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Abstract

In this Thesis, we develop new polynomial-time methods for black-box-
represented Convex Programming problems of the form mi)r(l f(z), where X
HAS

is a solid (convex set with a nonempty interior) in R™ and f is a convex
continuous function on X. A “black-box” representation of such a problem
is given by a pair of “black box” subroutines (“oracles”); specifically, X is
given by a Separation oracle which, given on input a point x € R", reports
whether = € int X, and if its is not the case, returns a linear form which
separates x from int X, while f is represented by a First Order oracle which,
given on input = € int X, returns f(z) and f'(z) € df(x). Besides, we as-
sume that we are given in advance reals R > r > 0 such that X is contained
in the centered at the origin Euclidean ball of radius R and contains a ball of
radius 7. A method B for solving problems of this type is called polynomial,
if, for every € € (0,1) and every problem gél)r(l f(z) from the outlined family,

B generates an e-solution to the problem (i.e., a point z. € X such that
flze) — H}}nf < e(m}z{xxf - m)}n f)) in a polynomial in n, In(1 + R/r) and
In(1 + 1/€) number of calls to the Separation and the First Order oracles,

with every call accompanied by a polynomial in the same parameters number
of arithmetic operations.

The discovery of polynomial time methods for black-box-represented con-
vex problems (1976) had fundamental theoretical consequences: these meth-
ods underly general results on polynomial time solvability of generic convex
optimization programs, e.g., the famous result (Khachiyan, 1978) on poly-
nomial time solvability of Linear Programming. Aside of their theoretical
importance, methods of this group yield fast and reliable tools for solving
general-type convex optimization programs of low dimension (up to 30-50
variables) and can be used to solve auxiliary problems when implementing
numerous algorithms (e.g., restricted memory bundle methods) for large-scale
convex optimization.

For the time being, just 3 polynomial time methods for black-box-represented
Convex Programming problems are known, specifically, the Ellipsoid method
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(Nemirovski & Yudin, 1976, Shor 1977), the Circumscribed Simplex method
(Bulatov & Shepot’ko 1982, Yamnitski & Levin 1982), and Inscribed Ellip-
soid method (Khachiyan et al., 1987). All these methods belong to the family
of cutting plane methods (a natural multidimensional extension of the usual
Bisection); however, the crucial property of polynomiality of a method relies
upon “ad hoc” geometrical considerations, specific for every one of the three
methods in question. The major goal of Thesis is to develop a new insight
on the intrinsic nature of stationary polynomial time cutting plane methods.
Our main result states, essentially, that every self-scaled cone (i.e., a closed
pointed and convex cone in a Euclidean space which is self-dual and such that
the group of linear authomorphisms of the cone acts transitively on its in-
terior) produces, via certain standard construction, a stationary polynomial
time cutting plane method. Our construction, as applied to a particular self-
scaled cone — a Lorentz cone {x € R"™' : z,, .y > /% + ... + 22}, yields the
Ellipsoid method. Similarly, to get the Circumscribed Simplex method, one
should apply the same construction to another self-scaled cone — nonnegative
orthant R}t = {x € R"™ : 2 > 0}V, As applied to other self-scaled cones
(e.g., the cones of positive semidefinite real symmetric (or Hermitian, or
Hermitian quaternion) matrices, or to arbitrary direct products of the above
cones), our construction yields completely new polynomial time stationary
cutting plane methods.

We analyze the theoretical complexity properties of the wide family of
polynomial time methods we have discovered. It turns out that in the worst-
case setting, no one of these methods can outperform the Ellipsoid algorithm.
At the same time, it is known that the practical behaviour of the ellipsoid
method is nearly the same as its theoretical worst-case behaviour. On the
other hand, there are clear theoretical reasons to expect that the practical be-
haviour of other polynomial time cutting plane algorithms will be essentially
better than their theoretical worst-case behaviour, so that in principle one
could hope that the new algorithms are of certain practical interest. How-
ever, a numerical comparison of the existing and the new polynomial time
algorithms is beyond the scope of this Thesis.

DOur construction,however, cannot yield the Inscribed Ellipsoid method, since it is not
stationary.



Chapter 1

Introduction

1.1 The goal: background, outline and moti-
vation

In nonlinear optimization, research aims at the mathematical study of prob-
lems and solution algorithms, the implementation of the algorithms and ex-
perimentations on computers as well as practical applications. In the three
directions, the development is different and is changing from time to time.
Parallel with the widespread utilization of nonlinear optimization, the devel-
opments of algorithms and software engineering (e.g., expert systems, de-
cision support systems, symbolic computation), and the rapid growth of
computing experience, the need for exploring the mathematical nature of
the arising problems is increasing, which means a serious help in modelling,
designing and developing algorithms, i.e., the solid theoretical background
makes the handling and solution of the problems substantially easier. In the
theory of nonlinear optimization, remarkable results have been obtained till
now.

One of the most important classes of nonlinear optimization is constituted
by convex optimization problems. The importance of this problem class is
due to the fact that convex programs, in a sense, form a “solvable case”
in Continuous Optimization: under mild regularity assumptions, a generic
convex optimization program admits an efficient — polynomial time — solution
algorithm (for details, see [4], Chapter 5). The goal of this Thesis is to
develop new polynomial time solution algorithms for general-type Convex
Programming problems.

Polynomial Time algorithms in Convex Programming — prelimi-
naries. The known polynomial time Convex Programming algorithms can



be split into two groups:

A. Universal “black-box-oriented methods”. The characteristic features of
these methods are as follows:

— The methods, essentially, impose no restrictions on the problem,
except for convexity;

— The methods do not require complete a priori knowledge of the
problem to be solved. The solution process is based solely upon
the possibility to compute the values and subgradients of the ob-
jective function and the constraints at a point.

The latter possibility is offered by a kind of black box routine —
“oracle”, and this is where the name “black-box-oriented meth-
ods” comes from.

B. Methods for specific “well-structured” convex problems, like Linear,
Quadratic Linearly /Quadratically Constrained and Semidefinite Pro-
gramming programs. These methods (as a matter of fact, all of them
belong to the family of Polynomial Time Interior Point methods) can
be characterized as follows:

— The methods are aimed at solving programs of fixed analytical
structure, so that the objective function and the constraints of a
particular problem instance are fully specified by the values of the
coefficients of known in advance analytical expressions;

— The solution process utilizes the complete a priori knowledge of
the problem under consideration.

The development of polynomial time algorithms for Convex Optimization
was started in 1976 with the Ellipsoid method (Nemirovski and Yudin [10];
Shor [14]), followed by the Circumscribed Simplex method (Bulatov and
Shepot’ko [5]; Yamnitski and Levin [16]) and the Inscribed Ellipsoid method
(Khachiyan et al. [8]). All these methods belong to group A, and no other
polynomial time methods of this group are known.

The first polynomial time Interior Point method was proposed by N.
Karmarkar in 1984 [7] for Linear Programming. The discovery of Karmarkar
initiated explosion of activity (sometimes called “Interior Point Revolution™)
in the area of IP methods first for Linear, and then - for well-structured
nonlinear convex problems. As a result of 15-year effort of hundreds of re-
searchers expressed in several thousands of theoretical papers and numerous
software projects, the Interior Point revolution , extended dramatically the
power and the scope of Convex Optimization techniques.



Black-box-oriented polynomial time methods vs. Interior Point
ones. The strongest feature of black box oriented polynomial time meth-
ods is their universality — as it was already stated, the only “application
restrictions” imposed by these methods are the convexity and the “efficient
computability” of the objective and the constraints of the problem to be
solved. This feature is crucial in theoretical results on polynomial time solv-
ability of generic convex programs (see, e.g., [4], Chapter 5); the latter fact is
one of the most fundamental discoveries in Convex Optimization and Com-
puter Science. In contrast to this, Interior Point polynomial time methods are
oriented at particular families of convex programs and thus are far from being
universal. At the same time, universality, which makes black-box-oriented
methods that attractive in theoretical studies, implies severe limitations on
the computational power of these methods as actual computational tools. In-
deed, it is known [11] that for every black-box-oriented method B as applied
to programs

min{f(z):ze€D,={zeR", -1 <z, <1,1<i<n}} (B)

with convex continuous objective functions f normalized by the requirement
0 < f(z) <1for x € D, and every € < 1/2, there exists an instance of (B)
where building e-solution?) by B takes at least 0.8n ln% calls to the oracle
computing the values and the derivatives of f. Note that the outlined bound
O(n)In % on performance of black-box oriented methods is a theoretical lower
bound expressed in terms of the number of oracle calls; the actual number of
oracle calls N(¢) required to build e-solution by a particular polynomial time
black-box-oriented method can be significantly larger than this lower bound.
Besides this, the answers of the oracle should be somehow processed by the
method, which means additional computational effort. The actual complex-
ity characteristics of known polynomial time black-box-oriented methods as
applied to solving problems (B) within accuracy e are given in Table 1.1.
From these data is clear that

For black-box-oriented methods, the “computational cost per ac-
curacy digit” (the factor at In < in the operation count) blows up

with the dimension n of the problem at least as n*.

It should be stressed that, as a matter of fact, the above bound reflects both
the worst case and the typical behaviour of black-box-oriented methods. As
a result,

Di.e., a point x, € D,, such that f(z.) — I%inf <e

3



Total # of arithmetic
Method # of oracle calls operations to process
oracle’s answers
Ellipsoid O(1)n?In (%) O(1)n'In (%)
Circumscribed Simplex O(1)n’In (%) O(1)n°In (%)
Inscribed Ellipsoid O(1)nln (2) O(1)n*"1In (2)

Table 1.1: Performance characteristics of known polynomial time black-box-
oriented methods when solving problems (B) within accuracy € (f : D, —
[0, 1] is convex and continuous).

All known polynomial time black-box-oriented methods become
impractical when solving problems with more than few tens of
design variables.

The polynomial time Interior Point methods are free from the outlined limita-
tions; as a result, these methods allow to handle problems with hundreds and
thousands, and in some cases (e.g., in Linear Programming with favourable
sparsity pattern of the constraint matrix) — hundreds of thousands of design
variables. This is perhaps the major reason of huge interest in Interior Point
methods during last two decades.

The goal of the Thesis is to develop essentially new polynomial time
black-box-oriented methods. The motivation behind this goal is as follows.

1. As far as theoretical aspects are concerned, the three existing universal
polynomial time methods look a kind of “ad hoc” inventions. We are
about to demonstrate that both the Ellipsoid and the Circumscribed
Simplex methods are particular cases of a general construction with
allows to associate such a method with every symmetric self-scaled
cone. The Ellipsoid and the circumscribed Simplex algorithms are given
by this construction as applied to a Lorentz cone and a nonnegative
orthant, respectively, and these are just two very particular cases of
self-scaled cones; the general case includes the cones of real symmetric,
Hermitian and Quaternion positive semidefinite matrices, as well as
finite direct products of cones from the just outlined series. We believe
that a general theory of stationary polynomial time black-box-oriented
methods we intend to develop yields a new insight and is of definite
theoretical interest.



2. As far as computational power is concerned, the polynomial time meth-
ods we intend to develop are subject to the same severe limitations,
intrinsically related to universality, as the existing black-box-oriented
methods. These limitations, however, still leave enough room for the
methods in question to be of practical interest. Indeed, when solving
convex optimization problems of “small design dimension” n, like 10
— 40, the bounds in Table 1.1 are not prohibitively large, especially
when one takes into account several attractive computational features
of black-box-oriented polynomial time methods, specifically

(a) ability to handle in polynomial time (and thus — to very high ac-
curacy) very complicated objective and constraints with no trans-
parent analytical structure;

(b) perfect numerical stability, much better than the one of Interior
Point methods, and thus — high reliability;

(c) algorithmic and implementation simplicity.

These attractive properties, known to be possessed by the Ellipsoid and
the Circumscribed Simplex methods, in fact come from the specific
structure of the algorithms. Since this structure, as we shall see, is
shared by the novel methods we are about to develop, we have all
reasons to believe that the outlined advantages will be possessed by
the new algorithms as well.

Of course, one could argue that a convex optimization method capable
to solve problems with no more than 10 — 40 design variables is of no
practical interest whatsoever, independently of how good is it in its
“application domain”. We strongly believe that this is not the case.
Moreover, surprisingly enough, these are exactly extremely large-scale
convex programs which give rise to interest in rapid and reliable low-
dimensional optimization. Just two examples:

(a) Decomposition. Consider a large-scale convex optimization pro-
gram of the form

) %mzéﬂmm
omtal i iZlwa  F(x) = FﬂfM) <0
\ i Fy(z[N]) | )
(D)



where x[i] are certain blocks of design variables and Fy(z), F;(x[i]),
i > 1, are vector functions. If there were no “linking constraints”
Fo(z) <0, (D) would be merely a collection of N independent
convex optimization problems; when N is large and dim z[i] <<
dim z, dim F; << dim F, it is mush easier to solve the /N problems
from the collection one by one than to solve a single “large” prob-
lem with dim z variables and dim F' constrains. Now consider the
case when the linking constrains are present. In this case, by La-
grange Duality, problem (D), under mild regularity assumptions,
is equivalent to finding saddle point (max in A, min in x) of the
function

L@ A) = 3 filalil) + Y0 A" Fo(al)
on the set

{A>0) x {z: F(eli)) <0,i=1,..,N}.

A X

The saddle point problem, in turn, can be reduced to the problem
of minimizing in A € A the function
A) = —inf L(x, ).

G(A) = — inf L(z, )
This function is “easily computable”; indeed, to compute the value
and a subgradient of G' at a given point is, essentially, the same
as to solve one by one N “small” problems

min { (e i) + A Fo(oli) : Fiali) <0} i = 1,0 N

Note that the problem of minimizing G over A is a typical black-
box-represented convex program: even in the case when (D) is
perfectly structured (say, is a Linear Programming program), the
function G(A), although convex, has no “usable” structure. It fol-
lows that the only way to implement the outlined Decomposition
scheme is to solve (G) by a black-box-oriented method. When the
number dim Fy of “linking constraints” is small, say, < 40 (which
well may happen in the case when (D) by itself is extremely large-
scale), then a natural candidate to the role of the latter method
might be a polynomial time black-box-oriented algorithm.

Extremely large-scale optimization via restricted memory bundle
methods. When solving extremely large-scale convex programs

6



(tens and hundreds of thousands of design variables; problems of
this type do arise in many applications, e.g., in 3D Medical Imag-
ing or Structural Design), one usually cannot use Interior Point
methods even in the case when the program is perfectly structured.
This impossibility comes from the fact that IP methods require
solving Newton-type systems of the size equal to the design di-
mension of the problem, and solving a linear system with, say,
10,000 (not speaking of 100,000) variables is an absolutely impos-
sible task?. The problems in question typically are constrained
problems of the form

min f (), (%)

reX
where X is a “simple” set (like Euclidean ball, or box, or simplex),
and f is a convex objective defined on X. One of the most promis-
ing approaches to handling extremely large-scale problems of the
form (x) is offered by restricted memory bundle methods (see, e.g.,
[9, 17] and references therein). At a step of such a method, one
needs to solve an auxiliary problem of the form
i cAx <
min {w(z) : Az < b},
where

e w(z) is a “simple” function (say, linear, or 1z7z),
e the column size of the bundle [A,b] is under our full control

and can be (and is) kept small, like 1 — 30.

When the dimension of X is really large, the natural way to solve
the auxiliary problem is by passing to its Lagrange dual problem
i A A) = —mi M [Az —b]].
minG(A), G(A) = —minjw(z) + A"[Az — B
Here, same as in the case of decomposition, the dual objective
G(+) is convex and “easily computable”®), although has no “usable
structure”. When minimizing G over A > 0, we again are solving
a low-dimensional convex program with black-box-represented ob-
jective, and again can use a polynomial time black-box-oriented
algorithm.

2)unless the system possess an appropriate sparsity structure, which is not the case in
many applications, e.g. those we have mentioned.

3)Indeed, to compute the value and a subgradient of G at a given point, one should
minimize the simple function w(x) + AT[Az — b] over the simple set X; say, when X is
Euclidean ball (or the standard simplex, or a box) in R™ and w(z) is either linear, or

%xTx, it takes just O(nlnn) arithmetic operations to compute G and G’.



The bottom line is: Although the main emphasis in this Thesis is on purely
theoretical development of new polynomial time black-box-oriented optimiza-
tion algorithms, associated with self-scaled cones, we do believe that our
research may be of practical potential as well.

1.2 Overview of contents

Our presentation is as follows. In the remaining sections of Introduction,
we describe in details the black-box-based setting of a convex optimization
program along with a general Cutting Plane Scheme for solving problems in
this setting, thus specifying the framework for our further developments and
allowing for detailed formulation of the goals of the research (Section 1.3). In
Section 1.4, we outline the results of our research. These results are obtained
and discussed in Chapter 2.

1.3 Black-box-represented convex programs
and the Cutting Plane scheme

In what follows we focus on convex optimization programs in the form

min f(z), (P)

xeX
where

e the domain X of the problem is a solid (convex compact set with a
nonempty interior) in an n-dimensional Euclidean space E with inner
product (-, -)g;

e the objective f : X — R is a convex continuous function on X.

1.3.1 Black-box-represented convex programs

When speaking about solution methods for (P), we always assume that the
problem is black box represented, meaning that

e X is represented by a Separation oracle — a routine which, given on
input a point x € R", reports whether x € int X, and if it is not the
case, reports a separator of x and X — a nonzero vector e and a real
a > 0 such that

e, T)g 2> a4+ maxie
< ) >E 2 a-+ ye)?(< 7y>E

8



(the existence of such a separator is given by the Separation Theorem
for convex sets, see, e.g., [2], Theorem ?777).

e f is represented by a First Order oracle which, given on input a point
x € int X, returns on output the value f(x) and a subgradient f’(z) of
f at x.

Note that outlined “working environment” covers many other traditional
Convex Optimization settings, for example, problems given in the Nonlinear
Programming form

rr;in {f(x):9i(x) <0,i=1,...m}. (1.1)

Assuming that the problem (1.1) is convex (i.e., f(x) and g¢;(x), i =1,...,m,
are finite convex functions on E) with a bounded feasible set X = {x :
gi(x) <0,i=1,...,m} and assuming the Slater condition

dz - gl(f) <0,2=1,....m,

we can rewrite (1.1) in the form of (P); from the assumptions we have just
made it follows that X indeed is a solid. To equip the resulting problem (P)
with Separation and First Order oracles, it suffices to be able to compute
the values and subgradients of f and ¢y, ..., g, at any given point. Indeed,
in this case we can mimic the required oracles as follows.

e In order to mimic the Separation oracle, we, given x € E, compute the
quantities g;(z), 1 < i < m. If all these quantities are negative, we report
that = € int X, otherwise we report that x ¢ int X, identify an index i* such
that g;«(z) > 0 and set

e = gi.(z).
From the definition of the subgradient it follows that

V(y € X):0 < g(x) — g (y) < (gj(2), 2 — y),

so that gl.(z) is the required separator.
e The First Order oracle for f is readily given by the postulated possibility
to compute values and subgradients of f at every point.

1.3.2 The Cutting Plane scheme

The Cutting Plane scheme is one of the standard schemes for solving black-
box-represented convex optimization problems in the form of (P); as a matter
of fact, both known universal polynomial time optimization methods and



the methods we intend to develop are particular implementations of this
general scheme. The scheme is a straightforward multidimensional analogy
of Bisection. As applied to (P), a generic cutting plane algorithm works as

follows:

1. Initialization. Choose an initial localizer Gy — a subset of E which
contains X. Set f® = +o0o (f* is the best (the smallest) value of the
objective along the feasible solutions found at the first ¢ steps).

2. Step t, t > 1. Given previous localizer — a set G;_; C E — we act as

follows:

(a) We choose somehow ¢-th search point x; € E and call the separa-
tion oracle to check whether x, € int X.

1.

11.

If the separation oracle says that x; ¢ int X (a non-productive
step), it returns a separator (e; # 0,4 > 0) :

(e1, v)E > oy + max{es, Y)E, e; # 0.
yeX

If the separation oracle says that z; € int X (a productive
step), we call the first order oracle, z; being the input, to get

f(xy), f'(z), and set
fto= min[f'7, f(z,)]
er = f'(x)
o = flz)—f" [>0]

If e, = 0, z; is the exact solution of (P), and we terminate.

(b) We set

@t: {ZEG Gt—l ’ <€t,x—$t>E+O{t SO},

we choose somehow a new localizer GG; such that

G, C G,.

Loop to step ¢ + 1.

3. Approximate solution x! generated in course of the first ¢ steps of the

method is well-defined only if among these steps there were productive
ones. In the latter case, ! is the best — with the smallest value of f — of
the search point z, associated with productive steps 7 < t. Note that
2" is well-defined if and only if f! < 0o, and in this case f(z') = f*.

10



1.3.3 Rate of convergence of a Cutting Plane algo-
rithm

We have assumed once for ever that the objective f in (P) is convex and
continuous on X. For the time being (and only for the time being) it makes
sense to relax slightly this assumption and to assume that f is convex with
int X C Domf (so that f can be 400 at certain boundary point of X) and
that f is semi-bounded:

V(f)= suwp  (y—a f(2)ear < . (1.2)
zelnt X yeXx

Here, as always, f’(z) is a subgradient of f at x (it is easily seen that the
value of the right hand side in (1.2) is independent of how we choose this
subgradient at every point). Note that if f is bounded on X, then f is
semi-bounded, and

V(f) < sup f(z)— inf f(z).

zeint x zelnt x

Indeed, the right hand side in (1.2) remains unchanged when we restrict y
to vary in int X, and for z,y € int X we have (y — z)7 f'(z) < f(y) — f(x)
(since f is convex and Domf D int X).

The standard analysis of Cutting Plane methods is based on the following
simple

Proposition 1.1 [12]| Let all localizers G generated by a cutting plane method
as applied to (P) be measurable. Assume that t is such that

(a) in course of the first t steps the method did not terminate with an
optimal solution to the problem, and

=()" <

(from now on, Vol(A) is the dim E-dimensional Lebesque measure of a
measurable set A C E).

(b) one has

Then the result x* of the first t steps is well-defined, belongs to int X and is
an €(t)-solution to (P), i.e.,

€(t)
1 —e(t)

fa) —inf f < V(). (1.3)

11



Proof (see [12]). Let us choose € € (e(t),1) and 6 > 0, and let us set
X5:{$€intX|f(x)§i§ff+5}, X =(1-€)X5+€X.

By evident reasons, Vol(X§) > (¢)"Vol(X) > €"(t)Vol(X) = Vol(G,), so
that the set X gl\Gt is nonempty. Let y be a point of the latter set. Since
Xg’ C intX, we have y € intX, whence also y € Gog D X. Thus, y € Gy and
y ¢ Gy; it follows that there exists 7 < ¢ such that y € G,_; and y/ﬁé G,.
Looking at how G; and G,_; are linked, we conclude that y € G,_1\G,, i.e.,
that

(er,y — xr)E + ar > 0. (1.4)

We claim that the step 7 is productive (x, € int X). Indeed, otherwise
(er, ;) would separate z, and X, i.e., it would hold (e, z,)g > o, + (e, 2)E
for all z € X in particular, for z = y (as we have seen, y € X); but the
relation (e,, z.)g > o, + (€., y)g contradicts (1.4).

Thus, the step 7 is productive (z, € int X). Since 7 < ¢, it follows that z* is
well-defined; by construction of %, this point, being well-defined, belongs to
int X and satisfies the relation

fa)=f<fn (1.5)

Furthermore, since 7 is a productive step, (1.4) implies that (f'(z,),y —
) E + a; > 0, whence by convexity of f

fy) = far) —ar = f7 (1.6)

(the concluding equality is given by the definition of ., for a productive step
7). Now recall that y € Xgl; by construction of the latter set, it means
that there exist u € int X, v € X, with f(u) < i§ff + 6, such that y =

(1 — €)u+ €'v. We now have

mf f+0 > f(u) = fly) + (') v =y = [y) ={[y)v—-ue

whence
! !

€ €
/ _ <
1_€/<f(y>av y>E_1§ff+5+1_€I

Combining this relation with (1.6) and (1.5), we come to

Fly) <inf f 46+ V(f).

6/

V().

The resulting inequality if valid for all § > 0 and all € € (e(t), 1), and (1.3)
follows. =

f(zh gi%ff+(5+
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Corollary 1.1 Assume that in a cutting plane method the policies of choos-
mng

(a) the initial localizer Gy,

(b) the current search point x;, given Gy_1, and

(c¢) the new localizer Gy, given @t, are such that whatever are nonzero
vectors e, it is guaranteed that

o . 1/n
<%) <w< 1. (1.7)

(recall that n = dim E).

Then, for every solid X and every semi-bounded on X convex objective f,
one has for allt > 1 :

o(t)

o 0 1/n
ot (Y/Oll(&;) <= f(e)—inff < f(?(t)w f).

Moreover, when f is bounded, if w = w(n) approaches 1 as n — oo in a
polynomial fashion:

oy =1-20 =g (1.8)

then (1.3) implies a polynomial-time, in terms of the iteration count, effi-
ciency estimate, specifically, the estimate
V(ee€[0,1)):
IB D_ t - . - .
t>0(1)n’In () = f(a') m)}nfge[m)?xf m)}nf o (1.9)

_ Vo1<co>)1/"
Do = (Vol(X) :

Due to the latter fact, a Cutting Plane algorithm satisfying (1.7)—(1.8) implies
an efficient algorithm for non-smooth convex optimization, provided that one
can efficiently implement the Cutting Plane step (i.e., compute z;, given G;_1,
and compute Gy, given Gy_1, 4, €;).

1.3.4 Known polynomial time implementation of the
Cutting Plane scheme

For the time being, just three polynomial time implementations of the Cut-
ting Plane scheme satisfying are known, namely

13



e The Ellipsoid method (Nemirovski & Yudin [10]; Shor [14]). Here all
localizers (G; are ellipsoids, x; is theAcenter of G;_1, and G} is the min-
imum volume ellipsoid containing G;. For this algorithm, § = 2, and
the arithmetic cost of the step is O(n?).

e The Circumscribed Simplex method (Bulatov & Shepot’ko [5]; Yam-
nitski & Levin [16]). Here all localizers G, are simplexes, x; is the
barycenter of G;_1, and G, is certain approximation to the smallest
volume simplex containing G;. For this method, § = 3 (which is worse
than for the Ellipsoid method) and the arithmetic cost of a step is
O(n?) (same as in the Ellipsoid method).

e The Inscribed Ellipsoid method (Khachiyan et al [8]). Here X is as-
sumed to be a polytope, all localizers G; also are polytopes, x; is the
center of the maximal in volume ellipsoid inscribed into the previous
localizer G;_1, and G; = G,. For this method, # = 1 (which is bet-
ter than for the Ellipsoid method) and the arithmetic cost of a step is
O(n*?) (which is worse than for the Ellipsoid method).

It should be stressed that the existence of "polynomial time Cutting Plane
algorithms” has extremely important theoretical and rather important prac-
tical consequences: this fact underlies the fundamental (and a fairly general)
theorem on polynomial-time solvability of generic Convex Optimization pro-
grams (see [4], Chapter 5); in particular, the Ellipsoid method is the major
”working horse” in the famous proof of polynomial time solvability of Linear
Programming with rational data (Khachiyan, 1978).

1.3.5 Stationary polynomial time Cutting Plane algo-
rithms

Both the Ellipsoid and the Simplex implementations of the Cutting Plane
scheme are ”stationary” in the sense that here all the localizers are affine
images of a once for ever fixed n-dimensional solid — the n-dimensional Eu-
clidean ball for the first method and the standard n-dimensional simplex for
the second method. More generally, a stationary cutting plane algorithm for
solving n-dimensional convex programs is a Cutting Plane algorithm where

e all the localizers are ”geometrically the same” — all of them are the
images of certain ”perfect” solid B C E, 0 € int B, under invertible
affine mappings

r— C(z)=Cr+c

14



e if the current localizer is
Gy = CB + ¢,
then the corresponding search point is
Ti41 = G-

In fact, all we need in order to build a stationary, in the aforementioned
sense, Cutting Plane algorithm satisfying (1.7) is a perfect solid B C E,
specifically, a solid with the following properties:

P.1. B contains the centered at the origin unit Euclidean ball and is con-
tained in the concentric ball of radius v[B];

P.2. Given a nonzero vector p € E, we can efficiently point out a one-to-one
affine transformation

r— AP(z) = Apz + q,
such that

i. Bt =A?(B) D {z € B| (p,z)r < 0};

ii. |Det(4,)]"" <w <1 (n=dimé&). Geometrically: a part of B cut
off B by a hyperplane passing through the origin can be covered
by an affine image BT of B under an affine mapping which reduces

volumes by factor at least w™. The quantity w will be called the
index of B.

Assume that when solving (P) we know in advance two reals R, r, R > r > 0,
such that X is contained in the centered at the origin Euclidean ball of radius
R and contains (unknown) ball of radius r. Then, given a perfect solid B,
we can associate with it a stationary cutting plane method as follows.

SCP Algorithm associated with a perfect solid B:

1. All localizers GG; generated by the method are affine images of B:
Gt - Ct (B),

where C'(z) = Cyx + ¢; and C; are nonsingular square matrices. Ana-
lytically (and algorithmically), the method operates on the data (C}, ¢;)
of these affine mappings.

15



2. The initialization policy (a) is just to set
Co = R[, Co = 0.

With this policy, Gy = RB contains the centered at the origin Eu-
clidean ball of radius R (since B contains the centered at the origin
unit ball), and this ball contains X, as required for the initial localizer.

3. The search policy (b) is to set

Ty = Ct_l(()) = C¢—1-

4. The embedding policy (c) is as follows:

i. Given e; # 0, we set
Pt = C:_1€t
(x — Cfz is the mapping conjugate to the mapping z — Cyz).
Note that since G;_; = C*"}(B) and z; = C*71(0), we have
é\t = {,I S Gt—l | <€t,l’ — $t>g + oy S O} = Ctil(ét),
B'={y € B|(p,y)e +a; <0}
and that p; # 0 (since e; # 0 and C;_; is nonsingular).

ii. By assumption and since a; > 0, the set Bt c {r €B:(p,,z)Eg <
0} is contained in the image of B under the one-to-one affine
mapping y +— AP*(y), whence the set Ct_l(ét) (which contains
the set @t) is contained in the image of B under the one-to-one
affine mapping y — C*'(AP*(y)). Thus, setting

Cy = Ci14A,,, ¢ = Cio1ay, + 11
(so that C*(y) = C*1(APt(y)) for all y), we get
G, = C'(B) = C'""'(A"(B)) D C"(B) = Gy,
ie, G'D CA;t, as required in the Cutting Plane scheme.

Observe that the resulting policies (a), (b), (c) ensure that

\Det (Ct_lA ) ’ 1/n n

< w,
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so that the resulting cutting plane method converges linearly with the rate
w. In particular, if
w<1—0(1)n", (1.10)

then the outlined stationary Cutting Plane algorithm is a polynomial time
one. Specifically, the iteration complexity of finding e-solution, i.e., the num-
ber of steps sufficient to build a point z. € X such that

flze) < H%nf + s[mgxf — m)}nf],

for every € € (0,1) does not exceed

N(e) = O(1)n” In (M) : (1.11)

€r

This result is readily given by (1.9) combined with the fact that in our case

~(Vol(Go)\ Vol(B) Yn Ry[B]
DO_(VOKX)) ‘R(Von{xzuxngsm) =7

(recall that X contains Euclidean ball of radius r, and B is contained in a
Euclidean ball of radius v[B]).
To better visualize aforementioned algorithm, see Fig. 1.1.

1.4 Main Result

For the time being, exactly two “generic solids” were known to possess prop-
erties P.1 — P.2, specifically, n-dimensional Euclidean ball and n-dimensional
simplex; the associates stationary Cutting Plane algorithms were exactly the
Ellipsoid and the Circumscribed Simplex polynomial time methods (note
that the third of the existing polynomial time Cutting Plane algorithms —
the Inscribed Ellipsoid one — is not stationary). The main theoretical result
of this Thesis is that

Every self-scaled cone gives rise to a perfect solid satisfying (1.10)
and thus gives rise to a stationary polynomial time Cutting Plane
algorithm.

Here a self-scaled cone is defined as a closed pointed cone K with a nonempty
interior in E such that K is self-dual:

K=K.={{cE: (£2)g >0Vr € K}

17



Ele]—
CHx]= C,x+e,

Figure 1.1: Geometry of a step in a stationary Cutting Plane algorithm
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and, moreover, int K is a homogeneous space: for every pair of points u,v €
int K, there exists a linear invertible mapping on E which maps K onto itself
and maps u onto v.

It is known [15] that self-scaled cones are exactly cones representable as
direct products of irreducible components of the following 5 types:

1. Lorentz cone L = {z € R" 1 2, > /2 + ... +22_},n=2,3,..;

2. Semidefinite cone S} (the cone of positive semidefinite real symmetric
n X n matrices), n = 1,2, ...;

3. Hermitian cone H'; (the cone of positive semidefinite Hermitian n x n
matrices with complex entries), n = 1,2, ...;

4. Quaternion cone Q7 (the cone of positive semidefinite Hermitian n x n
matrices with quaternion entries), n = 1,2, ...;

5. Exceptional 27-dimensional Octonion cone.

We demonstrate that if K is a self-scaled cone with no Octonion irreducible
components, then appropriate translation of the set

Ki={zeK: (f z)g=1} [f € int K] (1.12)

(treated as a subset of its affine hull) is, up to a dilatation, a perfect solid
with certain explicit value of w satisfying (1.10).
In connection with this result, it should be noted that

1. The sets of the form By corresponding to different choices f € int K
are images of each other under invertible affine mappings, so that in
our context a given self-scaled cone K produces exactly one stationary
polynomial time Cutting Plane method, and this method is capable to
solve problems (P) of design dimension by one less than the dimension
of K;

2. Our construction covers the two previously known stationary polyno-
mial time Cutting Plane algorithms. Specifically, when speaking about
solving n-dimensional problems (P), the Ellipsoid method is given by
our construction as applied to the Lorentz cone L"*!. To get the Cir-
cumscribed Simplex method, the construction should be applied to the
n + 1-dimensional nonnegative orthant RT“I (which clearly is a self-
scaled cone — it is direct product of nonnegative rays Ry = S}.
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3. Our construction extends dramatically the spectrum of stationary poly-
nomial time Cutting Plane algorithms, adding, e.g., methods associated
with spectahedrons

B={z=[z;] e R"* 2 =2"Tr(x) =0, +2 >0}

(B is affine equivalent to the set given by (1.12) as applied to K = S
and to the unit matrix in the role of f), or with cross-sections of direct
products of Lorentz cones, or with cross-sections of direct products of
several Lorentz and several Semidefinite cones, etc.
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Chapter 2

The SCP algorithm associated
with self-scaled cone

This Chapter contains the main result of the Thesis — the construction of
a polynomial time Cutting Plane algorithm associated with a given self-
scaled cone K (with no Octonian irreducible components) in a Euclidean
space E. As it was explained in Introduction, to achieve our goal, we should
demonstrate that for every f € int K and appropriate z; € int K the set

Bi={z—2z;:2eK: (fr—zp)g=0} CF={zcE: (f,z)g =0}
is, up to a dilatation, a perfect solid in F', i.e.,

(&) B contains a Euclidean ball centered at the origin, of certain
radius k, and is contained in the concentric ball of radius v[B]k.
Moreover, whenever g € F is nonzero, the part

Bjlg] = {z € By | (g,7)e < 0}
of By "cut off” the solid By by the hyperplane (g, z)g = 0 passing
through the origin can be covered by the image
AI(B) + bv?
of By under an invertible affine mapping x — A%z + b9 of F onto
itself, and this affine mapping should reduce volumes:
Jw<1):  |Det(A%)VEMF <\ g £0).

Besides this, given g, we should be able to compute efficiently A9
and b9, and the quantity w should be at a “polynomial in dim F”

distance from 1: o)
1l—w> ———2—. 2.1
¥ = (dimF)? (2.1)
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Note that since the cone K is self-scaled, all sets of the form B corresponding
to f,z; € int K are affine images of each other, so that it suffices to prove the
outlined “perfectness” statement for just one pair f,z; € int K, no matter
which.

Our plan of action is as follows. In Section 2.1, we present an explicit
geometric construction which, given on input a (not necessary self-scaled)
cone K in a Euclidean space E, provides a mechanism for covering a set of
the form B;E[g] by an affine image of the set B, with appropriately chosen
h. When K is self-scaled, By, is an affine image of B, (since all compact
cross-sections of a self-scaled cone by hyperplanes intersecting the interior of
the cone are affine equivalent to each other). This, in the self-scaled case the
construction from Section 2.1 in fact yields a mechanism of covering B;f[g] by
the image of By under certain explicit affine mapping. It turns out that with
the parameters of the construction properly chosen, the corresponding affine
mapping reduces volumes and thus provides us with the desired result. This
fact (Theorem 2.1) is established in Section 2.5; its derivation is based upon
the intermediate results (Propositions 2.2, 2.3, 2.4) proved in Section 2.4.
In our analysis, we heavily exploit the theory of self-concordant functions
developed in [13] and, of course, the basic facts on self-scaled cones; the
related background is outlined in Sections 2.2 and 2.3, respectively. In the
concluding Section 2.6 we present and discuss the complexity characteristics
of the polynomial time Cutting Plane methods we have developed.

2.1 Geometry of the construction

2.1.1 The construction

Consider a cone K (convex, closed, pointed and with a nonempty interior)
in a Euclidean space E with inner product (-,-), and let j be a once for ever
fixed unit vector in E which belongs both to the interior of the cone K and
the interior of the dual to K cone K,. Let us set

F:{xEEHj,x):O}.

Then F is a Euclidean space.
Note that whenever f € K,, the cross-section of K by the hyperplane I1[f] =

{x | fTo = ij} passing through j and orthogonal to f, i.e., the set

K[f| = {r e K| (@ ~j.f) =0}
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is convex and compact, and j is in its relative interior. In particular, the set
D:{heFU+heK}:Km—j

is a convex solid in F. Geometrically: D is the orthogonal projection of the
intersection of the hyperplane II[j] = F + j with the cone K onto the plane
F.

Example 1. Let
K = Ri={zeR":2>0},
j o= n7Y2(1,..., )7

In this case,
K.=K =R/,

F:{xGR”:inzo},
i=1

D={zeR": Zmz =0,2; >—n"Y%i=1,... n}
i=1
Geometrically: D is the perfect simplex in the (n — 1)-dimensional Eu-
clidean space F, see Fig. 2.1.1

Example 2. Let
K=L""={(z,t) cR"™ =R xR': t >|| 2 |5}

(this is called the Lorentz, (or ice-cream, or second order) cone), and let

In this case
K, =K=L""

F ={(z,0): 2 € R"},
D={(z,0):z e R" || z [[< 1}.

Geometrically: D is the unit Euclidean ball in F = R".
We have described certain way of producing solids from cones; note that

every solid can be obtained in such a way with appropriately chosen cone K
and j € int K Nint K,.
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Figure 2.1: Perfect simplex
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Now assume that we treat the above solid D as the solid responsible for
a stationary cutting plane algorithm, and set e = 0. How could we ensure

()7

Assume that we are given a unit vector ¢ € F and, as required in (&),
are interested to cover the set

D*[g] = {z € D | {g.2) <0}

by an affine image of D. Let us look at the following geometric construction:

1. Given g, we choose a positive real A and set
[=3+Ag.

Since j € int K, the vector f, for all not large coefficients A, also belongs
to int K,. Consequently, the intersection K[f] of K and the hyperplane
orthogonal to f and passing through c is a convex compact set.

Geometric intuition says to us that the projection D[f] of the set K|[f] onto F
all the time contains D*[g], see Fig. 2.1.1. When A =0, f = Ag+j = j, and
the cross-section K|[f] of the cone K by the hyperplane II[f] is the domain
P,Q,R,. the orthogonal projection of this domain onto F is exactly D. On
our picture, D*[g] is the dashed part of D.

When we increase A, starting from zero, the hyperplane II[f] rotates, and
eventually its intersection with K becomes unbounded. This, however, does
not happen while A is not too large, and the projection D[f] = prs of the set
K[f] = PRS onto F, as is seen on the picture, all the time contains D*[g].

2. In fact, the set ]5[ f] can be shrunk in the direction of g in such a
way that the shrunken set, let it be called D[f], still contains D*[g]. This
is what we see on the above picture — when we shrink (but not too much!)
the set prs in the direction of g, the shrunken set still contains the dashed
part of D, which is our D*[g]. This fact is true in the general case as well
(see below).

3. It follows that if the cone K is such that all its compact cross-sections
by hyperplanes are affine images of each other, then the above construction
provides us with certain mechanism of building affine images of D which
contain the set D*[g] — in this case, all compact sets K[f] = K NII[f] are
affine images of D, and consequently so are their projections ]3[ f] onto F, as
well as the shrinkages D|[f] of these projections (since shrinkage is an affine
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Figure 2.2: The construction.
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mapping). As we have mentioned, all sets D[f] contain D*[g].
Now we can play with the parameter X in order to find the smallest in volume
projection, thus getting (hopefully good!) covering of DT [g] by an affine
image of D.

There are cones where the required property indeed takes place. The first
example is nonnegative orthant — one can easily verify that all its compact
intersections with hyperplanes are of the form

S={x>0> cri=cp},
i=1

where ¢, ¢y, ..., c, are positive. But all these sets are affinely equivalent to
the standard simplex

A= {xZO,ixizl}.
i=1

To realize this, look what happens with S under the linear mapping (”scal-

: 79
ing”)
T
C1 Cp,
T | —Z1,...,—Tn .
Co Co

Another example is the Lorentz cone; here all compact intersections of the
cone with the hyperplanes are ellipsoids, and they are affinely equivalent to
the standard Euclidean ball.

2.1.2 A geometric fact

Now we can prove the geometric fact which has been mentioned in item 2.
Here is the precise statement:

Proposition 2.1 Let

e K be a cone (closed, pointed, convex and with a nonempty interior) in
a Euclidean space E with inner product (-,-);

e j be a unit vector from int K Nint K, , where K, is the cone dual to K;

o F be the orthogonal complement of j:
F={scE|(z) =0}
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o D be the set given by

D:{herj+heK}.

Let, further, g € F be a unit vector, \ be a positive real such that
f=j+tAgentK,,
and let 7 € D be a vector and o > 0 be a real such that
(9.7) < —a.
Let P be the orthoprojector of E onto F :
P(x) = = (j,2)j,
and L[z| be the linear transformation of F given by
Liz] =z + Mg, )T + AaT
(L(-) "shrinks” F in the direction of g). Consider the sets
Y+:{ueK | (u—(l—)\a)j,f>:0},

Y =P(Y™).
Then the image of the set Y under the affine mapping L(-) contains the set

Dy ={reD|(g7) < o}

Proof. In order to show that D*[g] C L[P(Y )], it is enough to prove
that if x € DT[g] then « € L[P(Y")]. Assume that z € D¥[g]. Let us
first find y € F such that Lly] = z, i.e., y € F which satisfies the equation
y+ Mg, y)T + Aax = x. Multiplying both sides of this equation by g, we get

<g,l‘> — )\O{<g,/.7)\>

= S~ 2.2
{9,9) ) (2.2)
whence
<g,a€)—/\a<g,§>A ~ <g,x)+oz,\
== —AaT =1 — A\—7F— 7. 2.3
y=x 1+ Mg, 3) x ar =x 1+)\<g,§>x (2.3)
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Now let us find a point y* € M ={u € E: (u—(1—Aa)j, f) = 0} such that
P(y*) =y. We have y* = y + tj, where ¢ should ensure the relation

(y+tj—(1—=2Xa)j, f) =0,
which is a linear equation for ¢. Solving this equation, we get

(9,7) +a

t=1—-\——"F"—r,
1+ Xg,7)

whence

I < ,Z‘>+OZ I~ < ,LE>+O& 3
yto= r = AMEgeT |- >‘1Jgrx<g,5>].1

(2.4)

. —A[{g,x)+a] /1~ .
= (v+])+ @ 4 ).
By construction, we have L(P(y")) = z; in order to conclude the proof, it
suffices to verify that y© € Yt =M NK, i.e., due to y* € M, that y* € K.
The verification is as follows. We first claim that 1 4+ A(g,z) > 0. Indeed,
since 7 € D, we have 0 # j + 7 € K, while j + A\g € int K,. Since K, is the
cone dual to K, we have

0<{+z,j+Ng) =1+ Xg,7).

Moreover, we have j + = € K due to D™[g] C D and € D*[g].
Since (g,7) < —a and 1 + A(g,Z) > 0, the denominator in the fractions in
(2.4) is positive, and the numerator in the concluding fraction is nonnegative.
Since K is a cone and, as we have just verified, y* is a combination, with
nonnegative coefficients, of the vectors j + 7 and j + = from K, we have
y"eK.

It turns out that there exists a family of cones (the so called self-scaled
ones) where the outlined construction ensures the desired property (&), and,
moreover, results in efficient stationary cutting plane algorithms.

2.2 Preliminaries on self-concordant functions

We start by summarizing the properties of self-concordant functions and
barriers we will frequently use in the sequel; for the proofs, see [13].

2.2.1 Notation

In what follows letters like E, F, etc., denote Euclidean linear spaces; cor-
responding inner products are denoted (-, -)g, (-,-)p. We skip subscripts in
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(-,+), when it is clear from the context what the Euclidean space in question
is.

For a linear operator x — Bx : F — E, B* stands for the conjugate
operator: (y, Bx)g = (B*y,x)r. We write B = 0 (B > 0) to express that
B is a symmetric and positive semidefinite (resp., positive definite) operator
on F, with evident interpretation of relations like A > B or B < A.

We associate with an operator B > 0 on E a conjugate pair of Euclidean
norms on E:

lzllz = (x,Bx)"?,
el = max{{z,y): [yl <1} = [lz]z-1.

From now on, we set
p(t) = t—1In(1+1¢) [: %(1 +o(t)),t—0], .

For a convex C? on its domain and nondegenerate (f” = 0) function
f:E~ RU{+00} and x € Domf, we define the Newton decrement of f at
T as

Mfr2) = I @) = VIF @I (@)] 7 (2).

2.2.2 Self-concordant functions and barriers: defini-
tions

A convex function f: E — R U {400} is called self-concordant (s.c.), if the
domain Q of f is open, f is C3 on Q, satisfies the differential inequality

3

dts

2

o) <2 (4

3/2
0| St th)) Viz€Q,heE) (2.5)

t=0 t=0

and is a barrier for Q: f(x;) — oo along every sequence {z;} C @ converging
to a boundary point of Q.

A s.c. function f is called nondegenerate, if its Hessian f”(z) is nonde-
generate at some (and then automatically at every) point z € Domf.

Let v > 1. Function f is called v-self-concordant barrier (v-s.c.b.) for
clDomf, if f is self-concordant and

1/2
flz+ th)) V(z € Domf,h € E).

(2.6)
A nondegenerate s.c. function f is v-s.c.b. if and only if A\(f, z) < /v for all
x € Domf.

f(x—i—th)‘ < \/E(%

4
dt _

t=0
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Let E; be a cone in E (closed, pointed, convex and with a nonempty
interior). A v-logarithmically homogeneous self-concordant barrier (1.-h.s.-c-
b) for E, is a self-concordant function f with Domf = int E, such that

V(zeint E;t>0): f(tx) = f(x) — vint.

A v-logarithmically homogeneous self-concordant barrier for E, is a self-
concordant barrier for E with the self-concordance parameter equal to v.
Such a barrier satisfies a number of useful identities, specifically:

V(z e intEy t >0):
flte) = t7'f'(2) (a
f”(m) t=2f"(x) (b

filx) = f'(x)x (c

(f'(x),z) = —(f"(x)z,2)=—-v (d

(2.7)

2.2.3 Basic properties of self-concordant functions

We summarize these properties in the following list.
SC.I. [Stability w.r.t. linear operations]

1) Let f;, i = 1,..,m, be s.c. functions on E, and let \; > 1, and let the
function f(x) = >\ fi(x) possess a nonempty domain. Then the function

f is s.c. If every f; is v;-s.c.b., then f is (Y. Nwv;)-s.c.b. If every f; is a
vi-L-h.s.-c.b., then f is (> \jv;)-1.-h.s.c.b.

2) Let f be s.c. on E, and let y — Ay + b be an affine embedding from
Euclidean space F to E with image intersecting Domf. Then the function
gly) = f(Ay +b) is s.c. If f is v-s.c.b., then so is g. If b = 0 and f is
v-l1.-h.s.c.b., then so is g.

SC.II. [Local behaviour and damped Newton step| Let f be a nondegenerate
s.c. function with @) = Domf. Then

1) For every x € Q, the ellipsoid {y : ||y — x| y#(») < 1} is contained in Q.

Besides this,

r=ly—aflpe <1 = Q=r)?2f"@) 2 fy) 2@ =r)2f"(z)  (a)
r=ly—allpe <1 = fly) < fl@)+{f'(@),y—z)+p(-r) (b1)
yeQr=ly—zlpw = fly)= @)+ (f(2).y—z)+p). ((5-5))
2) For x € @, we define the damped Newton iterate of x as '
Ty =T — 1++(fx)[f”(x)]1f/(x)'
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For every x € ) we have

Ty € Q (a)
flae) < fl@) = p(A(f,2) (b) (2.9)
Afoxs) < 2X(f,2). ()

SC.III. [Additional properties of s.c.b.’s| Let f be a nondegenerate v-s.c.b.,
and let () = Domf. Then
1) one has

V(l’,y S Q) : <y -, f/(l’)> S v (a) (2 10)
Vi ye@): -z f(2)20=lly—zlpew <v+2yv ()

2.3 Self-scaled cones

A self-scaled cone is a closed convex pointed cone K in an Euclidean space
E with inner product (-, -)g such that

1. K is self-dual: the cone dual to K, i.e., the cone
K.={({cE: ({z)g >0Ve € K}
is K itself;

2. int K is a “homogeneous space”: for every pair of points u,v € int K
there exists an invertible linear mapping y = Ax which maps the cone
onto itself and maps u to v: AK = K, Au = v.

Given two self-scaled cones, one can form their direct product, which clearly
is a self-scaled cone in the direct product of the respective Euclidean spaces.
A well-known fact [15, 1] is that every self-scaled cone can be obtained,
by taking direct products, from “irreducible” self-scaled cones (those which
cannot be represented as direct products of self-scaled components), and that
the irreducible self-scaled cones admit complete description. Specifically,
every irreducible self-scaled cone, up to isomorphism, is

1. either a Lorentz cone L;
2. or the cone S} of positive semidefinite matrices in the space S™ of sym-
metric n X n matrices (the latter space is equipped with the Frobenius

inner product (A, B) = Tr(ABT));
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3. or the cone H'} of positive semidefinite Hermitian matrices in the space
H" of n x n.

A Hermitian n X n matrix can be thought of as a real symmetric 2n x 2n
matrix = with n? 2 x 2 blocks of the form [ g _026 } H" is the linear

space of all Hermitian n X m matrices, equipped with the inner product
(z,y)m, = 3Tr(zy). The cone HY is comprised of all positive semidefinite
Hermitian n x n matrices.

4. or the cone of positive semidefinite quaternion matrices in the space
Q" of n x n Hermitian quaternion matrices

An n xn Hermitian quaternion matrix can be thought of as a real symmetric

a -0 v =6
4n x 4n matrix with n? 4 x 4 blocks of the form a0y . Q"
-y 0 a —f
0 —v 0 «

is the linear space of all Hermitian quaternion n X n matrices, equipped with
the inner product (z,y)q, = 1Tr(zy). The cone Q7 is comprised of all
positive semidefinite Hermitian quaternion n X n matrices.

5. or the exceptional 27-dimensional “Octonian” cone.

Note that the specific feature of the Hermitian/Hermitian quaternion matri-
ces which makes the corresponding cones self-scaled comes from the following
well-known algebraic fact:

Lemma 2.1 Let s = s7's5*...sPm, where s; are symmetric matrices of the
same size, and p; are integers. If all the matrices s; are Hermitian (Hermi-
tian quaternion) and s is well-defined and symmetric, then s is Hermitian

(respectively, Hermitian quaternion).

It is easily seen that if K is a self-scaled, then all sets of the form
Ki={reK: (f,z)=1}

given by f € intK (in other words, all compact cross-sections of K by
hyperplanes not passing through the origin) are solids in their affine hulls,
and all these solids are affinely equivalent to each other. The main fact
discovered in our research is that

(1) If all irreducible components of K are distinct from the Oc-
tonian cone'), then the aforementioned solids do satisfy (&) and
thus give rise to polynomial time SCP algorithms.

UThis is the only case we have considered
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It should be mentioned that the two known polynomial time SCP algo-
rithms — the Ellipsoid and the Simplex ones — correspond to a very particular
cases of (!): the Ellipsoid method — to the case when K = L, and the Sim-
plex method — to the case when K is the nonnegative orthant, i.e., direct
product of the simplest — one-dimensional — semidefinite cones S} = R.;.

Our current goal is to establish (!) for the case when K is a self-scaled
cone with Lorentz and Semidefinite irreducible components.

2.4 Equipped spaces
Let us call an equipped space a quadruple (E,E., E, e), where

e E is a Euclidean space with inner product (-,-)g, and associated Eu-
clidean norm || - ||g;

e E. is a closed convex pointed cone in E with a nonempty interior which
is self-dual:

E,={z|(z,y)g >0 VyeE,}

e F is alogarithmically homogeneous self-concordant barrier for the cone
E. (see Section 2.2.2); the parameter of self-concordance of this barrier
will be denoted by v(E);

e e is a vector from int E; such that E”(e) is the unit matrix /3;, -

2.4.1 Simple equipped spaces

We shall be interested in the following four series of equipped spaces, which
we call simple:

1. £F = (L LK LK), k>0:

e L” is the standard Euclidean coordinate space RF!;

° Lﬁ is the Lorentz cone in L*:

L = {(wo. 1., 2) ER" g > \/w%+x%+...+xz};

o [F(x)=—In(zt -2t —2i—...—22) [v(LF)=2];
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2. SF=(SF,Sh Sk k), k>1:

e S* is the space of k x k symmetric matrices with real entries
equipped with the standard Frobenius inner product (z,y)gr =
Tr(zy);

° S’i is the cone of positive semidefinite matrices from S*;
o S¥ = —InDet(z) [v(S*)=k];

e s¥ is the k x k unit matrix.
3. HF = (H’“,Hﬁ,[—[’“,hk), k> 1:

e H"” is the space of k x k Hermitian matrices (recall that the ele-
ments of this space are treated as 2k x 2k real symmetric matrices,
and that (z,y)gr = 3Tr(zy));

e H” is the cone of positive semidefinite matrices from H¥;
e H*(z) = —1InDet(z) = —1 InDet(R[z]) [v(H*) = kl;

e h* is the unit Hermitian k& x k& matrix (i.e., 2k x 2k real unit
matrix).

4. Q" = (QF, Q%, Q% q"), k> 1:

e QF is the space of k x k Hermitian quaternion matrices (recall that
the elements of this space are treated as 4k x 4k real symmetric
matrices, and that (z,y)qr = 1Tr(zy));

° Q’i is the cone of positive semidefinite matrices from QF;
o QM) = —LInDet(z) [(QF) = K:

e " is the k x k unit matrix with quaternion entries, i.e., 4k x 4k
unit real matrix.

The fact that the aforementioned barriers indeed are self-concordant logarith-

mically homogeneous barriers with the indicated values of the parameters was

established in [13] for the case of £¥, §* and in [6] for the remaining cases.
The following two facts are crucial for us:
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Proposition 2.2 Let £ = (E,E,, E,e) be an equipped space from one of
the above four series. Then for every s € int Ey the mapping E"(s) is a
nondegenerate linear mapping which maps E, onto itself.

Proposition 2.3 Let £ = (E,E,, E, e) be an equipped space from one of the
above two series, and let d € int .. Then
(A). There exists a unique s € int E such that

E"(s)e =d, (2.11)

(B). For the above s it holds

In Det(E"(s)) = O[E][E(d) — E(e)],
where
O[Lf] =
g{[ﬁ% 2 (2.12)
O[QF] = 2k—1

Proof of Proposition 2.2. Consider 4 cases.

Case 1: £ = LF. Lets:(;>€intE+,d3:(j;)EE,andlet

E(r,€) = —In(r* = £7¢)
be the canonical barrier for the Lorentz cone E,. We have

2t 227

—2dt? + 2(dzx)Tdx  (2tdt — 22T dx)?

2 _
DE(s)[ds,ds] = T = aTo) (2.14)
Setting
. -1 0 _ 42 T
J—( 0 ]k),d—t ', (2.15)
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we get from (2.14), (2.15):

T T 2
2(ds) Jds 4(3 Jds)

D?E(s)[ds,ds] = g + 7
_ (ds)T Jds st JdssT Jds
= 2 g +4 7
TRV e
2(d8)T Tds . [(J s) ds} st Jds
N i d?
T
2<d8)T Tds 4(ds)T [(JT S)Ti| sT Jds
- i iz
_ (ds)T Jds (ds)T JssT Jds
= 2 g +4 7
2 4
_ |2y, % go.T
= (ds) [dJ—i- dQJSS J]ds.
Consequently,
E"(s) = 3‘] + %JSST J. (2.16)

Let us prove that the mapping a +— E”(s)a maps the cone E, into itself.
Let E"(s)a = 3, where a@ = < ; ) ceE,, 0= < Z >, with 7,¢ € R and

y, 2z € RF. Taking into account (2.16), we have
2

El/ r — _ -

@ ()=

2 4 2 4
q=—or- ﬁt(xTy —tr), z= 7Y + ﬁx(a:Ty —tr). (2.17)

whence

In order to verify that 3 € E,, we should check that ¢ > 0 and ¢*> > 27z.
First of all, let us show that ¢ is nonnegative. Let || z ||= a. From (2.15),
(2.17) it follows that

2 4 . 2 4
¢=—or= ﬁt(x y—tr) > " ﬁt(ar —tr) =

2r >0
(t+a)? —

where the first > is given by the Cauchy inequality, and the concluding
inequality follows from r > 0 due to o € E,. Now let us demonstrate that
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¢ = 2 |3

2 4 2 4
-y + ﬁx(a:Ty — tr)} L—Zy + ﬁx(xTy —tr)

d3 d*

16 16
ﬁyTy + —alylay —tr) + —aTx(zTy — tr)2

16 16
=t gtr(aly —tr) + St (ay — tr)”

d3

[by Cauchy’s inequality]

2 4

2
—Zr— —t(2"y — tr)} =q

d d?

Thus g € Ey, so that the multiplication by E”(s) maps E, into itself.
Now let us find the inverse to the matrix E”(s). By the well-known

formula,

whence

fg"

[I+ng]_1 :I—Wa

2 4 L1t T2 2 .17

2 -1 2
C—Z{]—I——SSTJ} J:§{J+—SSTJ]J

2 d 2 d

d 2 A d I

5J{I+a(—Js)(—s) } = QJ{I%— dn(Jn) }
1

d 2 d? d?

e [ = T — _E// — _E// . ]

|1 S| = S = -0

We see that the [E”(s)] ™! is proportional, with positive coefficient, to E”(n),
where n = —Js belongs to E, along with s, so that the multiplication by
[E"(s)]7!, same as the multiplication by E”(s), maps the cone E| into itself.
Thus, the multiplication by E”(s) induces a one-to-one mapping of E, onto
itself, as claimed.

Case 2: £ = SF.

Let s € int E,, and

E(x) = —InDet(x)

is k-self-concordant barrier for the cone E_ of positive semidefinite symmetric
k x k matrices, and F'(x) = Det(x).
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Let us compute the derivatives of E(x):

DE(s)[h] = —DIn(F(s)) [DF(S)[h]] — _F(s) [DF(S)[h]}
= —Det !(s) tlirfo t :Det(s +th)— Det(s)]

— —Det™!(s) lim ¢ Det(s(I +ts~'h)) — Det(s)}

= —Det™'(s) lim t* -Det(s)(Det(I +ts'h) — 1)]

t—+0

= — lim ¢! [Det(] ttsih) — 1] — _Tr(s"'h)

+
= = [ b
i

where the concluding equality

] -1 — — — ..
Jim 7| Det(7 +tA) — 1 Tr(A)_ZA” (2.18)

is immediately given by recalling what is the determinant of I 4+ tA: this is
a polynomial of ¢ which is the sum of products, taken along all diagonals of
a k x k matrix and assigned certain signs, of the entries of I +tA. At every
one of these diagonals, except for the main one, there are at least two cells
with the entries proportional to t, so that the corresponding products do not
contribute to the constant and the linear in ¢ terms in Det(I 4+ tA) and thus
do not affect the limit in (2.18). The only product which does contribute to
the linear and the constant terms in Det(/+tA) is the product (I +tAy;)({+
tAgs) ... (I + tAg) coming from the main diagonal; it is clear that in this
product the constant term is 1,and the linear in ¢ term is ¢(Ay; + ... + Agg),
and (2.18) follows.

As we have seen,

DE(s)[h] = —Tr(s"'h). (2.19)
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To differentiate the right hand side (2.19) in s, let us first find the derivative
of the mapping G(z) = z~'. We have

DG(x)[Az] = tl—iglo t (m +tAz)! — 91;’1]
. . 1 -1 e T |
= tl_l)I_{lolf (a:(] +tx Ax)) T }
= lim ¢! (I +trtAr) et — a:_l]
=40
_ 1 -1 _ —1
= | Jim 7+ ta ' A2)7! 1]]33
- thrJrrlot_l[[ (I ta A+ m—lm)-l} 2l
= _tliIJrrlo[—x’le([ + t:z:"lAgc)’l]}:c’1 = —z 'Axz~!

and we arrive at the important by its own right relation

D(afl)[Am] = —z 'Aza?,

which is the "matrix extension” of the standard relation (z7!) = —272, = €
R.
Now we are ready to compute the second derivative of the log-det barrier:
D?*E(s)[h,h] = _thrf t1 [Tr((s +th)'h) — Tr(s_lh)]
= — lim Tr(t 1[3+th s_lhD
t——+0
= —hm Tr( 1[($+th _1}11)
= —Tr( “thsT'h)

and we arrive at the formula
2E(s)[h, h] = Tr(s 'hs~'h).

Since E is the space equipped with the standard Frobenius inner product
(x,y)g = Tr(zy), we have

(E"(s)h,h) = Tr(s *hs 'h),

whence

E"(s)h=s"ths'. (2.20)
Taking into account that s = s? = 0, we conclude that both the mappings
h — E"(s)h = s7'hs™! and h +— [E"(s)]"'h = shs map the cone E, onto
itself.
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Case 3, 4: £ = H¥/QF. These cases are completely similar to Case 2,
since here, as it is immediately seen,

E"(s)h = s ths™!,

(cf. (2.20)), and it remains to apply Lemma 2.1. u

Proof of Proposition 2.3. We again consider 4 cases.

Case 1: & = L~ Lets:(C;) €E+,d:(;> € E,, with

0,7 € R and z,y € R*. Then after a direct computation

E'(s) = 2 o’ +a2Tx —20z"
(02 — 2Tx)? —20x  2xxl + (0? —a2la)l, )’

and e = ( \0/§> € E,. Thus,
k

2v2 o? + 2tz
" o
E"(s)e = 07— 272y ( . ) : (2.21)
Writing down y = nf with n = \/yTy and ||f||2 = 1, the right hand side in
2.21) equals d if and only if x = —£f, where 0,&,0 > |£], solve the system
y Y
of equations
o’+& 7
P—EF 2
20¢€

_
(0% = &%)? 2v2

Adding and subtracting these equations, we see that the system is equivalent
to

1 T
(0 +¢)? 2v2’
1 T+

(0 —¢&)? 2v2

Since d € int E;, we have 7 > 1. Thus, the right side quantities in the latter
system are positive, whence a solution to it does exist and is unique, provided
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that o >| £ |. This unique solution is given by

23/4

o+E = ——, (2.22)
23/4

oc—§¢ = .

T

]

]

(A) is proved. To prove (B), note that from the explicit formula for E”(s) it

follows that
9 k+1
O

whence
InDet(E"(s)) = 1[In2—In(r? - yTy)]
= BHE(d) - E(e)] = HHE(d) — E(e)],

as required in (B).

Case 2: £ =S*. Let s,d € int E,, so that s, d are positive semidefinite
real k X k£ matrices, and e is the unit real £ x k matrix. We have
E"(s)e = 572,
so that (A) is trivially true, and
s=d /2
Let f;, 1 = 1,...,k, be an orthonormal eigenbasis of the symmetric matrix

d = 0, and Aq,...,\x > 0 be the corresponding eigenvalues. Consider the
system of K = @ symmetric matrices Fj;, 1 <17 < j < k, given by

YUK BT, i<

It is immediately seen that {F};} is an orthonormal basis in E and that this
is an eigenbasis of the mapping h — E"(s)h:

E,/(S)Ej = dl/QEjdl/Q = )‘z/\]Fm
It follows that

k+1

DetE"(s) = ] (\A)"? = (H&-) 2 ,

1<i<j<k
whence
InDet(E"(s)) = % 1InDet(d)
SAE(d) = HE(d) — E(e)],

2

as required in (B).
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Case 3,4: £ = H*/QF. These cases are completely similar to Case 2. u

2.4.2 Products of simple equipped spaces

Assume we are given m simple equipped spaces
&'=(ELEL E gD, (=1,...,m

from the above four series (to avoid confusion, here we denote the “centers”
of the cones Eﬁ by gf. Then we can form the product of these spaces

E=]]E
=1
which, by construction, is the equipped space as follows. Let

© = min O[&Y,

1<f=m (2.23)
Xe —= %gq Z 17621,....,m.
We set
E=(EE, E()e),
where

1. The Euclidean space E is the direct product of the Euclidean spaces
E‘ 0=1,.. m;

2. The cone E, is the direct product of the cones Eﬂ, (=1,..,m;

3. The logarithmically homogeneous self-concordant barrier E for E| is
E(z',.,2™) =) Bz, (2.24)
=1

where z¢ is the Ef-component of x € E. Note that E indeed is a
self-concordant logarithmically homogeneous barrier for E, and the
parameter of self-concordance of E(-) is

v(E) =Y xew(E)
(=1

(see item SC.I.1) in Section 2.2.3);
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4. The center of E, is the point

e = (YXT8" o ™). (2.25)

It is immediately seen that e indeed is the center of E. Indeed,

E"(e) = Diag {{V>(xE)(y/xeg")}i )}
= Diag{{x; 'V?(xeE)(8)}/1,} [see (2.7.D)]
= Diag{{ldimEf}anl}

is the unit matrix.

We are about to demonstrate that a product of simple equipped spaces sat-
isfies straightforward extensions of Propositions 2.2, 2.3:

Proposition 2.4 Let E = (E,E. E(-),e) be product of simple equipped
spaces E' = (B, B E',g"), ¢ =1,....,m. Then
(i) For every s € int E, the mapping h — E"(s)h is a one-to-one map-
ping of the cone E onto itself.
(ii) For every d = (d',...,d™) € int E,, there exists a unique s € int B,
such that
d= E"(s)e, (2.26)

and for this mapping one has
InDetE"(s) = ©O(FE(d) — E(e)),
with © defined in (2.23).

Proof. For s = (s!,...;s™) € int E; we have

E"(s) = Diag {{xeV*E*(s")}/" } ; (2.27)
since x, > 0 and multiplication by V?E*(s%) is a one-to-one mapping of E
onto itself by Proposition 2.2, (i) follows.
(ii): Taking into account (2.24), (2.25), we have for s = (s!,...,s™) €
int E,:
E"(s)e = {x;" "V E'(s")g" Y. (2.28)

so that (2.26) is equivalent to the relations
(V2EY)(s)g! = x,*d 6 =1,...,m.
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Applying Proposition 2.3, we conclude that the latter relations are satisfied
by a unique collection s’ € int Eﬂ, ¢ =1,...,m. Further, by Proposition 2.3
we have

In Det (V2E¢(s)) = @[gf][ £(y —3/2df)—Ef(gf)]
= (6B (G ) = () )|
-0 [(XzE‘)( d) + xer (B (x"?) — (xeE")(e)

—xev(EY) ln(x/Q)}
[since E(ty) = E(y) — v(E*) Int]
= O [(xeE)(d) — (xeE)(e)] + e

Taking into account (2.27), we arrive at

InDetE"(s) = i [dim (E*) In x¢ + In Det(V2E(s"))]
=1
_ E_f’;l [dim (B) Iy, + © [(xeE)(d) — (xoE*) ()] + 7]

Il
@

E(d) — E(e)] +
(2.29)
with « independent of d. In fact v = 0, since £”(e) = I, i.e., s = e when
d = e, so that (2.29) is valid when d = s = e, whence
0 =1InDetl =InDetE"(e) = O [E(e) — E(e)] +~v = 1.

Since v = 0, (2.29) is exactly the relation required in (ii). =

2.5 Main result

Let & = (E, EY,E’ e/), { = 1,...,m, be simple equipped spaces, and let
& = (E,E4, E,e) be a product of these spaces, see Section 2.4.2. To save
notation, we denote the inner products in E*, E by (-,-),, (-,-), respectively,

so that .
<CL’, y> = Z(xf’ y€>€'

Let us set



D:{x€F|x—|—j€E+}.

Let, further, g € F be a unit vector, « > 0 be a real, and let

Dy ={reD|(g7) < o}

Our main result is as follows:

Theorem 2.1 There ezists (and can be explicitly written down) an affine

mapping
r— Alz]: F—>F

such that
D" [g] c A[D] (2.30)

and
Vol(A[D]) < exp{—Z=} Vol(D), (2.31)

where Vol stands for the dim (F)-dimensional volume and

_ {m ln (1 + m)} . u(E) = ;XW(EK). (2.32)

Proof. 1°. Let 7 € D be such that

(1]

(9,7) < —a, (2.33)
and let A > 0 be a real such that
dy=e+9\g €intE,. (2.34)
Note that from (2.34) and Z € D it follows that
1—Xa>0;

indeed, we have T +j € E;\{0} and (Z,e) =0, (g,j) =0, (j,e) = 9, whence
by (2.34) one has

0<(T+je+9\g) =9\NT,g9) +9 =091 - ).
Finally, let P be the orthoprojector of E onto F:
P(IL‘) =T — <$,j>j,
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and let L be the affine operator on F given by

Lz =z + Mg, )T+ Moz, x€F.

Let us set
[ =J+Ag,
vt ={y€E. | {y—(1-a)jf) =0},
Y = P(Y*).

2. By Proposition 2.4 and (2.35), there exists s, € int E; such that for
B)\ = E//(S,\) (235)

it holds
Bye =d) = e+ 1Y)y, (2.36)

the mapping = +— B,z is nonsingular and maps E, onto itself, and
InDet(B,) = O[FE(dy) — E(e)] (2.37)

Lemma 2.2 The mapping C\ = B;l maps the set D=D + j onto the

intersection Y* of the cone EL with the affine hyperplane
H={yeB|y-ij+r) =0}

Proof. Indeed,

{veBly-ii+r) =0} = {yeE|{y—je+irg) =0}
— {yeE|(y—ij Bre) =0}
~ {yeE[(Bw.e)= (i Bre)}
= {yeB|(Bw.e) = Ge+irg) |
= {yeE|(Bw. >=19}
)

recall that (e, g

| —

=0, {j,e) = |
yEE | (Buy.j) =1}

yeE|(Byy—j,j) = 0}7

=
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ie.,
B\(H) =j+F < H = B;'[j+F,

and since B, is a one-to-one transformation of E which maps E, onto itself,
By € E, ifand only if y € E,. Thus, B\[HNE,]=(F+j)NE, .u
—_——  —,

Yt D

3%, Now consider the following five affine mappings:
a) R: F—-E: R(z)=z+]j;
b) Cy : E — E, which was already defined;
c)S: E—=E: Sy =(1-)y;
d) P: E — F, which was already defined as the orthoprojector of E onto
F;
(e) L: F—=F: Liz] =2+ Xg,2)T + \aZ
along with their composition

(
(
(
(

A=LoPoSo(CyoR: F—F.
Our first claim is that
Lemma 2.3 One has D [g] C A[D].
Proof. Indeed,
e By Lemma 2.2, the set C)\(R(B)) is exactly Y¥;
e By evident reasons, S(Y*) is exactly Y'F;

e Applying Proposition 2.1, we conclude that the set L[P(Y )] contains
D*[g]. »

4°.  Now let us compute the absolute value x of the determinant of the
(homogeneous part of the) mapping A. In other words, we should under-
stand by which factor s the dim (F)-dimensional volume of a set @ C F
is multiplied under the action of A. Since R is just a shift and thus does
not vary dim (F)-dimensional volumes, x is the product of the following four
quantities:

e the factor p by which the linear transformation C) of E multiplies
dim (F)-dimensional volumes of sets contained in F;

e the factor (1— /\a)dim (¥) by which the dilatation S multiplies dim (F)-
dimensional volumes of sets contained in the hyperplane G = C\\F;
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e the factor v by which the orthoprojection P multiplies the dim (F) -
dimensional volumes of the sets belonging to the hyperplane G.
Note that by Lemma 2.2 G is the hyperplane in E orthogonal to the
vector j + Ag, so that v is the cosine of the angle between the normal
j+ Ag to G and the normal j to F:

VEWVGFri+rg) VIt

UV =

e the factor # by which the linear transformation L of F multiplies the
dim (F)-dimensional volumes of sets in F.
From the expression for L it is immediately seen that

=14 g, 7).

Thus,
- 1+ Mg, )

— (1 — Aoy @), (2.38)

5°. It remains to find . Note that C, = B;l, so that the mapping C
multiplies dim (E)-dimensional volumes by the factor

©t = Det(Cy) = (2.39)

Det(B,\) ’
On the other hand, ™ is exactly the product of p and the distance o from

the image of j under the mapping C) to the image of F under the same
mapping. Thus,

0 = min { (Cal — A, Cali = h]) | G, k) = 0}

The solution h* to the right hand side optimization problem clearly is h* =

j—oCy %j where ¢* = ﬁ A direct computation implies that
A I
Lo leiot)
(e B ) (S B )
B 1 B 2
<B)uj7 B)\j> <B>\ev B)\e>
92 1

(e+UAg,e+U\g) 1+A%

49



We now get

n=" = VTN,

o
whence

ko= ub(l— /\a)dim(F) = V1 + A2 (1+ Mg, 2))(1 — )\a)dim(F)

1
Jite

_ u+A@§mﬁu—A@&m@t_a+A@@»Eﬁ§;u—Ammm@X

Applying Proposition 2.4. (ii), we finally get
In(k) In(1+ Mg, 7)) + dim (F) In(1 — M) + © [E(e + I\g) — E(e)]

A(9,7) — adim (F)] + © [E(e + ¥)\g) — E(e)]

Mg, T) + © [E(e + Y¥)g) — E(e)]

U(A)

A IA

(2.40)

6°. To prove Theorem 2.1, it remains to optimize In(x) in the "free
parameters” of our construction, i.e., ¥ and A. In fact, of course, we intend
to optimize W(-).

6°.1) We start with maximizing in Z. The only restriction on this vector
is that ¥ € D and (g,7) < —a; and of course we are interested to make
(g9, ) as negative as possible. Thus, it makes sense to define = as an optimal
solution to the problem

;gn%%@:feD:{xH@@:o£+ﬁer§}. (2.41)

It is easily seen that the problem can be solved explicitly. What is important
for our subsequent analysis, is the optimal value of this problem, let us denote
it by (=Y ~'o). Then o is the optimal value in the optimization problem

max {(~g,9) : (e.y) =0.e +y € E.}. (+)

We claim that

1<o<v(E)+2yv(E). (2.42)
Indeed, F is self-concordant barrier for the cone E, with the self-concordance
parameter v(E), and E”(e) is the unit matrix. Thus, the unit ball U, centered
at e, is contained in E; (see item SC.Il.1) in Section 2.2.3). Since g is a

unit vector orthogonal to e, this observation implies the lower bound on ¢ in
(2.42). Since E"(e) is the unit matrix and E is a logarithmically homogeneous
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self-concordant barrier, E’(e) is equal to e (see (2.7.c)); it follows that the
(v(E)+24/v(E)) times larger than U concentric ball contains the intersection
of E; and the plane e + F (see (2.10.0)), i.e., it contains the feasible set of
(*), which implies the upper bound on ¢ in (2.42).

6".2) From now on, we specify 7 as explained in 6°.1). With this choice
of Z, the function W(\) from (2.42) becomes

T(N) = 00X+ O[E(e + ¥Ag) — E(e)].

Now, the restrictions imposed on A by our construction are A > 0 and (2.34);
the latter restriction is equivalent to A € DomW. The function ¥ is self-
concordant by item SC.I.1), Section 2.2.3, and

() = 0
V() = -9 o+ O9(E (e),g)
= -9 l¢
[since E”(e) = I, whence E’(e) = e by (2.7.c), and (g,e) = 0]
v(0) = O9*(E"(e)g.g)
= O

[recall that E”(e) is the unit matrix and g is a unit vector]

Consequently, the Newton decrement (Section 2.2.2)

[’(0)]
ANT,0) =
(¥,0) T0)
v=—"

92/
since F is logarithmically homogeneous barrier with the parameter v(E) =
ST v(E*) and E”(e) is the unit matrix, we have by (2.7.d)
¢

V? = (e,e) = (E'(e)e,e) = v(&),

so that
b9 _
v(EWO

In view Applying item SC.II.2) of Section 2.2.3 to z = 0 and f = U, we see

that with L v
A = ——— >0
1+ ¢ U7(0)
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one has (cf. (2.9))

U(A) < W(0) = [¢ — In(l + )]

—[¢ —In(1 + )]
1

< —[m—ln<1+m)}

(we have used the fact that o > 1 by (2.42)). Thus, the choice A = A, results

m

S Y ——
and (2.32) follows. =

2.6 Discussion

Theorem 2.1 combines with the constructions and discussions of Section 1.3.5
to yield the following conclusion:

Theorem 2.2 FEvery self-scaled cone with no Octonian irreducible compo-
nents produces a perfect solid (Section 1.3.5). Specifically, if equipped space
E = v is the direct product of simple equipped spaces E° = (Ez,Eﬂ,Ee,gZ),
¢ =1,..,m (Section 2.4.2), then the set

B={z:(e,z)¢e =0,v+ecE,}
is a perfect solid in the space

F={zeE: (ex)e},

and this solid is contained in the Euclidean ball of the radius v[B| = v(E) +
2\/v(E). The corresponding index w is given by

In(w) < —% L(E% “n (1 + mﬂ , (2.43)

where

e n=> ny—1 is the dimension of F (n, are the dimensions of E,);
¢

o V(E) =Y &u(EY), where & = %‘SZ] and © = mﬁin o[&1.
¢
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The characteristics ng, v(EY), O[cal EY] of underlying simple equipped spaces
are as follows:

| Typeof &7 n, [v(E"] 0[] |

E: k(kﬁn 2 Z_i

S 2 k kil (2.44)
HF k2 k 2

oF T k| k |2k—1

Proof. Note that the set B is nothing but the dilatation, by factor ¥ = | e||g,
of the set D considered in Theorem 2.1, so that for every nonzero vector g € F
one has (cf. (2.30))

{r €B:{(g,2)e <0} C AB],

where A[z] = Az + b is the invertible affine transformation of F given by the
proof of Theorem 2.1 in the case of & = 0, and w = (Det(A))'/™ satisfies (2.43)
by (2.31) — (2.32). Besides this, E contains the centered at e unit Euclidean
ball (by SC.II.1), since E”(E) is the unit matrix), and the intersection of E
with the set e + F is contained in the concentric ball of the radius v(E) +
2\/V(F) (we have seen this when proving (2.42)). It follows that B is “in-
between” the unit ball and the ball of the radius v(E) 4+ 24/v(E). Thus, B
indeed is a perfect solid with v[B] and the index w indicated in Theorem. u

Via the construction presented in Section 1.3.5, perfect solids described
in Theorem 2.2 give rise to stationary cutting plane methods, and all these
methods are polynomial time ones, since the indices w of the underlying
perfect solids satisfy the relation

o)

(see (2.43) and the discussion in Section 1.3.5). We are about to investigate
the complexity characteristics of these polynomial time SCP methods.

2.6.1 Arithmetic cost of an operation

A straightforward analysis, based on the explicit description of the affine
transformation A[-] as given in Theorem 2.1, demonstrates that for all SCP
methods given by our construction, the arithmetic cost of an iteration (i.e.,
the number of arithmetic operations per iteration, excluding the computa-
tions carried out by the Separation and the First Order oracles) is propor-
tional to n?, where n is the dimension of the problem. Thus, as far as
complexity of a step is concerned, all our polynomial SCP methods are “the
same”.
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2.6.2 Iteration count

As it was explained in Introduction (see Section 1.3.5), the iteration complex-
ity of finding e-solution for a stationary Cutting Plane method B associated
with a perfect n-dimensional solid B with index w satisfying (2.45) does not
exceed

N(e) <O(1)n’In (@) : (2.46)

where R > r > 0 are such that the domain X of the problem contains a ball
of radius r and is contained in the centered at the origin ball of radius R.
The “most important” contribution of the underlying solid to this complexity
bound is the parameter  — the smaller is 3, the better. By (2.43), we have

1

l—w> O(l)m

(2.47)

(indeed, since v(E) > 1 and © > 1, one has [U(E;@ —1In (1 + V(E;@)] =
O(1) zmys)-

v2(E)©
In éh)e case when & = L™ (so that the associated method B is the
Ellipsoid method), we have v(E) = 2, © = O(n), and (2.47) implies that
1 —w > O(n™?), so that here 3 = 2. The question is, whether an appro-
priate implementation of our construction yields a smaller 3. The answer,
unfortunately, is negative:

Proposition 2.5 In the family of stationary Cutting Plane methods associ-
ated with self-scaled cones, the best guaranteed complexity bound, as given by

(2.46) — (2.47), is the bound with 5 = 2 associated with the Ellipsoid method
(and thus — with the perfect solid given by the Lorentz cone).
Proof. The fraction in the right hand side of (2.47) is

(N o
n (; @[5%(9&))2

n?(E)e
(see Theorem 2.2). From (2.44) it is seen that O[E‘|v(E*) > O(1)n,, and we
arrive at 1 o o
<O(l)——— = —.

mAE)e = zng)g "

¢
From the same (2.44), © = m}n 0[] < O(1)n, and we end up with

1 1
e = O

n2’
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It follows that the right hand side in (2.45) is always < O(1)n72, i.e., we
never can get < 2. =

To get more insight, here are the values of 3 for several possible choices
of the self-scaled cones:

| £ | 5|
L™ [Ellipsoid] 2
S 2.5
H™ 2.5
or 2.5
S' x ... x 8! [Circumscribed Simplex| | 3

Note that although the Ellipsoid method is the best in terms of the guar-
anteed worst-case complexity, it does not necessarily mean that all other
methods are of no practical interest. Indeed, our complexity analysis is
worst-case-oriented, which, in our context, essentially means that we deal
with the worst — the smallest — value of o as given by (2.42), i.e., the value
1. Now, in the case of £ = L™ (i.e., in the case of the ellipsoid method) this
“worst case” is in fact the only case (since here B is just the unit Euclidean
ball). In contrast to this, for other self-scaled cones (e.g., for the semidefinite
cone or the nonnegative orthant), the value of o depends on the direction
of g and is equal to 1 in very special (and “hardly probable”) cases only;
in these cases, a “typical” value of 0 — the one corresponding to randomly
oriented g uniformly distributed on the unit sphere — is much larger than 1
(it is as large as vk in the cases of B, = R% and of E; = S*). Tt follows
that with some luck, the actual behaviour of a “non-Lorentz” SCP algorithm
may be much better than it is demonstrated by our worst-case complexity
analysis. This hope is seemingly supported by the numerical experience with
the Circumscribed Ellipsoid algorithm. Consequently, there is a hope that
the new SCP methods we have developed in practice may outperform the
two known SCP algorithms. Experimental verification of this hope is beyond
the scope of this Thesis.
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