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Abstract

In the paper, we consider the chance constrained version

Prob{A0[x] +
d∑

i=1

ζiAi[x] º 0} ≥ 1− ε,

of an affinely perturbed Linear Matrix Inequality constraint; here Ai[x] are symmetric
matrices affinely depending on the decision vector x, and ζ1, ..., ζd are independent
of each other random perturbations with light tail distributions (e.g., bounded or
Gaussian). Constraints of this type, playing the central role in Chance Constrained
Linear/Conic Quadratic/Semidefinite Programming, typically are computationally
intractable, which makes natural to look for their tractable approximations. The
goal of this paper is to develop such an approximation. Our approximation is based
on measure concentration results and is given by an explicit system of LMIs and thus
is computationally tractable; it is also safe, meaning that a feasible solution of the
approximation is feasible for the chance constraint as well.

Key words: chance constraints, linear matrix inequalities, convex programming, measure con-
centration.

1 Introduction

In this paper, we focus on uncertain Linear Matrix Inequalities (LMIs)

A(x, ζ) º 0, (1)

where x ∈ Rm is the decision vector, ζ ∈ Rd is data perturbation, the body A(x, ζ) of the
inequality is bi-affine in x and in ζ mapping taking values in the space Sn of symmetric n × n
matrices:

A(x, ζ) = A0[x] +
d∑

`=1

ζ`A`[x] (2)

with affine in x matrices A0[x], ...,Ad[x] ∈ Sn, and A º B means that A,B are symmetric
matrices such that the matrix A − B is positive semidefinite. We are interested in the case
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when (1) is a constraint in an optimization problem we are interested to solve, and our goal
is to process such an uncertain constraint. Given the basic role played by LMI constraints in
modern Convex Optimization and the fact that the data in real-life optimization problems in
many cases are uncertain (not known exactly when the problem is solved), the question of how
to process an uncertain LMI constraint is of definite interest.

For the time being, there are two major approaches to treating uncertain constraints. The
more traditional one, offered by Stochastic Programming, utilizes a stochastic uncertainty model:
ζ is assumed to be a random vector with known (perhaps, only partially) distribution. Here the
most natural way is to pass from the uncertain constraint (1) to its chance constrained version
– the usual – “certain” – constraint

p(x) := inf
P∈P

Probζ∼P {A(x, ζ) º 0} ≥ 1− ε, (3)

where P is the family of all probability distributions of ζ compatible with our a priori infor-
mation, and ε ∈ (0, 1) is a given tolerance. An alternative to this approach, offered by Robust
Optimization, is based on “uncertain-but-bounded” model of data perturbations where all our
a priori knowledge of ζ is that it runs through a given uncertainty set Z. In this case, the most
natural way is to replace the uncertain constraint with its robust counterpart

A(x, ζ) º 0 ∀ζ ∈ Z. (4)

Note that both outlined approaches “as they are” usually lead to computationally intractable
constraints. As far as the chance constrained LMI (3) is concerned, typically the only way to
check whether a given point belongs to its feasible set is to use Monte Carlo simulation with
sample size of order of ε−1, and this is too computationally demanding when ε is small. Another
difficulty, arising independently of what ε is, comes from the fact that the feasible set of (3)
usually is non-convex, which makes problematic optimization under this constraint. The latter
complication does not arise with the Robust Optimization approach – the feasible st of (4) always
is convex; unfortunately, the first difficulty – impossibility to check efficiently whether this semi-
infinite convex constraint is satisfied at a given point – becomes here even more severe than in
the case of chance constrained LMI. Severe tractability difficulties with (3) and (4) “as they are”
make it natural to replace such a constraint with its safe tractable approximation – a system S
of efficiently computable convex constraints in variables x and, perhaps, additional variables u
such that whenever (x, u) is feasible for S, x is feasible for the constraint of interest. For the
time being, “tight”, in certain precise sense, approximations of this type are known only for the
robust counterpart type constraints (4), and only under specific restrictions on the structure of
A(x, ζ) [3, 4, 5]. In this paper, we focus solely on chance constrained LMIs (3). In this case,
seemingly the only known from literature safe tractable approximation of the constraint is the
one given by the general scenario approach. For a chance constrained optimization program

min
x
{f0(x) : Prob {fi(x, ζ) ≤ 0} ≥ 1− ε, i = 1, ..., I} ,

its scenario approximation is the random optimization program

min
x

{
f0(x) : fi(x, ζj) ≤ 0} ≥ 1− ε, i = 1, ..., I, j = 1, ..., J

}
,

where ζ1, ..., ζJ is a sample of independent realizations of ζ. Theoretical justification of this
natural approximation scheme is presented in [6, 7]. In particular, it is shown in [6] that if
f0(x), fi(x, ζ), i = 1, ..., I, are convex in x ∈ Rm and the sample size J is large enough:

J ≥ J∗ := Ceil
[
2mε−1log (12/ε) + 2ε−1log (2/δ) + 2m

]
, (5)
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then an optimal solution to the approximation, up to probability ≤ δ of “bad sampling”, is
feasible for the chance constrained problem of interest. (For substantial extensions of this
remarkable result to the case of ambiguously chance constrained convex problems, see [8]). While
being pretty general (in particular, imposing no restrictions on how the random perturbations
enter the constraints and how they are distributed) and tractable, the scenario approximation
has an intrinsic drawback – it requires samples of order of 1/ε, and thus becomes prohibitively
computationally demanding when ε becomes small, like 10−5 or less. For affinely perturbed LMIs
(2) with independent of each other “light-tail” perturbations ζ`, ` = 1, ..., d, this drawback can
be circumvented by a kind of importance sampling [13]. In this paper, we work under the same
assumptions as in [13], i.e., focus on affinely perturbed LMIs with independent of each other
light-tail random perturbations ζ`, and develop a novel safe tractable approximation of chance
constrained versions of these LMIs. In contrast to the purely simulation-based approximations of
[6, 8, 13], our new approximation is nearly analytic, Specifically, by itself our approximation is an
explicit semidefinite program depending on a pair of real parameters and completely independent
of any samples. In order for this approximation to be safe, the pair of parameters in question
should be “properly guessed”, that is, should ensure the validity of a specific large-deviation-
type inequality. In principle, we can point out appropriate values of the parameters in advance,
thus arriving at a provably safe and completely simulation-free tractable approximation of (3).
However, in order to reduce the conservatism of the approximation, we allow for an “optimistic”
choice of the parameters and introduce a specific simulation-based post-optimization validation
procedure which allows either to justify our “optimistic guess” (and thus guarantees, “up to
probability ≤ δ of bad sampling”, that the solution we end up with is feasible for the chance
constraint of interest), or demonstrates that our guess was “too optimistic”, in which case we
can pass to an approximation with better chosen parameters. It should be stressed that in
principle the size J of the sample used in the validation procedure is completely independent of
how small is the tolerance ε; all we need is J ≥ O(1) ln(1/δ).

The rest of the paper is organized as follows. In Section 2 we make our standing assumptions
and outline and motivate our approximation strategy. This strategy is fully developed in Sections
3, 4. In Section 5 we consider two important special cases of (3). In the first of them, all
matrices A`[x], ` = 0, 1, ..., d, are diagonal, that is, we are speaking about a bunch of randomly
perturbed scalar linear inequalities, or, which is the same, about chance constrained Linear
Programming. In the second special case, the matrices A`[x], ` = 1, ..., d, are of the form
λ`(x)G(x) + e(x)fT

` (x) + f`(x)eT (x), where e(x) and f`(x) are vectors (and, as always in this
paper, A`[x] is affine in x). This situation covers the case when (1) is in fact a randomly
perturbed Conic Quadratic Inequality ‖A[x]ζ + b[x]‖2 ≤ cT [x]ζ + d[x] (A[x], b[x], c[x], d[x] are
affine in x); indeed,

‖A[x]ζ + b[x]‖2 ≤ cT [x]ζ + d[x] ⇔
[

d[x] bT [x]
b[x] d[x]I

]

︸ ︷︷ ︸
A0[x]

+
d∑

`=1

ζ`

[
c`[x] AT

` [x]
A`[x] c`[x]I

]

︸ ︷︷ ︸
A`[x]

º 0, (6)

where A`[x] are the columns of A[x], and c`[x] are the entries of c[x]. Note that “fully analytic”
safe tractable approximations of chance constrained LPs were recently proposed in [11]; Section
5 contains a comparison of approximations from [11] with the one developed in this paper.
Section 6 presents techniques allowing to reduce building a safe approximation of the chance
constrained LMI (3) with partially known “light tail” distributions of (independent of each
other) perturbations ζ` to a similar task for an appropriately chosen reference distribution of ζ,
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most notably, a Gaussian one. The concluding Section 7 presents numerical illustrations.

2 Goals, assumptions, strategy

Our ultimate goal is to process a given chance constrained optimization problem of the form

min
x

{
cT x :

F (x) ≤ 0
Prob{A0[x] +

∑d
`=1 ζ`A`[x] º 0} ≥ 1− ε

}
, (7)

where F (x) is an efficiently computable vector-function with convex components, A0[x], ...,Ad[x]
are symmetric matrices affinely depending on the decision vector x, ε ∈ (0, 1) is a given toler-
ance, and ζ1, ..., ζd are random perturbations. What we intend to do is to replace in (7) the
“troublemaking” chance constraint with its safe tractable approximation, the latter notion being
defined as follows:

Definition 2.1 We say that an explicit system S of efficiently computable convex constraints on
variables x and additional variables u is a safe tractable approximation of the chance constrained
LMI

p(x) := Prob{A0[x] +
d∑

`=1

ζiAi[x] º 0} ≥ 1− ε, (8)

if whenever (x, u) is a feasible solution to S, x is feasible for the chance constraint (8) (or, which
is the same, if the projection X of the solution set of S on the space of x-variables is contained
in the feasible set of (8)).

Note that the requirement that X is contained in the feasible set of (8) means that S produces
a sufficient condition for (8) to be satisfied (“safety” of the approximation). Similarly, the
requirement that S is a system of efficiently computable convex constraints implies that we can
minimize efficiently convex functions over X (“tractability” of the approximation).

Replacing the chance constraint (8) in the optimization problem (7) with a safe tractable
approximation of the constraint, we get an optimization problem in variables x, u with effi-
ciently computable convex constraints, that is, we get a efficiently solvable problem, and feasible
solutions of this problem are feasible for the problem of actual interest (7).

We shall address the problem of building a safe tractable approximation of (8) under the
following assumption on random perturbations:

Assumption A: The scalar random variables ζ1, ..., ζd are mutually independent
and with zero means. Moreover, either (a) all ζ` have bounded ranges, or (b) all ζ`

are Gaussian.
Note that applying deterministic scalings ζ` 7→ ζ`/s`, A`[x] 7→ s`A`[x], in the case
of (a) we can convert the ranges of ζ` into the segment [−1, 1], and in the case of
(b) we can enforce ζ` ∼ N (0, 1) for all `. Therefore from now on, if otherwise is not
stated explicitly, we assume that we are either in the case of

A.1. ζ` is supported on [−1, 1],
or in the case of

A.2. ζ` ∼ N (0, 1) for all `.
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2.1 The strategy

The construction we are about to develop is based on a simple idea as follows. Essentially, what
we are looking for is a verifiable sufficient condition for the relation

A0 +
d∑

`=1

ζ`A` º 0 (9)

to be satisfied with probability at least 1− ε; here A0, ..., Ad are given n×n symmetric matrices.
Assuming, for the sake of argument, that ζ` are symmetrically distributed and ε is small, this is
basically the same as to ask for a sufficient condition for the relation

Prob{−A0 ¹ S :=
d∑

`=1

ζ`A` ¹ A0} ≥ 1− ε. (10)

An evident necessary condition here is A0 º 0. Assuming a bit more, namely, that A0 Â 0, the
condition of interest becomes

Prob{−I ¹ Ŝ :=
d∑

`=1

ζ`Â` ¹ I} ≥ 1− ε, Â` = A
−1/2
0 A`A

−1/2
0 . (11)

Now, in the case of A.2 it is intuitively clear (and can be easily proved) that (11) implies that

E{Ŝ2} =
d∑

`=1

Â2
` ¹ O(1)(ln(1/ε))−1I (12)

with a moderate absolute constant O(1). Thus, the condition (12) is a necessary condition
for (11), provided that we want the latter condition to be satisfied for all distributions of ζ
compatible with Assumption A. Now assume for a moment that (12) is not only necessary, but
a sufficient as well condition for (11) to be valid. Then we are basically done: it is immediately
seen that the condition (12) can be equivalently reformulated as the following LMI in variables
A0, ..., Ad:

Arrow(γA0, A1, ..., Ad) ≡




γA0 A1 . . . Ad

A1 γA0
...

. . .
Ad γA0



º 0 (13)

with γ =
√

O(1) ln(1/ε). It follows that when A` = A`[x], ` = 0, 1, ..., d, affinely depend on a
decision vector x, as it is the case in the chance constraint (8), then our, hopefully sufficient for
the validity of (10) (and thus – for the validity of (9) as well), condition (13) becomes an LMI
in variables x and thus provides us with safe tractable approximation of (8).

As a matter of fact, we do not know at present whether the condition (12) indeed is sufficient
for the validity of (11). It is shown in [12] that the strongest result we can hope for in this
direction is

d∑

`=1

Â2
` ¹ I ⇒ ∀t ≥ O(1)

√
ln n : Prob{Ŝ ¹ tI} ≥ 1−O(1) exp{−O(1)t2}. (14)

Were this implication true, the condition (13) would be sufficient for the validity of (11), provided
that ln(1/ε) ≥ O(1) lnn. While it is conjectured in [12] that (14) is indeed true, the strongest
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provably true result in this direction for the time being is that when replacing
√

ln n in (14) with
n1/6, (14) indeed becomes true, provided that ζ1, ..., ζd satisfy Assumption A and, in addition,
ζ` have zero third moments, see [12, Theorem 2.2].

The main idea of this paper is that we can, to some extent, circumvent the difficulty coming
from the fact that (14) is a conjecture rather than a provable statement: we can act as if the
conjecture were true and then use a cheap simulation-based procedure to validate the result (or
to refine the conjecture).

3 Preliminaries on measure concentration

Our strategy heavily exploits the following fact:

Theorem 3.1 [“Measure Concentration”] Let ζ1, ..., ζd satisfy Assumption A, Υ > 0 and χ ∈
(0, 1/2) be reals, and B0, ..., Bd be deterministic symmetric matrices such that

(a) Arrow(B0, B1, ..., Bd) º 0
(b) Prob

{
−ΥB0 ¹

∑d
`=1 ζ`B` ¹ ΥB0

}
≥ 1− χ.

(15)

Then
γ ≥ 1 ⇒ Prob

{
−γΥB0 ¹

∑d
`=1 ζ`B` ¹ γΥB0

}
≥ 1− ϑ(χ, γ),

ϑ(χ, γ) =

{
1

1−χ exp{−Υ2(γ − 1)2/16}, if ζ satisfies A.1

exp{−φ2(χ)γ2

2 }, if ζ satisfies A.2

(16)

where φ(·) is the inverse error function:

∞∫

φ(r)

1√
2π

exp{−s2/2}ds = r, 0 < r < 1. (17)

Proof. Relation (15.a) implies that B0 º 0; by continuity reasons, it suffices to prove the
theorem when B0 Â 0. In this case, passing from the matrices B0, B1, ..., Bd to the matrices
I, B

−1/2
0 B1B

−1/2
0 , ..., B

−1/2
0 BdB

−1/2
0 , we immediately reduce the situation to the one with B0 = I

(which we assume from now on), where (15.a) becomes simply
∑d

`=1 B2
` ¹ I.

Assume first that ζ satisfies A.1, and consider the set

Q = {u ∈ Rd : ‖
d∑

`=1

u`B`‖ ≤ Υ},

where ‖·‖ stands for the usual matrix norm (the largest singular value). Observe that Q contains
the Euclidean ball centered at the origin of radius Υ; indeed, when ‖u‖2 ≤ Υ, we have

∀(f, ‖f‖2 ≤ 1) : ‖∑d
`=1 u`B`f‖2 ≤

∑d
`=1 |u`|‖B`f‖2 ≤ ‖u‖2

√∑
` ‖B`f‖2

2

= ‖u‖2

√
fT [

∑
` B2

` ]f ≤ ‖u‖2‖f‖2 ≤ Υ.

By Talagrand inequality (see, e.g., [9]), denoting by dist(u, Q) the usual Euclidean distance from
u to Q, we have

E{exp{dist2(ζ, Q)/16}} ≤ 1
Prob{ζ 6∈ Q} ≤

1
1− χ

, (18)
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where the rightmost inequality is given by (15.b). Now, if u 6∈ γQ, then dist(u,Q) > Υ(γ − 1).
Indeed, u 6∈ γQ implies that u 6∈ Q + (γ − 1)Q, and since Q contains the centered at the origin
Euclidean ball of the radius Υ, the set Q+(γ−1)Q contains all points v with dist(v, Q) ≤ (γ−1)Υ.
Applying the Tschebyshev inequality, we get

Prob{¬(−γΥI ¹ ∑
` ζ`B` ¹ γΥI)} = Prob{ζ 6∈ γQ} ≤ Prob{dist(ζ,Q) > (γ − 1)Υ}

≤ exp{−Υ2(γ−1)2

16 }E{exp{dist2(ζ, Q)/16}} ≤ 1
1−χ exp{−Υ2(γ−1)2

16 },
as required in (16) in the case of A.1. The validity of (16) in the case of A.2 is readily given by
Theorem 1 in [11]. 2

Corollary 3.1 Given ε ∈ (0, 1), Υ > 0, χ ∈ (0, 1/2), let us set

ϑ =





1

Υ+4
√

ln(ε−1(1−χ)−1)
, if Assumption A.1 holds

Υ−1 min
[

φ(χ)√
2 ln(1/ε)

, 1
]
, if Assumption A.2 holds

(19)

where φ(·) is the inverse error function (17). Assume, further, that symmetric matrices A0, ..., Ad

satisfy
Arrow(ϑA0, A1, ..., Ad) º 0 (20)

and, in addition, that

Prob

{
−Υ[ϑA0] ¹

d∑

`=1

ζ`A` ¹ Υ[ϑA0]

}
≥ 1− χ. (21)

Then

Prob

{
−A0 ¹

d∑

`=1

ζ`A` ¹ A0

}
≥ 1− ε. (22)

Proof. Assume first that we are in case A.1, and set γ = 1 + 4Υ−1
√

ln(ε−1(1− χ)−1), so that
ϑ = 1

γΥ . Under the premise of Corollary, by (20), (21) the matrices B0 = ϑA0, B1 = A1, ..., Bd =
Ad satisfy the relations (15), whence, applying Theorem 3.1 to the matrices B0, ..., Bd and the
just defined γ, we get

Prob{− γΥB0︸ ︷︷ ︸
=A0

¹
d∑

`=1

ζ`B`

︸ ︷︷ ︸
=
∑d

`=1
ζ`A`

¹ γΥB0} ≥ 1− 1
1−χ exp{−(γ − 1)2Υ2/16}

= 1− 1
1−χ exp{ln(ε(1− χ))} = 1− ε,

as required.

In case A.2 the reasoning is completely similar. Here we set γ = max
[√

2 ln(1/ε)

φ(χ) , 1
]

and

assume first that γ > 1, whence γ =
√

2 ln(1/ε)/φ(χ). Applying Theorem 3.1 to the matrices
B0 = ϑA0, B1 = A1, ..., Bd = Ad (which satisfy (15) by (20), (21)) and to the just defined γ, we
get

Prob{− γΥB0︸ ︷︷ ︸
=A0

¹
d∑

`=1

ζ`B`

︸ ︷︷ ︸
=
∑d

`=1
ζ`A`

¹ γΥB0} ≥ 1− exp{−φ2(χ)γ2/2} = 1− ε,

7



as required. Now let γ = 1, that is, φ(χ) ≥ √
2 ln(1/ε). It is immediately seen that φ(χ) ≤√

2 ln(1/χ) (recall that χ ∈ (0, 1/2)); thus, we are in the situation ε ≥ χ. Also, with γ = 1 we
have ϑ = Υ−1, and (21) implies that Prob{−A0 ¹

∑d
`=1 ζ` ¹ A0} ≥ 1− χ ≥ 1− ε. 2

4 The approximation

Our proposed way to process (7) is as follows.

1. Building the approximation. We start with choosing somehow parameters Υ > 0,
χ ∈ (0, 1/2) and act as if we were sure that whenever symmetric n×n matrices B0, ..., Bd satisfy

Arrow(B0, B1, ..., Bd) º 0, (23)

they satisfy the relation

Prob{−ΥB0 ¹
d∑

`=1

ζ`B` ¹ ΥB0} ≥ 1− χ (24)

as well. Specifically, we replace the chance constraint (8) in (7) with the LMI

Arrow(ϑA0[x],A1[x], ...,Ad[x]) º 0, (25)

where ϑ is given by (19), and process the resulting optimization problem, arriving at its feasible
solution x∗.

Next, we set B∗
0 = ϑA0[x∗], B∗

1 = A1[x∗], ..., B∗
d = Ad[x∗]; by construction, these matrices

satisfy (23). If these matrices satisfy (24) as well, then, by Corollary 3.1, x∗ is a feasible solution
to the chance constrained problem of interest (7). The difficulty, however, is that unless we can
prove that for Υ, χ in question, relation (23) always implies relation (24), we cannot be sure in
advance that the matrices B∗

` will satisfy (24) and, consequently, we cannot be sure that x∗ is
feasible for the chance constrained problem (7).

In order to overcome this difficulty, we use the Validation procedure as follows.

2. Validation procedure. We generate a training sample of N independent realizations
ζ1, ..., ζN of ζ and compute the number M of realizations for which the relation −ΥB∗

0 ¹∑d
`=1 ζi

`B
∗
` ¹ ΥB∗

0 is not satisfied. We then use this statistics to get an (1 − δ)-reliable lower
bound π on the probability p∗ = Prob{−ΥB∗

0 ¹
∑d

`=1 ζi
`B

∗
` ¹ ΥB∗

0}, specifically, set

π = min
0≤p≤1

{
p :

M∑

i=1

(
N
i

)
(1− p)ipN−i ≥ δ

}
,

where δ ∈ (0, 1) is a chosen in advance “probability of unreliability” of our test (say, δ = 10−12).
We then check whether π ≥ 1 − χ; if it is the case, we claim that the feasibility of x∗ for
the problem of interest (7) is validated. Otherwise we apply our approximation scheme anew,
increasing somehow the value of Υ and/or reducing the value of χ.

Proposition 4.1 For the outlined randomized approximation procedure, the probability to vali-
date x∗ when in fact it is unfeasible for (7) is at most δ.
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Proof. It is easily seen that the random quantity π is ≤ p∗ with probability at least 1 − δ.
Thus, the probability to validate the feasibility of x∗ in the case when p∗ < 1 − χ is at most
δ; since in the case of p∗ ≥ 1 − χ the solution x∗ is provably feasible for (7), our randomized
approximation scheme, while being tractable, is indeed safe, up to probability of bad sampling
≤ δ. 2

The advantage of the outlined validation routine is that when working with χ not too close
to 0 (and we can afford ourselves to work with whatever χ ∈ (0, 1/2), say, with χ = 0.4 or
χ = 0.1), in the case of

Prob

{
−ΥB∗

0 ¹
d∑

`=1

ζ`B
∗
` ¹ ΥB∗

0

}
≥ 1− 0.8χ, (26)

(that is, with an slightly stronger assumption than the one

Prob

{
−ΥB∗

0 ¹
d∑

`=1

ζ`B
∗
` ¹ ΥB∗

0

}
≥ 1− χ

we wish to validate) the cardinality N of the sample which is sufficient to validate the feasibility
of x∗ for (7) with probability 1 − ν close to 1 should not be too large. Rough estimate shows
that it suffices to take

N ≥ 100(ln(1/δ) + ln(1/ν))χ−2.

With δ = ν = 10−8, χ = 0.4, this formula yields N = 23026; a more accurate computation
shows that N = 4541 also will do. It should be stressed that the sample size in question is
completely independent of ε which therefore can be arbitrarily small; this is in sharp contrast to
what would happen if we were checking the fact that x∗ is feasible for (8) by trying to estimate
p(x∗) (see (8)) by a straightforward Monte Carlo simulation in order to find out whether indeed
p(x∗) ≥ 1 − ε. Such a simulation would require a sample of cardinality ≥ O(1/ε) and would
therefore be completely impractical when ε is small, like 10−6 or less.

4.1 A modification

In many applications, it makes sense to pose problem (7) in a slightly different form, specifically,
as the problem

ρ∗(c̄) = max
x,ρ

{
ρ :

F (x) ≤ 0, cT x ≤ c̄,

Prob
{
A0[x] + ρ

∑d
`=1 ζ`A`[x] º 0

}
≥ 1− ε

}
, (27)

Thus, instead of minimizing the value of the objective under the deterministic constraints and
the chance constraint with the “reference” uncertainty level ρ = 1, we are now maximizing the
uncertainty level ρ for which the chance constrained problem admits a feasible solution with the
value of the objective ≤ c̄. In reality we could, e.g., start with solving the “nominal” problem

Opt = min
x

{
cT x : F (x) ≤ 0,A0[x] º 0

}
,

and then build the “tradeoff curve” τ(s) = ρ∗(Opt + s), s > 0 which shows which uncertainty
level can be tolerated given a “sacrifice” s > 0 in the optimal value.
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The advantage of (27) in our context is that here the safe tractable approximation given by
our approach does not require any a priori guess of Υ, χ. Indeed, assume that we start with
certain Υ, χ which, we believe, ensure the validity of the implication “(23) ⇒ (24)”. Acting
exactly in the same fashion as above, but aiming at the problem (27) rather than at the problem
(7), we would arrive at the approximation

max
x,ρ

{
ρ :

F (x)(≤ 0, cT x ≤ c̄),
Arrow(ϑ(ρ)A0[x],A1[x], ...,Ad[x]) º 0

}
(28)

where ϑ(ρ) is given by (19) with Υ replaced with ρΥ. Since ϑ(ρ) clearly decreases as ρ grows, we
see that as far as the x-component of an optimal solution to the resulting problem is concerned,
this component is independent of our guesses Υ, χ and coincides with the optimal solution to
the quasiconvex (and thus – efficiently solvable) optimization problem

min
x,ϑ

{
ϑ :

F (x) ≤ 0, cT x ≤ c̄, ϑ ≥ 0,A0[x] º 0,
Arrow(ϑA0[x],A1[x], ...,Ad[x]) º 0

}
(29)

The fact that the resulting approximation is independent of any guess on Υ and χ does not
resolve all our difficulties – we still need to say what is the “feasibility radius” ρ∗(x∗) of an
optimal (or nearly so) solution x∗ to the (29) which we get when solving the latter problem,
that is, what is the largest ρ = ρ∗(x∗) such that

Prob

{
−A0[x∗] ¹ ρ

d∑

`=1

ζ`A`[x∗] ¹ A0[x∗]

}
≥ 1− ε. (30)

Assume that x∗ can be extended by certain ϑ to a feasible solution to (29). If the guess
we started with were true, we could take as a lower bound ρ∗(x∗) on ρ∗(x∗) the supremum
of those ρ > 0 for which ϑ(ρ) ≥ ϑ∗(x∗), where ϑ∗(x∗) is the smallest ϑ ≥ 0 such that
Arrow(ϑA0[x∗],A1[x∗], ...,Ad[x∗]) º 0 (when x∗ is an optimal solution to (29), ϑ∗(x∗) is ex-
actly the optimal value in (29)). In the case when we are not sure that our guess is true, we
can build a lower bound ρ∗(x∗) on ρ∗(x∗) via an appropriate modification of the Validation
procedure, specifically, as follows.

Assume that ϑ∗(x∗) > 0 (this is the only nontrivial case, since ϑ∗(x∗) = 0 means that
A`[x∗] = 0, ` = 1, ..., d; since A0[x∗] º 0 due to the constraints in (29), in this case we clearly
have ρ∗(x∗) = +∞). Let us use the following

Calibration procedure. Given x∗, ϑ∗(x∗) > 0, let B0 = ϑ∗A0[x∗], B` = A`[x∗], ` = 1, ..., d,
so that Arrow(B0, B1, ..., Bd) º 0. Let, further, δ ∈ (0, 1) be a desired “unreliability level” of
our conclusions (cf. the Validation procedure). We now carry out the following two steps:
1. Building a grid of values of ρ. As discussed in Section 3, the implication (23)⇒(24) holds true
for “safe” values of Υ and χ, e.g., for χ = χs = 0.4 and Υ = Υs = O(1)n1/6 with appropriately
chosen O(1). From Corollary 3.1 it follows that if ϑs is given by (19) with χ = χs and Υ = Υs,
then, setting

ρs = ϑs/ϑ∗(x∗),

where ϑs is given by (19) with χ = χs, Υ = Υs, we have

Prob

{
−A0[x∗] ¹ ρs

d∑

`=1

ζ`A`[x∗] ¹ A0[x∗]

}
≥ 1− ε. (31)
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Indeed, the matrices B0, ..., Bd satisfy (23) and therefore satisfy (24) with χ = χs, Υ = Υs.
Applying Corollary 3.1 to the matrices A0 = ϑ−1

s B0 = ϑ−1
s ϑ∗(x∗)A0[x∗] = ρ−1

s A0[x∗], A` =
B` = A`[x∗], ` = 1, ..., d, we conclude that (31) indeed holds true.

Now let us find ρ+ ≥ ρs such that the relation

Prob

{
−A0[x∗] ¹ ρ+

d∑

`=1

ζ`A`[x∗] ¹ A0[x∗]

}
≥ 1− ε

is “highly unlikely” to be true. E.g., assuming ε ¿ 1/2 we can generate a short (say, with
L = 100 elements) pilot sample of realizations ζ1, ..., ζL of ζ, compute, for every i ≤ L, the
largest ρ = ρi such that the relation

−A0[x∗] ¹ ρi
d∑

`=1

ζi
`A`[x∗] ¹ A0[x∗]

holds true and take, as ρ+, the maximum of ρs and of the median of {ρ1, ..., ρL}.
Finally, we insert into the segment [ρs, ρ

+] a moderate number (K − 2) of “intermediate”
values of ρ, say, in such a way that the resulting sequence ρ1 := ρs < ρ2 < ... < ρK := ρ+ forms
a geometric progression. This sequence forms a grid which we are about to use when building
ρ∗(x∗).
2. Running simulations. At this step, we

1. Generate a training sample of N independent realizations ζ1, ..., ζN of ζ

2. For every k = 1, ..., K compute the integers

Mk = Card{i ≤ N : ¬(−A0[x∗] ¹ rk

d∑

`=1

ζi
kA`[x∗] ¹ A0[x∗])}

and then – the reals

χ̂k = max



χ ∈ [0, 1] :

Mk∑

i=1

(
N
i

)
χi(1− χ)N−i ≥ δ/K



 .

Note that if

χk = Prob

{
¬(−A0[x∗] ¹ rk

d∑

`=1

ζ`A`[x∗] ¹ A0[x∗])

}
,

then the probability for the random quantity χ̂k to be < χk is at most δ/K, so that

Prob{χ̂k ≥ χk, 1 ≤ k ≤ K} ≥ 1− δ. (32)

3. Specifying ρ∗(x∗). In the case of A.1 we set

ρ∗(x∗) = max
1≤k≤K

{
rk

1 + 4rkϑ∗(x∗)
√

ln(ε−1(1− χ̂k)−1)
: χ̂k < 1/2

}
(33)

and in the case of A.2 we set

ρ∗(x∗) = max
k

{
rk min

[
φ(χ̂k)√
2 ln(1/ε)

, 1

]
: 1 ≤ k ≤ K, χ̂k < 1/2

}
. (34)
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If these formulas are not well-defined (e.g., there is no k such that χ̂k < 1/2) or are well-defined,
but result in ρ∗(x∗) < ρs, we set ρ∗(x∗) to the “safe” value ρs.

Note that the quantity ρ∗(x∗) yielded by the Calibration procedure is random.

Proposition 4.2 Let (x∗, ϑ∗(x∗) > 0) be feasible for (29). Then, with the outlined Calibration
procedure, the probability for (x∗, ρ∗(x∗)) to be infeasible for (27) is ≤ δ.

Proof. Assume that χ̂k ≥ χk for all k = 1, ..., K (recall that this condition is valid with
probability ≥ 1 − δ), and let us prove that in this case (x∗, ρ∗(x∗)) is feasible for (27). We
already know that this is the case when ρ∗ ≡ ρ∗(x∗) = ρs, so that we can restrict ourselves with
the case when ρ∗(x∗) is given by (33) (in case A.1) or (34) (in case A.2).

In case A.1, let k be the maximizing index in (33), i.e.,

χ̂k < 1/2, ρ∗ =
rk

1 + 4rkϑ∗(x∗)
√

ln(ε−1(1− χ̂k)−1)
,

and let

Υk =
1

rkϑ∗(x∗)
, ϑk =

1
Υk + 4

√
ln(ε−1(1− χ̂k)−1)

, A0 =
ϑ∗(x∗)

ϑk
A0[x∗], A` = A`[x∗], ` = 1, ..., d.

Then
Arrow(ϑkA0, A1, ..., Ad) = Arrow(ϑ∗(x∗)A0[x∗],A1[x∗], ...,Ad[x∗]) º 0,

Prob{−ΥkϑkA0︸ ︷︷ ︸
r−1
k
A0[x∗]

¹
d∑

`=1

ζ`A`

︸ ︷︷ ︸
=
∑d

`=1
ζ`A`[x∗]

¹ ΥkϑkA0} = Prob{−A0[x∗] ¹ rk
∑k

`=1 ζ`A`[x∗] ¹ A0[x∗]}

≥ 1− χ̂k

where the last inequality is valid due to the fact that we are in the case of χ̂k ≥ χk. Invoking
Corollary 3.1, we conclude that Prob{−A0 ¹

∑d
`=1 ζ`A` ¹ A0} ≥ 1 − ε, or, which is the same

(due to A0 = ϑ∗(x∗)
ϑk

A0[x∗] = 1
ρ∗A0[x∗]) as the inequality Prob{−A0[x∗] ¹ ρ∗

∑d
`=1A`[x∗] ¹

A0[x∗]} ≥ 1− ε, as claimed.

In case A.2, let k be the maximizing index in (34), i.e., χ̂k < 1/2 and ρ∗ = rk min
[

φ(χ̂k)√
2 ln(1/ε)

, 1
]
.

Setting

Υk =
1

rkϑ∗(x∗)
, ϑk = Υ−1

k min

[
φ(χ̂k)√
2 ln(1/ε)

, 1

]
, A0 =

ϑ∗(x∗)
ϑk

A0[x∗], A` = A`[x∗], ` = 1, ..., d,

we have
Arrow(ϑkA0, A1, ..., Ad) = Arrow(ϑ∗(x∗)A0[x∗],A1[x∗], ...,Ad[x∗]) º 0,

Prob{−ΥkϑkA0︸ ︷︷ ︸
r−1
k
A0[x∗]

¹
d∑

`=1

ζ`A`

︸ ︷︷ ︸
=
∑d

`=1
ζ`A`[x∗]

¹ ΥkϑkA0} = Prob{−A0[x∗] ¹ rk
∑k

`=1 ζ`A`[x∗] ¹ A0[x∗]}

≥ 1− χ̂k

where the last inequality is valid due to the fact that we are in the case of χ̂k ≥ χk. Invoking
Corollary 3.1, we conclude that Prob{−A0 ¹

∑d
`=1 ζ`A` ¹ A0} ≥ 1 − ε, or, which is the same

(due to A0 = ϑ∗(x∗)
ϑk

A0[x∗] = 1
ρ∗A0[x∗]) as the inequality Prob{−A0[x∗] ¹ ρ∗

∑d
`=1A`[x∗] ¹

A0[x∗]} ≥ 1− ε, as claimed. 2
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5 Special cases: diagonal and arrow matrices

In this Section, we consider two special cases where the chance constrained LMI in (7) possesses
a specific structure allowing us to point out “moderate” Υ and χ for which the implication
“(23)⇒(24)” is valid, that is,

Arrow(B0, B1, ..., Bd) º 0 ⇒ Prob{−ΥB0 ¹
d∑

`=1

ζ`B` ¹ ΥB0} ≥ 1− χ. (35)

In these special cases we can use the approximation scheme from Section 4 without the Validating
procedure.

5.1 The diagonal case and Chance Constrained Linear Programming

The first special case we consider is where A0[x],A1[x], ...,Ad[x] in (7) are diagonal matrices; we
refer to this situation as to the Diagonal case. This case, in spite of its simplicity, is of definite
interest: it is the case of chance constrained system of linear inequalities – an entity of primary
interest for Chance Constrained Linear Programming. We start with the following observation:

Lemma 5.1 Let ζ ∈ Rd be a random vector and B` = Diag{B1
0 , ..., Bs

0}, ` = 0, 1, ..., d, be block-
diagonal matrices of common block-diagonal structure. Assume that for certain function Υ(χ),
χ ∈ (0, 1/2), and every j ≤ s the structure of the blocks Bj

` ensures the implication

∀χ ∈ (0, 1/2) : Arrow(Bj
0, ..., B

j
d) º 0 ⇒ Prob{−Υ(χ)Bj

0 ¹
d∑

`=1

ζ`B
j
` ¹ Υ(χ)Bj

0} ≥ 1− χ.

Then one has

∀χ ∈ (0, 1/2) : Arrow(B0, ..., Bd) º 0 ⇒ Prob{−Υ(χ/s)Bj
0 ¹

d∑

`=1

ζ`B
j
` ¹ Υ(χ/s)Bj

0} ≥ 1− χ.

This statement is an immediate consequence of the facts that (a) −ΥB0 ¹
∑d

`=1 ζ`B` ¹ ΥB0 if
and only if −ΥBj

0 ¹
∑d

`=1 ζ`B
j
` ¹ ΥBj

0, j = 1, ..., s, and (b) Arrow(B0, ..., Bd) º 0 if and only if
Arrow(Bj

0, ..., B
j
d) º 0 for every j = 1, ..., s.

Theorem 5.1 Let B0, B1, ..., Bd be diagonal n×n matrices satisfying Arrow(B0, B1, ..., Bd) º 0,
and ζ1, ..., ζd be random variables satisfying the assumption

A.3. ζ1, ..., ζd are mutually independent with zero means and E{exp{ζ2
` }} ≤ exp{1},

` = 1, ..., d.

(note that A.3 is implied by A.1). Then the implication (35) holds true for every χ ∈ (0, 1/2)
with

Υ = Υ(n)(χ) =
1
3

√
38 ln(2n/χ).

If, in addition to A.3, the entries in ζ are symmetrically distributed, then the above conclusion
remains valid with

Υ = Υ(n)
S (χ) =

√
3 ln(2n/χ).

Finally, if ζ satisfies A.2, then the same conclusion remains valid with

Υ = Υ(n)
G (χ) = φ(χ/(2n)) ≤

√
2 ln(n/χ).
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Proof. By Lemma 5.1, it suffices to prove the statement in the scalar case n = 1, where the
relation Arrow(B0, ..., Bd) º 0 means simply that B0 ≥

√∑d
`=1 B2

` . There is nothing to prove
when B0 = 0; assuming B0 > 0 and setting h` = B`/B0, all we need is to prove that whenever
ζ satisfies A.3 and h ∈ Rd is deterministic, then

‖h‖2 ≤ 1 ⇒ Prob{max
1≤i≤n

|
d∑

`=1

ζ`h`| > Υ(χ)} ≤ χ, 0 < χ < 1/2, (36)

where Υ(·) is, depending on the situation, either Υ(1)(·), or Υ(1)
S (·), or Υ(1)

G (·). This result is
readily given by the standard facts on large deviations; to make the presentation self-contained,
here is the demonstration. All we need is to prove that if h ∈ Rd, ‖h‖2 ≤ 1, then

∀Υ > 0 : Prob

{
|

d∑

`=1

h`ζ`| > Υ

}
≤





2 exp{−9Υ2/38}, ζ satisfies A.3
2 exp{−Υ2/3}, ζ satisfies A.3 and is

symmetrically distributed
2Φ(Υ), ζ ∼ N (0, Id)

, (37)

where Φ(s) =
∫∞
s (2π)−1/2 exp{−r2/2}dr is the error function.

The case of ζ ∼ N (0, Id) is evident. Now assume that ζ satisfies A.3. Let γ ∈ R, s` =∑`
r=1 γhrζr, and J = {` : |h`γ| >

√
3/2}. We have

E{exp{s`}} = E{exp{s`−1} exp{γh`ζ`}} = E{exp{s`−1}} ·Θ`, Θ` = E{exp{γh`s`}}. (38)

(we have taken into account that ζ` is independent of s`−1). We claim that

Θ` ≤
{

exp{2γ2h2
`/3}, ` 6∈ J

exp{7/12 + 2γ2h2
`/3}, ` ∈ J

(39)

Indeed, it is easily seen that
exp{t} ≤ t + exp{2t2/3}

for all t ∈ R, whence E{exp{γh`ζ`}} ≤ E{exp{2γ2h2
`ζ

2
` /3}}; when ` 6∈ J , the latter expectation

is at most
(
E{exp{ζ2

` }}
)2γ2h2

`/3 by Hölder Inequality, as required in (39). Now let ` ∈ J . We
have |γh`s| ≤ s2 + γ2h2

`/4 for all s, whence

E{exp{γh`ζ`}} ≤ exp{γ2h2
`/4}E{exp{ζ2

` }} ≤ exp{1 + γ2h2
`/4}

≤ exp{7/12 + 2γ2h2
`/3}

as required in (39).
Combining (38) and (39), we get

E{exp{γ ∑d
`=1 h`ζ`}} ≤ exp{2γ2[

∑d
`=1 h2

` ]/3} exp{(7/12)Card(J)}
≤ exp{2γ2/3} exp{(7/12) · (2/3) · γ2},

where the concluding inequality follows from the fact that h2
` > 3/(2γ2) when ` ∈ J , which

combines with ‖h‖2 ≤ 1 to imply that Card(J) ≤ 2γ2/3. Thus,

E{exp{γ
d∑

`=1

h`ζ`}} ≤ exp{19γ2/18},
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whence, by Tschebyshev Inequality,

Prob{|
d∑

`=1

h`ζ`| > Υ} ≤ 2min
γ>0

exp{19γ2/18− γΥ} = 2 exp{−9Υ2/38}.

Now let ζ satisfy A.3 and be symmetrically distributed. For γ > 0, let us set s` =
cosh(γ

∑`
r=1 hrζr). Then

E{s`} = E{s`−1cosh(γh`ζ`) + sinh(γ
`−1∑

r=1

hrζr) sinh(γh`ζ`)} = E{s`−1}E{cosh(γh`ζ`)︸ ︷︷ ︸
Θ`

},

whence
E{sd} = Θ1 · ... ·Θd.

Setting J = {` : γ2h2
` ≥ 2} and taking into account that cosh(t) ≤ exp{t2/2} for all t, for ` 6∈ J

we have
Θ` = E{cosh(γh`ζ`)} ≤ E{exp{γ2h2

`ζ
2
` /2}} ≤ exp{γ2h2

`/2},
where the concluding inequality is given by the facts that γ2h2

`/2 ≤ 1 and E{exp{ζ2
` }} ≤ exp{1}

in view of the Hölder Inequality. When ` ∈ J , we, same as above, have

cosh(γh`ζ`) ≤ exp{|γh`ζ`|} ≤ exp{ζ2
` + γ2h2

`/4},
whence Θ` ≤ exp{1 + γ2h2

`/4} ≤ exp{1/2 + γ2h2
`/2}. We therefore get

E{cosh(γ
d∑

`=1

h`ζ`)} ≤ exp{γ2[
d∑

`=1

h2
` ]/2} exp{Card(J)/2},

and, similarly to the previous case, Card(J) ≤ γ2/2, whence

E{cosh(γ
d∑

`=1

h`ζ`)} ≤ exp{3γ2/4}.

When |∑d
`=1 h`ζ`| > Υ, we have cosh(γ

∑d
`=1 h`ζ`) > exp{γΥ}/2, so that

Prob{|
d∑

`=1

h`ζ`| > Υ} ≤ 2 inf
γ>0

exp{3γ2/4− γΥ} = 2 exp{−Υ2/3},

as required in (37). 2

Comparison with other approximations of a chance constrained LP. As it was al-
ready mentioned, the diagonal case arises when solving chance constrained Linear Programming
problems which we prefer to pose in the form of (27):

max
x,ρ

{
ρ :

Fx− f ≥ 0, cT x ≤ c̄
Prob{Aρ

ζx− bρ
ζ ≥ 0} ≥ 1− ε

}
, [Aρ

ζ , b
ρ
ζ ] = [A0, b0] + ρ

∑d
`=1 ζ`[A`, b`]

m
max
x,ρ

{
ρ :

Fx− f ≥ 0, cT x ≤ c̄

Prob{A0[x] + ρ
∑d

`=1 ζ`A`[x] º 0} ≥ 1− ε

}
, A`[x] = Diag{A`x− b`}, 0 ≤ ` ≤ d.

(40)
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With our approximation scheme, the safe tractable approximation of the resulting chance con-
strained problem is, as it is immediately seen, the quasiconvex program

max
x,ρ

{
ρ :

Fx− f ≥ 0, cT x ≤ c̄

ρ
√∑d

`=1[
∑J

j=1 A`
ijxj − b`

i ]2 ≤
∑

j A0
ijxj − b0

i , 1 ≤ i ≤ I

}
(41)

where I, J are the row and the column sizes of A`. There exists also a more traditional
“constraint-by-constraint” way to process a chance constrained LP; specifically, we choose some-
how positive εi,

∑
i εi = ε, and safely approximate (40) with the chance constrained problem

max
x,ρ

{
ρ :

Fx− f ≥ 0, cT x ≤ c̄

Prob{∑j A0
ijxj − b0

i + ρ
∑d

`=1 ζ`

[∑
j A`

ijxj − b`
i

]
≥ 0} ≥ 1− εi, 1 ≤ i ≤ I

}
. (42)

This problem involves chance constrained scalar linear inequalities which are much easier to
approximate than the original chance constrained vector inequality appearing in (40). For the
sake of simplicity, consider the case when ζ ∼ N (0, I) and ε < 1/2. In this case (42) is exactly
equivalent to the explicit quasiconvex problem

max
x,ρ

{
ρ :

Fx− f ≥ 0, cT x ≤ c̄

φ(εi)ρ
√∑d

`=1[
∑J

j=1 A`
ijxj − b`

i ]2 ≤
∑

j A0
ijxj − b0

i , 1 ≤ i ≤ I

}
. (43)

Note that an attempt to treat the parameters εi of our construction as decision variables in (43)
fails – the resulting problem loses convexity; this is why the parameters εi should be chosen in
advance, and the most natural way to choose them is to set εi = ε/I, i = 1, ..., I. Note that
with this choice of εi, problem (43) is equivalent to (41), up to rescaling ρ 7→ ρ/φ(ε/I). This,
however, does not mean that the approximations are identical; while both of them lead to the
same optimal decision vector x∗, they differ in what is the resulting lower bound ρ∗ on the true
feasibility radius ρ∗(x∗) of x∗ (recall that this radius is the largest ρ for which (x∗, ρ) is feasible
for the chance constrained problem of interest (40)). Specifically, for approximation (43), ρ∗ is
exactly the optimal value of the approximation, while for (41) ρ∗ is given by the Calibration
routine. Experiments show that which one of these two lower bounds is less conservative, it
depends on problem’s data, so that in practice it makes sense to build both these bounds and
to use the larger of them.

5.2 The arrow case and Chance Constrained Conic Quadratic Programming

We are about to justify the implication (35) in the Arrow case, where the matrices B`, ` = 1, ..., d,
are of the form

B` = [efT
` + f`e

T ] + λ`G, (44)

where e, f` ∈ Rn, λ` ∈ R and G ∈ Sn. Observe that we meet this case in Chance Constrained
Conic Quadratic Optimization, see (6). Indeed, the matrices A`[x], 1 ≤ ` ≤ d, arising in (6) are,
for every x, matrices of the form (44), and therefore all we need when building and processing
the safe tractable approximation, as developed in Section 4, of the chance constrained LMI in
(6) is the validity of (35) for matrices B` of the form (44).

Theorem 5.2 Let n×n matrices B1, ..., Bd of the form (44) along with a matrix B0 ∈ Sn satisfy
Arrow(B0, B1, ..., Bd) º 0. Let, further, ζ1, ..., ζd be independent random variables with zero
means and such that E{ζ2

` } ≤ σ2, ` = 1, ..., d (note that one can take σ = 1 under Assumptions
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A.1 or A.2, and σ =
√

exp{1} − 1 under Assumption A.3). Then, for every χ ∈ (0, 1/2) and
with Υ(χ) given by

(a) 2σ
√

2/χ [general case]
(b) min[2

√
2/χ, 4 + 4

√
ln(2/χ)] [case A.1]

(c) min[2σ
√

2/χ, 10
√

ln(1/χ)] [case A.2]
(45)

one has

Υ ≥ Υ(χ) ⇒ Prob{−ΥB0 ¹
d∑

`=1

ζ`B` ¹ ΥB0} ≥ 1− χ, (46)

that is, with our Υ(χ), the conclusion in (35) holds true.

Proof. First of all, when ζ`, ` = 1, ..., d, satisfy A.3, we indeed have E{ζ2
` } ≤ exp{1}− 1 due to

t2 ≤ exp{t2}−1 for all t. Further, by continuity argument, it suffices to consider the case where
Arrow(B0, B1, ..., Bd) º 0 and B0 Â 0. In this case, setting A` = B

−1/2
0 B`B

−1/2
0 , the relation

Arrow(B0, ..., Bd) º 0 is equivalent to
∑d

`=1 A2
` ¹ I, and the target relation (46) is equivalent to

Υ ≥ Υ(χ) ⇒ Prob{−ΥIn ¹
d∑

`=1

ζ`A` ¹ ΥIn} ≥ 1− χ

with Υ(χ) announced in Theorem 5.2. Thus, all we need is to prove the following

Lemma 5.2 Let B`, ` = 1, ..., d, be of the form (44), let B0 Â 0, and let the matrices A` =
B
−1/2
0 B`B

−1/2
0 satisfy

∑
` A2

` ¹ I. Let, further, ζ` satisfy the premise in Theorem 5.2. Then,
for every χ ∈ (0, 1/2), one has

Prob{‖
d∑

`=1

ζ`B`‖ ≤ Υ(χ)} ≥ 1− χ, (47)

where ‖ · ‖ is the standard matrix norm (the largest singular value) and Υ(χ) is given by (45).

Proof of Lemma. Observe that A`, 1 ≤ ` ≤ d, also are of the form (44):

A` = [ghT
` + h`g

T ] + λ`H [g = B
−1/2
0 e, h` = B

−1/2
0 f`,H = B

−1/2
0 GB

−1/2
0 ]

Note that by rescaling h` we can ensure that ‖g‖2 = 1 and then rotating the coordinates we can
convert g to the first basic orth. In doing so the matrices A` become matrices of the form

A` =

[
q` rT

`

r` λ`Q

]
. (48)

Finally, by appropriate scaling of λ`, we can ensure that ‖Q‖ = 1. We have then

A2
` =

[
q2
` + rT

` r` q`r
T
` + λ`r

T
` Q

q`r` + λ`Qr` r`r
T
` + λ2

`Q
2

]
.

We conclude that
∑d

`=1 A2
` ¹ In implies that

∑d
`=1(q

2
` + rT

` r`) ≤ 1 and [
∑d

`=1 λ2
` ]Q

2 ¹ In−1;
since ‖Q2‖ = 1, we arrive at the relations

(a)
∑d

`=1 λ2
` ≤ 1 (b)

∑d
`=1(q

2
` + rT

` r`) ≤ 1 (49)
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Now let p` = (0, rT
` )T ∈ Rn. We have

S ≡ ∑d
`=1 ζ`A` = [gT (

d∑

`=1

ζ`p`

︸ ︷︷ ︸
ξ

) + ξT g] + Diag{
d∑

`=1

ζ`q`

︸ ︷︷ ︸
θ

, (
d∑

`=1

ζ`λ`

︸ ︷︷ ︸
η

)Q}

⇒ ‖S‖ ≤ ‖gξT + ξgT ‖+ max[|θ|, |η|‖Q‖] = ‖ξ‖2 + max[|θ|, |η|].
Setting

α =
d∑

`=1

rT
` r`, β =

d∑

`=1

q2
` ,

we have α + β ≤ 1 by (49.b). Besides this,

E{ξT ξ} =
∑

`,`′ E{ζ`ζ`′}pT
` p`′ =

∑d
`=1 E{ζ2

` }rT
` r` [ζ` are independent, E{ζ`} = 0]

≤ σ2
∑d

`=1 rT
` r` ≤ σ2α [E{ζ2

` } ≤ σ2]
⇒ Prob{‖ξ‖2 > t} ≤ σ2α

t2 ∀t > 0 [Tschebyshev Inequality]

E{η2} =
∑d

`=1 E{ζ2
` }λ2

` ≤ σ2
∑d

`=1 λ2
` ≤ σ2 [see (49.a)]

⇒ Prob{|η| > t} ≤ σ2

t2 ∀t > 0 [Tschebyshev Inequality]
E{θ2} =

∑d
`=1 E{ζ2

` }q2
` ≤ σ2β

⇒ Prob{|θ| > t} ≤ σ2β
t2 ∀t > 0 [Tschebyshev Inequality]

Thus, for every Υ > 0 and all λ ∈ (0, 1) we have

Prob{‖S‖ > Υ} ≤ Prob{‖ξ‖2 + max[|θ|, |η|] > Υ} ≤ Prob{‖ξ‖2 > λΥ}
+Prob{|θ| > (1− λ)Υ}+ Prob{|η| > (1− λ)Υ} ≤ σ2

Υ2

[
α
λ2 + β+1

(1−λ)2

]
,

whence, due to α + β ≤ 1, one has

Prob{‖S‖ > Υ} ≤ σ2

Υ2
max

α∈[0,1]
min

λ∈(0,1)

[
α

λ2
+

2− α

(1− λ)2

]
=

8σ2

Υ2
,

so that
Υ ≥ 2σ

√
2/χ ⇒ Prob{‖S‖ > Υ} ≤ χ, (50)

which is the “general case” of our Lemma (cf. (45.a)). It remains to justify the refinements
in cases A.1, A.2. In case A.1 we have σ ≤ 1, so that whenever Υ̃ > 4, we have Prob{‖S‖ ≥
Υ̃} < 1/2 by (50). Invoking Theorem 3.1, we conclude that for all γ ≥ 1 we have Prob{‖S‖ ≥
γΥ̃} ≤ 2 exp{−Υ̃2(γ − 1)2/16}. Given χ ∈ (0, 1/2) and setting γ = 1 + 4Υ̃−1

√
ln(2/χ), we get

Prob{‖S‖ ≥ Υ̃ + 4
√

ln(2/χ)} ≤ χ; since this relation holds true for every Υ̃ > 4, we see that
in the case of A.1, in addition to (50), it holds Prob{‖S‖ ≥ 4 + 4

√
ln(2/χ)} ≤ χ, 0 < χ < 1/2,

which proves the “A.1-version” of Lemma. Now let A.2 be the case. Here (50) is satisfied
with σ = 1, meaning that whenever s ∈ (0, 1/2), we have Prob{‖S‖ ≥ 2

√
2/s} ≤ s. Applying

Theorem 3.1 with s in the role of χ, we conclude that whenever s ∈ (0, 1/2) and γ ≥ 1, we have
Prob{‖S‖ ≥ 2γ

√
2/s} ≤ exp{−φ2(s)γ2/2}. It follows that setting

Υ∗(χ) = inf
s,γ

{
2γ

√
2/s : s ∈ (0, 1/2), γ ≥ 1, exp{−φ2(s)γ2/2} ≤ χ

}
,

we ensure the relation Prob{‖S‖ ≥ Υ∗(χ)} ≤ χ for all χ ∈ (0, 1/2). It is immediately seen that
Υ(χ) given in the case A.2 by (45) is an upper bound on Υ∗(χ), so that (47) holds true in the
case of A.2. 2
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5.3 Simulation-free safe tractable approximations of chance constrained
LMIs

Assume that the structure of LMI (8) ensures that the collections of matrices θA0[x],A1[x],...,
Ad[x], for all x and all θ ≥ 0, belong to a set B with the following property:

(P): We can point out functions Υ1(χ), Υ2(χ), 0 < χ < 1/2, such that when-
ever a collection of matrices B0, B1, ..., Bd belongs to B and satisfies the condition
Arrow(B0, B1, ..., Bd) º 0, we have

∀(0 < χ < 1/2) : Prob{−Υ1(χ)B0 ¹
∑d

`=1 ζ`B` ¹ Υ1(χ)B0} ≥ 1− χ
whenever ζ satisfies A.1;

∀(0 < χ < 1/2) : Prob{−Υ2(χ)B0 ¹
∑d

`=1 ζ`B` ¹ Υ2(χ)B0} ≥ 1− χ
whenever ζ satisfies A.2.

(51)

E.g.,

• when B is the set of collections of all n × n symmetric matrices, (P) is satisfied with
Υ1,2(χ) = O(1)n1/6χ−1/2 (this is immediately given by the already cited results of [12]);

• when B is comprised of all collections of diagonal n × n matrices, (P) is satisfied with
Υ1,2(χ) = O(1)

√
ln(n/χ), see Theorem 5.1;

• when B is comprised of all collections B0, B1, ..., Bd of symmetric n × n matrices with
B1, ..., Bd of the form eT f` + fT

` e+λ`G, (P) is satisfied with Υ1,2(χ) = O(1)
√

ln(1/χ), see
Theorem 5.2.

In the case of (P), we can build safe tractable approximations of problems of interest (7), (27)
without any simulations. Specifically, a safe tractable approximation of (7) can be chosen as the
problem

min
x

{
cT x :

F (x) ≤ 0
Arrow(ΘA0[x],A1[x], ...,Ad[x]) º 0

}
,

Θ =





sup
0<χ<1/2

[
Υ1(χ) + 4

√
ln(ε−1(1− χ)−1)

]−1
, under Assumption A.1

sup
0<χ<1/2

Υ−1
2 (χ)min

[
φ(χ)√

2 ln(ε−1)
, 1

]
, under Assumption A.2

(52)

Indeed, assume that x∗ is a feasible solution of problem ; we should prove that

Prob

{
A0[x∗] +

d∑

`=1

ζ`A`[x∗] º 0

}
≥ 1− ε. (53)

Let A.1 hold. For every ν > 0 we can point out χ ∈ (0, 1/2) such that (1 + ν)Υ1(χ)Θ ≥
1. Setting A0 = (1 + ν)A0[x∗], A` = A`[x∗] and invoking Corollary 3.1, we conclude that
Prob{(1 + ν)A0[x∗] +

∑d
`=1A`[x∗] º 0} ≥ 1 − ε; since ν > 0 is arbitrary, (53) holds true. The

reasoning under Assumption A.2 is completely similar.
By exactly the same reasons, given a feasible solution (x∗, ϑ∗ > 0) to (29) and setting

ρ∗ = Θ/ϑ∗, with Θ given by (5.3), we ensure that (x∗, ρ∗) is a feasible solution to (27).
It is not difficult to see that in the cases of Chance Constrained Linear and Conic Quadratic

Programming (covered by Theorems 5.1, 5.2, respectively), the corresponding “simulation-free”
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safe tractable approximations are not too conservative. E.g., under Assumption A.2 there ex-
ists an absolute constant C > 0 such that a vector x which does not satisfy the constraint
Arrow(CΘA0[x],A1[x], ...,Ad[x]) º 0 can violate the chance constraint of interest (8), provided
that εn ≤ 1 1). However, we shall see in Section 7 that in reality simulation-based approximations
can be significantly less conservative than the simulation-free ones.

6 Majorization

One way to bound from above the probability

q(x) := Prob

{
A0[x] +

d∑

`=1

ζ`A`[x] 6º 0

}

for a randomly perturbed LMI to be violated is to replace the random perturbations ζ with an
easier-to-handle perturbations ζ̂ – such that we know how to bound from above the quantity

q̂(x) := Prob

{
A0[x] +

d∑

`=1

ζ̂`A`[x] 6º 0

}
.

If, in addition, ζ̂ is “more diffuse” than ζ, meaning that q̂(x) ≥ q(x) for all x, we indeed end
up with a bounding scheme for q(·). For example, let the entries in ζ be independent with
zero means and unbounded ranges. With our present results, we cannot handle this situation
unless ζ` are Gaussian. In order to overcome this difficulty, we could replace ζ` with “more
diffuse” Gaussian random variables ζ̂` which we do know how to handle. Another potential
application is the case when ζ` are known to satisfy A.2, but we do not know exactly the
corresponding probability distributions and cannot sample from them, which makes impossible
to use neither the Validation nor the Calibration procedure. Here again, we could replace
the unknown true distributions with “more diffuse”, say, Gaussian ones and then apply our
approximation machinery to these artificial distributions.

For the outlined idea to be meaningful, we should specify properly the notion of “being more
diffuse”. We are about to present two specifications of this type, known as monotone and convex
stochastic dominances, respectively.

6.1 Monotone dominance and Comparison Theorem

For our purposes, it suffices to restrict ourselves with monotone dominance on the space SU
of all symmetric w.r.t. 0 and unimodal probability distributions on the axis, the latter notion
being defined as follows:

Definition 6.1 A probability distribution P on the axis is called unimodal and symmetric, if P
possess a density p(·) which is an even function non-increasing on [0,∞).2)

A probability distribution P ∈ SU is said to be monotonically dominating another distribution
Q ∈ SU (notation: P ºm Q, or, equivalently, Q ¹m P ), if

∫∞
t dP (s) ≥ ∫∞

t dQ(s) for every
t ≥ 0, or, equivalently3),

∫
f(s)dP (s) ≥ ∫

f(s)dQ(s) for every even and bounded function f(s)
1)The chance constraint definitely is violated if

∑d

`=1
A`[x]A−1

0 [x]A`[x] Â C2Θ2A0[x], which is slightly more

than Arrow(CΘA0[x],A1[x], ...,Ad[x]) 6º 0 ⇔ ∑d

`=1
A`[x]A−1

0 [x]A`[x] 6¹ C2Θ2A0[x].
2)In the literature, a unimodal symmetric distribution is defined as a convex combination of the unit mass

sitting at the origin and of what is called unimodal and symmetric in Definition 6.1. For the sake of simplicity,
we forbid a mass at the origin; note that all results to follow remain valid when such a mass is allowed.

3)This equivalence is well known; to be self-contained, we present the proof in Appendix.
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which is nondecreasing on the nonnegative ray R+.

With slight abuse of notation, for a random variable ξ with probability distribution P and
probability density p(·), every one of the relations ξ ∈ SU , p(·) ∈ SU is interpreted as the
inclusion P ∈ SU . Similarly, if ξ, η are random variables with distributions P , resp., Q, and
probability densities p(·), resp., q(·), then every one of the relations η ºm ξ, q(·) ºm p(·) means
that P, Q ∈ SU and P ºm Q. Relation ¹m is the natural “counterpart” of the relation ºm.

The important facts on monotone dominance we need later on can be summarized as follows:

Proposition 6.1 (i) ºm is a partial order on SU .
(ii) If pi(·) ¹m qi(·), i = 1, ..., I, and αi ≥ 0 are such that

∑
i αi = 1, then

∑
i αipi(·) ¹m∑

i αiqi(·).
(iii) If ξ ∈ SU is a random variable, and λ, |λ| ≥ 1, is a deterministic real, then ξ ¹m λξ.
(iv) If pi(·) ∈ SU weakly converge as i → ∞ to a probability density p(·) (meaning that∫

g(s)pi(s)ds → ∫
g(s)p(s)ds for every continuous g with compact support), qi(·) ∈ SU weakly

converge as i → ∞ to a probability density q(·) and pi(·) ¹m qi(·) for every i, then p(·) ∈ SU ,
q(·) ∈ SU and p(·) ¹m q(·).

(v) If {ξ` ∈ SU}n
`=1, {η` ∈ SU}n

`=1 are collections of independent random variables such that
ξ` ºm η`, ` = 1, ..., n, and λ`, ` = 1, ..., n, are deterministic reals, then

∑n
`=1 λ`ξ` ºm

∑m
`=1 λ`η`.

(vi) Let ξ ∈ SU be supported on [−1, 1], ζ be uniformly distributed on [−1, 1] and η ∼
N (0, 2/π). Then ξ ¹m ζ ¹m η.

(vii) [Comparison Theorem] Let {ζ`}d
`=1, {ζ̂`}d

`=1 be two collections of independent random
variables such that ζ` ¹m ζ̂` for all `. Then for every closed convex and symmetric w.r.t. 0 set
Q ⊂ Rd one has

Prob{ζ := [ζ1; ...; ζd] ∈ Q} ≥ Prob{ζ̂ := [ζ̂1; ...; ζ̂d] ∈ Q}.

To the best of our knowledge, some of the facts presented in Proposition 6.1, most notably the
Comparison Theorem, are new; to be on the safe side, we provide full proofs of all these facts
in Appendix.

6.2 Convex dominance and Majorization Theorem

To conclude this Section, we present another “Gaussian Majorization” result. Its advantage is
that it does not require the random variables ζ` to be symmetrically or unimodally distributed;
what is needed, essentially, is just independence plus zero means. We start with recalling
the definition of convex dominance. Let Rn be the space of Borel probability distributions
on Rn with zero mean. For a random variable η taking values in Rn, we denote by Pη the
corresponding distribution, and we write η ∈ Rn to express that Pη ∈ Rn. Let CFn be the set
of all convex function f on Rn with linear growth, meaning that there exists cf < ∞ such that
|f(u)| ≤ cf (1 + ‖u‖2) for all u.

Definition 6.2 Let ξ, η ∈ Rn. We say that η convexly dominates ξ (notation: ξ ¹c η, or
Pξ ¹c Pη, or η ºc ξ, or Pη ºc Pξ) if

∫
f(u)dPξ(u) ≤

∫
f(u)dPη(u)

for every f ∈ CFn.
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A summary of facts on convex dominance we need later on is as follows.

Proposition 6.2 (i) ¹c is a partial order on Rn.
(ii) If P1, ..., Pk, Q1, ..., Qk ∈ Rn and Pi ¹c Qi for every i, then

∑
i

λiPi ¹c
∑
i

λiQi for all

nonnegative weights λi with unit sum.
(iii) If ξ1, ..., ξk, η1, ..., ηk ∈ Rn are independent random variables such that ξi ¹c ηi for every

i, and si are deterministic reals, then
∑
i

siξi ¹c
∑
i

siηi.

(iv) If ξ is symmetrically distributed w.r.t. 0 and t ≥ 1 is deterministic, then tξi ºc ξi.
(v) Let P1, Q1 ∈ Rr, P2, Q2 ∈ Rs be such that Pi ¹c Qi, i = 1, 2. Then P1×P2 ¹c Q1×Q2.

In particular, if ξ1, ..., ξn, η1, ..., ηn ∈ R1 are independent and such that ξi ¹c ηi for every i, then
(ξ1, ..., ξn)T ¹c (η1, ..., ηn)T .

(vi) Let ξ ∈ R1 be supported on [−1, 1] and η ∼ N (0, π/2). Then ξ ¹c η.
(vii) Assume that ξ ∈ Rn is supported in the unit cube {u : ‖u‖∞ ≤ 1} and is “absolutely

symmetrically distributed”, meaning that if J is a diagonal matrix with diagonal entries ±1,
then Jξ has the same distribution as ξ. Let also η ∼ N (0, (π/2)In). Then ξ ¹c η.

(viii) Let ξ, η ∈ Rn, ξ ∼ N (0, Σ), η ∼ N (0, Θ) with Σ ¹ Θ. Then ξ ¹c η.
(ix) [Majorization Theorem [11]] Let η ∼ N (0, Id), ζ ∈ Rd be such that ζ ¹c η, and let

Q ⊂ Rd be a closed convex set such that χ ≡ Prob{η 6∈ Q} < 1/2. Then for every γ > 1, one
has

Prob{ζ 6∈ γQ} ≤ inf
1≤β<γ

1
γ − β

∞∫

β

exp{−r2φ2(χ)/2}dr, (54)

where φ(·) is the inverse error function (17).

All of the facts above, except for Majorization Theorem, are well-known; all proofs can be found
in [11].

6.3 Calibration based on Gaussian majorization

We can utilize the facts listed in the previous Subsection in the Calibration procedure, specifi-
cally, as follows.

Utilizing Comparison Theorem (Proposition 6.1.vii). Assume that perturbations ζ` are
independent and possess unimodal and symmetric distributions P` such that P` ¹m N (0, σ2) for
certain σ and all ` (the latter is, e.g., the case when ζ` are supported on [−1, 1] and σ =

√
2/π,

see Proposition 6.1.vi). Setting η ∼ N (0, Id) and invoking Comparison Theorem, we conclude
that for every deterministic symmetric matrices A0, A1, ..., Ad and every r > 0 we have

Prob{−A0 ¹ r
d∑

`=1

ζ`A` ¹ A0} ≤ Prob{−A0 ¹ r
d∑

`=1

η`A` ¹ A0}. (55)

Now, the purpose of the Calibration procedure is, given matrices A0, ..., Ad and ϑ∗ > 0 such
that Arrow(ϑ∗A0, A1, ..., Ad) º 0, along with ε, δ ∈ (0, 1), to build a (random) (1 − δ)-reliable
lower bound on the quantity

ρ∗ = max

{
ρ : Prob{−A0 ¹ ρ

d∑

`=1

ζ`A` ¹ A0} ≥ 1− ε

}
. (56)
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By (55), in order to build such a bound, we can apply the plain Calibration procedure to find a
(1− δ)-reliable lower bound r∗ on the quantity

r∗ = max

{
r : Prob{−A0 ¹ r

d∑

`=1

η`A` ¹ A0} ≥ 1− ε

}

and to set ρ∗ = r∗/σ. This approach allows to extend the above constructions beyond the scope
of Assumption A; moreover, we shall see in Section 7 that this approach makes sense even in the
case when ζ obeys A.1 and thus can be processed “as it is”. The reason is, that the constant
factors in the measure concentration inequalities of Theorem 3.1 in the case of A.2 are better
than in the case of A.1.

Utilizing Majorization Theorem (Proposition 6.2.ix). Now assume that the random
variables ζ1, ..., ζd are independent with zero means, and we can point out σ > 0 such that
Pζ`

¹c N (0, σ2). Introducing η ∼ N (0, Id) and applying Proposition 6.2.v, we conclude that
ζ ¹c ση. Given the input A0, ...., Ad, ε, δ to the Calibration procedure and applying the
Majorization Theorem to the closed convex set

Q = Qs = {u ∈ Rd : −sA0 ¹
d∑

`=1

u`A` ¹ sA0},

we conclude that

∀(s > 0 : χ(s) ≡ Prob{η 6∈ Qs} ≡ 1− Prob{−A0 ¹ s−1 ∑d
`=1 η`A` ¹ A0} < 1/2) :

Prob{−γsσA0 ¹
∑d

`=1 ζ` ¹ γσsA0} = 1− Prob{σ−1ζ 6∈ γQs} ≤ Ψ(γ, χ(s)),

Ψ(γ, χ) = inf
1≤β<γ

1
γ−β

∞∫
β

exp{−r2φ2(χ)/2}dr.
(57)

In order to bound from below ρ∗ (see (56)), let us apply the Calibration procedure with artificial
random perturbation η in the role of actual perturbation ζ. Carrying out the first two steps of
this procedure, we end up with a collection {rk > 0, χ̂k < 1/2}K̄

k=1 such that “up to probability
of bad sampling ≤ δ” we have

χk := Prob{¬(−(rk)−1A0 ¹
d∑

`=1

η`A` ¹ (rk)−1A0)} = Prob{η 6∈ Qsk
}, sk = 1/rk;

this collection is obtained from the collection {ρk, χ̂k}K
k=1 built at step 2 of the procedure by

discarding the pairs with χ̂k ≥ 1/2. Setting

ρ∗ = max
1≤k≤K̄

rk

σγk
, γk = min

{
γ ≥ 1 : Ψ(γ, χ̂k) ≤ ε

}
, k = 1, ..., K̄

and invoking (57), we see that ρ∗ is a lower bound on ρ∗, provided that χk ≤ χ̂k, 1 ≤ k ≤ K̄,
which happens with probability at least 1− δ.

Note that with straightforward modifications, Gaussian majorization can be used in the
Validation procedure.

7 Numerical illustrations

To illustrate various approximation schemes, we focus on problem (27) and on its safe tractable
approximation given by (29) and the Calibration procedure.
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7.1 The Calibration procedure

We start with illustrating the “standalone” Calibration procedure. Recall that this procedure
is aimed at building “(1− δ)-reliable” lower bound ρ∗ on the quantity

ρ∗ = max

{
ρ : p(ρ) := Prob{−A0 ¹ ρ

d∑

`=1

ζ`A` ¹ A0} ≥ 1− ε

}
, (58)

where A0, A1, ..., Ad are given symmetric n× n matrices such that Arrow(ϑ∗A0, A1, ..., Ad) º 0
for a given ϑ∗ > 0.

The questions we tried to answer in our experiments were as follows:

1. What is the best strategy: to use the plain Calibration procedure (PCP) whenever possible,
or to use the Gaussian majorization version (GCP) of this procedure?

2. As we have seen in Section 5.3, there are situations where lower bounds on ρ∗ can be built
without simulations at all. Are these “100% reliable” lower bounds better than those given
by Calibration procedure?

3. How conservative is the Calibration procedure from practical perspective?

The answers to these questions suggested by our rather intensive numerical experimentation are
as follows:

• The Calibration procedure significantly outperforms the simulation-free lower bounding;

• For small ε, GCP significantly outperforms PCP, while for “large” ε the situation is re-
versed. Therefore it makes sense to use both versions, choosing the best (the largest) of
the resulting lower bounds on ρ∗;

• Conservatism of the Calibration procedure is not too bad: the ratio ρ∗/ρ∗ is usually well
within one order of magnitude.

These observations are illustrated in Table 1 reporting on an experiment as follows. We randomly
generate d = 32 matrices A1, ..., Ad of size 32× 32 and of prescribed structure, specifically, full

(“general case”), diagonal (“diagonal case”) and of the form

[
fT

f

]
, f being a vector (“arrow

case”), and scale the generated matrices to ensure that Arrow(θI32, A1, ..., Ad) º 0 if and only
if θ ≥ 1; the input to the Calibration procedure is the collection A0 = I32, A1, ..., A32, ϑ∗ = 1.

Data in Table 1 correspond to 100,000-element training sample. Note that while the perfor-
mance of Calibration procedure somehow improves when the sample size grows (see Table 2),
this phenomenon is rather moderate.

7.2 Illustration: chance constrained Truss Topology Design

Truss is a mechanical construction comprised of thin elastic bars linked with each other at nodes.
In the simplest Truss Topology Design (TTD) problem, one is given a finite 2D or 3D nodal set,
a list of allowed pair connections of nodes by bars, and an external load – a collection of forces
acting at the nodes, and the goal is to assign the tentative bars weights, summing up to a given
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case
general diagonal arrow

ε P ρ∗ ε̂ ρ∗/ρ∗ ρ∗ ε̂ ρ∗/ρ∗ ρ∗ ε̂ ρ∗/ρ∗

G 1.67e-2 5.6e-3 1.1
4.04e-2
[2.77e-2]

3.3e-3 1.1
2.20e-2
[1.52e-3]

8.2e-3 1.1

1.e-2 U
2.05e-2

(3.17e-2)
0.0

7.45e-3
1.6
1.05

5.06e-2
(7.12e-2)
[9.75e-3]

1.0e-5
2.5e-3
0.0

1.7
1.2
8.8

2.75e-2
(3.43e-2)
[2.78e-3]

0.0
1.2e-4
0.0

1.5
1.2
14.8

B
1.09e-2

(1.94e-2)
0.0

3.3e-3
1.9
1.1

2.55e-2
(3.92e-2)
[9.75e-3]

0.0
8.5e-4
0.0

2.0
1.3
5.2

1.41e-2
(2.12e-2)
[2.43e-3]

0.0
1.0e-5
0.0

1.8
1.2
10.5

G 1.12e-2 0.0 1.3
2.54e-2
[1.99e-2]

0.0 1.4
1.42e-2
[1.08e-3]

0.0 1.3

1.e-4 U
1.43e-2

(2.83e-3)
0.0
0.0

2.1
11.2

3.19e-2
(9.36e-3)
[7.70e-3]

0.0
0.0
0.0

1.8
6.2
7.5

1.78e-2
(2.48e-3)
[2.15e-3]

0.0
0.0
0.0

2.0
14.6
16.8

B
8.63e-3

(2.68e-3)
0.0
0.0

2.1
6.6

1.93e-2
(8.84e-3)
[7.70e-3]

0.0
0.0
0.0

2.0
4.3
4.9

1.08e-2
(2.39e-3)
[1.93e-3]

0.0
0.0
0.0

2.0
8.7
11.2

G 9.17e-3 0.0 1.6
2.08e-2
[8.11e-3]

0.0 1.6
1.16e-2
[8.78e-4]

0.0 1.6

1.e-6 U
1.16e-2

(2.35e-3)
0.0
0.0

2.5
12.3

2.60e-2
(7.79e-3)
[6.62e-3]

0.0
0.0
0.0

2.3
7.7
9.1

1.45e-2
(2.48e-3)
(1.83e-3)

0.0
0.0
0.0

2.2
13.1
17.7

B
7.15e-3

(2.24e-3)
0.0
0.0

2.6
8.3

1.60e-2
(7.44e-3)
[6.62e-3]

0.0
0.0
0.0

2.3
5.0
5.6

8.94e-3
(1.99e-3)
[1.67e-3]

0.0
0.0
0.0

2.4
10.8
12.8

Table 1: Experiments with standalone Calibration procedure, δ = 1.e-6. Column “P”: identi-
cal to each other distributions of ζ1, ..., ζd; ‘G’, ‘U’, ‘B’ stand for N (0, 1), Uniform[−1, 1] and
Uniform{−1; 1}, respectively. Column “ρ∗”: lower bounds on ρ∗ as given by Calibration pro-
cedure with 100,000-element training sample. Data without parentheses: GCP; data in paren-
theses: PCP; data in brackets: simulation-free bounds, see Section 5.3. Column “ε̂”: empirical,
over 100,000-element sample, values of 1−p(ρ∗). Column “ρ∗/ρ∗”: upper bounds on ρ∗/ρ∗ given
by empirical, over 100,000-element sample, estimates of ρ∗.
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ρ∗
ε P N = 1, 000 N = 10, 000 N = 100, 000

G 1.05e-2 1.55e-2 1.67e-2

1.e-2 U
1.32e-2

(3.85e-3)
1.93e-2

(3.12e-2)
2.05e-2

(3.17e-2)

B
7.65e-3

(3.59e-3)
1.02e-2

(1.89e-2)
1.09e-2

(1.94e-2)

G 7.45e-3 9.92e-3 1.12e-2

1.e-4 U
9.35e-3

(2.83e-3)
1.24e-2

(2.82e-3)
1.43e-2

(2.83e-3)

B
5.64e-3

(2.68e-3)
7.53e-3

(2.67e-3)
8.63e-3

(2.68e-3)

G 6.09e-3 8.10e-3 9.17e-3

1.e-6 U
7.63e-3

(2.35e-3)
1.01e-2

(2.35e-3)
1.16e-2

(2.35e-3)

B
4.69e-3

(2.25e-3)
6.24e-3

(2.35e-3)
7.15e-2

(2.24e-3)

Table 2: Performance of Calibration procedure vs. size N of training sample, δ = 1.e-6. Column
“P”: see Table 1. Data without parentheses: GCP; data in parentheses: PCP.

constant, in order to get a truss most rigid w.r.t. the load (for details, see, e.g., [2, Chapter 15]).
Mathematically, the TTD problem can be modelled as the semidefinite program

min
τ,t

{
τ :

[
2τ fT

f
∑n

i=1 tibib
T
i

]
º 0, t ≥ 0,

∑

i

ti = 1

}
, (59)

where τ is (an upper bound on) the compliance – a natural measure of truss’s rigidity (the less
is the compliance, the better), ti are weights of the bars, f represents the external load and bi

are readily given by the geometry of the nodal set. The dimension M of bi’s and f is the total
# of degrees of freedom of the nodes.

The “nominal design” shown on Fig. 1.a) is the optimal solution to a toy TTD problem with
9 × 9 planar nodal grid and the load of interest f comprised of a single force (see Fig. 1.c));
this design uses just 12 of the original 81 nodes and 24 of the original 2,039 bars. In reality,
the truss, of course, will be subject not only to the load of interest, but also to occasional
relatively small loads somehow distributed along the “active” nodes (those actually used by the
construction), and it should withstand these loads. This is by far not the case with the truss
on Fig. 1.a) (“nominal design”) – it can be crushed by a pretty small occasional load. Indeed,
a typical randomly oriented load f̃ acting at the 12 nodes of the nominal design and very small
as compared to the load of interest (‖f̃‖2 ≤ 10−7‖f‖2) results in compliances which are about
10 times larger than the compliance w.r.t. the load of interest – a phenomenon illustrated on
Fig. 1.b). A natural way to “cure” the nominal design is to resolve the TTD problem, explicitly
imposing the requirement that the would-be truss should carry well occasional random loads.
Specifically, we

• replace our original 81-point nodal set with the 12-point set of nodes actually used by
the nominal design (Fig. 1.c)). Note that among these nodes, the two most left ones are
fixed by boundary conditions (“are in the wall”), so that the total number M of degrees
of freedom of this reduced nodal set is 2× 10 = 20;
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• allow for all pair connections of the resulting 12 nodes by tentative bars (except for clearly
redundant bar linking the two fixed nodes and the bars incident to more than 2 nodes);
the resulting 54 tentative bars are shown on Fig. 1.d);

• assume that the occasional loads are random ∼ N (0, ρ2I20), where ρ is an uncertainty level,
and take, as the “corrected” truss, the chance constrained design – the optimal solution
to the following chance constrained semidefinite program:

max
ρ,t

{
ρ :

A(t)︷ ︸︸ ︷[
2τ̂ fT

f
∑54

i=1 tibib
T
i

]
º 0, t ≥ 0,

∑
i ti = 1

Probζ∼N (0,I20){
[

2τ̂ ρζT

ρζ
∑54

i=1 tibib
T
i

]

︸ ︷︷ ︸
A0[t]+ρ

∑M

`=1
ζ`A`[t]

º 0} ≥ 1− ε

}
, (60)

where τ̂ is slightly greater than the optimal value τ∗ in the original TTD problem (in our
experiment, we set τ̂ = 1.025τ∗). In other words, we are now looking for truss for which
the compliance w.r.t. the load of interest is nearly optimal – is at most τ̂ , and which
is capable to withstand equally well “nearly all” (up to probability ε) random occasional
loads of the form ρζ, ζ ∼ N (0, I20); under these restrictions, we intend to maximize ρ, i.e.,
to maximize (the (1 − ε)-quantile of) the rigidity of the truss w.r.t. occasional loads (cf.
(27)). Note that the Robust Optimization version of the outlined strategy was proposed
and discussed in full details in [1].

Implementing the outlined strategy, we built and solved the safe tractable approximation

min
ϑ,t

{
ϑ :

A(t) º 0, t ≥ 0,
∑

i ti = 1
Arrow(ϑA0[t],A1[t], ...,AM [t]) º 0

}
(61)

(cf. (28)) of the chance constrained TTD problem (60). After a feasible solution t∗ to the
approximation is found, we used the Calibration procedure to build a (1 − δ)-reliable lower
bound ρ∗ on the largest ρ = ρ∗(t∗) such that (t∗, ρ) is feasible for (60). In our experiment, we
worked with very high reliability requirements: ε = δ = 1.e-10. The results are presented in
Table 3 and are illustrated on Fig. 1. Note that we are in the arrow case, so that we can build
a simulation-free lower bound on ρ∗(t∗), see Section 5.3. With our data, this load is 4.01e-3
– nearly 10 times worse than the best simulation-based extremely reliable (δ = 1.e-10) bound
presented in Table 3.

Comparison with the Scenario approximation. We have used the TTD example to com-
pare our approximation scheme with the Scenario one (see Introduction); the latter, to the best
of our knowledge, is the only existing alternative for processing chance constrained LMIs. The
Scenario approximation of the chance constrained problem of interest (60) is the semidefinite
program

max
ρ,t

{
ρ :

[
2τ̂ fT

f
∑54

i=1 tibib
T
i

]
º 0, t ≥ 0,

∑
i ti = 1

[
2τ̂ ρ[ζj ]T

ρζj ∑54
i=1 tibib

T
i

]
º 0, 1 ≤ j ≤ J

}
, (62)
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(a): Nominal design,
12 nodes, 24 bars.

(b): Magenta: positions of nodes in
deformated nominal design, sample
of 100 loads ∼ N (0, 10−16I20)

f f

(c): 12-node set with mostleft
nodes fixed and the load of
interest. M = 20 degrees of
freedom.

(d): 54 tentative bars

(e): Chance constrained design,
12 nodes, 33 bars

(f): Magenta: positions of nodes
in deformated chance constrained
design, sample of 100 loads
∼ N (0, 10−2I20)

Figure 1: Nominal and chance constrained designs.
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N = 1, 000 N = 10, 000 N = 100, 000
ρ∗ 2.77e-2 3.37e-2 3.77e-2

ρ∗(t∗)/ρ∗ ≤ 2.5 2.0 1.8

Table 3: Lower bounds for ρ∗(t∗) in the chance constrained TTD problem vs. the size N of
training sample, ε = δ = 1.e-10.

where ζ1, ..., ζJ is a sample drawn from N (0, I20); the sample size J is given by (5) where one
should set m = dim t + dim ρ = 55. Needless to say, the Scenario approximation with the
above ε = δ = 1.e−10 requires a completely unrealistic sample size, this is why we ran the
Scenario approximation with ε = 0.01, δ = 0.001. While these levels of unreliability are by far
too dangerous for actual truss design, they are acceptable in our current comparison context.
With the outlined ε, δ, the sample size J as given by (5) is 42,701, and the optimal value in
(62) turned out to be ρSA = 0.0797. For comparison, our approximation with ε = 0.01 and
δ = 0.001 results in ρ∗ = 0.105 ≈ 1.31ρSA; keeping ε = 0.01 and reducing δ to 1.e-6, we still
get ρ∗ = 0.103 ≈ 1.29ρSA. Note that the design given by (61) also seems to be better than the
one given by (62): at uncertainty level ρ = 0.105, the empirical, over 100,000-element sample of
random occasional loads, probabilities for the two designs in question to yield a compliance worse
than the desired upper bound τ̂ were 0.0077 and 0.0097, respectively. Thus, in the experiment
we are reporting our approximation scheme is a clear winner.

8 Appendix: proofs of equivalence in Definition 6.1 and of
Proposition 6.1

Equivalence in Definition 6.1. We should prove that if p(s), q(s) are nonincreasing on
R+ and such that

∫
R+ p(s)ds =

∫
R+

q(s)ds, and M is the family of all bounded nondecreasing
functions on R+, then

{
∀f ∈M :

∫
f(s)p(s)ds ≤

∫
f(s)q(s)ds

}
⇔

{
∀t ≥ 0 :

∫ ∞

t
p(s)ds ≤

∫ ∞

t
q(s)ds

}
. (63)

By standard continuity arguments, the left condition in (63) is equivalent to the similar condition
with M replaced with the space CM of all continuously differentiable bounded nondecreasing
functions on R+.

Setting P (s) =
∫∞
s p(r)dr, Q(s) =

∫∞
s q(r)dr, for every f ∈ CM we have

I[f ] :=
∫∞
0 f(s)[q(s)− p(s)]ds = − ∫∞

0 f(s)dQ(s) +
∫∞
0 f(s)dP (s)

= f(0)[Q(0)− P (0)] +
∫∞
0 f ′(s)[Q(s)− P (s)]ds =

∫∞
0 f ′(s)[Q(s)− P (s)]ds.

We see that I[f ] ≥ 0 for every continuously differentiable nondecreasing and bounded f if and
only if

∫∞
0 g(s)[Q(s)− P (s)]ds ≥ 0 for every nonnegative summable function g(·) on R+; since

P (·), Q(·) are continuous, the latter is the case if and only if Q(s) ≥ P (s) for all s ≥ 0. 2

Proof of Proposition 6.1. Relations (i) – (iv) are evident in view of the equivalence men-
tioned in Definition 6.1.
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(v): Relation ξ ºm η clearly implies that λξ ºm λη for every deterministic λ. In view of
this fact, in order to prove (v) it suffices to prove that if the densities p, p̂, q, q̂ belong to SU and
p ¹m q, p̂ ¹m q̂, then p ∗ p̂ and q ∗ q̂ belong to SU and p ∗ p̂ ¹m q ∗ q̂.

10 Let us verify that p∗p̂ ∈ SU . We should prove that the density (p∗p̂)(s) =
∫

p(s−r)p̂(r)dr
is even (which is evident) and is nonincreasing on R+. By standard approximation arguments,
it suffices to verify the latter fact when the probability densities p, p̂, in addition to being even
and nonincreasing on R+, are smooth. In this case we have

(p ∗ p̂)′(s) =
∫

p′(s− r)p̂(r)dr =
∫

p(s− r)p̂′(r)dr =
∫ 0

−∞
(p(s− r)− p(s + r))p̂′(r)dr. (64)

Let s ≥ 0. Then for t ≤ 0 we have |s|+|t| = |s−t| ≥ |s+t|; and since p is even and nonincreasing
on R+, we conclude that p(s− t) = p(|s− t|) ≤ p(|s+ t|) = p(s+ t), so that p(s− t)−p(s+ t) ≤ 0
when s ≥ 0, t ≤ 0. Since, in addition, p̂′(t) ≥ 0 when t ≤ 0, the concluding quantity in (64) is
nonpositive, meaning that the density p ∗ p̂ is even and is nonincreasing on R+.

20. Now let us verify that if M∗ is the family of all even bounded and continuously differen-
tiable functions on R which are nondecreasing on R+, then f+ = p∗f ∈M∗ whenever f ∈M∗.
The only nontrivial claim is that f+ is nondecreasing on R+, and when verifying it, same as
in 10, we can assume that p is not only even and nonincreasing on R+, but is also smooth.
In this case we have f ′+(s) =

∫
f(s − r)p′(r)dr =

∫ 0
−∞(f(s − t) − f(s + t))p′(t)dt. Assuming

s ≥ 0, t ≤ 0 and taking into account that f is even and is nondecreasing on R+, we have
f(s− t) = f(|s− t|) = f(|s|+ |t|) ≥ f(|s+ t|) = f(s+ t); since p′(t) ≥ 0 when t ≤ 0, we conclude
that

∫ 0
−∞(f(s− t)− f(s + t))p′(t)dt ≥ 0 when s ≥ 0.

30. Now we can conclude the proof of (v). We already know from 10 that the convolutions
of every two of the four densities p, p̂, q, q̂ belong to SU . All we should prove is that when
p(·) ¹m q(·) and p̂(·) ¹m q̂(·), then (p ∗ p̂)(·) ¹m (q ∗ q̂)(·).
30.a) Let us first verify that (p ∗ p̂)(·) ¹m (p ∗ q̂)(·), that is,

∫
f(s)(p ∗ p̂)(s)ds ≤

∫
f(s)(p ∗ q̂)(s)ds (65)

for every even bounded function f which is nondecreasing on R+. By evident continuity reasons,
it suffices to verify that (65) holds true for every f ∈ M∗. Taking into account that p is even,
we get ∫

f(s)(p ∗ p̂)(s)ds =
∫

f(s)p(s− t)p̂(t)dsdt =
∫

(f ∗ p)(t)p̂(t)dt

and by similar reasons ∫
f(s)(p ∗ q̂)(s)ds =

∫
(f ∗ p)(t)q̂(t)dt

As we know from 20, f ∗ p ∈ M∗ whenever f ∈ M∗, and (65) follows from the fact that
p̂(·) ¹m q̂(·).
30.b) The result of 30.a) states that p ∗ p̂ ¹m p ∗ q̂. By the same result, but with swapped roles
of the plain and the ̂ components, we further have p ∗ q̂ ¹m q ∗ q̂. As we know from (i), ¹m is
a partial order, so that p ∗ p̂ ¹m p ∗ q̂ and p ∗ q̂ ¹m q ∗ q̂ imply the desired relation p ∗ p̂ ¹m q ∗ q̂.
(v) is proved.

(vi): To prove that ξ ¹m ζ, observe that since ξ ∈ SU and ξ is supported on [−1, 1], the
density of ξ clearly is the weak limit of convex combinations of densities of uniform distributions
on segments of the form [−a, a] with a ≤ 1. Every one of these uniform distributions is ¹m the
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distribution of ζ by (iii), so that their convex combinations are ¹m the distribution of ζ by (ii).
Applying (iv), we conclude that ξ ¹m ζ.

To prove that ζ ¹m η, let p(·) and q(·) be the respective densities (both of them belong
to SU), and let P̃ (t) =

∫ t
0 p(s)ds = 1

2 min[t, 1], Q̃(t) =
∫ t
0 q(s)ds; this function is concave in

t ≥ 0 since q(·) is nonincreasing on R+. To prove that ζ ¹s η is the same as to verify that
P̃ (t) ≥ Q̃(t) for all t ≥ 0. This is indeed the case when 0 ≤ t ≤ 1, since Q̃(0) = 1/2, Q̃′(0) = 1/2
and Q̃ is concave on R+, while P̃ (t) = 1

2 t = Q̃(0) + tQ̃′(0) when 0 ≤ t ≤ 1. And of course
P̃ (t) = 1/2 ≥ Q̃(t) when t ≥ 1. (vi) is proved.

(vii): 10. Observe, first, that whenever p(·) ∈ SU , then there exists a sequence {pt(·) ∈
SU}∞t=1 such that

(a) every pt(·) is a convex combination of densities of uniform symmetric w.r.t. 0 distribu-
tions;

(b) pt → p as t →∞ in the sense that
∫

f(s)pt(s)ds →
∫

f(s)p(s)ds as t →∞

for every bounded piecewise continuous function f on the axis.
20. We have the following

Lemma 8.1 Let Q ⊂ Rd be a nonempty convex compact set symmetric w.r.t. the origin, and
let p1(·), ..., pd(·), q(·) ∈ SU be such that p1(·),...,pL−1(·) are densities of uniform distributions
and pd(·) ¹m q(·). Then

∫

Q
p1(x1)p2(x2)...pd−1(xd−1)pd(xd)dx ≥

∫

Q
p1(x1)p2(x2)...pd−1(xd−1)q(xd)dx. (66)

Proof. Let Σ`, 1 ≤ ` < d, be the support of the density p`, so that Σ` is a segment on the axis
symmetric w.r.t. 0. Let us set Σ = Σ1 × ... × Σd−1 × R, Q̂ = Q ∩ Σ, so that Q̂ is a convex
compact set symmetric w.r.t. the origin, and let

f(s) = mesd−1{x ∈ Q̂ : xd = s}.

The function f(s) is even; denoting by ∆ the projection of Q̂ onto the xd-axis and applying the
Symmeterization Principle of Brunn-Minkowski, we conclude that f1/(d−1)(s) is concave, even
and continuous on ∆, whence, of course, f1/(d−1)(s) is nonincreasing in ∆ ∩R+. We see that
the function f(s) is even, bounded and nonnegative and is nonincreasing on R+, whence

∫
f(s)pd(s)ds ≥

∫
f(s)q(s)ds (67)

due to pd(·) ¹m q(·). It remains to note that the left and the right hand sides in (66) are
proportional, with a common positive coefficient, to the respective sides in (67). 2

30. Now we can complete the proof of (vii). Clearly, all we need is to show that if
p1(·), ..., pd(·), qd(·) ∈ SU and pd(·) ¹m qd(·), then

∫

Q
p1(x1)p2(x2)...pd−1(xd−1)pd(xd)dx ≥

∫

Q
p1(x1)p2(x2)...pd−1(xd−1)qd(xd)dx.
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By continuity argument and in view of 10, it suffices to verify the same relation when
p1(·),...,pd−1(·) are convex combinations of densities of uniform and symmetric w.r.t. the origin
distributions. Since both sides in our target inequality are linear in every one of p1, ..., pd−1,
to prove the latter fact is the same as to prove it when every one of p1, ..., pd−1 is a uniform
distribution symmetric w.r.t. the origin. In the latter case, the required statement is given by
Lemma 8.1. 2
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