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DATA UNCERTAINTY IN OPTIMIZATION

♣ Consider a generic optimization problem of the form

min
x
{f(x, ζ) : F (x, ζ) ≤ 0}

x ∈ Rn: decision vector ζ ∈ RM : data

♠ More often than not the data ζ is uncertain – not known

exactly when problem is to be solved.

Sources of data uncertainty:

• part of the data is measured/estimated ⇒ estimation errors

• part of the data (e.g., future demands/prices) does not exist

when problem is solved ⇒ prediction errors



• some components of a solution cannot be implemented exactly

as computed⇒ implementation errors which in many models can

be mimicked by appropriate data uncertainty



♠ With traditional modelling methodology,

• “small” data uncertainty is just ignored and the problem is

solved for “nominal” values of the data ⇒ nominal optimal so-

lution.

Fact: In many situations, small data perturbations can

make the nominal optimal solution severely infeasible and/or

“highly expensive” in terms of the objective, and thus

practically meaningless.

Example: NETLIB Case Study.

• We substitute into LP problems from NETLIB

Library their optimal solutions as found by CPLEX



6.0 and then perturb at random “ugly coefficients”

of inequality constraints, like -1.353783, by small

margin in order to find out how the nominal solu-

tion can withstand data perturbations.

• With 0.01% perturbations, in 19 of totally ≈ 100

NETLIB problems the nominal solution violated

some of the perturbed constraints by 50% or more.



♠ With traditional modelling methodology,

• “large” data uncertainty is modelled in a stochastic fashion
and then processed via Stochastic Programming techniques

Fact: In many cases, it is difficult to specify reliably the
distribution of uncertain data and/or to process the re-
sulting Stochastic Programming program.

♠ The ultimate goal of Robust Optimization is to take into
account data uncertainty already at the modelling stage in order
to “immunize” solutions against uncertainty.

• In contrast to Stochastic Programming, Robust Optimiza-
tion does not assume stochastic nature of the uncertain data
(although can utilize, to some extent, this nature, if any).



“NON-ADJUSTABLE” ROBUST OPTIMIZATION:
Robust Counterpart of Uncertain Problem

min
x
{f(x, ζ) : F (x, ζ) ≤ 0} (U)

♣ The initial (“Non-Adjustable”) Robust Optimization paradigm
(Soyster ’73, B-T&N ’97–, El Ghaoui et al. ’97–, Bertsimas et
al. ’03–,...) is based on the following tacitly accepted assump-
tions:

A.1. All decision variables in (U) represent “here and now” de-
cisions which should get specific numerical values as a result of
solving the problem and before the actual data “reveals itself”.



A.2. The uncertain data are “unknown but bounded”: one can

specify an appropriate (typically, bounded) uncertainty set U ⊂
RM of possible values of the data. The decision maker is fully

responsible for consequences of the decisions to be made when,

and only when, the actual data is within this set.

A.3. The constraints in (U) are “hard” – we cannot tolerate

violations of constraints, even small ones, when the data is in U.



min
x
{f(x, ζ) : F (x, ζ) ≤ 0}

ζ ∈ U
(U)

♠ Conclusions:

• The only meaningful candidate solutions are the robust ones

– those which remain feasible whatever be a realization of the

data from the uncertainty set:

x robust feasible ⇔ F (x, ζ) ≤ 0 ∀ζ ∈ U

• “Robust optimal” solution to be used is a robust solution with

the smallest possible guaranteed value of the objective, that is,



the optimal solution of the optimization problem

min
x,t
{t : f(x, ζ) ≤ t, F (x, ζ) ≤ 0 ∀ζ ∈ U} (RC)

called the Robust Counterpart of (U).



(U) : min
x
{f(x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U

⇓
(RC) : min

x,t
{t : f(x, ζ) ≤ t, F (x, ζ) ≤ 0 ∀ζ ∈ U}

Note: (RC) is a semi-infinite problem and as such can be diffi-

cult even when all instances of (U) are nice convex programs.

However:

♣ There are generic cases (most notably, uncertain Linear

Programming problems with computationally tractable

uncertainty sets) when (RC) is computationally tractable.



♣ What can we gain? – In our NETLIB Case Study, applying

the Robust Counterpart methodology to “immunize” solutions

against 0.1% data uncertainty, we always succeeded, and the

price of robustness, in terms of the objective, was never greater

than 1%.



ADDING ADJUSTABILITY:

Affinely Adjustable Robust Counterpart

• “A.1. All decision variables in uncertain problem represent

“here and now” decisions”...

♣ Assumption A.1 is not satisfied in many applications:

• In Dynamical Decision Making, some of xi can represent “wait

and see” decisions to be made when the uncertain data become

(partially) known and thus can be allowed to depend on (part

of) the uncertain data.



Example: In an inventory affected by uncertain demand,

orders of day t can depend on actual demands in days

1, ..., t− 1.

• Some of xi can be “analysis variables” not representing deci-

sions at all and thus can be allowed to depend on the uncertain

data.

Example: When converting a convex constraint
∑
i
|aTi x−

bi| ≤ 1 with uncertain data ai, bi into the Linear Program-

ming form

−yi ≤ aTi x− bi ≤ yi,
∑
i

yi ≤ 1



the “certificates” yi can be allowed to depend on the

actual data.



min
x
{f(x, ζ) : F (x, ζ) ≤ 0} (U)

♠ A natural way to relax Assumption A.1 is

— to allow for every decision variable xj to depend on a pre-

scribed portion of the uncertain data:

xj = Xj(Pjζ)[
Pj : given matrices

]

— to seek for the decision rules {Xj(·)} which are robust feasible

and optimize the guaranteed value of the objective. The result-

ing Adjustable Robust Counterpart of the uncertain problem is



the infinite-dimensional optimization program

min
{Xj(·)}nj=1,t

{
t :

f(X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t
F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0

}
∀ζ ∈ U

}
(ARC)



min
x
{f(x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U (U)

min
x,t

{
t :

f(x, ζ) ≤ t
F (x, ζ) ≤ 0

}
∀ζ ∈ U

}
(RC)

min
{Xi(·)}ni=1,t

{
t :

f(X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t
F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0

}
∀ζ ∈ U

}
(ARC)

♠ (ARC) becomes (RC) in the trivial case when Pi = 0, i =

1, ...,m and in the case of uncertain LP with constraint-wise un-

certainty:

min
x

{
cT
ζ0x : aT

i,ζi
x ≤ bi,ζi, i = 1, ...,m, Ax ≤ b

}
, ζi ∈ Ui, i = 0, ...,m

(U)



• all cζ0, ai,ζi, bi,ζi are affine in ζ, • all Ui are convex

compact sets,

• the set {x : Ax ≤ b} is bounded.

♠ In general, (ARC) is essentially less conservative than (RC)

♣ Major drawback of (ARC): severe computational intractability

already in the case of uncertain general-type LP’s.

Seemingly the only way to process ARC is Dynamic Programming

⇒ severe limitations on problem’s structure and sizes.



min
x
{f(x, ζ) : F (x, ζ) ≤ 0} , ζ ∈ U (U)

⇓

min
{Xj(·)}nj=1,t

{
t :

f(X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ t
F (X1(P1ζ), ..., Xn(Pnζ), ζ) ≤ 0

}
∀ζ ∈ U

}
(ARC)

♣ How to cope with computational intractability of (ARC):

• Let us restrict Xj(·) to be simple – just affine:

Xj(Pjζ) = ξj + ηTj Pjζ (Aff)

•With decision rules (Aff), the infinite-dimensional prob-

lem (ARC) becomes the Affinely Adjustable Robust Coun-



terpart of (U) – the semi-infinite problem

min
{ξj,ηj}nj=1,t

{
t :

f(ξ1 + η1
TP1ζ, ..., ξn + ηnTPnζ, ζ) ≤ t

F (ξ1 + η1
TP1ζ, ..., ξn + ηnTPnζ, ζ) ≤ 0

}
∀ζ ∈ U

}
(AARC)

[A.B-T, A. Goryashko, E. Gustlizer, A.N ’03]



♣ Uncertain problems with convex inclusion constraints are of the

form

min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ∈ Q

}
(U)

where

• (c[ζ], A[ζ], b[ζ]) are affinely parameterized by the data vector ζ

• Q is a given closed convex set (common for all instances of

the uncertain problem)

Examples: Uncertain Linear/Conic Quadratic/Semidefinite pro-

grams.

♣ For uncertain problem with convex inclusion constraints the



Affinely Adjustable Robust Counterpart is the semi-infinite con-

vex program

min
χ=({ξj,ηj}nj=1,t)

{t : A[χ, ζ] ≡


t−

n∑
j=1

cj[ζ] ·
[
ξj + ηj

TPjζ
]

n∑
j=1

[
ξj + ηj

TPjζ
]
·Aj[ζ]− b[ζ]

 ∈ R+ ×Q︸ ︷︷ ︸
Q+

∀ζ ∈ U}

(AARC)

♠ Definition: (U) has fixed recourse, if for every j such that xj
is adjustable (that is, Pj 6= 0), both cj[ζ] and Aj[ζ] are certain –

independent of ζ.

⇒ The mapping A[χ, ζ] is bi-affine in χ, ζ.



min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ∈ Q

}
(U)

⇓
min

χ=({ξj,ηj}nj=1,t)

{
eTχ : A[χ, ζ] ∈ Q+ ∀ζ ∈ U

}
(AARC)

Proposition. Assume that

A. Q = RN
+,

and

B. (U) has fixed recourse.

Then (AARC) is computationally tractable whenever U is so. In
particular, when U is a polyhedral set given as

U = {ζ : ∃ν : Pζ +Qν + r ≥ 0} ,



then (AARC) is equivalent to an explicit LP program which can

be obtained in polynomial time from the data specifying A[·, ·],
Q and U.

Remark I. Preserving assumption B and assuming that U is an

ellipsoid, one can relax assumption A by allowing Q to be a direct

product of Second Order cones.



Remark II. Preserving assumption A and removing assumption
B, one still has a “tight approximation” result:

Proposition. Let Q = RN
+, let U be the intersection of L ellipsoids

centered at the origin:

U = U(ρ) =
{
ζ : ζTQ`ζ ≤ ρ2, ` = 1, ..., L

}
[Q` � 0,

∑
`

Q` � 0]

and let

OptAARC(ρ) = min
χ

{
eTχ : A[χ, ζ] ∈ Q+ ∀ζ ∈ U(ρ)

}
.

Then for an explicit semidefinite program (SDP[ρ]) readily given
by A[·, ·] and {Q`}L`=1 it holds:

(i) every feasible solution to (SDP[ρ]) is feasible for (AARC[ρ])
as well;



(ii) OptAARC(ρ) ≤ Opt(SDP[ρ]) ≤ OptAARC(ϑρ) with

ϑ ≤ O(1) ln(L).



♣ Example: Flexible Supplier-Retailer contracts via AARC [A.B-

T,

B. Golany, A.N., J.-Ph. Vial ’05]

• The story: A single-product inventory affected by un-

certain demand should be run over the period of T months.

At the very beginning, inventory management commits

itself for certain monthly replenishment orders. These or-

ders should not be followed exactly, but there are penal-

ties for deviations of actual orders from the commit-

ments.

• The goal: To specify commitments (non-adjustable vari-

ables) and actual replenishment orders (adjustable vari-

ables allowed to depend on past demands) in order to



minimize the overall inventory management cost which

includes:

• cost of replenishment,

• holding cost,

• penalties for backlogged demands,

• penalties for deviations of actual orders from com-

mitments



♠ With no uncertainty in the demands, the Commitments prob-

lem is just an LP program. Assuming the demand uncertain, it

becomes an uncertain LP program with fixed recourse

⇒ the Affinely Adjustable RC is computationally tractable, pro-

vided that the uncertainty set is so.

• The Adjustable RC asks to minimize the worst case, over all

demand trajectories from a given uncertainty set, inventory man-

agement cost over commitments and decision rules specifying the

actual replenishment orders as functions of past demands.

• The Affinely Adjustable RC asks to minimize the same objec-

tive over commitments and decision rules specifying the actual

replenishment orders as affine functions of the past demands.



♠ In contrast to ARC, which suffers from “curse of dimension-

ality”, AARC is just an explicit LP program with polynomial in

T number of variables and constraints, provided that the uncer-

tainty set is polyhedral.

Computational tractability of AARC is preserved when adding

new linear constraints, e.g., when forbidding backlogged demand,

adding bounds on instant and cumulative orders, etc.



♠ In the Commitments problem, AARC demonstrates remarkably

nice behaviour. In particular,

• among ≈ 300 different data sets with T = 12, we found

just 4 where the optimal value of ARC (still available

when T = 12) was better than the one of AARC, and

the difference was less than 4%;

• the AARC results in guaranteed management costs

which can be by as much as 30% less than those yielded

by RC.



Uncertainty Opt(ARC) Opt(AARC) Opt(RC)
%%

10 13531.8 13531.8(+0.0%) 15033.4(+11.1%)
20 15063.5 15063.5(+0.0%) 18066.7(+19.9%)
30 16595.3 16595.3(+0.0%) 21100.0(+27.1%)
40 18127.0 18127.0(+0.0%) 24300.0(+34.1%)
50 19658.7 19658.7(+0.0%) 27500.0(+39.9%)
60 21190.5 21190.5(+0.0%) 30700.0(+44.9%)
70 22722.2 22722.2(+0.0%) 33960.0(+49.5%)



CONTROLLING CONSTRAINT VIOLATIONS

OUTSIDE OF UNCERTAINTY SET:

Comprehensive Robust Counterpart

• “A.2. ... The decision maker is fully responsible for conse-

quences of the decisions to be made when, and only when, the

actual data is within a given bounded uncertainty set.”

♣ In some applications, Assumption A.2 is too restrictive.

Example: Consider building a communication network with

uncertain information traffic demands. On special rare

occasions, these demands may become unusually high.



• including “large deviations” of the demand in the un-

certainty set could be too expensive...

• just ignoring “large deviations” could be too irrespon-

sible...

♠ With “large deviations” in the data, it is natural to ensure

• required performance when uncertain data vary in their “normal

range” – a not too large uncertainty set U;

• controlled deterioration of performance when the uncertain

data are outside of the uncertainty set.



♣ A natural way to relax Assumption A.2 is as follows.

♠ Consider an uncertain problem with convex inclusion con-
straints

min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ∈ Q

}
(U)

♠ Assume that the set Z of all “physically possible” values of ζ
is of the form

Z = U + L
↑ ↑

convex compact closed convex cone
where U is the “normal range” of ζ.

♠ Let us say that affine decision rules

x = X(ξ, η; ζ) := (ξ1 + ηT1P1ζ, ..., ξn + ηTnPnζ)T



• form a robust feasible solution to (U) with global sensitivity α,

if

∀(ζ ∈ Z) : dist(A[ζ]X(ξ, η; ζ)−b[ζ],Q) ≤ αdist(ζ,U|L) ≡ min
u∈U ,`∈L
u+`=ζ

‖`‖.

• has robust objective value t ∈ R with global sensitivity α0, if

cT [ζ]X(ξ, η; ζ) ≤ t+ α0 dist(ζ,U|L)



min
x

{
cT [ζ]x : A[ζ]x− b[ζ] ∈ Q

}
(U)

♣ The Comprehensive Robust Counterpart of (U) [A.B-T,S. Boyd,A.N.

’05] is the problem

min
{ξj,ηj},t

t :
cT [ζ]X(ξ, η; ζ)− t ≤ α0 dist(ζ,U|L)

dist(A[ζ]X(ξ, η; ζ)− b[ζ],Q) ≤ αdist(ζ,U|L)

 ∀ζ ∈ Z = U + L


[
X(ξ, η; ζ) = (ξ1 + ηT1P1ζ, ..., ξn + ηTnPnζ)T

]
(CRC)

of minimizing, given the global sensitivities α0, α, the robust

objective value over robust feasible affine decision rules.

♠ Note:



• when ({ξj, ηj}, t) is feasible for (CRC) and ζ ∈ U, the

decisions xj = ξj + ηTj Pjζ satisfy the constraints in (U)

and make the value of the objective ≤ t
• With L = {0}, (CRC) recovers the Affinely Adjustable

Robust Counterpart of (U). If, in addition, Pj = 0 for all

j, (CRC) recovers the Robust Counterpart of (U)



• Extensions of CRC:

• In may cases, ζ and the constraints in (U) are “struc-

tured”:

D[ζ]x− b[ζ] ∈ Q ⇔ Di[ζ]x− bi[ζ] ∈ Qi, i = 1, ...,m

Z =
{
ζ = (ζ1, ..., ζk) : ζs ∈ Us + Ls, s = 1, ..., k

}
In these cases, it makes sense to use “structured” Com-



prehensive Robust Counterpart

min
{ξj,ηj},t


t :

cT [ζ]X(ξ, η; ζ)− t ≤
k∑

s=1
α0s dist(ζs,Us|Ls)

dist(Di[ζ]X(ξ, η; ζ)− bi[ζ],Qi) ≤
∑
s
αis dist(ζs,Us|Ls)

i = 1, ...,m
∀ζ ∈ Z = U + L




[
X(ξ, η; ζ) = (ξ1 + ηT1P1ζ, ..., ξn + ηTnPnζ)T

]
(SCRC)

• We can add more flexibility to (SCRC) by

— specifying different norms in different dist terms;
— treating αis as variables rather than given con-
stants, replacing the objective t with a function of
t and αis and adding constraints on αis.



♣ Computational tractability of (CRC)
♠ Assumptions:

• Qi are closed convex sets, Us are convex compacts, Ls
are closed convex cones;
• (U) has fixed recourse.

Under these assumptions, Comprehensive Robust Counterpart is
of the form

min
α∈Λ,χ

φ(χ, α)

s.t.

dist‖·‖i

(
Di0[χ] +

k∑
s=1

Dis[χ]ζs,Qi

)
≤

k∑
s=1

αis dist‖·‖is (ζs,Us|Ls)

∀i = 0,1, ...,m∀ (ζs ∈ Us + Ls, s = 1, ..., k)
(CRC)



with affine in χ vectors/matrices Dis[·].
♠ Observation: (CRC) is equivalent to the semi-infinite problem

min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0,1, ...,m∀ (ζs ∈ Us, s = 1, ..., k)

dist‖·‖i (Dis[χ]ζs,RQi) ≤ αis‖ζs‖is ∀i = 0,1, ...,m∀ (ζs ∈ Ls, s = 1, ..., k)

where RQi is the recessive cone of Qi.



min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0,1, ...,m∀ (ζs ∈ Us, s = 1, ..., k) (a)

dist‖·‖i (Dis[χ]ζs,RQi) ≤ αis‖ζs‖is ∀i = 0,1, ...,m∀ (ζs ∈ Ls, s = 1, ..., k) (b)

(CRC)
Theorem. Assume that we are in polyhedral case:
(1) all Qi are polyhedral sets given as Qi = {y : Qiy ≥ qi},
(2) Qi and ‖ · ‖i are such that dist‖·‖i(y,RQi) = max

1≤ν≤Ni
αTiνy for

given αiν,
(3) all Ls, s = 1, ..., k, are polyhedral cones given as Ls = {ζs :
∃us : Lsζs ≥ Rsus},
(4) all Us are polyhedral sets given as Us = {ζs : ∃vs : Usζs + Vsvs ≥ ws},
(5) unit balls of all norms ‖ · ‖is are given as {ζs : ∃uis : Sisζ

s +
Tisu

is ≥ ris}.



Then the system of semi-infinite constraints (a), (b) in (CRC)

is equivalent to an explicit finite system S of linear inequalities

in χ, α and additional variables, and S can be built in polynomial

time from the data of the above representations of Qi, Li, Ui,
dist‖·‖i(·,RQi), ‖ · ‖is.

Conditions (1) – (2) for sure take place when Qi are one-dimensional,

that is, the original problem (U) is an uncertain Linear Program-

ming program with fixed recourse.



min
α∈Λ,χ

φ(χ, α)

s.t. Di0[χ] +
k∑

s=1
Dis[χ]ζs ∈ Qi ∀i = 0,1, ...,m∀ (ζs ∈ Us, s = 1, ..., k)

dist‖·‖i (Dis[χ]ζs,RQi) ≤ αis‖ζs‖is ∀i = 0,1, ...,m∀ (ζs ∈ Ls, s = 1, ..., k)

Remark: Under assumptions

(1) all Qi are polyhedral sets given as Qi = {y : Qiy ≥ qi},
(2) Qi and ‖ · ‖i are such that dist‖·‖i(y

i,RQi) = max
1≤ν≤Ni

αTiνy for

given αiν,

the Comprehensive Robust Counterpart is efficiently solvable

whenever Us, Ls and Λ are computationally tractable, and the

norms ‖ · ‖is and the objective φ(·, ·) are efficiently computable,

and Λ, φ(·) are convex.



♣ Generic application: Affine control of uncertainty-affected Lin-
ear Dynamical Systems.
♠ Consider Linear Time-Varying Dynamical system

xt+1 = Atxt +Btut +Rtdt
yt = Ctxt
x0 = z

(S)

• xt: state; • ut: control • yt: output;
• dt: uncertain input; • z: initial state

to be controlled over finite time horizon t = 0,1, ..., T .
♠ Assume that a “desired behaviour” of the system is given by
a system of convex inclusions

Diw − bi ∈ Qi, i = 1, ...,m



on the state-control trajectory

w = (x0, x1, ..., xT+1, u0, u1, ..., uT ),

and the goal of the control is to minimize a given linear objective

f(w).



xt+1 = Atxt +Btut +Rtdt
yt = Ctxt
x0 = z

(S)

♠ Restricting ourselves with affine output-based control laws

ut = ξt0 +
t∑

τ=0

Ξtτyτ , (∗)

the problem of interest is

(!) Find an affine control law (∗) which ensures that the

resulting state-control trajectory w satisfies the system

of convex inclusions

Diw − bi ∈ Qi, i = 1, ...,m



and minimizes, under this restriction, a given linear ob-

jective f(w).

Dynamics (S) makes w a known function of inputs d = (d0, d1, ..., dT ),

the initial state z and the parameters ξ of the control law (∗):

w = W (ξ; d, z).

Consequently, (!) is the optimization problem

min
ξ
{f(W (ξ; d, z)) : DiW (ξ; d, z)− bi ∈ Qi, i = 1, ...,m} (U)



open loop dynamics:


xt+1 = Atxt +Btut +Rtdt

yt = Ctxt
x0 = z

control law: ut = ξt0 +
t∑

τ=0
Ξtτyτ

⇓
w := (u0, ..., uT , x0, ..., xT+1) = W (ξ; d, z)

⇓
min
ξ
{f(W (ξ; d, z)) : DiW (ξ; d, z)− bi ∈ Qi, i = 1, ...,m} (U)

Note: Due to presence of uncertain input trajectory d and possible

uncertainty in the initial state, (U) is an uncertain problem.

Difficulty: While linearity of the dynamics and the control law

make W (ξ; d, z) linear in (d, z), the dependence of W (·, ·) on the

parameters ξ = {ξt0,Ξtτ}0≤τ≤t≤T of the control law is highly



nonlinear

⇒ (U) is not a problem with convex inclusions, which makes

inapplicable the theory we have developed. In fact, (U) seems

to be intractable already when there is no uncertainty in d, z!

Remedy: suitable re-parameterization of affine control laws.



♣ Affine control laws revisited. Consider a closed loop system

along with its model:

closed loop system: model:
xt+1 = Atxt +Btut+Rtdt x̂t+1 = Atx̂t + B̂tut

yt = Ctxt ŷt = Ctx̂t
x0 = z x̂0 = 0
ut = Ut(y0, ..., yt)

♠ Observation: We can run the model in an on-line fashion, so

that at time t, before the decision on ut should be made, we

have in our disposal purified outputs

vt = yt − ŷt.

♠ Fact I: Every transformation (d, z) 7→ w = (u0, ..., ut, x0, ..., xT+1)

which can be obtained from an affine control law based on out-



puts:

ut = ξt0 +
t∑

τ=0

Ξtτyτ (∗)

can be obtained from an affine control law based on purified

outputs:

ut = ηt0 +
t∑

τ=0

Htτvτ (∗∗)

and vice versa.



system: model:
xt+1 = Atxt +Btut+Rtdt x̂t+1 = Atx̂t + B̂tut

yt = Ctxt ŷt = Ctx̂t
x0 = z x̂0 = 0
control law:

vt = yt − ŷt
ut = ηt0 +

t∑
τ=0

Htτvτ (∗∗)

(S)

♠ Fact II: The state-control trajectory w = W (η; d, z) of (S) is
affine in (d, z) when the parameters η = {ηt0, Htτ}0≤τ≤t≤T of the
control law (∗∗) are fixed, and is affine in η when (d, z) is fixed.
♠ Corollary: With parameterization (∗∗) of affine control laws,
problem of interest becomes an uncertain optimization problem
with convex inclusions, and as such can be processed via the
CRC approach.



In particular, in the case when Qi are one-dimensional, the CRC

of the problem of interest is computationally tractable, provided

that the normal range U of (d, z) and the associated cone L
are so. If U, L and the norms used to measure distances are

polyhedral, CRC is just an explicit LP program.



♣ Note: While the outlined approach “as it is” is aimed at build-

ing optimal finite-horizon affine control, it can be combined with

existing Control techniques to get infinite-horizon stabilizing con-

trol laws with desired transition characteristics.

♠ Illustration: Serial Multi-Level Inventory.
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3-Level Inventory. 1 – 3: warehouses; F: factory



• External demand is satisfied by inventory of level 1;
• Inventory of level i = 1,2 is replenished from inventory of level

i+ 1 = 2,3, inventory of level 3 is replenished from factory;
• There is a delay of 2 time units in executing replenishment orders.



♠ The 3-level inventory with 2-unit delays in executing replen-

ishing orders can be modelled as the Linear Dynamical system

xt+1 =



1 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0



xt+



0 0 0
−1 0 0

0 −1 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



ut+



−1
0
0
0
0
0
0
0
0



dt



• x = (x1, ..., x9)T – states (xi, i = 1,2,3, is the amount of product in
inventory of level i)

• u = (u1, u2, u3)T – replenishment orders
• dt – external demand.
♠ In serial multi-level inventories with delays, variations in exter-

nal demand usually are “amplified” – they result in much larger

variations of replenishment orders and inventory levels.

We have applied the CRC approach in combination with the stan-

dard Control techniques in order to moderate this phenomenon.

The resulting infinite-horizon affine control law makes the closed

loop system essentially more stable than the standard linear feed-

back control.
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z 7→ x gains z 7→ u gains
Magenta: CRC-based control
Blue: Feedback control yilded by Lyapunov Stability Synthesis

• z 7→ x gain at time t is the maximal ‖ · ‖∞-variation of
the state at time t which can be caused by a unit ‖ · ‖∞-



variation in the initial state.

• z 7→ u gain at time t is the maximal ‖ · ‖∞-variation

of the control at time t which can be caused by a unit

‖ · ‖∞-variation in the initial state.
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d 7→ x gains d 7→ u gains
Magenta: CRC-based control
Blue: Feedback control yilded by Lyapunov Stability Synthesis

• d 7→ x gain at time t is the maximal ‖ · ‖∞-variation of
the state at time t which can be caused by a unit ‖ · ‖∞-



variation in the sequence d0, d1, ..., dt−1 of demands.

• d 7→ u gain at time t is the maximal ‖ · ‖∞-variation

of the control at time t which can be caused by a unit

‖·‖∞-variation in the sequence d0, d1, ..., dt−1 of demands.



Sample trajectories:

Inventory levels
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