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Abstract

Participation (preparing offers) in auction and procurement games—e.g., bidding for spectrum rights or
for control of corporations—is very costly, which calls for analyzing participation (no less than how to
play the games) as part of equilibrium. The result is a model with bi-dimensional distribution of types (as
in [Jackson, M.O., 1999. Nonexistence of equilibria in auctions with both private and common values.
Mimeo. http://www.stanford.edu/~jacksonm/nonexist.pdf]) and endogenous distribution of participants.
Players with low production but high participation costs may decide not to participate, forcing the auction-
eer to pay higher-than-necessary prices. To mitigate this phenomenon, auctioneers may consider partially
reimbursing participants for the costs they incur in preparing offers. Restricting attention to symmetric
games, we prove that

• The game we consider has a unique symmetric equilibrium, with and without the reimbursement mech-
anism.

• Partially reimbursing bidders for the cost of preparing bids pays off for virtually all joint distributions
of types.

• A constant reimbursement rule, independent of participation cost, causes losses.
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1. Introduction

Participating in auctions and procurements is costly, often highly so. Bidding for contracts
to develop a new product, to build an opera house or airport, or to acquire an institution like a
bank is generally preceded by intensive—and expensive—preparations. Hence, the question of
whether to participate in these projects at all may be more crucial than the standard question
of how to bid, suggesting that such decisions should be modeled and be part of an equilibrium.
Since participation costs vary across players, as do production costs, the resulting game is one
with bi-dimensional types and endogenous distribution of participants.

There may be players with low production (marginal) costs who might make good offers, but
who choose not to participate because of high participation costs. This motivates the question
of whether such players might be attracted to participate by partially reimbursing them for the
participation costs they incur—and whether the benefits of attracting them to participate would
exceed this reimbursement cost.1 We address this question in the paper.

We are not the first to acknowledge that bidders may face participation costs. Samuelson
(1985), McAfee and McMillan (1987, 1988) and Harstad (1990) were among the first to do
so. Their work was augmented by Levin and Smith (1994), Menezes and Monteiro (2000), and
most recently Ye (2004), who considered participation decisions in an even more general setting.
Stegeman (1996) further augmented the type of problems considered by allowing asymmetric
bidders and by establishing a ’semirevelation’ principle for mechanisms with participation costs.
By allowing asymmetric equilibria and correlated valuations, Cremer et al. (2004) augmented
results obtained by McAfee and McMillan (1988) for the case where the auctioneer must expand
resources to inform players (sequentially) about the auction. Thus, the literature on participation
has addressed a host of interesting problems. However, each of these papers has assumed that
participation costs are the same across players. The core of our paper lies in the assumption,
which we believe more accurately reflects reality, that marginal as well as fixed costs vary across
players, resulting in a model with bi-dimensional types, and setting the stage for analyzing the
profitability of reimbursement policies.2

Restricting attention to symmetric games and assuming a quite general class of joint distribu-
tions of types, we prove that:

• The game considered, which includes a reimbursement mechanism, has a unique symmetric
equilibrium for virtually all joint distributions of types.

• Partially reimbursing participants creates a more competitive environment by attracting
players with low production costs who otherwise would not take part because of high par-
ticipation costs. At the same time, it deters players with high production costs and low
participation costs, who cannot compete successfully in this more competitive environment.
Consequently, the auctioneer receives better offers that compensate for the cost of reimburse-

1 McAfee and McMillan (1987) noted that the US Department of Defense had a dual sourcing policy, which involved
subsidizing an extra firm’s costs of investment specific to the production of a particular weapons system in order to
generate bidding competition against the incumbent producer. Also, it is common in many countries to partially reimburse
architectural and engineering firms that participate in procurements but do not win.

2 Since we prove that reimbursing participants independently of their participation costs causes losses, an efficient pol-
icy of reimbursement must depend on the costs incurred. Consequently, a reimbursement policy could not be considered
in the models mentioned above.
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ment. A numerical analysis of equilibrium with a simple reimbursement rule shows that the
reimbursement procedure may boost the auctioneer’s profits by as much as 10–14 percent.

• The auctioneer cannot gain by instituting a constant reimbursement rule (independent of
participation costs). Although such a rule creates a more competitive environment, reim-
bursement costs are higher than the gains from obtaining good offers.

In Section 2, we present a “Toy” model that mimics the structure and results derived from
the general model, but is easy to follow (because it assumes a simple joint distribution of types
and only two players). In Section 3 we present the general model. Formulation of the reimburse-
ment problem and an analysis of its effects can be found in Section 4. Proofs were relegated to
Appendix A.

2. The “Toy” model

A principal offers a contract for the delivery of a certain object that he values as 1. Producers
(players) are invited to submit bids for the contract, whereby the player who makes the lowest
offer below 1 is granted the contract and, for convenience, is required to pay the second highest
bid.3 Preparing an offer (bid) is costly, making participation in the auction a strategic variable.
Once a player has decided to participate, he incurs the participation cost K (the cost of, for
example, assembling and financing a team of experts to develop the new product). At the sec-
ond stage of the game, the winner must begin producing and so incurs the marginal production
cost C. Both C and K are privately observed, but we assume that after bids have been submitted,
participants may submit claims to be partially reimbursed for their participation costs—claims
that must be supported by appropriate documentation, making K verifiable by the auctioneer.
The pair (c, k) is a realization of a bi-dimensional random variable (C,K), where C and K are
typically dependent. We assume that there are only two players.

2.1. Joint distribution of types

Assume that the joint distribution of types (C,K) is

f (c, k) =
{

c is uniform in (0,1),and k = 0, with probability p,

c = 0,and k = k∗ = 1 − p/2 + �, with probability 1 − p
(1)

where p ∈ [0,1] and � > 0. Hence, a player may belong to one of two types: σu, with production
costs uniformly distributed on (0,1) and participation costs of 0, or σ0, with no production costs
and positive, constant participation cost. If both participants belong to σ0, the winner is chosen
randomly. To make our example less stylized and to avoid dealing with atoms, which leads to
the use of mixed strategy, we could allow production costs for types in σ0 to be distributed on a
smaller support, say [0, α < 1], but since such a change would not affect our conclusions, we let
simplicity have the upper hand. Note that the joint distribution is designed so that σu-type players
always participate, since they incur no participation costs. σ0-type players are all alike, have high
participation costs and no production costs; they do not participate unless reimbursed (above a
certain level); k∗ and p are set so as to assure this property. We consider a reimbursement rule

R(k) = r if k = k∗ and 0 otherwise. (2)

3 We show in Section 3 that Revenue Equivalence holds.
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2.2. Equilibrium

Theorem 2.1. In equilibrium, the reimbursement policy stipulated in (2) induces the following
participation strategies:

(i) if r � rmin ≡ �, only σu-type players participate.
(ii) if rmin � r � rmax ≡ 1 − p + �, σ0 -type players participate with probability θ = r−�

1−p
.

(iii) if rmax � r < k∗, both type players participate with probability 1.

The theorem illustrates how a higher reimbursement rate intensifies the participation of zero-
production-cost, σ0-type players.

Proof.4 (i) To prove that if r < rmin ≡ �, σ0-type players do not participate, we need show only
that the expected gain from bidding of σ0-type players who defect from the strategy of non-
participation does not cover participation costs. To this effect, note that the gain from bidding of
such a player is

(1 − p) · 1 + p · 1

2
= 1 − p · 1

2
. (3)

Thus, the expected gain of σ0-type players who deviate from the non-participation strategy is

E(π2) =
(

1 − p · 1

2

)
−

(
1 − p · 1

2
+ � − r

)
= r − � < 0.

(ii) It follows immediately that if rmin < r < rmax and σ0-type players do not participate, it
pays for a single σ0 player to deviate from the non-participation strategy. On the other hand, if all
σ0-type players participate, the gain from bidding does not cover participation costs. Therefore,
assume that σ0-type players resort to a mixed strategy θ. Then the expected gain from bidding of
a σ0-type player is

(1 − p)(1 − θ) + p

2
. (4)

This result is obtained as in (3), except that in this situation we must account for the fact that σ0-
type players participate with probability θ . Consequently, the expected gain from participation
is

E(π2) = (1 − p)(1 − θ) + p

2
− k∗ + r. (5)

Since in equilibrium E(π2) = 0, we obtain θ = r−�
1−p

, as claimed.

(iii) If rmax � r < k∗ and θ = 1, the expected gain from bidding of a σ0-type participant is p
2 ,

and the expected gain from participation is

E(π2) = −k∗ + r + p

2
> 0, (6)

since k∗ > r � rmax ≡ 1 − p + � and k∗ = 1 − p
2 + �. Note that if reimbursement is set so that

r < 1 − p + �, the strategy θ = 1 is not an equilibrium. �
We show below how the increased participation of σ0-type players forces σu-type players to

make better (lower) offers and, consequently, settle for lower gains from bidding, g(c).

4 A rigorous proof of the theorem establishing uniqueness can be found in Appendix A.2.
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• When r � rmin, σ0-type players do not participate, θ = 0, and the expected gain from partic-
ipation (of σu-type players ) is

g(θ=0)(c) = p

2
(1 − c)2 + (1 − p)(1 − c). (7)

• Higher reimbursement, rmax � r � rmin, attracts σ0-type players into participation and low-
ers the expected gain from bidding of σu-type players;

g(0<θ<1)(c) = p

2
(1 − c)2 + [

(1 − p)(1 − θ)
]
(1 − c) < g(θ=0)(c). (8)

• Finally, when r � rmax, σ0-type players fully participate (θ = 1), and g(c) stabilizes at its
lowest level

g(θ=1)(c) = p

2
(1 − c)2 < g(0<θ<1)(c). (9)

2.3. Net gains from competition

To prove that the reimbursement policy pays off, we must show that the lower offers received
by the principal more than offset the cost of reimbursement—that is, they boost the principal’s
expected profits. The latter is given by (1 · P d − J (r)), where P d stands for the probability that
the project is delivered (at least one player has chosen to participate), and J (r) is the total ex-
pected cost (payment to the winning bidder and reimbursement). We adhere to the convention
that players who decided not to participate, deliver the project and are paid 1. This convention as-
sures that when there are no participants the net gain of the auctioneer is 0, which conforms with
the model, and it allows us to replace the expression for the net expected gain, (1 · P d − J (r)),
by (1 − J (r)). Obviously, the probability of the event ’no participants’ is part of equilibrium and
J (r) is calculated by using the above-mentioned convention. Consequently, instead of maximiz-
ing net expected gain, (1 − J (r)), we can simply minimize expected cost, J (r).

We are now ready to prove that if k∗ < 1 and partial reimbursement is instituted, the auction-
eer’s total costs, J (r), decrease. To this end, we need show only that J ′(rmin) < 0, where J (r) is
composed of the expected reimbursement, R(r), plus the expected payment to the winner, W(r)

J (r) = R(r) + W(r). (10)

We begin with R(r), making a distinction between two events: only one, or both players must
be reimbursed. The first event happens with probability 2θ(1 − p)(1 − θ(1 − p)), and in this
case the auctioneer pays r . The second event takes place with probability (θ(1 − p))2, and the
auctioneer pays 2r . Thus,

R(r) = 2r
[(

θ(1 − p)
)2 + θ(1 − p)

(
1 − θ(1 − p)

)] = 2r(r − �). (11)

The derivation of the expected payment to the winner, W(r), is calculated as a conditional ex-
pectation in four events:

• At least one of the players does not participate, which happens with probability 1 − (p +
θ(1 − p))2; the payment to winner is 1.

• The other three events assume that both players participate, but a distinction must be made
between three situation:
– Both participants belong to σu, which happens with probability p2: the expected payment

to the winner is 2
3 , which is the expectation of the second-order statistic from a uniform

distribution on (0, 1). Hence, the expected payment to the winner is 2 · p2.
3
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– One player belongs to σu and the other to σ0. The probability of this event is 2pθ(1 − p),
and the expected payment to the winner (σ0-type) is 1

2 .
– Both players belong to σ0; the probability of both participating is (θ(1 − p))2), and the

payment to the winner is 0.

Combining all these, we obtain (remember that θ = r−�
1−p

)

W(r) = 2(k∗ − r) − (k∗ − r)2 − p2

12
. (12)

Using (10), (11) and (12) we obtain

J (r) = 2r(r − �) + 2(k∗ − r) − (k∗ − r)2 − p2

12
. (13)

Differentiating J (r) with respect to r we obtain

J ′(r) = 2(r − � − 1 + k∗) (14)

and since rmin = �, J ′(rmin) = 2(k∗ − 1). Thus, J ′(rmin) < 0 if and only if k∗ < 1, which proves
that

Theorem 2.2. If k∗ < 1, partial reimbursement pays off.

Solving the equilibrium for a numerical example shows that cost savings come close to 14
percent; see Gal et al. (2006). Moreover, it is shown that upon instituting the reimbursement
rule the expected payment to the winner decreases monotonically in θ; at θ = 1 it is reduced by
almost 35 percent.

3. Uniqueness (and existence) of equilibrium: the general case

We assume N , a fixed number, potential bidders (players) who privately observe their bi-
dimensional types defined by production cost, C, and the cost of preparing the bid, K (partici-
pation cost). Types are drawn independently from a probability distribution FC,K(c, k) defined
on Ω = {(c, k) | 0 � c � 1, k � 0}. We augment the “Toy” model by assuming any number
of players and a general, bi-dimensional, joint distribution of types. To make the presentation
more concise, we derive our results by assuming a given reimbursement rule, R(k); equilibrium
without reimbursement follows immediately by letting R(k) = 0.

Assumption 3.1. Given the reimbursement rule R(·), the participation cost function

ψ(k) ≡ k − R(k) (15)

is non-negative, strictly increasing and continuously differentiable on the non-negative ray.

Assumption 3.1 is innocuous; all it says is that the reimbursement rule is such that after being
reimbursed, a player with higher participation costs will incur higher costs. We believe that such
a property can be obtained endogenously in any reasonable setting.

Assumption 3.2. The distribution F(c, k) possesses continuously differentiable density p(c, k).
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Assumption 3.3.
∞∫

φ(0)

p(1, k)dk > 0,

where the φ function is defined in Eq. (16).

Assumption 3.3 stipulates that the set of players with the highest possible production cost is
not empty. To prove that partial reimbursement lowers the total expected cost, it is not necessary
to make this assumption, but doing so makes the proof easier.

A type (c, k) who decides to participate bears the participation cost ψ(k). A player participates
if participation costs do not exceed the (conjectured) expected profits from bidding, g(c). Of
course, once a decision about participation has been made, k is history and the expected gain
from bidding g(c) depends only on the endogenous marginal distribution of production cost C

of players who have decided to participate. Hence, a type (c, k) participates if and only if ψ(k) �
g(c), or

k � ψ−1(g(c)
) ≡ φ

(
g(c)

)
. (16)

An equilibrium consists of a pair of functions (P,g) where P is the endogenously determined
distribution of participating bidders’ production costs, when every bidder believes that his or
her expected payoff conditional on her participation is determined by the function g, and g

determines a participant’s expected payoff with the provision that (i) a participant’s production
cost is distributed according to P and (ii) the participant with the lowest production cost wins.
More precisely,

Definition 3.1. An equilibrium is a pair of functions (P,g) such that

P(x) = Prob(a participant’s production cost � x)

= Prob
{
(c, k) : (k − R(k)) � g(c); c � x

}
, (17)

where

g(c) = E

[ 1∫
c

(
1 − P(x)

)b−1 dx

]
(18)

and b is the endogenously determined random number of participants.

To obtain an explicit expression for the function g(·) we proceed as follows: As in the “Toy”
model we adhere to the convention that non-participants are considered as players with produc-
tion cost 1, who deliver the project and are paid 1. Of course, the probability of this event is
determined endogenously as part of equilibrium. This convention allows to replace (18) by

g(c) =
1∫

c

(
1 − P(x)

)N−1 dx (19)

and induces the one-dimensional random variable

Ĉ(R) =
{

1 with probability Q(R),

0 � c < 1 with density P(c,φ(g(c))) = ∫ φ(g(c)) dF(c, k)
(20)
0
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that governs bidding behavior, where

Q(R) =
1∫

0

∞∫
φ(g(c))

dF(c, k). (21)

The inner integral in (21) “collects” the densities of non-participating types given c, and then
the integration over all possible c values gives the desired probability mass of non-participants.
P(c,φ(g(c))) in (20) is the density of participants with participation cost 0 � k � φ(g(c)) that
have a positive probability of winning. Although the random variable Ĉ(R) depends on R, we
suppress, for convenience, the notation indicating the dependence. Whenever needed, this depen-
dence is accounted for. Finally, the following lemma gives the probability distribution function
of Ĉ.

Lemma 3.1. The one-dimensional marginal distribution function of production costs of partici-
pating types, Ĉ, evaluated at some point c < 1 is

c∫
0

P
(
t, φ

(
g(t)

))
dt. (22)

At c = 1 there is a probability mass of non-participants, Q(R), given by (21).

The distribution function given by the lemma, complicated as it is, stands for P(·) in the
definition of equilibrium. Note that the distribution stipulated in the lemma is one-dimensional;
hence, the complication is the price paid in order to avoid handling bi-dimensional distributions.
The probability mass Q(R) in our model plays a role similar to that of the probability mass at the
reserve price in standard auctions without participation costs. There is, however, one important
difference; in these auction models the probability mass at the reserve price is given exogenously,
and therefore the distribution function of participants follows immediately. In our model this
probability mass is determined endogenously by (21), where g(c) is part of equilibrium.

With one-dimensional types the expected profit from bidding of a type c under a distribution
function G

Ĉ
(·) with a support, say [0,1], is given by5

Π(c) =
1∫

c

(
1 − G

Ĉ
(t)

)N−1 dt. (23)

Using the distribution function defined in Lemma 3.1 we can use (23) to obtain an explicit, if
not simple, expression for the equilibrium function g(c). Hence, g(c) supports an equilibrium if
and only if it satisfies the integral equation

g(c) =
1∫

c

[
1 −

u∫
0

P
(
t, φ

(
g(t)

))
dt

]N−1

du, 0 � c � 1 (24)

5 The one-dimensional distribution derived in Lemma 3.1 is continuous and has no atoms except at the upper end of
the support. Since types are drawn independently, Revenue Equivalence holds. Note that the expected profit of a bidder
in our setting is a mirror image of the standard case since the winner is the bidder who submitted the lowest bid. Hence,
(23) replaces Π(c) = ∫ c

0 [G ˆ (t)]N−1 dt.

C
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where P in the integrand of the inner integral is the distribution function of Ĉ as defined in (20).

Theorem 3.1. Under Assumptions 3.1–3.3, Eq. (24) has a unique smooth solution which is the
unique solution of the mixed boundary problem

g′′(c) = (N − 1)
[−g′(c)

](N−2)/(N−1)
P

(
c,φ

(
g(c)

))
,

g(1) = 0,

g′(0) = −1. (25)

To prove the theorem it is sufficient to prove (i) and (ii) stated below.
(i) If the integral equation stated in (24) has a continuous and nonnegative solution on [0,1],

then it is twice continuously differentiable and its derivative is negative on the segment. More-
over, the solution solves the boundary problem stated in (25).

(ii) The boundary problem stated in (25) has exactly one continuous and nonnegative solution
on [0,1], and this solution satisfies (24). The formal, technical, proof can be found in Appen-
dix A.1. Here are a few non-technical hints: The proof of (i) is immediate. The proof of (ii),
which gives uniqueness, poses a difficulty since the standard existence and uniqueness theorems
in ordinary differential equations identify the first equation in (25) as the Cauchy problem, which
can be solved. This, however, does not include the two mixed boundary conditions. To account
for these, we show that there exist uniquely defined initial conditions for g(0) that enforce the re-
quired boundary conditions for g(1) stipulated in (25), so that the existence and uniqueness of a
solution to (25) follows from the standard existence and uniqueness results for the Cauchy prob-
lem. This is a non-trivial mathematical procedure that requires careful treatment, which is one
reason for the complexity of the problem and the proof. Lizzeri and Persico (2000) used a similar
method in their analysis of equilibria in a large class of asymmetric auctions with interdependent
values.

Theorem 3.1 assures that, with and without reimbursement, in equilibrium, there exists a
unique expected-gain-from-bidding function, g(·), and a unique participation function, φ(g(c));
of course, if no reimbursement is applied, g(·) is also the participation function. Namely, a player
of type (c, k) participates iff k � g(c). Consequently, we have a unique one-dimensional distri-
bution function of participants, defined in Lemma 3.1. Since the proof of (ii) in Theorem 3.1
is by construction, it opens the door to the construction of an algorithm that solves the integral
equation in (24), allowing us to obtain the expected-gain-from-bidding function, g(·), in explicit
form, and to perform numerical analyses documented in Gal et al. (2006).

As an illustration, we solve a case where there is no reimbursement, R(k) ≡ 0, the joint distri-
bution of types is uniform in the unit square {0 � c, k � 1}, and the number of players—potential
bidders—is N = 8. In this case, g(c) is the expected gain from bidding and the participation
function; see Fig. 1.

We measure c on the horizontal axis and k on the vertical. Hence, the participating types are
below the g(c) function. To obtain graphically the density of the marginal distribution of Ĉ for
participating types at some c, we need to collect the densities of FC,K(c, k) along the vertical
distance from the horizontal axis to the curve g(c) in the graph. This is done in Eq. (20). Not
surprisingly, the density of participants decreases with c.
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Fig. 1. The g(c) function.

4. Reimbursement and gains

Having established the uniqueness and existence of equilibrium with and without reimburse-
ment, we prove that partially reimbursing participants for their participation costs raises the
auctioneer’s expected profit under all joint distributions of types.

Assume the following reimbursement rule:

Rε(k) = r
[
k − k∗(ε)

]
+, k∗(ε) = g0(0) − ε, (26)

where [a]+ = max[a,0] and g0(0) is the equilibrium expected profit from bidding under no
reimbursement, evaluated at c = 0.6

6 Note that φ induced by (26) does not satisfy exactly Assumption 3.1 since under (26) φ is nonnegative and Lipschitz
continuous, but not continuously differentiable. This, however, can be ignored since Rε(·) given by (26) can be approxi-
mated uniformly by a smooth function with the derivative varying in [0, r], and it can be easily shown that the arguments
to follow work for a good enough approximation of this type.
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Theorem 4.1. Assume that F satisfies Assumptions 3.1–3.3 and has a positive density at
(0, g0(0)). Then for every fixed r , 0 < r < 1, the reimbursement rule stated in (26) strictly raises
the auctioneer’s expected profits, provided that ε > 0 is small enough.

The essence of the (quite technical) proof of the theorem (presented in Appendix A.4) is that
for small ε, reimbursement to the participants is of the order of ε3, while the savings arising
from the reduced payment to the winning bidder are of the order of ε2. As they stand, these
arguments are quite intuitive, and seem necessary, even a-priori, if reimbursement is going to
pay off. However, given our complicated setting a rigorous proof of these naive statements turns
out to be quite complex, since several technical points require delicate mathematical treatment.

The expected costs of the auctioneer is composed of (i) the expected reimbursement

R̄ = N ·
1∫

0

φ(g(c))∫
0

R(k)dF(c, k), (27)

and (ii) the expected payment to the winning bidder, which is the second order statistic (in an
ascending order) of N i.i.d. random variables distributed as in Lemma 3.1; we denote it by W.

In Appendix A.3 we prove that it is given by

W = Ng(0) − (N − 1)

1∫
0

[−g′(c)
]N/(N−1) dc (28)

where g′(c) is the derivative of g(·) (see Eq. (A.1) in Appendix A.1). Combining (27) and (28),
we obtain the total expected cost

J [R] = N

1∫
0

φ(g(c))∫
0

R(k) · dF(c, k) + Ng(0) − (N − 1)

1∫
0

[−g′(c)
]N/(N−1) dc. (29)

To help impart an intuitive understanding of the interactions set in motion by reimbursement
and to reinforce and augment the results obtained in the “Toy” model, we solve a more general
numerical example and present it graphically; see Fig. 2. To begin, we choose a joint uniform
distribution in the unit square {0 � c, k � 1} and N = 8. Applying the algorithm derived in the
proof of (ii) of Theorem 3.1, we calculate the equilibrium expected profit function when there
is no reimbursement, g0(c), by solving the integral equation in (24) for R(k) ≡ 0. The curve is
denoted by (a) in Fig. 2 (in all figures we measure c on the horizontal axis and k on the vertical).
Hence, the participating types are below the curve.

The reimbursement rule is

R(k) = r · [k − 0.220]+, r = 0.5; (30)

here and below a+ = max[a,0]. Under (30), types with k > 0.220 are eligible and are reimbursed
by r = 0.5 times the excess of their participation cost above 0.220; see the horizontal solid line in
Fig. 2. Applying this reimbursement rule, we solve again the integral equation (24) for g(c). This
gives us the participation function φ(gr(c)) (see (16)), where gr(c) is the equilibrium expected
profit from bidding after the institution of reimbursement; the two functions are denoted in Fig. 2
as ‘c’ for φ and ‘b’ for gr(c). Note that φ(gr(c)) and gr(c) coincide when k � 0.220, since types
with k � 0.220 are not eligible for reimbursement.
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Fig. 2. Equilibria with and without reimbursement under a uniform distribution, a: g0(c), no reimbursement; b: gr (c),
with reimbursement; c: φ(gr (c)), with reimbursement. The horizontal line is the lower boundary of the domain where
the types are reimbursed for participation.

The (almost) triangular area between ‘a’ and ‘c’ to the left of the crossing represents types that
are attracted to participate by the promise of reimbursement. The (almost) triangular area to the
right of the crossing point represents types that would participate if there were no reimbursement,
but do not participate under the reimbursement policy. Since reimbursement attracts into partic-
ipation types with low production costs, the more competitive environment lowers the expected
gains from bidding, which is why gr is below g0. Consequently, players with high production
costs drop out and are replaced by participants with low production costs.

The reader can see now that by applying a more general joint distribution than we did in the
“Toy” model, we can arrive at a deeper insight. For example, in the “Toy” model the entrance
of the low-cost σ0-type players forced the high-cost incumbents, σu-type, to make better offers,
but since their participation costs were 0, they kept participating. Under the more general joint
distribution, some incumbents make better offers under the reimbursement policy (as reflected by
lower gains from bidding, curve ‘b’ in comparison with curve ‘a’ in Fig. 2), but, as noted above,
some players with high production cost drop out.
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Since verifying K may be difficult in some cases, it is interesting to investigate how much sav-
ings can be obtained if we apply a constant reimbursement rule. The following theorem provides
an answer.

Theorem 4.2. For any number N � 2 of players and any distribution F satisfying Assump-
tions 3.1 and 3.2, a constant reimbursement rule R(k) ≡ r induces an expected cost function,
J (r), that is non-decreasing in r � 0.

The proof was relegated to Appendix A.5. This result is somewhat surprising, since it would
seem possible to construct a joint distribution under which at least small cost savings could be
obtained. In particular, consider the toy model. There are players who always participate since
they bear no participation costs, but their production costs are high and therefore they make high
(bad) offers; the proportion of these players is p. And there is a group (1 − p) of players who
do not participate because they have to incur participation costs; these players have production
cost of zero and therefore would make very good (low) offers if they participated. Under these
conditions it is reasonable to think that attracting the non participants by paying a small flat
reimbursement to all players should pay off. We can make p very small so the “unnecessary”
payment made to the σu-type players is small in contrast with the large group of low cost players
who move in. And yet Theorem 4.2 defies this intuition, suggesting that something important is
missing.

Note that to obtain J (r) in the “Toy” model while paying r to each participant, all that is
needed is to add 2p · r to J (r) in (13). Differentiating the resulting expression with respect to r

we obtain

J ′(r) = 2(r − � − 1 + k�) + 2p

= 2(k� − 1) + 2p, when evaluated at rmin = �,

which can be further simplified to produce

= 2(k� − 1 + p/2) + p = 2� + p > 0, (31)

in accord with the result stated in Theorem 4.2.
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Appendix A

A.1. Proof of Theorem 3.1

(i) Let g be a nonnegative continuous solution to (24). Then, it follows that g is continuously
differentiable and
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g′(c) = −
[

1 −
c∫

0

P
(
t, φ

(
g(t)

))
dt

]N−1

, 0 � c � 1. (A.1)

From (24) we have g(1) = 0, and by Assumption 3.3
∫ c

0 P(t,φ(g(t)))dt < 1 for all c ∈
[0,1]; hence, g′(c) is strictly negative on [0,1], and from (A.1) we see that g′ is continuously
differentiable on [0,1]. Differentiating (A.1), we get

g′′(c) = (N − 1)

[
1 −

c∫
0

P
(
t, φ

(
g(t)

))
dt

]N−2

P
(
c,φ

(
g(c)

))
= (N − 1)

[−g′(c)
](N−2)/(N−1)

P
(
c,φ

(
g(c)

))
[we have used (A.1)]. (A.2)

Thus, g satisfies the differential equation in (25). It remains to verify that g satisfies the boundary
conditions stated in (25), which follows since g(1) = 0 by (24) and g′(0) = −1 by (A.1). �

(ii) First, let us replace in (25) the function g(c) by γ (s) = g(1 − s); then, all we need is to
prove that the problem

(a) γ ′′(s) = (N − 1)
[
γ ′(s)

](N−2)/(N−1)
P

(
1 − s,φ

(
γ (s)

))
,

(b) γ (0) = 0,

(c) γ ′(1) = 1 (A.3)

has a solution which is nonnegative on [0,1] and possesses a positive derivative at 0, and that such
a solution is unique. Note that this claim requires a delicate proof since the standard existence
and uniqueness theorems in ordinary differential equations deal with the Cauchy problem (initial
conditions for (A.3(a)) rather than the boundary conditions in (A.3)). Our plan is to demonstrate
that there are uniquely defined initial conditions for (A.3(a)) which enforce the required bound-
ary conditions (A.3(b),(c)), so that the existence and the uniqueness of a solution to (A.3) will
finally follow from the standard existence and uniqueness results for the Cauchy problem. As a
byproduct, we shall see how to specify numerically the required initial conditions for (A.3(a)),
which will yield an algorithm for computing g(·).

Consider the domain

G = {
(s, y0, y1) ∈ R3

∣∣0 � s � 1, y1 > 0
}

along with the Cauchy problem

d

ds
y0(s) = y1(s),

d

ds
y1(s) = (N − 1)

[
y1(s)

](N−2)/(N−1)
Q

(
s, y0(s)

)
,

y0(0) = 0,

y1(0) = θ > 0 (A.4)

where Q(s, y0) is a continuously differentiable bounded function in {0 � s � 1,−∞ < y0 < ∞}
which coincides with P(1 − s,φ(y0)) for y0 � 0. By standard considerations, for every θ > 0
the Cauchy problem (A.4) has a unique solution defined on certain part [0, d(θ)) of the segment
[0,1] and such that the limit, lims→d(θ)−0 y(s) ≡ y∗ ≡ (y∗, y∗) exists, and the point (d(θ), y∗)
0 1
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belongs to the boundary of G. We claim that d(θ) = 1, y∗
1 > 0, so that (A.4) has a unique solution

on [0,1], and the graph of this solution belongs to G.
By standard arguments from the theory of differential equations, to prove our claim is the same

as to demonstrate that y∗
1 > 0. Assume to the contrary, that y∗

1 = 0 (note that y∗
1 � 0 by origin

of this quantity). Let us start with the observation that y0(c) is nonnegative on [0, d(θ)). Indeed,
y0(c) is strictly positive on (0, ε) for some positive ε, due to the fact that y′

0(0) = y1 > 0 and
y0(0) = 0. Therefore, assuming that y0(s) is negative for some s ∈ [0, d(θ)), we would conclude
that there exists s∗ ∈ (0, d(θ)) such that y0(s) is positive on (0, s∗), while y0(0) = y0(s

∗) = 0.
But since y0 is positive on (0, s∗) and y1(s) = y′

0(s) is positive on this interval, (A.4) says that
y0(s) is convex on [0, s∗]; since y0(0) = 0 and y′

0(0) = θ > 0, this convex function is positive
and strictly increasing in (0, s∗) and cannot, therefore, vanish at s∗.

Thus, y0(s) is positive on (0, d(θ)). But then (A.4) says that y1(s) is strictly increasing on
[0, d(θ)); since θ > 0, we conclude that y∗

1 = lims→d(θ)−0 y1(s) > 0, as claimed. We have proved
the following

Lemma A.1. Whenever θ > 0, the Cauchy problem (A.4) has a unique solution yθ (s) =
(yθ

0 (s), yθ
1 (s)) defined on [0,1], and for 0 � s � 1,

yθ
0 (s) � 0;
d

ds
y0(s) ≡ yθ

1 (s) > 0,

d2

ds2
yθ

0 (s) ≡ d

ds
yθ

1 (s) � 0. (A.5)

Note also that from the fact that the graph of yθ (·) belongs to G and from the smoothness
assumptions on the density of F , it follows that yθ (s) and d

ds
yθ (s) are continuously differentiable

functions of s ∈ [0,1], θ > 0.
We proceed by showing that a solution to the Cauchy problem (A.4) that corresponds to

certain uniquely defined θ, constitutes a unique solution to (A.3). To this effect, we need the
following lemma:

Lemma A.2. Both yθ
0 (s) and yθ

1 (s) are strictly increasing in θ > 0 for every s ∈ (0,1], and
∂
∂θ

yθ
1 (1) > 0.

Proof. As we have just mentioned, the derivative of yθ with respect to θ exists; by standard
arguments from the theory of differential equations, this derivative δθ (s) = (δθ

0 (s), δθ
1 (s)) solves

the Cauchy problem

d

ds
δθ

0 (s) = δθ
1 (s);

d

ds
δθ

1 (s) = (N − 2)
[
yθ

1 (s)
]−1/(N−1)

δθ
1 (s)Q

(
s, yθ

0 (s)
)

+ (N − 1)
[
yθ

1 (s)
](N−2)/(N−1)

q
(
s, yθ

0 (s)
)
δθ

0 (s),

q(s, y) = ∂

∂y
Q(s, y);

δθ
0 (0) = 0;

δθ
1 (0) = 1. (A.6)
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To prove Lemma A.2 is exactly the same as to demonstrate that both components of the solution
to this problem are positive on (0,1]. Let us first show that δθ

0 (s) is positive for s > 0. Indeed,
δθ

0 (0) = 0 and d
ds

δθ
0 (0) = 1, so that there exists ε > 0 such that δθ

0 (s) is positive on (0, ε). Assum-
ing that δθ

0 is nonpositive somewhere on (0,1], we would conclude that there exists s∗ ∈ (0,1]
such that δθ

0 (s) is positive on (0, s∗) and is zero at s = s∗. Now, due to its origin q(s, y) is non-
negative whenever y � 0; consequently, the second relation in (A.6) says that δθ

1 (s) = d
ds

δθ
0 (s) is

nonnegative on [0, s∗]. We see that δθ
0 (·) is nondecreasing on [0, s∗], which contradicts the fact

that δθ
0 (·), being positive on (0, s∗), vanishes at both s = 0 and s = s∗.

Thus, δθ
0 (s) is positive on (0,1]. This fact combined with nonnegativity of q(s, y), positivity

of δθ
1 (0) and the second relation in (A.6) immediately implies that δθ

1 (s) is a nondecreasing
positive function on [0,1]. �

Now we can prove that (A.3) indeed possesses a unique nonnegative solution with positive
derivative at 0. This is exactly the same as to verify that there exists a unique θ > 0 satisfying the
relation

yθ
1 (1) = 1; (A.7)

the solution to (A.3) is nothing but the component yθ
0 (s) of the solution, corresponding to the

above θ , of the Cauchy problem (A.4).
Thus, all we need to prove is that (A.7) possesses a positive root and this root is unique.

Uniqueness is given by Lemma A.2—the left-hand side of our equation is strictly increasing in
θ > 0. In order to prove the existence of the root, it suffices to show that the value of the left-hand
side in (A.7) is < 1 for small enough positive θ , and is > 1 for large enough positive θ (recall that
the left-hand side in (A.7) is continuous, and even continuously differentiable in θ > 0). Now,
from (A.5) we know that yθ

1 (s) is nondecreasing in s and consequently yθ
1 (1) � yθ

1 (0) = θ ; thus,
the left-hand side in (A.7) is indeed > 1 whenever θ > 1. It remains to prove that the left-hand
side in (A.7) is < 1 for all small enough positive θ . To see this, let us set

L(s) = Q
(
s, y1

0(s)
);

note that L is nonnegative, and in view of Assumptions 3.2 and 3.3 combined with the fact that
y1

0(0) = 0 we have

1∫
0

L(s)ds =
1∫

0

P
(
1 − s,φ

(
y1

0(s)
))

ds < 1. (A.8)

Now, for θ ∈ (0,1) we have

d

ds

[
yθ

1 (s)
]1/(N−1) =

[
d

ds
yθ

1 (s)

][
(N − 1)

[
yθ

1 (s)
](N−2)/(N−1)]−1

= Q
(
s, yθ

0 (s)
)

[see the second relation in (A.4)]

� L(s)

[since 0 � yθ
0 (s) � y1

0(s) by Lemmas A.1, A.2];
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hence

[
yθ

1 (1)
]1/(N−1) �

1∫
0

L(s)ds + [
yθ

1 (0)
]1/(N−1) =

1∫
0

L(s)ds + θ1/(N−1).

This relation combined with (A.8) implies yθ
1 (1) < 1 for all small enough positive θ , as claimed.

We have proved that the boundary problem (25) indeed possesses a unique solution of the
required type, and that in such a solution g′ is negative (see Lemma A.1). To complete the proof,
it remains to verify that such a solution solves (24) as well, which is immediate:

g′′(c) = (N − 1)
[−g′(c)

](N−2)/(N−1)
P

(
c,φ

(
g(c)

))
,

g(1) = 0,

g′(0) = −1

⇒
d

dc

[−g′(c)
]1/(N−1) = −P

(
c,φ

(
g(c)

))
,

−g′(0) = 1,

g(1) = 0

⇒

g′(c) = −
[

1 −
c∫

0

P
(
u,φ

(
g(u)

))
du

]N−1

,

g(1) = 0

⇒

g(c) =
1∫

c

[
1 −

u∫
0

P
(
t, φ

(
g(t)

))
dt

]N−1

du.

Remark A.1. Note that our procedure implies an algorithm for constructing the equilibrium
participation rule numerically. Indeed, given θ and integrating numerically the Cauchy problem
(A.4), we can compute the left-hand side of (A.7) at this θ ; applying further bisection in θ ∈
[0,1], we can easily approximate to a high accuracy the root of (A.7). Integrating (A.4) for the
resulting θ , we end up with a tight approximation of the equilibrium participation rule g(·).

A.2. Proof of Theorem 2.1

Note that the distribution function induced by the random variables in the “Toy” model does
not satisfy Assumptions 3.1 and 3.2 made in Theorem 3.1. To use the results established in
Theorem 3.1 in the case of the “Toy” model in order to assure uniqueness and provide a rigorous
proof of other results considered there, we show (see Theorem A.1) that we can establish a
very close approximation of the distribution used in the “Toy” model, let it be called F0, by
distributions Fδ satisfying Assumptions 3.1–3.2 and weakly converging to F0 as δ → +0, which
allows to use the results established in Theorem 3.1.

Assume, that Fδ is as follows:



92 S. Gal et al. / Games and Economic Behavior 60 (2007) 75–103
• with probability p, (c, k) belongs to the narrow strip Sδ {0 � c � 1,0 � k � δ}, and the
corresponding conditional density is smooth and does not depend on c;

• with probability 1 − p, (c, k) takes values in a small rectangle

Dδ = {
(c, k) | 0 � c � δ, |k − k∗| � δ

}
.

The resulting conditional density is continuously differentiable, and the distributions Fδ , δ > 0,
along with our linear reimbursement policy do satisfy Assumptions 3.1–3.3.

Let pδ(c, k) be the density of Fδ , and let gδ
r (c) be the solution to (25) corresponding to F = Fδ

and R(k) = rk. Let us set

hδ
r (c) = φ

(
gδ

r (c)
) = gδ

r (c)/(1 − r), πδ
r = −(gδ

r )
′(1);

then, (25) can be rewritten as

(a)
(
gδ

r

)′′
(c) = Pδ

(
c,hδ

r (c)
)
,

(b) gr(1) = 0,

(c) πδ
r +

1∫
0

Pδ

(
c,hδ

r (c)
)

dc = 1, (A.9)

where, Pδ(c, k) = ∫ k

0 pδ(c, v)dv.
The following Theorem stipulates that as δ → +0, the functions gδ

r (·) converge to explicitly
given functions gr(·).

Theorem A.1. Assume that � > 0. Then, as δ → +0, for every r ∈ [0,1) the functions gδ
r (c)

converge to functions gr(c) as follows:

0 � r � rmin ≡ �

k∗
:

gr(c) = p

2
(1 − c)2 + (1 − p)(1 − c);

rmin � r � rmax ≡ 1 − p + �

k∗
:

gr(c) = p

2
(1 − c)2 + [

(1 − r)k∗ − p

2

]
(1 − c);

rmax � r < 1 :
gr(c) = p

2
(1 − c)2. (A.10)

The convergence is uniform in c ∈ [0,1] and uniform along with the first order derivative on
every segment c ∈ [ε,1] with ε > 0.

Proof of Theorem A.1. (a) Let εδ(r) be the Fδ-mass of the part of the rectangle Sδ which is
above the graph of hδ

r . We claim that

εδ(r) → 0 uniformly in r ∈ [0,1) as δ → +0. (A.11)

Assume to the contrary, that there exist sequences δi → +0 and ri ∈ [0,1) such that εδi (ri) �
ε > 0. Then,

πδi
r → 0, i → ∞. (A.12)

i
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Indeed, if the quantities π
δi
ri , i.e., the minus slopes at c = 1 of the convex functions g

δi
ri , were

bounded away from 0, then the Fδ-mass of the part of Sδ above the graph of g
δi
ri (and therefore

the mass above the graph of h
δi
ri � g

δi
ri ) would be small for small δi , while we have assumed that

it is not the case: εδi (ri) � ε > 0.
Since

πδi
ri

+
1∫

0

Pδ

(
c,hδi

ri
(c)

)
dc = 1

(see (A.9)), it follows from (A.12) that

lim
i→∞

1∫
0

Pδ

(
c,hδi

ri
(c)

)
dc → 1.

The latter clearly implies εδi (ri) → 0, and we come to a contradiction.
As an immediate corollary of (A.11), we get the relation

lim infδ→+0

1∫
0

Pδ

(
c,hδ

r (c)
)

dc � p ∀r ∈ [0,1). (A.13)

(b) From (a), (A.9) and the structure of Fδ one can easily derive the following

Lemma A.3. Let r ∈ [0,1), and let δi → +0. Assume that the sequence πδi (r) has a limit π as
i → ∞. Then π ∈ [0,1 −p], and the functions g

δi
r (·) converge uniformly on [0,1] and uniformly

along with the first order derivative on [ε,1] for every ε > 0, to the function

g(π)(c) = p

2
(1 − c)2 + π(1 − c).

(c) Let us fix r ∈ [0,1), and let π be a limiting point of πδ
r as δ → +0:

π = lim
i→∞πδi

r

for a sequence δi → +0. In view of Lemma A.3, the functions g
δi
r (·) converge uniformly on

[0,1] to g(π), whence the functions h
δi
r (·) converge uniformly on [0,1] to h(π) = g(π)/(1 − r).

Note that by (c) in (A.9 we have

π + lim
i→∞

1∫
0

Pδi

(
c,hδi

r (c)
)

dc = 1. (A.14)

Now, from (A.13) it is clear that the limit in the left-hand side of (A.14) is always � p. From the
structure of Fδ it follows that this limit is equal to p when h(π)(0) < k∗ and is equal to 1 when
h(π)(0) > k∗. Thus, we see that π should satisfy at least one of the following 3 relations:

(A) h(π)(0) < k∗ and π + p = 1,

(B) h(π)(0) = k∗ and π + p � 1,

(C) h(π)(0) > k∗ and π = 0. (A.15)



94 S. Gal et al. / Games and Economic Behavior 60 (2007) 75–103
It is easily seen that (A.15) implies, first, that π is uniquely defined by r (which, in view of
Lemma A.3, means that gδ

r (·) indeed converges as δ → 0 in the sense required by Theorem A.1),
and, second, that the functions gr(·) = limδ→+0 gδ

r (·) are exactly as claimed in the theorem.
Specifically, from (A)–(C) it follows that π � 1 − p; this observation immediately implies that
if r � rmin, then the only possible are (A) and {(B) and π = 1 − p}, so that we always have
π = 1 − p and gr is as in the first relation in (A.10). Similarly, if r � rmax, then from (A)–(C) it
follows that the only possible are (C) and {(B) and π = 0}, so that we always have π = 0, and gr

is as in the third relation in (A.10). Finally, if rmin < r < rmax, then the only possible case is (B),
which immediately leads to the second relation in (A.10). �

The theorem demonstrates that representing the singular distribution F = F0 as a limit of a
natural family of “nice” distributions Fδ , we get “approximate equilibria” gδ

r which have limits
as δ → +0. These limits, by definition, are the equilibria corresponding to the distribution F . As
it is easily seen, the convergence established in the Theorem implies that for every linear reim-
bursement policy R(k) = rk the quantities Rδ(r), Jδ(r) and Wδ(r) associated with distributions
Fδ converge, as δ → 0, to certain limits, R(r), J (r), W(r), that by definition, are, respectively,
the expected cost of reimbursement, the expected total cost of the auctioneer and the expected
payments to the winner, induced by the distribution F and the piecewise linear reimbursement
rule.

A.3. Derivation of W(r)

Let Ĉi , i = 1, . . . ,N , be independent random variables distributed according to Lemma 3.1.
Let us approximate the random variables Ĉi , i = 1, . . . ,N, by independent continuously distri-
buted random variables with density hε(c), being equal to

h(c) = P
(
c,φ

(
g(c)

))
for 0 � c � 1 and vanishing to the right of 1 + ε. We get

W = lim
ε→0

Wε,

Wε = N(N − 1)

∫
G

c2

[
N∏
1

hε(ci)

]
dc,

G = {
c = (c1, . . . , cN) � 0: c1 � c2 � min[c3, . . . , cN ]}

⇒ Wε = N(N − 1)

∞∫
0

c2hε(c2)

[ c2∫
0

hε(u)du

][ ∞∫
c2

hε(v)dv

]N−2

dc2

= −N(N − 1)

1∫
0

s
[
1 − Hε(s)

]
HN−2

ε (s)H ′
ε(s)ds

[
Hε(s) =

∞∫
hε(u)du

]

s
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= −
∞∫

0

s

[
N

d

ds
HN−1

ε (s) − (N − 1)
d

ds
HN

ε (s)

]
ds

=
∞∫

0

[
NHN−1

ε (s) − (N − 1)HN
ε (s)

]
ds.

Hence

W =
1∫

0

[
NHN−1(s) − (N − 1)HN(s)

]
ds,

H(s) =
1∫

s

P
(
c,φ

(
g(c)

))
dc +

[
1 −

1∫
0

P
(
c,φ

(
g(c)

))
dc

]

= 1 −
s∫

0

P
(
c,φ

(
g(c)

))
dc.

Taking into account that (see (25))

P
(
c,φ

(
g(c)

)) = g′′(c)
[
(N − 1)

[−g′(c)
](N−2)/(N−1)]−1 = − d

dc

[[−g′(c)
]1/(N−1)]

,

we get

s∫
0

P
(
c,φ

(
g(c)

))
dc = [−g′(0)

]1/(N−1) − [−g′(s)
]1/(N−1) = 1 − [−g′(s)

]1/(N−1);

hence

H(s) = [−g′(s)
]1/(N−1)

and finally,

W =
1∫

0

[
N

[−g′(s)
] − (N − 1)

[−g′(s)
]N/(N−1)]ds

= N
[
g(0) − g(1)

] − (N − 1)

1∫
0

[−g′(s)
]N/(N−1) ds

= Ng(0) − (N − 1)

1∫
0

[−g′(s)
]N/(N−1) ds

[since g(1) = 0 by (25)], (A.16)

as stated in (28). �
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A.4. Proof of Theorem 4.1

In what follows we write a(ε) = Ω(b(ε)), a(ε) � Ω(b(ε)), a(ε) � Ω(b(ε)) if there exist
constants l,L > 0 such that, respectively,

lb(ε) � a(ε) � Lb(ε),

0 � a(ε) � Lb(ε),

0 � lb(ε) � a(ε) (A.17)

for all small enough values of ε � 0. We use the usual notation O(b(ε)) for a function a(ε) such
that |a(ε)| � Ω(b(ε)).

To make the proof more friendly to the reader we split it into two parts. In the first part, we
derive the theorem from two lemmas, which in turn are proved in the (more technical) second
part of the proof.

Let us denote by gε(·) the equilibrium corresponding to the reimbursement policy Rε(·)
(see (26)), and let J (ε) be auctioneer’s total cost associated with this reimbursement. Note that
g0(·) is exactly the same as the equilibrium participation rule g(·) for the case of no reimburse-
ment, since the reimbursement R0(k) vanishes when k � g(0), so that on the graph of g(·) the
right hand sides of differential equations (25) specifying g(·) and g0(·), respectively, are equal to
each other. It is convenient to conduct the analysis in terms of the functions f (t) = g(1 − t).

10. The equilibrium equation (25) reads

f ′′
ε (t) = Π

(
1 − t, φε

(
fε(t)

))[
f ′

ε(t)
](N−2)/(N−1)

,

fε(0) = 0,

f ′
ε(1) = 1. (A.18)

where, fε(t) = gε(1 − t), Π(c, k) = (N − 1)P (c, k) and,

φε(s) =
{

s if s � k∗(ε),
s−rk∗(ε)

1−r
if s � k∗(ε). (A.19)

The expression for auctioneer’s cost, (29), under an ε reimbursement, is

J (ε) = N

∫
0�k�φε(fε(t))

Rε(k)p(1 − t, k)dk dt

︸ ︷︷ ︸
A(ε)

+Nfε(1) − (N − 1)

1∫
0

(
f ′

ε(t)
)N/(N−1) dt

= A(ε) +
1∫

0

[
Nf ′

ε(t) − (N − 1)
[
f ′

ε(t)
]N/(N−1)]dt

= A(ε) +
1∫

0

G
(
f ′

ε(t)
)

dt,

G(t) = Nt − (N − 1)tN/(N−1). (A.20)
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Note that A(ε) stands for reimbursement payments and
∫ 1

0 G(f ′
ε(t))dt is the payment to the

winning bidder.
Let

�(ε) = J (ε) − J (0) = A(ε) + (
B(ε) − B(0)

)
(A.21)

where

B(0) − B(ε) =
1∫

0

[
G

(
f ′

0(t)
) − G

(
f ′

ε(t)
)]

dt, (A.22)

is the decrease in payment to the winning bidder, and

A(ε) = N

∫
Ξ(ε)

Rε(k)p(1 − t, k)dt dk, Ξ(ε) = {
(t, k): fε(t) � k � k∗(ε)

}
. (A.23)

We must prove that �(ε) is strictly negative for ε small enough and positive. This is an immediate
consequence of the following pair of lemmas:

Lemma A.4. Reimbursement payments are at most of order of ε3:

A(ε) � O
(
ε3). (A.24)

Lemma A.5. The decrease in expected payment to the winning bidder, B(0) − B(ε), is at least
of order of ε2:

B(0) − B(ε) � Ω
(
ε2). (A.25)

What remains is to prove Lemmas A.4 and A.5. This is the ultimate goal of the reasoning to
follow.

20. Let

δ(ε) = f ′
0(0) − f ′

ε(0).

It can be shown that the equilibrium participation rule corresponding to a nontrivial reimburse-
ment (the one resulting in φ(s) � s for all s � 0) is pointwise � the equilibrium participation
rule corresponding to the “no reimbursement” policy. Consequently,

fε(t) � f0(t), 0 � t � 1; δ(ε) � 0. (A.26)

30. Let T (ε) be the solution to the equation

f0(t) = k∗(ε)
[≡ f0(0) − ε

]
. (A.27)

Since f0 is twice continuously differentiable and f ′
0(1) = 1, we have

1 − T (ε) = ε + O
(
ε2). (A.28)

40. We need the following technical lemma.
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Lemma A.6. One has

(i) δ(ε) � O
(
ε2);

(ii)
∣∣f (�)

ε (t) − f
(�)
0 (t)

∣∣ � O
(
δ(ε)

)
, 0 � t � T (ε), � = 0,1,2;

(iii)
∣∣f (�)

ε (t) − f
(�)
0 (t)

∣∣ � O
(
δ(ε) + ε3−�

)
, T (ε) � t � 1, � = 0,1,2, (A.29)

where, as usual, f (�)(t) is �th derivative of function f .

Proof. a0. By (A.26), on the segment 0 � t � T (ε), i.e., before f0(t) “enters” the domain where
the reimbursement Rε(·) is nontrivial, the functions f0(·) and fε(·) are solutions to the same
differential equation of the second order with Lipschitz continuous right-hand side, the initial
conditions for the solutions differing by � O(δ(ε)), which implies (A.29.ii).

b0. We need the following fact:

Lemma A.7. The function f ′
0(t) − f ′

ε(t) is nonnegative and nondecreasing on [0, T (ε)].

Proof of Lemma A.7. There is nothing to prove if δ(ε) = 0 (see (A.29.ii)). Now assume that
δ(ε) > 0. Let us first demonstrate that f ′

ε(t) � f ′
0(t), 0 � t � T (ε). Assuming the opposite, there

exists t̄ ∈ (0, T (ε)] such that f ′
ε(t) < f ′

0(t) for 0 � t < t̄ , while f ′
ε(t̄) = f ′

0(t̄). Consequently,
there exists t ′ ∈ (0, t̄) such that

0 = f ′′
0 (t ′) − f ′′

ε (t ′)

= Π
(
1 − t ′, f0(t

′)
)[

f ′
0(t

′)
](N−2)/(N−1) − Π

(
1 − t ′, fε(t

′)
)[

f ′
ε(t

′)
](N−2)/(N−1)

, (A.30)

which is impossible, since fε(t
′) < f0(t

′) (note that f0(0) = fε(0) and 0 � f ′
ε(t

′) < f ′
0(t

′)).
Since 0 � f ′

ε(t) � f ′
0(t), 0 � fε(t) � f0(t) for 0 � t � T (ε) and due to

f ′′(t) = Π
(
1 − t, f (t)

)[
f ′(t)

](N−2)/(N−1)
, 0 � t � T (ε) (A.31)

for both f = f0 and f = fε , we see that f ′′
ε (t) � f ′′

0 (t), 0 � t � T (ε). It remains to recall that
f0(0) = fε(0) = 0. �

c0. In view of Lemma A.7 we have

f ′
0

(
T (ε)

) − f ′
ε

(
T (ε)

)
� δ(ε)

[≡ f ′
0(0) − f ′

ε(0)
]
. (A.32)

The latter observation combined with (A.29.ii) implies that

f ′
0

(
T (ε)

) − f ′
ε

(
T (ε)

) = Ω
(
δ(ε)

)
. (A.33)

Now, on the segment T (ε) � t � 1, in view of the corresponding equilibrium equations (A.18)
and (A.29.ii) one has∣∣f ′′

ε (t) − f ′′
0 (t)

∣∣
= ∣∣Π(

1 − t, φε

(
fε(t)

))[
f ′

ε(t)
](N−2)/(N−1) − Π

(
1 − t, f0(t)

)[f ′
0(t)](N−2)/(N−1)

∣∣
�

∣∣[Π(
1 − t, φε

(
fε(t)

)) − Π
(
1 − t, f0(t)

)][
f ′

ε(t)
](N−2)/(N−1)∣∣

+∣∣Π(
1 − t, f0(t)

)[[
f ′

ε(t)
](N−2)/(N−1) − [

f ′
0(t)

](N−2)/(N−1)]∣∣
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� O(1)
[∣∣φε(fε(t)) − f0(t)

∣∣ + ∣∣f ′
ε(t) − f ′

0(t)
∣∣]

� O(1)
[∣∣φε

(
fε(t)

) − φε

(
f0(t)

)∣∣ + ∣∣φε

(
f0(t)

) − f0(t)
∣∣︸ ︷︷ ︸

= r[f0(t)−f0(T (ε))]
1−r

�O(ε)

+∣∣f ′
ε(t) − f ′

0(t)
∣∣]

� O(1)
∣∣fε(t) − f0(t)

∣∣ + ∣∣f ′
ε(t) − f ′

0(t)
∣∣ + O(ε), (A.34)

which combined with (A.29.ii) and (A.28) implies (A.29.iii).

d0. By (A.29.iii) applied with � = 2 and in view of f ′
0(1) = 1 = f ′

ε(1) we have

T (ε) � t � 1 ⇒ ∣∣f ′
ε(t) − f ′

0(t)
∣∣ � O

(
δ(ε) + ε

)(
1 − T (ε)

)
, (A.35)

so that by (A.28) it holds

T (ε) � t � 1 ⇒ ∣∣f ′
ε(t) − f ′

0(t)
∣∣ � O

(
δ(ε)ε + ε2); (A.36)

the latter relation (as applied with t = T (ε)) combined with (A.33) implies (A.29.i). The proof
of Lemma A.6 is completed. �

50. Let π = (N − 1)p(0, f0(0)). Since p(·, ·) is continuously differentiable and in view of
(A.29) we have

T (ε) � t � 1
min[f0(t), φε(fε(t))] � k � max[f0(t), φε(fε(t))]

}
⇒ ∣∣(N − 1)p(1 − t, k) − π

∣∣ � O(ε). (A.37)

For T (ε) � t � 1 we have

f ′′
0 (t) = Π

(
1 − t, f0(t)

)[
f ′

0(t)
](N−2)/(N−1)

,

f ′′
ε (t) = Π

(
1 − t, φε

(
fε(t)

))[
f ′

ε(t)
](N−2)/(N−1)

, (A.38)

whence by (A.37), (A.29) and (A.28) for the indicated t one has

f ′′
ε (t) − f ′′

0 (t)

= Π
(
1 − t, φε

(
fε(t)

))[[
f ′

ε(t)
](N−2)/(N−1) − [

f ′
0(t)

](N−2)/(N−1)]
+ [

Π
(
1 − t, φε

(
fε(t)

)) − Π
(
1 − t, f0(t)

)]︸ ︷︷ ︸
= π

[
φε

(
fε(t)

) − f0(t)
] + aε(t),∣∣aε(t)

∣∣ � O
(
ε3

)
+[

Π
(
1 − t, φε

(
fε(t)

)) − Π
(
1 − t, f0(t)

)][[
f ′

0(t)
](N−2)/(N−1) − 1

]
= π

[
φε

(
fε(t)

) − f0(t)
] + dε(t),

|dε(t)| � O(1)
[
δ(ε) + ε2 + ∣∣aε(t)

∣∣ + επ
∣∣φε(fε(t)) − f0(t)

∣∣ + ε
∣∣aε(t)

∣∣]
= π

[
φε

(
fε(t)

) − f0(t)
] + O(1)

[
ε2 + επ

∣∣φε(fε(t)) − f0(t)
∣∣]. (A.39)

Further, by (A.29) we have for T (ε) � t � 1:

π
[
φε

(
fε(t)

) − f0(t)
] = π

[
φε

(
f0(t)

) − f0(t)
] + eε(t),∣∣eε(t)

∣∣ ≡ π
∣∣φε

(
f0(t)

) − φε

(
fε(t)

)∣∣ � O
(
ε2), (A.40)
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and

φε

(
f0(t)

) − f0(t) = f0(t) − rk∗(ε)
1 − r

− f0(t) = r[f0(t) − k∗(ε)]
1 − r

= r[f0(t) − f0(T (ε))]
1 − r

= r(t − T (ε))

1 − r
+ vε(t),∣∣vε(t)

∣∣ � O(ε2) (A.41)

(we have used the fact that |f ′
0(t)− 1| � O(1)(1 − t) due to f ′

0(1) = 1 and that 1 −T (ε) � O(ε)

by (A.28)). Combining the latter relation with (A.39), (A.40), we finally get

T (ε) � t � 1

⇒
{

f ′′
ε (t) − f ′′

0 (t) = κ(t − T (ε)) + γε(t), (i)

Π(1 − t, φε(fε(t))) − Π(1 − t, f0(t)) = κ[t − T (ε)] + γ̃ε(t), (ii)

κ = πr

1 − r
,∣∣γε(t)

∣∣ + ∣∣γ̃ε(t)
∣∣ � O

(
ε2), (A.42)

60. We need the following

Lemma A.8. One has

δ(ε) = α(ε)

β ′(1)
+ ō(ε2), α(ε) = κε2

2
> 0. (A.43)

Here κ > 0 is given by (A.42) and, as usual, ō(ε�) denotes a function a(ε) such that a(ε)/ε� → 0
as ε → +0.

Proof. From (A.42) and (A.28) it follows that

0 = f ′
ε(1) − f ′

0(1) = f ′
ε

(
T (ε)

) − f ′
0

(
T (ε)

) + κ(1 − T (ε))2

2
+ O

(
ε3), (A.44)

i.e., that

f ′
ε

(
T (ε)

) − f ′
0

(
T (ε)

) = −κε2

2
+ O

(
ε3). (A.45)

On the other hand, on the segment [0, T (ε)] both fε(·), f0(·) are solutions to the same differential
equation

f ′′(t) = Π
(
1 − t, f (t)

)[
f ′(t)

](N−2)/(N−1)
, (A.46)

the initial conditions for these solutions being (f (0) = 0, f ′(0) = f ′
0(0) − δ(ε) > 0) and

(f (0) = 0,f ′(0) = f ′
0(0) > 0), respectively. It follows that if

Φ(t) = (N − 1)p
(
1 − t, f0(t)

)[
f ′

0(t)
](N−2)/(N−1)

,

Ψ (t) = N − 2

N − 1
Π

(
1 − t, f0(t)

)[
f ′

0(t)
]−1/(N−1)

, (A.47)

and β(t) is the solution to the system
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β ′′(t) = Φ(t)β(t) + Ψ (t)β ′(t),
β(0) = 0,

β ′(0) = 1, (A.48)

then

0 � t � T (ε) ⇒ f (�)
ε (t) = f

(�)
0 (t) − δ(ε)β(�)(t) + θ(�)

ε (t), � = 0,1,2,

|θ(�)
ε (t)| � o(1)δ(ε) =︸︷︷︸

(A.29.i)

o(ε2), � = 0,1,2. (A.49)

From (A.49) it follows that

f ′
ε

(
T (ε)

) − f ′
0

(
T (ε)

) = −δ(ε)β ′(T (ε)
) + ō

(
ε2) = −δ(ε)β ′(1) + ō

(
ε2) (A.50)

(we have used (A.28)). Comparing (A.45) and (A.50), we come to (A.43). �
70. Now we are ready to prove Lemma A.4. Indeed, by (A.26), (A.29) and the definition of

T (ε) the domain of integration Ξ(ε) in the expression defining A(ε) is contained in the rectangle
{T (ε) � t � 1, f0(T (ε)) � k � f0(T (ε)) + u(ε)} with u(ε) � O(ε). The area of this rectangle
does not exceed O(ε2), the integrand Rε(k) in the rectangle does not exceed O(ε), and (A.24)
follows.

80. Now let us prove Lemma A.5. The function G(s) clearly is nondecreasing on [0,1], and
its derivative is positive on [0,1). Taking into account Lemma A.7, we have

B(ε) − B(0) =
T (ε)∫
0

[
G

(
f ′

ε(t)
) − G

(
f ′

0(t)
)]

dt +
1∫

T (ε)

[
G

(
f ′

ε(t)
) − G

(
f ′

0(t)
)]

dt

︸ ︷︷ ︸
�O(ε3) by (A.28),(A.29),(A.36)

�
T (ε)∫
0

[
G

(
f ′

0(t) − δ(ε)
) − G

(
f ′

0(t)
)]

dt + O(ε3)

� −Ω
(
δ(ε)

) + O
(
ε3). (A.51)

Combining this observation with (A.43), we arrive at (A.25). Lemma A.5 is proved, and this
completes the proof of Theorem 4.1. �
A.5. Proof of Theorem 4.2

The proof is that J ′(r) � 0 for all r � 0. Let us fix a nonnegative r and denote by gr(c) the
equilibrium participation rule associated with the reimbursement rule R(·) ≡ r . Let further

γ (s) = γr(s) ≡ gr(1 − s),

δ(s) = ∂

∂r
γr(s),

�(s) = δ(s) + 1.
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Note that (29) in the case of R(k) ≡ r results in

J (r) = Nr

φ(g(c))∫
0

dF(c, k) + Ng(0) − (N − 1)

1∫
0

[−g′(c)
]N/(N−1) dc. (A.52)

From (A.52) combined with γr(0) ≡ 0 (see (25)),

J ′(r) = N

1∫
0

P
(
1 − s, γ (s) + r

)
ds + Nr

1∫
0

p
(
1 − s, γ (s) + r

)[
δ(s) + 1

]
ds

+
1∫

0

[
Nδ′(s) − N

[
γ ′(s)

]1/(N−1)
δ′(s)

]
ds

= Nr

1∫
0

p
(
1 − s, γ (s) + r

)
�(s)ds + N

1∫
0

γ ′′(s)
[
(N − 1)

[
γ ′(s)

](N−2)/(N−1)]−1 ds

+ N

1∫
0

[
1 − [

γ ′(s)
]1/(N−1)]

�′(s)ds

[we have used (A.3)]

=
{

Nr

1∫
0

p(1 − s, γ (s) + r)�(s)ds

}
1

+ N

1∫
0

d

ds

[
γ ′(s)

]1/(N−1) ds + N

1∫
0

[
1 − [

γ ′(s)
]1/(N−1)]

�′(s)ds

= {·}1 + N

{
1 − [

γ ′(0)
]1/(N−1) +

1∫
0

[
1 − [

γ ′(s)
]1/(N−1)]

�′(s)ds

}
2

[recall that γ ′(1) = 1 by (A.3)]. (A.53)

It can be shown that

δ′′(s) = (N − 2)
[
γ ′(s)

]−1/(N−1)
δ′(s)P

(
1 − s, γ (s) + r

)
+ (N − 1)

[
γ ′(s)

](N−2)/(N−1)
p
(
1 − s, γ (s) + r

)[
δ(s) + 1

]
,

δ(0) = 0,

δ′(1) = 0.

Hence,

�′′(s) = μ(s)�′(s) + ν(s)�(s),

[μ(·), ν(·) � 0]
�(0) = 1,

�′(1) = 0. (A.54)
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We claim that �(s) is nonnegative and �′(s) is nonpositive on [0,1]. Let us start from the first
claim. Assume, on the contrary, that �(s) < 0 for some s ∈ (0,1). Since �(0) = 1 > 0, then
there would exist a point s∗ ∈ (0,1) such that both �(s) and �′(s) are negative at s = s∗. But
then the differential equation in (A.54) would imply that � is negative, and �′ is negative and
nonincreasing to the right of s∗, which contradicts the boundary condition �′(1) = 0. Thus,
we know that �(s) is nonnegative on [0,1]. When assuming that �′(s∗) > 0 for some s∗, we
conclude from the differential equation in (A.54) that �′(s) is increasing and positive to the right
of s∗, which again contradicts to the equality �′(1) = 0. Thus, �′(s) � 0 on [0,1]. Now, since �

is nonnegative, the term {·}1 in (A.53) is nonnegative. To see that the term {·}2 in this expression
is also nonnegative, note that since �′(s) � 0, we have

1∫
0

[
1 − [

γ ′(s)
]1/(N−1)]

�′(s)ds � max
0�s�1

[
1 − [

γ ′(s)
]1/(N−1)] 1∫

0

�′(s)ds

= [
1 − [

γ ′(0)
]1/(N−1)][

�(1) − �(0)
]

[recall that γ ′(s) is nondecreasing and positive on [0,1]]
= [

1 − [
γ ′(0)

]1/(N−1)][
�(1) − 1

]
.

Hence,

{·}2 �
[
1 − [

γ ′(0)
]1/(N−1)]

�(1) � 0.

Thus, J ′(r) � 0. �
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