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Summary. We consider an optimization problem of minimization of a linear func-
tion subject to the chance constraint Prob{G(x, ξ) ∈ C} ≥ 1 − ε, where C is a
convex set, G(x, ξ) is bi-affine mapping and ξ is a vector of random perturbations
with known distribution. When C is multi-dimensional and ε is small, like 10−6 or
10−10, this problem is, generically, a problem of minimizing under a nonconvex and
difficult to compute constraint and as such is computationally intractable. We in-
vestigate the potential of conceptually simple scenario approximation of the chance
constraint. That is, approximation of the form G(x, ηj) ∈ C, j = 1, ..., N , where
{ηj}N

j=1 is a sample drawn from a properly chosen trial distribution. The emphasis
is on the situation where the solution to the approximation should, with probability
at least 1− δ, be feasible for the problem of interest, while the sample size N should
be polynomial in the size of this problem and in ln(1/ε), ln(1/δ).
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1 Introduction

Consider the following optimization problem

Min
x∈Rn

f(x) subject to G(x, ξ) ∈ C, (1)

where C ⊂ Rm is a closed convex set and f(x) is a real valued function. We
assume that the constraint mapping G : Rn×Rd → Rm depends on uncertain
parameters represented by vector ξ which can vary in a set Ξ ⊂ Rd. Of course,
for a fixed ξ ∈ Ξ, the constraint G(x, ξ) ∈ C means existence of z ∈ C such
that G(x, ξ) = z. In particular, suppose that the set C is given in the form

C :=
{
z : z = Wy − w, y ∈ R`, w ∈ Rm

+

}
, (2)
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where W is a given matrix. Then the constraint G(x, ξ) ∈ C means that the
system Wy ≥ G(x, ξ) has a feasible solution y = y(ξ). Given x and ξ, we refer
to the problem of finding y ∈ R` satisfying Wy ≥ G(x, ξ) as the second stage
feasibility problem.

We didn’t specify yet for what values of the uncertain parameters the cor-
responding constraints should be satisfied. One way of dealing with this is to
require the constraints to hold for every possible realization ξ ∈ Ξ. If we view
ξ as a random vector with a (known) probability distribution having support3

Ξ, this requires the second stage feasibility problem to be solvable (feasible)
with probability one. In many situations this may be too conservative, and a
more realistic requirement is to ensure feasibility of the second stage problem
with probability close to one, say at least with probability 1 − ε. When ε is
really small, like ε = 10−6 or ε = 10−12, for all practical purposes confidence
1−ε is as good as confidence 1. At the same time, it is well known that passing
from ε = 0 to a positive ε, even as small as 10−12, may improve significantly
the optimal value in the corresponding two-stage problem.

The chance constraints version of problem (1) involves constraints of the
form

Prob
{
G(x, ξ) ∈ C

} ≥ 1− ε. (3)

Chance constrained problems were studied extensively in the stochastic pro-
gramming literature (see, e.g., [9] and references therein). We call ε > 0 the
confidence parameter of chance constraint (3), and every x satisfying (3) as
an (1 − ε)-confident solution to (1). Our goal is to describe the set Xε of
(1 − ε)-confident solutions in a “computationally meaningful” way allowing
for subsequent optimization of a given objective over this set. Unless stated
otherwise we assume that the constraint mapping is linear in ξ and has the
form

G(x, ξ) := A0(x) + σ
d∑

i=1

ξiAi(x), (4)

where σ ≥ 0 is a coefficient, representing the perturbation level of the problem,
and Ai : Rn → Rm, i = 0, ..., d, are given affine mappings. Of course, the
coefficient σ can be absorbed into the perturbation vector ξ. However, in the
sequel we use techniques which involve change of the perturbation level of the
data. Sometimes we use notation Gσ(x, ξ) for the right hand side of (4) in
order to emphasize its dependence on the perturbation level of the problem.

Example 1. Suppose that we want to design a communication network with
p terminal nodes and n arcs. The topology of the network is given, and all
we need to specify is vector x of capacities of the arcs; cT x is the cost of
the network to be minimized. The load d in the would-be network (that is,
the amounts of data drs, r, s = 1, ..., p, to be transmitted from terminal node
r to terminal node s per unit time) is uncertain and is modeled as drs =

3 The support of the probability distribution of random vector ξ is the smallest
closed set Ξ ⊂ Rd such that the probability of the event {ξ ∈ Ξ} is equal to one.
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d∗rs +ξrs, where d∗ is the nominal demand and ξ = {ξrs} is a vector of random
perturbations which is supposed to vary in a given set Ξ. The network can
carry load d if the associated multicommodity flow problem (to assign arcs
γ with flows yγ

rs ≥ 0 – amounts of data with origin at r and destination
at s passing through γ – obeying the standard flow conservation constraints
with “boundary conditions” d and the capacity bounds

∑
r,s yγ

rs ≤ xγ) is
solvable. This requirement can be formulated as existence of vector y such
that Wy ≥ G(x, d), where W is a matrix and G(x, d) is an affine function of
x and the load d, associated with the considered network. When the design
specifications require “absolute reliability” of the network, i.e., it should be
capable to carry every realization of random load, the network design problem
can be modeled as problem (1) with the requirement that the corresponding
constraints G(x, d∗+ξ) ∈ C should be satisfied for every ξ ∈ Ξ. This, however,
can lead to a decision which is too conservative for practical purposes.

As an illustration, consider the simplest case of the network design prob-
lem, where p “customer nodes” are linked by arcs of infinite capacity with a
central node (“server”) c, which, in turn is linked by an arc (with capacity x to
be specified) with “ground node” g, and all data to be transmitted are those
from the customer nodes to the ground one; in fact, we are speaking about
p jobs sharing a common server with performance x. Suppose that the loads
dr created by jobs r, r = 1, ..., p, are independent random variables with,
say, uniform distributions in the respective segments [d∗r(1 − σ), d∗r(1 + σ)],
where σ ∈ (0, 1) is a given parameter. Then the “absolutely reliable” optimal
solution clearly is

x∗ =
p∑

r=1
d∗r(1 + σ).

At the same time, it can be shown4 that for τ ≥ 0,

Prob
{∑

r dr >
∑

r d∗r + τσ
√∑

r(d∗r)2
} ≤ e−τ2/2.

It follows that whenever ε ∈ (0, 1) and for D :=
∑p

r=1 d∗r , the solution

x(ε) = D + σ
√

2 ln(1/ε)
√∑

r(d∗r)2

is (1− ε)-confident. The cost of this solution is by the factor

κ = 1+σ

1+σ
√

2 ln(1/ε)(∑
r(d∗r)2)1/2

D−1

is less than the cost of the absolutely reliable solution. For example, with
ε = 10−9, p = 1000 and all d∗r , r = 1, ..., p, equal to each other, we get κ as
large as 1.66; reducing ε to 10−12, we still get κ = 1.62.
4 This follows from the following inequality due to Hoeffding: if X1, ..., Xn are

independent random variables such that ai ≤ Xi ≤ bi, i = 1, ..., n, then for t ≥ 0,

Prob
{∑n

i=1(Xi − E[Xi]) > t
} ≤ exp

{
−2t2∑n

i=1(bi−ai)2

}
.
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The difference between the absolutely reliable and (1− ε)-confident solu-
tions will be even more dramatic if we assume that dr are normally distributed
independent random variables. Then the corresponding random vector d is
supported on the whole space and hence the demand cannot be satisfied with
probability one for any value of x, while for any ε > 0, there exists a finite
(1− ε)-confident solution.

It is important to point out that “computationally meaningful” precise
description of the solution set Xε of (3) seems to be intractable, except for few
simple particular cases. Indeed, clearly a necessary condition for existence of
a “computationally meaningful” description of the set Xε is the possibility to
solve efficiently the associated problem for a fixed first stage decision vector:
“given x, check whether x ∈ Xε”. To the best of our knowledge, the only
generic case where the function

φ(x) := Prob
{
G(x, ξ) ∈ C

}
(5)

can be efficiently computed analytically is the case where ξ has a normal
distribution and C is a segment in R, which is pretty restrictive. Computing
φ(x) is known to be NP-hard already in the situation as simple as the one
where ξ is uniformly distributed in a box and C is a polytope.

Of course, there is always a possibility to evaluate φ(x) by Monte Carlo
simulation, provided that C is computationally tractable which basically,
means that we can check efficiently whether a given point belongs to C.
Straightforward simulation, however, requires sample sizes of order ε−1 and
becomes therefore impractical for ε like 10−8 or 10−12. We are not aware of
generic cases where this difficulty5 can be avoided.

Aside from difficulties with efficient computation of φ(x), there is another
severe problem: the set Xε typically is nonconvex. The only generic exception
we know of, is again the case of randomly perturbed linear constraint, where C
is a segment, with ξ having a normal distribution. Nonconvexity of Xε makes
our ultimate goal (to optimize efficiently over Xε) highly problematic.

In view of the outlined difficulties, we pass from the announced goal to
its relaxed version, where we are looking for “tractable approximations” of
chance constraint (3). Specifically, we are looking for sufficient conditions
for the validity of (3), conditions which should be both efficiently verifiable
and define a convex set in the space of design variables. The corresponding
rationale is clear; we want to stay at the safe side, this is why we are looking
for sufficient conditions for the validity of (3), and we want to be able to
optimize efficiently objectives (at least simple ones) under these conditions.
5 It should be stressed that the difficulties with Monte Carlo estimation of

Prob {ξ ∈ Qx}, where Qx := {ξ : G(x, ξ) 6∈ C}, come from nonconvexity of Qx

rather than from the fact that we are interested in rare events. Indeed, at least
for uniformly distributed ξ, advanced Monte Carlo techniques allow for poly-
nomial time estimation of the quantity Prob{ξ ∈ Q} with every fixed relative
accuracy, provided that Q is convex, [4, 5].
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This is why the conditions should be efficiently verifiable and define convex
feasible sets.

There are two major avenues for building tractable approximations of
chance constraints. The first is to consider one by one interesting generic ran-
domly perturbed constraints (linear, conic quadratic, semidefinite, etc.) and
to look for specific tractable approximations of their chance counterparts. This
approach is easy to implement for linear constraints with m = 1 and C := R+.
Then the constraint G(x, ξ) ∈ C is equivalent to aT x+ξT A(x) ≤ b, with A(x)
being affine in x. Assuming that we know an upper bound V on the covariance
matrix of ξ, so that E{(hT ξ)2} ≤ hT V h for every vector h, a natural “safe
version” of the random constraint in question is

aT x + γ
√

AT (x)V A(x) ≤ b, (6)

where γ = γ(ε) is a “safety parameter” which should satisfy the condition

Prob
{
ξ : hT ξ > γ

√
hT V h

} ≤ ε for any h ∈ Rd.

An appropriate value of γ can be derived from the standard results on prob-
abilities of large deviations for scalar random variables. For example, for the
case when ξ has “light6 tail”, it suffices to take γ(ε) = 2

√
1 + ln(ε−1).

Results of the outlined type can be obtained for randomly perturbed conic
quadratic7 constraints ‖Ax − b‖ ≤ τ (here C := {(y, t) : t ≥ ‖y‖} is the
Lorentz cone), as well as for randomly perturbed semidefinite constraints (C
is the semidefinite cone in the space of matrices), see [8]. However, the outlined
approach has severe limitations: it hardly could handle the case when C pos-
sesses complicated geometry. For example, using “safe version” (6) of a single
randomly perturbed linear inequality, one can easily build an approximation
of the chance constraint corresponding to the case when C is a polyhedral set
given by a list of linear inequalities. At the same time, it seems hopeless to
implement the approach in question in the case of a simple two-stage stochas-
tic program, where we need a safe version of the constraint G(x, ξ) ∈ C with
the set C given in the form (2). Here the set C, although polyhedral, is not
given by an explicit list of linear inequalities (such a list can be exponentially
long), which makes the aforementioned tools completely inapplicable.

The second avenue of building tractable approximations of chance con-
straints is the scenario approach based on Monte Carlo simulation. Specifi-
cally, given the probability distribution P of random data vector ξ and level
of perturbations σ, we choose somehow a “trial” distribution F (which does
not need to be the same as P). Consequently, we generate a sample η1, ..., ηN

of N realizations, called scenarios, of ξ drawn from the distribution F, and
treat the system of constraints

6 Specifically, E
[
exp{ (hT ξ)2

4hT V h
}
]
≤ exp{1} for every h ∈ Rd, as in the case where ξ

has normal distribution with zero mean and covariance matrix V
7 Unless stated otherwise, ‖z‖ := (zT z)1/2 denotes the Euclidean norm.
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G(x, ηj) ∈ C, j = 1, ..., N, (7)

as an approximation of chance constraint (3). This is the approach we inves-
tigate in this paper.

The rationale behind this scenario based approach is as follows. First of
all, (7) is of the same level of “computational tractability” as the unperturbed
constraint, so that (7) is computationally tractable, provided that C is so and
that the number of scenarios N is reasonable. Thus, all we should understand
is what can be achieved with a reasonable N . For the time being, let us forget
about optimization with respect to x, fix x = x̄ and let us ask ourselves what
are the relations between the predicates “x̄ satisfies (3)” and “x̄ satisfies (7)”.
Recall that the random sample {ηj}N

j=1 is drawn from the trial distribution
F. We assume in the remainder of this section the following.

The trial distribution F is the distribution of sξ, where s ≥ 1 is fixed
and P is the probability distribution of random vector ξ.

Because of (4) we have that Gσ(x̄, ξ) ∈ C iff ξ ∈ Qx̄,σ, where

Qx̄,σ :=
{

z ∈ Rd : σ
∑d

i=1 ziAi(x̄) ∈ C −A0(x̄)
}

. (8)

Note that the set Qx̄,σ is closed and convex along with C, and for any s > 0,

s−1Qx̄,σ = {ξ : Gsσ(x̄, ξ) ∈ C} .

Now, in “good cases” P possesses the following “concentration” property.

(!) For every convex set Q ⊂ Rd with P(Q) not too small, e.g., P(Q) ≥ 0.9,
the mass P(sQ) of s-fold enlargement of Q rapidly approaches 1 as s
grows. That is, if Q is convex and P(Q) ≥ 0.9, then there exists κ > 0
such that for s ≥ 1 it holds that

P
({ξ 6∈ sQ}) ≤ e−κs2

. (9)

(we shall see that, for example, in the case of normal distribution, estimate
(9) holds true with κ = 0.82).

Assuming that the above property (!) holds, and given small ε > 0, let us set8

s :=
√

κ−1 ln(ε−1) and N := ceil
[
ln(δ)/ ln(0.9

] ≈ ceil
[
10 ln(δ−1)

]
, (10)

where δ > 0 is a small reliability parameter, say, δ = ε. Now, if x̄ satisfies the
constraint

P
({ξ : Gsσ(x̄, ξ) 6∈ C}) ≤ ε, (11)

that is, x̄ satisfies the strengthened version of (3) obtained by replacing the
original level of perturbations σ with sσ, then the probability to get a sample
{ηj}N

j=1 such that x̄ does not satisfy (7) is at most

8 Notation ceil[a] stands for the smallest integer which is greater than or equal to
a ∈ R.
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∑N
j=1 Prob

({G(x̄, ηj) 6∈ C}) ≤ εN = O(1)ε ln(δ−1),

where the constant O(1) is slightly bigger than [ln(0.9−1)]−1 = 9.5. For δ = ε,
say, this probability is nearly of order ε.

Let Q := s−1Qx̄,σ, and hence

P({ξ ∈ Q}) = P({sξ ∈ Qx̄,σ}) = Prob
({G(x̄, ηj) ∈ C}).

Consequently, if P({ξ ∈ Q}) < 0.9, then the probability p of getting a sample
{ηj}N

j=1 for which x̄ satisfies (7) , is the probability to get N successes in N
Bernoulli trials with success probability for a single experiment less than 0.9.
That is, p ≤ 0.9N , and by (10) we obtain p ≤ δ. For small δ = ε, such an event
is highly unlikely. And if P({ξ ∈ Q}) ≥ 0.9, then by using (9) and because of
(10) we have

P({ξ 6∈ Qx̄,σ}) = P({ξ 6∈ sQ}) ≤ e−κs2
= ε.

That is, x̄ satisfies the chance constraint (3).
We can summarize the above discussion as follows.

(!!) If x̄ satisfies the chance constraint (3) with a moderately increased level of
perturbations (by factor s =

√
O(ln(ε−1))), then it is highly unlikely that

x̄ does not satisfy (7) (probability of that event is less than O(1)ε ln(ε−1)).
If x̄ does satisfy (7), then it is highly unlikely that x̄ is infeasible for (3)
at the original level of perturbations (probability of that event is then less
than δ = ε). Note that the sample size which ensures this conclusion is
just of order O(1) ln(ε−1).

The approach we follow is closely related the importance sampling method,
where one samples from a properly chosen artificial distribution rather than
from the actual one in order to make the rare event in question “more fre-
quent”. The difference with the traditional importance sampling scheme is
that the latter is aimed at estimating the expected value of a given func-
tional and uses change of the probability measure in order to reduce the
variance of the estimator. In contrast to this, we do not try to estimate
the quantity of interest (which in our context is Prob{ξ 6∈ Q}, where Q is
a given convex set) because of evident hopeless of the estimation problem.
Indeed, we are interested in multidimensional case and dimension indepen-
dent constructions and results, while the traditional importance sampling is
heavily affected by the “curse of dimensionality”. For example, the distri-
butions of two proportional to each other with coefficient 2 normally dis-
tributed vectors ξ and η of dimension 200 are “nearly singular”with respect
to each other: one can find two nonintersecting sets U, V in R200 such that
Prob{ξ 6∈ U} = Prob{η 6∈ V } < 1.2 ·10−11. Given this fact, it seems ridiculous
to estimate a quantity related to one of these distributions via a sample drawn
from the other one. What could be done (and what we intend to do) is to use
the sample of realizations of the larger random vector η to make conclusions
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of the type “if all elements of a random sample of size N = 10, 000 of η belong
to a given convex set Q, then, up to chance of “bad sampling” as small as
10−6, the probability for the smaller vector ξ to take value outside Q is at
most 4.6 · 10−9. Another difference between what we are doing and the usual
results on importance sampling is in the fact that in our context the convexity
of Q is crucial for the statements (and the proofs), while in the traditional
importance sampling it plays no significant role.

Scenario approach is widely used in Stochastic Optimization. We may refer
to [10], and references therein, for a discussion of the Monte Carlo sampling
approach to solving two-stage stochastic programming problems of the generic
form

Min
x∈X

E [F (x, ξ)] , (12)

where F (x, ξ) is the optimal value of the corresponding second stage problem.
That theory presents moderate upper bounds on the number of scenarios
required to solve the problem within a given accuracy and confidence. How-
ever, all results of this type known to us postulate from the very beginning
that F (x, ξ) is finite valued with probability one, i.e., that the problem has a
relatively complete recourse.

As far as problems with chance constraints of the form (3) are concerned,
seemingly the only possibility to convert such a problem into one with simple
(relatively complete) recourse is to penalize violations of constraints. That is,
to approximate the problem of minimization of f(x) := cT x subject to Ax ≥ b
and chance constraint (3), by the problem

Min
x

cT x + γE [F (x, ξ)] s.t. Ax ≥ b, (13)

where F (x, ξ) := inft≥0,y

{
t : Wy + te ≥ G(x, ξ)

}
, e is vector of ones and

γ > 0 is a penalty parameter. The difficulty, however, is that in order to solve
(12) within a fixed absolute accuracy in terms of the objective, the number
of scenarios N should be of order of the maximal, over x ∈ X, variance of
γF (x, ξ). For problem (13), that means N should be of order of γ2; in turn, the
penalty parameter γ should be inverse proportional to the required confidence
parameter ε, and we arrive at the same difficulty as in the case of straightfor-
ward Monte Carlo simulation: the necessity to work with prohibitively large
samples of scenarios when high level of confidence is required.

To the best of our knowledge, the most recent and advanced results on
chance versions of randomly perturbed convex programs are those of Calafiore
and Campi [3]. These elegant and general results state that whatever are the
distributions of random perturbations (perhaps entering nonlinearly into the
objective and the constraints) affecting a convex program with n decision
variables, for

N ≥ 2
[
nε−1 ln(ε−1) + ε−1 ln(δ−1) + n

]
, (14)

an N -scenario sample is sufficient to solve the problem within confidence 1−ε
with reliability 1− δ. That is, for (fixed) ε > 0, δ > 0 and sample size N sat-
isfying (14), the probablity that an optimal solution of the associated sample
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average problem satisfies the corresponding chance constraint condition (3) is
at least 1− δ. Here again everything is fine except for the fact that the sam-
ple size is proportional to ε−1 ln(ε−1), which makes the approach impractical
when high level of confidence is required.

The rest of the paper is organized as follows. In Section 2, we develop our
techniques as applied to the analysis problem, as in the motivating discussion
above. Note that validity of our scheme for the analysis problem does not
yield automatically its validity for the synthesis one, where one optimizes a
given objective over the feasible set9 of (7). Applications of the methodology
in the synthesis context form the subject of Section 3. Technical proofs are
relegated to Appendix.

We use the following notation: EP{·} stands for the expectation with re-
spect to a probability distribution P on Rn (we skip index P, when the distri-
bution is clear from the context). By default, all probability distributions are
Borel ones with finite first moments. For λ ∈ R, a distribution P on Rd and
ξ ∼ P, we denote by P(λ) the distribution of random vector λξ. Finally, in
the sequel, “symmetric” for sets and distributions always means “symmetric
with respect to the origin”. Unless stated otherwise all considered norms on
Rd are Euclidean norms.

2 The Analysis problem

In this section, the assumption that the mappings Ai(·), i = 1, ..., d, are affine
plays no role and is discarded. Recall that the Analysis version of (3) is to
check, given x̄, σ, ε > 0, and (perhaps, partial) information on the distribution
P of ξ, whether P

({ξ : Gσ(x̄, ξ) 6∈ C}) ≤ ε. Consider the set Q := Qx̄,σ,
where Qx̄,σ is defined in (8). Recall that Q is closed and convex. The Analysis
problem can be formulated as to check whether the relation

P
({ξ : ξ 6∈ Q}) ≤ ε (15)

holds true. The scenario approach, presented in section 1, results in the fol-
lowing generic test:

(T) Given confidence parameter ε ∈ (0, 1), reliability parameter δ ∈ (0, 1),
and information on (zero mean) distribution P on Rd, we act as follows:
(i) We specify a trial distribution F on Rd along with integers N > 0
(sample size) and K ≥ 0 (acceptance level), where K < N .

9 Indeed, our motivating discussion implies only that every fixed point x̄ which
does not satisfy (3) is highly unlikely to be feasible for (7) – the probability of the
corresponding “pathological” sample {ηj} is as small as δ. This, however, does
not exclude the possibility that a point x which depends on the sample, e.g., the
point which optimizes a given objective over the feasible set of (7) – is not that
unlikely to violate (3).



10 Arkadi Nemirovski and Alexander Shapiro

(ii) We generate a sample {ηj}N
j=1, drawn from trial distribution F, and

check whether at most K of the N sample elements violate the condition10

ηj ∈ Q. (16)

If it is the case, we claim that (15) is satisfied (“acceptance conclusion”),
otherwise we make no conclusion at all.

We are about to analyze this test, with emphasis on the following major
questions:

A. How to specify the “parameters” of the test, that is, trial distribution F,
sample size N and acceptance level K, in a way which ensures the validity
of the acceptance with reliability at least 1 − δ, so that the probability
of false acceptance (i.e., generating a sample {ηj} which results in the
acceptance conclusion in the case when (15) is false) is less than δ.

B. What is the “resolution” of the test (for specified parameters)? Here
“resolution” is defined as a factor r = r(ε, δ) ≥ 1 such that whenever
P({ξ ∈ Qx̄,rσ}) ≤ ε (that is, x̄ satisfies (3) with the level of perturba-
tions increased by factor r), the probability of not getting the acceptance
conclusion is at most δ.

2.1 Majorization

In section 1 we focused on scenario approach in the case when the scenario
perturbations are multiples of the “true” ones. In fact we can avoid this re-
striction; all we need is the assumption that the trial distribution majorizes
the actual distribution of perturbations in the following sense.

Definition 1. Let F, P be probability distributions on Rd. It is said that
F majorizes11 P (written F º P) if for every convex lower semicontinous
function f : Rd → R ∪ {+∞} one has EF[f ] ≥ EP[f ], provided that these
expectations are well defined.

It is well known that the above majorization is a partial order (e.g., [7]).
Some other basic properties of majorization are summarized in the following
proposition.

Proposition 1. The following statements hold.
(i) F º P if and only if EF[f ] ≥ EP[f ] for every convex function f with linear
growth (that is, a real valued convex function f such that |f(x)| ≤ O(‖x‖) as
‖x‖ → ∞).
(ii) Distribution of the sum ξ +η of two independent random vectors ξ, η ∈ Rd

10 Recall that ηj ∈ Q is equivalent to G(x̄, ηj) ∈ C.
11 In the literature on stochastic orderings the relation “ º ” is called the convex

order, [7].
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majorizes the distributions of ξ, provided that E[η] = 0.
(iii) If F º P and F′ º P′, then λF + (1− λ)F′ º λP + (1− λ)P′ whenever
λ ∈ [0, 1].
(iv) Let F º P be distributions on Rp×Rq, and F̃, P̃ be the associated marginal
distributions on Rp. Then F̃ º P̃.
(v) If F,P are distributions on Rp and F′,P′ are distributions on Rq, then
the distribution F×F′ on Rp+q majorizes the distribution P×P′ if and only
if both F º P and F′ º P′.
(vi) Let ξ, η be random vectors in Rd and A be an m×d matrix. If the distri-
bution of ξ majorizes the one of η, then the distribution of Aξ majorizes the
one of Aη.
(vii) For symmetric distributions F,P, it holds that F º P if and only if
EF{f} ≥ EP{f} for all even convex functions f with linear growth such that
f(0) = 0.
(viii) For α ≥ 1 and symmetrically distributed random vector ξ, the distribu-
tion of αξ majorizes the distribution of ξ.

Proof. (i) This is evident, since every lower semicontinuous convex func-
tion on Rd is pointwise limit of a nondecreasing sequence of finite convex
functions with linear growth.

(ii) For a real valued convex f we have

Eξ+η[f(η + ξ)] = Eξ{Eη[f(η + ξ)]} ≥ Eξ{f(Eη[η + ξ])} = Eξ[f(ξ)],

where the inequality follows by the Jensen inequality.
(iii), (iv), (vi) and (vii) are evident, and (viii) is readily given by (vii).
(v) Assuming F º P and F′ º P′, for a convex function f(u, u′) with

linear growth (u ∈ Rp, u′ ∈ Rq) we have
∫

f(u, u′)F(du)F′(du′) =
∫ {∫

f(u, u′)F′(du′)
}
F(du) ≥∫ {∫ f(u, u′)P′(du′)}F(du) ≥ ∫ {∫ f(u, u′)P′(du′)}P(du) =∫

f(u, u′)P(du)P′(du′)

(we have used the fact that
∫

f(u, u′)P′(du′) is a convex function of u with
linear growth). We see that F × F′ º P × P′. The inverse implication
F× F′ º P×P′ ⇒ {F º P & F′ º P′} is readily given by (iv).

Let us also make the following simple observation:

Proposition 2. Let F and P be symmetric distributions on R such that P is
supported on [−a, a] and the first absolute moment of F is ≥ a. Then F º P.
In particular, we have:

(i) the distribution of the random variable taking values ±1 with probabilities
1/2 majorizes every symmetric distribution supported in [−1, 1];

(ii) the normal distribution N(0, π/2) majorizes every symmetric distribution
supported in [−1, 1].
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Proof. Given symmetric probability distribution P supported on [−a, a]
and a symmetric distribution F with the first absolute moment ≥ a, we should
prove that for every convex function f with linear growth on R it holds that
EP[f ] ≤ EF[f ]. Replacing f(x) with (f(x) + f(−x))/2 + c, which does not
affect the quantities to be compared, we reduce the situation to the one where
f is even convex function with f(0) = 0. The left hand side of the inequality
to be proven is linear in P, thus, it suffices to prove the inequality for a
weakly dense subset of the set of extreme points in the space of symmetric
probability distributions on [−a, a], e.g., for distributions assigning masses 1/2
to points ±α with α ∈ (0, a]. Thus, we should prove that if f is nondecreasing
finite convex function on the ray R+ := {x : x ≥ 0} such that f(0) = 0
and α ∈ (0, a], then f(α) ≤ 2

∫∞
0

f(x)F(dx). When proving this fact, we can
assume without loss of generality that F possesses continuous density p(x).
Since f is convex, nondecreasing and nonnegative on R+ and f(0) = 0, for
x ≥ 0 we have f(x) ≥ g(x) := max[0, f(α) + f ′(α)(x − α)], and g(0) = 0, so
that g(x) = c(x−β)+ for certain c ≥ 0 and β ∈ [0, α]. Replacing f with g, we
do not affect the left hand side of the inequality to be proven and can only
decrease the right hand side of it. Thus, it suffices to consider the case when
f(x) = (x− β)+ for certain β ∈ [0, α]. The difference

h(β) = f(α)− 2
∞∫
0

f(x)F(dx) = α− β − 2
∞∫
β

(x− β)p(x)dx,

which we should prove is nonpositive for β ∈ [0, α], is nonincreasing in β.
Indeed, h′(β) = −1 + 2

∫∞
β

p(x)dx ≤ 0. Consequently,

h(β) ≤ h(0) = α− 2
∞∫
0

xp(x)dx = α− ∫ |x|F(dx) ≤ 0

due to α ≤ a ≤ ∫ |x|F(dx).

Corollary 1. Let P be a probability distribution on d-dimensional unit12 cube
{z ∈ Rd : ‖z‖∞ ≤ 1} which is “sign-symmetric”, that is, if ξ ∼ P and E is a
diagonal matrix with diagonal entries ±1, then Eξ ∼ P. Let, further, U be the
uniform distributions on the vertices of the unit cube, and13 let F ∼ N(0, π

2 Id).
Then P ¹ U ¹ F.

Proof. Without loss of generality we can assume that P has density. The
restriction of P on the nonnegative orthant is a weak limit of convex combina-
tions of masses P(Rd

+) = 2−d sitting at points from the intersection of the unit
cube and Rd

+, Consequently, P itself is a weak limit of uniform distributions
on the vertices of boxes of the form {x : |xi| ≤ ai ≤ 1, i = 1, ..., d}, that is,
limit of direct products Ua of uniform distributions sitting at the points ±ai.
12 The norm ‖z‖∞ is the max-norm, i.e., ‖z‖∞ := max{|z1|, ..., |zd|}.
13 By N(µ, Σ) we denote normal distribution with mean µ and covariance matrix

Σ, and by Id we denote the d× d unit matrix.
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By Proposition 1(iii), in order to prove that P ¹ U it suffices to verify that
U º Ua for all a with 0 ≤ ai ≤ 1. By Proposition 1(v), to prove the latter
fact it suffices to verify that the uniform distribution on {−1; 1} majorizes
uniform distribution on {−a; a} for every a ∈ [0, 1], which indeed is the case
by Proposition 2. To prove that F º U, by Proposition 1(v) it suffices to verify
that the N(0, π

2 )-distribution on the axis majorizes the uniform distribution
on {−1; 1}, which again is stated by Proposition 2.

Another observation of the same type as in Proposition 2 is as follows.

Proposition 3. The uniform distribution on [−a, a] majorizes every symmet-
ric unimodal distribution P on the segment (that is, distribution with density
which is noincreasing function of |x| and vanishes for |x| > a) and is ma-
jorized by normal distribution N(0, σ2) with σ =

√
2π
4 ≈ 0.6267.

Proof. The first statement is evident. To prove the second statement is
the same as to prove that the uniform distribution on [−a, a] with a = 4/

√
2π

is majorized by the standard normal distribution N(0, 1). To this end, same
as in the proof of Proposition 2, it suffices to verify that

a∫
0

a−1f(x)dx ≤ 2√
2π

∞∫
0

f(x) exp{−x2/2}dx

for every real valued nondecreasing convex function f(x) on [0,∞] such that
f(0) = 0. Functions of this type clearly can be approximated by linear combi-
nations, with nonnegative coefficients, of functions of the form (x−β)+, with
β ≥ 0. Thus, it suffices to prove the inequality in question for f(x) = (x−β)+,
which is straightforward.

2.2 Concentration

Let us consider the following “concentration” property.

Definition 2. Let θ̄ ∈ [ 1
2
, 1) and ψ(θ, γ) be a function of θ ∈ (θ̄, 1] and γ ≥ 1

which is convex, nondecreasing and nonconstant as a function of γ ∈ [1,∞).
We say that a probability distribution F on Rd possesses (θ̄, ψ)-concentration
property (notation: F ∈ C(θ̄, ψ)), if for every closed convex set Q ⊂ Rd one
has

F(Q) ≥ θ > θ̄ and γ ≥ 1 ⇒ F({x 6∈ γQ}) ≤ exp{−ψ(θ, γ)}.

If the above implication is valid under additional assumption that Q is sym-
metric, we say that F possesses symmetric (θ̄, ψ)-concentration property (no-
tation: F ∈ SC(θ̄, ψ)).

Distributions with such concentration properties admit a certain calculus
summarized in the following proposition.
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Proposition 4. The following statements hold.
(i) A symmetric distribution which possesses a symmetric concentration prop-
erty possesses concentration property as well: if F ∈ SC(θ̄, ψ) is symmetric,
then F ∈ C(θ̂, ψ̂) with θ̂ := (1 + θ̄)/2 and ψ̂(θ, γ) := ψ(2θ − 1, γ).
(ii) Let ξ ∼ F be a random vector in Rd, A be an m × d matrix and F(A) be
the distribution of Aξ. Then F ∈ C(θ̄, ψ) implies that F(A) ∈ C(θ̄, ψ).
(iii) Let F ∈ C(θ̄, ψ) be a distribution on Rp × Rq, and F̃ be the associated
marginal distribution on Rp. Then F̃ ∈ C(θ̄, ψ).
(iv) Let ξi, i = 1, ..., p, be independent random vectors in Rd with symmetric
distributions F1, ...,Fp, such that Fi ∈ C(θ̄, ψ), i = 1, ..., p. Then the distribu-
tion F of η = ξ1 + ...+ ξp belongs to C(θ̂, ψ̂) with θ̂ := 2θ̄− 1 and ψ̂(θ, ·) given
by the convex hull14 of the function

ϕ(γ) :=





ln
(

1
1−θ

)
, 1 ≤ γ < p,

max
{

ln
(

1
1−θ

)
, ψ(2θ − 1, γ/p)− ln p

}
, γ ≥ p,

(17)

where γ ∈ [1,∞) and θ > θ̂.
(v) Let Fi ∈ C(θ̄, ψ) be distributions on Rmi , i = 1, ..., p, and assume that all
Fi are symmetric. Then F1 × ... × Fp ∈ C(θ̂, ψ̂) with θ̂ and ψ̂ exactly as in
(iv).

Moreover, statements (ii) – (v) remain valid if the class C(θ̄, ψ) in the
premises and in the conclusions is replaced with SC(θ̄, ψ).

Proof. (i) Let F satisfy the premise of (i), and let Q be a closed convex set
such that F(Q) ≥ θ > θ̂. By symmetry of F, we have F(Q∩(−Q)) ≥ 2θ−1 > θ̄,
and hence

F({ξ 6∈ γQ}) ≤ F({ξ 6∈ γ(Q ∩ (−Q))}) ≤ exp{−ψ(2θ − 1, γ)}.

The statements (ii) and (iii) are evident.
(iv) Let Q be a closed convex set such that θ := F(Q) > θ̂. We claim that

then
Fi({x ∈ Q}) ≥ 2θ − 1 > θ̄, i = 1, ..., p. (18)

Indeed, let us fix i, and let ζ be the sum of all ξj except for ξi, so that
η = ζ + ξi, ζ and ξi are independent and ζ is symmetrically distributed.
Observe that conditional, given the value u of ξi, probability for ζ to be
outside Q is at least 1/2, provided that u 6∈ Q. Indeed, when u 6∈ Q, there
exists a closed half-space Πu containing u which does not intersect Q (recall
that Q is closed and convex); since ζ is symmetrically distributed, u+ ζ ∈ Πu

with probability at least 1/2, as claimed. From our observation it follows that
if ξi 6∈ Q with probability s, then η 6∈ Q with probability at least s/2; the
latter probability is at most 1− θ, whence s ≤ 2− 2θ, and (18) follows.

14 The convex hull of a function ϕ is the largest convex function majorized by ϕ.
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Assuming γ ≥ p and Prob{ξ1 + ... + ξp ∈ Q} ≥ θ > θ̂, we have

Prob{ξ1 + ... + ξp 6∈ γQ} ≤
p∑

i=1

Prob{ξi 6∈ (γ/p)Q} ≤ p exp{−ψ(2θ − 1, γ/p)},

where the concluding inequality is given by (18) and the inclusions Fi ∈
C(θ̄, ψ). Now, the distribution of η is symmetric, so that F({η ∈ Q}) > θ̂ ≥ 1/2
implies that Q intersect −Q, that is, that 0 ∈ Q. Due to the latter inclusion,
for γ ≥ 1 one has F({η ∈ γQ}) ≥ F({η ∈ Q}) ≥ θ. Thus,

F({η 6∈ γQ}) ≤
{

1− θ, 1 ≤ γ ≤ p,
p exp{−ψ(2θ − 1, γ/p}, γ ≥ p,

and (iv) follows.
(v) Let ξi ∼ Fi be independent, i = 1, ..., p, and let F̄i be the distribution

of the (m1 + ... + mp)-dimensional random vector

ζi = (0m1+...+mi−1 , ξ
i, 0mi+1+...+mp).

Clearly, F̄i ∈ C(θ̄, ψ) due to similar inclusion for Fi. It remains to note that∑
i

ζi ∼ F1 × ...× Fp and to use (iv).

We intend now to present a number of concrete distributions possessing
the concentration property.

Example 1: Normal distribution.

Consider the cumulative distribution function Φ(t) = 1√
2π

∫ t

−∞ exp{−z2/2}dz

of the standard normal distribution and let15 φ(θ) := Φ−1(θ) for θ ∈ (0, 1).

Theorem 1. Let B be a closed convex set in Rd. Then the following holds.
(i) If η ∼ N(0, Id) and Prob{η ∈ B} ≥ θ > 1

2
, then for α ∈ (0, 1):

Prob{αη ∈ B} ≥ 1− exp
{
−φ2(θ)

2α2

}
. (19)

(ii) If ζ ∼ N(0, Σ) and Prob {ζ 6∈ B} ≡ 1− θ < 1
2
, then for γ ≥ 1:

Prob {ζ 6∈ γB} ≤ min
{
1− θ, exp

(− 1
2
φ2(θ)γ2

)}
. (20)

In other words, a zero mean normal distribution on Rd belongs to C( 1
2
, ψ) with

ψ(θ, γ) := max
{
ln[(1− θ)−1], 1

2
φ2(θ)γ2

}
.

Proof. Our proof of this result is based on the following result due to
Borell [1]:

15 The inverse function φ(θ) := Φ−1(θ) is defined by the equation Φ(φ(θ)) = θ.
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(!!!) For η ∼ N(0, Id), every γ > 0, ε ≥ 0 and every closed set X ⊂ Rd such
that Prob{η ∈ X} ≥ γ, one has

Prob {dist(η, X) > ε} ≤ 1− Φ(φ(γ) + ε), (21)

where dist(a, X) := infx∈X ‖a− x‖.
Now let η, ζ be independent N(0, Id) random vectors, and let

p(α) = Prob{αη 6∈ B}.

We have that αη +
√

1− α2 ζ ∼ N(0, Id), and hence

Prob{dist(αη +
√

1− α2ζ, B) > t} ≤ 1− Φ(φ(θ) + t) (22)

by (21). On the other hand, let αη 6∈ B, and let e = e(η) be a vector such
that ‖e‖ = 1 and eT [αη] > max

x∈B
eT x. If ζ is such that

√
1− α2eT ζ > t, then

dist(αη +
√

1− α2ζ, B) > t, and hence if αη 6∈ B, then

Prob
{

ζ : dist(αη +
√

1− α2ζ,B) > t
}
≥ 1− Φ(t/

√
1− α2).

Whence for all t ≥ 0 such that δ(t) := φ(θ) + t− t/
√

1− α2 ≥ 0 one has

p(α)[1− Φ(t/
√

1− α2)] ≤ Prob
{
dist(αη +

√
1− α2ζ, B) > t

}
≤ 1− Φ(φ(θ) + t).

It follows that

p(α) ≤ 1−Φ(φ(θ)+t)

1−Φ(t/
√

1−α2)
=

∞∫

t/
√

1−α2

exp{−(s+δ(t))2/2}ds

∞∫

t/
√

1−α2

exp{−s2/2}ds

=

∞∫

t/
√

1−α2

exp{−s2/2−sδ(t)−δ2(t)/2}ds

∞∫

t/
√

1−α2

exp{−s2/2}ds
≤ exp{−tδ(t)/

√
1− α2 − δ2(t)/2}.

Setting in the resulting inequality t = φ(θ)(1−α2)
α2 , we get

p(α) ≤ exp
{
−φ2(θ)

2α2

}
.

Example 2: Uniform distribution on the vertices of a cube.

We start with the following known fact (which is the Talagrand Inequality in
its extended form given in [6]):
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Theorem 2. Let (Et, ‖·‖Et) be finite-dimensional normed spaces, t = 1, ..., d,
F be the direct product of E1, ..., Ed equipped with the norm ‖(x1, ..., xd)‖F :=√∑d

t=1 ‖xt‖2Et
, Ft be Borel probability distributions on the unit balls of Et

and F be the product of these distributions. Given a closed convex set A ⊂ F ,
let dist(x,A) = miny∈A ‖x− y‖F . Then

EF

[
exp

{
1
16dist2(x,A)

}] ≤ 1
F(A) . (23)

This result immediately implies the following.

Theorem 3. Let P be the uniform distribution on the vertices of the unit cube{
x ∈ Rd : ‖x‖∞ ≤ 1

}
. Then P ∈ SC(θ̄, ψ) with the parameters given by:

θ̄ = 1+exp{−π2/8}
2 ≈ 0.6456,

ρ(θ) = sup
ω∈(0,π/2]

{
ω−1acos

(
1+exp{−ω2/2}−θ

θ

)
: 1 + exp{−ω2/2} < 2θ

}
,

ψ(θ, γ) = max
{

ln 1
1−θ , ln θ

1−θ + ρ2(θ)(γ−1)2

16

}
.

(24)

In order to prove this result we need the following lemma.

Lemma 1. Let ξj be independent random variables taking values ±1 with
probabilities 1/2 and let ζ :=

∑d
j=1 ajξj with ‖a‖ = 1. Then for every ρ ∈ [0, 1]

and every ω ∈ [0, π/2] one has

Prob {|ζ| ≤ ρ} cos(ρω)− Prob {|ζ| > ρ} ≤ cosd( ω√
d
) ≤ exp{−ω2/2}.

In particular, if

θ := Prob {|ζ| ≤ ρ} > θ̄ :=
1 + exp{−π2/8}

2
, (25)

then ρ ≥ ρ(θ), where ρ(θ) is defined in (24).

Proof. For ω ∈ [0, π/2] we have

E{exp{iζω}} =
∏
j

E{exp{iajξjω}} =
∏
j

cos(ajω).

Observe that the function f(s) = ln cos(
√

s) is concave on [0, (π/2)2]. Indeed,
f ′(s) = − tg(

√
s) 1

2
√

s
and

f ′′(s) = − 1
cos2(

√
s)

1
4s + tg(

√
s) 1

4s
√

s
= − 1

4s2 cos2(s) [
√

s− sin(
√

s) cos(
√

s)] ≤ 0.

Consequently, for 0 ≤ ω ≤ π/2 we have
∑
j

ln(cos(ajω)) =
∑
j

f(a2
jω

2) ≤ max
0≤sj≤(π/2)2

∑
j sj=ω2

∑
j

f(sj) = df(ω2/d) ≤ exp{−ω2/2},
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and we see that

0 ≤ ω ≤ π
2 ⇒ E{exp{iζω}} ≤ cosd( ω√

d
) ≤ exp{−ω2/2}.

On the other hand, ζ is symmetrically distributed, and therefore for 0 ≤ ρ ≤ 1
and ω ∈ [0, π/2] we have, setting µ := Prob{|ζ| ≤ ρ}:

E {exp{iωζ}} ≥ µ cos(ρω)− (1− µ),

and we arrive at the announced result.
Proof of Theorem 3. Let Q be a symmetric closed convex set in Rd

such that
Prob{ξ ∈ Q} ≥ θ > θ̄.

We claim that then Q contains the centered at the origin Euclidean ball of
the radius ρ(θ). Indeed, otherwise Q would be contained in the strip Π = {x :
|aT x| ≤ c} with c < ρ(θ) and ‖a‖ = 1. Setting ζ = aT ξ, we get

Prob{|ζ| ≤ c} = Prob{ξ ∈ Π} ≥ Prob{ξ ∈ Q} ≥ θ,

whence by Lemma 1, c ≥ ρ(θ), which is a contradiction.
For s ≥ 1 from x 6∈ sQ it follows that the set x+(s−1)Q does not intersect

Q; since this set contains the ‖ · ‖-ball centered at x of the radius (s− 1)ρ(θ),
the Euclidean distance dQ(x) := dist(x,Q), from x to Q, is at least (s−1)ρ(θ).
At the same time, by Talagrand Inequality we have

E
[
exp

{d2
Q(ξ)

16

}]
≤ 1

Prob{ξ∈Q} ≤
1
θ .

On the other hand, when γ ≥ 1 we have, by the above arguments,

E
[
exp

{d2
Q(ξ)

16

}]
≥ Prob {ξ ∈ Q}+ exp

{
(γ−1)2ρ2(θ)

16

}
Prob {ξ 6∈ γQ} ,

whence if γ ≥ 1, then

Prob {ξ 6∈ γQ} ≤ 1−θ
θ exp

{
− (γ−1)2ρ2(θ)

16

}
,

and of course
γ ≥ 1 ⇒ Prob {ξ 6∈ γQ} ≤ 1− θ,

and the result follows.

Example 3: Uniform distribution on the cube.

This example is similar to the previous one.

Theorem 4. Let P be the uniform distribution on the unit cube {x ∈ Rd :
‖x‖∞ ≤ 1}. Then P ∈ SC(θ̄, ψ) with the parameters given by:

θ̄ = 1+exp{−π2/24}
2 ≈ 0.8314,

ρ(θ) = sup
ω∈(0,π/2]

{
ω−1acos

(
1+exp{−ω2/6}−θ

θ

)
: 1 + exp{−ω2/6} < 2θ

}
,

ψ(θ, γ) = max
{

ln
(

1
1−θ

)
, ln

(
θ

1−θ

)
+ ρ2(θ)(γ−1)2

16

}
.

(26)
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We have the following analog of Lemma 1.

Lemma 2. Let ξj be independent random variables uniformly distributed in
[−1, 1] and ζ =

∑d
j=1 ajξj with ‖a‖ = 1. Then for every ρ ∈ [0, 1] and every

ω ∈ [0, π/2] one has

Prob {|ζ| ≤ ρ} cos(ρω)− Prob {|ζ| > ρ} ≤
(

sin(ωd−1/2)
ωd−1/2

)d

≤ exp
{−ω2/6

}
.

(27)
In particular, if

θ := Prob {|ζ| ≤ ρ} > θ̄ :=
1 + exp{−π2/24}

2
, (28)

then ρ ≥ ρ(θ), where ρ(θ) is defined in (26).

Proof. For ω ∈ [0, π/2] we have

E{exp{iζω}} =
∏
j

E{exp{iajξjω}} =
∏
j

sin(ajω)
ajω .

Observe that the function f(s) = ln(sin(
√

s))− 1
2 ln s is concave on [0, (π/2)2].

Indeed, f ′(s) = ctg(
√

s) 1
2
√

s
− 1

2s and

f ′′(s) = − 1
sin2(

√
s)

1
4s − ctg(

√
s) 1

4s
√

s
+ 1

2s2 = h(
√

s)
4s2 sin2(

√
s)

,

where

h(r) = 2 sin2(r)− r sin(r) cos(r)− r2 = 1− cos(2r)− (r/2) ∗ sin(2r)− r2.

We have h(0) = 0, h′(r) = (3/2) ∗ sin(2r)− r cos(2r)− 2r, so that h′(0) = 0,
h′′(r) = 2 cos(2r) + r sin(2r) − 2, so that h′′(0) = 0, and finally h′′′(r) =
−3 sin(2r) + 2r cos(2r), so that h′′′(0) = 0 and h′′′(r) ≤ 0, 0 ≤ r ≤ π/2, due
to tg(u) ≥ u for 0 ≤ u < π/2. It follows that h(·) ≤ 0 on [0, π/2], as claimed.

From log-concavity of f on [0, (π/2)2], same as in the proof of Lemma 1,
we get the first inequality in (27); the second is straightforward.

The remaining steps in the proof of Theorem 4 are completely similar to
those for Example 2.

Remark 1. Examples 2 and 3 admit natural extensions. Specifically, let ξ be
a random vector in Rd with independent symmetrically distributed on [−1, 1]
coordinates ξi, and let the distributions Pi of ξi be “not too concentrated
at the origin”, e.g., are such that: (i) E{ξ2

i } ≥ α2 > 0, i = 1, ..., d, or (ii)
Pi possesses density which is bounded by 1/α, i = 1, ..., d. Let P be the
distribution of ξ. Then ξ ∈ C(θ̄, a(θ) + b(θ)γ2) with θ̄ and a(·), b(·) > 0
depending solely on α. The proof is completely similar to those in Examples
1 and 2.

Remark 2. We have proven that the uniform distributions on the vertices of
the unit cube {‖x‖∞ ≤ 1} and on the entire cube possess symmetric con-
centration property. In fact they possess as well the general concentration
property with slightly “spoiled” θ̄, ψ(·, ·) due to Proposition 4(i).
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2.3 Main result

Proposition 5. Let F, P be probability distributions on Rd such that P ¹ F,
F is symmetric and F ∈ C(θ̄, ψ). Let, further, Q be a closed convex set in Rd

such that
F(Q) ≥ θ > ϑ̄ (29)

and let pQ(x) be the Minkowski function16 of Q. Then for every convex con-
tinuous and nondecreasing function Ψ : R+ → R one has

EP [Ψ(pQ(ξ))] ≤ (
θ + e−ψ(θ,1)

)
Ψ(1) +

∞∫
1

Ψ ′(γ)e−ψ(θ,γ)dγ. (30)

If the assumption F ∈ C(θ̄, ψ) is weakened to F ∈ SC(θ̄, ψ), then the conclusion
remains valid under the additional assumption that Q is symmetric.

Proof. Let f(x) := Ψ(pQ(x)), so that f is a convex lower semicontinuous
function on Rd, and let

P (γ) := F({x 6∈ γQ}) = F({x : pQ(x) > γ}),
so that

γ ≥ 1 ⇒ P (γ) ≤ S(γ) := exp{−ψ(θ, γ)}.
We have that EP{f} ≤ EF{f}, since P ¹ F, and

EF{f} ≤ Ψ(1)F(Q)−
∞∫
1

Ψ(γ)dP (γ) ≤ θΨ(1) + Ψ(1)P (1) +
∞∫
1

Ψ ′(γ)P (γ)dγ

≤ (θ + S(1))Ψ(1) +
∞∫
1

Ψ ′(γ)S(γ)dγ,

as claimed.

Theorem 5. Let F, P be probability distributions on Rd such that P ¹ F, F
is symmetric and F ∈ C(θ̄, ψ). Let, further, Q be a closed convex set in Rd

such that
F(Q) ≥ θ > θ̄ (31)

and let pQ(x) be the Minkowski function of Q. Then for every s > 1 one has

P({x : x 6∈ sQ}) ≤ Err(s, θ) := inf
1≤β<s

1
s−β

∞∫
β

exp{−ψ(θ, γ)}dγ. (32)

In particular, if ψ(θ, γ) ≥ a(θ) + b(θ)γ2/2 with b(θ) > 0, then

Err(s, θ) ≤ 2 exp{−a(θ)− b(θ)(s + 1)2/8}
b(θ)(s2 − 1)

. (33)

If the assumption F ∈ C(θ̄, ψ) is weakened to F ∈ SC(θ̄, ψ), then the conclusion
remains valid under the additional assumption that Q is symmetric.
16 Minkowski function is defined as pQ(x) := inf{t : t−1x ∈ Q, t > 0}. Under our

premise, 0 ∈ Q due to symmetry of F and F(Q) > θ̄ > 1/2. Consequently, pQ(·)
is a lower semicontinous convex function with values in R ∪ {+∞}.
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Proof. Let β ∈ [1, s), and let Ψ(γ) = (γ−β)+
s−β . Applying (30), we get

P({x : x 6∈ sQ}) = P({x : x 6∈ sQ})Ψ(s) ≤ EP{Ψ ◦ pQ}
≤ 1

s−β

∞∫
β

exp{−ψ(θ, γ)}dγ.

Since this relation holds true for every β ∈ [1, s), (32) follows.
Now let θ be such that ψ(θ, γ) ≥ a + bγ2/2 for all γ ≥ 1, where b > 0.

Then (32) implies that

P({x : x 6∈ sQ}) ≤
[

1
s−β

∞∫
β

exp{−a− bγ2/2}dγ

] ∣∣∣∣
β= 1+s

2

= 2 exp{−a}
s−1

∞∫
1+s
2

exp{−bγ2/2}dγ ≤ 2 exp{−a}
s−1

∞∫
1+s
2

γ
1+s
2

exp{−bγ2/2}dγ

= 2 exp{−a−b(s+1)2/8}
b(s2−1) .

2.4 Putting blocks together

Now we are ready to address the questions A and B posed at the beginning
of this Section.

Setup for the test

Theorem 5 suggests the following Basic Setup for test (T):
Input: Closed convex set B ⊂ Rd, zero mean distribution P on Rd, confidence
parameter ε ∈ (0, 1), reliability parameter δ ∈ (0, 1). The goal is to justify the
hypothesis

P({ξ 6∈ B}) ≤ ε. (34)

Choosing “pre-trial” distribution. We choose a symmetric “pre-trial” distri-
bution F̄ on Rd in such a way that

I(1) F̄ º P;
I(2) F̄ possesses the Concentration property: F̄ ∈ C(θ̄, ψ) with known θ̄ and

ψ.

After F̄ is chosen, we compute the associated “error function” (cf. (32))

Err(s, θ) = inf
1≤β<s

1
s− β

∞∫

β

exp{−ψ(θ, γ)}dγ. (35)

Choosing trial distribution, sample size and acceptance level. We choose some-
how design parameters θ ∈ (θ̄, 1) and s > 1 (“amplification”) such that
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Err(s, θ) ≤ ε (36)

and specify the trial distribution F as F̄(s). We further specify sample size
N and acceptance level K in such a way that the probability to get at least
N −K successes in N Bernoulli experiments with probability θ of success in
a single experiment is at most δ:

K∑
r=0

(
N
r

)
θN−r(1− θ)r ≤ δ. (37)

For example, one can set

K := 0, N := ceil
[
ln(δ)
ln(θ)

]
. (38)

Theorem 6. With the outlined setup, the probability of false acceptance for
the resulting test (T) is ≤ δ.

Proof. Let Q = s−1B. Assume first that F̄(Q) ≥ θ. Applying (32), we get

P({ξ 6∈ B}) = P({ξ 6∈ sQ}) ≤ Err(s, θ) ≤ ε,

that is, in the case in question false acceptance is impossible. Now consider
the case of F̄(Q) < θ, or, which is the same, F(B) < θ. In this case, by (37),
the probability to make acceptance conclusion is at most δ.

Remark 3. The outlined reasoning demonstrates that when B is symmetric,
Theorem 6 remains valid when the requirement F̄ ∈ C(θ̄, ψ) is weakened to
F̄ ∈ SC(θ̄, ψ). The same is true for Theorem 8 below.

Resolution

Let us try to understand how conservative is our test. The answer is easy
when the trial distribution coincides with the actual one.

Theorem 7. Let P be symmetric and possess the concentration property: P ∈
C(θ̄, ψ), so that the choice F̄ = P satisfies I(1) and I(2) (from the Basic Setup),
and let N,K, θ, s be the parameters given by the Basic Setup for this choice
of pre-trial distribution. Let θ∗ := P(s−1B).

Then the probability for (T) not to make the acceptance conclusion is at
most

δ∗ = 1−
K∑

r=0

θN−r
∗ (1− θ∗)r.

When B is symmetric, the conclusion remains valid when the assumption
P ∈ C(θ̄, ψ) is weakened to P ∈ SC(θ̄, ψ).
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Proof. The statement is, essentially a tautology: since F = F̄(s) = P(s),
we have F(B) = P(s−1B) = θ∗, and the probability for (T) not to make the
acceptance conclusion is exactly δ∗.

In terms of Question B, Theorem 7 states that the resolution of (T) is not
worse than s, provided that

1−
K∑

r=0

(1− ε)N−rεr ≤ δ. (39)

When the setup parameters N, K are chosen according to (38), that is, K = 0,
N = ceil

[
ln(δ)
ln(θ)

]
, condition (39) becomes 1 − (1 − ε)N ≤ δ, which is for sure

true when 2ε ln(1/δ) ≤ δ ln(1/θ).
Situation with resolution in the case when the trial distribution is not

a scaling P(s) of the actual one is much more complicated, and its detailed
investigation goes beyond the scope of this paper. Here we restrict ourselves to
demonstration of a phenomenon which can occur in the general case. Let P be
the uniform distribution on the vertices of the unit d-dimensional cube B, and
F be normal distribution N(0, π

2 Id), so that F º P by Proposition 2. We have
P(B) = 1, while a typical realization of F is outside the box 1

2
πκ
√

2 ln d B,
κ < 1 with probability tending to 1 as d →∞, provided that κ < 1. It follows
that in the situation in question the resolution of (T) is dimension-dependent
and deteriorates, although pretty slow, as dimension grows.

Homogenization

We are about to present a slight modification of test (T) – the homogenized
analysis test (HT) which is better suited for many applications. This test is
as follows:
Input: Closed convex set B ⊂ Rd, zero mean distribution P on Rd, scale
parameter σ̄ > 0, reliability parameter δ ∈ (0, 1). The goal is to get upper
bounds for the probabilities

P({s−1σ̄ξ 6∈ B}), for s > 1. (40)

Setup: Trial distribution: We choose a symmetric distribution F on Rd such
that F º P and F ∈ C(θ̄, ψ) with known θ̄ and ψ, and compute the corre-
sponding function Err(·, ·) according to (35).

Sample size and acceptance level: We choose somehow θ ∈ (θ̄, 1), sample
size N and acceptance level K satisfying (37).
Execution: We generate N -element sample {ηj}N

j=1 from the trial distribution
and check whether

Card({j ≤ N : σ̄ηj 6∈ B}) ≤ K.
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If it is the case, we say that (HT) is successful, and claim that

P({s−1σ̄ξ 6∈ B}) ≤ Err(s, θ), for all s > 1, (41)

otherwise we say that (HT) is unsuccessful.
The analogy of Theorem 6 for (HT) is as follows:

Theorem 8. With the outlined setup, bounds (41), if yielded by (HT), are
valid with reliability at least 1 − δ. Equivalently: in the case when not all of
the bounds are valid, the probability for (HT) to be successful is at most δ.

Indeed, in the case when F({η : σ̄−1η ∈ B}) ≥ θ, bounds (41) are valid
by (32), and in the case when F({η : σ̄−1η ∈ B}) < θ, the probability of
successful termination is ≤ δ by (37).

The difference between (T) and (HT) is clear. The goal of (T) is to justify
the hypothesis that ξ ∼ P takes its value outside a given convex set B with
probability at most ε. The goal of (HT) is to bound from above the probability
for ξ to take value outside of set sσ̄−1B as a function of s > 1. This second
goal is slightly easier than the first one, in the sense that now a single sample
allows to build bounds for the indicated probabilities simultaneously for all
s > 1.

2.5 Numerical illustration

Here we illustrate our constructions, by a numerical example.

The situation.

We consider a discrete time linear dynamical system

z(t + 1) = Az(t), A =
1

203




39 69 41 −11 69 84
56 −38 −92 82 28 57

−85 −40 −98 −41 72 −78
61 86 −83 −43 −31 38
−5 −96 51 −96 66 −77
54 2 21 27 34 57




(S)

Recall that a necessary and sufficient stability condition “all trajectories con-
verge to 0 as t → ∞” for a system of the form (S) is the existence of a
Lyapunov stability certificate – a matrix X Â 0 and γ ∈ [0, 1) satisfying the
relation [

γ2X AT X
XA X

]
º 0. (42)

System (S) is stable; as the corresponding certificate, one can take
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X = X̄ =




1954 199 170 136 35 191
199 1861 −30 −136 222 137
170 −30 1656 17 −370 −35
136 −136 17 1779 296 112
35 222 −370 296 1416 25

191 137 −35 112 25 2179




,

and γ = γ̄ = 0.95. The question we are interested in is: Assume that entries
in A are subject to random perturbations

Aij 7→ Aij(1 + σξij), (43)

where ξij are independent random perturbations uniformly distributed on
[−1, 1]. How large could be the level of perturbations σ in order for (X̄, γ =
0.9999) to remain the Lyapunov stability certificate for the perturbed matrix
with probability at least 1− ε, with ε like 10−8 or 10−12?

For fixed X and γ, (42) is a Linear Matrix Inequality in A, so that the
question we have posed can be reformulated as the question of how large could
be σ under the restriction that

P(σ−1Q) ≤ ε, (44)

where P is the distribution of random 6× 6 matrix with independent entries
uniformly distributed in [−1, 1] and Q is the closed convex set17

Q =
{

ξ ∈ R6×6 :
[ −[A · ξ]T X̄
−X̄[A · ξ]

]
¹

[
γ2X̄ AT X̄
X̄A X̄

]}
. (45)

In order to answer this question, we use the (HT) test and act as follows.
(a) As the trial distribution F, we use the zero mean normal distribution

with covariance matrix π
8 I36 which, by Proposition 3, majorizes the uniform

distribution P.
At the first glance, the choice of normal distribution in the role of F seems

strange – the actual distribution itself possesses Concentration property, so
that it would be natural to choose F̄ = P. Unfortunately, function ψ for the
uniform distribution (see Theorem 4 and Remark 2), although of the same
type as its normal-distribution counterpart (see Theorem 1), leads to more
conservative estimates because of worse constant factors; this explains our
choice of the trial distribution.
17 By A ·B we denote the componentwise product of two matrices, i.e., [A ·B]ij =

AijBij . This is called Hadamard product by some authors. The notation ”¹”
stands for the standard partial order in the space Sm of symmetric m×m matrices:
A º B (A Â B) if and only if A − B is positive semidefinite (positive definite).
Thus, ”º” (”¹”) stand for two different relations, namely majorization as defined
in Definition 1, and the partial order induced by the semidefinite cone. What
indeed ” º ” means, will be clear from the context.
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(b) We run a “pilot” 1000-element simulation in order to get a rough safe
guess σ̄ of what is the level of perturbations in question. Specifically, we gen-
erate a 1000-element sample drawn from F, for every element η of the sample
compute the largest σ such that η ∈ σ−1Q, and then take the minimum,
over all elements of the sample, of the resulting quantities, thus obtaining the
largest level of perturbations which is compatible with our sample. This level
is slightly larger than 0.064, and we set σ̄ = 0.064.

(c) Finally, we run test (HT) itself. First, we specify the sample size N
as 1000 and the acceptance level K as 0. Then we compute the largest θ

satisfying (38) with reliability parameter δ = 10−6, that is, θ = exp{ ln(δ)
N } =

10−0.006 ≈ 0.9863. Second, we build 1000-element sample, drawn from F, and
check whether all elements η of the sample satisfy the inclusion σ̄η ∈ Q, which
indeed is the case. According to Theorem 8, the latter fact allows to claim,
with reliability at least 1− δ (that is, with chances to make a wrong claim at
most δ = 10−6), that for every s > 1 one has

P(s−1σ̄ξ 6∈ Q) ≤ Err(s, θ) = Err(s, 0.9863)

with Err(·, ·) given by (35) (where ψ is as in Theorem 1). In other words, up to
probability of bad sampling as small as 10−6, we can be sure that for every s >
1, at the level of perturbations s−1σ̄ = 0.064s−1 the probability for (X̄, 0.9999)
to remain Lyapunov stability certificate for the perturbed matrix is at least
1 − Err(s, θ). From the data in Table 1 we see that moderate reduction in

σ 0.0580 0.0456 0.0355 0.0290 0.0246 0.0228 0.0206

p(σ) ≤ 0.3560 0.0890 0.0331 0.0039 2.9e-4 6.9e-5 6.3e-6

σ 0.0188 0.0177 0.0168 0.0156 0.0148 0.0136 0.0128

p(σ) ≤ 4.6e-7 6.9e-9 9.4e-9 3.8e-10 4.0e-11 3.0e-13 5.9e-15

Table 1. p(σ): probability of a perturbation (43) for which (X̄, 0.9999) fails to be
a Lyapunov stability certificate.

level of perturbations ρ ensures dramatic decrease in the probability ε of
“large deviations” (cf. (33)).

A natural question is how conservative are our bounds. The experiment
says that as far as the levels of perturbations are concerned, the bounds are
accurate up to moderate constant factor. Indeed, according to our table, per-
turbation level σ = 0.0128 corresponds to confidence as high as 1 − ε with
ε = 5.9e-15; simulation demonstrates that 10 times larger perturbations result
in confidence as low as 1− ε with ε = 1.6 · 10−2.

3 The Synthesis problem

We now address the problem of optimizing under chance constraints
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Min
x∈X

cT x subject to Prob {Gσ(x, ξ) ∈ C} ≥ 1− ε, (46)

with Gσ(x, ξ) defined in (4) and ξ ∼ P. We assume that C ⊂ Rm is a closed
convex set and X is a compact convex set. As about the distribution P of
perturbations, we assume in the sequel that it is symmetric. In this case, our
chance constraint is essentially the same as the symmeterized constraint

Prob {Gσ(x, ξ) ∈ C and Gσ(x,−ξ) ∈ C} ≥ 1− ε.

Indeed, the validity of the symmeterized constraint implies the validity of the
original one, and the validity of the original constraint, with ε replaced by ε/2,
implies the validity of the symmeterized one. In our context of really small ε
the difference between confidence 1− ε and confidence 1− ε/2 plays no role,
and by reasons to be explained later we prefer to switch from the original
form of the chance constraint to its symmeterized form. Thus, from now on
our problem of interest is

Min
x∈X

cT x subject to Prob {Gσ(x,±ξ) ∈ C} ≥ 1− ε. (47)

We denote by Opt(σ, ε) the optimal value of the above problem (47).
Finally, we assume that the corresponding “scenario counterparts” prob-

lems of the form

Min
x∈X

cT x subject to Gσ(x,±ηj) ∈ C, j = 1, ..., N, (48)

can be processed efficiently, which definitely is the case when the set C is
computationally tractable (recall that the mappings Ai(·) are affine).

As it was mentioned in the Introduction section, we focus on the case when
problem of interest (47), as it is, is too difficult for numerical processing. Our
goal is to use scenario counterpart of (47) with randomly chosen scenarios ηj ,
j = 1, ..., N , in order to get a suboptimal solution x̂ to the problem of interest,
in a way which ensures that:

• [Reliability] The resulting solution, if any, should be feasible for (47)
with reliability at least 1 − δ: the probability to generate a “bad” scenario
sample – such that x̂ is well defined and is not feasible for (47) – should be
≤ δ for a given δ ∈ (0, 1);

• [Polynomiality] The sample size N should be “moderate” – polynomial
in the sizes of the data describing (47) and in ln(ε−1), ln(δ−1).
Under these sine qua non requirements, we are interested in tight scenario
approximations. In our context, it is natural to quantify tightness as follows
(cf. the definition of resolution):

A scenario-based approximation scheme satisfying 1) for given δ, ε, is
tight within factor κ = κ(ε, δ) ≥ 1, if whenever (47) possesses a solu-
tion x̄ which remains feasible after the uncertainty level is increased
by factor κ, the scheme, with probability at least 1− δ, is productive
(x̂ is well-defined) and ensures that cT x̂ ≤ cT x̄.
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Informally speaking, κ-tight scenario approximation with probability at least
1− 2δ is “in-between” the problem of interest (47) and similar problem with
κ times larger uncertainty level: up to probability of bad sampling ≤ 2δ, the
scheme yields an approximate solution which is feasible for the problem of
interest and results in the value of the objective not worse than Opt(κσ, ε).

We are about to present several approximation schemes aimed ad achieving
the outlined goals.

3.1 Naive approximation

The conceptually simplest way to build a scenario-base approximation scheme
for (47) is to apply the Analysis test (T) as developed in Section 2, with setup
as stated in Section 2.4. It is convenient to make two conventions as follows:

– from now on, we allow for the pre-trial distribution F̄ to possess the
symmetric concentration property. By Remark 3, this extension of the family
of trial distributions we can use18 keeps intact the conclusion of Theorem 6,
provided that the Analysis test is applied to a closed convex and symmetric
sets B, which will always be the case in the sequel.

– the parameters N,K of the test are those given by (38), that is, K = 0
and N = ceil

[
ln(δ)
ln(θ)

]
.

Observe that setup of (T) – the pre-trial distribution F̄ and the quantities
θ, s, N as defined in Section 2.4 – depends solely on the distribution P of
perturbations and required reliability and confidence parameters δ, ε and is
completely independent of the (symmetric) convex set B the test is applied
to. It follows, in particular, that a single setup fits all sets from the family

Bx,σ :=
{
ξ ∈ Rd : Gσ(x,±ξ) ∈ C

}
, x ∈ X, σ > 0.

Note that all sets from this family are convex, closed and symmetric.
A straightforward approximation scheme for (47) based on the Analysis

test as applied to the sets Bx,σ would be as follows.

Naive approximation scheme: With setup parameters F̄, θ, s,N as de-
scribed above, we build a sample {ηj}N

j=1 from distribution F = F̄(s) and
approximate problem (47) by its scenario counterpart

Min
x∈X

cT x subject to Gσ(x,±ηj) ∈ C, j = 1, ..., N. (49)

If problem (49) is feasible and therefore solvable (X was assumed to be com-
pact), we take, as x̂, an optimal solution to the problem, otherwise x̂ is unde-
fined (the sample is non-productive).

By Theorem 6 and Remark 3, every fixed in advance point x̄ which hap-
pens to be feasible for (49), with reliability at least 1− δ is feasible for (47).
18 The desire to allow for this extension is the reason for requiring the symmetry of

P and passing to the symmeterized form of the chance constraint.
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Moreover, in view of Theorem 7 and subsequent discussion, our approximation
scheme is tight within factor s, provided that F̄ = P and

2ε ln(1/δ) ≤ δ ln(1/θ). (50)

Unfortunately, these good news about the naive scheme cannot overweight is
crucial drawback: we have no reasons to believe that the scheme satisfies the
crucial for us the Reliability requirement. Indeed, the resulting approximate
solution x̂ depends on the sample, which makes Theorem 6 inapplicable to x̂.

The outlined severe drawback of the naive approximation scheme is not

just a theoretical possibility. Indeed, assume that X := {x ∈ Rd : ‖x‖ ≤
100d1/2}, vector c in (47) has unit length and the chance constraint in ques-

tion is Prob{−1 ≤ ξT x ≤ 1} ≥ 1− ε, where ξ ∼ P = N(0, Id). Note that all

our constructions and bounds are not explicitly affected by the dimension of

ξ or by the size of X. In particular, when applied to the normal distribution

P = F̄ and given ε and δ, they yield sample size N which is independent of

d = dim ξ. For large d, therefore, we will get 2N < d. In this situation, as

it is immediately seen, with probability approaching 1 as d →∞ there will

exist a unit vector x (depending on sample {ηj}) orthogonal to all elements

of the sample and such that eT x ≤ −0.1d−1/2. For such an x, the vector

100d1/2x will clearly be feasible for (49), whence the optimal value in this

problem is ≤ −10. But then every optimal solution to (49), in particular, x̂,

is of norm at least 10. Thus, the typical values of ξT x̂ ∼ N(0, ‖x̂‖2) are sig-

nificantly larger than 1, and x̂, with probability approaching 1 as d grows,

will be very far from satisfying the chance constraint...

There is an easy way to cure, to some extent, the naive scheme. Specifically,
when x̂ is well defined, we generate a new N -element sample from the trial
distribution and subject x̂ to our Analysis test. In the case of acceptance
conclusion, we treat x̂ as the approximate solution to (47) yielded by the
modified approximation scheme, otherwise no approximate solution is yielded.
This modification makes the naive scheme (1−δ)-reliable, however, at the price
of losing tightness. Specifically, let F̄ = P and (50) hold true. In this case,
as we have seen, the naive scheme is tight within factor s, while there are no
reasons for the modified scheme to share this property.

Numerical illustration.

To illustrate the modified naive scheme, consider dynamical system (S) from
Section 2.5 and pose the following question: What is the largest level of per-
turbations σ̄ for which all, up to probability ε << 1, perturbations of A
admit a common Lyapunov stability certificate (X, γ) with γ = 0.9999 and
the condition number of X not exceeding 105? Mathematically speaking, we
are interested to solve the optimization problem
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Max
σ,X

σ subject to I ¹ X ¹ αI and

Prob
{

ξ : ±σ

[
(A · ξ)T X

X(A · ξ)
]
¹

[
γ2X AT X
XA X

]}
≥ 1− ε,

(51)

where γ = 0.9999, α = 105 and ξ is a 6× 6 random matrix with independent
entries uniformly distributed in [−1, 1], and A · ξ denotes the Hadamard (i.e.,
componentwise) product of matrices A and ξ.

Note that this problem is not exactly in the form of (47) – in the latter
setting, the level of perturbations σ is fixed, and in (51) it becomes the variable
to be optimized. Of course, we could apply bisection in σ in order to reduce
(51) to a small series of feasibility problems of the form (47), but on a closest
inspection these troubles are completely redundant. Indeed, when applying
our methodology to the feasibility problem with a given σ, we were supposed
to draw a sample of perturbations {sηj}N

j=1, with ηj being drawn from pre-
trial distribution F̄, with amplification s determined by θ, σ and ε, and then
check whether the resulting scenario counterpart of our feasibility problem,
that is, the program

Find X such that I ¹ X ¹ αI and

±sσ

[
(A · ηj)T X

X(A · ηj)

]
¹

[
γ2X AT X
XA X

]
, j = 1, ..., N,

(52)

is or is not feasible. But the answer to this question, given {ηj}, depends solely
on the product of sσ, so that in fact the outlined bisection is equivalent to
solving a single problem

Min
σ,X

σ subject to I ¹ X ¹ αI and

±sσ

[
(A · ηj)T X

X(A · ηj)

]
¹

[
γ2X AT X
XA X

]
, j = 1, ..., N,

(53)

with ηj drawn from the pre-trial distribution. The latter problem is quasicon-
vex and therefore can be efficiently solved. After its solution σ∗, X∗ is found,
we can apply Analysis test to check whether indeed (X∗, γ = 0.9999) remains,
with probability at least 1 − ε, a Lyapunov stability certificate for random
perturbations of A at the perturbation level σ∗.

In our experiment, we followed the outlined approach, with the only dif-
ference that at the concluding step we used the homogenized Analysis test
rather than the basic one. Specifically, we acted as follows:

( a) As in Section 2.5, we chose N(0, π
8 I36) as our pre-trial distribution F̄

and set the sample size N to 1000, which is the size given by (38) for δ = 10−6

and θ = 0.9863.
(b) We drew N = 1000-element sample from F̄ and solved resulting prob-

lem (53), thus getting σ∗ ≈ 0.0909 and certain X∗.
(c) Our concluding step was to bound from below, for small values of ε,

the perturbation levels for which (X = X∗, γ = 0.9999) is, with probability
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≥ 1− ε, a stability certificate for a perturbation of A. This task is completely
similar to the one considered in Section 2.5, and we acted exactly as explained
there. The numerical results are presented in Table 2. Comparing the data in
Tables 1 and 2, we see that optimization in X results, for every value of ε, in
“safe” perturbation levels twice as large as those before optimization. To feel
the difference, note that at the perturbation level 0.0290 Table 1 guarantees
preserving (certificate for) stability with confidence as poor as 1 − 0.0039;
Table 2 states that even at bit larger perturbation level 0.0297, stability is
preserved with confidence as high as 1 − 4 · 10−11, reliability of both claims
being at least 0.999999.

σ 0.116 0.0912 0.0709 0.0580 0.0491 0.0456 0.0412

p(σ) ≤ 0.3560 0.0890 0.0331 0.0039 2.9e-4 6.9e-5 6.3e-6

σ 0.0412 0.0375 0.0355 0.0336 0.0297 0.0272 0.0255

p(σ) ≤ 4.6e-7 6.9e-9 9.4e-9 3.8e-10 4.0e-11 3.0e-13 5.9e-15

Table 2. p(σ): probability of a perturbation (43) for which (X∗, 0.9999) fails to be
a Lyapunov stability certificate.

3.2 Iterative approximation

As we have seen, the naive approximation scheme has severe drawbacks: with-
out modification, the scheme possesses certain tightness properties, but can
be unreliable; modification recovers reliability, but “kills” tightness. We are
about to present an iterative approximation scheme which is reliable and has
reasonable tightness properties. In the sequel, we sketch the scheme, skipping
straightforward and boring details.

Preliminaries: polynomial time black-box convex optimization.

Consider a situation as follows. We are given:
(a) a convex compact set X ⊂ Rn with nonempty interior, which is con-

tained in the centered at the origin Euclidean ball of a known radius R and is
equipped with Separation Oracle SQ – a routine which, given an input point
x ∈ Rn, reports whether x ∈ X, and if it is not the case, returns a separator
– a linear inequality which is satisfied everywhere on X and is violated at x,

(b) a linear objective cT x to be minimized,
(c) access to a “wizard” working as follows. The wizard has in its disposal

a once for ever fixed set L of linear inequalities with n variables; when invoked,
it picks an inequality from this set and returns it to us. For the time being,
we make absolutely no assumptions on how this inequality is chosen: wizard’s
choice can be randomized, can depend on past choices, etc.,
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(d) positive parameters r (“feasibility margin”) and ω (desired accuracy).
In Convex Programming, there are methods (e.g., the Ellipsoid algorithm)
capable to optimize (what precisely, it will become clear in a moment) in the
outlined environment, specifically, as follows. The method generates, one after
another, a predetermined number M of search points xt ∈ Rn, t = 1, ..., M .
At step t ≥ 1, the method already has in its disposal point xt−1 (x0 = 0) and
builds a vector et and the next search point xt, namely, as follows:

• [generating et] We call the Separation oracle, xt−1 being the input. If
the oracle reports that xt−1 6∈ X, we call xt−1 non-productive and specify
et as the gradient of the separator returned by the oracle. If xt−1 ∈ X, we
make a predetermined number N of calls to the wizard and add the N linear
inequalities returned by the wizard at step t to the collection of inequalities
returned at the previous steps, thus getting a list of Nt linear inequalities.
We then check whether xt−1 satisfies all these Nt inequalities. If there is
an inequality in the list which is violated at xt−1, we qualify xt−1 as non-
productive and specify et as the gradient of the violated inequality. Finally,
if xt−1 ∈ X satisfies all inequalities returned so far by the wizard, we qualify
xt−1 as productive and set et = c.

• [generating xt] Given xt−1, et and information coming from the previous
steps (for the Ellipsoid method, the latter is summarized in a single n × n
matrix Bt−1), we build xt. How xt is built, it depends on the method in
question; the only issue which matters in our context is that the arithmetic
cost of generating xt should be polynomial in n (for the Ellipsoid method, the
cost of building xt and updating Bt−1 7→ Bt is just O(1)n2 operations).

After all M search points are built, we treat the best (with the smallest
value of cT x) of the productive search points as the resulting approximate so-
lution x̂; if no productive search points were generated, the result is undefined.

Now, upon termination, we have in our disposal a list I of NM linear
inequalities `(x) ≤ 0 which came from the wizard; these inequalities define
the convex compact set

XI = {x ∈ X : `(x) ≤ 0, ` ∈ I}.

The convex optimization algorithms we are speaking about ensure the follow-
ing property

(P): With properly chosen and polynomial in n and ln
(

nR
r · R‖c‖

ω

)

number of steps M = M(n,R, r, ω) (for the Ellipsoid method, M =
2n2 ln

(
nR2‖c‖

rω + 2
)
), the following is true: whenever the set XI con-

tains Euclidean ball of radius r, x̂ is well defined and

cT x̂ ≤ min
x∈XI

cT x + ω. (54)
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Now we can finally explain what is the optimization problem we were solving:
this is the problem min

x∈XI
cT x defined in course of the solution process19.

Iterative approximation scheme.

We are ready to present an iterative approximation scheme for solving (47).
Assume that the domain X of (47) is contained in the centered at the origin
ball of known radius R and that both X and C are equipped with Separa-
tion Oracles. Given required confidence and reliability parameters ε, δ, let us
choose trial distribution F, θ, s and sample size N exactly in the same fash-
ion as for naive scheme. Besides this, let us choose an optimization algorithm
possessing property (P); for the sake of definiteness, let it be the Ellipsoid
method. Finally, let us choose a small positive r and specify the number M
of steps of the method according to (P), that is,

M = O(1)n2 ln
(

nR

r
· R‖c‖

ω
+ 2

)
,

where ω is the accuracy within which we want to solve (47). Now let us run
the Ellipsoid method, mimicking the wizard as follows:

The linear inequalities returned by the wizard at step t are uniquely
defined by the search point xt−1 and a realization ητ of a random
vector η ∼ F; here τ counts the calls to the wizard, and η1, η2, ... are
independent of each other. Given xt−1 and ητ , the wizard computes
the points y± = Gσ(xt−1,±ητ ) and calls the Separation Oracle for C
to check whether both these points belong to C. If it is the case, the
wizard returns a trivial – identically true – inequality `(x) ≡ 0T x ≤ 0.
If at least one of the points, say, y+, does not belong to C, the wizard
acts as follows. Let e(u) ≤ 0 be the linear inequality returned by the
Separation oracle; this inequality holds true for u ∈ C and is violated
at y+. The wizard converts this inequality into the linear inequality

`(x) ≡ e
(
A0(x) + σ

∑d
i=1 ητ

i Ai(x)
)
≤ 0.

Since Ai(·) are affine, this indeed is a linear inequality in variables x,
and since e(y+) > 0, this inequality is violated at xt−1.

19 In standard applications, situation, of course, is not that strange: the problem we
are solving is known in advance and is min

x

{
cT x : x ∈ X, g(x) ≤ 0

}
, where g is

a convex function. The set L of linear inequalities is comprised of inequalities of
the form `y(x) ≡ g(y) + (x − y)T g′(y) ≤ 0, y ∈ Rn, and the inequality returned
by the wizard invoked at point xt−1 is `xt−1(x) ≤ 0. In this case, x̂, if defined, is
a feasible solution to the problem of interest, and if the feasible set of the latter
problem contains a ball of radius r, then x̂ is well-defined and is an ω-optimal
solution to the problem of interest, provided that the number of steps M is as in
(P).



34 Arkadi Nemirovski and Alexander Shapiro

We have specified the wizard and thus – a (randomized) optimization process;
a realization of this process and the corresponding result x̂, if any, are uniquely
defined by a realization of MN -element sample with independent elements
drawn from the trial distribution. The resulting approximation scheme for
(47) is successful if and only if x̂ is well defined, and in this case x̂ is the
resulting approximate solution to (47).

Let us investigate the properties of our new approximation scheme. Our
first observation is that the scheme is reliable.

Theorem 9. The reliability of the iterative approximation is at least 1−Mδ,
that is, the probability to generate a sample such that x̂ is well defined and is
not feasible for (47) is at most Mδ.

Proof. If x̂ is well defined, it is one of the productive points xt−1, 1 ≤
t ≤ M . Observe that for a given t the probability of “bad sampling” at step
t, that is, probability of the event Et that xt−1 is declared productive and
at the same time F({η : Gσ(xt−1,±ξ) ∈ C}) < θ, is at most δ. Indeed, by
wizard’s construction, the conditional, given what happened before step t,
probability of this event is at most the probability to get N successes in N
independent Bernoulli experiments “check whether Gσ(xt−1,±ζp) ∈ C” with
ζp ∼ F, p = 1, ..., N , with probability of success in a single experiment is < θ;
by (38), this probability is at most δ. Since the conditional, given the past,
probability of Et is ≤ δ, so is the unconditional probability of Et, whence
the probability of the event E = E1 ∪ ... ∪ EM is at most Mδ. If the event
E does not take place and x̂ is well-defined, then x̂ satisfies the requirement
F({η : Gσ(x̂,±η) ∈ C}) ≥ θ, whence, by properties of our analysis test,
P({ξ : Gσ(x̂,±ξ) ∈ C}) ≥ 1 − ε. By construction, x̂, if well defined, belongs
to X. Thus, x̂ indeed is feasible for (47) “modulo event E of probability
≤ Mδ”.

Our next observation is that when P = F̄, the iterative scheme is nearly
tight up to factor s. The precise statement is as follows.

Theorem 10. Let F̄ = P, and let there exist an Euclidean ball Ur ⊂ X of
radius nr such that all points x ∈ Ur are feasible for (47), the uncertainty
level being increased by factor s:

P({ξ : Gsσ(x,±ξ) ∈ C}) ≥ 1− ε, for all x ∈ Ur. (55)

Then, with reliability at least 1− (n + 2)MNε, x̂ is well defined and satisfies
the relation

cT x̂ ≤ Opt(sσ, ε) + ω, (56)

where s is the amplification parameter of the scheme. In other words, the
probability to generate a sample η1, ..., ηMN such that x̂ is undefined or is well
defined but fails to satisfy (56) is at most (n + 2)MNε.

Proof. Let κ > 0, and let x̄κ ∈ X be such that
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cT x̄κ ≤ Opt(sσ, ε) + κ and P({ξ : Gsσ(x̄κ,±ξ) ∈ C}) ≥ 1− ε. (57)

Now, let ∆ be a perfect simplex with vertices z0, ..., zn on the boundary of Ur;
since the radius of Ur is nr, ∆ contains a ball V of radius r. We now claim
that up to probability of bad sampling p = (n + 2)MNε, the n + 2 points
z0, ..., zn, x̄κ belong to XI . Indeed, let z ∈ X be a fixed point satisfying the
chance constraint

P({ξ : Gsσ(z,±ξ) ∈ C}) ≥ 1− ε

(as it is the case for z0, ..., zn, x̄κ). Due to z ∈ X and the construction of our
wizard, the event z 6∈ XI takes place if and only if the underlying sample
η1, ..., ηMN of MN independent realizations of random vector η ∼ F = P(s)

contains an element ηt such that either e (Gσ(z, ηt)) > 0 or e (Gσ(z,−ηt)) > 0,
or both, where e is an affine function (depending on the sample) such that
e(y) ≤ 0 for all y ∈ C Thus, at least one of the two points Gσ(z,±ηt) fails to
belong to C. It follows that the event z 6∈ XI is contained in the union, over
t = 1, ..., MN , of the complements to the events Ft = {η : Gσ(z,±ηt) ∈ C}.
Due to F = P(s), the F-probability of Ft is nothing but the P-probability of
the event {ξ : Gσ(z,±ηt) ∈ C}, that is, F(Ft) ≥ 1 − ε. It follows that the
probability of the event z 6∈ XI is at most MNε. Applying this result to every
one of the points z0, ..., zn, x̄κ, we conclude that the probability for at least
one of these points to be outside of XI is at most (n + 2)MNε, as claimed.

We are nearly done. Indeed, let E be the event

{η1, ..., ηMN : z0, ..., zn, x̄κ ∈ XI}.

As we just have seen, the probability of this event is at least 1− (n+2)MNε.
Since XI is convex, in the case of E the set XI contains the entire simplex ∆
with the vertices z0, ..., zn and thus contains the ball Vr of radius r. Invoking
(P), we see that in this case x̂ is well defined and

cT x̂ ≤ ω + min
x∈XI

cT x ≤ ω + cT x̄κ ≤ ω + κ + Opt(sσ, ε),

where the second inequality is given by the fact that in the case of E we have
x̄κ ∈ XI . Thus, the probability of the event “x̂ is well defined and satisfies
cT x̂ ≤ Opt(sσ, ε)+ω+κ” is at least the one of E, that is, it is≥ 1−(n+2)MNε.
Since κ > 0 is arbitrary, (56) follows.

Discussion.

With the Ellipsoid method as the working horse, the number M of steps in the
iterative approximation scheme is about 2n2 ln

(
nR2‖c‖

rω

)
. It follows that the

unreliability level guaranteed by Theorem 9 does not exceed 2n2 ln
(

nR2‖c‖
rω

)
δ;

in order to make this unreliability at most a given χ << 1, it suffices to take
δ = 1

2χn−2 ln−1
(

nR2‖c‖
rω

)
. Since relation (38) requires “per step” sample size
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N = ceil
[

ln(δ)
ln(θ)

]
, with our δ the total sample size MN is polynomial in n

1−θ and
in logarithms of all remaining parameters (R, r, ω, χ). Thus, our approximation
scheme is polynomial, which are good news. Further, with the outlined setup
the unreliability level χ̄ = (n + 2)MNε indicated in Theorem 10 is linear in
ε and polynomial in n

1−θ and logarithms of the remaining parameters, which
again are good news. A not so good news is that the scheme requires an “ad
hoc” choice of r. This, however, seems not that disastrous, since the only
element of the construction which is affected by this choice (and affected just
logaritmically) is the number of steps M . In reality, we can choose M as
large as is allowed by side considerations like restrictions on execution time,
thus making r as small as possible under these restrictions (or, equivalently,
arriving at approximation as tight as possible, since the less is r, the more
likely becomes the premise in Theorem 10).

As far as practicality of the iterative approximation scheme is concerned,
the factor of primary importance is the design dimension n, since the reliability
characteristics and the computational complexity of the scheme are much
more sensitive to n than to parameters like R, r, ω, ... Let us look at this
phenomenon in more details. With (nR/r) · (R‖c‖/ω) bounded from above
by 1012 (which seems to be sufficient for real life applications), we have M =
55n2. Bounding the total number of scenarios MN by 106 and setting the
reliability parameter χ to 10−6, we get N = 106M−1 = 1.82 · 104 · n−2 and
δ = M−1χ = 1.82 · 10−8 · n−2. Via (38), the resulting N and δ correspond to

θ = θ(n) := exp{− ln(1/δ)/N} = exp
{
−n2 17.8− 2 ln(n)

1.82 · 104

}
.

Let the pre-trial distribution be normal. Then θ(n) should be > θ̄ = 0.5,
which is the case for n ≤ 34 only. For n ≤ 34 and θ = θ(n), the associated
confidence parameter ε = Err(s, θ(n)) depends solely on the amplification pa-
rameter s; the tradeoff between s and ε is presented in Table 3. As we see,
the required amplification level rapidly grows (i.e., tightness rapidly deterio-
rates) as n grows. This is exactly what should be expected, given that the per
step number of scenarios N under our assumptions is inverse proportional to
n2. The influence of n can be moderated by replacing our working horse, the
Ellipsoid method, with more advanced convex optimization algorithms; this
issue, however, goes beyond the scope of this paper.

3.3 The case of chance semidefinite constraint

In this section, we focus on the case of “relatively simple” geometry of C,
specifically, assume that C can be represented as the intersection of the cone
Sm

+ of positive semidefinite symmetric m × m matrices and an affine plane,
or, equivalently, that the randomly perturbed constraint in question is Linear
Matrix Inequality (LMI)
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n 2 6 10 14 18 22 26 30

θ(n) 0.9964 0.9723 0.9301 0.8738 0.8074 0.7432 0.6576 0.5805

N 4450 506 182 93 57 38 27 21

ε s

1.0e-3 1.17 1.88 2.54 3.39 4.63 6.68 10.80 23.07

1.0e-4 1.50 2.19 2.93 3.88 5.25 7.51 12.02 25.38

1.0e-5 1.70 2.46 3.27 4.31 5.80 8.26 13.14 27.49

1.0e-6 1.88 2.71 3.58 4.70 6.31 8.95 14.16 29.45

1.0e-7 2.05 2.93 3.86 5.06 6.78 9.58 15.12 31.30

1.0e-8 2.20 3.14 4.13 5.40 7.21 10.18 16.02 33.03

1.0e-9 2.34 3.33 4.38 5.71 7.63 10.75 16.87 34.67

1.0e-10 2.47 3.52 4.61 6.02 8.02 11.28 17.68 36.25

1.0e-11 2.60 3.69 4.84 6.30 8.39 11.79 18.45 37.76

1.0e-12 2.72 3.86 5.05 6.57 8.75 12.28 19.20 39.22

1.0e-13 2.83 4.02 5.26 6.84 9.09 12.75 19.91 40.63

1.0e-14 2.94 4.17 5.45 7.09 9.42 13.21 20.61 41.98

Table 3. Tradeoff between amplification s and confidence parameter ε for iterative
approximation scheme (total sample size 106, normal trial distribution)

x ∈ X and Aξ(x) :=
d∑

i=1

ξiAi(x) ¹ A0(x), (58)

where X ⊂ Rn is the domain of our constraint (we assume the domain to
be convex and compact), Ai(x), i = 0, ..., d, are symmetric matrices affinely
depending on x ∈ Rn, ξi ∈ R are random perturbations. Without loss of
generality we have set the level of perturbations σ to 1, so that σ is not present
in (58) at all. Note that the family of cross-sections of the semidefinite cone
is very rich, which allows to reformulate in the form of (58) a wide spectrum
of systems of convex constraints, e.g., (finite) systems of linear and conic
quadratic inequalities. Besides this, LMI constraints arise naturally in many
applications, especially in Control [2].

The question we address is as follows. Let P be the distribution of the
perturbation ξ = (ξ1, ..., ξd), and let Xε be the solution set of the chance
constraint associated with (58):

Xε = {x ∈ X : P({ξ : Aξ(x) º 0}) ≥ 1− ε}. (59)

Now suppose that we choose somehow a symmetric pre-trial distribution
F̄, draw an N -element sample η[N ] = {ηj}N

j=1 from the trial distribution
F = F̄(s) (s is the amplification level) and thus obtain the “scenario approxi-
mation” of Xε – the set

X(η[N ]) =
{
x ∈ X : Aηj (x) º 0, j = 1, ..., N

}
. (60)
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The question we are interested in is: Under which circumstances the random
scenario approximation X(η[N ]) is, with reliability at least 1− δ, a subset of
Xε, that is,

Prob {η[N ] : X(η[N ]) ⊂ Xε} ≥ 1− δ. (61)

Note the difference between this question and the one addressed in Section
2. The results of Section 2, when translated into our present situation, explain
under which circumstances, given in advance a point x and having observed
that x ∈ X(η[N ]), we may be pretty sure that x ∈ Xε. Now we require much
more: having observed η[N ] (and thus X(η[N ])), we want to be pretty sure
that all points from X(η[N ]) belong to Xε. Note that in the latter case every
point of X(η[N ]), e.g., the one which minimizes a given objective cT x over
X(η[N ]), belongs to Xε. In other words, in the case of (61), an approximation
scheme where one minimizes cT x over X(η[N ]) allows to find, with reliability
1 − δ, feasible suboptimal solution to the problem min

x∈Xε

cT x of minimization

under the chance constraint.

Preprocessing the situation.

For the moment, let us restrict ourselves to the case where P = P1× ...×Pd,
where Pi, i = 1, ..., d, is the distribution of ξi assumed to be symmetric. Note
that if ai > 0 are deterministic scalars, we can replace the perturbations ξi

with aiξi, and mappings Ai(x) with the mappings a−1
i Ai without affecting

the feasible set of the chance constraint. In other words, we lose nothing when
assuming that “typical values” of ξi are at least of order of 1, specifically, that
Pi({|ξi| ≥ 1}) ≥ 0.2, i = 1, ..., d. With this normalization, we immediately
arrive at a rough necessary condition for the inclusion x ∈ Xε, namely,

±Ai(x) ¹ A0(x), i = 1, ..., d. (62)

Indeed, let x ∈ Xε with ε < 0.45. Given p ≤ d and setting

Aξ(x) := ξpAp(x) + Sp
ξ (x),

observe that ξp and Sp
ξ (x) are independent and symmetrically distributed,

which combines with x ∈ Xε to imply that

P({ξ : ξpAp(x)± Sp
ξ (x) ¹ A0(x)}) ≥ 1− 2ε.

By our normalization and due to the symmetry of Pp, we have that P({ξ :
ξp ≥ 1}) ≥ 0.1. It follows that

P({ξ : ξp ≥ 1 & ξpAp(x)± Sp
ξ (x) ¹ A0(x)}) ≥ 0.9− 2ε > 0,

that is, the set {ξ : ξp ≥ 1 & ξpAp(x) ± Sp
ξ (x) ¹ A0(x)} is nonempty,

which is possible only when t+Ap(x) ¹ A0(x) for certain t+ ≥ 1. Similar

reasoning proves that −t−Ap(x) ¹ A0(x) for certain t− ≥ 1; due to these

observations, ±Ai(x) ¹ A0(x).
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Note that (62) is a nice deterministic convex constraint, and it makes
sense to include it into the definition of X; with this modification of X, we
have A0(x) º 0 everywhere on X (since (62) implies A0(x) º 0). In order
to simplify our subsequent analysis, let us strengthen the latter inequality to
A0(x) Â 0 (which can be ensured by slight shrinkage of X to a point x̄ such
that A0(x̄) Â 0, provided that such a point exists). Thus, from now on we
make the following assumption:

A.I. X is a closed and convex compact set such that relations (62)
and A0(x) Â 0 take place everywhere on X.

Now we formulate our assumptions on the actual and the pre-trial distribu-
tions. We discard temporary assumptions on P made at the beginning of this
subsection (their only goal was to motivate A.I); what we actually need are
similar in spirit assumptions on the pre-trial distribution. Here is what we
assume from now on:

A.II. The actual distribution P is with zero mean and is majorized
by symmetric pre-trial distribution F̄ ∈ C(θ̄, ψ) with known θ̄, ψ(·, ·).
In addition,
1) For certain θ̂ ∈ (θ̄, 1) and all γ ≥ 1 one has

ψ(θ̂, γ) ≥ a + bγ2/2 (63)

with b > 0;
2) For certain c, random vector η ∼ F̄ satisfies the bound

E{‖η‖2} ≤ c2d. (64)

The result we are about to establish (for the case of normal distributions,
it was announced in [8]) is as follows.

Theorem 11. Let A.I-II hold true. Given confidence and reliability parame-
ters ε, δ ∈ (0, 1/2), let us set, for s > 1,

Err(r) = inf
1≤β<s

1
r−β

∞∫
β

exp{−ψ(θ̂, γ)}dγ

(cf. (32)) and specify the amplification parameter s in such a way that

Err(s) = ε;

note that
s ≤ 2 +

√
|a|+ln(1/ε)

b
(65)

in view of (33).
Let, further, the sample size N be specified as

N = ceil
[

κ

1−θ̂

(
ln(δ−1) + κm2d ln(Csd)

)]
, (66)
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with appropriately chosen absolute constant κ and constant C depending solely
on θ̂, a, b, c. Then, with sample η[N ] drawn from the trial distribution F =
F̄(s), one has

Prob {X(η[N ]) ⊂ Xε} ≥ 1− δ. (67)

For proof, see Appendix.
Note that when treating the parameters θ̂, a, b, c involved into A.I-II as

absolute constants (which is possible, e.g., for the pre-trial distributions given
by Examples 1 – 3, see Section 2.2), the sample size N as given by (66) is
polynomial in the sizes m, d of the problem and in ln(1/δ), ln(ln(1/ε)).

Tightness of the approximation scheme suggested by Theorem 11 admits
the following evident quantification.

Proposition 6. Let, in addition to Assumptions A.I-II, the pre-trial distri-
bution F̄ be identical to the actual distribution P, and let x be a fixed in
advance point of X which is feasible for the chance constraint with increased
by factor s level of perturbations:

P
(
{ξ : s

∑d
i=1 ξiAi(x) ¹ A0(x)}

)
≥ 1− ε, (68)

where s is the amplification parameter specified in Theorem 11. Then x ∈
X(η[N ]), the sample being drawn from the trial distribution as defined in
Theorem 11, with probability at least 1 − Nε, where N is given by (66). In
particular, optimizing a given objective cT x over X(η[N ]), we, with reliability
at least 1 − δ − Nε, get a point x̂ ∈ Xε with the value of the objective not
exceeding

min
x

{
cT x : x ∈ X satisfies (68)

}

Note that the amplification factor s specified in Theorem 11 is O(1)
√

ln(1/ε),
provided that we treat a, b as absolute constants; thus, under the premise of
Proposition 6 the tightness of our approximation scheme is nearly independent
of ε.

Concluding remarks.

In this paper, our goal was to to get reliable inner approximations of the
feasible set of optimization problem (47) with chance constraint; we have
seen that in good cases (e.g., when the perturbations have normal or uniform
distributions, and C is the semidefinite cone), the scenario approach allows to
achieve this goal with polynomial in the sizes of the problem and logarithms
of the reliability and confidence parameters number of scenarios and level of
conservativeness as moderate as O(1)

√
ln(1/ε). A natural question is whether

something similar can be done for outer approximation of the feasible set in
question. The answer, in general, seems to be negative, as can be seen from
the following example. Assume that the chance constraint is
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Prob
{
xT ξ ≤ 1

} ≥ 1− ε,

where ξ ∼ N(0, In). The true feasible set Xε of the chance constraint is the
centered at the origin Euclidean ball Eε of the radius r = r(ε) given by

1√
2π

∞∫
r

exp{−γ2/2}dγ = ε, so that r = (1 + o(1))
√

2 ln(1/ε) as ε → +0. At

the same time, the radius of the largest centered at the origin ball U contained
in the feasible set {x : xT ξj ≤ 1, j = 1, ..., N} of the scenario counterpart,
where ξj are drawn from N(0, σ2In), is, with probability approaching 1 as
n → ∞, as small as σ−1n−1/2 (since typical values of ‖ξj‖ are as large as
σ
√

n). Thus, unless σ we use goes to 0 as O(n−1/2) as n grows (which would
make no much sense), the scenario approximation of Xε with high probability
is much “thinner” along certain sample-depending directions than Xε itself.

Appendix: proof of Theorem 11

Recall that d is the dimension of the perturbation vectors, m is the row size
of the matrices Ai(x). From now on, O(1)′s stand for appropriate positive
absolute constants, and Ci are positive quantities depending solely on the
quantities θ̂, a, b, c involved into Assumption A.II.

Lemma 3. Let η ∼ F. Then for ρ ≥ 0,

F
({

η : ‖η‖ > ρs
√

d
})

≤ 2 exp
{−C1ρ

2
}

. (69)

Proof. By A.II.2) and Tchebyshev Inequality,

F
(
{η : ‖η‖ ≤ C1,1s

√
d}

)
≥ θ̂

for appropriately chosen C1,1. Due to the Concentration property and A.II.1),
it follows that whenever γ ≥ 1, we have

F
(
{η : ‖η‖ ≥ C1,1s

√
dγ}

)
≥ exp{−a− bγ2/2},

and (69) follows.
Our next technical result is as follows.

Lemma 4. Let A = {(A1, ..., Ad) : Ai ∈ Sm,−I ¹ Ai ¹ I}. For A =
(A1, ..., Ad) ∈ A, let

B(A) =
{

u ∈ Rd : 0.9
∑d

i=1 uiAi ¹ I
}

.

Further, let η ∼ F, N be a positive integer, let ηj, j = 1, ..., N , be independent
realizations of η, and let FN be the distribution of η[N ] = {ηj}N

j=1. Finally,

let ∆ := 1−θ̂
4 and
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ΞN :=
{

η[N ] : ∀
(
A ∈ A : F(B(A)) < θ̂

)
∃t ≤ N :

∑d
i=1 ηj

i Ai 6¹ I
}

. (70)

Then
FN (ΞN ) ≥ 1− exp{O(1)m2d ln(C2sd)−O(1)(1− θ̂)N} (71)

with properly chosen C2.

Proof. Let us equip the space of k-tuples of m ×m symmetric matrices
with the norm

‖(A1, ..., Ad)‖∞ = max
i
‖Ai‖,

where ‖Ai‖ is the standard spectral norm of a symmetric matrix. Given ω > 0,
let Aω be a minimal ω-net in A; by the standard reasons, we have

Card(Aω) ≤ exp{O(1)m2d ln(2 + ω−1)}. (72)

Note that if A,A′ ∈ A, then

0.9
d∑

i=1

ηiAi ¹ 0.9
d∑

i=1

ηiA
′
i + 0.9‖η‖1‖A′ −A‖∞I,

whence
{

η : 0.9
d∑

i=1

ηiAi ¹ I

}
⊃

(
{η :

d∑
i=1

ηiA
′
i ¹ 1.1I} ∩ {η : 0.9‖η‖1‖A′ −A‖∞ ≤ 0.01}

)
,

so that

F(B(A)) ≥ F({η :
d∑

i=1

ηiA
′
i ¹ 1.1I})

︸ ︷︷ ︸
φ(A′)

−F({η : 0.9‖η‖1‖A′ −A‖∞ > 0.01})

≥ φ(A′)− 2 exp{−C2,1‖A′ −A‖−2
∞ (ds)−2}

(73)
for appropriately chosen C2,1, where the concluding ≥ is given by (69) due to
‖η‖1 ≤

√
d‖η‖.

Now let

Bω = {A′ ∈ Aω : F({η :
d∑

i=1

ηiA
′
i ¹ 1.1I}) ≤ θ̂ + ∆}

where ∆ is given by (70). According to (69), we can find C2,2 such that

F
(
{η : ‖η‖ ≥ C2,2s

√
d}

)
≤ ∆,

so that A′ ∈ Bω implies
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F

(
{η :

d∑

i=1

ηiA
′
i ¹ 1.1I or ‖η‖1 > C2,2sd})

)
≤ θ̂ + 2∆ =

1 + θ̂

2
< 1.

Setting

ΞN
ω [A′] =

{
η[N ] : ∀(j ≤ N) : ‖ηj‖ > C2,2s

√
d or

d∑

i=1

ηt
iA

′
i ¹ 1.1I

}
,

we have by evident reasons

A′ ∈ Bω ⇒ FN (ΞN
ω [A′]) ≤ exp{−O(1)(1− θ̂)N},

whence

FN

{∪A′∈BωΞN
ω [A′]

} ≤ Card(Aω) exp{−O(1)N}
≤ exp{O(1)m2d ln(2 + ω−1)−O(1)(1− θ̂)N} (74)

(we have used (72)). Now let us set ω = C2,3(sd)−1 with C2,3 chosen in such
a way that C2,2ωsd < 0.1 and (73) implies that

A, A′ ∈ A, ‖A′ −A‖∞ ≤ ω ⇒ φ(A′) ≤ F(B(A)) + ∆. (75)

Let E be the complement of the set ∪A′∈BωΞN
ω [A′]; due to (74) and to our

choice of ω, we have

FN (E) ≥ 1− exp{O(1)m2d ln(C2sd)−O(1)(1− θ̂)N}. (76)

In view of this relation, in order to prove Lemma it suffices to verify that
E ⊂ ΞN , that is,

η[N ] ∈ E ⇒
[
∀

(
A ∈ A : F(B(A)) < θ̂

)
∃j ≤ N :

d∑

i=1

ηj
i Ai 6¹ I

]
. (77)

Indeed, given A ∈ A such that F(B(A)) < θ̂, let A′ be the ‖ · ‖∞-closest to A
point from Aω, so that ‖A−A′‖∞ ≤ ω. By (75),

φ(A′) := F

(
{
η :

d∑

i=1

ηiAi ¹ 1.1I
}
)
≤ F(B(A)) + ∆ ≤ θ̂ + ∆,

whence A′ ∈ Bω. It follows that whenever η[N ] ∈ ΞN , there exists j ≤ N
such that

‖ηj‖ ≤ C2,2s
√

d and
d∑

i=1

ηj
i A

′
i 6¹ 1.1I.

Since
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d∑

i=1

ηj
i A

′
i ¹

d∑

i=1

ηj
i Ai + ‖ηj‖1‖A−A′‖∞︸ ︷︷ ︸

≤C2,2sdω≤0.1

I ¹
d∑

i=1

ηj
i Ai + 0.1I,

it follows that
d∑

i=1

ηj
i Ai 6¹ I, as claimed.

We are ready to complete the proof of Theorem 11. Let ΞN be the set
from Lemma 4. For x ∈ X, let

Bx =
{

u : 0.9
d∑

i=1

uiAi(x) ¹ A0(x)
}

= B(Ax),

Ax =
(
A
−1/2
0 (x)A1(x)A−1/2

0 (x), ..., A−1/2
0 (x)Ad(x)A−1/2

0 (x)
)
∈ A,

where the concluding inclusion is given by Assumption A.I. We claim that

∀ (
η[N ] ∈ ΞN , x ∈ X(η[N ])

)
: F(Bx) ≥ θ̂. (78)

Indeed, let η[N ] ∈ ΞN and x ∈ X(η[N ]), so that ηj ∈ Bx = B(Ax) for
j = 1, ..., N . Assuming on contrary to (78), that F(Bx) < θ̂, or, which
is the same due to Bx = B(Ax), F(B(Ax)) < θ̂, we derive from (70)

and the inclusion η[N ] ∈ ΞN that
d∑

i=1

ηj
i (Ax)i 6¹ I for certain t ≤ N ;

but then ηj 6∈ Bx, which is a contradiction.

Now let η[N ] ∈ ΞN and x ∈ X(η[N ]). Setting Qx = s−1Bx, by (78) we
have

θ̂ ≥ F(Bx) ≡ F̄(s)(Bx) ≡ F̄({ζ : sζ ∈ Bx}) = F̄(Qx),

whence P({ξ 6∈ sQx ≡ Bx}) ≤ Err(s) = ε by Theorem 5. Recalling definition
of Bx, we conclude that

η[N ] ∈ ΞN ⇒ X(η[N ]) ⊂ Xε.

Invoking (71), we see that with N as given by (66), the probability of gener-
ating a sample η[N ] with X(η[N ]) 6⊂ Xε is ≤ δ, provided that C is a properly
chosen function of a, b, c and κ is a properly chosen absolute constant.
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9. A. Prékopa, “Probabilistic Programming”, in A. Rusczyński and A. Shapiro,
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A. Shapiro, editors, Stochastic Programming, volume 10 of Handbooks in Op-
erations Research and Management Science, North-Holland, 2003.


