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1 Introduction

Most modern interior-point schemes for convex optimization problems are based on
tracing a path in the interior of a convex set. A generic case of this type is as follows.
We are given a self-concordant function f (x) with convex open domain domf in
a finite-dimensional space E (see Sect. 2 to recall the definitions). Let A be a linear
operator from E to another linear space Ed and d ∈ Ed . We are interested in tracing
the path

x(t) = argmin
x∈domf :

Ax=d

{
ft (x)

def= f (x) + t〈e, x〉}. (1.1)

Note that this framework covers seemingly all standard short-step interior-point path-
following schemes (e.g., [5, 7], and [10]):

• The primal path-following method solving the optimization program

min
x

{〈c, x〉 : x ∈ cl domf
}

traces, as t → ∞, the primal central path (1.1) given by e = c, A ≡ 0, b = 0, and
a ν-self-concordant barrier f for cl domf .

• Let K be a closed pointed cone with nonempty interior in a finite-dimensional
linear space G, A be a linear operator from G to Rm with conjugate operator A∗,
G∗ be a linear space dual to G, and K∗ ⊂ G∗ be a cone dual to K. And let F be
a ν-logarithmically homogeneous self-concordant barrier F for K with Legendre
transform F∗. The feasible-start primal-dual path-following method for solving
the primal-dual pair of conic problems

(P ) : min
u

{〈c,u〉 : Au = b, u ∈ K
}
,

(D) : max
y

{〈b, y〉 : c − A∗y ∈ K∗
}
,

traces, as t → ∞, the primal-dual central path (1.1) given by

x ≡ (u, y) ∈ E = G × Rm, f (x) = F(u) + F∗(c − A∗y),

A(x) = Au, d = b, e = (c,−b).

• For the infeasible-start primal-dual path-following method as applied to (P ), (D),
we need to fix a reference points u0 ∈ int K and s0 ∈ int K∗. Then we can trace, as
t → 0, the path (1.1) given by E = (G × R) × Rm+1,

x ≡ (u, τ, y, κ),

Ax = (
Au − τb, 〈c,u〉 − 〈b, y〉 + κ

)
,

d = (
Ax0 − b, 〈c, x0〉 + 1

)
,

f (x) = F(u) + F∗
(
s0 + (τ − 1)c − A∗y

) − ln τ − lnκ,
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with e defined by the condition that starting point x0 = (u0,1,0,1) coincides with
x(1) (see [7] for details).

It can be shown that in all situations an upper complexity bound for tracing the cor-
responding trajectories by a short-step strategy is of the order O(

√
ν ln ν

ε
) iterations,

where ε is relative accuracy of the final approximate solution of the problem (see, for
example, [4, 5], and [7]).

Recently in [6], a technique has been developed for establishing lower complexity
bounds for short-step path-following schemes. This technique is based on a combina-
tion of the theory of self-concordant functions [5] with the concepts of Riemannian
geometry (see [1–3, 8, 9] for the main definitions and their applications in optimiza-
tion).

Let f be a nondegenerate self-concordant function on an open convex domain
Q ⊆ E. We can use the Hessian of f in order to define a Riemannian structure on Q.
Namely, for a continuously differentiable curve γ (t) ∈ Q, t0 ≤ t ≤ t1, we define the
length of this curve as follows:

ρ
[
γ (·), t0, t1

] =
∫ t1

t0

〈
f ′′(γ (t))γ ′(t), γ ′(t)

〉1/2
dt.

Definition 1.1 The infimum of the quantities ρ[γ (·), t0, t1] over all continuously dif-
ferentiable curves γ (·) in Q linking a given pair of points x and y of the set (i.e.,
γ (t0) = x, γ (t1) = y) is called the Riemannian distance between x and y. We denote
it by σ(x, y).

Clearly, σ(x, y) is a distance on Q. For Q̂ ⊂ Q, we define σ(x,Q̂) = infy{σ(x, y):
y ∈ Q̂}.

Note that the Riemannian metric defined by f ′′(x) arises very naturally in the
theory of interior-point schemes. Indeed, it can be shown that the Dikin ellipsoid

Wr(x) = {
y : 〈f ′′(x)(y − x), y − x

〉 ≤ r2}

centered at an arbitrary point x ∈ intQ always belongs to Q for r < 1. Moreover,
short-step interior-point methods usually generate a sequence of points {xk}∞k=0 sat-
isfying the condition

〈
f ′′(xk)(xk+1 − xk), xk+1 − xk

〉 ≤ r2 < 1, ∀k ≥ 0.

Hence, given a starting point x̄, a target x∗, both in intQ, and a step-size bound
r ∈ (0,1), it would be interesting to estimate from below and from above the min-
imal number of steps Nf (x̄, x∗), which is sufficient for connecting the end points
by a short-step sequence. If x∗ is an approximate solution of certain optimization
problem, then an upper bound for Nf (x̄, x∗) can be extracted from the complex-
ity estimate of some numerical scheme. Thus, a lower bound for Nf (x̄, x∗) delivers
a lower complexity bound for corresponding methods.

In [6], it was shown that the value O(σ(x, y)) provides us with a lower bound
for Nf (x, y) (see [6], Sect. 3). Moreover, in [6], Sect. 5, it was shown that the upper
bounds for this value delivered by primal-dual feasible and infeasible path-following
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schemes coincide with the lower bounds up to a constant factor. Thus, for the corre-
sponding problem setting, these methods are optimal.

Note that the conclusion of [6] was derived from some special symmetry of the
primal–dual feasible cone K × K∗. This technique is not applicable to the pure primal
setting. Actually, it is easy to see that in this case the central path trajectories can be
very bad. Let us look at the following example.

Example 1.1 Let Q ≡ Rn+ be the positive orthant in Rn. Let us endow Q with the
standard self-concordant barrier

f (x) = −
n∑

i=1

lnx(i), ν = n.

Then the Riemannian distance in Q is defined as follows (see (6.20), [6]):

σ(x, y) =
[

n∑

i=1

ln2 x(i)

y(i)

]1/2

.

Let us form a central path, which connects the point x0 = e = (1, . . . ,1)T ∈ Rn with
the simplex

Δ(β) =
{

x ∈ Q :
n∑

i=1

x(i) = n · (1 + β)

}

, β > 0.

That is a solution of the following problem

x(t) = arg min
x∈Δ(t)

f (x), 0 ≤ t ≤ β.

Clearly, x(t) = (1 + t) · e. Thus, using the central path, we can travel from x0 = e to
the set Δ(β) in O(σ(e, x(β))) iterations of a path-following scheme with

σ
(
e, x(β)

) = √
n ln(1 + β).

However, it is easy to see that there exists a shortcut:

y = e + nβe1 ∈ Δ(β), σ (e, y) = ln(1 + nβ),

where e1 = (1,0, . . . ,0)T ∈ Rn.

Despite referring to a slightly different problem setting,1 the above observation is
quite discouraging. Fortunately, the situation is not always so bad. The main goal of
this paper is to show that for several important problems the primal central paths are
O(ν1/4)-geodesic (we use terminology of [6]).

1In Example 1.1, we speak about Riemannian distance between a point and a convex set.
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The paper is organized as follows. In Sect. 2, we recall for the benefit of the reader
the main facts on the theory of self-concordant functions and prove several new in-
equalities, which are necessary for our analysis. In Sect. 3, we establish different
lower bounds on the Riemannian distances in convex sets in terms of the local norms
defined by a self-concordant function. In Sect. 4, we prove the main result of this pa-
per. That is an upper bound on the Riemannian length of a segment of a central path
in terms of variation of the value of corresponding self-concordant function and the
logarithm of the variation of the path parameter. In Sect. 5, we apply this result to dif-
ferent problem instances: finding a minimum of self-concordant function (Sect. 5.1),
feasibility problem (Sect. 5.2) and the standard minimization problem (Sect. 5.3). We
show that in Example 1.1 the presence of the unpleasant factor O(

√
ν/ lnν) in the

ratio of the length of the central path and the corresponding Riemannian distance is
due to unboundedness of the basic feasible set Q. If Q is bounded, this ratio can be
at most of the order O(ν1/4).

2 Self-Concordant Functions and Barriers

In order to make the paper self-contained, in this section, we summarize the main
results on self-concordant functions, which can be found in [5], Chap. 2, and in [4],
Chap. 4. We prove also some new inequalities, which are useful for working with the
Riemannian distances.

Let E be a finite-dimensional real vector space and Q ⊂ E be an open convex
domain. A three-times continuously differentiable convex function

f (x) : Q → R

is called self-concordant, if the sets {x ∈ Q : f (x) ≤ a} are closed for every a ∈ R

and

d3

dt3
f (x + th)

∣∣
∣∣
t=0

≤ 2

(
d2

dt2
f (x + th)

∣∣
∣∣
t=0

)3/2

, ∀x ∈ Q, h ∈ E. (2.1)

Such a function is called nondegenerate, if its Hessian is positive definite at some
(and then—at every) point of Q. This happens, for example, if Q contains no straight
line. An equivalent condition to (2.1) can be written in terms of relation between the
second and third differentials:

D3f (x)[h1, h2, h3] ≤ 2
3∏

i=1

〈
f ′′(x)hi, hi

〉1/2
, ∀x ∈ Q, h1, h2, h3 ∈ E. (2.2)

Denote by E∗ the space dual to E. For h ∈ E and g ∈ E∗ denote by 〈g,h〉
the value of the linear function g on the vector h. Let f be a nondegenerate self-
concordant function on Q. For every x ∈ Q, we have f ′(x) ∈ E∗. Thus, the Hessian
f ′′(x) defines a nondegenerate linear operator:

h �→ f ′′(x)h ∈ E∗, ∀h ∈ E.
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Hence, we can define a local primal norm:

‖h‖x = 〈
f ′′(x)h,h

〉1/2 : E → R,

and, using the standard definition ‖η‖∗
x = maxh:‖h‖x≤1〈η,h〉, the corresponding local

dual norm:

‖g‖∗
x = 〈

g,
[
f ′′(x)

]−1
g
〉1/2: E∗ → R.

Denote by

λ(x) = 〈
f ′(x),

[
f ′′(x)

]−1
f ′(x)

〉1/2 = ∥∥f ′(x)
∥∥∗

x

the local norm of the gradient f ′(x). A nondegenerate self-concordant function f is
called a self-concordant barrier with parameter ν, if

λ2(x) ≡ 〈
f ′(x),

[
f ′′(x)

]−1
f ′(x)

〉 ≤ ν, ∀x ∈ Q.

Note that ν cannot be smaller than one.
Let us mention first the well-known facts.

Proposition 2.1 Let f be a nondegenerate self-concordant function on an open con-
vex domain Q ⊂ E. Then

(i) For every x ∈ Q and r ∈ [0,1), the ellipsoid Wr(x) ≡ {y : ‖y − x‖x < r} is
contained in Q. For any y ∈ Wr(x) and any h ∈ E, we have

(
1 − ‖y − x‖x

)‖h‖x ≤ ‖h‖y ≤ ‖h‖x

1 − ‖y − x‖x

. (2.3)

Moreover, for any x and y from Q

‖y − x‖y ≥ ‖y − x‖x

1 + ‖y − x‖x

, (2.4)

and

〈f ′(x) − f ′(y), x − y〉 ≥ ‖x − y‖2
x

1 + ‖x − y‖x

. (2.5)

(ii) The following facts are related to existence of a minimizer xf of f (x) on Q.

• f attains its minimum on Q if and only if it is below bounded.
• f attains its minimum on Q if and only if the set {x : λ(x) < 1} is nonempty.
• If λ(x) < 1, then f (x) − f (xf ) ≤ −λ(x) − ln(1 − λ(x)).
• If xf exists, then it is unique.
• For every ρ < 1, the set {x ∈ Q : λ(x) ≤ ρ} is compact.
• Denote rf (x) = ‖x − xf ‖xf

. If λ(x) < 1, then

rf (x) − ln
(
1 + rf (x)

) ≤ −λ(x) − ln
(
1 − λ(x)

)
.

Hence, the set {x : λ(x) ≤ 1
2 } is contained in the ellipsoid {x : ‖x − xf ‖xf

≤ 3
4 }.
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(iii) For every x ∈ Q, the damped Newton iterate

x+ = x − 1

1 + λ(x)

[
f ′′(x)

]−1
f ′(x)

belongs to Q, and

f (x+) ≤ f (x) − [
λ(x) − ln

(
1 + λ(x)

)]
,

λ(x+) ≤ 2λ2(x).

(2.6)

Hence, the damped Newton method converges quadratically as λ(x) < 1
2 .

(iv) The domain of the Legendre transformation

f∗(ξ) = sup
x

[〈ξ, x〉 − f (x)
] : E∗ → R ∪ {+∞}

of f is an open convex set which is exactly the image of Q under the one-to-one
C2 mapping

f ′(x) : Q → E∗.

The function f∗ is a nondegenerate self-concordant function on its domain, and
the Legendre transformation of f∗ is f . If xf exists, then by (2.3) as applied
to f∗, we have

(
1 − λ(x)

)‖g‖∗
x ≤ ‖g‖∗

xf
≤ ‖g‖∗

x

1 − λ(x)
, ∀x ∈ Q : λ(x) < 1,∀g ∈ E∗. (2.7)

(v) Let f be ν-self-concordant barrier for clQ. Let x and y belong to Q. Then
〈
f ′(x), y − x

〉 ≤ ν.

If in addition, 〈f ′(x), y − x〉 ≥ 0, then ‖y − x‖x ≤ ν + 2
√

ν.

Let us prove now some new inequalities. Let f be a nondegenerate self-concordant
function with domf ⊆ E. Denote

ζ(t) = ln(1 + t) − t

1 + t
, t > −1,

ζ∗(t) = ln(1 − t) + t

1 − t
, t < 1.

In what follows, we assume that these functions are equal +∞ outside their natural
domains.

Lemma 2.1 For every x, y ∈ domf we have:

f (y) ≥ f (x) + 〈
f ′(x), y − x

〉 + ζ
(∥∥y − x

∥∥
y

)
, (2.8)

f (y) ≤ f (x) + 〈
f ′(x), y − x

〉 + ζ∗
(∥∥y − x

∥∥
y

)
, (2.9)
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f (x) ≥ f (y) + 〈
f ′(y), x − y

〉 + ζ
(∥∥f ′(x) − f ′(y)

∥∥∗
y

)
, (2.10)

f (x) ≤ f (y) + 〈
f ′(y), x − y

〉 + ζ∗
(∥∥f ′(x) − f ′(y)

∥∥∗
y

)
. (2.11)

Proof For t ∈ [0,1] consider the function

φ(t) = f (y) − f
(
y + t (x − y)

) + 〈
f ′(y + t (x − y)

)
, t (x − y)

〉
.

Note that φ(0) = 0. Then

φ′(t) = t
〈
f ′′(y + t (x − y)

)
(x − y), x − y)

〉
.

Denote r = ‖x − y‖y . Since f is self-concordant, we have

〈
f ′′(y + t (x − y)

)
(x − y), x − y

〉 ≥ r2

(1 + tr)2

(see (2.4)). Hence,

f (y) − f (x) + 〈
f ′(x), x − y

〉 = φ(1) − φ(0) =
∫ 1

0
φ′(t) dt

≥
∫ 1

0

tr2 dt

(1 + tr)2
= ζ(r),

as required in (2.8). If r < 1, we have also

〈
f ′′(y + t (x − y)

)
(x − y), x − y

〉 ≤ r2

(1 − tr)2

(see (2.3)). Hence,

f (y)−f (x)+ 〈
f ′(x), x −y

〉 = φ(1)−φ(0) =
∫ 1

0
φ′(t) dt ≤

∫ 1

0

tr2 dt

(1 − tr)2
= ζ∗(r),

and that is (2.9).
In order to prove two others inequalities, note that the Legendre transformation

of f

f∗(s) = max
x

[〈s, x〉 − f (x)
]

is nondegenerate and self-concordant along with f (Proposition 2.1(iv)). Therefore,
using (2.8) and (2.9) at the points

u = f ′(x), v = f ′(y)

we have

f∗(v) − f∗(u) − 〈
f ′∗(u), v − u

〉 ≥ ζ
(‖v − u‖v

)
,

f∗(v) − f∗(u) − 〈
f ′∗(u), v − u

〉 ≤ ζ∗
(‖v − u‖v

)
.
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It remains to note that

f∗(u) = 〈
f ′(x), x

〉 − f (x), f ′∗(u) = x,

f∗(v) = 〈
f ′(y), y

〉 − f (y), f ′∗(v) = y,

and that ‖h‖v = 〈f ′′∗ (v)h,h〉1/2 = 〈[f ′′(y)]−1h,h〉1/2 = ‖h‖∗
y for h ∈ E∗. �

We will need some bounds on the variation of the gradient of a self-concordant
barrier in terms of a Minkowski function. Let πz(x) be the Minkowski function of Q

with the pole at z ∈ Q:

πz(x) = inf
{
t > 0 | z + t−1(x − z) ∈ Q

}
.

Lemma 2.2 Let u be an arbitrary point in Q. Then for any v ∈ Q, we have

∥∥f ′(v)
∥∥∗

u
≤ ν

1 − πu(v)
. (2.12)

Moreover, if 〈f ′(u), v − u〉 ≥ 0 for some v ∈ Q, then

∥∥f ′(v)
∥∥∗

u
≥ πu(v)

(ν + 2
√

ν)(1 − πu(v))
. (2.13)

Finally, if 〈f ′(u), v − w〉 = 0 for some v,w ∈ Q, then

1 − πu(v) ≥ 1 − πu(w)

1 + ν + 2
√

ν
. (2.14)

Proof The set clQ contains a ‖ · ‖u-ball of radius 1, which is centered at u. Conse-
quently, this set contains a ‖ · ‖u-ball B of radius 1 − πu(v), which is centered at v.
Since f is a ν-self-concordant barrier, from Proposition 2.1(v), we have

〈
f ′(v), x − v

〉 ≤ ν, ∀x ∈ B ⊆ clQ,

and (2.12) follows.
In order to prove (2.13), let us choose v ∈ Q such that

〈
f ′(u), v − u

〉 ≥ 0,

and let r = ‖v − u‖u. The case of r = 0 is trivial. Assuming r > 0, let

φ(t) = f
(
u + tr−1(v − u)

)
, t ∈ Δ = {

t | u + tr−1(v − u) ∈ Q
}
.

Note that φ is self-concordant barrier for Δ and the right endpoint of Δ is the
point T = r/πu(v). By Proposition 2.1(i), Δ contains the set {s : (s − t)2φ′′(t) < 1},
whence t + (φ′′(t))−1/2 ≤ T for all t ∈ Δ. Thus, for t ∈ Δ, t ≥ 0, we have

φ′′(t) ≥ 1

(T − t)2
. (2.15)
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Combining (2.15) with the relation φ′(0) = r−1〈f ′(u), v − u〉 ≥ 0, we get

φ′(r) ≥
∫ r

0

1

(T − t)2
dt = r

T (T − r)
= π2

u(v)

r(1 − πu(v))
.

On the other hand, φ′(r) = 〈f ′(v), v − u〉r−1 ≤ ‖f ′(v)‖∗
u, and we come to

∥∥f ′(v)
∥∥∗

u
≥ πu(v)

1 − πu(v)
· πu(v)

r
. (2.16)

Setting x = u+π−1
u (v)(v −u), we have x ∈ clQ and 〈f ′(u), x −u〉 ≥ 0, whence by

Proposition 2.1(v) we get

r

πu(v)
= ‖x − u‖u ≤ ν + 2

√
ν,

which combined with (2.16) implies (2.13).
To prove (2.14), let 〈f ′(v),w−v〉 = 0, and let Qv = {x ∈ Q | 〈f ′(v), x −v〉 = 0}.

Since v is the minimizer of a ν-self-concordant barrier on Qv , the set Qv , regarded
as a full-dimensional subset of its affine span, contains an ellipsoid centered at v, and
is contained in a (ν + 2

√
ν) times larger concentric ellipsoid (Proposition 2.1(i), (v)).

It follows that there exists x ∈ clQv, such that

v = 1

1 + ν + 2
√

ν
w + ν + 2

√
ν

1 + ν + 2
√

ν
x.

Thus,

πu(v) ≤ 1

1 + ν + 2
√

ν
πu(w) + ν + 2

√
ν

1 + ν + 2
√

ν
πu(x).

Note that πu(x) ≤ 1. Hence,

1 − πu(v) ≥ 1 − πu(w)

1 + ν + 2
√

ν
,

as required in (2.14). �

We conclude this section with two lower bounds on the size of the gradient of
self-concordant function computed with respect to the local norm defined by its min-
imizer.

Lemma 2.3 Assume that there exists a minimizer xf of a ν-self-concordant barrier
f (x). Then for any x̄ ∈ domf we have

f (x̄) − f (xf ) ≤ ν ln
(
1 + 3

(
1 + 2ν−1/2)∥∥f ′(x̄)

∥∥∗
xf

) ≤ ν ln
(
1 + 9

∥∥f ′(x̄)
∥∥∗

xf

)
.

Proof Denote

δ = x̄ − xf , r = ‖δ‖xf
, φ(t) = f

(
xf + t

r
δ

)
, Δ = domφ.
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Then φ(·) is a ν-self-concordant barrier for the segment clΔ. Note that r ∈ Δ and φ

attains its minimum at t = 0. Moreover, φ′′(0) = 1. By Proposition 2.1(v), we have

φ′(t)(r − t) ≤ ν, ∀t ∈ [0, r],
and r ≤ ν + 2

√
ν. Besides this,

0 ≤ φ′(t) ≤ φ′(r), ∀t ∈ [0, r].
Thus,

f (x̄) − f (xf ) = φ(r) − φ(0) =
∫ r

0
φ′(t) dt

≤
∫ r

0
min

[
φ′(r), ν(r − t)−1]dt

=
{

rφ′(r), if φ′(r)r ≤ ν,

ν(1 + ln(rφ′(r)/ν)), otherwise

≤ ν ln

(
1 + 3

rφ′(r)
ν

)

(
φ′(r) = 1

r

〈
f ′(x̄), δ

〉) ≤ ν ln
(
1 + 3

(
1 + 2ν−1/2)∥∥f ′(x̄)

∥∥∗
xf

)
. �

Lemma 2.4 Assume that there exists a minimizer xf of a self-concordant barrier
f (x). Then for any x ∈ domf, we have

‖x − xf ‖x ≤ (
1 + 2‖x − xf ‖xf

) · ∥∥f ′(x)
∥∥∗

xf
. (2.17)

If in addition f is a ν-self-concordant barrier, then

‖x − xf ‖x ≤ (
2ν + 4

√
ν + 1

) · ∥∥f ′(x)
∥∥∗

xf
. (2.18)

Proof Denote

δ = x − xf , r = ‖δ‖xf
, φ(t) = f

(
xf + t

r
δ

)
.

Note that φ is self-concordant and φ′(0) = 0. Therefore, in view of (2.5), we have

φ′(r) ≥ rφ′′(r)
1 + r

√
φ′′(r)

,

whence

φ′′(r) ≤ (
φ′(r)

)2
(

1 + 1

r
√

φ′′(r)

)2

. (2.19)
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Further, φ′′(t) = 1
r2 〈f ′′(xf + t

r
δ)δ, δ〉. Thus, φ′′(0) = 1 and φ′′(r) ≥ (1 + r)−2

by (2.4). Therefore, (2.19) implies that

φ′′(r) ≤ (
φ′(r)

)2(2 + r−1)2
.

Note that

φ′(r) = r−1〈f ′(x), δ
〉 ≤ ∥∥f ′(x)

∥∥∗
xf

.

Combining the two last inequalities, we get

〈
f ′′(x)δ, δ

〉 = r2φ′′(r) ≤ (1 + 2r)2(φ′(r)
)2 ≤ (1 + 2r)2(∥∥f ′(x)

∥∥∗
xf

)2
,

as required in (2.17). Inequality (2.18) follows from (2.17) and the second part of
Proposition 2.1(v). �

3 Lower Bounds on Riemannian Distances

Let us establish lower bounds for the Riemannian distance between two points in Q

in terms of different local norms defined by f (x).

Lemma 3.1 Let u and v belong to Q. Then for any h ∈ E\{0}, we have

∣∣∣∣ ln
‖h‖u

‖h‖v

∣∣∣∣ ≤ σ(u, v), (3.1)

and for any η ∈ E∗\{0}
∣∣∣∣ ln

‖η‖∗
u

‖η‖∗
v

∣∣∣∣ ≤ σ(u, v). (3.2)

Moreover,
∣∣∣∣ ln

λ(u) + 1

λ(v) + 1

∣∣∣∣ ≤ σ(u, v), (3.3)

and

ln
‖f ′(u)‖∗

v + 1

‖f ′(v)‖∗
v + 1

≤ σ(u, v). (3.4)

Besides this, if f is a ν-self-concordant barrier for clQ, then

∣∣f (u) − f (v)
∣∣ ≤ √

νσ(u, v). (3.5)

Proof By continuity reasons, we may assume that both u,v are distinct from xf . Let
us fix ε > 0. Consider a C1-curve γ (t) ∈ Q, 0 ≤ t ≤ 1, which satisfies the following
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conditions:

γ (0) = u, γ (1) = v,

γ (t) �= xf , ∀t ∈ [0,1],

ρ
[
γ (·),0,1

] ≤ σ(u, v) + ε.

To prove (3.1), let us fix h ∈ E\{0} and set ψ(t) = 〈f ′′(γ (t))h,h〉. Then

∣∣ψ ′(t)
∣∣ = ∣∣D3f (γ (t))

[
γ ′(t), h,h

]∣∣ (2.2)≤ 2
〈
f ′′(γ (t)

)
γ ′(t), γ ′(t)

〉1/2
ψ(t),

whence

∣∣∣∣ ln
〈f ′′(u)h,h〉1/2

〈f ′′(v)h,h〉1/2

∣∣∣∣ =
∣∣∣∣
1

2
ln

ψ(1)

ψ(0)

∣∣∣∣ ≤ ρ
[
γ (·),0,1

] ≤ σ(u, v) + ε,

and (3.1) follows. Relation (3.2) can be derived from (3.1) using the definition of the
dual norm.

Further, denoting ψ(t) = λ(γ (t)), we have

∣∣∣∣
d

dt
ψ2(t)

∣∣∣∣ = ∣∣−D3f (γ (t))
[
γ ′(t),

[
f ′′(γ (t)

)]−1
f ′(γ (t)

)
,
[
f ′′(γ (t)

)]−1
f ′(γ (t)

)]

+2
〈[
f ′′(γ (t)

)]−1
f ′′(γ (t)

)
γ ′(t), f ′(γ (t)

)〉∣∣

≤ 2
〈
f ′′(γ (t)

)
γ ′(t), γ ′(t)

〉1/2

× 〈
f ′′(γ (t)

)[
f ′′(γ (t)

)]−1
f ′(γ (t)

)
,
[
f ′′(γ (t)

)]−1
f ′(γ (t)

)〉

+2
〈[
f ′′(γ (t)

)]−1
f ′(γ (t)

)
, f ′(γ (t)

)〉1/2〈
f ′′(γ (t)

)
γ ′(t), γ ′(t)

〉1/2

= 2ψ(t)
(
ψ(t) + 1

)〈
f ′′(γ (t)

)
γ ′(t), γ ′(t)

〉1/2
.

Since ψ(·) > 0 on [0,1], we get

∣∣∣∣
d

dt
ln

(
1 + ψ(t)

)
∣∣∣∣ ≤ 〈

f ′′(γ (t)
)
γ ′(t), γ ′(t)

〉1/2
,

whence
∣∣∣∣ ln

λ(u) + 1

λ(v) + 1

∣∣∣∣ ≤ ρ
[
γ (·),0,1

] ≤ σ(u, v) + ε,

and (3.3) follows.
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To prove (3.4), let ψ(t) = ‖f ′(γ (t))‖∗
v and r(t) = ρ[γ (·),0, t]. Then

d

dt
ψ2(t) = d

dt

〈
f ′(γ (t)

)
,
[
f ′′(v)

]−1
f ′(γ (t)

)〉

= 2
〈
f ′′(γ (t)

)
γ ′(t),

[
f ′′(v)

]−1
f ′(γ (t)

)〉

≤ 2
∥∥γ ′(t)

∥∥
γ (t)︸ ︷︷ ︸

r ′(t)

×∥∥[
f ′′(v)

]−1
f ′(γ (t)

)∥∥
γ (t)

(by (3.1)) ≤ 2r ′(t)er(t) × ∥∥[
f ′′(v)

]−1
f ′(γ (t)

)∥∥
v
= 2r ′(t)er(t)ψ(t),

whence ψ ′(t) ≤ r ′(t)er(t), so that

∥∥f ′(u)
∥∥∗

v
+ 1 = ψ(1) + 1 ≤ ψ(0) + 1 + [

er(1) − er(0)
]

≤ ∥
∥f ′(v)

∥
∥∗

v
+ exp

{
σ(u, v) + ε

}

≤ (∥∥f ′(v)
∥∥∗

v
+ 1

)
exp

{
σ(u, v) + ε

}
,

and (3.4) follows.
Finally, to prove (3.5), it suffices to note that if f is a ν-self-concordant barrier,

then
∣∣∣∣
d

dt
f

(
γ (t)

)
∣∣∣∣ = ∣∣〈f ′(γ (t)

)
, γ ′(t)

〉∣∣ ≤ λ
(
γ (t)

) · 〈f ′′(γ (t)
)
γ ′(t), γ ′(t)

〉1/2

≤ √
ν · 〈f ′′(γ (t)

)
γ ′(t), γ ′(t)

〉1/2
,

whence
∣∣f (u) − f (v)

∣∣ ≤ √
νρ

[
γ (·),0,1

] ≤ √
ν
[
σ(u, v) + ε

]
,

and (3.5) follows. �

4 Riemannian Length of Central Path

Let f be a nondegenerate self-concordant function with domain Q ⊆ E. Given
a nonzero vector e ∈ E∗, consider the associated central path

x(t) = argmin
x

[−t〈e, x〉 + f (x)
]
. (4.1)

By Proposition 2.1(iv), the domain of this curve is an open interval Δ on the axis.
From now on, we assume that this interval contains a given segment [t0, t1] with
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0 ≤ t0 < t1 < ∞. Note that by the implicit function theorem the path x(t) is continu-
ously differentiable on its domain and satisfies the relations

f ′(x(t)
) = te; x′(t) = [

f ′′(x(t)
)]−1

e = t−1[f ′′(x(t)
)]−1

f ′(x(t)
)
. (4.2)

Our goal now is to obtain a useful upper bound on the Riemannian length
ρ[x(·), t0, t1] of the central path.

Lemma 4.1 (i) We always have

ρ
[
x(·), t0, t1

] ≤
√

[
f

(
x(t1)

) − f
(
x(t0)

)]
ln

t1

t0
. (4.3)

If in addition λ(x(t0)) ≥ 1
2 , then

ln
t1

t0
= ln

‖f ′(x(t1))‖∗
x(t0)

‖f ′(x(t0))‖∗
x(t0)

≤ σ
(
x(t0), x(t1)

) + ln 3. (4.4)

(ii) If λ(x(t0)) < 1
2 , then

ρ
[
x(·), t0, t1

] ≤ ln 2 +
√

[
f

(
x(t1)

) − f
(
x(̂t)

)]
ln

t1

t̂
, (4.5)

where t̂ is the largest t ∈ [t0, t1] such that λ(x(t)) ≤ 1
2 , and

ln
t1

t̂
≤ ln

(
max

{
1,4

∥∥f ′(x(t1)
)∥∥∗

xf

}) ≤ σ
(
x(t0), x(t1)

) + ln 12. (4.6)

Proof Let

φ(t) = f
(
x(t)

)
, r(t) = ρ

[
x(·), t0, t

]
, t0 ≤ t ≤ t1.

Since from (4.2) x′(t) = t−1[f ′′(x(t))]−1f ′(x(t)), we have

φ′(t) = 〈
f ′(x(t)

)
, x′(t)

〉 = t−1
〈[
f ′′(x(t)

)]−1
f ′(x(t)

)
, f ′(x(t)

)〉 = t−1λ2
(
x(t)

)
,

r ′(t) = 〈[
f ′′(x(t)

)]
x′(t), x′(t)

〉1/2 = t−1
〈[
f ′′(x(t)

)]−1
f ′(x(t)

)
, f ′(x(t)

)〉1/2

= t−1λ
(
x(t)

)
,

whence by the Cauchy inequality

ρ2
[
x(·), t0, t1

] =
(∫ t1

t0

t−1λ
(
x(t)

)
dt

)2

≤
(∫ t1

t0

t−1λ2(x(t)
)
dt

)(∫ t1

t0

t−1 dt

)

= (
φ(t1) − φ(t0)

)
ln

t1

t0
,

as required in (4.3).
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Let us prove now inequality (4.4). Assume that λ(x(t0)) ≥ 1
2 . Since

f ′(x(t1)
) = t1

t0
f ′(x(t0)

)
,

using (3.4) and the fact that λ(x(t0)) = ‖f ′(x(t0))‖∗
x(t0)

≥ 1
2 , we get

ln
t1

t0
= ln

‖f ′(x(t1))‖∗
x(t0)

‖f ′(x(t0))‖∗
x(t0)

≤ ln(3
‖f ′(x(t1))‖∗

x(t0)
+ 1

‖f ′(x(t0))‖∗
x(t0)

+ 1
) ≤ σ

(
x(t0), x(t1)

) + ln 3,

as required in (4.4).
Now assume that λ(x(t0)) < 1

2 . By Proposition 2.1(ii), under this assumption f

attains its minimum on Q at a unique point xf , the quantity

T = max
{
t ≥ 0 : t ∈ Δ,λ

(
x(t)

) ≤ 1
2

}

is well defined and λ(x(T )) = 1
2 . Note that the multiplication of vector e in (4.1)

by an appropriate constant changes only the scale of the time and does not change
the trajectory. Hence, for the sake of notation, we may assume that T = 1. Since
λ(x(t0)) < 1

2 , we have

t0 < t̂ ≤ T = 1.

Let us first prove that

ρ
[
x(·),0,1

] ≤ ln 2. (4.7)

Note that e = f ′(x(1)). Denote by f∗ the Legendre transformation of f . Since
f attains it minimum on Q, we have 0 ∈ domf∗ and since 1 = T ∈ Δ, we have
e ∈ domf∗. Besides this, f∗ is nondegenerate and self-concordant on its domain in
view of Proposition 2.1(iv). Thus,

〈
e, f ′′∗ (e)e

〉 = 〈
f ′(x(1)

)
,
[
f ′′(x(1)

)]−1
f ′(x(1)

)〉 = λ2(x(1)
) = 1

4
,

whence, by Proposition 2.1(i)

〈
e, f ′′∗ (te)e

〉 ≤ λ2(x(1))

(1 − (1 − t)λ(x(1)))2
, 0 ≤ t ≤ 1.

Hence,

∫ 1

0

〈
e, f ′′∗ (te)e

〉1/2
dt ≤

∫ 1

0

λ(x(1))

1 − (1 − t)λ(x(1))
dt = − ln

(
1 − λ

(
x(1)

)) = ln 2.

On the other hand, we have f ′(x(t)) = tf ′(x(1)), whence

f ′′(x(t)
)
x′(t) = f ′(x(1)

) = t−1f ′(x(t)
)
,
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and consequently

ρ
[
x(·),0,1

] =
∫ 1

0

〈
f ′′(x(t)

)
x′(t), x′(t)

〉1/2
dt

= ∫ 1
0

〈
f ′(x(1)

)
,
[
f ′′(x(t)

)]−1
f ′(x(1)

)〉1/2
dt

=
∫ 1

0

〈
e, f ′′∗

(
f ′(x(t)

))
e
〉1/2

dt =
∫ 1

0

〈
e, f ′′∗ (te)e

〉1/2
dt ≤ ln 2,

as required in (4.7).
Now let us prove (4.5). In the case of t1 ≤ 1 [≡ T ], inequality (4.5) immediately

follows from (4.7). In the case of 1 < t1, we have t̂ = 1, and

ρ
[
x(·), t0, t1

] ≤ ρ
[
x(·),0, t1

] = ρ
[
x(·),0,1

] + ρ
[
x(·),1, t1

] ≤ ln 2 + ρ
[
x(·),1, t1

]
.

Bounding ρ[x(·),1, t1] = ρ[x(·), t̂ , t1] from above by (4.3), we get (4.5).
It remains to prove (4.6). There is nothing to prove if t̂ = t1. Thus, we may assume

that t̂ < t1, whence, in particular, λ(x( t̂ )) = 1
2 . In view of the latter observation, we

can apply (4.4) and get

ln
t1

t̂
= ln

‖f ′(x(t1))‖∗
x( t̂ )

‖f ′(x( t̂ )‖∗
x( t̂ )

≤ σ
(
x( t̂ ), x(t1)

) + ln 3,

or, which is the same,

ln
t1

t̂
= ln

(
2
∥∥f ′(x(t1)

)∥∥∗
x( t̂ )

) ≤ σ
(
x( t̂ ), x(t1)

) + ln 3. (4.8)

By (4.7), we have

σ
(
x(t0), x( t̂ )

) ≤ ρ
[
x(·), t0, t̂

] ≤ ρ
[
x(·),0, t̂

] ≤ ρ
[
x(·),0,1

] ≤ ln 2, (4.9)

whence by triangle inequality

σ
(
x( t̂ ), x(t1)

) ≤ ln 2 + σ
(
x(t0), x(t1)

)
.

Note that by (2.7)

1

2

∥∥f ′(x(t1)
)∥∥∗

xf
≤ ∥∥f ′(x(t1)

)∥∥∗
x(̂t)

≤ 2
∥∥f ′(x(t1)

)∥∥∗
xf

.

Combining these relations and (4.8), we arrive at (4.6). �

Remark 4.1 Note that in the proof of (4.3), we did not use the fact that f is self-
concordant.

We can establish now the O(ν1/4)-geodesic property of the central path associated
with a self-concordant barrier (see [6] for terminology).
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Theorem 4.1 Let f be a nondegenerate ν-self-concordant barrier for clQ, and let
x(t) be the central path given by

f ′(x(t)
) = te, 0 ≤ t0 ≤ t ≤ t1.

Then

ρ
[
x(·), t0, t1

] ≤ ln 2 + ν1/4
√

σ
(
x(t0), x(t1)

)[
σ
(
x(t0), x(t1)

) + ln 12
]
. (4.10)

If λ(x(t0)) ≥ 1
2 , then

ρ
[
x(·), t0, t1

] ≤ ν1/4
√

σ
(
x(t0), x(t1)

)[
σ
(
x(t0), x(t1)

) + ln 3
]
. (4.11)

Proof It suffices to combine (4.3), (4.5), (3.5), (4.4), and (4.6). �

Recall that the primal-dual central paths are
√

2-geodesic (see Theorem 5.2 in [6]).

5 Applications

In this section, we apply the results of Sect. 4 to the analysis of several short-step
interior-point methods. We consider the following three problems:

1. Finding an approximation to the minimizer of a self-concordant function f .
2. Finding a point in a nonempty intersection of a bounded convex open domain

Q and an affine plane. We assume that Q is represented by a ν-self-concordant
barrier f with domf = Q, and that the minimizer xf is known.

3. Finding an ε-solution to the optimization problem minclQ〈c, x〉, with Q repre-
sented in the same way as in item 2.

Our main results state that in problems 2 and 3 (as in problem 1, provided that f is
a ν-self-concordant barrier), appropriate well-known short-step path-following meth-
ods are “suboptimal” within the factor ν1/4. Namely, the number of Newton steps,
which is required by the methods, coincides, up to a factor O(ν1/4), with the Rie-
mannian distance between the starting point and the set of solutions. Recall that this
distance is a natural lower bound on the number of iterations of the short-step interior-
point methods.

5.1 Minimization of a Self-Concordant Function

Consider the following problem:

min
x∈Q

f (x), (5.1)

where f is a nondegenerate bounded-below self-concordant function with domf =
Q. Assume that we have a starting point x̄ ∈ Q. Let us analyze the efficiency of
a short-step path-following method M(x̄), which traces the central path x(t):

f ′(x(t)
) = tf ′(x̄), t ∈ [0,1]. (5.2)
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as t decreases.2 By Proposition 2.1(ii), 0 ∈ domf∗, and of course f ′(x̄) ∈ domf∗.
Consequently, the path is well defined (Proposition 2.1(iv)), and x(0) is the minimizer
xf of f (x) over Q.

To avoid trivialities, we assume that λ(x̄) > 1
2 , i.e., that x̄ does not belong to the

domain of quadratic convergence of the Newton method as applied to f . Then

f (x̄) − f (xf ) ≥ O(1),
∥∥f ′(x̄)

∥∥∗
xf

≥ O(1), σ (xf , x̄) ≥ O(1) (5.3)

(from now on, O(1)’s are positive absolute constants). Indeed, the first inequality is
readily given by Proposition 2.1(iii); the second inequality follows from the first one
in view of (2.11) applied with x = x̄, y = xf , and the third inequality follows from
the second one in view of (3.4).

Using Lemma 4.1(ii) with t0 = 0, t1 = 1, in view of (5.3), we get the following
result.

Theorem 5.1 Let λ(x̄) > 1
2 . Then the short-step method M(x̄) justifies the following

upper bound:

Nf (x̄, xf ) ≤ O(1)
√[

f (x̄) − f (xf )
]

ln
(
1 + ∥∥f ′(x̄)

∥∥∗
xf

)

≤ O(1)

√[
f (x̄) − f (xf )

]
σ(xf , x̄).

(5.4)

Let us discuss the bound (5.4).
1. The only previously known efficiency estimate for the problem (5.1) was

O(1)
(
f (x̄) − f (xf )

)
(5.5)

Newton steps (recall that we do not assume f to be a self-concordant barrier). The
simplest method providing us with this estimate is the usual damped Newton method.
However, using a standard argument, it is not difficult to see that the short-step path-
following scheme as applied to (5.1) also shares the same estimate (5.5). Let us
demonstrate that the bound (5.4) is sharper. Indeed, using inequality (2.10), we have

f (x̄) − f (xf ) ≥ ln
(
1 + ∥∥f ′(x̄)

∥∥∗
xf

) − 1,

so that the bound (5.5) on Nf (x̄, xf ) follows from the first inequality in (5.4) com-
bined with initial conditions (5.3).

Note that the bound (5.4) can be much smaller than (5.5).

Example 5.1 Let Bn be the unit n-dimensional box:

Bn = {
x ∈ Rn : ∣∣x(i)

∣∣ ≤ 1, i = 1, . . . , n
}
,

2For a precise definition of the notion of short-step path-following method, see Definition 3.1 in [6].
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and f (x) = −∑n
i=1 ln(1 − (x(i))2). Without loss of generality, we may assume that

x̄(i) ≥ 0, so that x̄(i) = [1 − εi]1/2, for some εi ∈ (0,1], i = 1, . . . , n. Then

f (x̄) =
n∑

i=1

ln
1

εi

.

At the same time,

(∥∥f ′(x̄)
∥∥∗

xf

)2 = 1

2

n∑

i=1

4(x̄(i))2

(1 − (x(i))2)2
= 2

n∑

i=1

1 − εi

ε2
i

≤ 2
n∑

i=1

1

ε2
i

≤ 2n

min1≤i≤n ε2
i

.

It follows that the ratio of the complexity bound (5.4) to the bound (5.5) does not
exceed

O(1)

([
1 + max

1≤i≤n
ln

n

εi

]/[

1 +
n∑

i=1

ln
1

εi

])1/2

,

and the latter quantity can be arbitrary close to n−1/2.
2. Consider a particular case of problem (5.1), with f being a ν-self-concordant

barrier. In this case, the known complexity estimate for a short-step path-following
scheme is

O(1)
√

ν ln
(
1 + ν

∥∥f ′(x̄)
∥∥∗

xf

)
(5.6)

(see, for example, [4]). However, from Lemma 2.3, it is clear that the estimate (5.4)
is sharper.

3. As it is shown in [6], a natural lower bound on the number of Newton steps in
every short-step interior-point method for solving (5.1) is the Riemannian distance
from x̄ to xf . In the case when f is a ν-self-concordant barrier, the performance of
the path-following scheme, in view of Theorem 4.1 (or in view of (5.4) combined
with (3.5)), is at most O(ν1/4) times worse than this lower bound.

5.2 Finding a Feasible Point

Consider the following problem:

Find a point x̄ ∈ F = {x ∈ Q, Ax = b}, (5.7)

where Q is an open and bounded convex set endowed with a ν-self-concordant barrier
f (x), and A : x �→ Ax is a linear mapping from E onto a linear space F . Since the
mapping A is onto, the conjugate mapping A∗ : F ∗ → E∗ is an embedding. From
now on, we assume that problem (5.7) is feasible, and that we know the minimizer
xf of f on Q. Without loss of generality, we assume that xf = 0.

Let f∗ be the Legendre transformation of f . Since xf = 0, we have

f ′∗(0) = 0. (5.8)
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Note that f∗(s) is a self-concordant function with domf∗ = E∗ such that

〈
s, f ′′∗ (s)s

〉 ≤ ν, ∀s ∈ E∗ (5.9)

(see [5], Theorem 2.4.2). In order to avoid trivial cases, let us assume that

{x : Ax = b} ∩ {
x : ‖x‖0 < 1

} = ∅ (5.10)

(recall that ‖ · ‖0 ≡ ‖ · ‖xf
). Indeed, otherwise a solution to (5.7) can be found by

projecting the origin onto the plane Ax = b in the Euclidean metric ‖ · ‖0 (see Propo-
sition 2.1(i)).

In order to solve (5.7), we can trace the path of minimizers of f on the sets Et ,

x(t) = argmin
Et

f (x), Et = {x ∈ Q | Ax = tb},

as t varies from 0 to 1. Note that this path is well defined: E0 and E1 are non-
empty and bounded by assumption. Therefore, all Et , t ∈ (0,1) are also nonempty
and bounded.

As it is shown in [6], the path x(·) can be traced by an appropriate short-step
path-following sequence, which length is proportional to ρ[x(·),0,1]. Thus, in order
to establish the complexity of our problem, we need to find some bounds on the
Riemannian length of the path x(t).

Observe that tracing x(t) as t varies from 1 to 0 is equivalent to tracing a dual
central path

y(t) : h′(y(t)
) = th′(0), (5.11)

but with t varying from 0 to 1. This path is associated with a nondegenerate (since
A∗ is an embedding) self-concordant function

h(y) = f∗
(
A∗y

) − 〈y, b〉 : F ∗ → R.

The relation between the paths x(t) and y(t) is given by the following lemma.

Lemma 5.1 For any t ∈ [0,1], we have

x(1 − t) = f ′∗
(
A∗y(t)

)
. (5.12)

Proof Indeed, from the origin of x(1 − t), it follows that f ′(x(1 − t)) ∈ (KerA)⊥.
This means that f ′(x(1 − t)) = A∗y(t) for certain uniquely defined y(t), and this
is equivalent to (5.12). Besides this, Ax(1 − t) = (1 − t)b, whence Af ′∗(A∗y(t)) =
(1 − t)b, or

h′(y(t)
) = Af ′∗

(
A∗y(t)

) − b = −tb = th′(0),

where the concluding equality is readily given by (5.8). We have arrived at (5.11). �
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It turns out that the Riemannian length ρ[y(·),0,1] of the path y(·) in the Rie-
mannian structure given by h(·) is equal to ρ[x(·),0,1]:

ρ
[
x(·),0,1

] =
∫ 1

0

〈
f ′′(x(t)

)
x′(t), x′(t)

〉1/2
dt

=
∫ 1

0

〈
f ′′(f ′∗

(
A∗y(1 − t)

))
f ′′∗

(
A∗y(1 − t)

)
A∗y′(1 − t),

f ′′∗
(
A∗y(1 − t)

)
A∗y′(1 − t)

〉1/2
dt

=
∫ 1

0

〈
A∗y′(1 − t), f ′′∗

(
A∗y(1 − t)

)
A∗y′(1 − t)

〉1/2
dt

=
∫ 1

0

〈
h′′(y(1 − t)

)
y′(1 − t), y′(1 − t)

〉1/2
dt = ρ

[
y(·),0,1

]
.

Observe that by (5.11), y(1) = 0, while y(0) is the minimizer of h(·). In view of the
latter fact and Lemma 4.1, we have

ρ
[
x(·),0,1

] = ρ
[
y(·),0,1

] ≤ O(1)

[
ln 2 +

√
[
h
(
y(1)

) − h
(
y(0)

)]
ln

1

t̂

]
, (5.13)

where t̂ is the largest t ∈ [0,1] such that λh(y(t)) ≤ 1
2 , λh(y) being the local norm of

the gradient of h(·) at y ∈ domh(·) ≡ F ∗.
Since y(1) = 0, we have h′(y(1)) = −b. Moreover, the point

z = [
f ′′(0)

]−1
A∗[A

[
f ′′(0)

]−1
A∗]−1

b

clearly belongs to E1, so that by (5.10), we have

1 ≤ ‖z‖2
0 = 〈

b,
[
A

[
f ′′(0)

]−1
A∗]−1

b
〉 = 〈

b,
[
Af ′′∗ (0)A∗]−1

b
〉

= 〈
h′(0),

[
h′′(0)

]−1
h′(0)

〉 = λ2
h(0) = λ2

h

(
y(1)

)
.

From λh(y(1)) ≥ 1 and λh(y(0)) = 0, it follows that

h
(
y(1)

) − h
(
y(0)

) = h
(
y(1)

) − minh ≥ 1 − ln 2,

λh( t̂ ) = 1

2
,

ln
1

t̂
≥ O(1)

(5.14)

(see Proposition 2.1). Consequently, (5.13) implies that

ρ
[
y(·),0,1

] ≤
√

[
h
(
y(1)

) − h
(
y(0)

)]
ln

1

t̂
. (5.15)
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The next statement expresses the complexity bound (5.15) in terms of f .

Theorem 5.2 For every x ∈ F ≡ E1 ∩ Q, we have

ρ
[
x(·),0,1

] ≤ O(1)
√[

f (x) − f (xf )
][

O(1) + lnν + ln
∥∥f ′(x)

∥∥∗
xf

]

≤ O(1)
√

ν ln
(
O(1)ν

∥∥f ′(x)
∥∥∗

xf

)
. (5.16)

Proof Recall that we have assumed xf = 0. Observe first that

h
(
y(1)

) = h(0) = f∗(0) = −min
Q

f = −f (0).

Therefore, using (5.12), we get

h
(
y(0)

) = f∗
(
A∗y(0)

) − 〈
y(0), b

〉

= 〈
A∗y(0), f ′∗

(
A∗y(0)

)〉 − f
(
f ′∗

(
A∗y(0)

)) − 〈
y(0), b

〉

= 〈
y(0),Ax(1) − b

〉 − f
(
x(1)

) = −f
(
x(1)

)
.

Thus,

h
(
y(1)

) − h
(
y(0)

) = f
(
x(1)

) − min
Q

f = f
(
x(1)

) − f (0). (5.17)

Let us prove now that

ln
1

t̂
≤ O(1) ln

〈
f ′′(x(1)

)
x(1), x(1)

〉
. (5.18)

Denote d = ‖h′(y(1))‖∗
y(0). Then, either d ≥ 1, or d < 1. In the latter case apply-

ing (2.11) with h playing the role of f and x = y(1), y = y(0), we get

h
(
y(1)

) − h
(
y(0)

) ≤ ln(1 − d) + d

1 − d
,

which combined with the first relation in (5.14) results in

ln(1 − d) + d

1 − d
≥ O(1),

whence in any case d ≥ O(1).
The last conclusion combined with Lemma 4.1(ii), (see (4.6)) implies that

ln
1

t̂
≤ O(1) lnd. (5.19)

Recalling that y(1) = 0, h′(0) = −b, we get

d2 = 〈
h′(y(1)

)
,
[
h′′(y(0)

)]−1
h′(y(1)

)〉 = 〈
b,

[
Af ′′∗

(
A∗y(0)

)
A∗]−1

b
〉

= 〈
Ax(1),

[
A

[
f ′′(x(1)

)]−1
A∗]−1

Ax(1)
〉 ≤ 〈

f ′′(x(1)
)
x(1), x(1)

〉
,

and (5.18) follows from (5.19).
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Combining (5.15), (5.17), (5.18), and (2.18), we come to the following inequality

ρ
[
x(·),0,1

] ≤ O(1)

√[
f

(
x(1)

) − f (0)
]

ln
(
O(1)ν

∥∥f ′(x(1)
)∥∥∗

0

)
. (5.20)

Let us derive inequality (5.16) from (5.20). Since x(1) is the minimizer of f on F
and x(0) = 0, for every x ∈ F , we have

f
(
x(1)

) − f
(
x(0)

) ≤ f (x) − f (0) ≤ 〈
f ′(x), x

〉 ≤ ‖x‖0
∥∥f ′(x)

∥∥∗
0.

We already have mentioned that ‖x‖0 ≤ ν +2
√

ν for every x ∈ Q. Thus, the first part
of (5.16) is proved. Further, let x ∈ F . Applying (2.12) with u = 0 and v = x(1), we
have

∥
∥f ′(x(1)

)∥∥∗
0 ≤ ν

1 − π0(x(1))

[(2.14) with u = 0, v = x(1),w = x] ≤ ν(1 + ν + 2
√

ν)

1 − π0(x)

[(2.13) with u = 0, v = x] ≤ ν(ν + 2
√

ν)(1 + ν + 2
√

ν)

π0(x)

∥∥f ′(x)
∥∥∗

0

≤ O(1)ν4
∥∥f ′(x)

∥∥∗
0,

the concluding inequality being given by (5.10) combined with the fact that Q is
contained in ‖ · ‖0-ball of the radius ν + 2

√
ν centered at 0 (Proposition 2.1(v)).

Thus, we get the second part of inequality (5.16). �

Corollary 5.1 Under Assumption (5.10), the Riemannian length of the central path
can be bounded from above as

ρ
[
x(·),0,1

] ≤ O(1)ν1/4(σ(0, F ) + lnν
)
, (5.21)

where σ(x,X) is the infimum of Riemannian lengths of curves starting at a point x

and ending at a point from the set X.

Proof Let x ∈ F . By (3.5), we have

f (x) − f (0) ≤ √
νσ(0, x),

while by (3.4) we have

ln
(
1 + ∥∥f ′(x)

∥∥∗
0

) ≤ σ(0, x).

Combining these inequalities and (5.16), we get

ρ
[
x(·),0,1

] ≤ O(1)ν1/4(σ(0, x) + lnν
);

since the resulting inequality is valid for every x ∈ F and σ(0, x) ≥ O(1) by (5.10),
(5.21) follows. �

Note that in view of Example 1.1 this statement is not valid for an unbounded Q.
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5.3 Central Path in Standard Minimization Problem

Now let us look at the optimization problem

min
{〈c, x〉 : x ∈ clQ

}
, (5.22)

where Q is a bounded open convex set endowed with a ν-self-concordant barrier f .
Assuming that the minimizer xf of f on Q is available, consider the standard
f -generated short-step path-following method for solving (5.22), where one traces
the central path

x(t) : f ′(x(t)
) = −tc, t ≥ 0,

as t → ∞. From the standard complexity bound for the number of Newton steps
required to trace the segment 0 < t0 ≤ t ≤ t1 of the path, we can derive that

Nf

(
x(t0), x(t1)

) ≤ O(1)

(
1 + √

ν ln
t1

t0

)
. (5.23)

On the other hand, Lemma 4.1 combined with approach [6] leads to another bound:

Nf

(
x(t0), x(t1)

) ≤ O(1)
(
1 + ρ

[
x(·), t0, t1

])
,

ρ
[
x(·), t0, t1

] ≤
√

[
f

(
x(t1)

) − f
(
x(t0)

)]
ln

t1

t0
.

(5.24)

Moreover, the value ρ[x(·), t0, t1] is an exact two-side estimate (up to constant fac-
tors) for the number of steps of any short-step path following scheme (see [6]).

Note that the new bound (5.24) is sharper than the old one. Indeed, by (3.5), we
have

f
(
x(t1)

) − f
(
x(t0)

) ≤ √
νσ

(
x(t0), x(t1)

) ≤ √
νρ

[
x(·), t0, t1

]
,

so that the second inequality in (5.24) says that ρ[x(·), t0, t1] ≤ √
ν ln t1

t0
. With this

upper bound for ρ[x(·), t0, t1], the first inequality in (5.24) implies (5.23). As it is
shown in Example 5.1, the ratio of the right-hand side of (5.24) to that of (5.23) can
be as small as O( 1

ν1/2 ).
Bound (5.24) allows to obtain certain result on suboptimality of the path-following

method in the family of all short-step interior point methods associated with the same
self-concordant barrier. Namely, consider a segment t ∈ [t0, t1], t0 > 0, t1 < ∞, of
the central path and assume that at certain moment we stand at the point x(t0). Start-
ing from this moment, the path-following method reaches the point x(t1) with the
value of the objective 〈c, x(t1)〉 < 〈c, x(t0)〉 in O(ρ[x(·), t0, t1]) Newton steps. Let
us ask ourselves whether it is possible to reach a point with the value of the objec-
tive at least 〈c, x(t1)〉 by a short-step interior point method, associated with f , for
which the number of iterations is essentially smaller than O(ρ[x(·), t0, t1]). As it is
shown in [6], the number of steps of any competing method is bounded below by
O(σ(x(t0),Qt1)), where

Qt1 = {
x ∈ Q | 〈c, x〉 ≤ 〈

c, x(t1)
〉}

.
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Thus, the aforementioned question can be posed as follows:

(Q) How large could be the ratio ρ[x(·), x(t0), x(t1)]/σ(x(t0),Qt1)?

The answer is given by the following theorem.

Theorem 5.3 Assume that the ellipsoid W 1
10

(x(t0)) does not intersect Qt1 .3 Then

ρ
[
x(·), t0, t1

] ≤ O(1)ν1/4
√

σ
(
x(t0),Qt1

)[
σ
(
x(t0),Qt1

) + lnν
]
. (5.25)

Proof (1) Let H = {x ∈ Q | 〈c, x〉 = 〈c, x(t1)〉}. Since x(t0) ∈ Q\Qt1 , we clearly
have

σ
(
x(t0),H

) ≤ σ
(
x(t0),Qt1

)
. (5.26)

Note that f attains its minimum on H at the point x(t1), so that

〈
f ′(x(t1)

)
, x − x(t1)

〉 = 0, ∀x ∈ H. (5.27)

Since f ′(x(t1)) = −t1c, f ′(x(t0)) = −t0c and 〈c, x(t1)〉 < 〈c, x(t0)〉, we have also

〈
f ′(x(t0)

)
, x − x(t0)

〉 = 〈
f ′(x(t0)

)
, x(t1) − x(t0)

〉 ≥ 0, ∀x ∈ H. (5.28)

(2) Let x ∈ H . Since f attains its minimum on H at the point x(t1) and in view of
(3.5), we have

f
(
x(t1)

) − f
(
x(t0)

) ≤ f (x) − f
(
x(t0)

) ≤ √
νσ

(
x(t0), x

)
. (5.29)

Furthermore, by (3.4)
∥∥f ′(x)

∥∥∗
x(t0)

+ 1 ≤ exp
{
σ
(
x(t0), x

)}(∥∥f ′(x(t0)
)∥∥∗

x(t0)
+ 1

)

≤ exp
{
σ
(
x(t0), x

)}(√
ν + 1

)
. (5.30)

Using (2.12) with u = x(t0) and v = x(t1) we get

∥∥f ′(x(t1)
)∥∥∗

x(t0)
≤ ν

1 − πx(t0)(x(t1))

[(2.14) with u = x(t0), v = x(t1),

w = x and (5.27)] ≤ ν(1 + ν + 2
√

ν)

1 − πx(t0)(x)

[(2.13) with u = x(t0), v = x and (5.28)] ≤ ν(ν + 2
√

ν)(1 + ν + 2
√

ν)

πx(t0)(x)

∥∥f ′(x)
∥∥∗

x(t0)

≤ O(1)ν4
∥∥f ′(x)

∥∥∗
x(t0)

,

3It is easily seen that the case when W 1
10

(x(t0)) intersects Qt1 is trivial: ρ[x(·), t0, t1] ≤ O(1).
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where the concluding inequality follows from the fact that, on one hand, W 1
10

(x(t0))

does not intersect H , whence ‖x − x(t0)‖x(t0) ≥ 1
10 , and, on the other hand, the

‖ · ‖x(t0)-distance from x(t0) to the boundary of Q in the direction x − x(t0) does
not exceed ν + 2

√
ν in view of (5.28) and Proposition 2.1(v).

Thus,
∥
∥f ′(x(t1)

)∥∥∗
x(t0)

≤ O(1)ν4
∥
∥f ′(x)

∥
∥∗

x(t0)
≤ O(1)ν5 exp

{
σ
(
x(t0), x

)}
, (5.31)

the concluding inequality being given by (5.30).
Since the ellipsoid W 1

10
(x(t0)) does not intersect Qt1 and x ∈ Qt1 , we have

σ
(
x(t0), x

) ≥ O(1). (5.32)

(3) Assume first that λ(x(t0)) ≥ 1
2 . Then by Lemma 4.1, we have

ρ
[
x(·), t0, t1

] ≤
√

[
f

(
x(t1)

) − f
(
x(t0)

)]
ln

‖f ′(x(t1))‖∗
x(t0)

‖f ′(x(t0))‖∗
x(t0)

[by (5.29) and λ(x(t0)) ≥ 1
2 ] ≤

√
ν1/2σ

(
x(t0), x

)
ln

(
2
∥
∥f ′(x(t1)

)∥∥∗
x(t0)

)

[by (5.31) and (5.32)] ≤ O(1)

√
ν1/2σ

(
x(t0), x

)(
σ
(
x(t0), x

) + lnν
)
. (5.33)

Now let λ(x(t0)) ≤ 1
2 . Then by (2.7), we have

1

2
≤ ‖g‖∗

x(t0)
/‖g‖∗

xf
≤ 2, ∀g ∈ E∗\{0}. (5.34)

Now by Lemma 4.1(ii), we have

ρ
[
x(·), t0, t1

] ≤ ln 2 +
√[

f
(
x(t1)

) − f
(
x(t0)

)]
ln

(
max

{
1,4

∥∥f ′(x(t1)
)∥∥∗

xf

})

[by (5.29), (5.34)] ≤ ln 2 +
√

ν1/2σ
(
x(t0), x

)
ln

(
max

{
1,8

∥
∥f ′(x(t1)

)∥∥∗
x(t0)

})

[by (5.31), (5.32)] ≤ ln 2 + O(1)

√
ν1/2σ

(
x(t0), x

)(
σ
(
x(t0), x

) + lnν
)
.

Recalling (5.32), we conclude that

ρ
[
x(·), t0, t1

] ≤ O(1)ν1/4
√

σ
(
x(t0), x

)(
σ
(
x(t0), x

) + lnν
)
.

Since x ∈ H is arbitrary, we get

ρ
[
x(·), t0, t1

] ≤ O(1)ν1/4
√

σ
(
x(t0),H

)(
σ
(
x(t0),H

) + lnν
)
. �

We conclude that the ratio in (Q) is up to logarithmic in ν terms, at most ν1/4.
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