vector ¢ € RY of bar volumes.
What we want is to find the truss of given volume capable to “withstand best of all” the given
load, that is, the one that minimizes the corresponding compliance.

When applying the TTD model, one starts with dense grid of tentative nodes and broad list
of tentative bars (e.g., by allowing to link by a bar every pair of distinct from each other nodes,
with at least one of the nodes in the pair free). At the optimal truss yielded by the optimal
solution to the TTD problem, many tentative bars (usually vast majority of them) get zero
volumes, and significant part of the tentative nodes become unused. Thus, TTD problem in fact
is not about sizing — it allows to recover optimal structure of the construction, this is where
“Topology Design” comes from.

To illustrate this point, here is a toy example (it will be our guinea pig in the entire series of
TTD exercises):
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Console design: We want to design a 2D truss as follows:

e The set of tentative nodes is the 9 x 9 grid {[p;q] € R? : p,q € {0,1,...,8}} with
the 9 most-left nodes fixed and remaining 72 nodes free, resulting in M = 144-
dimensional space V of virtual displacements

e The external load f € V = R'** is a single-force one, with the only nonzero force
[0; —1] applied at the 5-th node of the most-right column of nodes.

e We allow for all pairwise connections of pairs of distinct from each other nodes,
with at least one of these nodes free, resulting in N = 3204 tentative bars

e The total volume of truss is W = 1000.

.
.
.
.
.
.
.
.
.
a) 9 x 9 nodal grid b) 3024 tentative bars
o: fixed nodes
c) optimal truss, 38 bars d) displacement under

compliance 0.1914 load of interest
Figure 5.2. Console. d): positions of the bars and nodes before and after (in gray) deformation.
The vertical segment starting at the right-most node indicates the external force.

Important: From now on, speaking about TT'D problem, we always make the following as-
sumption:

R SN bib] = 0.

Under this assumption, the stiffness matrix A(t) = 3. t;b;b] associated with truss t > 0 is
positive definite, so that such a truss can withstand whatever load f. You can verify numerically
that this is the case in Console design as stated above.

After this lengthy preamble (to justify its length, note that it is investment to a series of
exercises, rather than just one of them), let us pass to the exercise per se. Consider a TTD
problem.

1. Prove that truss ¢ > 0 (recall that we identify truss with the corresponding vector of bar
volumes) is capable to carry load f if and only if the quadratic function

Fv)=f"v— %UTA(t)’U
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is bounded from above, and that whenever this takes place,

e the maximum of F' over V is achieved

e the maximizers of F' are exactly the equilibrium displacements v — those with
Aty = f,

and for such a displacement, one has

1 1
[max F =] F(v) = 5vTA(t)v — §vT
e the maximum value of F' is exactly the compliance of the truss w.r.t. the load f

2. Prove that a real 7 is an upper bound on the compliance of truss ¢ > 0 w.r.t. load f if and
only if the symmetric matrix

BDiag{t}B" | f
fr | 27
is positive semidefinite. As a result, pose the TTD problem as the optimization problem

. BDiag{t}B" | f
= 1m : > — .
Opt nin {T [ 7 | 5 >=0,t>0, % ti=W (5.2)

A:{ },B:[bl,...,bN]

Prove that the problem is solvable.
3. [computational study]

3.1. Solve the Console problem numerically and reproduce the numerical results presented
above.

3.2. Resolve the problem with the set of all possible tentative bars reduced to the subset of
“short” bars connecting neighboring nodes only:

Figure 5.3. 262 “short” tentative bars

and compare the resulting design and compliance to those in the previous item.

5.4 Around Caratheodory Theorem

Exercise 1.17 [EdYs] Prove the following statements:
Let X C R" be nonempty. Then,

1. if a point x can be represented as a convex combination of a collection of vectors from X,
then the collection can be selected to be affinely independent.

2. if a point  can be represented as a conic combination of a collection of vectors from X, then
the collection can be selected to be linearly independent.
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Comment: Note that the claims above are refinements, albeit minor ones, of the Caratheodory
Theorem (plain and conic, respectively). Indeed, when M := Aff(X) and m is the dimension
of M, every affinely independent collection of points from X contains at most m + 1 points
(Proposition, so that the first claim is equivalent to stating that if z € Conv(X), then z is
a convex combination of at most m+1 points from X. However, the vectors participating in such
a convex combination are not necessarily affinely independent, so that the first claim provides
a bit more information than the plain Caratheodory’s Theorem. Similarly, if L := Lin(X) and
m := dim L, then every linearly independent collection of vectors from X contains at most
m < n points, that is, the second claim implies the Caratheodory’s Theorem in conic form, and
provides a bit more information than the latter theorem.

Exercise [.18 [EdYs] E| Consider TTD problem, and let N be the number of tentative bars, M
be the dimension of the corresponding space of virtual displacements V', and f be an external
load. Prove that if truss t > 0 can withstand load f with compliance < 7 for some given real
number 7, then there exists truss ¢ of the same total volume as t with compliance w.r.t. f at
most 7 and at most M + 1 bars of positive volume.

Exercise 1.19 [EdYs] [Shapley-Folkman Theorem]

1. Prove that if a system of linear equations Ax = b with n variables and m equations has a
nonnegative solution, it has a nonnegative solution with at most m positive entries.
2. Let Vi,...,V, be n nonempty sets in R™, and define

Vi=Conv(Vi 4+ Va+... + V).

1. Prove that
1. Taking direct product commutes with taking convex hull:
Conv(Vi X ...x V,) = Conv(Vi) x ... x Conv(V,).
2. Taking affine image commutes with taking convex hull: if V' C R"™ is nonempty and

x+— A(z) = Az+b: R" — R™ is an affine mapping, then define A(V) := {A(z): = €
V} and show that

Conv(A(V)) = A(Conv(V)).

3. Conclude from the previous two items that taking weighted sum of sets commutes
with taking convex hull:

Conv <)\1V1 + .o AV ={v= Z)\ivi v €V, 1 < n}) = A1 Conv(V1)+. ..+, Conv(V,,)
[\ € R]
In particular,

V = Conv(Vi) + ...+ Conv(Vy,).
2. Prove Shapley-Folkman Theorem:

Let 2 € V. Then, there exists a representation of = such that
T=x1+4 ...+ xn, x € Conv(V;),

in which at least n — m of z;’s belong to the respective sets V;.

Comment: Shapley-Folkman Theorem says, informally, that when n > m, summing up
n nonempty sets in R™ possesses certain “convexification property” — every point from
the convex hull V of the sum of our sets is the sum of points x; with all but m of them
belonging to V; rather than to Conv(V;), and only < m of the points belonging to V;
“fractionally,” that is, belonging to Conv(V;), but not to V;. This nice fact has numerous
useful applications.

3 Preceding exercise in the TTD series is
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Exercise 1.20 [EdYs] Caratheodory’s Theorem in its plain and its conic forms are “existence”

statements: if a point x € R™ is a convex, respectively conic, combination of points =", . .. Lz,

then there exists a representation of = of the same type which involves at most (m + 1), respec-
tively, m, terms. Extract from the proofs of the theorems algorithms for finding these “short”
representations at the cost of solving at most N solvable systems of linear equations with at
most N variables and m equations each.

Exercise 1.21 [EdYs] Prove Kirchberger’s Theorem:

Consider two sets of finitely many points X = {z',...,2*} and Y = {y',...,y™}
in R™ such that k +m > n + 2 and all the points z*,...,z" y',..., y™ are distinct.
Assume that for any subset S C X UY composed of n + 2 points the convex hulls of
the sets X NS and Y NS do not intersect, i.e., Conv(X N.S)NConv(Y NS) = @. Then,
the convex hulls of X and Y also do not intersect, i.e., Conv(X) N Conv(Y) = @.

Hint: Assume, on contrary, that the convex hulls of X and Y intersect, so that
k . m .
> ot ="y
i=1 j=1

for certain nonnegative \;, Zle Ai =1, and certain nonnegative y;, >3, p1; = 1, and look at
the expression of this type with the minimum possible total number of nonzero coefficients A,

M-
Exercise 1.22 [EdYs] [Follow-up to Shapley-Folkman Theorem]
1. Let X1,..., Xk be nonempty convex sets in R"” and X = ngK X. Prove that

K K
Conv(X) = {m => Mzt A >0,2" € X, VE<K, Y A= 1}.
k=1 k=1

2. Let Xi, k < K, be nonempty bounded polyhedral sets in R™ given by polyhedral represen-
tations:
X, = {x ceR": Fe R""':Pkas—i—Qkuk < ’I“k}.

Define X := J, . x X&. Prove that the set Conv(X) is a polyhedral set given by the polyhedral
representation

P e R, wP e R™, M €R, VE< K :
kak + Qkuk — e <0, k<K (a) (*)
A >0, K =1 ®
=3, (c)

Does the claim remain true when the assumption of boundedness of the sets Xys is lifted?

Conv(X)=<(¢z€R":

After two preliminary items above, let us pass to the essence of the matter. Consider the situation
as follows. We are given n nonempty and bounded polyhedral sets X; C R", j =1,...,n. We
will think of X; as the “resource set” of the j-th production unit: entries in € X; are amounts
of various resources, and X; describes the set of vectors of resources available, in principle, for
j-th unit. Each production unit j can possibly use any one of its K; < oo different production
plans. For each j = 1,...,n, the vector y; € R? representing the production of the j-th unit
depends on the vector x; of resources consumed by the unit and also on the production plan
utilized in the unit. In particular, the production vector y; € RP stemming from resources z;
under k-th plan can be picked by us, at our will, from the set

Y[z = {yj ERP: 2z =[x -y € ij}’
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where ij, k < Kj, are given bounded polyhedral “technological sets” of the units with projec-
tions onto the zj-plane equal to X, so that for every k < K it holds

z; € X; <  Jyj:[zj;—y;] € ij (5.3)

We assume that all the sets V]k are given by polyhedral representations, and we define

vi=J v
k<K

Let R € R" be the vector of total resources available to all n units and let P € R? be the
vector of total demands for the products. For j < n, we want to select z; € X, k; < Kj, and

yj € YJkJ [;] in such a way that
ijgR and Zyjzp.
J J

That is, we would like to find z; = [z;;v;] € Vj, j < n, in such a way that > z; < [R;—P].
Note that the presence of “combinatorial part” in our decision — selection of production plans
in finite sets — makes the problem difficult.

3. Apply Shapley-Folkman Theorem (Exercise [[.19) to overcome, to some extent, the above
difficulty and come up with a good and approximately feasible solution.

5.5 Around Helly Theorem

Exercise 1.23 [TrYs] [Alternative proof of Helly Theorem] The goal of this exercise is to build
an alternative proof of Helly’s Theorem, without using Radon’s Theorem.

1. Consider a system a; ¢ < b;, i« < N, of N linear inequalities in variables z € R". Helly’s
Theorem applied to the sets A; := {x € R": af x < b;} gives us that

() If a system a; « < b;, i < N, of linear inequalities in variables x € R™ infeasible,
so is a properly selected sub-system composed of at most n + 1 inequalities from the
system.

Find an alternative proof of (!) without relying on Helly’s or Radon’s Theorems.

2. Extract from item 1 Helly’s Theorem for polyhedral sets: If A1,...,An, N > n+ 1, are
polyhedral sets in R™ and every n+ 1 of these sets have a point in common, then all the sets
have a point in common.

3. Extract from item 2 Helly’s Theorem (Theorem [I.2.10]).

Exercise 1.24 [TrYs] Ao, A1,..., An, m = 2025, are nonempty convex subsets of R?°°°, and

Ap is a triangle (convex hull of 3 affinely independent vectors). Which of the claims below are

always (that is, for any Ao, ..., A, satisfying the above assumptions) true:

1. If every 3 among the sets Ap, ..., A, have a point in common, all m + 1 sets have a point
in common.

2. If every 4 among the sets Ao, ..., Ay have a point in common, all m + 1 sets have a point
in common.

3. If every 2001 among the sets Ao, ..., A, have a point in common, all m+ 1 sets have a point
in common.

Exercise 1.25 [TrYs] Let P, := {# € R" : Az < b;j} fori € {1,...,m} and C := {x €

R"™: Dx > d} be nonempty polyhedral sets. Suppose that for any n+1 sets, P;,, ..., F;,_,, there
is a translate of C, i.e., the set C' + u for some u € R", which is contained in all P;,...,P;, ;.

Prove that there is a translate of C'; which is contained in all of the sets Pi,..., Pp.
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Exercise 1.26 [TrYs] A cake contains 300 g of raisins (you may think of every one of them
as of a 3D ball of positive radius). John and Jill are about to divide the cake according to the
following rules:

e first, Jill chooses a point a in the cake;

e second, John makes a cut through a, that is, chooses a 2D plane II passing through a and
takes the part of the cake on one side of the plane (both II and the side are up to John, with
the only restriction that the plane should pass through a); all the rest goes to Jill.

1. Prove that it may happen that Jill cannot guarantee herself 76 g of the raisins.

2. Prove that Jill always can choose a in a way which guarantees her at least 74 g of the raisins.

3. Consider n-dimensional version of the problem, where the raisins are n-dimensional balls,
the cake is a domain in R", and “a cut” taken by John is defined as the part of the cake
contained in the half-space

{:KER": eT(w—a)ZO},

where e # 0 is the vector (“inner normal to the cutting hyperplane”) chosen by John. Prove

that for every e > 0, Jill can guarantee to herself at least 7‘%01 — € g of raisins, but in general
cannot guarantee to herself 7%01 +e€g.

Remarks:

300

1. With some minor effort, you can prove that Jill can find a point which guarantees her 75

g of raisins, and not % —€g.

2. If, instead of dividing raisins, John and Jill would divide in the same fashion uniform and
convex cake (that is, a closed and bounded convex body X with a nonempty interior in R",
the reward being the n-dimensional volume of the part a person gets), the results would

change dramatically: choosing as the point the center of masses of the cake

J zdz
=%
= Tdn
X
Jill would guarantee herself at least nLH) = é part of the cake. This is a not so easy

corollary of the following extremely important and deep result:

Brunn-Minkowski Symmetrization Theorem: Let X be as above, and let [a, b]
be the projection of X on an axis ¢, say, on the last coordinate axis. Consider the “
symmetrization” Y of X, i.e., Y is the set with the same projection [a,b] on £ and
for every hyperplane orthogonal to the axis ¢ and crossing [a, b], the intersection of Y
with this hyperplane is an (n — 1)-dimensional ball centered at the axis with precisely
the same (n — 1)-dimensional volume as the one of the intersection of X with the same
hyperplane:

{z € R"': [z € Y}={z¢€ R"™: |22 < p(c)}, Veé€ la,b], and
Volno1 ({2 € R"': [55 €Y}) =Voluor ({z€ R"1: [255¢ € X}), Veé€ [,

Then, Y is a closed convex set.

5.6 Around Polyhedral Representations

Exercise 1.27 [TrYs] Justify calculus rules for polyhedral representations presented in section

B3l
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Exercise 1.28 Given two sets U,V C R™, we define
U+V={zeR":FueclU IveViz=u+v}.

Let D:={z € R": Az +b+ Qs C P, Vs € S} where the set & # P C R™ admits polyhedral
representation, the set @ # S C R” is given but arbitrary, and the sets @ # Q, C R™ are
indexed by s € S.

1. Suppose that S is a finite set and for each s € S we have Qs = {gs}, i.e., is a single point.
Then, will the set D be polyhedrally representable?

2. State sufficient conditions on the structure of sets Qs and S that will guarantee that the
resulting set D is polyhedral. Here, the goal is to have conditions as general as possible.
Among your sufficient conditions, can you identify at least some of those that are necessary?

Exercise 1.29 [EdYs] For z € R" and integer k, 1 < k < n, let sx(x) be the sum of k largest
entries in z. For example, s1(z) = max;{x:}, sn(z) = >0, @i, 53([3;1;2;2])) =3+2+2=7.
Now let 1 < k < n be two integers. For any integer k = 1,...,n, define

Xin i ={[z;f] e R" xR : sp(x) < t}.

Observe that X, is a polyhedral set. Indeed, si(z) <t holds if and only if for every k indices
i1 < i < ... <1 from {1,2,...,n} we have z;; + =i, + ...+ x;, < t, which is nothing but a
linear inequality in variables x,t. Since there are (Z) possible ways of selecting k indices from
{1,2,...,n}, the number of linear inequalities describing X} ,, is (Z), and these linear inequalities
give the polyhedral description of X} . The point of this exercise is to demonstrate that X,

admits a “short” polyhedral representation, specifically,

n
Xin = {[a:;t] cR"xR: 3zeR",Isc Rix; < z;+s, Vi, 2> 0, Zzi—kksgt}.
i=1
Exercise 1.30 [TrYs] [Computational study: Fourier-Motzkin elimination as an LP algorithm)]
It was mentioned in sectionthat Fourier-Motzkin elimination provides us with an algorithm
that terminates in finitely many steps for solving LP problems. This algorithm, however, is of
no computational value due to the potential rapid growth of the number of inequalities one may
need to handle when eliminating more and more variables. The goal of this exercise is to get an
impression of this phenomenon.
Our “guinea pig” will be transportation problem with n unit capacity suppliers and n unit
demand customers:

nzntn{t tZZZCijwij, Zl’ij >1,Vj, szg <1, Vi, zi; 207Vi7j}~
J

i=1 i=1 i

This problem has n? + 1 variables and (n+ 1)2 linear inequality constraints, and let us solve
it by applying the Fourier-Motzkin elimination to project the feasible set of the problem onto
the axis of the t-variable, that is, to build a finite system S of univariate linear inequalities
specifying this projection.

How many inequalities do you think there will be in S when n = 1,2, 3,47 Check your intuition
by implementing and running the F-M elimination, assuming, for the sake of definiteness, that
cij =1 forall i,j.

5.7 Around General Theorem of the Alternative

Exercise 1.31 1. Prove Gordan’s Theorem of the Alternative:
A system of strict homogeneous linear inequalities Az < 0 in variables = has a solution
if and only if the system AT A =0, A > 0 in variables X has only the trivial solution
A=0.
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2. Prove Motzkin’s Theorem of the Alternative:

A system Az < 0, Bz <0 of strict and nonstrict homogeneous linear inequalities has
a solution if and only if the system A" A+ By =0, A >0, x> 0 in variables X, s
has no solution with A # 0.

Exercise 1.32 For the systems of constraints to follow, write them down equivalently in the
standard form Az < b, Cz < d and point out their feasibility status (“feasible — infeasible”) along
with the corresponding certificates (certificate for feasibility is a feasible solution to the system;
certificate for infeasibility is a collection of weights of constraints which leads to a contradictory
consequence inequality, as explained in GTA).

z<0(zeR")

<0, and > x>0 (zxeR")

—1<2;<1,1<i<n, 37" z;>n(xr€R")

—1<2;<1,1<i<n, 3" z;>n (z€R")

—1<a;<1,1<i<n, Y7 iz, > 20 (2 € R")

—1<2;<1,1<i<n, YF iz > 2 (2 ¢ RY)

z€R? |r1|+ 22 <1, 22>0, 11 +22 =1

r€R? |oi|+ 22 <1, 20 >0, 1 +20 > 1

z € R*, £ > 0, the sum of two largest entries in  does not exceed 2, and z; + 2 + 3 > 3
x€R4,x20, the sum of two largest entries in x does not exceed 2, and 1 + x2 + x3 > 3

© 0N O WD
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Exercise 1.33 Let (S) be the following system of linear inequalities in variables = € R3
1<, z1+22<1, x1+x2+23<1 (S)

In the following list, point out which inequalities are/are not consequences of this system, and
certify your claims. To certify that a given inequality is a consequence of the given system, you
need to provide nonnegative aggregation weights A € R3 for the inequalities in (S) such that the
resulting consequence inequality implies the given inequality. To certify that a given inequality
is not a consequence of the given system (S), you need to find a point 2 € R?® that satisfies the
given system but violates the given inequality.

3r1+ 222 + w3 < 4
3x1 + 220 + 23 < 2
3r1 + 222 < 3
3z, + 222 < 2
3z1 +3x2 + 23 <3
3r1 + 322 + 23 < 2

S ot W

Make a generalization: prove that a linear inequality pri + qx2 + rzs < s is a consequence of
(S)ifandonlyif s >p>¢g>r>0.

Exercise 1.34 Is the inequality 1 + x2 < 1 a consequence of the system 1 < 1, z; > 27 If

yes, can it be obtained by taking a legitimate weighted sum of inequalities from the system and

the always true inequality 0"z < 1, as it is suggested by the Inhomogeneous Farkas Lemma?

Exercise 1.35 Certify the correct statements in the following list:

1. The polyhedral set X = {z € R®: = >[1/3;1/3;1/3], 3.7 | x; < 1} is nonempty.

2. The polyhedral set X = {z € R®: = >[1/3;1/3;1/3], S jai < 0.99} is empty.

3. The linear inequality x1 4+ z2 + x3 > 2 is violated somewhere on the polyhedral set X =
{zeR®: ©>[1/3;1/3;1/3], 30 @ < 1}.

4. The linear inequality x1 + x2 4+ 3 > 2 is violated somewhere on the polyhedral set X =
{reR®:2>[1/3;1/3;1/3], 3°_ z; < 0.99}.

5. The linear inequality 1 + x2 < 3/4 is satisfied everywhere on the polyhedral set
X={zeR’: x>[1/3;1/3;1/3], S ai < 1.05}.
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The polyhedral set Y = {a: ER?: x1>1/3, 22 >1/3, 23 > 1/3} is not contained in the
polyhedral set X = {z € R*: = >[1/3;1/3;1/3], S a < 1}.
The polyhedral set Y = {f ER®: o >[1/3;1/3;1/3], 30 x; < 1} is contained in the

polyhedral set X = {m ER’: 1+ 22 <2/3, xo+23<2/3, 21+ 23 < 2/3}.

5.8 Around Linear Programming Duality

Exercise 1.36 [EdYs] Let the polyhedral set P = {z € R" : Az < b}, where A = [a] ;...;a,)],
be nonempty. Prove that P is bounded if and only if every vector from R™ can be represented as a
linear combination of the vectors a; with nonnegative coefficients where at most n coefficients are
positive. As a result, given A, all nonempty sets of the form {x € R" : Az < b} simultaneously
are/are not bounded.

Exercise 1.37 Consider the linear program

Opt = max {z1: 1 >0, 2 >0, az1 + bza < ¢} (P)
z€ER2

where a, b, ¢ are parameters. Answer the following questions:

© 0N oE WD
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11.

Let ¢ = 1. Is the problem feasible?

Let a=b=1, ¢ = —1. Is the problem feasible?

Let a=b=1, ¢= —1. Is the problem boundecﬂ?

Let a = b = c = 1. Is the problem bounded?

Let a=1, b= —1, ¢ = 1. Is the problem bounded?

Let a =b=c=1. Is it true that Opt > 0.57

Let a=b=1, ¢ = —1. Is it true that Opt < 17

Let a =b=c=1. Is it true that Opt < 17

Let a = b=c=1.Is it true that z, = [1;1] is an optimal solution of (P)?
Let a = b=c=1.Is it true that z, = [1/2;1/2] is an optimal solution of (P)?
Let a = b= c=1. Is it true that ., = [1;0] is an optimal solution of (P)?

Exercise 1.38 Consider the LP program

1 S O
max { —x2: —x1 < —1
z1,22 2o < 1

Write down the dual problem and check whether the optimal values are equal to each other.

Exercise 1.39 Write down the problems dual to the following linear programs:

ZE1*ZE2+ZE3:0,
r1 + x2 — x3 > 100,

. max { x1 + 2x2 +3x3: 1 <0,

zER3 Lo > 0’
xr3 2 0
. max {ch: Az =0, xZO}
zeR™
. max {ch: Az =0, ygscgﬂ}
Z‘ER’H
. max{c'z: Az +By<b, <0, y>0}
x,y

Recall that a maximization problem is called bounded, if the objective is bounded from above on the
feasible set, which is the same as its optimal value being < oo
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Exercise 1.40 [TrYs] Consider a primal-dual pair of linear programs given by
Opt(P) = mgjn {cTa: : Az > b} ) (P)
Opt(D) = mgx {bTy cy>0, Aly= c} . (D)
Suppose that both are feasible. Prove that the feasible set of at least one of these problems is

unbounded.

Exercise 1.41 [TrYs] Consider the following linear program

Opt =  min 2 ) wyr w20 VI<i<i<4 Y w4 wy i, 1<i<4

{@ijhcicjz<a 1<i<j<4 J>i j<i
1. Show that the optimum objective value is at most 20.
2. Show that the optimum objective value is at least 10. Opt > 10.

Exercise 1.42 [EdYs] We say that an n X n matrix P is stochastic if all of its entries are all
nonnegative and the sum of the entries of each row is equal to 1. Show that if P is a stochastic
matrix, then there is a nonzero vector a € R" such that P'a = a and a > 0.

Exercise 1.43 [TrYs] Let A € R™ " be a symmetric matrix, i.e., AT = A. Consider the linear
program

min{cTa:: Az > ¢, :1:20}.

x
Prove that if Z satisfies AZ = ¢ and & > 0, then Z is optimal.

Exercise 1.44 [TrYs] Let w € R", and let A € R™™"™ be a skew-symmetric matrix, i.e.,
AT = —A. Consider the following linear program

Opt(P) = min {wT:r Az > —w, x> 0}.

TERM
Suppose that the problem is solvable. Provide a closed analytical expression for Opt(P).

Exercise 1.45 [TrYs] [Separation Theorem, polyhedral version] Let P and ) be two nonempty
polyhedral sets in R™ such that P N @Q = &. Suppose that the polyhedral descriptions of these
sets are given as

P={zeR": Az <b} and Q:={z € R": Dz >d}.
Using LP duality show that there exists a vector ¢ € R™ such that
c'z<c'y, forallzePandyeQ.

Exercise 1.46 [TrYs] Suppose we are given the linear program

min {ch Az =b, x> O} (P)

and its associated Lagrangian function
L(z,A\) :i=c z+ A" (b— Az).
The LP dual to (P) is (replacing Az = b with Az > b, —Axz > —b)

Opt(D) = max {bT[,\+ A AT DG — A b p = > 00> o} ,
Atop

or, after eliminating p and setting A = A+ — A_,

Opt(D) = max {bT)\ ATA< b} . (D)
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Now, let us consider the following game: Player 1 chooses some x > 0, and player 2 chooses
some A simultaneously; then, player 1 pays to player 2 the amount L(z, \). In this game, player
1 would like to minimize L(z,\) and player 2 would like to maximize L(z, \).
A pair (2", \*) with 2™ > 0, is called an equilibrium point (or saddle point or Nash equilibrium)
if
L(z",\) < L(z",\") < L(z,\"), Yz >0 and VA. (%)

(That is, in an equilibrium no player is able to improve his performance by unilaterally modifying
his choice.)

Show that «* and A\* are optimal solutions to the problem (P) and to its dual, respectively,
if and only if (z*,\") is an equilibrium point.
Exercise 1.47 [TrYs] Given a polyhedral set X = {Jc eER": a]z<by, Vi=1,... ,m}, con-
sider the associated optimization problem

rg%x{t: Bi(z,t) C X},

where Bi(z,t) :={y € R": ||y — 2| < t}. Is it possible to pose this optimization problem as
a linear program with a polynomial in m, n number of variables and constraints? If it is possible,
give such a representation explicitly. If not, argue why.

Exercise 1.48 [TrYs] Consider the optimization problem

mliln {ch: a; < b; for some a; € Ay, i=1,...,m, > 0}, *)
zeR™
where A; = {Gi+€ 1 ||€il|lc < p}fori=1,...,m and ||u|lec := max;=1,. n{|u;|}. In this prob-

lem, we basically mean that the constraint coefficient a;; (j-th component of the i-th constraint
vector @;) belongs to the interval uncertainty set [a@;; — p, @i; + p], where @;; is its nominal
value. That is, in (*), we are seeking a solution x such that each constraint is satisfied for some
coefficient vector from the corresponding uncertainty set.

Note that in its current form (x), this problem is not a linear program (LP). Prove that it
can be written as an explicit linear program and give the corresponding LP formulation.
Exercise .49 [EdYs] Let S = {a1,az2,...,an} be a finite set composed of n distinct elements,
and let f be a real-valued function defined on the set of all subsets of S. We say that f is
submodular if, for every X, Y C S, the following inequality holds:

FX)+Y) 2 f(XUY)+ f(XNY).

1. Give an example of a submodular function f.
2. Let f:2% — Z be an integer-valued submodular function such that f(@) = 0. Consider the
polyhedron

Py = {m eRF: > m < f(T), VT C s} ,
teT
Consider
Tap = f{a1,...;ac}) — f{ar,...,an-1}), k=1,...,n.
Show that Z is feasible to Py.
3. Consider the following optimization problem associated with Py:
max {ch NS Pf}.

Write down the dual of this LP.

4. Assume without loss of generality that cq;, > cay > ... > cq,, . Identify a dual feasible solution
and using the LP Duality Theorem show that the solution Z specified in item 2 is optimal
to the primal maximization problem associated with Py.
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Remark. Note that when the submodular function f is integer-valued, we immediately see from
the characterization of the optimal primal solution T that for all integer vectors ¢ € Z™ such
that there exists an optimum solution to the primal problem, there exists an optimum solution
(e.g. ) where all variables take integer values. A system of linear inequalities Az < b with
beZ™ and A € Q™ " satisfying such a property (i.e., whenever ¢ € Z" is such that there
is an optimal solution to max,{c'z : Az < b} then there is an integer optimum solution) is
called totally dual integral (TDI). Thus, we conclude that the polyhedron Pj associated with
an integer-valued submodular function f is TDI. The TDI property is a well-known sufficient
condition that guarantees that every extreme point (see section|6.4]) of the associated polyhedron
is integral. In particular, the TDI property generalizes total unimodularity (TU), i.e., the other
well-known sufficient condition for the integrality of a polyhedron, which plays a key role in
network-flow based optimization.
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6

Separation Theorem and geometry of convex
sets

We next investigate Separation Theorem which is as indispensable when studying
general convex sets as is General Theorem of the Alternative when investigating
properties of polyhedral sets.

6.1 Separation: definition

Recall that a hyperplane M in R™ is, by definition, an affine subspace of dimension
n — 1. Then, by Proposition hyperplanes are precisely the level sets of
nontrivial linear forms. That is,

M C R" is a hyperplane
< 3JaeR", a#0, b€ Rsuchthat M ={z eR":a'z=10}.
We can associate with the hyperplane M or, better to say, with the associated

pair a, b (defined by the hyperplane up to multiplication of a, b by nonzero real
number) the following sets:

e “upper” and “lower” open half-spaces
Mt ={zeR": a'z>b}, and M ={zeR": a'z<b}.

These sets clearly are convex, and since a linear form is continuous, and the
sets are given by strict inequalities on the value of a continuous function, they
indeed are open.
These open half-spaces are uniquely defined by the hyperplane, up to swapping
the “upper” and the “lower” ones (this is what happens when passing from a
particular pair a, b specifying M to a negative multiple of this pair).

e “upper” and “lower” closed half-spaces

M+::{336R":aT:U2b}, and M_::{xER":aTxgb}.

These are also convex sets. Moreover, these two sets are polyhedral and thus
closed. It is easily seen that the closed upper/lower half-space is the closure of
the corresponding open half-space, and M itself is the common boundary of
all four half-spaces.

Also, note that our half-spaces and M itself partition R", i.e.,
R'=M "UMUM'

85
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(partitioning by disjoint sets), and
R'=M UM™"

(where M is the intersection of the sets M~ and M™).
We are now ready to define the basic notion of separation of two convex sets
T and S by a hyperplane.

Definition I1.6.1 [Separation] Let S, T be two nonempty convex sets in
R™.

e A hyperplane
M={zeR": a'z=0b} [wherea# 0

is said to separate S and T, if it satisfies both of the following properties:

- SC{zeR": a'z<b}, T C{zeR": a"x>b} (ie, Sand T
belong to the opposite closed half-spaces into which M splits R"), and,
— at least one of the sets .S, T is not contained in M itself, i.e.,

SUT ¢ M.

e The separation is called strong, if there exist ¢',b” € R satisfying b’ < b <
b”, such that

SC{zreR": aTbe’}, TC{zeR": aTmZb”}.

e A linear form a # 0 E] is said to separate (strongly separate) S and T if for
properly chosen b the hyperplane {x cER": a'z = b} separates (strongly
separates) S and T'.

e We say that S and T can be (strongly) separated, if there exists a hyper-

plane which (strongly) separates S and T'.

Let us examine the separation concept on a few simple examples.
Example 11.6.1

Figure 6.1. Separation.

1) The hyperplane {z € R?: x, — x; = 1} strongly separates the polyhedral sets
S={reR?: 2=0,2, > —-1}andT={reR*: 0< 2, <1,3 <z, <5}

2) The hyperplane {z € R: x = 1} separates (but not strongly separates) the
convex sets S={r e R: z<1l}andT={zeR: z > 1}.

1 Here and in what follows we identify a linear form with the vector of its coefficient. Thus, ”a linear
form a € R™” stands for the linear function z +— o'z : R® — R.
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3) The hyperplane {x € R?: x; = 0} separates (but not strongly separates) the
convex sets S = {x e R*: 21 < 0,29 > —1/2y} and T = {z € R* : 2, >
0, To > 1/%1}

4) The hyperplane {x € R*: z, —x; = 1} does not separate the convex sets
S={xeR?*: zp>1}and T ={z € R*: x, =0}.

5) The hyperplane {x € R?: x5, = 0} does not separate the polyhedral sets S =
{zeR?: 2,=0, 5y <—-1}and T ={z € R?: 2, =0, z; > 1}. &

The following equivalent description of separation is used often as well.

Fact 11.6.2 Let S,T be nonempty convex sets in R™. A linear form a'x

separates S and T if and only if

(a) supa'z <infa'y, and
€S yeT
(b) infa'x <supa'y.
z€S yeT
This separation is strong if and only if (a) holds as a strict inequality:

supa'z < inf a'y.
zeS yeT

6.2 Separation Theorem

One of the most fundamental results in convex analysis is the following separation
theorem.

Theorem I1.6.3 [Separation Theorem] Let S and 7' be nonempty convex
sets in R™.

(i) S and T can be separated if and only if their relative interiors do not
intersect, i.e., rint S Nrint T = @.

(ii) S and T can be strongly separated if and only if the sets are at a
positive distance from each other, i.e.,

dist(S,T) :==inf{||lz —y|2: z€ S, yeT} >0.

In particular, if S and T are nonempty non-intersecting closed convex sets
and one of these sets is compact, then S and T can be strongly separated.

We will use the following simple and important lemma in the proof of the
separation theorem.

Lemma I1.6.4 A point x € rint @ of a convex set () can be the minimizer
(or maximizer) of a linear function f(z) = a'x if and only if the function is
constant on Q.

Proof. “If” part is evident. To prove the “only if” part, let Z € rint ) be, say, a
minimizer of f over @, then for any y € Q we need to prove that f(z) = f(y).
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There is nothing to prove if y = Z, so let us assume that y # Z. Since @) is convex
and Z,y € @, the segment [Z,y| belongs to Q. Moreover, as T € rint ) we can
extend this segment a little further away from Z and still remain in (). That is,
there exists z € @ such that z = (1 — X\)y + Az with certain A € [0,1). As y # Z,
we have in fact A € (0, 1). Since f is linear, we deduce

f(@) = 1 =XNf(y) +Af(2).
Because 7 is a minimizer of f over ) and y,z € @, we have min{f(y), f(2)} >
f(@)=1—=X)f(y) + Af(2). Then, from X € (0,1) we conclude that this relation
can be satisfied only when f(z) = f(y) = f(2). ]
Proof of Theorem We will prove the separation theorem in several
steps. We will first focus on the usual separation, i.e., case (i) of the theorem.

(i) Necessity. Assume that S, T can be separated. Then, for certain a # 0 we
have

supa'z < infa'y, and infa'z <supa'y. (6.1)

zesS yeT zeS yeT
Assume for contradiction that rint.S and rint 7' have a common point Z. Then,
from the first inequality in (6.1) and z € SN T, we deduce

a'z < sup a'x < inf aTy <a'Z.
z€S yeT

Thus, £ maximizes the linear function f(z) = a'z on S and simultaneously

minimizes this function on 7. Then, as z € rint S and also z € rintT" using
Lemma [[1.6.4] we conclude f(z) = f(Z) on S and on T', so that f(-) is constant
on S UT. This then yields the desired contradiction to the second inequality in

(61).

(i) Sufficiency. The proof of sufficiency part of the Separation Theorem is much

more instructive. There are several ways to prove it. Below, we present a proof
based on Theorem [[.3.2)

(i) Sufficiency, Step 1: Separation of a nonempty polytope and a point
outside the polytope. We start with seemingly a very particular case of the
Separation Theorem — the one where S = Conv {z',..., 2"} and T is a singleton
T = {x} which does not belong to S. We will prove that in this case there exists
a linear form which strongly separates T'= {z} and S.

The set S = Conv{z!,..., 2"V} is given by the polyhedral representation

N N
S:{ZGR": A\ such that A >0, >\, =1, z:ZAiai},

=1 1=1
and thus S is polyhedral (Theorem [[.3.2). Therefore, for a properly selected k,
ai,...,ay, and by, ..., b, we have:
S:{ZER": a, z < by, igk}.

Since x ¢ S, there exists i < k such that a x > b;, and thus the corresponding
a; clearly strongly separates our S and 7' = {z}.
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(i) Sufficiency, Step 2: Separation of a nonempty convex set and a point
outside of the set. Now consider the case when S is an arbitrary nonempty
convex set and T' = {z} is a singleton outside S (here the difference with Step 1
is that now S is not assumed to be a polytope).

Without loss of generality we may assume that S contains 0 (if it is not the
case, by taking any p € S, we may translate S and T to the sets S — —p+ 5,
T — —p—+T; clearly, a linear form which separates the shifted sets, separates the
original ones as well). Let L be the linear span of S.

If x & L, the separation is easy: we can write x = e + f, where e € L and f is
from the subspace orthogonal to L, and thus

fle=fTf>0=max [Ty,
yes

so that f strongly separates S and T' = {x}.

Now, we consider the case when x € L. Since x € L, and x &€ S as well as
@ # S C L, we deduce that L contains at least two points and so L # {0}.
Without loss of generality, we can assume that L = R™.

Let B:={h € R": ||h|l2 = 1} be the unit sphere in R". This is a closed and
bounded set in R™ (boundedness is evident, and closedness follows from the fact

that || - ||2 is continuous). Thus, B is a compact set. Let us prove that there exists
f € B that separates x and S in the sense that
flz>sup fly. (6.2)
yeS

Assume for contradiction that no such f exists. Then, for every h € B there exists
yn € S such that

Ry, > h'z.

Since the inequality is strict, it immediately follows that there exists an open
neighborhood U, of the vector h such that

(W) Tyn > (W) T2, VR € Un. (6.3)

Note that the family of open sets {U}, }nes covers B. As B is compact, we can find
a finite subfamily Uy, , ..., Uy, of this family which still covers B. Let us take the
corresponding points y' 1= yu,, ¥* = Yn,, ...,y := yn, and define the polytope
S := Conv {y*, ... ,y™}. Due to the origin of ¥, all of these points are in S and
thus S O S (recall that S is convex). Since z ¢ S, we deduce = ¢ S. Then, by
Step 1, = can be strongly separated from S , i.e., there exists a # 0 such that
a'z>supa’'y=max{a'y': 1<i<N}. (6.4)
yeSs
By normalization, we may also assume that |lal|; = 1, so that a € B. Recall that
Un,y-..,Uy, form a covering of B, and as a € B, we have that a belongs to certain
Uy, By construction of Uy, (see (6.3)), we have

T i_ T T
a Yy =a yp >a w,
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which contradicts as y' € S.

Thus, we conclude that there exists f € B satisfying (6.2). We claim that f
separates S and {z}. Given that we already establishedll we need to verify
for establishing that f indeed separates S and {x} is to show that the linear form
f(y) = fTy is non-constant on S UT. This is evident as we are in the situation
when 0 € S and L = Lin(S) = R™ and f # 0, so that f(y) is non-constant
already on S (indeed, otherwise we would have fTy =0 for y € S due to 0 € S,
whence fTy = 0 for y € Lin(S) = R, contradicting f # 0).

(i) Sufficiency, Step 3: Separation of two nonempty and non-intersecting
convex sets. Now we are ready to prove that two nonempty and non-intersecting
convex sets S and T can be separated. To this end consider the arithmetic dif-
ference of the sets S and T, i.e.,

A=S-T={x—y: zeS, yeT}.

As S and T are nonempty and convex, A is nonempty and convex (by Proposition
1.1.21]3). Also, as SNT = @, we have 0 ¢ A. Then, by Step 2, we can separate
A and {0}, i.e., there exists f # 0 such that

ffo=0>supf'z and f'0> inf f'z.
z€EA z€A

In other words,

T, T . T, T
Ozxessl,l;&{f z—f'y} and 0>z€g{1yfeT{f z—fly},

which clearly means that f separates S and T

(i) Sufficiency, Step 4: Separation of nonempty convex sets with non-
intersecting relative interiors. Now we are ready to complete the proof of the
“if” part of part (i) of the Separation Theorem. Let S and T be two nonempty
convex sets such that rint SNrint T' = &, then we will prove that S and T can be
separated. Recall from Theorem that the sets S’ :=rint S and 7" := rint T’
are nonempty and convex. Moreover, we are given that S’ and T” do not intersect,
thus they can be separated by Step 3. That is, there exists f such that

inf flea>supf'z and sup f'a> inf f'a. (6.5)

z€T’ yeSs’ zeT! yes’
It can immediately be seen that in fact f separates S and T'. Indeed, the quantities
in the left and the right hand sides of the first inequality in clearly remain
unchanged when we replace S’ with ¢l §” and T" with cl7’. Moreover, by Theorem
[.1.29) c1S" =clS D S and clT’ = clT DO T, and we get ilng:r = ng; fTx, and

similarly sup f'y = sup f'y. Thus, we get from (6.5))
yeS yeSs’

inf fTa>supfy.
xzeT yeSs

It remains to note that 77 C T, S’ C S, so that the second inequality in (6.5))
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implies that

sup f'x > inf f'z.
zeT yes

(ii) Necessity: Prove yourself.

(ii) Sufficiency: Define p := dist(S,T) = inf {||z —y|l2: x € S, y € T}. In case

(i), we are given that p > 0. Consider the set §:= {z e R": inf [z - yll2 < p/2}.
Yy

As S is convex, the set S is convex (recall Example . Moreover, SNT =02
(why?). Then, by part (i), S and T can be separated. Let f be any linear form
that separates S and T. Then, the same form strongly separates S and 7' (why?).
The last statement of (ii), i.e., “in particular” part, readily follows from the just
proved statement due to the fact that if two closed nonempty sets in R™ do not

intersect and one of them is compact, then the sets are at positive distance from
each other (why?). ]

Remark I1.6.5 In Theorem [[I.6.3] a careful reader would notice that the con-
siderations in the proof (i) Sufficiency, Step 1, i.e., separation of a polytope and a
point not in the polytope, are based on solely Theorem and this is a “purely
arithmetic” statement: when proving it, we never used things like convergence,
compactness, square roots, etc., just rational arithmetics. Therefore, the result
stated at Step 1 remains valid if we replace our universe R™ with the space Q"
of n-dimensional rational vectors (those with rational coordinates; of course, the
multiplication by reals in this space should be restricted to multiplication by ra-
tionals). The possibility to separate a rational vector from a “rational” polytope
by a rational linear form, which is the “rational” version of the result of Step
1, definitely are of interest (e.g., for Integer Programming). In fact, all results
in Part 1 are derived from Fourier-Motzkin elimination and Theorem [.3.2] i.e.,
the existence of optimal solution(s) to feasible and bounded LP programs, Farkas
Lemmas, General Theorem on Alternative, plain and conic Caratheodory and
(finite family version of) Helly theorems, etc., remain valid when R” is replaced
with Q™ (provided, of course, that the related data are rational). In particu-
lar, any feasible and bounded LP program with rational data admits a rational
optimal solution, which definitely is worth knowing.

In contrast with these “purely arithmetic” considerations at Step 1, at Step
2, i.e., for the separation of a closed convex set and a point outside of the set,
we used compactness, which heavily exploits the fact that our universe is R"”
and not, say, Q" (in the latter space bounded and closed sets not necessarily are
compact).

In fact, we could not avoid things like compactness arguments at Step 2, since
the very fact we are proving is true in R”™ but not in Q". Indeed, consider the
“rational plane,” i.e., the universe composed of all 2-dimensional vectors with
rational entries, and let S be the half-plane in this rational plane given by the
linear inequality

T + axy <0,
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where « is irrational. S clearly is a “convex set” in Q2. But, it can immediately
be seen that a point outside this set cannot be separated from S by a rational
linear form. &

Separation Theorem admits a number of important consequences. In this chap-
ter, we will discuss these.

6.3 Supporting hyperplanes

By Separation Theorem, we immediately deduce that a nonempty closed convex
set M is precisely the intersection of all closed half-spaces containing M. Among
these half-spaces, the most interesting are the “extreme” ones, i.e., those with
boundary hyperplanes touching M. Such extreme hyperplanes are called sup-
porting hyperplanes. While this notion of extreme makes sense for an arbitrary
(not necessary closed) convex set, we will use it for closed convex sets only, and
include the requirement of closedness in the definition:

Definition 11.6.6 [Supporting hyperplane] Let M be a convex closed set in
R", and let z € rbd M. A hyperplane

I:={yeR": a'y=a'z} [where a # 0]
is called supporting to M at x, if it separates M and {z}, i.e., if

a'r>supa'y and a'x > inf a'y. (6.6)
yeEM yeM

Independent of whether M is or is not closed, a point x € rbd M is a limit of
points from M, and thus the first inequality in cannot be strict. As a result,
we arrive at an equivalent definition of a supporting hyperplane for convex sets
as follows.

Given a closed convex set M € R™ and a point x € rbd M, a hyperplane
{y ER": a'y= aTx}
is supporting to M at x if and only if the linear form a(y) := a'y attains
its maximum on M at the point x and is non-constant on M.
Example I1.6.2 The hyperplane {z € R" : x; = 1} clearly is supporting to the
unit Euclidean ball {z € R" : ||z||s < 1} at the point = e; = [1;0;...;0]. <&

The most important property of a supporting hyperplane is its existence:

Proposition I1.6.7 [Existence of supporting hyperplanes| Let M be a closed
convex set in R", and let * € rbd M. Then,
(i) there exists at least one hyperplane which is supporting to M at x;
(ii) if a hyperplane II is supporting to M at x, then IIN M is a nonempty
closed convex set, z € IIN M, and dim(IIN M) < dim(M).
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Proof. To see (i) consider any = € rbd M. Then, x ¢ rint M, and therefore
the point {z} and rint M can be separated by the Separation Theorem. The
associated separating hyperplane is exactly the desired hyperplane supporting to
M at z.

To prove (ii), note that if I = {y € R": a'y =a'x} is supporting to M at
x € rbd M, then the set M’ := M NII is nonempty (as it contains z) and is closed
and convex as both II and M are. Moreover, the linear form a 'y is constant on
M’ and therefore (why?) on Aff(M’). At the same time, this form is non-constant
on M by definition of a supporting plane. Thus, Aff(M’) is a proper (less than the
entire Aff(M)) subset of Aff(M), and therefore the affine dimension of Aff(M’),
which is by definition just dim(M’), is less than the affine dimension of Aff(M),
which is precisely dim(M) [} ]

6.4 Extreme points and Krein-Milman Theorem

Supporting hyperplanes are useful in proving the existence of extreme points of
convex sets. Geometrically, an extreme point of a convex set is a point in the set
which cannot be written as a convex combination of other points from the set.
The importance of this notion originates from the following fact which we will
soon prove: any “good enough” (in fact just nonempty compact) convex set M is
just the convex hull of its extreme points, and the set of extreme points of such a
set M is the smallest set whose convex hull is equal to M. That is, every extreme
point of a nonempty compact convex set M is essential.

6.4.1 Extreme points: definition

The exact definition of an extreme point is as follows:

Definition I1.6.8 [Extreme points] Let M be a nonempty convex set in R".
A point x € M is called an extreme point of M, if there is no nontrivial (of
positive length) segment [u,v] € M for which z is an interior point. That is,
x is an extreme point of M if the relation

r=A+(1-Av
with A € (0,1) and u,v € M holds if and only if

Uu=v==c.

The set of all extreme points of M is denoted by Ext(M).

In the case of polyhedral sets, extreme points are also referred to as wvertices.
Example 11.6.3

2 For dimension of a subset in R™, see Definition and/or section ‘We have used the
following immediate observation: If M C M’ are two affine planes, then dim M < dim M’, with
equality implying that M = M’. Readers are encouraged to prove this fact for themselves.
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e The extreme points of a segment [x,y| € R™ are exactly its endpoints {x,y}.

e The extreme points of a triangle are its vertices.

e The extreme points of a (closed) circle on the 2-dimensional plane are the
points of the circumference.

e The convex set M := {a; € Ri cx1 > 0,20 > 0} does not have any extreme
points.

e The only extreme point of the convex set M := {[0;0]} U{z € R} : z1 > 0,22 >0}
is the point [0; 0].

e The closed convex set {x € R?: z; = 0} does not have any extreme points. <

An equivalent definition of an extreme point is as follows:

Fact 11.6.9 Let M be a nonempty convex set and let x € M. Then, x is an
extreme point of M if and only if any (and then all) of the following holds:

(i) the only vector h such that = + h € M is the zero vector;
(ii) in every representation x = >_.* Az’ of x as a convex combination, with
positive coefficients, of points ' € M, i < m, one has z! = ... = 2™ = x;
(iii) the set M \ {z} is convex.

Fact [I1.6.9| (iii) also admits the following immediate corollary.

Fact 11.6.10 All extreme points of the convex hull Conv(Q) of a set Q
belong to Q:

Ext(Conv(Q)) C Q.

6.4.2 Krein-Milman Theorem

There are convex sets that do not necessarily possess extreme points; as an ex-
ample you may take the open unit ball in R". This example is not so interesting
as the set in question is not closed, and when we replace it with its closure the
resulting set is the closed unit ball with plenty of extreme points, i.e., all points
of the boundary. There are, however, closed convex sets which do not possess
extreme points. Consider for example, a line or an affine subspace of larger di-
mension as the convex set. Indeed, a nonempty closed convex set will have no
extreme points only when it contains a line.

We will next prove that any nonempty closed convex set M that does not
contain lines for sure possesses extreme points. Furthermore, if M is a nonempty
convex compact set, it possesses a quite representative set of extreme points, i.e.,
their convex hull is the entire M.

Theorem I1.6.11 Let M be a nonempty closed convex set in R". Then,
(i) the set of extreme points of M, i.e., Ext(M), is nonempty if and only
if M does not contain lines;
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(ii) if M is bounded, then M = Conv(Ext(M)), i.e., every point of M is a
convex combination of the points of Ext(M).

Remark 11.6.12 Part (ii) of this theorem is the finite-dimensional version of
the famous Krein-Milman Theorem (1940). In fact, Hermann Minkowski (1911)
established Part (ii) of this theorem for the case n = 3, and Ernst Steinitz (1916)
showed it for any (finite) n. &

We will use a number of lemmas in the proof of Theorem [[I.6.11] The first one
states that in the case of a closed convex set, we can add any “recessive” direction
to any point in the set and still remain in the set.

Lemma I1.6.13 Let M € R™ be a nonempty closed convex set. Then,
whenever M contains a ray

{Z+th: t>0}

starting at £ € M with the direction h € R", M also contains all parallel
rays starting at the points of M, i.e., for all z € M

{z+th: t>0} C M.

As a consequence, if M contains a certain line, then it contains also all parallel
lines passing through the points of M.

Proof. Suppose T + th € M for all t > 0. Consider any point x € M. Since M is
convex, for any fixed 7 > 0 we have

e(i"—l—zh)+(1—e)x€M, Ve € (0,1).
€

By taking the limit as ¢ — 40 and noting that M is closed, we deduce that
x+71h € M for every 7 > 0. |
Note that Lemma [[I.6.13] admits a corollary as follows:

Lemma 11.6.14 Let M € R™ be a nonempty convex set, not necessarily
closed. Suppose cl M contains a ray

{Z+th: t>0}
starting at Z € cl M with the direction h € R", and let Z € rint M. Then
rint M contains the ray

{T+th: t>0}.
In particular, cl M contains a ray (a straight line) if and only if M contains
a ray (respectively, a straight line) with the same direction.

Proof. With Z, h, and Z as above, for every t>0 the point ' := Z+2th belongs to
cl M by Lemmal[lI.6.13] Taking into account that Z € rint M and invoking Lemma
m we conclude that Z + th = 1[Z 4 «'] € rint M. Thus, Z + th € rint M for
all t>0. [ |
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Our last ingredient for the proof of Theorem [[.6.11]is a lemma stating a nice
transitive property of extreme points: that is, the extreme points of subsets of
nonempty closed convex sets obtained from the intersection with a supporting
hyperplane of the set are also extreme for the original set.

Lemma I1.6.15 Let M C R™ be a nonempty closed convex set. Then, for
any T € rbd M and any hyperplane II that is supporting to M at z, we
have that the set IIN M is nonempty closed and convex, and Ext(IIN M) C
Ext(M).

Proof. First statement, i.e., IIN M is nonempty closed and convex, follows from

Proposition [I1.6.7|(ii). Moreover, by Proposition [I1.6.7(ii) we have z € II N M.
Next, let a € R™ be the linear form associated with I, i.e.,

H:{yER”: aTy:aT:Z"},
so that

inf a'z < supa'z=a"z (6.7)
xeM xEM
(see Proposition [I1.6.7)). Consider any extreme point y of II N M. Assume for
contradiction that y € Ext(M). Then, there exists two distinct points u,v € M
and A € (0,1) such that

y=Au+(1-2X)w.

Asy € IIN M we have a'y = a'Z and also as u,v € M, from ([6.7) we deduce
that

aTy =a'Z > max {aTu, aTv} .
On the other hand, from the relation y = Au + (1 — A)v we have
a'y=Xa"u+(1-Na'v.

Combining these last two observations and taking into account that A € (0, 1),
we conclude that

a'y=a"u=a"v.

Then, by the definition of II, these equalities imply that u,v € II. As u,v € M as
well, this contradicts that y € Ext(IIN M) as we have written y = Au+ (1 — \)v
using distinct points u,v € IIN M and some X € (0, 1). |

We are now ready to prove Theorem

Proof of Theorem Let us start with (i). The “only if” part for (i)
follows from Lemma Indeed, for the “only if” part we need to prove that
if M possesses extreme points, then M does not contain lines. That is, we need to
prove that if M contains lines, then it has no extreme points. But, this is indeed
immediate: if M contains a line, then, by Lemma there is a line in M
passing through every given point of M, so that no point can be extreme.

Now let us prove the “if” part of (i). Thus, from now on we assume that M
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does not contain lines, and our goal is to prove that then M possesses extreme
points. Equipped with Lemma [[I.6.15] and Proposition [[I.6.7], we will prove this
by induction on dim(M).

There is nothing to do if dim(M) = 0, i.e., if M is a single point — then, of
course, M = Ext(M). Now, for the induction hypothesis, for some integer k>0,
we assume that all nonempty closed convex sets T’ that do not contain lines and
have dim(7") = k satisfy Ext(T") # @. To complete the induction, we will show
that this statement is valid for such sets of dimension k£ + 1 as well. Let M be a
nonempty, closed, convex set that does not contain lines and has dim(M) = k+1.
Since M does not contain lines and dim(M) > 0, we have M # Aff(M). We claim
that M possesses a relative boundary point . To see this, note that there exists
z € Aff(M)\ M, and thus for any fixed x € M the point

zy =+ ANz —x)

does not belong to M for some A > 0 (and then, by convexity of M, for all larger
values of \), while 2y = x belongs to M. The set of those A > 0 for which z, € M
is therefore nonempty and bounded from above; this set clearly is closed (since
M is closed). Thus, there exists the largest A = A* for which z, € M. We claim
that xy- € rbd M. Indeed, by construction xy- € M. If x5 were to be in rint M,
then all the points x, with )\ values greater than A\* yet close to A* would also
belong to M, which contradicts the origin of A*.

Thus, there exists Z € rbd M. Then, by Proposition [[L.6.7(i), there exists a
hyperplane II = {:17 cR":a'x= aT:E} which is supporting to M at T:

inf o'z < maxa'z =a'z.
zeM xeM

Moreover, by Proposition ii)7 the set T' := II N M is nonempty closed
and convex and it satisfies dim(7") < dim(M), i.e., dim(7) < k. As M does
not contain lines, ' C M clearly does not contain lines either. Then, by the
inductive hypothesis, T' possesses extreme points, i.e., Ext(7") # @. Moreover,
by Lemma Ext(M) O Ext(IlN M) = Ext(T") # @. This completes the
inductive step, and hence (i) is proved.

Now let us prove (ii). Let M be nonempty, closed, convex, and bounded. We

need to prove that
M = Conv(Ext(M)).

As M is convex, we immediately observe that M O Conv(Ext(M)). Thus, all
we need is to prove that every x € M is a convex combination of points from
Ext(M). Here, we again use induction on dim(M). The case of dim(M) = 0,
i.e., when M is a single point, is trivial. Assume that the statement holds for all
k-dimensional closed convex and bounded sets. Let M be a closed convex and
bounded set with dim(M) = k + 1. Consider any x € M. To represent x as a
convex combination of points from Ext(M), let us pass through z an arbitrary
line £ = {z + Ah: A € R} (where h # 0) in the affine span Aff(M) of M. Moving
along this line from x in each of the two possible directions, we eventually leave
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M (since M is bounded). Then, there exist nonnegative At and A~ such that the
points

Ty :=x+\h, T_:=x—\h

both belong to rbd M. We claim that . admit convex combination representa-
tion using points from Ext(M) (this will complete the proof, since x clearly is a
convex combination of the two points Z. ). Indeed, by Proposition [I1.6.7|(i) there
exists a hyperplane II supporting to M at Z.,, and by Proposition [II.6.7(ii) the
set IIN M is nonempty, closed and convex with dim(IIN M) < dim(M) =k + 1.
Moreover, as M is bounded II N M is bounded as well. Then, by the inductive
hypothesis, . € Conv(Ext(II N M)). Moreover, since by Lemma we have
Ext(II N M) C Ext(M), we conclude z, € Conv(Ext(M)). Analogous reasoning
is valid for Z_ as well. |

6.5 Recessive directions and recessive cone

Lemma states that if M is a nonempty closed convex set, then the set of
all directions h such that x +th € M for some x and all t > 0 is exactly the same
as the set of all directions h such that x +th € M for all x € M and all ¢t > 0.
Directions of this type play an important role in the theory of convex sets, and
consequently they have a name — they are called recessive directions of M.

Definition I1.6.16 [Recessive directions and recessive cone] Given a nonempty
closed convex set M C R", a direction h € R" is called a recessive direction
of M if we have x4+ th € M for any z € M and any ¢ > 0.

The set of all recessive directions is called the recessive cone of M [notation:
Rec(M)].

Remark I1.6.17 Given a closed convex set M, we immediately deduce that
Rec(M) indeed is a closed cone (prove it!) and that

M + Rec(M) = M. (6.8)
¢

Let us see some examples of recessive cones of sets.
Example 11.6.4

e The recessive cone of R is itself. In fact, the recessive cone of any closed cone
is itself.

e Consider the set M := {x € R" : Y | x; = 1}; then Rec(M) = {h € R™ :
Z?:l h; = 0}.

Consider the set M :={z e R} : Y , x; = 1}; then Rec(M) = {O}
Consider the set M :={z ¢ R} : Y. , x; > 1}; then Rec(M) =
Consider the set M := {z € R : xy25 > 1}; then Rec(M) = Ri
Consider theset M :={z € R" : z,,—a, > ||(z1,...,Zn_1)—(G1,...,an_1)]2},
where a = (ay,...,a,) is a given point. Then, Rec(M) = L.
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Fact 11.6.18 Let M be a nonempty closed convex set in R™. Then,

(i) Rec(M) # {0} if and only if M is unbounded.

(ii) If M is unbounded, then all nonzero recessive directions of M are
positive multiples of recessive directions of unit Euclidean length, and the
latter are asymptotic directions of M, i.e., a unit vector h € R™ is a recessive
direction of M if and only if there exists a sequence {z’ € M };>; such that
|x*]|s = 0o as i — oo and h = lim; o 2'/[|2" 2.

(iii) M does not contain lines if and only if the cone Rec(M) does not
contain lines.

Here is how we can “visualize” (or compute) the recessive cone of a nonempty
closed convex set:

Fact 11.6.19 Let M C R" be a nonempty closed convex set. Recall its closed
conic transform is given by

ConeT(M) =cl{[z;t] e R" xR : t >0, z/t € M},

(see section [L.5]). Then,
Rec(M) ={h e R": [h;0] € ConeT(M)}.

Finally, the recessive cones of nonempty polyhedral sets in fact admit a much
simpler characterization.

Fact 11.6.20 For any nonempty polyhedral set M = {x € R" : Az < b}, its
recessive cone is given by

Rec(M)={h e R": Ah < 0},

i.e., Rec(M) is given by homogeneous version of linear constraints specifying

M.

We have seen in Theorem [[[.6.11| that if M is a nonempty convex compact set,
it possesses a quite representative set of extreme points, i.e., their convex hull is
the entire M. We close this section by extending this result as follows.

Theorem 11.6.21 Let M C R" be a nonempty closed convex set.
(i) If M does not contain lines, then the set Ext(M) of extreme points of
M is nonempty, and

M = Conv(Ext(M)) + Rec(M). (6.9)

(ii) In every representation, if any, of M as M =V + K with a nonempty
bounded set V' and a closed cone K, the cone K is Rec(M) and V contains
Ext(M).
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Proof.

(i): By Theorem [[1.6.11]i) we already know that any nonempty closed con-
vex 6set that does not contain lines must possess extreme points. We will prove
the rest of Part (i) by induction on dim(M). There is nothing to prove when
dim(M) = 0, that is, M is a singleton. So, suppose that the claim holds true for
all sets of dimension k. Let M be any nonempty closed convex set that does not
contain lines and has dim(M) = k + 1. To complete the induction step, we will
show that M satisfies the relation . Consider = € M and let e be a nonzero
direction parallel to Aff(M) (such a direction exists, since dim(M) =k +1 > 1).
Recalling that M does not contain lines and replacing, if necessary, e with —e,
we can assume that —e is not a recessive direction of M. Same as in the proof
of Theorem , x admits a representation x = x~ +{_e with {_ > 0 and
x~ € rbd(M). Define M_ to be the intersection of M with the plane II_ sup-
porting to M at x~—. Then, M_ is a nonempty closed convex subset of M and
dim(M_) < k. Also, M_ does not contain lines as M_ C M and M does not
contain lines. Thus, by inductive hypothesis, £~ is the sum of a point from the
nonempty set Conv(Ext(M_)) and a recessive direction h_ of M_. As in the
proof of Theorem Ext(M_) C Ext(M), and of course h_ € Rec(M) due
to Rec(M_) C Rec(M) (why?). Thus, x = v_+h_+t_e with v_ € Conv(Ext(X))
and h_ € Rec(M). Now, there are two possibilities: e € Rec(M) and e ¢ Rec(M).
In the first case, x = v_ + h with h = h_ +t_e € Rec(M) (recall h_ € Rec(M)
and in this case we also have e € Rec(M)), that is, x € Conv(Ext(M))+ Rec(M).
In the second case, we can apply the above construction to the vector —e in the
role of e, ending up with a representation of x of the form z = v, + h, —t e
where v, € Conv(Ext(M)), hy € Rec(M) and ¢, > 0. Taking appropriate con-
vex combination of the resulting pair of representations of x, we can cancel the
terms with e and arrive at = Av_ + (1 — A)vy + Ah_ + (1 — A)hy, resulting in
x € Conv(Ext(M)) 4+ Rec(M). This reasoning holds true for every z € M, hence
we deduce M C Conv(Ext(M)) + Rec(M). The opposite inclusion is given by
due to Conv(Ext(M)) C M. This then completes the proof of the inductive
hypothesis, and thus Part (i) is proved.

(ii): Now assume that M, in addition to being nonempty closed and convex,
is represented as M = V 4+ K, where K is a closed cone and V is a nonempty
bounded set, and let us prove that K = Rec(M) and V' O Ext(M). Indeed, every
vector from K clearly is a recessive direction of V + K, so that K C Rec(M). To
prove the opposite inclusion K O Rec(M), consider any h € Rec(M), and let us
prove that h € K. Fix any point v € M. The vectors v+1th, i = 1,2, ..., belong to
M and therefore v +ih = v' +h' for some v’ € V and h' € K dueto M =V + K.
It follows that h = i~ '[v® —v] +i7'h’ for i = 1,2,.... Thus, h = lim; o, i 'h’
(recall that V is bounded). As h* € K and K is a cone, i~ 'h’ € K and so h
is the limit of a sequence of points in K. Since K is closed, we deduce h € K,
as claimed. Thus, K = Rec(M). It remains to prove that Ext(M) C V. This is
immediate: consider any w € Ext(M), then as M =V + K =V 4+ Rec(M) and
w € M, we have w = v + e with some v € V. C M and e € Rec(M), implying
that w —e = v € M. Besides this, w +e € M as w € M and e € Rec(M). Thus,
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w =+ e € M. Since w is an extreme point of M, we conclude that e = 0, that is,
w=veV. |

Finally, let us consider what happens to the recessive directions after the pro-
jection operation.

Proposition 11.6.22 Let M+ € R" x R* be a nonempty closed convex set
such that its projection

M={zeR": Ju: [x;u] € M}
is closed. Then,

73 ha] € Rec(M*) = h, € Rec(M).

Proof. Consider any recessive direction [h,;h,] € Rec(M™). Then, for any
[z;u] € M™, the ray {[Z;u] + t[hy;h,] : t >0} is contained in M*. The pro-
jection of this ray on the z-plane is the ray {z + th, : ¢ > 0}, which is contained
in M. Thus, h, € Rec(M). ]

While Proposition states that [h,;h,] € Rec(M™) = h, € Rec(M),
in general, Rec(M) can be much larger than the projection of Rec(M™) onto
z-plane. Our next example illustrates this.

Example 11.6.5 Consider the sets M™ = {[z;u] € R*: u > 2%} and M = {z €
R: Ju € R: [z;u] € MT}. Then, M is the entire z-axis and Rec(M) = M
is the entire z-axis. On the other hand, Rec(M™) = {[0;h,] : h, > 0} and the
projection of Rec(M™) onto the z-axis is just the origin. &

In fact, the pathology highlighted in Example can be eliminated when we
have that the set of extreme points of the convex representation M ™ of a convex
set M is bounded and the projection of Rec(M™) is closed.

Proposition 11.6.23 Let MT C R” x R be a nonempty closed convex set
such that M*™ =V + Rec(M™) for some bounded and closed set V. Let M
be the projection of M™* onto the x-plane, i.e.,

M={zeR!: JueRF: [z;u]e MT}.
Assume that the cone
K = {h, € R : 3h, € R*: [h,1h,] € Rec(M™)}
is closed. Then, M is closed and K = Rec(M).

Proof. Let M™ satisfy the premise of the proposition. Define
W:={zeR!: JueR:: [z;ul eV},

that is, W is the projection of V onto the x-space. As V is a closed and bounded
(therefore compact) set, its projection W is compact as well (recall that the
image of a compact set under a continuous mapping is compact). Note that M is
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nonempty and it satisfies M = W + K (why?). Then, M is the sum of a compact
set W and a closed set K, and thus M is closed itself (why?). Besides this, M is
convex (recall that the projection of a convex set is convex). Thus, the nonempty
closed convex set M satisfies M = W + K with nonempty bounded W and closed
cone K, implying by Theorem that K = Rec(M). [ |

Recall that we have investigated the relation between the recessive directions of
a closed convex set M € R" and its closed convex representation M+ € R x R*
in Proposition In particular, we observed that while [h,;h,] € Rec(M™)
implies h, € Rec(M), the recessive direction of M “stemming” from those of M
can form a small part of Rec(M), as seen in Example

A surprising (and not completely trivial) fact is that for polyhedral sets M,
the projection of Rec(M™) onto the x-plane is Rec(M).

Proposition [1.6.24 Let M € R} be a nonempty set admitting a polyhedral
representation M € R” x R” i.e.,

M :={[z;u) e R xRf : Az + Bu<c}, and
M:={zeR!: JueRl: [z;ul e M"}.
Then,
Rec(M) = {h, : 3hy: [hy;h,) € Rec(M™)}
— {hy : 3hy: Ahy, + Bh, <0} . (6.10)

That is, polyhedral representation of M naturally induces a polyhedral rep-
resentation of Rec(M).

Proposition is an immediate consequence of Proposition To
derive Proposition from Proposition it suffices to note that a
nonempty polyhedral set is the sum of the convex hull of a finite set and a

polyhedral cone, see section

6.6 Dual cone

We start with the definition of dual cone.

Definition I1.6.25 [Dual cone] Let M C R™ be a cone. The set of all vectors
which have nonnegative inner products with all vectors from M, i.e., the set

M,:={a€eR": a'z>0, Yz € M}, (6.11)
is called the cone dual to M.

From its definition, it is clear that the dual cone M, of any cone M is a closed
cone.

Example 11.6.6 The cone dual to the nonnegative orthant R’ is composed of
all n-dimensional vectors y making nonnegative inner products with all entrywise
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nonnegative n-dimensional vectors x. As is immediately seen the vectors y with
this property are exactly entrywise nonnegative vectors: [R"]. = R}. O

Note that in the preceding example, R} is given by finitely many homogeneous
linear inequalities:

R ={z€eR": ¢/z>0,i=1,...,n},

where e; are the basic orths; and we observe that the dual cone is the conic hull
of these basic orths. This is indeed a special case of the following general fact:

Proposition 11.6.26 For any F' C R", the set
M:={zeR": fflz>0,VfeF}
is a closed cone, and its dual cone is
M, = clCone(F),

where Cone(F'), as always, is the conic hull of F, see Definition [[.1.19| In
addition, M remains intact when F' is extended to its closed conic hull:

M:={zeR": fla>0,VfeF}={zeR": flz>0,Vf € clCone(F)}.

Proof. The inclusion Cone(F') C M, is evident, and since M, is closed, we have
also cl Cone(F) C M,. Let us define F := cl Cone(F), so now we need to prove
the inclusion F O M, . Consider z € M,, and assume for contradiction that z ¢ F.
Note that F is convex, nonempty, and closed, so that by Separation Theorem (ii)
there exists g such that
g'z<inf g'f.
JeF

Because F is a closed cone (and so 0 € F'), the right hand side infimum, being
finite, must be 0. Then, g" f > 0 for all f € F and g"z < 0. Since f'g > 0 for all
f € F and also F DO F, we deduce fTg > 0 for all f € F, that is, g € M by the
definition of M. But, then the inclusion g € M together with z € M, contradicts
the relation z"¢g < 0. Finally, we clearly have f'2 > 0 for all € F if and only
if fTx >0 for all z € cl Cone(F). ]

Remark I1.6.27 Note that, in contrast with Proposition in the conclud-
ing expression of the chain

R}, ={zeR": ¢/z>0,i=1,...,n} =Cone({e;: i=1,...,n})

we did not need to take the closure. This is so because the conic hull of a finite set
F is polyhedrally representable and is therefore a polyhedral cone (by Theorem
, and as such it is automatically closed.

This fact (i.e., no need to take the closure in Proposition holds true
for the dual of any polyhedral cone: consider the set {x € R" : a/x >0, i =
1,...,I} given by finitely many homogeneous nonstrict linear inequalities. This
set is clearly a polyhedral cone, and its dual is the conic hull of a;’s, i.e., Cone({a; :
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i=1,...,1}) = {Zle A s A > 0}. Moreover, this dual cone clearly is also
polyhedrally representable as

I
Cone{ay,...,ar} = {xER”: dA>0: $:Z)\iaz},

=1
and thus Cone {ay,...,a;} is polyhedral as well. &

In the case of the cones of the form {z € R": f'z >0,Vf € F} stemming
from infinite sets F' (in fact, every closed cone in R™ can be represented in this
way using a properly selected countable set F' = {f;: i =1,2,...}) (why?), the
closure operation in the computation of the dual cone, in general, cannot be
omitted. This is so even when the set F' itself is closed convex and bounded see

Example [I1.6.7] below).

Let us illustrate this in the next example.

Example I1.6.7 Consider the cone givenby K := {x € R?: f'z >0,Vf e F},
where F' = {f = [u;v] € R% : v >u? u <1, v<1}. Note that F is a compact
convex set contained in Ri. Moreover, every vector [u;v] € R? with positive en-
tries is a positive multiple of a vector from F' (draw a picture!). Thus, the set of
vectors that have nonnegative inner products with all vectors from F, i.e., K, is
exactly the same as the set of vectors that have nonnegative inner products with
all vectors from R2. Hence, we arrive at K = {z e R?: fTz >0,Vfe F} =
R?,s0 K, = R? as well. Now observe that K, = R? is, as it should be by Propo-
sition [[1.6.26], the closure of Cone(F), nevertheless K, = cl Cone(F) is larger than
Cone(F') as Cone(F') is not closed! Note that Cone(F') is precisely the set obtained
from R2 by eliminating all nonzero points on the boundary of R?. &

Fact 11.6.28 Let M be a closed cone in R", and let M, be the cone dual to
M. Then

(i) Duality does not distinguish between a cone and its closure: whenever
M = cl M’ for a cone M’, we have M, = M.
(ii) Duality is symmetric: the cone dual to M, is M.
(iii) One has
int M, ={yeR": y'z>0vVeeM\{0}},
and int M, is nonempty if and only if M is pointed (i.e., M N[—M] = {0}).
Moreover, when M, in addition to being closed, is pointed and nontrivial
(M #{0}), one has
int M. ={yeR": M, :={x€M:z y=1} is nonempty and compact}. (6.12)

(iv) The cone dual to the direct product M; x ... x M, of cones M; is the
direct product of their duals: [M; X ... X M|, = [My]. X ... X [M,,]..

Let us see some examples of dual cones.
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Example 11.6.8 Consider the epigraph of || - || on R" given by
Ko :={lz;t] e R : t > |z|s}-

Note that K., is a polyhedral cone (why?). The cone dual to K, is K; =
{[z;t] € R"*' . ¢ > ||z||;}, which is just the epigraph of || - ||;:

(Koo

;s|e R st+g >0, V([ait] s ||z <)}

]|z 0o <1

{lg: 5]
{[g;S]GR"“: s+ min ngzo}
{lg; 5]

5] € R s> |lglli}- O

Definition I1.6.29 [Self-dual cone] A cone K C R” is called a self-dual cone
if it is equal to its dual cone, i.e., K, = K.

We next examine a number of very important self-dual cones.
Example 11.6.9 Let us compute the dual of the Lorentz cone
L":={[z;t] e R"' xR: t>|z[2}.

When n = 1, L' is the nonnegative ray, and thus L' = R, and therefore [L'], =
R, = L! When n > 2, we have

L', ={lg:s] ER" ' xR: gloz+ts>0, V([z;t] : ||z]] < t)}
={lg;s] ER""xR: g'z+5>0, V(z: |zll, <1)}
= {[9;8} ER"'xR: s+ ﬁnﬁnﬂgT:U > o}
={lg;s] eR" ' xR: s> |gl2},

where the concluding equality is due to Cauchy-Schwarz inequality, see Theorem
Thus, [L"], = L. &

Example 11.6.10 The cone dual to the semidefinite cone S%, by Theorem [D.32]
is itself:

Sh]:={yeS”: (y,x):=Tr(zy) >0, Vax € ST} =ST. &
Based on these examples, we have arrived at the following conclusion.
The cones R, L", and S’} are self-dual.

By Fact |I1.6.28|the direct product of finitely many self-dual cones is self-dual, im-
plying that finite direct products of nonnegative orthants, Lorentz, and semidef-
inite cones are self-dual.
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6.7 % Dubovitski-Milutin Lemma

In this section, we deal with the following basic yet important question: Let
M, ..., M* be cones (not necessarily closed) in R", and M be their intersection.
Of course, M also is a cone. But, how can we compute M, , i.e., the cone dual
to M? To this end, we first examine the relationship between M, and the cone
M that is defined as the sum of the dual cones M!.

Proposition 11.6.30 Let M!,..., M* be cones in R™. Define M := ﬂle M
and let M, be the dual cone of M. Let M} denote the dual cone of M*, for
i=1,...,k, and define M := M} + ...+ MF. Then, M, D M.

Moreover, if all the cones M?', ..., M* are closed, then M, = cl M.Nln
particular, for closed cones M?!,..., M*, M, = M holds if and only if M is
closed.

Proof. For any i = 1,...,k, any a; € M! and any x € M, we have a] z > 0, and
hence (a; + ...+ a;) "z > 0. Since the latter relation is valid for all x € M, we
conclude that a; + ...+ a3 € M,. Thus, M C M.,.

Now assume that the cones M*, ..., M* are closed, and let us define M =clM
so that we need to prove M, M Recall that we have already seen M C M.,
and as M, is closed we deduce M =cM C M,. Thus, all we need to prove is
that if a € M., then a € M as well. Assume for contradiction that there exists
a € M \M As M is clearly a cone, its closure M is a closed cone. Then as
a ¢ M , by Separation Theorem (ii), a can be strongly separated from M and
thus also from M C M. Therefore, for some x # 0 we have

k
a'x < inf bz = inf (ar+...+ap) @ = Z inf a, . (6.13)

beM a; €M} i=1,....k — @i eMi

As a'z is a finite number, this inequality implies that 1n]\f4 a; x > —oo holds for
a; €M}

all i = 1,...,k. Since M! is a cone, this is possible if and only if 1n]\f/[ a]z = 0.
a; EM}

Then, we deduce that = € [M{], = M*, where the last equality follows from the
fact that each cone M is closed and usmg Fact [11.6.28 m (ii). Thus, x € M* for

all 4, and Z inf a/x = 0. Therefore, z € M = ﬂ M?, and reduces to

i=1ai€M;
a'z < 0. But, this then contradicts the inclusion a E M.,. |

Remark 11.6.31 Note that in general M can be non-closed even when all the
cones M',... MF* are closed. Indeed, take k = 2, and let M' = M} be the
second-order cone {(m, y,2) ER3: 2> 22+ yZ}, and M? be the following ray
in R3

{(z,y,2) eR*: z=2, y=0, 2 <0}.

Observe that the points from M = M! + M? are exactly the points of the form
(x—t,y,z—t) with ¢t > 0 and z > /22 + y2. In particular, for any o > 0, the points
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(0,1,vVa?+1—a) = (a—a, 1,va? + 1—a«) belong to M.Asa — 00, these points
converge to & := (0,1,0), and thus £ € cl M. On the other hand, we clearly cannot
find x,y, z,t with ¢ > 0 and 2z > /22 + 2 such that (z —t,y,2 — t) = (0,1,0),
that is, € & M. &

Dubovitski-Milutin Lemma, presents a simple sufficient condition for M to be
closed and thus to coincide with M,:

Proposition 11.6.32 [Dubovitski-Milutin Lemma in finite dimensions] Let
k> 2and M', ..., M* be cones such that

MFnint M Nint M2 N ... Nint M £ @,

k
Define M := ﬂ M. Let also M! be the cones dual to M*. Then,

z_

(i) I M = ﬂ cl M*; and

1= 1
(ii) the cone M := M!+...4+MF is closed, and thus by Proposition
M, = M!+...4+ MF. In other words, every linear form which is nonnegative
on M can be represented as a sum of k linear forms which are nonnegative
on the respective cones M1, ... M*.

Proof. (i): This is given by Proposition [[.1.33{(ii).

(ii): First, we claim that under the premise of the proposition, without loss of
generality we can assume that M?, ..., M* are closed cones. This is so because
when replacing the cones M!, ..., M* with their closures, we preserve the premise
of the proposition, and also M= 2\41 +...+MF= [clMl] +...4 [cl M*], holds
(recall that by definition of the dual cone M! = [clM'].), as well as M, =

k
[cl M], = ) cl M where the last equality holds by Part (i).

=1
To prove Part (ii) of the proposition all we need is to show that given closed

cones M, ..., M* we have the cone M := M? + ...+ MPF is closed. To this end,
we will use induction on k > 2.

Base case: Suppose k = 2. Consider a sequence {f; + g:}:2, with f, € M},
g € M? and (f; + g;) = h as t = oo. We need to prove that h = f + g for some
appropriate f € M} and g € M2. To this end, it suffices to verify that for an
appropriate subsequence ¢; of indices there exists f := jlirgo [fi,- Indeed, if this is

the case, then g = lim g, also exists since f; + g, - hast — oo and f+g=h,
Jj—o0

and also in this case we will have f € M! and g € M? (recall that M} and M?
are closed cones). Let us verify the existence of the desired subsequence. Assume
for contradiction that || f;|l2 — oo as t — oo. Passing to a subsequence, we may
assume that the unit vectors ¢; := f;/|| fi||> have a limit ¢ as ¢ — oco. Since M}
is a closed cone, ¢ is a unit vector from M}. Now, since f, + g, — h as t — oo,
we have ¢ = lim fu/|fill2 = — lim gi/|lfill2 (recall that |fi]ls — oo as t — oc.

whence h/||fi]]2 — 0 as t — oc). Then, the vector (—¢) € M2 as well (recall
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that M? is a closed cone). Now, consider any z € M? Nint M!' (by the premise
of the proposition this set is non-empty). We have ¢'Z > 0 (since z € M' and
¢ € M!)and "7 <0 (since —¢p € M? and T € M?). We conclude that ¢'z = 0,
which contradicts the facts that 0 # ¢ (as [[¢|ls = 1), ¢ € M} and T € int M*!
(since when ¢ # 0 and ¢'Z = 0, ¢z cannot be nonnegative for all z from a
neighhborhood of 7).

Inductive step: Assume that the statement is valid for kK — 1 > 2 cones, and let
M?*,... . M* be k cones satisfying the premise of the proposition. By this premise,
the cone M, := M* N ...N M*! has a nonempty interior, and M* intersects
this interior. Applying to the pair of cones M;, M* the already proved 2-cone
version of the lemma, we see that the set [M;]. + MF is closed; here [M,], is
the cone dual to M;. Moreover, the cones M?*, ..., M*~1 satisfy the premise of
the (kK — 1)-cone version of the lemma. Then, by inductive hypothesis, the set
M!+ ...+ MF-1is closed. Then, as M; := M'n...Nn M1 Proposition
implies that [M;], = M} +...+ MF ' and so M! + ...+ MF = [M,], + MF. As
[M,]. + MF is closed, we deduce that M} + ...+ MF is closed, as desired. This
concludes the induction step. ]
Alternative to proof to Proposition Here, we present an alternative
proof of Proposition Part (ii) without relying on induction.

Let us start with the following fact that is important by its own right.

Fact 11.6.33 Let M C R"™ be a cone and M, be its dual cone. Then, for any
x € int M, there exists a properly selected C, < oo such that

Ifll: < CofTa,  VfeM.

Now, as explained in the beginning of Part (ii) of the above proof of Proposi-
tion we can assume without loss of generality that the cones M*, ... M*
satisfying the premise of the proposition are closed, and all we need to prove is
that the cone M! + ...+ MPF is closed. The latter is the same as to verify that
whenever vectors fi € M!, i <k, t =1,2,... are such that f, := 3" fi = h
as i — oo, it holds h € M! + ... + MF. Indeed, in the situation in question,
selecting 7 € M* Nint M* N ... Nint M*~! (by the premise this intersection is
nonempty!) we have z' fi > 0 for all i,t and 3.0 ZTfi — Z'h as t — oo,
implying that for all i < k the sequences {5:T ff}t:m,___ are bounded. Moreover,
for any i < k we have T € int M* and f} € M!, and so Fact guaran-
tees that the sequence {f/};—1 2, . is bounded. Thus, as the sequences {f;};=12, .
are bounded for any 7 < k and the sequence Zle fi has a limit as t — oo,
we conclude that the sequence { ftk}tzl,gw is bounded as well. Hence, all k£ se-
quences {f}}i=12... are bounded, so that passing to a subsequence t; < t; < ...
we can assume that f° := lim; . f; is well defined for every i < k. Since
fi € M! and the cones M! are closed, we have fi € M for all i < k. Finally, as
h=lmy o >3, ff = lim; o0 35, fi =32, f', we conclude that h € M} +...+ M,
as claimed. |
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6.8 Extreme rays and conic Krein-Milman Theorem

The story about extreme points of closed convex sets has a conic analogy, with
nontrivial closed pointed cones playing the role of nonempty closed convex sets
that do not contain straight lines and extreme rays of these cones in the role of
extreme points.

We start with the definition of a pointed cone.

Definition 11.6.34 [Pointed cone] A cone M C R™ is called pointed if
M N [-M] = {0}, i.e., the zero vector is the only vector z that satisfies
x € M and —x € M.

Remark 11.6.35 Note that a cone M C R"™ is pointed if and only if M does
not contain a straight line passing through the origin. Invoking Lemma |[1.6.13
we see that a closed cone is pointed if and only if it does not contain straight
lines. &

In our discussion, we will focus on nontrivial cones M, i.e., M # {0}. For
nontrivial closed pointed cones, let us formally introduce the definition of extreme
directions and extreme rays.

Definition 11.6.36 [Extreme directions and extreme rays] Let M C R" be
a nontrivial closed . A direction d € R" is called an extreme direction of M
if it possesses the following two properties:

e de M\ {0}, and
e in every representation of d as the sum of two vectors from M, i.e., d =
d* + d* with d',d? € M, both d*' and d? are nonnegative multiples of d.

It is clear that when d is an extreme direction of M, so are all positive
multiples of d, i.e., all nonzero vectors on the ray R, (d) generated by d are
also extreme directions of M. A ray generated by an extreme direction of M
is called an extreme ray of M.

The set of all extreme directions and extreme rays of M are denoted by
ExtD(M) and ExtR(M), respectively.

Example I1.6.11 The simplest example of nontrivial closed cone is the nonneg-
ative orthant R . Based on our extreme direction definition, the extreme direc-
tions of R should be the nonzero n-dimensional entrywise nonnegative vectors
d such that whenever d = d*' +d? with d* > 0 and d? > 0, both d* and d? must be
nonnegative multiples of d. Such a vector d has at all entries nonnegative and at
least one of them positive. In fact, the number of positive entries in d is exactly
one, since if there were at least two entries, say, d; and ds, positive, we would
have d = [dy;0;...;0]4[0;ds; ds; . . . ; dy,] and both of the vectors in the right hand
side would be nonzero and not proportional to d. Thus, any extreme direction of
R must be a positive multiple of a basic orth. It can immediately be seen that
every vector of the latter type is an extreme direction of R’}. Hence, the extreme
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directions of R} are positive multiples of the basic orths, and the extreme rays
of R are the nonnegative parts of the coordinate axes. &

We next introduce the concept of a base which is an important type of the
cross section of a nontrivial closed pointed cone. Moreover, we will see that a
base is a compact convex set and will establish a direct connection between the
extreme rays of the underlying cone and extreme points of its base.

Definition I1.6.37 [Base of a cone] Let M C R™ be a nontrivial closed
cone, and M, be its dual cone. A set of the form

B:={zeM: flz=1} (6.14)

is called a base of M if this set intersects every emanating from the origin
nontrivial ray in M. Equivalently, a set B of the form is a base of M if
for every € M\ {0} there exists ¢ > 0 such that f ' (tx) = 1, or equivalently,
if fT2 > 0 whenever x € M \ {0}.

The last ”equivalently” above implies that if a nontrivial closed cone has a base,
then the cone is pointed.

Fact 11.6.38 Let M C R™ be a nontrivial closed cone, and M, be its dual
cone. Then
(i) M is pointed

(i.1) if and only if M does not contain straight lines,

(i.2) if and only if M, has a nonempty interior, and

(i. ) if and only if M has a base.
(i) Set (6.14]) is a base of M
(ii. 1) if and only if fTz > 0 for all z € M \ {0},
(ii.2) if and only if f € int M,.
As a result,

(ii.3) f € int M, if and only if fTz > 0 whenever z € M \ {0}.
(iii) Every base of M is nonempty, closed, and bounded. Moreover, whenever
M is pointed, for any f € M, such that the set is nonempty (note
that this set is always closed for any f), this set is bounded if and only if
f € int M,, in which case is a base of M.
(iv) M has extreme rays if and only if M is pointed. Furthermore, when
M is pointed, there is one-to-one correspondence between extreme rays of
M and extreme points of a base B of M: specifically, the ray R := R, (d),
d € M\ {0} is extreme if and only if RN B is an extreme point of B.

See Figure 6.2 for an illustration of Fact [[L.6.38|iv).

In Example we have observed that every vector from R is the sum
of finitely many extreme directions of R}. This observation is indeed the special
case of the following result.



6.8 Ezxtreme rays and conic Krein-Milman Theorem 111

Figure 6.2. Cone and its base (grey pentagon). Extreme rays of the cone are
OA, OB,...,OF intersecting the base at its extreme points A, B, ..., E.

Theorem 11.6.39 [Krein-Milman Theorem, conic form| Let M C R” be
a nontrivial closed and pointed cone. Then, its set of extreme directions,
ExtD(M), is nonempty, and every nonzero vector d € M is the sum of
finitely many extreme directions of M.

Proof. Under the premise of the theorem, Fact [[1.6.28[(iii) states that the cone
M, dual to M possesses nonempty interior, implying by Fact that M
has a base B which is a nonempty convex compact set. Then, by Krein-Milman
Theorem (Theorem [1.6.11), the set V = Ext(B) is nonempty, and B = Conv (V).
By Fact (iv), the extreme rays of B are exactly the rays generated by points
from V', so that the extreme rays do exist. Besides this, a positive multiple of a
nonzero vector from M belongs to B (as B is a base of M) and thus is a convex
combination of points from V', so that the vector itself is the sum of finitely many
positive multiples of points from V. As we have already seen, these multiples are
extreme directions of M, implying that every nonzero vector from M is the sum
of finitely many extreme directions. |

Krein-Milman Theorem in conic form states that a nontrivial closed pointed
cone has extreme directions — even enough of them to make their conic hull the
entire cone. Recall that a trivial cone M has no extreme directions (by definition,
these are nonzero vectors from M satisfying certain additional requirements and
the only vector in a trivial cone is the origin). A closed nontrivial non-pointed
cone M has no extreme directions either. Indeed, if 0 # h € M N [—M], then for
every d € M one has {d+th : t € R} C M by Remark[[[.6.35] Since for all t € R
and all d € M it holds d = dj + d; with dj = 1[d +th] € M, we conclude that
a nonzero d € M which is not proportional to A cannot be an extreme direction,
since here di are not multiples of d. And a nonzero d € M proportional to h
cannot be an extreme direction either, since now one of the vectors dif for large
t is not a nonnegative multiple of d. We have arrived at the following result:
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Corollary 11.6.40 A closed cone M C R”™ possesses extreme rays if and
only if M is nontrivial and pointed.

6.9 % Polar of a convex set

We next study the polars of convex sets, a concept closely related to the duals of
cones.

Definition 11.6.41 [Polar of a convex set] For any nonempty convex set
M C R™, we define its polar [notation: Polar (M)] to be the set of all vectors
a € R" such that a"x <1 for all x € M, i.e.,

Polar (M) :={a€R": a'z <1, Vz € M}.

Let us see some basic examples.
Example 11.6.12

Polar (R") = {0}.

Polar ({0}) = R".

Given a linear subspace in L C R™, we have Polar (L) = L+ (why?).

Let B be the unit Euclidean ball, i.e., B := {z € R": ||z|s <1}. Then,

Polar (B) = B (by Cauchy-Schwarz inequality).

5. Let X C R"™ be nonempty and D be a nonsingular n x n matrix. Then,
Polar (DX) = D~ "Polar (X).

6. Let E be an n-dimensional ellipsoid centered at the origin, i.e., F := {z :

" Cx < 1} where C = 0. Then, Polar (E) = {z : 2"C~'z < 1}, i.e., its polar

is another n-dimensional ellipsoid centered at the origin.

L

7. Finally, note that passing to polars reverses inclusions: when @ # X C Y C
R"™, we have Polar (Y') C Polar (X). &

For any nonempty convex set M, the following properties of its polar are evi-
dent:

1. 0 € Polar (M);
2. Polar (M) is convex;
3. Polar (M) is closed.

It turns out that these properties characterize polars completely:

Proposition 11.6.42 Every closed convex set M containing the origin is a
polar set. Specifically, such a set is the polar of its polar:

M is closed, convex, and 0 € M <= M = Polar (Polar (M)).
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Proof. Based on the evident properties of polars, all we need is to prove that if
M is closed and convex and 0 € M, then M = Polar (Polar (M)). By definition,
for all x € M and y € Polar (M), we have

y'x <1.

Thus, M C Polar (Polar (M)).

To prove that this inclusion is in fact equality, we assume for contradiction that
there exists Z € Polar (Polar (M)) \ M. Since M is a nonempty closed convex set
and T ¢ M, the point T can be strongly separated from M (Separation Theorem
(ii)). Thus, there exists b € R™ such that

b'z > supb'z.
zeM
As 0 € M, we deduce b'Z > 0. Passing from b to a proportional vector a = \b
with appropriately chosen positive A\, we may ensure that

a'z>1>supaz.
xeM

From the relation 1 > sup a'z we conclude that a € Polar (M). But, then the

xeEM
relation a'Z > 1 contradicts the assumption that z € Polar (Polar (M)). Hence,
we conclude that indeed M = Polar (Polar (M)). ]

We close this section with a few important properties of the polars.

Fact 11.6.43 Let M C R" be a convex set containing the origin. Then,

(i) Polar (M) = Polar (c1 M);

(ii) M is bounded if and only if 0 € int(Polar (M));

(iii) int(Polar (M)) # @ if and only if M does not contain straight lines;
(iv) If M is a cone (not necessarily closed), then

Polar (M) ={a€R": a'2 <0,Vz € M} = —M,. (6.15)

Assume that M is closed. Then, M is a closed cone if and only if Polar (M)
is a closed cone.

For more information on polars, see Exercise [[1.38

6.10 Proofs of Facts

Fact [11.6.2| Let S, T be nonempty convex sets in R". A linear form a 'z separates S
and 7' if and only if
(a) supa'z <infa'y, and
€S yeT

(b) infa'x <supa'y.
z€eS yeT
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This separation is strong if and only if (a) holds as a strict inequality:

supa'x < inf a'y.
z€S yerT

Proof. When a linear form o separates S and T, (a) holds true. Given (a), (b) could be

violated if and only if ing a'x =supa’y. But, together with (a), this can happen only if a " x is
xTE yeT

constant on S UT, which is not the case as a ' = separates S and T'. The above reasoning clearly

can be reversed: given (b), we have a # 0, and given (a), both sup,.ga'z and infyera'y are
real numbers. Selecting b in-between these real numbers, and the hyperplane a' « = b clearly
separates S and T'. The “strong separation” claim is evident. |

Fact[I1.6.9] Let M be a nonempty convex set and let « € M. Then, z is an extreme
point of M if and only if any (and then all) of the following holds:

(i) the only vector h such that = + h € M is the zero vector;
(i) in every representation z = > _"  \;z’ of x as a convex combination, with positive
coefficients, of points 2 € M, i < m, one has ! = ... = 2™ = z;
(iii) the set M \ {z} is convex.

Proof.

(i): If @ is extreme point and = = h € M, then h = 0, since otherwise # = 1 (z + h) + 3(z — h)
implying that z is an interior point of a nontrivial segment [z — h, z + h], which is impossible.
For the other direction, assume for contradiction that £ h = 0 implies A = 0 and that =
is not an extreme point of M. Then, as x ¢ Ext(M), there exists u,v € M where both u,v
are not equal to  and A € (0,1) such that x = Au+ (1 — A)v. As u # z and v # x while
x = Au+(1—\)v, we conclude that u # v. Now, consider any § > 0 such that § < min{\, 1-\}
and define h := §(u —v). Note that h ZO and z +h = A+ d0)u+ (1 — A —6)v € M and
z—h=A-0u+(1—-XA+0d6veMduetoA+d € (0,1), u,v € M and convexity of M.
This then leads to the desired contradiction with our assumption that x &+ h € M implies
that h = 0.

As a byproduct of our reasoning, we see that if x € M can be represented as x = Au+(1—A)v
with u,v € M, X € (0,1], and u # z, then x is not an extreme point of M.

(ii): In one direction, when z is not an extreme point of M, there exists h # 0 such that x+h € M
so that © = (x4 h) 4+ 2(z — h) is a convex combination with positive coefficients and using
two points x £ h that are both in M and are distinct from z. To prove the opposite direction,
let  be an extreme point of M and suppose x = Y .~ Az’ with Ay > 0, >°, A = 1, and
let us prove that 2! = ... = 2™ = z. Indeed, assume for contradiction that at least one
of %, say, !, differs from , hence m > 1. Since A2 > 0, we have 0 < A; < 1. Then, the
point v := (1 — Al)_lz;lzz\ixi is well defined. Moreover, as >_" ,Ai =1 — A1, v is a convex
combination of 2%, ..., 2™ and therefore v € M. Then, £ = Az +(1— X\ )v with 2,2, v € M,
A1 € (0,1], and z' # z, which, by the concluding comment in item (i) of the proof, implies
that « ¢ Ext(M); this is the desired contradiction.

(iii): In one direction, let = be an extreme point of M; let us prove that the set M’ := M \ {x} is
convex. Assume for contradiction that this is not the case. Then, there exist u,v € M’ and
A € [0,1] such that Z := Au + (1 — A\)v € M’, implying that 0 < A < 1 (since u,v € M'). As
M is convex, we have T € M, and since T ¢ M’ and M \ M’ = {z}, we conclude that T = x.
Thus, x is a convex combination, with positive coefficients, of two distinct from x points from
M, contradicting, by already proved item (ii), the fact that x is an extreme point of M. For
the other direction, suppose that M \ {z} is convex and we will prove that  must be an
extreme point of M. Assume for contradiction that z ¢ Ext(M). Then, there exists h # 0
such that x+h € M. As h # 0, both 2+ h and = — h are distinct from z, thus z+h € M\ {z}.
We see that £ h € M\{z}, z = J(z +h) + 2(z — h) and = ¢ M \ {z}, contradicting the
convexity of M \ {z}.
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|
Fact [11.6.10] All extreme points of the convex hull Conv(Q) of a set @) belong to Q:
Ext(Conv(Q)) C Q.

Proof. Assume for contradiction that z € Ext(Conv(Q)) and = ¢ Q. As x € Ext(Conv(Q)),
by Fact [I1.6.9] (iii) the set Conv(Q) \ {z} is convex and contains @, contradicting the fact that
Conv(Q) is the smallest convex set containing Q. [ ]

Fact [IT.6.18| Let M be a nonempty closed convex set in R™. Then

(i) Rec(M) # {0} if and only if M is unbounded.

(ii) If M is unbounded, then all nonzero recessive directions of M are positive
multiples of recessive directions of unit Euclidean length, and the latter are asymptotic
directions of M, i.e., a unit vector h € R" is a recessive direction of M if and only
if there exists a sequence {z' € M};>; such that [|z'|ls — oo as i — oo and
h =lm; o z'/[|z"]]2.

(iii) M does not contain lines if and only if the cone Rec(M) does not contain
lines.

Proof.

(i): If Rec(M) # {0}, then M contains a ray and therefore M is unbounded. For the reverse
direction, suppose M is unbounded and let us prove that Rec(M) # {0}. As M is unbounded,
there exists a sequence of points #* € M such that ||z*||2 > i, for all i = 1,2,.... Then, for
sufficiently large i, the vectors h' := (2* — 2')/||2* — '||2 are well defined unit vectors. Passing
to a subsequence, we can assume that A* — h as i — oo (Theorem , so that h is a unit
vector as well. For every ¢ > 0, the points ' + th?, for all i with ||2* — z'||2 > ¢, are convex
combinations of points ' and z* and both z',2* € M. Then, as M is convex, x' + th’ € M for
all large enough i. As i — oo, the points z! + th® converge to z! + th, and since M is closed,
we conclude x' + th € M. Because this holds for every ¢t > 0, the vector h # 0 is a recessive
direction of M.

(ii): Suppose M is unbounded and consider any h € Rec(M) such that h is a unit vector.
Pick any z° € M and define z* := 2% 4+ ih, i = 1,2, .... Then, we get a sequence of points from
M diverging to infinity, i.e., ||z%||2 — oo as i — oo, and also satisfying h = lim;_,c ||lz||5 2"
Thus, h is an asymptotic direction of M, as claimed. To prove the reverse direction, if ' € M
are such that ||z'||z2 — oo and h := lim;_, ||2°||7 '2" exists, then h is a recessive direction of M
by the same reasoning used in the proof of item (i), and of course h is a unit vector.

(iii): Suppose M contains a line with direction h # 0, i.e., for some x € M and for all t € R,
we have z +th € M. Then, by the definition of recessive direction, both A and —h are recessive
directions of M, so +h € Rec(M), and thus Rec(M) contains a line with the direction h. For
the reverse direction suppose h # 0 and Rec(M) contains a line with direction h. Since Rec(M)
is a closed convex cone, the line with the same direction passing through the origin is contained
in Rec(M) (by Lemma [[L.6.13). Thus, +h € Rec(M). Then, by the definition of Rec(M), for
any x € M it holds that x +th € M for all t € R. Hence, M contains a line with the direction
h. [ ]

Fact I1.6.19] Let M C R" be a nonempty closed convex set. Recall its closed conic
transform is given by

ConeT(M) =cl{[z;t] e R" xR : t >0, z/t € M},

(see section . Then,
Rec(M) ={h e R": [h;0] € ConeT(M)}.
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Proof. Let h be such that [h; 0] € ConeT (M), and let us prove that h € Rec(M). There is nothing
to prove when h = 0, thus assume that h # 0. Since the vectors g such that [g; 0] € ConeT form a
closed cone and both ConeT (M) and Rec(M) are cones as well, we lose nothing when assuming,
in addition to [h; 0] € ConeT(M) and h # 0, that h is a unit vector. Since [h; 0] € ConeT(M), by
definition of the latter set there exists a sequence [u’;t;] — [h;0], i — oo, such that ¢; > 0 and
x' :=wu'/t; € M for all 5. Then, this together with u’ — h and ||h||2 = 1 imply that ||z*||2 — oo
and t;]|z*|]2 — 1 as i — 0o. As a result, lim;oo ||2°]|5 2" = limi oo u* = h. By Fact ii),
we see that h € Rec(M).

For the reverse direction, consider any h € Rec(M), and let us prove that [h; 0] € ConeT(M).
There is nothing to prove when h = 0, so we assume h # 0. Consider any £ € M and define
2t :=Z +ih,i=1,2,.... As h € Rec(M), we have ' € M for all i. Moreover, ||2*|2 — oo as
i — oo due to h # 0. We clearly have lim,_,oo[2"/||2%||2; 1/||2%||2] = [R/]|h]|2; 0], and the vectors
[y t:] := [2*/||z%||2, 1/||z%||2] for all large enough 4 satisfy the requirement ¢; > 0, y*/t; € M, so
[y t;] € ConeT(M) for all large enough i. As ConeT (M) is closed and [y*;t;] — [h/||R]|2;0] as
i — 0o, we deduce [h/||h||2;0] € ConeT(M). Finally, ConeT(M) is a cone, so [h;0] € ConeT(M)
as well. ]

Fact|11.6.20| For any nonempty polyhedral set M = {x € R" : Az < b}, its recessive
cone is given by

Rec(M)={h e R": Ah <0},

i.e., Rec(M) is given by homogeneous version of linear constraints specifying M.
Proof. Consider any h such that Ah < 0. Then, for any T € M, and t > 0, we have A(T +th) =
AT +tAh < AT < b, so T+ th € M for all t > 0. Hence, h € Rec(M). For the reverse direction,
suppose h € Rec(M) and T € M. Then, for all t > 0 we have A(Z + th) < b. This is equivalent
to Ah <t~ (b — AZ) for all t > 0, which implies that Ah < 0. [ |

Fact [I1.6.28] Let M be a closed cone in R", and let M, be the cone dual to M.
Then

(i) Duality does not distinguish between a cone and its closure: whenever M = cl M’
for a cone M’, we have M, = M.

(ii) Duality is symmetric: the cone dual to M, is M.
(iii) One has
int M, ={yeR": y'a>0,VzeM)\{0}},
and int M, is nonempty if and only if M is pointed (i.e., M N[-M] = {0}).

Moreover, when M, in addition to being closed, is pointed and nontrivial (M #
{0}), one has

int M, ={yeR": My:={zeM: z 'y =1} is nonempty and compact} . (16.12)

(iv) The cone dual to the direct product M; x ... x M, of cones M, is the direct
product of their duals: [M; X ... x M,,]. = [Mi]. X ... X [M,]..

Proof.

(i): This is evident.



(ii):

(iii):

(iv):
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By definition, any & € M satisfies 'y > 0 for all y € M., hence M C [M]«. To prove
M = [M.,]., assume for contradiction that there exists Z € [M.].\M. By Separation Theorem,
{Z} can be strongly separated from M, i.e., there exists y such that

T . T
T < inf .
Y meMy

As M is a conic set and the right hand side infimum is finite, this infimum must be 0. Thus,
y'Z < 0 while y'2 > 0 for all x € M implying y € M,. But, then this contradicts to
T € [M.]«.

Let us prove that int M, # @ if and only if M is pointed. If M is not pointed, then +£h € M
for some h # 0, implying that y ' [+h] > 0 for all y € M., that is, y"h = 0 for all y € M...
Thus, when M is not pointed, M. belongs to a proper (smaller than the entire R™) linear
subspace of R"™ and thus int M, = &. This reasoning can be reversed: when int M. = &,
the affine hull Aff(M,) of M, cannot be the entire R™ (since int M, = @ and rint M, # ©);
taking into account that 0 € M., we have Aff(M.) = Lin(M.), so that Lin(M.) & R", and
therefore there exists a nonzero h orthogonal to Lin(M.). We have y " [h] = 0 for all y € M.,
implying that h and —h belong to cone dual to M., that is, to M (due to the already verified
item (ii)). Thus, for some nonzero h it holds £h € M, that is, M is not pointed.

Now let us prove that y € int M, if and only if y 'z > 0 for every = € M \ {0}. In one
direction: assume that y € int M, so that for some r > 0 it holds y + § € M, for all § with
|d2]| < 7. If now = € M, we have 0 < mins.5,<,[y + 6] ' =y 'z — r||z||2. Thus,

1
y€int M, = ||z]2 < ;yTw, Ve € M, (*)

implying that y " > 0 for all z € M\ {0}, as required. In the opposite direction: assume that
y 2 >0 for all z € M\ {0}, and let us prove that y € int M.. There is nothing to prove when
M = {0} (and therefore M, = R™). Assuming M # {0}, let M = {z € M : ||z||2 = 1}. This
set is nonempty (since M # {0}), is closed (as M is closed), and is clearly bounded, and thus
is compact. We are in the situation when y'x > 0 for x € M, implying that min, e xr Yyl
(this minimum is achieved since M is a nonempty compact set) is strictly positive. Thus,
y'a>r>0forall z € M, whence [y + 4] = > 0 for all z € M and all § with ||§]2 < r. Due
to the origin of M, a positive multiple of every nonzero x € M belongs to M, and therefore
the inequality [y + 6]'« > 0 for all 2 € M implies that [y 4+ ] '@ > 0 for all z € M. The
bottom line is that the Euclidean ball of radius r centered at y belongs to M., and therefore
y € int M, as claimed.

Now let us prove the “Moreover” part of item (iii). Thus, let the cone M be closed, pointed,
and nontrivial. Consider any y € int M., then the set M,, first, contains some positive multiple
of every nonzero vector from M (by (¥)) and thus is nonempty (since M # {0}) and, second,
is bounded (by the same (¥)). Since M, is closed (as M is closed), we conclude that M, is a
nonempty compact set. Thus, the left hand side set in is contained in the right hand
side one. To prove the opposite inclusion, let y € R"™ be such that M, is a nonempty compact
set, and let us prove that y € int M. By the already proved part of item (iii), all we need is
to verify that if ¢ # 0 and & € M, then y' 2 > 0. Assume for contradiction that there exists
Z € M\ {0} such that o := —y' & > 0. Then, by selecting any Z € M, (M, is nonempty!)
and setting e = o + Z, we get e € M and y'e = 0. Note that e # 0; indeed, e = 0 means
that the nonzero vector T € M is such that —% = aZ € M, contradicting pointedness of M.
The bottom line is that e € M \ {0} and y"e = 0, whence e is a nonzero recessive direction
of M,. This is the desired contradiction as M, is compact!

This is evident.

Fact Let M C R"™ be a cone and M, be its dual cone. Then, for any
x € int M, there exists a properly selected C, < oo such that

flls < Cof T2,  VfeEM,.
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Proof. Since z € int M, there exists p > 0 such that £ — 6 € M whenever |||z < p. Then, as
f € M., we have T (v —8) > 0 for any 32 < p , i, T2 > sups{f 78 6z < p} = pll ]l
Taking C, := 1/p (note that C; < oo as p > 0) gives us the desired relation. |

Fact I1.6.38] Let M C R" be a nontrivial closed cone, and M, be its dual cone.
Then
(i) M is pointed

(i.1) if and only if M does not contain straight lines,

(i.2) if and only if M, has a nonempty interior, and

(i.3) if and only if M has a base.
(ii) Set (6.14)) is a base of M

(ii.1) if and only if fTx > 0 for all z € M \ {0},

(ii.2) if and only if f € int M,.
As a result,

(ii.3) f € int M, if and only if fTz > 0 whenever z € M \ {0}.
(iii) Every base of M is nonempty, closed, and bounded. Moreover, whenever M is
pointed, for any f € M, such that the set is nonempty (note that this set is
always closed for any f), this set is bounded if and only if f € int M,, in which case

(6.14)) is a base of M.

(iv) M has extreme rays if and only if M is pointed. Furthermore, when M is pointed,
there is one-to-one correspondence between extreme rays of M and extreme points
of a base B of M: specifically, the ray R := R, (d), d € M \ {0} is extreme if and

only if RN B is an extreme point of B.

Proof. (i.1): Since M is closed, convex, and contains the origin, M contains a line if and only
if M contains a line passing through the origin, and since M is conic, the latter happens if and
only if M is not pointed.

(1.2): This is precisely Fact [[1.6.28iii).

(i.3): As we have seen, (6.14)) is a base of M if and only if f "z > 0 for all € M \ {0}, which,
by Fact iii)7 holds if and only if f € int M.. Thus, a nontrivial closed cone M has a base
if and only if int M, # @, and the latter, by the already proved statement (i.2), is the same as
the pointedness of M.

(ii.1): This was explained when defining a base.

(ii.2): This is given by Fact [I1.6.28] M(ul

iii): By (ii.2), the set B given by (6.14]) is a base of M if and only if f € int M.. By Fact
111) f € int M. if and only if B is nonempty and compact (Fact [[1.6.28] Mm is applicable,
since under the premise of Fact [l 8| M is nontrivial and closed). Thus, M has a base if and
only if int M, # @, the bases are exactly the sets given by f € int M., and every base
is nonempty and compact. To complete the proof of (iii), we need to verify that a nonempty
set B given by some f € M, according to is bounded if and only if f € int M.. In one
direction this has just been proved, and all we need is to verify that if B is nonempty and
f € bd M, = M.\ int M,, then B is unbounded. Indeed, by (ii.3), when f € bd M,, then there
exists nonzero d € M such that f'd = 0. It follows that d is a nontrivial recessive direction of
the nonempty convex set B, so that B is unbounded, as claimed. (iii) is proved.

(iv): The fact that a closed cone M which is either trivial or non-pointed has no extreme
rays was established before formulating Corollary [[1.6.40} and the corresponding reasoning did
not refer to Fact [[[.6.38] Now assume that M is nontrivial, closed, and pointed, and let M. be
the cone dual to M. By Fact [[1.6.28[iii), int M. # @, so that, by the already proved parts (ii)
and (iii) of Fact [[1.6.38] M has a base B = {z € M : f'z = 1}, and this base is a nonempty
convex compact set. By the Krein-Milman Theorem (Theorem , the set V' of extreme
point of B is nonempty. To complete the proof of (iv), we need to verify that
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(a) when v € V, v is an extreme direction of M (this, as a byproduct, implies that M has
extreme rays, since V # &), and

(b) when R is an extreme ray of M, then the point v where the ray intersects B (such a point
exists by the definition of a base) is an extreme point of B.

(a): As 0 ¢ B C M, v is a nonzero vector from M. Let v = d* 4 d* with d*,d* from M; we
should prove that d*, d? are nonnegative multiples of v. There is nothing to prove when d* = 0 or
d? = 0. Assuming d* # 0,d* # 0, the rays R(d") and R(d?) intersect B at points v, respectively,
v? (the rays do intersect B by the definition of a base). We have d* = Ao’ with \; > 0,4 = 1,2,
and v = d* 4+ d? reads v = A\v! + Av?, whence fTv =M f ol + dof 02 As v,v', 02 € B, we
have fTv = fTo! = fTo? = 1, implying that A1 + A2 = 1, so that v is a convex combination,
with positive coefficients, of v* € B, i = 1,2. By Fact ii) we have v! = v? = v, that is, d*
are nonnegative multiples of v, as claimed. (a) is proved.

(b): To prove that v € Ext(B), assume that h is such that v+h € B, and let us prove that h = 0.
Indeed, setting d* = %[v =+ h], we have dfe Mandv=d +d". Asve B, we have f v =1,
and also since v + h € B, we deduce that fTh = 0. We see that when h # 0, the vectors v and
h are linearly independent, implying that d* are not multiples of v, which is impossible, since
v is an extreme direction of M. Thus, h = 0, as required. |

Fact [I1.6.43] Let M be a convex set in R™ containing the origin. Then,

i) Polar (M) = Polar (c1 M);
(i) M is bounded if and only if 0 € int(Polar (M));
(i) int(Polar (M)) # @ if and only if M does not contain straight lines;
(iv) If M is a cone (not necessarily closed), then

Polar (M) ={a€R": a'2 <0,Vz € M} = —M,. (6.15)
Assume that M is closed. Then, M is a closed cone if and only if Polar (M) is a
closed cone.
Proof.

(i): This follows immediately from sup,c,;a'z = sup,cq @' .

(ii): Suppose M is bounded. Then, by Cauchy-Schwarz inequality all vectors y with small enough
norms satisfy y € Polar (M) and so 0 € int(Polar (M)). To see the reverse direction, sup-
pose 0 € int(Polar (M)). Note that clM is a closed convex set and by item (i), we have
Polar (M) = Polar (c1 M), so 0 € int(Polar (cl M)), i.e., Polar (cl M) contains a ball cen-
tered at the origin with some radius p > 0. Then, by Proposition we have clM =
Polar (Polar (c1 M)) = Polar (Polar (M)), which implies that z € clM = Polar (Polar (M))
only if 1 > sup,cgn {y"z: |lyll2 < p} = pllz||2. Thus, for all z € cl M we have [|z[|2 < 1/p.

(iii): By item (i), the polar remains intact when passing from M to cl M; by Lemma a
nonempty convex set M contains a straight line if and only if cl M does so. Thus, we lose
nothing when assuming in the rest of the proof that M is closed.

Assume, first, that M contains a straight line, and let us prove that int(Polar (M)) = &.
Indeed, when the closed convex set M contains a line, as 0 € M by Lemma M
contains a parallel line ¢ passing through 0 € M. Thus, Polar (M) C Polar (¢). Since £ is a
one-dimensional linear subspace of R", Polar (¢) is the orthogonal complement ¢+ of £, so
that int(Polar (£)) = int(£*) = &, hence int(Polar (M)) = @ as well.

Now let int(Polar (M)) = &, and let us prove that M contains a straight line. Assume that it
is not the case, and let us lead this assumption to a contradiction. Since M does not contain
lines, the closed cone K := Rec(M) is pointed, so that its dual cone K. has a nonempty
interior (Fact i.2)). Thus, there exists 7 > 0 and f € K. such that the ball of radius



120 Separation Theorem and geometry of conver sets

2r centered at f is contained in K.. Then, 2 (f +€) > 0 whenever z € K, |le]]2 < r and
If = fll2 < r. As a result,

flzzrllzllz, V(zeK, feB={f:|f-Fl2<r}). (*)
Now let
C:= sup sz;
fe—B,zeM

we claim that C' < oo. Taking this claim for granted, observe that C' < oo implies, by
homogeneity, that sup;c_.p .en fTz < €C for all € > 0, hence for properly selected small
positive € the ball —eB is contained in Polar (M), implying int(Polar (M)) # &, which is a
desired contradiction.

It remains to justify the above claim. To this end assume that C = +o00, and let us lead this
assumption to a contradiction. When C' = +oc0, there exists a sequence f; € —B and z; € M
such that f;"z; — 400 as i — oo, implying, due to f; € —B, that ||zi]j2 — oo as i — oo.
Passing to a subsequence, we can assume that z;/||zi||]2 — h as ¢ — oo. Then, by its origin,
h is an asymptotic direction of M and therefore is a unit vector from K (Fact [[L.6.18ii)).
Assuming w.l.o.g. z; # 0 for all i, we have

o= IIZin<ffh+fiT i/ lills — h)). 0
=y =P

As i — oo, f; € —B remain bounded and (z;/||z;||2—h) — 0, implying that 8; — 0 as i — oo,
while (%) as applied with z = h together with h € K, ||h|l2 = 1, and f; € —B imply that
a; < —r < 0. Thus, a; + 8; < —r/2 for large enough values of 4, so that (!) taken together
with [|zi]]2 = oo as i — oo says that f;' z; = —oco as i — oo, contradicting the origin of f;
and z;. Thus, C' < oo, as claimed. This completes the verification of item (iii).

: Clearly, when M is a nonempty conic set, the relation y'« < 1 for all 2 € M is exactly the

same as y' « < 0 for all z € M. Hence, when M is a cone, its polar is a closed cone given
by . On the other hand, when M contains the origin and is convex and closed, it is the
polar of its polar, so that when this polar is a cone, M itself is a closed cone (by the just
proved part of item (iv) as applied to Polar (M) in the role of M).
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Geometry of polyhedral sets

7.1 Extreme points of polyhedral sets
Consider a polyhedral set

M={xeR": Az < b},

where A is an mXxn matrix and b € R™. In then sequel, we refer to the scalar linear
inequalities participating in the polyhedral description of M as the constraints
specifying M.

We have seen a geometric characterization of extreme points for general convex
sets in section [6.4.1] In the case of polyhedral sets M, we can also give an algebraic
characterization of the extreme points as follows.

Theorem I1.7.1 [Characterization of extreme points of polyhedral sets] Let
M ={x e R": Ax <b}. A point z € M is an extreme point of M if and only
if there are n linearly independent (i.e., with linearly independent vectors of
coefficients) inequalities of the system Ax < b that are active (i.e., hold as
equalities) at x.

Proof. Let a;, i =1,...,m, be the rows of A.

The “only if” part: let x be an extreme point of M, and define the sets I :=
{i: a]z =1b;} as the set of indices of the constraints which are active (i.e., are
satisfied as equalities) at  and F' := {a; : i € I} as the set of vectors of coefficients
of active constraints. We will prove that the set F' contains n linearly independent
vectors, i.e., Lin(F) = R™. Assume for contradiction that this is not the case.
Then, as dim(F+) = n — dim(Lin(F)), we deduce dim(F*) > 0 and so there
exists a nonzero vector d € F*. Consider the segment A, := [z — ed,z + ed),
where € > 0 will be the parameter of our construction. Since d is orthogonal to
the “active” vectors a; (those with ¢ € I), all points y € A, satisfy the relations
ajy = a]x = b;. Now, if i is a “nonactive” index (one with az < b;), then
a;y < b; for all y € A, provided that € is small enough. Since there are finitely
many nonactive indices, we can choose € > 0 in such a way that all y € A, will
satisfy all “nonactive” inequalities a; x < b;, i ¢ I, as well. So, we conclude that
for the above choice of € > 0 we get A, C M. But, this is a contradiction to
x being an extreme point of M as we have expressed x as the midpoint of a
nontrivial segment A, (recall that e > 0 and d # 0).

121
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To prove the “if” part, we assume that x € M is such that among the inequal-
ities a; < b; which are active at z there are ncorrwith linearly independent
ones. Without loss of generality, we assume that the indices of these inequalities
are 1,...,n. Given this, we will prove that x is an extreme point of M. Assume
for contradiction that z is not an extreme point. Then, there exists a vector
d # 0 such that x =£d € M. In other words, for ¢ = 1,...,n we would have
b; > a/ (x +d) = b; + a/ d (where the last equivalence follows from a; z = b;
for all i € I = {1,...,n}), which is possible only if a/d = 0, ¢ = 1,...,n. But
the only vector which is orthogonal to n linearly independent vectors in R" is
the zero vector (why?), and so we get d = 0, which contradicts the assumption
d # 0. [ |
Theorem states that at every extreme point of a polyhedral set M =
{z € R" : Az < b} we must have n linearly independent constraints from Az < b
holding as equalities. Since a system of n linearly independent equality constraints
in n unknowns has a unique solution, such a system can specify at most one
extreme point of M (exactly one, when the (unique!) solution to the system
satisfies the remaining constraints in the system Az < b). Moreover, when M
is defined by m inequality constraints, the number of such systems, and thus
the number of extreme points of M, does not exceed the number C of n x n
submatrices of the matrix A € R™*". Hence, we arrive at the following corollary.

Corollary I1.7.2 Every polyhedral set has finitely many extreme points.

Recall that there are nonempty polyhedral sets which do not have any extreme
points; these are precisely the ones that contain lines.

Note that C? is just an upper (and typically very conservative) bound on the
number of extreme points of a polyhedral set in R"™ defined by m inequality
constraints. This is so because some n x n submatrices of A can be singular, and
what is more important, the majority of the nonsingular ones typically produce
“candidate” points which do not satisfy the remaining inequalities defining M.

Remark I1.7.3 Historically, Theorem [[I.7.1 has been instrumental in developing
an algorithm to solve linear programs, namely the Simplex method. Let us consider
an LP in standard form
ggrellilri{cTa::P:U:p,a:ZO},

where P € R¥*". Note that we can convert any given LP to this form by adding
a small number of new variables and constraints if needed. In the context of this
LP, Theorem states that the extreme points of the feasible set are exactly
the basic feasible solutions of the system Px = p, i.e., nonnegative vectors = such
that Pz = p and the set of columns of P associated with positive entries of x is
linearly independent. As the feasible set of an LP in standard form clearly does
not contain lines (note the constraints > 0 which restricts the standard form LP

domain to be subset of the pointed cone R’} ), among its optimal solutions (if they
exist) at least one is an extreme point of the feasible set (Theorem [II.7.12(ii)).
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This then suggests a simple algorithm to solve a solvable LP in standard form: go
through the finite set of all extreme points of the feasible set (or equivalently all
basic feasible solutions) and choose the one with the best objective value. This
algorithm allows to find an optimal solution in finitely many arithmetic opera-
tions, provided that the LP is solvable, and underlies the basic idea for the Sim-
plex method. As one will immediately recognize, the number of extreme points,
although finite, may be quite large. The Simplex method operates in a smarter
way and examines only a subset of the basic feasible solutions in an organized
way and can handle other issues such as infeasibility and unboundedness.
Another useful consequence of Theorem is that if all the data in an LP
are rational, then every one of its extreme points is a vector with rational entries.
Thus, a solvable standard form LP with rational data has at least one rational
optimal solution. O

Theorem [[.7.1] has further important consequences in terms of sizes of extreme
points of polyhedral sets as well.
To this end, let us first recall a simple fact from Linear Algebra:

Proposition I1.7.4 If a system of linear equations Az = b (with A € R™*")
is feasible, then it has a solution z(b) of “magnitude of order of the magnitude
of b;” that is, ||x(b)|l2 < C(A)||bl|2 with parameter C'(A) < oo which depends
solely on A and but not on b.

Proof. Let r := rank(A). There is nothing to prove when r = 0 as in this case
A is zero, and if the system Ax = b has a solution, the vector zero is one of its
solutions as well. When r > 0, we can assume without loss of generality that
the first » columns of A are linearly independent, and the remaining columns are
linear combinations of these r columns. Then, if there is a solution to Ax = b,
then there must be a solution where z; = 0 for all ¢ > r. We will take such a
solution as x(b). As the first 7 columns of A are linearly independent, A has an
r X 7 submatrix A composed of the first » columns of A and r properly selected
rows of A. Let b be the subvector of b corresponding to the indices of rows selected
for A. Define the vector Z(b) € R" be the vector obtained from the first r entries
in z(b). Since the entries in x(b) with indexes greater than r are zero, we have
z(b) = [#(b); 0] and so AZ(b) = b. As A is a nonsingular matrix, we deduce that

2|2 = [2(®)ll2 = A7 bll2 < [ATH[[Ib]l2 < AT [1B]]2,

where || A~!|| is the spectral norm of A~!. Then, setting C'(A) = || A~!|| concludes
the proof. [ ]

Surprisingly, a similar result holds for the solutions of systems of linear inequal-
ities as well.

Proposition I1.7.5 Consider a system of linear inequalities Ax < b where
A € R™*™. Whenever b results in a feasible system Ax < b, then there exists
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C(A) < oo depending solely on A, but not on b, such that this system has a
solution z(b) with ||z(b)[l2 < C(A)]|b]|2.

Proof. This proof is quite similar to the one for Proposition [[I.7.4] Let r :=
rank(A). The case of r = 0 is trivial — in this case A = 0, and the system Az <b
is feasible, it has the solution x = 0. When r > 0, we can assume without loss of
generality that the first  columns in A are linearly independent. Let A € R™*"
be the submatrix of A obtained from the first r columns of A. As A has all the
linearly independent columns of A, the image spaces of A and A are the same.
Thus, the system Ax < b is feasible if and only if the system Au < b is feasible.
Moreover, given any feasible solution u € R" to Au < b, we can generate a feasible
solution z := [u; 0] € R™ by adding n — r zeros at the end and still preserve the
norm of the solution. Hence, without loss of generality we can assume that the
columns of A are linearly independent and r = n.

As A € R™*" has n linearly independent columns and each column is a vector
in R™, we deduce that m > n and {u: Au =0} = {0}. Thus, we conclude
that the polyhedral set {x : Az < b} does not contain lines. Therefore, when
nonempty, by Krein-Milman Theorem this polyhedral set has an extreme point.
Let us take this point as z(b). Then, by Theorem at least n of the inequality
constraints from the system Az < b will be active at x(b) and out of the vectors
of coefficients of these active constraints there will be n vectors a; (corresponding
to rows of the matrix A) that are linearly independent. That is, A,z (b) = b holds
for a certain nonsingular n x n submatrix A, of A. So, we conclude ||z(b)|]2 <
|4, [[]|b]|2- Since the number of 7 X r nonsingular submatrices in A is finite, the
maximum C(A) of the spectral norms of the inverses of these submatrices is finite
as well, and, as we have seen, for every b for which the system Ax < b is feasible,
it has a solution z(b) with ||z(b)|l2 < C(A)||b]|2, as claimed. ]

7.1.1 Important polyhedral sets and their extreme points

In this section, we will examine a number of important polyhedral sets and their
extreme points. Throughout this section, we suppose that & and n are positive
integers with £ < n.

Example 11.7.1 Suppose k,n are integers satisfying 0 < k < n. Consider the
polytope

X::{:EER”: 0<z, <1, Vi<n, szzk}

i=1

The set of extreme points of X is precisely the set of vectors with entries 0 and
1 which have exactly k entries equal to 1. That is,

Ext(X) = {a? €{0,1}": ixz —k}.

In particular, the extreme points of the “flat (a.k.a. probabilistic) simplex”
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{z e R} : Y1 x; = 1} are the basic orths (see the Figure 7.1 for an illustration
of this set with k£ = 1).

~

Figure 7.1. Example [L.7.1 n = 3,k = 1.

Let us justify the claim of this example. For convenience, we define Y :=
{x € {0,1}": Y | x; = k}; then we need to show that Ext(X) = Y. Clearly,
Y C X. Moreover, for any y € Y, for each coordinate i = 1,...,n we have either
y; = 0 or y; = 1, thus we have n bound constraints active. Since the vectors
of coefficients of these n constraints are linearly independent, we conclude by
Theorem that Y C Ext(X). Now, consider any w € Ext(X). Then, by
Theorem [[I.7.1] among the constraints specifying X, n constraints with linearly
independent vectors of coefficients should be active at w. Thus, we must have
at least n — 1 of the bound constraints 0 < z; < 1 active at w, i.e., at least
n — 1 of the entries of w must be in {0,1}. Let 7, be the index of the remaining
entry of w. As w € X, it must also satisfy > ., w; = k. As k is an integer, we
deduce w;, =k — > ,,; w; must be an integer as well. But, then as we also have

Vs

0 <w;, <1, we deduce that w;, € {0,1}. Thus, w € Y holds, as desired. &

Example 11.7.2 Suppose k,n are integers satisfying 0 < k < n. Consider the
polytope

X:{xeR": 0<x; <1, Vi<n, szgk}

i=1

The set of extreme points of X is precisely the set of vectors with entries 0 and
1 which have at most k entries equal to 1. That is,

Ext(X) = {a: €{0,1}": ixl < k}

In particular, the extreme points of the “full-dimensional simplex” {z € R :
S x; < 1} are the basic orths and the origin (see Figure 7.2 for an illustration
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of this set with k£ = 1).

Figure 7.2. Example[[I.7.2) n = 3,k =1

Justification of this example follows the one of Example and is left as an
exercise to the reader. &

Example 11.7.3 Suppose k,n are integers satisfying 0 < k < n. Consider the
polytope

X = {CL’ eR": |z;| <1, Vi <n, Zl1|mi| < k‘}

Extreme points of X are exactly the vectors with entries 0,1,—1 which have
exactly k nonzero entries. That is,

i=1

Ext(X) = {x e {-1,0,1}": i || = k}

In particular, extreme points of the unit ||-||;-ball {x € R™: ||z|; <1} ={x €
R": Y0 |z < 1} are exactly the vectors {£e; : i = 1,...,n} where ¢; is the
i-th basic orth (see Figure 7.3 for an illustration of this set with k = 1).

Figure 7.3. Example [[1.7.3) n =3,k = 1.

Similarly, extreme points of the unit | - ||o-ball {z € R" : ||z]|o < 1} ={z €
R™: |z;| <1,Vi=1,...,n} are the 2" vectors with £1 entries (see Figure 7.4
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for an illustration of this set).

Figure 7.4. Extreme points of the box {x € R? : x|/, < 1}.

Here is the justification of the claim of this example. For convenience, we
define Y := {z € {-1,0,1}": > | |x:| = k}; we need to show that Ext(X) =Y.
Clearly, Y C X. Consider any y € Y. Without loss of generality, suppose that the
nonzero entries of y are the first k. Now, consider any h such that y+h € X. Since
y; € {—1,41} fori = 1,...,k and y = h € X, we must have h; = 0 for all i =
1,... k. Also, y+h € X implies that k > 37 [ys+h| = S0 |yl + 3500y [hi] =
k4> i1 |hil, and thus |h;| = 0 for all i = k4 1,...,n. This proves that h =0
and thus y must indeed be an extreme point of X. So, Y C Ext(X). Now, consider
any w € Ext(X), we will show that w € Y. Note that X has certain symmetry: for
any € X and any d € {—1,+1}", we have Diag(d)xr € X as well. In particular,
any d € {—1,+1}" maps X onto itself and therefore maps Ext(X) onto Ext(X).
As a result, we can assume without loss of generality that w > 0. Then, all we
need to prove is that w has k entries equal to 1 and all remaining entries equal to
0. Theset X, :={zeX:2>0}={xzcR": Ogmigl,Vign,Zfﬂxigk}
is contained in X and w € X ;. As w € Ext(X) and w € X; C X, we must have
that w is an extreme point of X, as well.

In the preceding reasoning, we have used the following evident fact:

Suppose P C @ are convex sets. If T € P is an extreme point of (), then
it is an extreme point of P as well.

(Otherwise z would be the midpoint of a nontrivial segment contained in P and
therefore contained in @Q.)

Then, noting that X, is precisely the set from Example and w € Ext(X,),
we conclude that w has only 0 and 1 entries and at most k£ of the entries are
nonzero, therefore the sum of the entries of w is at most k. It remains to verify
that the number of nonzero entries in w is equal to k. Indeed, w were to have fewer
than k nonzero entries, w would have a zero entry, say, wy = 0, and > |w;| < k,
implying that there exists € € (0,1) such that the vector h = [¢; 0;. .. ;0] will sat-
isfy (w £+ h) € X, which is impossible since w € Ext(X). O

As our last example we next discuss the so-called Assignment polytope, which

is closely connected to the very important concept of doubly stochastic matrices
and the Birkhoff Theorem.
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Definition I1.7.6 [Doubly stochastic matrix] A matrix X = [z;]}',_, €
R™*™ is called doubly stochastic, if ;; > 0 for alli,j € {1,...,n}, >0 ;=
1forallj € {1,...,n} (i.e., all column sums are equal to 1), and Z?Zl xy; =1
for all i € {1,...,n} (i.e., all row sums are equal to 1).

The set of all doubly stochastic matrices (treated as elements of R" = R™™)
form the following bounded polyhedral set:

Lij > 0, \V/'l,j S {1, . .,n},
I, :=JX = [:L'ij]?,j=1 : Z?:lxij =1Vje {17' : .,TL},
Z;L:lflfij = 1, Vi € {1, . .,n}

The set 11, is called the Assignment (or balanced matching) polytope. As 11, is a
polytope, by Krein-Milman Theorem, II,, is the convex hull of its extreme points.
What are these extreme points? The answer is given by the following fundamental
result.

Theorem I1.7.7 [Birkhoff-von Neumann Theorem| Extreme points of II,
are exactly the permutation matrices of order n, which are n x n Boolean
(i.e., with 0/1 entries) matrices with exactly one nonzero element (equal to
1) in every row and every column.

Proof. It is indeed easy to see that every n x n permutation matrix is an extreme
point of II,,; we give this as Exercise

We now prove the difficult part, that is we will show that every extreme point
of II,, is a permutation matrix. First, note that the 2n linear equations in the
definition of II,, those saying that all row and column sums are equal to 1, are
linearly dependent (observe that the sum of the first group of equalities is exactly
the same as the sum of the second group of equalities). Thus, we lose nothing
when assuming that there are just 2n — 1 equality constraints in the description
of II,,. Now, let us prove the claim by induction on n. The base n = 1 is trivial.
As the induction hypothesis suppose that the statement holds for II,,_;. Let X
be an extreme point of II,,. By Theorem among the constraints defining
I1,, (i.e., 2n — 1 equalities and n? inequalities x;; > 0) there should be n? linearly
independent constraints which are satisfied at X as equations. Thus, at least
n? —(2n—1) = (n— 1)? entries in X should be zeros. It follows that at least one
of the columns of X contains < 1 nonzero entries (since otherwise the number of
zero entries in X would be at most n(n —2) < (n — 1)?). Thus, there exists at
least one column with at most 1 nonzero entry; since the sum of entries in this
column is 1, this nonzero entry, let it be x7;, is equal to 1. As the entries in row ¢
are nonnegative, sum up to 1 and as x;; = 1, 277 = 1 is the only nonzero entry in
ith row and jth column. Eliminating from X the row i and the column j, we get
an (n—1) x (n—1) doubly stochastic matrix. By inductive hypothesis, this matrix
is a convex combination of (n — 1) x (n — 1) permutation matrices. Augmenting
every one of these matrices by the column and the row we have eliminated, we
get a representation of X as a convex combination of n X n permutation matrices:
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X =3, AP’ with nonnegative A\, summing up to 1. Since P* € II,, and X is an
extreme point of II,,, in this representation all terms with nonzero coefficients A,
must be equal to A\, X, so that X is one of the permutation matrices P’ and as
such is a permutation matrix. ]

7.2 Extreme rays of polyhedral cones

Recall that for nontrivial closed pointed cones, we have defined the concepts of
extreme directions and extreme rays in section In the case of polyhedral
cones, we can also give an algebraic characterization of its extreme directions

analogous to Theorem

Theorem I1.7.8 [Characterization of extreme directions of polyhedral cones]
Consider a polyhedral cone M = {d eR": a/d<0,i=1,... ,m}. Suppose
that M is nontrivial and pointed. A direction d € M \ {0} is an extreme di-
rection of M if and only if there are n — 1 linearly independent (i.e., with
linearly independent vectors a;) constraints which are active at d (i.e., such
that a, d = 0).

Proof. As M is a nonempty closed (recall that it is polyhedral!) pointed cone,
from Fact [I1.6.28(iii), we deduce that its dual cone M, has a nonempty interior.
Let f € int M,. Consider the set

B:=Mn{deR": fld=1}.

Then, by Fact|I1.6.38(ii), B is a base of M. Thus, B is nonempty and compact (see
Fact [I1.6.38((iii)). As M is polyhedral, by definition of B, we have B is polyhedral
as well. Since B is a nonempty bounded polyhedral set, from Theorem (ii)
we have B = Conv(Ext(B)). Recall from Fact [[1.6.38(iv) that there is a one-to-
one correspondence between extreme rays of M and extreme points of a base B
of M; specifically, the ray R(d) = {td : t > 0}, d € M \ {0}, is extreme if and
only if the point x; where the ray intersects B is an extreme point of B.

Consider an extreme direction d; then x4 is an extreme point of B. Applying
Theorem we deduce that among the constraints of the system f'z = 1,
ajx < 0,7 =1,...,m (these are the constraints specifying B), n constraints
with linearly independent vectors of coefficients are active at x4. Among these n
constraints, n — 1 constraints are of the form a/z < 0, and the corresponding
a; are linearly independent. Thus, at an extreme direction of M, n — 1 of the
constraints al z < 0 with linearly independent vectors of coefficients are active.
Vice versa, let a nonzero direction d € M be such that at least n — 1 constraints
from a2z < 0 are active and the set of vectors a; corresponding to these active
constraints has at least n — 1 linearly independent vectors, and let I be the set
of indices of these constraints. Note that at z; € B we have the constraints
fTz=1and a/ z =0, i € I active, and f is not a linear combination of a,, i € I,
since otherwise a/ x4 = 0, i € I, would imply that f"z, = 0, which is not the

case. As the vectors a;, ¢ € I, are linearly independent, and f is not their linear
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combination, the n vectors f and a;, ¢ € I, are linearly independent, and since
at x4 € B the constraints f'x =1, a2 <0, i € I are active, by Theorem
xq € Ext(B). This, in turn, implies that d is an extreme direction of M (Fact
11.6.38(iii). [ ]

Analogous to Corollary we have the following immediate corollary of
this theorem.

Corollary 11.7.9 Every nontrivial pointed polyhedral cone M has finitely
many extreme rays. Moreover, the sum of these extreme rays is the entire

M.

Proof. Let M be a nontrivial pointed polyhedral cone. As any polyhedral cone
is defined by finitely many linear inequalities, using the algebraic characterization
of the extreme directions given in Theorem we deduce that M has finitely
many extreme rays. The last claim of the corollary is justified by Theorem [IT.6.39]
i.e., Krein-Milman Theorem in conic form, as this theorem states that M has
extreme rays, and their conic hull is the entire M. |

7.3 Geometry of polyhedral sets

By definition, a polyhedral set M is the set of all solutions to a finite system of
nonstrict linear inequalities:

M:={zeR": Az <b}, (7.1)

where A € R™*™ and b € R™. This is an “outer” description of a polyhedral
set, that is, it explains what we should delete from R" to get M (cf: “to create
a sculpture, take a big stone and delete everything that is redundant”). We are
about to establish an important result on the equivalent “inner” representation
of a polyhedral set, that is, one explaining how to build the set starting with
simple “building blocks.”

Consider the following construction. Let us take two finite sets of vectors V'
(“vertices;” this set must be nonempty) and R (“rays;” this set can be empty)
and build the set

M(V,R) := Conv(V') + Cone(R)

_ . Ay 20, Vo eV, ZUEV)\U =1,
- {ZUGV)\U,U + ZTGRMTT ' Hor 2 O, Vr €ER ’

Thus, in the construction of M (V| R) we take all vectors which can be represented
as sums of convex combinations of the points from V' and conic combinations of
the points from R. The set M (V, R) clearly is convex as it is the arithmetic sum
of two convex sets Conv (V') and Cone(R) (recall our convention that Cone(2) =
{0}, see Fact . We are now ready to present the promised inner description
of a polyhedral set.
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Theorem I1.7.10 [Inner description of a polyhedral set] The sets of the
form M(V,R) , where V, R are finite set of vectors and V' # @, are exactly
the nonempty polyhedral sets: M (V, R) is polyhedral, and every nonempty
polyhedral set M is M(V, R) for properly chosen finite sets V' # & and R.
The sets of the type M ({0}, R) are exactly the polyhedral cones (sets given
by finitely many nonstrict homogeneous linear inequalities).

Remark I1.7.11 We will see in section [[.3.2] that the inner characterization of
the polyhedral sets given in Theorem can be made much more precise.
Suppose that we are given a nonempty polyhedral set M. Then, we can select an
inner characterization of it in the form of M = Conv (V') + Cone(R) with finite V'
and finite R, where the “conic” part Cone(R) (not the set R itself!) is uniquely
defined by M; in fact it will always hold that Cone(R) = Rec(M), i.e., R can
be taken as the set of generators of the recessive cone of M. (see comment to
Lemma — there are no comments to this lemma, and the lemma itself is
irrelevant here Moreover, if M does not contain lines, then V' can be chosen as
the set of all extreme points of M, and this choice is “minimal” — it always holds
that Ext(M) C V. &

We will prove Theorem in section [7.3.2] Before proceeding with its proof,
let us understand why this theorem is so important, i.e., why it is so nice to know
both inner and outer descriptions of a polyhedral set.

Consider the following natural questions:

A. Is it true that the inverse image of a polyhedral set M C R™ under an affine
mapping y — P(y) = Py +p: R™ — R", i.e., the set

PHM)={yeR": Py+pec M}

is polyhedral?

B. Is it true that the image of a polyhedral set M C R™ under an affine mapping
x—y=P(x)=Px+p:R" = R™ — the set

PM)={Px+p:xe M}

is polyhedral?

C. Is it true that the intersection of two polyhedral sets is again a polyhedral
set?
D. Is it true that the arithmetic sum of two polyhedral sets is again a polyhedral
set?

The answers to all these questions are positive; one way to see it is to use calculus
of polyhedral representations along with the fact that polyhedrally representable
sets are exactly the same as polyhedral sets (see chapter . Another very in-
structive way is to use the just outlined results on the structure of polyhedral
sets, which we will do now.
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It is very easy to answer affirmatively to A, starting from the original “outer”
definition of a polyhedral set: if M = {x : Az < b}, then, of course,

PHM) ={y: A(Py+p) <b} ={y: (AP)y < b— Ap}

and therefore P~1(M) is a polyhedral set.

An attempt to answer affirmatively to B via the same “outer” definition fails
— there is no easy way to convert the linear inequalities defining a polyhedral
set into those defining its image, and it is absolutely unclear why the image in
fact is given by finitely many linear inequalities. Note, however, that there is no
difficulty to answer affirmatively to B with the inner description of a nonempty
polyhedral set: if M = M(V, R), then, evidently,

P(M)=M(P(V),PR),

where PR := {Pr : r € R} is the image of R under the action of the homogeneous
part of P.

A positive answer to C becomes evident when we use the outer description of
a polyhedral set: taking the intersection of the solution sets to two systems of
finitely many nonstrict linear inequalities, we, of course, again get the solution
set to a system of this type — you simply should put together all inequalities from
both of the original systems.

On the other hand, it is very unclear how to give the affirmative answer to D
using the outer description of a polyhedral set — what happens to the inequalities
when we add the solution sets? In contrast with this, the inner description gives
the answer immediately:

M(V,R)+ M(V',R") = Conv(V) + Cone(R) + Conv (V") + Cone(R’)
= [Conv(V') + Conv(V")] 4+ [Cone(R) + Cone(R')]
= Conv(V + V') 4+ Cone(RU R')
=MV +V' RUR.
Note that in this computation we used two rules which should be justified:
Conv(V) 4+ Conv (V') = Conv(V + V') and Cone(R) 4+ Cone(R’) = Cone(RU R/).
The second is evident from the definition of the conic hull, and the first one
follows from a very simple reasoning. To see it, note that Conv(V') + Conv (V")

is a convex set which by its definition contains V 4+ V' and thus also contains
Conv(V + V’). The inverse inclusion is proved as follows: if

T = Zi)‘wi’ Yy = ZjA;‘/U-;

are convex combinations of points from V| respectively, V', then, as it can im-
mediately be seen (please check!),

and the right hand side expression is just a convex combination of points from
V+V.
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To conclude, it is extremely useful to keep in mind both descriptions of poly-
hedral sets — what is difficult to see with one of them, is absolutely clear with
another.

As a seemingly “more important” application of the developed theory, let us
look at Linear Programming.

7.3.1 Application: Descriptive theory of Linear Programming

A general linear program is the problem of minimizing a linear objective function
over a polyhedral set:

min{c'z: z € M}, where M :={z e R": Az <b}. (P)

Here, ¢ € R™ is the objective, A € R™*" is the constraint matrix, and b € R™
is the right hand side vector. Note that (P) is called a “Linear Programming
problem in the canonical form;” there are other equivalent forms of this problem
as well.

According to the Linear Programming terminology discussed in section [4.5.1]
(P) is called

e feasible, if it admits a feasible solution, i.e., the system Ax < b is feasible, and
infeasible otherwise;

e bounded, if its objective is below bounded on the feasible set (e.g., due to the
fact that the latter is empty), and unbounded otherwise;

e solvable, if it is feasible and the optimal solution exists, i.e., the objective
function attains its minimum on the feasible set.

Whenever (P) is feasible, the infimum of the values of the objective function at
feasible solutions is called the optimal value Opt(P) of (P). Opt(P) is finite when
the problem (P) is bounded from below and —oco when (P) is unbounded. In the
case of a minimization type problem, it is convenient to assign the optimal value
of 400 whenever the problem is infeasible.

Note that our terminology is aimed to deal with minimization problems; if the
problem is to maximize the objective, the terminology is updated in the natural
way: when defining bounded /unbounded programs, we should speak about above
boundedness rather than about the below boundedness of the objective on the
feasible set, etc. As a result, the optimal value of an LP problem

e in the case of a minimization problem is the infimum of the objective over the
feasible set, provided the latter is nonempty, and 400 when the problem is
infeasible;

e in the case of a maximization problem is the supremum of the objective over
the feasible set, provided the latter is nonempty, and —oo when the problem is
infeasible.

This terminology is consistent with the usual way of converting a minimization
problem into an equivalent maximization one by replacing the original objective ¢
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with —c: the properties of feasibility, boundedness, solvability remain unchanged,
and the optimal value in all cases changes its sign.

When talking about the possible outcomes of solving an LP problem, we talk
about three possibilities: (i) infeasible LP problem, (ii) unbounded and feasible
LP problem, and (iii) solvable LP problem. In particular, it seems that in the case
of “bounded and feasible” LP problem, we are jumping straight to the conclusion
that the corresponding optimization problem will be “solvable.” This, a bounded
LP program is always solvable, is indeed true, although it is absolutely unclear
in advance why (note that this statement absolutely does not hold for general
convex programming problems without further assumptions). We have already
established this fact, even twice — via Fourier-Motzkin elimination (section
and via the LP Duality Theorem, see Theorem . In fact yet another proof
of this fundamental fact of Linear Programming follows immediately from the
inner characterization of polyhedral sets as shown next.

Theorem 11.7.12 Suppose we are given a feasible minimization type LP
problem (P) via an inner representation of its feasible set M:

M = Conv(V') + Cone(R),

where V = {v; : ¢ =1,...,1} and R = {r; : j =1,...,J} are finite and
nonempty sets (cf. Theorem [[1.7.10). Then,

(i) (P) is solvable if and only if it is below bounded, which is the case if
and only if cTrj >0foralll <j<J.
In particular, the set C' of objectives ¢ for which (P) is below bounded is a
polyhedral cone.

(ii) When (P) is below bounded, its optimal value is equal to

— min el
Opt(P) = minc .

Thus, Opt(P) is a concave function of the objective vector ¢, and there is
an optimal solution which is the best, in terms of its objective value, among
the points in V. In addition, when the feasible set of (P) does not contain
lines and (P) is below bounded, there is at least one optimal solution of (P)
which is an extreme point of M.

Proof. (i): By Theorem [I1.7.10| we clearly have
Opt(P) = min, {c¢'v: v € Conv(V)} +inf, {c'r: r € Cone(R)} .

We see that Opt(P) is finite if and only if inf, {¢"r : r € Cone(R)} > —o0, and
the latter clearly is the case if and only if ¢'r > 0 for all » € R. Then, in
such a case inf, {¢"r: r € Cone(R)} = 0, and also min, {¢"v: v € Conv(V)} =
min, {¢'v:veV}.

(ii): The first claim in (ii) is an immediate byproduct of the proof of (i). The
second claim follows from the fact that when M does not contain lines, we can

take V = Ext(M), see Remark [[1.7.11 ]
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7.8.2 Proof of Theorem

In this section, we will prove Theorem [[[.7.10} To simplify our language let
us call VR-sets (“V” from “vertex” and “R” from “rays”) the sets of the form
M(V, R), and P-sets the nonempty polyhedral sets, i.e., defined by finitely many
linear non-strict inequalities. We should prove that every P-set is a VR-set, and
vice versa.

VR = P: This is immediate: a VR-set is nonempty and polyhedrally repre-
sentable (why?) and thus is a nonempty P-set by Theorem m

P = VR:

Let M # @ be a P-set, so that M is the set of all solutions to a feasible system
of linear inequalities:

M={xeR": Az <b}, (7.2)
where A € R™*"™,

We will first study the case of P-sets that do not contain lines, and then reduce
the general case to this one.

Theorem I1.7.13 [Structure of a polyhedral set with no lines] A nonempty
polyhedral set M = {x € R": Az < b} which does not contain lines admits
a VR-representation given by M = M(V, R) = Conv(V') 4+ Cone(R), where
V' is the set of extreme points of M and R = {0} if M is bounded and R is
the set of generators of extreme rays of Rec(M) if M is unbounded.

Proof. As M is a nonempty closed convex set that does not contain lines, by
Theorem [[L.6.11fi) we know Ext(M) # @, and by Theorem we have M =
Conv(Ext(M)) + Rec(M). Moreover, by Corollary we have Ext(M) is a
finite set.

If M is bounded, then Rec(M) = {0}, and thus the result follows. Suppose M
is unbounded. Then, Rec(M) is nontrivial. Also, Rec(M) is pointed as M does
not contain lines implies that Rec(M) does not contain lines either. Moreover,
from Fact we deduce that Rec(M) = {h € R" : Ah < 0} and thus is
a polyhedral cone. Then, by Corollary we have that Rec(M) has finitely
many extreme rays and Rec(M) is the sum of its extreme rays. |

Next, we study the case when M contains a line. We start with the following
observation.

Lemma I1.7.14 A nonempty polyhedral set M = {x € R" : Az < b}
contains lines if and only if KerA # {0}. Moreover, given a vector h # 0, the
set M contains a line with direction h (i.e., z + th € M for all x € M and
t € R) if and only if h € KerA. That is, the nonzero vectors from KerA are
exactly the directions of lines contained in M.

Proof. If h # 0 is the direction of a line in M, then A(x + th) < b for some
x € M and all t € R, which is possible if and only if Ah = 0. Vice versa, if h #£ 0
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is from the kernel of A, i.e., if Ah = 0, then the line z + R(h) with z € M is
clearly contained in M. |

Given a nonempty set M as in , define L := KerA, let L* be the orthogonal
complement to L, and let M’ be the intersection of M and L*:

M'::{:UGLL: Aargb}.

First, note that as M # @ we have M’ # & (since when passing from = € M
to the orthogonal projection 2’ of x onto L+, we shift z along KerL, whence
Az’ = Az and thus 2’ € M). Besides this, the set M’ clearly does not contain
lines. This is so because if h # 0 is the direction of a line satisfying = + th € M’
for all t € R and some x € M’, by definition of M’ we must have x +th € L* for
all t and thus h € L*. On the other hand, by Lemma we must also have
h € KerA = L. Then, h € L N L+ implies h = 0, which is a contradiction.

Now, note that M’ # & satisfies M = M’ + L. Indeed, M’ contains the or-
thogonal projections of all points from M onto L* (since to project a point onto
L+, you should move from this point along a certain line with a direction from
L, and all these movements, started in M, keep you in M by Lemma and
therefore M’ is nonempty, first, and is such that M’ + L O M, second. On the
other hand, M' C M and M + L = M (by Lemma, and so M'+ L C M.
Thus, M'+ L =M.

Finally, it is clear that M’ is a polyhedral set as the inclusion x € L can be
represented by dim(L) linear equations (i.e., by 2 dim(L) nonstrict linear inequal-
ities). To this end, all we need is a set of vectors &, ..., &qim(r) forming a basis in
L,and then L+ :={zx e R": {2 =0,Vi=1,...,dim(L)}.

Therefore, with these steps, given an arbitrary nonempty P-set M, we have
represented it as the sum of a P-set M’ which does not contain lines and a linear
subspace L. Then, as M’ does not contain lines, by Theorem we have
M'"= M(V’',R") where V' is the nonempty set of extreme points of M’ and R’ is
the set of generators of extreme rays of Rec(M’). Let us define R” to be the finite
set of generators for L, i.e., L = Cone(R") (one can take as R” the collection
composed of vectors from a basis of L and the negations of these vectors). Then,
we arrive at

M=M +1L

= [Conv(V") 4+ Cone(R')] + Cone(R")

= Conv(V') 4 [Cone(R’) + Cone(R")]

= Conv (V") 4+ Cone(R' U R")

— M(V',R'UR").
Thus, this proves that a P-set is indeed a VR-set, as desired. |

Finally, let us justify Remark Suppose we are given M = Conv (V) +

Cone(R) with finite sets V, R and V' # @. Justifying the first claim in this remark
states that Cone(R) = Rec(M), but this is readily given by Theorem [[T.6.21]ii).

The last claim of Remark states that when a nonempty P-set M does not
contain lines, in every representation M = M (V, R) with finite V' and R one has
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Ext(M) C V, and there is a representation with V' = Ext(M). The latter fact
is given by Theorem [[[.7.13] To justify the first fact, suppose z is an extreme
point of M. We will first show that € Conv(V'). Assume for contradiction that
x € M\ Conv(V). Then, from x € M = Conv(V) + Cone(R), we deduce that
x =2 +r with z € Conv(V) and 0 # r € Cone(R) (why r # 07). But, this would
imply z=xz—reMandz+r € M asxz € M, r € Cone(R) = Rec(M) and M
is convex. Thus, we arrive at z =7 € M with r # 0, contradicting the fact that
x € Ext(M). Therefore, x € Conv(V'), and hence x € V' by Fact

7.4 % Majorization

In this section we will introduce and study the Majorization Principle, which
describes the convex hull of permutations of a given vector.

For any x € R", we define X[z] to be the set of all convex combinations of n!
vectors obtained from x by permuting its coordinates. That is,

X|[z] := Conv ({Pz : P is an n X n permutation matrix})
={Dzx: Dell,},

where II,, is the set of all n x n doubly stochastic matrices. Here, the equality is
due to the Birkhoff-von Neumann Theorem. Note that X [x] is a permutationally
symmetric set, that is given any vector from the set the vector obtained by
permuting its entries is also in the set.

Theorem I1.7.15 [Majorization Principle] Given two vectors x,y € R™, we
have y € X|[z] if and only if y satisfies

si(y) <sj(z), j=1,...,n—1, (7.3)
i+ .y =21+ ...+, ’

where s;(y) is the sum of the j largest entries of the vector y.

Proof: To ease our notation, let us define the set

n o Siy) <sj(x), j=1,...,n—1
Y = R": J .
{yE SnW) =y + ... Fyp=x1+ ...+ 2, = 8,(x)

Then, we need to show that Y = X[z].
For any k, define Z;, to be the family of all k-element subsets of the index set
{1,2,...,n}, and so

sk(y) = max Z Yi. (7.4)

We first prove that Y O XJz|. Consider any y € X[z]. By the definition of
X|z], y can be represented as convex combination

y=>Y Ao,
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where the sum is taken over all permutations o of indices 1,2,...,n, and z7 is
obtained from x by permutation o of the entries, i.e.,

o

X = [1:0(1); . ;:co(n)].

Consequently, for every I € Z; we have

Zyl = Z Z ona(i) = Z >\0' Zxa(i) < Z AUSk(x) = Sk:(x)a

el i€l o o el el
where the inequality is due to ([7.4]). Maximizing both sides of this inequality over
I € 7, and invoking (7.4]) once again, we get sp(y) < sp(z) for all & < n. In
addition,

D=2 D Aoty = 2 Ao D oy = D Ao Y wi= )

=1 =1 o o =1 o =1 =1
that is, s,(y) = s,(x). Thus, y € Y, whence Y O X]|x].

We will now prove the difficult part of Majorization Principle which states that
Y C X[z]|. Consider any y € Y and let us prove that y € X[z]. By symmetry,
we may assume without loss of generality that the vectors x and y are ordered:
Ty > Ty > ... > xpand Yy > Yo > ... > y,. Assume for contradiction that
y ¢ X|[z]. Since X[z] clearly is a convex compact set and y ¢ X|x], there exists
a linear form c¢'z which strongly separates y and X|z], i.e.,

c'y > max c'z.
z€X[x]
As the set X [z] is permutationally symmetric and the vector y is ordered, without
loss of generality we can select the vector ¢ to be ordered as well. This is so

because when permuting the entries of ¢, we preserve ma[x] ¢' z, and arranging the
zeX[z

entries of ¢ in non-increasing order, we do not decrease c¢'y: assuming, say, that
1 < ¢y, swapping ¢; and ¢, we do not decrease ¢ y: [coyy + c1y2] — [c1y1 + coya] =
[ca — c1][yr — y2] > 0. Next, by Abel’s formula (discrete analogy of integration by
parts) we have

n n—1 i n
cly=> cyi=> (ci—ci1) Y Ui+ > Y
=1 i=1 j=1 j=1
n—1

= Z(Cl — ¢it1)8i(Y) + cnsn(y)

P
n—1 n

< Z(Cl — Ciy1)8i(x) + cpsp(z) = Zcz-:ni =c'x.
=1

=1
where the inequality follows from the “orderedness” of entries in ¢ and y € Y.
Thus, we conclude ¢'y < ¢z, which is the desired contradiction. |
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Exercises for Part 11

8.1 Separation

Exercise I1.1  Mark by ”Y” those of the below listed cases where the linear form f ' separates
the sets S and T*:

S={0}cR,T={0}CR, flz=z

S={0}CcR, T=[0,1]CR, flo=x

S={0}cR, T=[-1,1]CR, fla=x

S={zeR* 1 =a2s=a3}, T={x €R® 23> /22 + 23}, flo =21 — 22

S={zcR> zi=m=a3}, T={z €R®: 23 > \/2? + a2}, fla=x3—22 S ={z € R®:
—1<a <1}, T={zeR’:ai >4}, fla=m

e S={zcR*: 02 >af x>0, T={zcR?:22=0}, f o =—x

Exercise 11.2 Consider the set

x1+x2+ ...+ 22004 > 1
r1 + 222 + 323 ...+ 2004x2004 > 10
M={zecR¥M, 21+ 2220 + 3225 ... + 2004220004 > 102
@y 4 220025, 4 32002, 49002002, s 102002
Is it possible to separate this set from the set {x1 = z2 = ... = z2004 < 0}7 If yes, what could

be a separating plane?

Exercise 11.3 Can the sets S = {z € R?:2z; > 0,20 > 1/z1} and T = {z € R?:21 <0,22 >
—1/z1} be separated? Can they be strongly separated?

Exercise I11.4 [EdYs] Let M C R" be a nonempty closed convex set. The metric projection
Proj,;(z) of a point x € R™ onto M is the || - ||2-closest to x point of M, so that

Projy () € M & ||z — Projy, («)|3 = min [|z — yli3. (%)

1. Prove that for every € R"™ the minimum in the right hand side of (x) is achieved, and =4
is a minimizer if and only if

zy EM &Yy eM:[z—ay] [zr —y] > 0. (8.1)

Derive from the latter fact that the minimum in (%) is achieved at a unique point, the bottom
line being that Proj,,(-) is well defined.

2. Prove that when passing from a point z € R™ to its metric projection x4+ = Proj,,(x), the
distance to any point of M does not increase, specifically,

VyeM:|[zy — y”% <z - y”% - diSt2(x7M)>

. . 8.2
dist(z, M) == minwens || — ullz = | — 24 ||2. (8.2)

139
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3. Let x ¢ M, so that, denoting x4+ = Proj,,(z), the vector e = T is well defined. Prove

xac”

that the linear form e z strongly separates & and M, specifically,
VyeM:e'y<e'x— dist(x, M).

Note: The fact just outlined underlies an alternative proof of Separation Theorem, where
the first step is to prove that a point outside a nonempty closed convex set can be strongly
separated from the set. In our proof, the first step was similar, but with M restricted to be
polyhedral, rather than merely convex and closed.

4. Prove that the mapping x — Proj,,(z) : R® — M is contraction in || - ||2:

Vu,u' € R : || Proj,, (u) — Projy, (u')]l2 < |lu — /|2

5. Let M be the probabilistic simplex: M = {x € R" : x > 0,) . x; = 1}. Justify the following
recipe for computing Proj,,(x):

Let ¢(t) = > 0" [xs — t]+. where [s]; = max[s,0]. ¢ is piecewise linear, with breakpoints
Z1,T2,...,%Tn, continuous function of t € R. ¥(t) — 400 as ¢ — —oo, and ¥(¢t) — 0 as
t — 4o00. Consequently, there exists (and can be easily computed due to piecewise linearity
of 1) t € R such that > [z; — t]4+ = 1. The metric projection of « onto M is just the vector
x4 with coordinates [z; — t]+, 1 <i < n.
What is the metric projection of the point x = [1;2;2.5] onto the 3-dimensional probabilistic
simplex?
Exercise 11.5 [EAYs] [Follow-up to Exercise Let p(2) = 2™ 4+ pn_12"" " + ... 4+ p12 + po,
n > 1 be a polynomial of complex variable z. By the Fundamental Theorem of Algebra, p has
n roots Ai,...,A,. Treating complex numbers as 2D real vectors, prove that all roots of the
derivative p’(z) = nz""' 4+ (n — D)pn_12""2 + .. + p1 belong to the convex hull of A1, ..., .

Exercise 11.6 [TrYs] Derive the statement in Remark from the Separation Theorem.

8.2 Extreme points
Exercise I1.7 Find extreme points of the following sets:

. X={zcR®: 21 +a2<l,z0+a3 < 1,23+ <1}
2. X={zeR" 'z +a2<Lmotas <L,z +aa <1,zg+a1 <1}

Exercise 11.8 [EdYs] Let M C R"™ be a nonempty closed convex set not containing lines,
and f'z be a linear function of € R™ achieving its maximum over X. Prove that among
maximizers of this function on M there are extreme points of M.

Exercise 1.9 [Follow-up to Exercise Let A, B be subsets of R". Mark by T those of the
below claims which always (i.e., for every data satisfying premise of the claim) are true:

1. If Conv(A) = Conv(B) , then A =B

2. If Conv(A) = Conv(B) is nonempty and A, B, Conv(A) are closed, then AN B # @.
3. If Conv(A) = Conv(B) is nonempty and bounded, AN B # .

4. If Conv(A) = Conv(B) is nonempty, closed and bounded, then AN B # .

Exercise I1.10 As is immediately seen, the only extreme point of the nonnegative orthant
R} = Ry x Ry x ... x Ry is the origin, that is, the vector from {0} x {0} x ... x {0}; as
we know, the extreme points of n-dimensional unit box {z € R" : 0 < z; < 1,i < n} =
[0,1] x [0,1] X ... x [0, 1] are zero/one vectors, that is, vectors from {0,1} x {0,1} x ... x {0,1}.
Prove the following generalization of these observations:

Let X; C R",1 < i < K, be closed convex sets. The set of extreme points of the direct product
X = X1 X ...x Xk of these sets is the direct product of the sets of extreme points of Xj.
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Exercise II.11 [EdYs] Looking at the sets of extreme points of closed convex sets like the unit
Euclidean ball, a polytope, the paraboloid {[z;t] : t > z "z}, etc., we see that these sets are
closed. Do you think this always is the case? Is it true that the set Ext(M) of extreme points of
a closed convex set M always is closed 7

Exercise I1.12 [TrYs] Derive representation (*) in Exercise from Example|lI.7.1}in section
LT

Exercise I1.13 [EdYs] By Birkhoff Theorem, the extreme points of the polytope II,, = {[z;;] €
R™™ 1 w45 > 0,370,255 = 1Vj, 37 x5 = 1Vi} are exactly the Boolean (i.e., with entries 0 and 1)
matrices from this set. Prove that the same holds true for the “polytope of sub-doubly stochastic”
matrices m,n = {[zi;] € R™*" 124 > 0,37,255 < 1Vj, 35 245 < 1Vi}.

Exercise 11.14 [EdYs] [Follow-up to Exercise [[I.13] Let m,n be two positive integers with
m < n, and Xmn be the set of m x n matrices [z;;] with Y. |z;;] < 1 for all j < n and
> |zij| < 1 for all i < m. Describe the set Ext(Xm,n). To get an educated guess, look at the

. 1 0 o0 0 0 0 05 —05 0
matrices [ 0 0 -1 } [ 5 b -1 ], [ —os 05 0 ] from Xa 3.

Exercise 11.15 [EdYs] [follow-up to Exercise [[I.13] Let « be an n X n entrywise nonnegative
matrix with all row and all column sums < 1. Is it true that for some doubly stochastic matrix
T, the matrix T — x is entrywise nonnegative?

Exercise 11.16 [EdYs] [Assignment problem] Consider the problem as follows:

There are n jobs and n workers. When worker j is assigned with job i, we get profit c;;. We want
to assign every worker with a job in such a way that every worker is assigned with exactly one
job and every job is assigned to exactly one worker. Under this restriction, we want to maximize
the total profit.

1. Pose the Assignment problem as a Boolean (i.e., with the decision variables restricted to be
zeros and ones) Linear Programming problem.

2. Think how to solve the problem from item 1 via plain Linear Programming

3. [computational study] Consider the special case of Assignment problem where all profits c;;
are zeros or ones; you can interpret ¢;; = 1/0 as the fact that worker j knows/does not
know how to execute job j. In this situation Assignment problem requires from us to find an
assignment which maximizes the total number of executed jobs. Assume now that the matrix
C = [ci;] is generated at random, with entries taking, independently of each other, value 1
with probability € € (0, 1) and value 0 with probability 1—e. For n € {4, 8,16, 32,64, 128,256}
and € € {1/2,1/4,1/8,1/16}, run 100 simulations per pair n, € to find the empirical mean of
the ratio ”number of executed jobs in optimal assignment” /n and look at the results.

Exercise I1.17[TrYs] Let v = (v1,...,vk) with positive integer v;, and let S¥ = S¥1 x...xS"%
be the space of block-diagonal, with K diagonal blocks of sizes v; X v;, ¢ < K, symmetric
matrices, let S be the cone composed of positive semidefinite matrices from S, and let E be
an m-dimensional affine plane in S” which intersects S . The intersection X = ENSY is a
closed nonempty convex set not containing lines and thus possessing extreme points. Let W be
such a point, W% be the diagonal blocks of W, and r; be the ranks of v; X v; matrices W,
Prove that

k
Zri(n +1) < Zw(w +1)—2m.
i=1 i=1

What happens in the diagonal case vy = ... =vg =17

Exercise I1.18 [EAYs] Let M be a closed convex set in R™ and Z be a point of M.

1. Prove that if there exists a linear form a ' such that Z is the unique maximizer of the form
on M, then Z is an extreme point of M.
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2. Is the inverse of 1) true, i.e., is it true that every extreme point Z of M is the unique
maximizer, over x € M, of a properly selected linear form?

Exercise I1.19 Identify and justify the correct claims in the following list:

1. Let X C R" be a nonempty closed convex set, P be an m X n matrix and Y = PX := { Pz :
z € X} CR". Then

e For every z € Ext(X), Pz € Ext(Y)
e Every extreme point of Y is Pz for some z € Ext(X)
e When X does not contain lines, then every extreme point of Y is Px for some z € Ext(X)

2. Let X,Y be nonempty closed convex sets in R", and let Z = X + Y. Then

o If w € Ext(Z), then w = x + y for some = € Ext(X) and y € Ext(Y).

o If z € Ext(X), y € Ext(Y), then x + y € Ext(Z).
Exercise 11.20 [EdYs] [faces of polyhedral set] Let X = {x € R" : a/ z < b;,i < m} be a
nonempty polyhedral set and f Tz be a linear form of & € R™ which is bounded above on X:

Opt(f) =sup f z < 00
zeX

Prove that
1. Opt(f) is achieved — the set Argmax f' 'z :={z € X : f' = = Opt(f)} is nonempty.
zeX
2. The set Argmax f 'z is as follows: there exists an index set I C {1,2,...,m}, perhaps empty,
reX
such that

ArgmaxfTﬂc =Xr:={z: a:m < b; Vi, a;-rx =bViel}
zeX

3. Vice versa, if I C {1,...,m} is such that the set X; = {z : a] © < b;Vi,a] x = b;Vi € I} is
nonempty, then X7 = X, := Argmax_ . x f T for properly selected f.
Note: Nonempty sets of the form X7, I C {1,...,m}, are called faces of the polyhedral set
X. This definition is not geometric — according to it, whether a given set Y is or is not a
face in X, may depend not on X per se, but on its representation as the solution set of a
finite system of linear inequalities. Facts 2—3, taken together, state that in fact being a face

of a polyhedral set is a geometric property — faces are exactly the sets Argmax f 'z of all
zeX
maximizers of linear forms bounded from above on X.

4. Extreme points of a face of X are extreme points of X.

5. Extreme points of X, if any, are exactly the faces of X which are singletons.
Note: As a corollary of 1—3, 5, we see that extreme points of polyhedral set X are exactly
the maximizers of those linear forms which achieve their maximum on X at a unique point.

Exercise 11.21 [EdYs] [Follow-up to Exercise [I1.20]

1. Let X C Y be nonempty closed convex sets in R". Is it true that Ext(Y) N X C Ext(X) ?

2. Let X be a nonempty closed convex set contained in the polyhedral set - {z : Az < bi
Assuming that the set X = XN{z : Az = b} is nonempty, is it true that Ext(X) = Ext(X)NX
?

3. By the result of Exercise [[1.13] the extreme points of the polytope Il » = {[z;;] € R™*" :
xijy > 0,3 x5 < 1Yy, Z]-.’L‘ij < 1Vi} are exactly the Boolean matrices from this polytope.

Now let ﬁm,n be the part of II,, , cut off Il,, », by imposing on prescribed row and column
sums of m X n matrix = € Il,, , the requirement to be equal to 1, rather than to be < 1.
Assuming ﬁm,n nonempty, prove that the extreme points of this polytope are exactly the
Boolean matrices contained in it.

Exercise [1.22 Let X C R™ be a nonempty polyhedral set, z — Px +p: R"” — R"™ be an
affine mapping, and Y be the image of X under this mapping. Mark by T the statements in the
below list which are always (i.e., for all X, P,p compatible with the above assumptions) true:
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Y is a nonempty polyhedral set.

If X does not contain lines, so is Y.

If X does contain lines, so is Y.

If v is an extreme point of X, then Pv + p is an extreme point of Y.

If z is an extreme point of Y, then z = Pv + p for certain extreme point z of X.

If z is an extreme point of Y and X does not contain lines, then z = Pv + p for certain
extreme point z of X.

AR

Exercise 11.23 [TrYs] Find extreme points of the following closed convex sets:

1. Theset S, ={X eS": -1, X <I[,}

2. Theset S ={X€S":0=<X =<1I,}

3. The set Dy, ={X € 8" : I, = X = 0, Tr(X) = k}, where k is a positive integer < n.
4. The set M,, = {X € R"*" : || X]l2,2 < 1} (]| - ||2,2 is the spectral norm)

Exercise I1.24 [TrYs] Prove the following fact (which can be considered as a matrix extension
of Birkhoff Theorem):

For positive integers d,n, let Il be the set of all n x n block matrices with d X d symmetric
blocks X* satisfying

X720, Tr(XY)=1Vi,» Tr(X")=1Vj.
7 7

The extreme points of Il , are exactly the block matrices [Xij]i,jgl as follows: for certain n xn
permutation matrix P and unit vectors e;; € R, one has

W P el
X" = Pjjeije;; Vi, j.

Exercise I1.25 [TrYs] Let k,n be positive integers with k& < n, and let sx()\) for A € R"™ be
the sum of k largest entries in A. From the description of the extreme points of the polytope

X={xeR":0<x <1,i<n,y .,z <k}, see Example [I1.7.2]in section [7.1.1} it follows
that when A € R, then

max Z Aixi = sk(N).
i=1

reX 4

Prove the following matrix analogy of this fact:

For k,n as above, let X = {(X1,...,X,): X; € ST 0= X; < 1I4,i<n, >0 Xi 2 klq}. Then
for A € RY one has

(X1, Xn) €X = Y NXi 2 si(M)a,

=1

with the concluding < being = for properly selected (X1,...,X,) € X.

8.3 Cones and extreme rays

Exercise 11.26 [TrYs] Let X be a nonempty closed and bounded set in R™. Which of the
following statements are true?

Conv(X) is closed convex set.

Cone(X) is a closed cone.

When X is convex, Cone(X) is closed cone.

When 0 € X, Cone(X) is a closed cone.

When 0 ¢ X and X is convex, Cone(X) is closed cone.
When X is polyhedral, Cone(X) is a closed cone.

S ot W
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Exercise 11.27 [EdYs] Let X C R™ be a nonempty polyhedral set given by polyhedral repre-
sentation:

X={x:3u:Ax+Bu<r}
and let K = Cone(X) be the conic hull of X.

1. Is it true that K is a closed cone?

2. Prove that K := cl K is a polyhedral cone and find polyhedral representation of K.

3. Assume that X is given by plain — no extra variables — polyhedral representation: X = {z :
Az < b}. Build plain polyhedral representation of K := cl Cone(X).

Exercise 11.28 As we know, the extreme directions of the nonnegative orthant R} = Ry x
R x... xRy are the vectors with single positive entry and remaining entries equal to 0. Prove
the following generalization of this observation:

Let X; C R™", 1 < i < K, be closed, nontrivial, and pointed cones. The extreme directions of
the direct product X = X X ...x Xk of these cones are the block-vectors d = [d1;. .. ;dk] with
d; € R™ of the following structure: all but one blocks in d are zero, and the only nonzero block
is an extreme direction of the corresponding factor Xj;.

Exercise 11.29 Describe all extreme rays of

1. positive semidefinite cone S}

2. Lorentz cone L™

3. the Lorentz cone L™, n > 2, is a special case of the following construction: given a norm || - ||
on R"! (n > 2), we associate with it the set

Kii = {[z1] e R" : ¢ > [|z[|},

which is a pointed nontrivial cone with a nonempty interior (why?); note that L™ = KT‘L'HZ'
Describe the extreme directions of K\TH'

8.4 Recessive cone

Exercise 11.30 [TrYs] Let M be a convex set, and let Z and h be such that Rz := {Z + th :
t>0} C M.

1. Is it always true that whenever x € M, the set Ry = {z + th,t > 0} is contained in M ?
2. Let h be a recessive direction of M = cl M, and let Z be a point from the relative interior of
M. Is it always true that the set Rz = {Z 4 th : t > 0} is contained in M ?

Exercise 11.31 [TrYs] Let M C R"™ be a cone, not necessary closed; recall that pointedness of
a cone M means that the only vector x such that x € M and —x € M is the zero vector. Which
of the following statements are always true:

1. M is pointed if and only if the only representation of 0 as the sum of k£ > 1 vectors z; € M
is the representation with x; =0, 7 < k.

2. M is pointed if and only if M does not contain straight lines (one-dimensional affine planes)
passing through the origin.

3. Assuming M closed, M is pointed if and only if M does not contain straight lines.

4. M is pointed cone if and only if the closure of M is so.

5. The closure of M is a pointed cone if and only if M does not contain straight lines.

Exercise 11.32 Literal interpretation of the words “polyhedral cone” is: a polyhedral set {z :
Az < b} which is a cone. An immediate example is the solution set {z : Az < 0} of homogeneous
system of linear inequalities. Prove that this example is generic: whenever a polyhedral set
K ={z: Az < b} is a cone, one has K = {z : Az < 0}.

Exercise 11.33 [EdYs] Prove the following modification of Proposition [[I.6.23
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() Let X ¢ RY be a nonempty closed convex set such that X C V + Rec(X) for some
bounded and closed set V, let z — A(z) = Az +b: RY — R™ be an affine mapping, and let
Y = A(X):={y:3z € X :y=A(zx)} be the image of X under this mapping. Let also

K={heR":3g € Rec(X): h = Ag}.

Then the recessive cone of the closure Y of Y is the closure K of K. In particular, when K is
closed (as definitely is the case when Rec(X) is polyhedral), it holds Rec(Y) = K.

Exercise 11.34 [EdYs] [follow-up to Exercise [I1.33]
1. Let K1 C R", K2 C R" be closed cones, and let K = K7 + Ko.

e Is it always true that K is a cone?

e [s it always true that K is closed?

e Let K5 be polyhedral. Is it always true that K is closed?

e Let both K; and K> be polyhedral. Is it always true that K is closed?

2. Let X;,i=1,...,1I, be closed convex sets in R"™ with nonempty intersection. Is it true that
NiRec(X;) = Rec(N; X;)?

3. Let X1, X2 be nonempty closed convex sets in R", let K1 = Rec(X1), K2 = Rec(X2),

X = Cl(Xl =+ Xz), K= Cl(Kl —+ Kz).

o Is it always true that K C ReC(X) ?

e Is is always true that K = Rec(X) ?

e Assume that X; C Vi + K; for properly selected closed and bounded set Vi, i = 1,2, Is it

true that K = Rec(X) 7

Exercise 11.35 [TrYs] Let f(z) = ' Cx —c¢' x4+ o be quadratic form with C' = 0. By Exercise
I.15] the set E = {z : f(xz) < 0} is convex (and of course closed). Assuming F # &, describe
Rec(E).

8.5 Around majorization

Exercise 11.36 [EAYs] Let z € R™, let X[z] be the convex hull of all permutations of x, and
let X [z] be the set of all vectors ' dominated by a vector form X |[z]:

X[zl ={y:3z € X[z] : y < z}.

1) Prove that X [z] is a closed convex set.

2) Prove the following characterization of X [z]: X4 [z] is exactly the set of solutions of the
system of inequalities s;(y) < s;(z), 7 = 1,...,m, in variables y, where, as always s;(z) is the
sum of the j largest entries in vector z.

8.6 Around polars

Exercise 11.37  Justify the last three claims in Example
Exercise 11.38 [EdYs] [more on polars]

1. Recall that for U C R", Vol(U) stands for the ratio of the n-dimensional volume of U and
the volume of the n-dimensional unit Euclidean ball. Check that for a centered at the origin
ellipsoid E = {z : 27 Cz < 1} (C > 0) we have Vol(E)Vol(Polar (E)) = 1.

2. Let C = 0 and let ellipsoid E = {x : (z — ¢)"C(x — ¢) < 1} contain the origin. Compute
Polar (E).

3. Let Xi, k < K, be closed convex sets in R" containing the origin. Prove that

Polar (Conv(Ui X)) Nk Polar (Xx) (a)
Polar (NxXi) = clConv(UiPolar (X)) (b)
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Exercise 11.39 [EdYs] Let X C R" be a cone given by polyhedral representation
X={zeR":3Ju:Az+ Bu<r}

Is the dual to X cone X, polyhedral? If yes, build a polyhedral representation of X..
Exercise 11.40 [EdYs]
1. Let X C R" be a nonempty polyhedral set given by polyhedral representation

X={zeR":3u: Az + Bu<r}

Is the polar Polar (X) of X polyhedral? If yes, point out a polyhedral representation of
Polar (X). For non-polyhedral extension, see Exercise
2. Compute the polars of
1. probabilistic simplex A ={z € R" : 2 >0, . z; = 1}
2. convex hull of nonempty finite set of points ai,...,an from R"
3. the set {x € R" : 2 < b}
Solution: Polar ({z: z < b}) ={y:y>0,y"b < 1}

8.7 Miscellaneous exercises

Exercise 11.41 [TrYs] Let X = {z € R" : Az < b} be a nonempty polyhedral set.

1. Prove that X is bounded if and only if every one of the vectors +e;, (e;, 1 < i < n, are the
basic orths) can be represented as conic combination of columns of A .
2. Certify the statements:

e The polyhedral set X = {x € R®: 2 > [1/3;1/3;1/3], ZZ 1zi < 1} is bounded.
e The polyhedral set X = {z € R® 1z > 1/3,22 > 1/3,5.°_,x; < 1} is unbounded.

Exercise I1.42 Prove the easy part of Theorem|[[1.7.7] specifically, that every n xn permutation
matrix is an extreme point of the polytope II,, of n x n doubly stochastic matrices.

Exercise 11.43 [EdYs] [robust LP] Consider an uncertain Linear Programming problem — a
family
N N

{mrénr%{c z:[A+ ZyleuAy]:r <b+ Zy:1c"5"} :C € Z} (8.3)
of LP instances of common sizes (n variables, m constraints). The associated story is as follows:
we want to solve an LP program with the data not known exactly when the problem is being
solved; what we know at this time, is that the “true problem” belongs to the parametric family
given, according to , by the “nominal data” ¢, A, b, the “basic perturbations A,,d,” and the
perturbation set Z through which run the data perturbations ( specifying particular instances
in the family. In this situation (quite typical for real life applications of LP, where partial data
uncertainty is the rule rather than the exception), one way to “immunize” decisions against
data uncertainty is to look for robust solutions — those remaining feasible for all perturbations
of the data from the perturbation set — by solving the Robust Counterpart (RC) of our uncertain
problem — the optimization problem

mln{c z [A+Z :c<b+Z b vgez)} (RC)

(RC) is not an LP program — it has finitely many decision variables and infinite (when Z is
”massive”) system of linear constraints on these variables. Optimization problems of this type
are called semi-infinite and are, in general, difficult to solve. However, the RC of an uncertain
LP is easy, provided that Z is a “computation-friendly” set, for example, nonempty set given
by polyhedral representation:

Z={¢:Fu:P(+Qu<r} (8.4)
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Now goes the exercise per se:
Use LP duality to reformulate (RC), (8.4) as an explicit LP program.

Exercise 11.44 [TrYs] Consider scalar linear constraint
a'z<b (1)
with uncertain data a € R™ (b is certain) varying in the set

U={a:|ai—all/6; <11<i<n Y Jas —ail/6i < k} (2)
where a; are given “nominal data,” d; > 0 are given quantities, and k < n is an integer (in
literature, this is called “budgeted uncertainty”). Rewrite the Robust Counterpart

a'z<bVaecl (RC)

in a tractable LO form (that is, write down an explicit system (S) of linear inequalities in vari-
ables z and additional variables such that z satisfies (RC) if and only if = can be extended to a
feasible solution of (.5)).

Exercise 11.45 [TrYs] [computational study, follow-up to Exercise

Preliminaries. Consider oscillator transmitting harmonic wave with unit wavelength and placed
at some point P in 3D. Physics says that the electric field generated by the oscillator, when
measured at a remote point A, is

ea(t) ~r ' acos (wt — 277 + 6 + 2md cos(¢) + wt) (%)

E4(t)
where

e { is time, w is the frequency,

e r is the distance from A to the origin O, d is the distance from P to the origin, ¢ € [0, 7] is
the angle between the directions O? and OA,

e « and 0 are responsible for how the oscillator is actuated.

The difference between the left and the right hand sides in (x) is of order of =2 and in all our
subsequent considerations can be completely ignored.

Tt is convenient to assemble o and 6 into the actuation weight — the complex number w = ae’
(2 is the imaginary unit); with this convention, we have

0

EA(t) =R [pr(qﬁ)elwt_QﬁT} 7 DP(¢) — e27rzdcos(¢).

where R[] stands for the real part of a complex number. The complex-valued function Dp(¢) :
[0,7] — C, called the diagram of the oscillator, is responsible for the directional density of
the energy emitted by the oscillator: when evaluated at certain 3D direction €, this density
is proportional to |D,(¢)|?, where ¢ is the angle between the direction & and the direction
OP. Physics says that when our transmitting antenna is composed of K harmonic oscillators
located at points Py, ..., Pk and actuated with weights w1, ..., wk, the directional density of the
energy transmitted by the resulting antenna array, as evaluated at a direction €, is proportional
to | ", wkDi(ék (€))%, where ¢y (€) is the angle between the directions € and OP.

Consider the design problem as follows. We are given linear array of K oscillators placed
at the points P, = (k — 1)de, k < K, where e is the first basic orth (that is, the unit vector
“looking” along the positive direction of the z-axis), and § > 0 is a given distance between
consecutive oscillators. Our goal is to specify actuation weights wy, k < K, in order to send as
much of total energy as possible along the directions which make at most a given angle v with
e. To this end, we intend to act as follows:
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We want to select actuation weights wi, k < K, in such a way that the magnitude |D"(¢)| of
the complex-valued function

K
Dw(¢) _ Zwke%m(kfl)écoswﬁ))

k=1
of m € [0, 7] is “concentrated” on the segment 0 < ¢ < . Let us normalize the weights by the
requirement
D¥(0)=1
and minimize under this restriction the “sidelobe level”

max |D"(¢)|

y<p<n
over w.
To get a computation-friendly version of this problem, we replace the full range [0, 7] of values
of ¢ with M-point equidistant grid
%3
M-1
thus converting our design problem into the optimization problem

K 2mi(k—1)6 cos(dyg)' < tv(e . ¢ > )
Opt =min<t: 2 p=1one - o=
p e { ZkK:1wk627m(k—l)6 -1

I'={¢e=

0<e<M—1},

7wk€C,k‘SK} (P)

which is a convex problem in 2k real variables — real and imaginary parts of w1, ..., wk.
Your tasks are as follows:

1. Process problem (P) numerically and find the optimal design w® = {w}, k < K} along with
the optimal value Opt”. Here and in what follows, recommended setup is

e number of oscillators K = 24, distance between consecutive oscillators § = 0.125
o v=m7/12
e cardinality M of the equidistant grid I' is 512

Draw the plot of the modulus of the resulting diagram

K
Dn((b) _ nge%rz(kfl)é cos(¢)
k=1

and compute the corresponding “energy concentration” C”, with concentration of a diagram
D(-) defined as

0= Lty sin(¢¢)|D(¢e)|*
S sin(¢e) | D(¢e) 2

— up to discretization of ¢, this is the ratio of the energy emitted in the “cone of interest”
(i.e., along the directions making angle at most -y with e) to the total emitted energy. Factors
sin(¢¢) reflect the fact that when computing the energy emitted in a spatial cone, we should
integrate | D(+)|? over the part of the unit sphere in 3D cut off the sphere by the cone.

2. Now note that “in reality” the optimal weights wy, & < K are used to actuate physical
devices and as such cannot be implemented with the same 16-digit accuracy with which they
are computed; they definitely will be subject to small implementation errors. We can model
these errors by assuming that the “real life” diagram is

K
D(¢) = Zwﬁ(l + pgk)e%l(kﬂ)acos(g;)
k=1
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where p > 0 is some (perhaps small) perturbation level and & € C are “primitive” per-
turbations responsible for the implementation errors and running through the unit disk
{¢€ : |¢] < 1}. It is not a great sin to assume that &, are independent across k random
variables uniformly distributed on the unit circumference in C. Now the diagram becomes
random and can violate the constraints of (P) , unless p = 0; in the latter case, the diagram
is the “nominal” one given by the optimal weights w”, so that it satisfies the constraints of
(P) with t set to Opt™.

Now, what happens when p > 07 In this case, the diagram D(-) and its deviation v from
the prescribed value 1 at the origin, its sidelobe level | = maxy.¢,>~ |D(¢¢)|, and energy
concentration become random. A crucial “real life” question is how large are “typical values”
of these quantities. To get impression of what happens, you are asked to carry out the
numerical experiment as follows:

e select perturbation level p € {10_[7 1<2<6}
e for selected p, simulate and plot 100 realizations of the modulus of the actual diagram,
and find empirical averages v of v, [ of [, and C of C.

3. Apply Robust Optimization methodology from Exercise to build “immunized against
implementation errors” solution to (P), compute these solutions for perturbation levels 107%,
1 < ¢ < 6, and subject the resulting designs to numerical study similar to the one outlined
in the previous item.
Note: (P) is not a Linear Programming program, so that you cannot formally apply the
results stated in Exercise[[T.43} what you can apply, is the Robust Optimization “philosophy.”
Exercise 11.46 [EdYs] Prove the statement “symmetric” the Dubovitski-Milutin Lemma:

The cone M, dual to the arithmetic sum of k (closed or not) cones M* C R", i < k, is the
intersection of the k cones M} dual to M".

Exercise I1.47[EdYs] Prove the following polyhedral version of the Dubovitski-Milutin Lemma:

Let MY, ..., Mk’ be polyhedral cones in R", and let M = N;M". The cone M., dual to M is the
sum of cones M7, i < k, dual to M?, so that a linear form e’ z is nonnegative on M if and only
it can be represented as the sum of linear forms e; « nonnegative on the respective cones M;.

Exercise 11.48 [EdYs] [