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We consider the problem of recovering of continuous multi-dimensional functions f from
the noisy observations over the regular grid m−1

Z
d , m ∈ N∗. Our focus is at the adaptive

estimation in the case when the function can be well recovered using a linear filter,
which can depend on the unknown function itself. In the companion paper, Juditsky and
Nemirovski (2009) [26], we have shown in the case when there exists an adapted time-
invariant filter, which locally recovers “well” the unknown signal, there is a numerically
efficient construction of an adaptive filter which recovers the signals “almost as well”.
In the current paper we study the application of the proposed estimation techniques in
the function estimation setting. Namely, we propose an adaptive estimation procedure
for “locally well-filtered” signals (some typical examples being smooth signals, modulated
smooth signals and harmonic functions) and show that the rate of recovery of such signals
in the �p-norm on the grid is essentially the same as that rate for regular signals with
nonhomogeneous smoothness.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let F = (Ω,Σ, P ) be a probability space. We consider the problem of recovering unknown complex-valued random field
(sτ = sτ (ξ)) τ∈Z

d

ξ∈Ω

over Z
d from noisy observations

yτ = sτ + eτ . (1)

We assume that the field (eτ ) of observation noises is independent of (sτ ) and is of the form eτ = σετ , where (ετ ) are
independent of each other standard Gaussian complex-valued variables; the adjective “standard” means that the real part of
ετ and the imaginary part of ετ are independent of each other N(0,1) random variables.

We suppose that the observations (1) come from a function (“signal”) f of continuous argument (which we assume
to vary in the d-dimensional unit cube [0,1]d); this function is observed in noise along an n-point equidistant grid in
[0,1]d , and the problem is to recover f via these observations. This problem fits the framework of nonparametric function
estimation with a “traditional setting” as follows:

A. The objective is to recover an unknown smooth function f : [0,1]d → R, which is sampled on the observation
grid Γn = {xτ = m−1τ : 0 � τ1, . . . , τd � m} with (m+1)d = n, so that sτ = f (xτ ). The error of recovery is measured
with some functional norm (or a semi-norm) ‖ · ‖ on [0,1]d , and the risk of recovery f̂ of f is the expectation
E f ‖ f̂ − f ‖2.
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B. The estimation routines are aimed at recovering smooth signals, and their quality is measured by their maximal
risks, the maximum being taken over f running through natural families of smooth signals, e.g., Hölder or Sobolev
balls.
C. The focus is on the asymptotic, as the volume of observations n goes to infinity, behavior of the estimation
routines, with emphasis on asymptotically minimax (nearly) optimal estimates — those which attain (nearly) best
possible rates of convergence of the risks to 0 as the observation sample size n → ∞.

Initially, the research was focused on recovering smooth signals with a priori known smoothness parameters and the estima-
tion routines were tuned to these parameters (see, e.g., [23,34,38,24,2,31,39,22,36,21,27]). Later on, there was a significant
research on adaptive estimation. Adaptive estimation methods are free of a priori assumptions on the smoothness parameters
of the signal to be recovered, and the primary goal is to develop the routines which exhibit asymptotically (nearly) optimal
behavior on a wide variety of families of smooth functions (cf. [35,28–30,6,8,9,25,3,7,19]). For a more complete overview of
results on nonparametric estimation of smooth functions see, for instance, [33].1

The traditional focus on recovering smooth signals ultimately comes from the fact that such a signal locally can be well-
approximated by a polynomial of a fixed order r, and such a polynomial is an “easy to estimate” entity. Specifically, for
every integer T � 0, the value of a polynomial p at an observation point xt can be recovered via (2T + 1)d neighboring
observations {xτ : |τ j − t j | � T ,1 � j � d} “at a parametric rate” — with the expected squared error Cσ 2(2T + 1)−d which is
inversely proportional to the amount (2T + 1)d of the observations used by the estimate. The coefficient C depends solely
on the order r and the dimensionality d of the polynomial. The corresponding estimate p̂(xt) of p(xt) is pretty simple: it
is given by a convolution of observations with an appropriate discrete kernel q(T ) = (q(T )

τ )τ∈Zd vanishing outside the box
OT = {τ ∈ Z

d: |τ j| � T ,1 � j � d}:

p̂(xt) =
∑

τ∈OT

q(T )
τ yt−τ ,

then the estimation f̂ of f (xt) is taken as f̂ = p̂(xt).
Note that the kernel q(T ) is readily given by the degree r of the approximating polynomial, T and dimension d. The

“classical" adaptation routines takes care of choosing “good" values of the approximation parameters (namely, T and r). On
the other hand, the polynomial approximation “mechanism" is supposed to be fixed once for ever. Thus, in those procedures
the “form" of the kernel is considered as given in advance.

In the companion paper [26] (referred hereafter as Part I) we have introduced the notion of a well-filtered signal. In brief,
the signal (sτ )τ∈Zd is T -well-filtered for some T ∈ N+ if there is a filter (kernel) q = q(T ) ∈ C(OT ), where C(OT ) is the set
of complex-valued fields q = {qτ , τ ∈ OT } over OT , which recovers (sτ ) in the box {u: |u − t| � 3T } with the mean square
error comparable with σ T −d/2:

max
u: |u−t|�3T

E

{∣∣∣∣su −
∑
τ∈OT

q(T )
τ yu−τ

∣∣∣∣
2}

� O
(
σ 2T −d).

The universe of these signals is much wider than the one of smooth signals. As we have seen in Part I that it contains,
in particular, “modulated smooth signals” — sums of a fixed number of products of smooth functions and multivariate
harmonic oscillations of unknown (and arbitrarily high) frequencies. We have shown in Part I that whenever a discrete time
signal (that is, a signal defined on a regular discrete grid) is well-filtered, we can recover this signal at a “nearly parametric”
rate without a priori knowledge of the associated filter. In other words, a well-filtered signal can be recovered on the observation
grid basically as well as if it were an algebraic polynomial of a given order.

We are about to demonstrate that the results of Part I on recovering well-filtered signals of unknown structure can
be applied to recovering nonparametric signals which admit well-filtered local approximations. Such an extension has an
unavoidable price — now we cannot hope to recover the signal well outside of the observation grid (a highly oscillating
signal can merely vanish on the observation grid and be arbitrarily large outside it). As a result, in what follows we are
interested in recovering the signals along the observation grid only and, consequently, replace the error measures based on the
functional norms on [0,1]d by their grid analogies.

The estimates to be developed will be “double adaptive”, that is, adaptive with respect to both the unknown in advance
structures of well-filtered approximations of our signals and to the unknown in advance “approximation rate” — the de-
pendence between the size of a neighborhood of a point where the signal in question is approximated and the quality of
approximation in this neighborhood. Note that in the case of smooth signals, this approximation rate is exactly what is
given by the smoothness parameters. The results to follow can be seen as extensions of the results of [32,20] (see also [33])
dealing with the particular case of univariate signals satisfying differential inequalities with unknown differential operators.

1 Our “brief outline” of adaptive approach to nonparametric estimation would be severely incomplete without mentioning a novel approach aimed at
recovering nonsmooth signals possessing sparse representations in properly constructed functional systems [5,10,4,11–17,37,18]. This promising approach is
completely beyond the scope of our paper.
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2. The problem of nonparametric function recovery

We start with the formal description of the components of our problem.
Let for τ ∈ Z

d , |τ | = max{|τ1|, . . . , |τd|}, and let τ � m for some a ∈ N denote τi � m, i = 1, . . . ,d. Let m be a positive
integer, n = (m + 1)d , and let Γn = {x = m−1α: α ∈ Z

d,0 � α, |α| � m}.
Let C([0,1]d) be the linear space of complex-valued fields over [0,1]d . We associate with a signal f ∈ C([0,1]d) its

observations along Γn:

y ≡ yn
f (ε) = {yτ ≡ yn

τ ( f , ε) = f
(
m−1τ

)+ eτ , eτ = σετ

}
0�τ�m, (2)

where {ετ }τ∈Zd are independent standard Gaussian complex-valued random noises. Our goal is to recover f |Γn from obser-
vations (2). In what follows, we write

fτ = f
(
m−1τ

) [
τ ∈ Z

d,m−1τ ∈ [0,1]d].
Below we use the following notations. For a set A ⊂ [0,1]d , we denote by Z(A) the set of all t ∈ Z

d such that m−1t ∈ A.
We denote ‖ · ‖q,A the standard L p-norm on A:

‖g‖p,A =
( ∫

x∈A

∣∣g(x)
∣∣p dx

)1/p

,

and |g|q,A its discrete analogy, so that

|g|q,A = m−d/q
( ∑

τ∈Z(A)

|gτ |q
)1/q

.

We set

Γ o
n = Γn ∩ (0,1)n = {m−1t: t ∈ Z

d, t > 0, |t| < m
}
.

Let x = m−1t ∈ Γ o
n . We say that a nonempty open cube

Bh(x) = {u | |ui − xi | < h/2, i = 1, . . . ,d
}

centered at x is admissible for x, if Bh(x) ⊂ [0,1]n . For such a cube, Th(x) denotes the largest nonnegative integer T such
that

Z
(

Bh(x)
)⊃ {τ ∈ Z

d: |τ − t| � 4T
}
.

For a cube

B = {x ∈ R
d: |xi − ci| � h/2, i = 1, . . . ,d

}
,

D(B) = h, where D(B) stands for the edge of B . For γ ∈ (0,1) we denote

Bγ = {x ∈ R
d: |xi − ci| � γ h/2, i = 1, . . . ,d

}
the γ -shrinkage of B to the center of B .

2.1. Classes of locally well-filtered signals

Recall that we say that a function on [0,1]d is smooth if it can be locally well-approximated by a polynomial. Informally,
the definition below says that a continuous signal f ∈ C([0,1])d is locally well-filtered if f admits a good local approximation
by a well-filtered discrete signal φτ on Γn (see Definition 1 of Section 2.1, Part I).

Definition 1. Let B ⊂ [0,1]d be a cube, k be a positive integer, ρ � 1, R � 0 be reals, and let p ∈ (d,∞]. The collection B , k,
ρ , R , p specifies the family Fk,ρ,p(B, R) of locally well-filtered on B signals f defined by the following requirements:

(1) f ∈ C([0,1]d).
(2) There exists a nonnegative function F ∈ L p(B),‖F‖p,B � R , such that for every x = m−1t ∈ Γn ∩ int B and for every

admissible for x cube Bh(x) contained in B there exists a field φ ∈ C(Zd) such that φ ∈ St
3Th(x)(0,ρ, Th(x)) (where the

set St
L(θ,ρ, T ) of T -well filtered signals is defined in Definition 1 of Part I) and

∀τ ∈ Z
(

Bh(x)
)
: |φτ − fτ | � hk−d/p‖F‖p,Bh(x). (3)
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In the sequel, we use for Fk,ρ,p(B; R) also the shortened notation F[ψ], where ψ stands for the collection of “parameters”
(k,ρ, p, B, R).

Remark. The motivating example of locally well-filtered signals is that of modulated smooth signals as follows. Let a cube
B ⊂ [0,1]d , p ∈ (d,∞], positive integers k, ν and a real R � 0 be given. Consider a collection of ν functions f1, . . . , fν ∈
C([0,1]d) which are k times continuously differentiable and satisfy the constraint

ν∑
�=1

∥∥Dk f�
∥∥

p,B � R.

Let ω(�) ∈ R
d , and let

f (x) =
ν∑

�=1

f�(x)exp
{

iωT (�)x
}
.

By the standard argument [1], whenever x = m−1t ∈ Γn ∩ int B and Bh(x) is admissible for x, the Taylor polynomial Φx
� (·) of

order k − 1 of f� , taken at x, satisfies the inequality

u ∈ Bh(x) ⇒ ∣∣Φx
� (u) − f�(u)

∣∣� c1hk−d/p‖F�‖p,Bh(x), where F�(u) = ∣∣Dk f�(u)
∣∣

(here and in what follows, ci are positive constants depending solely on d, k and ν). It follows that if Φ(u) =∑ν
�=1 Φx

� (u)exp{iωT (�)u} then

u ∈ Bh(x) ⇒ ∣∣Φ(u) − f (u)
∣∣� hk−d/p‖F‖p,Bh(x),

F = c2

ν∑
�=1

F�

[⇒ ‖F‖p,B � c3 R
]
. (4)

Now observe that the exponential polynomial φ(τ ) = Φ(m−1τ ) belongs to St
L(0, c4, T ) for any 0 � T � L � ∞ (Proposi-

tion 10 of Part I). Combining this fact with (4), we conclude that f ∈ Fk,ρ(ν,k,d),p(B, c(ν,k,d)R).

2.2. Accuracy measures

Let us fix γ ∈ (0,1) and q ∈ [1,∞]. Given an estimate f̂ n of the restriction f |Γn of f on the grid Γn , based on observa-
tions (2) (i.e., a Borel real-valued function of x ∈ Γn and y ∈ C

n) and ψ = (k,ρ, p, B, R), let us characterize the quality of
the estimate on the set F[ψ] by the worst-case risks

R̂q
(

f̂ n;F[ψ])= sup
f ∈F[ψ]

(
E
{∣∣ f̂ n
(· ; y f (ε)

)− f
∣∣
Γn

(·)∣∣2q,Bγ

})1/2
.

3. Estimator construction

The recovering routine we are about to build is aimed at estimating functions from classes Fk,ρ,p(B, R) with unknown in
advance parameters k,ρ, p, B, R . The only design parameters of the routine is an a priori upper bound μ on the parameter
ρ and a γ ∈ (0,1).

3.1. Preliminaries

From now on, we denote by Θ = Θ(n) the deterministic function of observation noises defined as follows. For every cube
B ⊂ [0,1]d with vertices in Γn , we consider the discrete Fourier transform of the observation noises reduced to B ∩ Γn , and
take the maximum of modules of the resulting Fourier coefficients, let it be denoted θB(e). By definition,

Θ ≡ Θ(n) = σ−1 max
B

θB(e),

where the maximum is taken over all cubes B of the indicated type. By the origin of Θ(n) , due to the classical results on
maxima of Gaussian processes (cf. also Lemma 15 of Part I), we have

∀w � 0: Prob{Θ(n) > w + √
c lnn} � exp

{
− w2

2

}
,

where c > 0 depends solely on d. The latter bound implies that

∀w � 1: Prob
{
Θ(n) > w

√
(c + 1) ln n

}
� exp

{
− w2

2

}
, (5)

for some c > 0 may depend on d only.
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3.2. Building blocks: window estimates

To recover a signal f via n = (m + 1)d observations (2), we use point-wise window estimates of f defined as follows.
Let us fix a point x = m−1t ∈ Γ o

n ; our goal is to build an estimate of f (x). Let Bh(x) be an admissible window for x.
We associate with this window an estimate f̂ h

n = f̂ h
n(x; yn

f (ε)) of f (x) defined as follows. If the window is “very small”,

specifically, h � m−1, so that x is the only point from the observation grid Γn in Bh(x), we set Th(x) = 0 and f̂ h
n = yt . For a

larger window, we choose the largest nonnegative integer T = Th(x) such that

Z
(

Bh(x)
)⊃ {τ : |τ − t| � 4T

}
and apply Algorithm A of Part I to build the estimate of ft = f (x), the design parameters of the algorithm being (μ, T ).
Recall that the estimator in question is a kernel estimator

∑
|τ |�2T φ̂τ yt−τ , where the kernel φ̂ is an optimal solution of

the optimization problem (6) of Part I:

min
φ∈C(O2T )

{∣∣∣∣
(

yu −
∑

|τ |�2T

φτ yu−τ

)
|u−t|�2T

∣∣∣∣
∗

2T ,∞
: |φ|∗2T ,1 � 2d/2μ2

(2T + 1)d/2

}

(here for a ∈ C(O2T ), |a|∗T ,p stands for the �p-norm of the Fourier transform of a, cf. Section 2 of Part I).

Let the resulting estimate be denoted by f̂ h
n = f̂ h

n(x; yn
f (ε)); to characterize the quality of this estimate let us set

Φμ

(
f , Bh(x)

)= min
p

{
max

τ∈Z(Bh(x))
|pτ − fτ |: p ∈ St

3Th(x)

(
0,μ, Th(x)

)}
.

Lemma 2. One has

( fτ ) ∈ St
3Th(x)

(
θ,μ, Th(x)

)
, θ = Φμ( f , Bh(x))(1 + μ)

(2T + 1)d/2
. (6)

Assuming that h > m−1 and combining (6) with the result of Theorem 4 of Part I we come to the following upper bound
on the error of estimating f (x) by the estimate f̂ h

n(x; ·):

∣∣ f (x) − f̂ h
n

(
x; y f (ε)

)∣∣� C1

[
Φμ

(
f , Bh(x)

)+ σ√
nhd

Θ(n)

]
(7)

(note that (2Th(x)+1)−d/2 � C0(nhd)−1/2). For evident reasons (7) holds true for “very small windows” (those with h � m−1)
as well.

3.3. The adaptive estimate

We are about to “aggregate” the window estimates f̂ h
n into an adaptive estimate, applying Lepskii’s adaptation scheme in

the same fashion as in [30,19,20].
Let us fix a “safety factor” ω in such a way that the event Θ(n) > ω

√
ln n is “highly un-probable”, namely,

Prob{Θ(n) > ω
√

lnn} � n−4(μ+1); (8)

by (5), the required ω may be chosen as a function of μ,d only. We are to describe the basic blocks of the construction of
the adaptive estimate.

“Good” realizations of noise. Let us define the set of “good realizations of noise” as

Ξn = {ε | Θ(n) � ω
√

lnn}. (9)

Now (7) implies the “conditional” error bound

ε ∈ Ξn ⇒ ∣∣ f (x) − f̂ h
n

(
x; y f (ε)

)∣∣� C1
[
Φμ

(
f , Bh(x)

)+ Sn(h)
]
,

Sn(h) = σ√
nhd

ω
√

ln n. (10)

Observe that as h grows, the “deterministic term” Φμ( f , Bh(x)) does not decrease, while the “stochastic term” Sn(h) decreases.

The “ideal” window. Let us define the ideal window B∗(x) as the largest admissible window for which the stochastic term
dominates the deterministic one:
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B∗(x) = Bh∗(x)(x),

h∗(x) = max
{

h | h > 0, Bh(x) ⊂ [0,1]d,Φμ

(
f , Bh(x)

)
� Sn(h)

}
. (11)

Note that such a window does exist, since Sn(h) → ∞ as h → +0. Besides this, since the cubes Bh(x) are open, the quantity
Φμ( f , Bh(x)) is continuous from the left, so that

0 < h � h∗(x) ⇒ Φμ

(
f , Bh(x)

)
� Sn(h). (12)

Thus, the ideal window B∗(x) is well-defined for every x possessing admissible windows, i.e., for every x = Γ o
n = {m−1t: t ∈

Z
d,0 < t, |t| < m}.

Normal windows. Assume that ε ∈ Ξn . Then the errors of all estimates f̂ h
n(x; y) associated with admissible windows smaller

than the ideal one are dominated by the corresponding stochastic terms:

ε ∈ Ξn,0 < h � h∗(x) ⇒ ∣∣ f (x) − f̂ h
n

(
x; y f (ε)

)∣∣� 2C1 Sn(h) (13)

(by (10) and (12)). Let us fix an ε ∈ Ξn (and thus – a realization y of the observations) and let us call an admissible for x
window Bh(x) normal, if the associated estimate f̂ h

n(x; y) differs from every estimate associated with a smaller window by
no more than 4C1 times the stochastic term of the latter estimate, i.e.

Window Bh(x) is normal
�{

Bh(x) is admissible,

∀h′,0 < h′ � h:
∣∣ f̂ h′

n (x; y) − f̂ h
n(x; y)

∣∣� 4C1 Sn
(
h′) [y = y f (ε)

]
.

(14)

Note that if x ∈ Γ o
n , then x possesses a normal window, specifically, the window Bm−1 (x). Indeed, this window contains a

single observation point, namely, x itself, so that the corresponding estimate, same as every estimate corresponding to a
smaller window, by construction coincides with the observation at x, so that all the estimates f̂ h′

n (x; y), 0 < h′ � m−1, are
the same. Note also that (13) implies that

(!) If ε ∈ Ξn, then the ideal window B∗(x) is normal.

The adaptive estimate f̂ n(x; y). The property of an admissible window to be normal is “observable” — given observations
y, we can say whether a given window is or is not normal. Besides this, it is clear that among all normal windows there
exists the largest one B+(x) = Bh+(x)(x). The adaptive estimate f̂ n(x; y) is exactly the window estimate associated with the window
B+(x). Note that from (!) it follows that

(!!) If ε ∈ Ξn, then the largest normal window B+(x) contains the ideal window B∗(x).

By definition of a normal window, under the premise of (!!) we have∣∣ f̂ h+(x)
n (x; y) − f̂ h∗(x)

n (x; y)
∣∣� 4C1 Sn

(
h∗(x)

)
,

and we come to the conclusion as follows:
(*) If ε ∈ Ξn, then the error of the estimate f̂ n(x; y) ≡ f̂ h+(x)

n (x; y) is dominated by the error bound (10) associated with the ideal
window:

ε ∈ Ξn ⇒ ∣∣ f̂ n(x; y) − f (x)
∣∣� 5C1

[
Φμ

(
f , Bh∗(x)(x)

)+ Sn
(
h∗(x)

)]
. (15)

Thus, the estimate f̂ n(· ; ·) — which is based solely on observations and does not require any a priori knowledge of the
“parameters of well-filterability of f ” — possesses basically the same accuracy as the “ideal” estimate associated with the
ideal window (provided, of course, that the realization of noises is not “pathological”: ε ∈ Ξn).

Note that the adaptive estimate f̂ n(x; y) we have built depends solely on “design parameters” μ, γ (recall that C1
depends on μ,γ ), the volume of observations n and the dimension d.

4. Main result

Our main result is as follows:

Theorem 3. Let γ ∈ (0,1), μ � 1 be an integer, let F = Fk,ρ,p(B; R) be a family of locally well-filtered signals associated with a cube
B ⊂ [0,1]d with mD(B) � 1, ρ � μ and p > d. For properly chosen P � 1 depending solely on μ,d, p, γ and nonincreasing in p > d
the following statement holds true:

Suppose that the volume n = md of observations (2) is large enough, namely,



360 A. Juditsky, A. Nemirovski / Appl. Comput. Harmon. Anal. 29 (2010) 354–367
P−1n
2kp+d(p−2)

2dp � R

σ

√
n

ln n
� P
[

D(B)
]− 2kp+d(p−2)

2p (16)

where D(B) is the edge of the cube B.
Then for every q ∈ [1,∞] the worst case, with respect to F, q-risk of the adaptive estimate f̂ n(· , ·) associated with the parameter

μ can be bounded as follows:

R̂q( f̂ n;F) = sup
f ∈F

(
E
{∣∣ f̂n
(· ; y f (ε)

)− f (·)∣∣2q,Bγ

})1/2

� P R

(
σ 2 lnn

R2n

)β(p,k,d,q)[
D(B)

]dλ(p,k,d,q)
, (17)

where

β(p,k,d,q) =

⎧⎪⎨
⎪⎩

k
2k+d , when q � (2k+d)p

d ,

k+d
( 1

q − 1
p

)
2k+d− 2d

p

, when q >
(2k+d)p

d ,

λ(p,k,d,q) =
{ 1

q − d
(2k+d)p , when q � (2k+d)p

d ,

0, when q >
(2k+d)p

d

(recall that here Bγ is the concentric to B γ times smaller cube).

Note that the rates of convergence to 0, as n → ∞, of the risks R̂q( f̂ n;F) of our adaptive estimate on the families
F = Fk,ρ,p(B; R) are exactly the same as those stated by Theorem 3 from [31] (see also [30,9,19,33]) in the case of recovering
smooth functions from Sobolev balls. It is well known that in the smooth case the latter rates are optimal in order, up to
logarithmic in n factors. Since the families of locally well-filtered signals are much wider than local Sobolev balls (smooth
signals are trivial examples of modulated smooth signals!), it follows that the rates of convergence stated by Theorem 3
also are nearly optimal.

5. Simulation examples

In this section we present the results of a small simulation study of the adaptive filtering algorithm applied to the
2-dimensional de-noising problem. The simulation setting is as follows: we consider real-valued signals

yτ = sτ + eτ , τ = (τ1, τ2) ∈ {1, . . . ,m}2,

e(1,1), . . . , e(m,m) being independent standard Gaussian random variables. The problem is to estimate, given observa-
tions (yτ ), the values of the signal ( fxτ ) on the grid Γm = {m−1τ ,1 � τ1, τ2 � m}, and f (xτ ) = sτ . The value m = 128
is common to all experiments.

We consider signals which are sums of three harmonic components:

sτ = α
[
sin
(
m−1ωT

1 τ + θ1
)+ sin

(
m−1ωT

2 τ + θ2
)+ sin

(
m−1ωT

3 τ + θ3
)];

the frequencies ωi and the phase shifts θi , i = 1, . . . ,3 are drawn randomly from the uniform distribution over, respectively,
[0,ωmax]6 and [0,1]3 and the coefficient α is chosen to obtain the signal-to-noise ratio equal to one.

In the simulations we present here we compared the result of adaptive recovery with T = 10 to that of a “standard
nonparametric recovery”, i.e. the recovery by the locally linear estimator with square window. We have done k = 100
independent runs for each of eight values of ωmax,

ωmax = {1.0,2.0,4.0,8.0,16.0,32.0,64.0,128.0}.
In Table 1 we summarize the results for the mean integrated squared error (MISE) of the estimation,

MISE =

√√√√√ 1

100m2

100∑
j=1

(m,m)∑
τ=(1,1)

(
ŝ( j)
τ − s( j)

τ

)2
.

The observed phenomenon is rather expectable: for slowly oscillating signals the quality of the adaptive recovery is slightly
worse than that of “standard recovery”, which are tuned for estimation of regular signals. When we rise the frequency of
the signal components, the adaptive recovery stably outperforms the standard recovery. Finally, standard recovery is clearly
unable to recover highly oscillating signals (cf. Figs. 1–4).
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Table 1
MISE of adaptive recovery.

ωmax Standard recovery Adaptive recovery

1.0 0.12 0.1
2.0 0.20 0.12
4.0 0.36 0.18
8.0 0.54 0.27

16.0 0.79 0.25
32.0 0.75 0.29
64.0 0.27 0.98

128.0 0.24 1.00

Fig. 1. Recovery for ωmax = 2.0.

Appendix A

We denote C(Zd) the linear space of complex-valued fields over Z
d . A field r ∈ C(Zd) with finitely many nonzero entries

rτ is called a filter. We use the commun notation Δ j , j = 1, . . . ,d, for the “basic shift operators” on C(Zd):

(Δ jr)τ1,...,τd = rτ1,...,τ j−1,τ j−1,τ j+1,...,τd

and denote r(Δ)x the output of a filter r, the input to the filter being a field x ∈ C(Zd), so that (r(Δ)x)t =∑τ rτ xt−τ .

A.1. Proof of Lemma 2

To save notation, let B = Bh(x) and T = Th(x). Let p ∈ C(Zd) be such that p ∈ St
3T (0,μ, T ) and |pτ − fτ | � Φμ( f , Bh(x))

for all τ ∈ Z(Bh(x)). Since p ∈ St
3T (0,μ, T ), there exists a filter q ∈ CT (Zd) such that |q|2 � μ(2T +1)−d/2 and (q(Δ)p)τ = pτ

whenever |τ − t| � 3T . Setting δτ = fτ − pτ , we have for any τ , |τ − t| � 3T ,∣∣ fτ − (q(Δ) f
)
τ

∣∣� |δτ | + ∣∣pτ − (q(Δ)p
)
τ

∣∣+ ∣∣(q(Δ)δ
)
τ

∣∣
� Φμ

(
f , Bh(x)

)+ |q|1 max
{|δν |: |ν − τ | � T

}
� Φμ

(
f , Bh(x)

)
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Fig. 2. Recovery for ωmax = 8.0.

+ |q|2(2T + 1)d/2Φμ

(
f , Bh(x)

)
max
{|δν |: |ν − τ | � T

}
[note that |τ − t| � 3T and |ν − τ | � T implies |ν − t| � 4T

]
� Φμ

(
f , Bh(x)

)
(1 + μ) = Φμ( f , Bh(x))(1 + μ)

(2T + 1)d/2
(2T + 1)−d/2

as required in (6).

A.2. Proof of Theorem 3

In the main body of the proof, we focus on the case p,q < ∞; the case of infinite p and/or q will be considered at the
concluding step 50.

Let us fix a family of well-filtered signals F = Fk,ρ,p
d (B; R) with the parameters satisfying the premise of Theorem 3 and

a function f from this class.
Recall that by the definition of F there exists a function F � 0, ‖F‖p,B � R , such that for all x = m−1t ∈ (int B) ∩ Γn and

all h, Bh(x) ⊂ B:

Φμ

(
f , Bh(x)

)
� P1hk−d/pΩ

(
f , Bh(x)

)
, Ω

(
f , B ′)=

(∫
B ′

F p(u)du

)1/p

. (18)

From now on, P (perhaps with sub- or superscripts) are quantities � 1 depending on μ,d, γ , p only and nonincreasing in
p > d.

10 . We need the following auxiliary result:

Lemma 4. Assume that

n
k−d/p

d
√

lnn � P1(μ + 3)k−d/p+d/2 R
. (19)
σω
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Fig. 3. Recovery for ωmax = 32.0.

Given a point x ∈ Γn ∩ Bγ , let us choose the largest h = h(x) such that

(a) h � (1 − γ )D(B),

(b) P1hk−d/pΩ
(

f , Bh(x)
)
� Sn(h). (20)

Then h(x) is well-defined and

h(x) � m−1. (21)

Besides this, the error at x of the adaptive estimate f̂ n as applied to f can be bounded as follows:∣∣ f̂ n(x; y) − f (x)
∣∣� C2

[
Sn
(
h(x)
)
1{ε ∈ Ξn} + σΘ(n)1{ε /∈ Ξn}

]
. (22)

Proof. The quantity h(x) is well-defined, since for small positive h the left hand side in (20.b) is close to 0, while the
right-hand side one is large. From (19) it follows that h = m−1 satisfies (20.a), so that Bm−1 (x) ⊂ B . Moreover, (19.b) implies
that

P1m−k+d/p R � Sn
(
m−1);

the latter inequality, in view of Ω( f , Bm−1 (x)) � R , says that h = m−1 satisfies (20.b) as well. Thus, h(x) � m−1, as claimed
in (21).

Consider the window Bh(x)(x). By (20.a) it is admissible for x, while from (20.b) combined with (18) we get
Φμ( f , Bh(x)(x)) � Sn(h). It follows that the ideal window B∗(x) of x is not smaller than Bh(x)(x).

Assume that ε ∈ Ξn . Then, according to (15), we have∣∣ f̂ n(x; y) − f (x)
∣∣� 5C1

[
Φμ

(
f , Bh∗(x)(x)

)+ Sn
(
h∗(x)

)]
. (23)

Now, by the definition of an ideal window, Φμ( f , Bh∗(x)(x)) � Sn(h∗(x)), and the right-hand side in (23) does not exceed
10C1 Sn(h∗(x)) � 10C1 Sn(h(x)) (recall that, as we have seen, h∗(x) � h(x)), as required in (22).

Now let ε /∈ Ξn . Note that f̂ n(x; y) is certain estimate f̂ h(x; y) associated with a centered at x and admissible for x cube
Bh(x) which is normal and such that h � m−1 (the latter – since the window Bm−1 (x) always is normal, and Bh(x) is the
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Fig. 4. Recovery for ωmax = 128.0.

largest normal window centered at x). Applying (14) with h′ = m−1 (so that f̂ h′
n (x; y) = f (x) + σεt ), we get |( f (x) + σεt) −

f̂ n(x; y)| � 4C1 Sn(m−1), whence∣∣ f (x) − f̂ n(x; y)
∣∣� σ |εt | + 4C1 Sn

(
m−1)� σΘ(n) + 4C1σω

√
ln n � C2Θ(n)

(recall that we are in the situation ε /∈ Ξn , whence ω
√

ln n � Θ(n)). We have arrived at (22). �
Now we are ready to complete the proof. Assume that (19) takes place, and let us fix q, 2k+d

d p � q < ∞.

20 . Let us denote σ̂n = σ
√

ln n
n . Note that for every x ∈ Γn ∩ Bγ either

h(x) = (1 − γ )D(B)

or

h(x) =
(

σ̂n

P1Ω( f , Bh(x)(x))

) 2p
2kp+(p−2)d

,

what means that

P1hk−d/p(x)Ω
(

f , Bh(x)(x)
)= Sn

(
h(x)
)
. (24)

Let U , V be the sets of those x ∈ Bn
γ ≡ Γn ∩ Bγ for which the first or, respectively, the second of this possibilities takes

place. If V is nonempty, let us partition it as follows:

1) We can choose x1 ∈ V (V is finite!) such that h(x) � h(x1) ∀x ∈ V . After x1 is chosen, we set V 1 = {x ∈ V | Bh(x)(x) ∩
Bh(x1)(x1) �= ∅}.
2) If the set V \V 1 is nonempty, we apply the construction from 1) to this set, thus getting x2 ∈ V \V 1 such that
h(x) � h(x2)∀x ∈ V \V 1, and set V 2 = {x ∈ V \V 1 | Bh(x)(x) ∩ Bh(x2)(x2) �= ∅}. If the set V \(V 1 ∪ V 2) still is nonempty, we
apply the same construction to this set, thus getting x3 and V 3, and so on.
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The outlined process clearly terminates after certain step (since V is finite). On termination, we get a collection of M points
x1, . . . , xM ∈ V and a partition V = V 1 ∪ V 2 ∪ · · · ∪ V M with the following properties:

(1) The cubes Bh(x1)(x1), . . . , Bh(xM )(xM) are mutually disjoint.
(2) For every � � M and every x ∈ V� we have h(x) � h(x�) and Bh(x)(x) ∩ Bh(x�)(x�) �= ∅.

We claim that also
(3) For every � � M and every x ∈ V� one has

h(x) � max
[
h(x�); ‖x − x�‖∞

]
. (25)

Indeed, h(x) � h(x�) by (2), so that it suffices to verify (25) in the case when ‖x − x�‖∞ � h(x�). Since Bh(x)(x) intersects
Bh(x�)(x�), we have

‖x − x�‖∞ � 1

2

(
h(x) + h(x�)

)
.

Whence

h(x) � 2‖x − x�‖∞ − h(x�) � ‖x − x�‖∞,

which is what we need.

30 . Let us set Bn
γ = Γn ∩ Bγ . Assume that ε ∈ Ξn . When substituting h(x) = (1 − γ )[D(B)] for x ∈ U , we have by (22):

∣∣ f̂ n(· ; y) − f (·)∣∣qq,Bγ
� Cq

2m− d
q
∑

x∈Bn
γ

Sq
n
(
h(x)
)

= Cq
2m− d

q
∑
x∈U

Sq
n
(
h(x)
)+ Cq

2m− d
q

M∑
�=1

∑
x∈V�

Sq
n
(
h(x)
)

= Cq
2m− d

q
∑
x∈U

[
σ̂n

((1 − γ )D(B))d/2

]q

+ Cq
2m− d

q

M∑
�=1

∑
x∈V�

Sq
n
(
h(x)
)

[
by (25)

]
� Cq

3σ̂
q
n m− d

q

M∑
�=1

∑
x∈V�

(
max
[
h(x�),‖x − x�‖∞

])− dq
2 + Cq

3σ̂
q
n
[

D(B)
] d(2−q)

2

� Cq
4σ̂

q
n

M∑
�=1

∫ (
max
[
h(x�),‖x − x�‖∞

])− dq
2 dx + Cq

3σ̂
q
n
[

D(B)
] d(2−q)

2

� Cq
5σ̂

q
n

M∑
�=1

∞∫
0

rd−1(max
[
h(x�), r

])− dq
2 dr + Cq

3σ̂
q
n D
[

D(B)
] d(2−q)

2 ,

due to h(x) � m−1, see (21). Further, note that

dq

2
− d + 1 � 2k + d

2
p − d + 1 � d2/2 + 1

in view of q � 2k+d
d p, k � 1 and p > d, and

∣∣ f̂ n(· ; y) − f (·)∣∣qq,Bγ
� Cq

6σ̂
q
n

M∑
�=1

[
h(x�)

] d(2−q)
2 + Cq

3σ̂
q
n
[

D(B)
] d(2−q)

2

[
by (24)

]= Cq
6σ̂

q
n

M∑
�=1

[
σ̂n

P1Ω( f , Bh(x�)(x�))

] d(2−q)
2k−2d/p+d + Cq

3σ̂
q
n
[

D(B)
] d(2−q)

2

= Cq
3σ̂

q
n
[

D(B)
] d(2−q)

2 + Cq
6σ̂

2β(p,k,d,q)q
n

M∑
�=1

[
P1Ω
(

f , Bh(x�)(x�)
)] d(q−2)

2k−2d/p+d

by definition of β(p,k,d,q).
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Now note that d(q−2)
2k−2d/p+d � p in view of q � 2k+d

d p, so that

M∑
�=1

[
P1Ω
(

f , Bh(x�)(x�)
)] d(q−2)

2k−2d/p+d �
[

M∑
�=1

(
P1Ω
(

f , Bh(x�)(x�)
))p] dq−2d

p(2k−2d/p+d)

�
[

P p
1 R p] d(q−2)

p(2k−2d/p+d)

(see (18) and take into account that the cubes Bh(x�)(x�), � = 1, . . . , M , are mutually disjoint by (1)). We conclude that for
ε ∈ Ξn∣∣ f̂ n

(· ; y f (ε)
)− f (·)∣∣q,Bγ

� C7σ̂n
[

D(B)
] d(2/q−1)

2 + P2σ̂
2β(p,k,d,q)
n R

d(1−2/q)
2k−2d/p+d

= C7σ̂n
[

D(B)
] d(2/q−1)

2 + P2 R

(
σ̂n

R

)2β(p,k,d,q)

. (26)

40 . Now assume that ε /∈ Ξn . In this case, by (22),∣∣ f̂ n(x; y) − f (x)
∣∣� C2σΘ(n) ∀x ∈ Bn

γ .

Hence, taking into account that mD(B) � 1,∣∣ f̂ n(· ; y) − f (·)∣∣q,Bγ
� C2σΘ(n)

[
D(B)

] d
q . (27)

50 . When combining (26) and (27), we get

(
E
{∥∥ f̂ n(· ; y) − f (·)∥∥2

q,Bγ

})1/2 � C8 max

[
σ̂n
[

D(B)
] d(2/q−1)

2 ; P4 R

(
σ̂n

R

)2β(p,k,d,q)

; J

]
,

where

J 2 = E
{

1{ε /∈ Ξn}C2σ
2Θ2

(n)

}
� C2

2σ
2 P 1/2{ε /∈ Ξn}

(
E
{
Θ4

(n)

})1/2

� C9σ
2n−2(μ+1)lnn

(we have used (5) and (8)). Thus, when (19) holds, for all d < p < ∞ and all q, 2k+d
d p � q < ∞ we have(

E
{∥∥ f̂ n(·; y) − f (·)∥∥2

q,Bγ

})1/2

� C8 max

[
σ̂n
[

D(B)
] d(2/q−1)

2 , P4 R

(
σ̂n

R

)2β(p,k,d,q)

,
C1/2

9 σ
√

lnn

n(μ+1)

]
. (28)

Now it is easily seen that if P � 1 is a properly chosen function of μ,d, γ , p nonincreasing in p > d and (16) takes place
then

(1) assumption (19) holds,
(2) the right-hand side in (28) does not exceed the quantity

P R

(
σ̂n

R

)2β(p,k,d,q)

= P R

(
σ̂n

R

)2β(p,k,d,q)[
D(B)

]dλ(p,k,d,q)

(recall that q � 2k+d
d p, so that λ(p,k,d,q) = 0).

We conclude the bound (17) for the case of d < p < ∞, ∞ > q � 2k+d
d p. When passing to the limit as q → ∞, we get the

desired bound for q = ∞ as well.
Now let d < p < ∞ and 1 � q � q∗ ≡ 2k+d

d p. By the Hölder inequality and in view of mD(B) � 1 we have

|g|q,Bγ � C10|g|q∗,Bγ |Bγ | 1
q − 1

q∗ ,

and thus

R̂q( f̂ n;F) � C10R̂q∗( f̂ n;F)
[

D(B)
]d( 1

q − 1
q∗ )

.

Combining this observation with the (already proved) bound (17) associated with q = q∗ , we see that (17) is valid for all
q ∈ [1,∞], provided that d < p < ∞. Passing in the resulting bound to limit as p → ∞, we conclude the validity of (17) for
all p ∈ (d,∞], q ∈ [1,∞].
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