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• When speaking about the operational side of Convex Optimization, the emphasis
is usually on algorithms– their synthesis, complexity analysis, etc.

• However: the Convex Optimization Operational toolbox is more than just algo-
rithms. While at the end of the day, we want to get a number, at the beginning of the
day, we need a computationally tractable model responsible for this number.

Computation-friendly modeling of applied problems is often a highly nontrivial and
challenging task. To resolve this task, one usually needs to utilize the Descriptive
toolbox of Convex Optimization, in our experience – primarily Conic Duality.

• In this talk, we present several computation-friendly models (in our appreciation,
interesting and somehow instructive) for applications coming from Control and Statis-
tics. We focus on presenting our related results, skipping the underlying develop-
ments (not always trivial).
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Preliminaries: Bounding induced norms of uncertain matrices

• “Working horse” of what follows addresses the following problem:

Given unit balls X ⊂ Rn,Y ⊂ Rm of norms ∥ · ∥X , ∥ · ∥Y and uncertain matrix A
with structured norm-bounded uncertainty – a parametric set

A =

{
Anom +

∑
s

δsAs +
∑
t

L⊤
t ∆tRt : |δs| ≤ 1, s ≤ S, ∥∆t∥2,2︸ ︷︷ ︸

spectral
norm

≤ 1, t ≤ T

}

of m× n matrices – compute the robust X ,Y-norm

∥A∥X ,Y = max
A∈A

∥A∥X ,Y[
∥A∥X ,Y = max

x∈X
∥Ax∥Y : induced by ∥ · ∥X , ∥ · ∥Y norm of A

]
of A.

• Fact: Aside from a small number of unique cases, computing ∥A∥X ,Y is hard al-
ready when A = {Anom} is certain. However, ∥A∥X ,Y admits efficiently computable
tight upper bound, provided X and the polar Y∗ of Y possess nice geometry.

• Nice geometry sets: ellitopes and spectratopes
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Ellitopes and spectratopes

• Basic ellitope of e-size K: a bounded set in RN represented as
V = {v : ∃t ∈ T : v⊤Tkv ≤ tk, k ≤ K},

where Tk ⪰ 0, and T ⊂ RK
+ is a convex compact set containing a positive vector

and monotone: 0 ≤ t′ ≤ t ∈ T ⇒ t′ ∈ T
Basic examples: (a) finite and bounded intersections of centered at the origin ellip-
soids/elliptics cylinders, and (b) ∥ · ∥p-balls, 2 ≤ p ≤ ∞.
Ellitope of e-size K: linear image of basic ellitope of e-size K.

• Basic spectratope of s-size D a bounded set in RN represented as
V = {v : ∃t ∈ T : T2

k [v] ⪯ tkIdk, k ≤ K}, Tk[v] =
∑

j vjT
kj, T kj ∈ Sdk,

where T ⊂ RK
+ is as in the definition of basic ellitope, and D =

∑
k dk

Basic examples: (a) basic ellitopes, and (b) matrix boxes {v ∈ Rp×q : ∥v∥2,2 ≤ 1}
Spectratope of s-size D: linear image of basic spectratope of s-size D.

• Fact: As applied to ellitopes/spectratopes, basic operations preserving convex-
ity and symmetry w.r.t. the origin result in ellitopes/spectratopes: when V1, ...,VN

are ellitopes (spectratopes), so are their intersections, direct products, sums, linear
images, and inverse images under linear embeddings.
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A =
{
Anom +

∑
s δsAs +

∑
tL

⊤
t ∆tRt : |δs| ≤ 1, s ≤ S, ∥∆t∥2,2 ≤ 1, t ≤ T

}
∥A∥X ,Y := max

A∈A,x∈X ,u∈Polar (Y)
u⊤Ax ≤ ???

• Theorem I [J&Kotsalis&N’22,Bekri&J&N’23] Let X and Polar (Y) be ellitopes of
e-sizes K,L. Then ∥A∥X ,Y admits efficiently computable upper bound Opt[A] such
that

• the bound is reasonably tight:
∥A∥X ,Y ≤ Opt[A] ≤ [ς(K,L) + κ(K)κ(L)max[ϑ(2maxsRank(As)), π/2]]∥A∥X ,Y ς(K,L) =

{
3
√

ln(3K) ln(3L) ,max[K,L] > 1
1 ,K = L = 1

κ(J) =

{
5
2

√
ln(2J) , J > 1

1 , J = 1
ϑ(·) : universal function such that

ϑ(1) = 1, ϑ(2) = π/2, ϑ(3) = 1.7348..., ϑ(4) = 2 & ϑ(k) ≤ π
2

√
k, k ≥ 1



• the bound is convex in the part Anom, {As, s ≤ S,Lt, t ≤ T} of the data of A
• Similar fact with e-sizes replaced with s-sizes and modified absolute constants
in the definitions of ς,κ, holds true when X , Polar (Y) are spectratopes.

Note: When A is certain (i.e., S = T = 0), the tightness factor is just ς(K,L).
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A =
{
Anom +

∑
s δsAs +

∑
tL

⊤
t ∆tRt : |δs| ≤ 1, s ≤ S, ∥∆t∥2,2 ≤ 1, t ≤ T

}
∥A∥X ,Y := max

A∈A,x∈X ,u∈Polar (Y)
u⊤Ax ≤ ???

•Theorem I is directly applicable when ∥·∥X is a simple ellitopic norm – X is ellitope,
and ∥ · ∥Y is a simple co-ellitopic norm – Polar (Y) is an ellitope.
For example,
• the norm ∥x∥X =

∥∥∥[∥S1x∥X1
; ...; ∥SKx∥XK

]∥∥∥
s
, where ∩kKerSk = {0}, Xk, k ≤

K, are ellitopes, and s ∈ [2,∞] is simple ellitopic. In particular, the block ℓr/ℓs

norm

∥[x1; ...;xK]∥ =
∥∥∥[∥x1∥r1; ...; ∥xK∥rK

]∥∥∥
s

(∗)

with s, r1, ..., rK ∈ [2,∞], is simple ellitopic.
• the norm ∥[y1; ...; yK]∥ =

∥∥∥[∥S1y
1∥Y1

; ...; ∥SKyK∥YK

]∥∥∥
s
, where Sk are invert-

ible, Polar (Yk) are ellitopes, k ≤ K, and s ∈ [1,2] is simple co-ellitopic. In par-

ticular, the block ℓr/ℓs norm (∗) with s, r1, ..., rK ∈ [1,2] is simple co-ellitopic.
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A =
{
Anom +

∑
s δsAs +

∑
tL

⊤
t ∆tRt : |δs| ≤ 1, s ≤ S, ∥∆t∥2,2 ≤ 1, t ≤ T

}
∥A∥X ,Y := max

A∈A,x∈X ,u∈Polar (Y)
u⊤Ax ≤ ???

•We can use Theorem I also in the case when ∥ · ∥X is an ellitopic norm –

X = Conv
(
∪j≤M PjXj

)
with ellitopes Xj ⇔ ∥x∥X = min

xj,j≤N

{∑
j ∥xj∥Xj

:
∑

j Pjxj = x
}

and ∥ · ∥Y is a co-ellitopic norm – the conjugate of ellitopic norm, or, equiv-
alently,

∥y∥Y = max
i≤N

∥Q⊤
i y∥Yi

where Polar (Yi) are ellitopes

In this case

∥A∥X ,Y = max
i≤M,j≤N

∥Q⊤
i APj∥Xj,Yi

Q⊤AP = {Q⊤AnomP +
∑

s δsQ
⊤AsP +

∑
t[LtQ]⊤∆t[RtP ] : |δs| ≤ 1, ∥∆t∥2,2 ≤ 1}

and we can upper-bound ∥A∥X ,Y by the maximum of the upper bounds on ∥Q⊤
i APj∥Xj,Yi

given by Theorem I.

For example,
• the block ℓr/ℓ1 norm ∥[x1; ...;xK]∥ =

∑
k ∥xk∥rk with rk ∈ [2,∞] is ellitopic

• the block ℓr/ℓ∞ norm ∥[y1; ...; yK]∥ = maxk ∥yk∥rk with rk ∈ [1,2] is co-
ellitopic
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Application A: Controlling Peak-to-Peak Gain
in Discrete Time Linear Systems

[J&Kotsalis&N’22]

• Situation: Given Discrete Time Linear Dynamical System
[initial state] x0 = z
[state equations] xt+1 = Atxt +Btut + Ctdt, 0 ≤ t < N
[observable outputs] yt = Dtxt + Etdt, 0 ≤ t < N
• N : time horizon • xt: states • z: initial state • ut: controls • yt: outputs
• d0, ..., dN−1: disturbances

we want to design affine controller ut = gt+
∑t

τ=0G
τ
t yτ , 0 ≤ t < N obeying given

constraints on the dependence of the state-control-output trajectory
[x1; ...;xN ] = Xd [d0; ...; dN−1]︸ ︷︷ ︸

d

+Xzz + x,

[u0; ...;uN−1] = Udd+ Uzz + u, [y0; y1; ...; yN−1] = Ydd+ Yzz + y

on the initial state z and the disturbances dt.
• Peak-to-Peak specifications upper-bound the norms of the matrices
Xd, Ud, Yd induced by block-ℓ∞ norms

∥[d0; ...; dN−1]∥ = max
0≤t<N

∥dt∥(d), ∥[x1; ...;xN ]∥ = max
1≤t≤N

∥xt∥(x),

∥[u0; ...;uN−1]∥ = max
0≤t<N

∥ut∥(u), ∥[y0; ...; yN−1]∥ = max
0≤t<N

∥yt∥(y)

of disturbances, states, controls, and outputs. These bounds become con-
straints on the parameters of the controller responsible for the matrices Xd, Ud, Yd.
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• When the norm ∥ · ∥(d) and norms conjugate to ∥ · ∥(x), ∥ · ∥(u), ∥ · ∥(y)
are ellitopic/spectratopic, the induced norms of Xd, Ud, Yd admit tight
efficient upper-bounding, making the Analysis problem ”given affine con-
troller, check whether the peak-to-peak specifications are met” – more
or less tractable.
However: Xd, Ud, Yd are highly nonlinear in the parameters of controller,
making synthesis of an affine controller obeying peak-to-peak specifica-
tions heavily intractable.

• Remedy: Smart nonlinear reparameterization of affine output-based nonanticipat-
ing controllers makes the trajectory bi-affine function of controller’s parameters and
of [z; d]. With this parameterization, Xd, Ud, Yd become affine in the design parame-
ters, making synthesis tractable.
• Purified outputs. We augment the controlled system with its model

System:
x0 = z, xt+1 = Atxt +Btut+Ctdt, 0 ≤ t < N, yt = Dtxt+Etdt, 0 ≤ t < N
Model:
x0 = 0, xt+1 = Atxt +Btut, 0 ≤ t < N, yt = Dtxt, 0 ≤ t < N

and run the model in parallel with the actual system, feeding both with
the same controls ut yielded by a (whatever nonanticipating) controller.
At time t, after yt is observed and before ut is to be specified, we have at
our disposal purified output vt = yt − yt
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System:
x0 = z, xt+1 = Atxt +Btut+Ctdt, 0 ≤ t < N, yt = Dtxt+Etdt, 0 ≤ t < N
Model:
x0 = 0, xt+1 = Atxt +Btut, 0 ≤ t < N, yt = Dtxt, 0 ≤ t < N
Purified outputs:
vt = yt − yt

Facts [Ben-Tal&Boyd&N.’05]

• purified outputs are affine functions of z, d0, d1, ... completely independent of how
the controls are generated
• Passing from affine output-based controllers to affine purified-output-based ones

ut = ht +
t∑

τ=0

Hτ
t vτ ,

we preserve achievable behaviors of the controlled system: every mapping from the
space of sequences z, d0, d1, ... to the space of sequences x0, y0, u0, x1, y1, u1, ...

stemming from an affine output-based controller stems from an affine purified-output-
based one as well, and vice versa.
• For an affine purified-output-based controller, the matrices Xz, Xd, Uz, Ud, Yz, Yd
become affine in the controller’s parameters {ht, Hτ

t ,0 ≤ τ ≤ t}, paving road to
computationally efficient synthesis of controllers under a wide spectrum of design
specifications.
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x0 = z, xt+1 = Atxt +Btut + Ctdt, yt = Dtxt + Etdt, 0 ≤ t < N

y0, ..., yt ⇒ v0, ..., vt ⇒ ut = ht +
∑t

τ=0H
τ
t vτ

[x1; ...;xN ] = Xd[η]

d︷ ︸︸ ︷
[d0; ...; dN−1]+Xz[η]z + x

[u0; ...;uN−1] = Ud[η]d+ Uzz + u
[y0; y1; ...; yN−1] = Yd[η]d+ Yz[η]z + y
Xd[η], ..., Yz[η] : affine in η = {ht, Ht

τ ,0 ≤ τ ≤ t < N}

• The peak-to-peak gain from, say, d to x is the norm ∥Xd[η]∥D,X with

∥[d0; ...; dN−1]∥D = max
0≤t<N

∥dt∥(d), ∥[x1; ...;xN ]∥X = max
1≤t≤N

∥xt∥(x)

Assuming the norm ∥ · ∥(d) simple ellitopic, and the norm ∥ · ∥(x) co-

ellitopic, with e-sizes of the participating ellitopes not exceeding K for

∥ · ∥(d) and L for ∥ · ∥(x), Theorem I provides efficiently computable

convex in η upper bound Ψ(η) on ∥Xd[η]∥D,X , tight within the factor

O(1)
√
ln(KN +1) ln(L+1), and we can “safely approximate” bounding

the peak-to-peak gain with bounding Ψ.
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Assuming unit balls of the norm ∥ · ∥(d) and of the norm conjugate to ∥ · ∥(x) ellitopes, Theorem I
provides efficiently computable convex in η upper bound Ψ(η) on ∥Xd[η]∥D,X , and we can “safely
approximate” bounding the peak-to-peak gain with bounding Ψ.

Note: the approximation ratio Ψ(η)/∥Xd[η]∥D,X is ≤ O(1)
√

ln(NK +1) ln(L+1).

In some special cases it can be improved [Nesterov’98,Nesterov’00] to

• π
4−π ≈ 3.660, when ∥ · ∥(d)-unit ball is basic ellitope with mutually com-

muting matrices in the ellitopic representation, and similarly for the polar

of the ∥ · ∥(x)-unit ball

• π
2
√
3−2π/3

≈ 2.2936, when ∥ · ∥(d) = ∥ · ∥q, ∥ · ∥(x) = ∥ · ∥p, 1 ≤ p ≤ 2 ≤ q

•
√
π/2 ≈ 1.2533, when ∥ · ∥(d) = ∥ · ∥q, ∥ · ∥(x) = ∥ · ∥2, q ≥ 2

• Note: logarithmic in K,L dependence of the approximation ratio is a
must in the general ellitopic case, same as in the special cases above,

provided that we want to bound the norm of the restriction of a linear map

onto a linear subspace in the argument space.
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How It Works:
Optimizing Peak-to-Peak Gain for Boeing 747

• The system: linearized and discretized in time longitudinal dynamics

model of Boeing 474’s cruise flight in XZ plane [S. Boyd, Lecture Notes

on Linear Dynamical Systems, 2007]

Dimensions: dimx = 4, dimu = dim y = dim d = 2.

xt+1 =

[ 0.996 0.034 −0.021 −0.321 0.014 0.989 0.004 −0.033
0.008 0.470 4.664 0.002 −3.437 1.665 −0.008 0.528
0.017 −0.060 0.404 −0.003 −0.822 0.438 −0.017 0.060
0.009 −0.037 0.719 0.999 −0.473 0.249 −0.009 0.037

]  xt
ut
dt


yt =

[
1 0 0 0
0 −1 0 7.74

]
xt

•We use ∥ · ∥(x) = ∥ · ∥(d) = ∥ · ∥2 and “training horizon” N = 128. The

synthesized control is tested on horizon N = 256.

•Open loop system (i.e., all-zero controls) is stable with peak-to-peak

disturbance-to-state gain bounded by ≈ 12 uniformly in N .

•Minimizing the (tight upper bound on the) peak-to-peak gain over the

parameters of linear purified-output-based controller, the gain is reduced

to ≈ 1.02.
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Disturbances: Left pane – random harmonic oscillation, right pane – “bad” (both of unit ℓ2/ℓ∞-norm)

In green: ∥ · ∥2-norms of states/outputs/controls.
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Application B: System Identification under
Uncertain-But-Bounded Observation Errors

[J&Kotsalis&N’22]

• Problem: Given noisy observations of states vt ∈ Rd and inputs rt ∈ Rh of linear
time-invariant dynamical system

vt+1 = X
[

vt
rt

]
, 0 ≤ t < N

on finite time horizon, we want to recover the image B(X) of X under a given linear
mapping.
• Our observations are

uti = [vt]i − ξti, 1 ≤ i ≤ d,0 ≤ t ≤ N,
uti = [rt]i−d − ξti, d < i ≤ d+ h,0 ≤ t ≤ N − 1,

with observation errors ξti obeing given bounds ξti: |ξti| ≤ ξti.
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• After straightforward preprocessing of the problem, we arrive at the

following

Situation: Given matrix B, we want to recover the image Bx ∈ Rν of unknown
vector x ∈ Rn known to satisfy, for some unknown ζs ∈ [−1,1], the system of linear
equations [

Q−
∑S

s=1ζsQs

]
x = q −

∑S
s=1ζsqs (O) •Q, Qs ∈ Rm×n : known matrices stemming from observations

• q, qs ∈ Rm : known vectors stemming from observations
•n = dimX = d(d+ h),
•m = dN, S = (d+ h)N + d


• We want to recover Bx by linear estimate

ŵH = H⊤q,

and quantify the performance of a candidate estimate by its B-risk

RiskB[H] = sup
x

{∥H⊤q −Bx∥B : x is compatible with (O)}

where ∥·∥B is a given norm on Rν, and compatibility means that x satisfies

(O) for some selection of ζs ∈ [−1,1].
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Processing the problem

A. We associate with m× ν matrix H uncertain vector and matrix

V0[H] =
{∑

sζsH
⊤qs : |ζs| ≤ 1∀ ≤ S

}
⊂ Rν,

V[H] =
{
[H⊤Q−B] +

∑
sζsH

⊤Qs : |ζs| ≤ 1 ∀s ≤ S
}
⊂ Rν×n

Given a norm ∥ · ∥X on Rn, it is easily seen that

x is compatible with (O)
⇒ ∥H⊤q −Bx∥B ≤ Θ[H]∥x∥X +Θ0[H] Θ0[H] = max

v∈V0[H]
∥v∥B – robust B-norm of V0[H]

Θ[H] = max
V ∈V[H]

∥V ∥X ,B – robust X ,B-norm of V[H]


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B. We associate with a matrix E ∈ Rm×n uncertain vector and matrix

W0[E] =
{∑

s ζsE
⊤qs : |ζs| ≤ 1 ∀s ≤ S

}
⊂ Rn,

W[E] =
{
[E⊤Q− In] +

∑
sζsE

⊤Qs : |ζs| ≤ 1 ∀s ≤ S
}
⊂ Rn×n

and set

Υ0[E] = max
w∈W0[E]

∥w∥X – robust X -norm of W0[E]

Υ[E] = max
W∈W[E]

∥W∥X ,X – robust X ,X -norm of W[E]

• Theorem II (i) Let E be such that Υ[E] < 1. Then for all x compatible with O it
holds

∥x∥X ≤
Υ[E]

1−Υ[E]
∥E⊤q∥X +

Υ0[E]

1−Υ[E]
.

Invoking A, we conclude that

(ii) For every H ∈ Rν×n the B-risk of the linear estimate H⊤q satisfies

RiskB[H] ≤ Opt = minH {ΓΘ[H] +Θ0[H]}
Γ = minE

{
Υ[E]

1−Υ[E]∥E
⊤q∥X + Υ0[E]

1−Υ[E] : Υ[E] < 1
}
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• Assume that ∥x∥X = max
k≤K

∥Pkx∥2 and the norm conjugate to ∥y∥B is ∥y∥∗B =

max
ℓ≤L

∥Q⊤
ℓ y∥2. Then our machinery for upper-bounding robust norms provides effi-

ciently computable convex in H, E upper bounds Θ0[H], Θ[H], Υ0[E], Υ[E] on
Θ0[H],...,Υ[E]. The bounds are tight within the factor ≤ O(1)

√
d ln(K +1) ln(L+1).

• Utilizing bounds Θ0[H],...,Υ[E], we arrive at the following strategy:
• Solving convex optimization problems

min
E

{
γ

1− γ
∥E⊤q∥X +

Υ0[E]

1− γ
: Υ[E] ≤ γ

}
along a grid of values of γ ∈ [0,1), we, with luck, build an upper bound Γ on Γ.

Luck is guaranteed when observation noises are small and observation horizon
N is not too small.
• We solve convex optimization problem

Opt = min
H

{
ΓΘ[H] +Θ0[H]

}
.

An optimal solution H∗ yields a “presumably good” linear estimate H⊤
∗ q of B(X),

with ∥ · ∥B-magnitude of the recovery error ≤ Opt.

0.18



How It Works
Recovering Boeing 747 dynamics

• The goal is to recover full dynamics (B = I) of Boeing 747 from observations of
states xt ∈ R4 for 0 ≤ t ≤ N = 12 and inputs rt ∈ R4 for 0 ≤ t < 12.
In our experiments,
• initial state and inputs were drawn at random
• observation noises were bounded in a semi-relative scale: observation r′ of a real
r satisfies |r′ − r| ≤ ϵmax[|r|,1], with known to us error level ϵ
• We used B = I, ∥ · ∥B = ∥ · ∥2, ∥ · ∥X = ∥ · ∥2.

Results: Simple LS recovery (as if there were no observation errors) vs robust linear
recovery

ε 0.001 0.002 0.003 0.004 0.005
Least Squares 0.017/12.1 0.035/10.0 0.071/12.6 0.078/11.0 0.061/12.1

Robust Recovery 0.021/1.9 0.042/1.5 0.085/1.6 0.096/1.5 0.074/1.7
ε 0.006 0.007 0.008 0.009 0.010

Least Squares 0.118/12.2 0.124/11.4 0.123/10.4 0.124/12.1 0.145/13.2
Robust Recovery 0.131/1.4 0.163/1.4 0.162/1.6 0.157/1.8 0.189/1.6

Blue: ∥ · ∥2 recovery error Red: ratio of upper error bound to actual error
median over 10 simulations per value of ε
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States of the actual and of the recovered systems vs. time.
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Actual dynamics (red), robust recovery (blue), and LS recovery (cyan).
Relative observation error ε = 0.01.

Actual ∥ · ∥2 recovery errors are 0.1968 for LS and 0.1394 for robust recovery.
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Application C: Signal Recovery from Indirect Observations
under Uncertainty in Sensing Matrix

• Situation and goal: Given observation

ω = A[η]x+ ξ

we want to recover linear image Bx ∈ Rν of unknown signal x known to belong to a
given signal set X .
Here

•X = {x ∈ Rn : ∃t ∈ T : x⊤Tkx ≤ tk, k ≤ K} is a basic ellitope
•A[η] = Anom+

∑S
s=1ηsAs+

∑T
t=1L

⊤
t η

tRt ∈ Rm×n is sensing matrix affected
by non-observable perturbation η = {ηs ∈ R, s ≤ S, ηt ∈ Rpt×qt, t ≤ T}
• ξ is random observation noise with distribution Px assumed to be sub-Gaussian

with parameters 0, σ2Im for every x ∈ X : Eξ∼Px{e
h⊤ξ} ≤ e

σ2
2 h⊤h
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•We assume that
either

• (random perturbations) T = 0 and η ∈ RS is sub-Gaussian with
parameters 0, IS,

or
• (structured norm-bounded perturbations) η runs through perturbation set

U = {η : |ηs| ≤ 1, s ≤ S, ∥ηt∥2,2 ≤ 1, t ≤ T}

• the recovery error is measured in the norm ∥u∥ = maxℓ≤L

√
u⊤Πℓu

with Πℓ ⪰ 0,
∑

ℓΠℓ ≻ 0
• the performance of a candidate estimate ŵ(ω) is quantified by its ϵ-risk

Random perturbations:
Riskϵ[ŵ|X ] = sup

x∈X
inf {ρ : Probξ,η{∥Bx− ŵ(A[η]x+ ξ)∥ > ρ} ≤ ϵ}

Uncertain-but-bounded perturbations:
Riskϵ[ŵ|X ] = sup

x∈X ,η∈U
inf {ρ : Probξ∼Px

{∥ŵ(A[η]x+ ξ)−Bx∥ > ρ} ≤ ϵ} .
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Previous research:
• Linear estimates ŵ(ω) = H⊤ω originate from Kuks&Olman’71-72 and were studied, usu-
ally in the ”no uncertainty in the sensing matrix” case, by many authors (Pinsker’81, Donoho et
al’90, Donoho’94, Efroimovich&Pinsker’96, Efroimovich’08, Ibragimov&Khasminskii’81, Tsybakov’09,
Wasserman’06, J&N’20,...)
•Random perturbations: significant research on linear regression with random errors in re-
gressors (Bennani et al’88, Carroll&Ruppert’96, Fan&Truong’93, Gleser’81, Kukush et al’05, Stew-
art’90, Van Huffel&Lemmerling’13,...) usually addressed via total least squares, or signal pro-
cessing with stochastic errors in sensing matrix (Cavalier&Hengratner’05, Cavalier&Raimondo’07,
Efroimovich&Koltchinskii’01, Hall&Horowitz’05, Hoffman&Reiss’08, Marteau’06,...)
•Uncertain-but-bounded perturbations: an extension of the intensively studied problem
of solving linear systems with uncertain data (Cope&Rust’79, Higham’02, Kreinovich et al’93,
Nazin&Polyak’05, Neumaier’90, Oettli&Prager’64, Polyak’03,...) and system identification with impre-
cisely measured states (Bertcekas&Rodes’71, Casini et al’14, Cerone’93, J&Kotsalis&N’22, Kurzhan-
sky&Valyi’97, Matasov’98, Milanese et al’13, Nazin&Polyak’07, Tempo&Vicino’9,...)
• Our contributions: a complementary computation-friendly approach to synthesis of ”presumably
good” linear estimates equipped with reasonably tight risk bounds.
✓ While we do not know whether our “presumably good” linear estimates are near-minimax-optimal
among all estimates, linear and nonlinear alike, this provably is the case when the observation noise
ξ is Gaussian, and uncertainty in sensing matrix is small.
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C.I: Random Perturbations in Sensing Matrix
ω = A[η]x+ ξ ??? ⇒??? ŵ := H⊤ω ≈ Bx

A[η] = Anom +
∑

s ηsAs, x ∈ X = {x ∈ Rn : ∃t ∈ T : x⊤Tkx ⪯ tk, k ≤ K}
Riskϵ[ŵ|X ] = supx∈X inf

{
ρ : Probξ,η{∥Bx− ŵ(A[η]x+ ξ)∥ > ρ} ≤ ϵ

}
ξ ∼ SG(0, σ2Im), η ∼ SG(0, IS), ∥y∥ = maxℓ≤L

√
u⊤Πℓu

Proposition. Synthesis of presumably good linear estimate ŵH(ω) = H⊤ω reduces
to solving the convex optimization problem

min
H∈Rm×ν

R[H]

R[H] = min
λℓ,µ

ℓ,κℓ,

κℓ,ρ,ϱ

{[
1+

√
2 ln(2L/ϵ)

] [
σmax

ℓ≤L
∥HΠ1/2

ℓ ∥Fro + ρ

]
+ ϱ :

µℓ ≥ 0,κℓ ≥ 0, λℓ + ϕT (µℓ) ≤ ρ, κℓ + ϕT (κℓ) ≤ ϱ, ℓ ≤ L[
λℓIνS

1
2

[
Π1/2

ℓ H⊤A1; ...; Π
1/2
ℓ H⊤AS

]
1
2

[
A⊤

1HΠ1/2
ℓ , ..., A⊤

SHΠ1/2
ℓ

] ∑
k
µℓ
kTk

]
⪰ 0, ℓ ≤ L[

κℓIν
1
2
Π1/2

ℓ [B −H⊤Anom]
1
2
[B −H⊤Anom]⊤Π1/2

ℓ

∑
k
κℓ
kTk

]
⪰ 0, ℓ ≤ L


where ϕT (λ) = maxt∈T λ⊤t is the support function of T . For a candidate H, one

has Riskϵ[ŵH |X ] ≤ R[H].
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A[η] = Anom +
∑

s ηsAs, x ∈ X = {x ∈ Rn : ∃t ∈ T : x⊤Tkx ⪯ tk, k ≤ K}
ξ ∼ SG(0, σ2Im), η ∼ SG(0, IS), ∥u∥ = maxℓ≤L

√
u⊤Πℓu

A modification. To make risk small, the observation noise ξ and the influence of
uncertainty η should be small.
•With ξ ∼ SG(0, σ2Im), ”small ξ” means small σ. With our normalization η ∼
SG(0, IS), ”small η” means small perturbation matrices As.
However: In some situations, ”small uncertainty” does not translate into small As’s.
For example, assume that random perturbation of sensing matrix zeros out some
columns of the matrix, with small probability γ to zero out a particular column, as
when taking picture through a window with frost pattern.
• Remedy: To replace sub-Gaussianity with second moment boundedness:

E{ξξ⊤} ⪯ σ2Im, E{ηη⊤} ⪯ IS (∗)

and allow for M -repeated observations

ωM = {ωµ = A[ηµ]x+ ξµ, µ ≤ M},

with i.i.d. pairs [ξµ, ηµ] obeying (∗).
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The construction (utilizing, in particular, the results of [Minsker’15] on geometric
medians) is as follows:
•For each ℓ ≤ L, we compute optimal solutions Hℓ ∈ Rm×ν to the convex optimiza-
tion problems

R̃ℓ[H] = minλ,υ,κ,κ

{
σ∥HΠ1/2

ℓ ∥Fro + λ+ ϕT (υ) + κ+ ϕT (κ) :

υ ≥ 0,κ ≥ 0,

[
κIν

1
2
Π1/2

ℓ [B −H⊤Anom]
1
2
[B −H⊤Anom]⊤Π1/2

ℓ

∑
kκkTk

]
⪰ 0 λIνS

1
2

[
Π1/2

ℓ H⊤A1; ...; Π
1/2
ℓ H⊤AS

]
1
2

[
A⊤

1HΠ1/2
ℓ , ..., A⊤

SHΠ1/2
ℓ

] ∑
kυkTk

 ⪰ 0


• We define the “reliable estimate” ŵ(r)(ωM) of w = Bx as follows.

•Given Hℓ and observations ωµ we compute linear estimates
wℓ(ωµ) = H⊤

ℓ ωµ, ℓ = 1, ..., L, µ = 1, ...,M ;
•We define vectors zℓ ∈ Rν as geometric medians of wℓ(ωµ):

zℓ(ω
M) ∈ Argmin

z

∑M

µ=1
∥Π1/2

ℓ (wℓ(ωµ)− z)∥2, ℓ = 1, ..., L.

• Finally, we select as ŵ(r)(ωM) any point of the set

W(ωM) =
⋂L

ℓ=1

{
w ∈ Rν : ∥Π1/2

ℓ (zℓ(ω
M)− w)∥2 ≤ 4R̃ℓ[Hℓ]

}
.

[ŵ(r)(ωM) = 0 when W(ωM) = ∅].
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ωM {ωµ = A[ηµ]x+ ξµ}µ≤M ??? ⇒??? ŵ(ωM) ≈ Bx

A[η] = Anom +
∑

s
ηsAs, x ∈ X = {x ∈ Rn : ∃t ∈ T : x⊤Tkx ⪯ tk, k ≤ K}

Riskϵ[ŵ|X ] = supx∈X inf
{
ρ : ProbξM ,ηM{∥Bx− ŵ({[A[ηµ]x+ ξµ.µ ≤ M})∥ > ρ} ≤ ϵ

}
E{ξξ⊤} ⪯ σ2Im, E{ηη⊤} ⪯ IS, ∥y∥ = maxℓ≤L

√
u⊤Πℓu

Proposition One has

sup
x∈X

Eηµ,ξµ

{
∥Π1/2

ℓ (wℓ(ωµ)−Bx)∥22
}
≤ R̃2

ℓ [Hℓ], ℓ ≤ L,

and

Prob
{
∥Π1/2

ℓ (zℓ(ω
M)−Bx)∥2 ≥ 4R̃ℓ[Hℓ]

}
≤ e−0.1070M , ℓ ≤ L.

As a consequence, whenever M ≥ ln(L/ϵ)/0.1070, the ϵ-risk of the aggregated
estimate ŵ(r)(ωM) satisfies

Riskϵ[ŵ
(r)|X ] ≤ 8max

ℓ≤L
R̃ℓ[Hℓ].
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How It Works: Looking through Frosty Glass

•Problem: Entries in 6× 6 image x known to satisfy

∥∆x∥∞ ≤ 1 [∆ : discrete Laplace operator]

are multiplied by i.i.d. Bernoulli r.v.’s taking value 0 with probability γ. The resulting
image is convolved with 3 × 3 Gaussian kernel, and the resulting 8 × 8 image is
observed in white Gaussian noise of intensity σ. Given the observation, we want to
recover the original image.
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True image x, ∥x∥Fro = 5.80 Recovery ŵ, ∥x− ŵ∥Fro ≈ 2.03 Observation

In this single-observation expieriment, multiplication by D zeroed out 3 of 36 entries in x
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Looking through Frosty Glass (continued)

Effect of M -repeated observations

Frobenius norms of recovery errors vs M , data over 100 simulations; Left: means Right: medians

•Noise intensity σ = 0.005, Cond(Anom) ≈ 164, average Frobenius norm of signal 9.06

• Probability to zero out a particular entry in signal γ = 0.005 (0.6 suppressed pixels per signal at average)
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C.II: Uncertain-But-Bounded Perturbations in Sensing Matrix
ω = A[η]x+ ξ ??? ⇒??? ŵ := H⊤ω ≈ Bx

A[η] = Anom +
∑

s≤S
ηsAs +

∑
t≤T

L⊤
t η

tRt, x ∈ X = {x ∈ Rn : ∃t ∈ T : x⊤Tkx ⪯ tk, k ≤ K}
Riskϵ[ŵ|X ] = supx∈X ,η∈U inf

{
ρ : Probξ∼Px{∥ŵ(A[η]x+ ξ)−Bx∥ > ρ} ≤ ϵ

}
ξ ∼ SG(0, σ2Im), U = {η : |ηs| ≤ 1, s ≤ S, ηt ∈ Rpt×qt, ∥ηt∥2,2 ≤ 1, t ≤ T}, ∥u∥ = maxℓ≤L

√
u⊤Πℓu

ϕT (λ) = maxt∈T λ⊤t

Proposition. The ϵ-risk of a linear estimate ŵH(ω) = H⊤ω can be tightly upper-
bounded by the sum of 3 functions of H:

A. Upper (1− ϵ)-quantile of ∥H⊤ξ∥: α(H) = min{t : Prob{∥H⊤ξ∥ > t} ≤ ϵ}
B. Nominal bias: β(H) = maxx∈X ∥(B −H⊤Anom)x∥
C. Uncertainty-induced bias: γ(H) = max

η∈U ,x∈X
∥[
∑

s ηsH
⊤As +

∑
t[LtH]⊤ηtRt]x∥.

All three functions admit reasonably tight efficiently computable convex in H upper
bounds. Specifically,
• α(H) ≤ [1 +

√
2 ln(L/ϵ)]σmaxℓ≤L

√
Tr(HΠℓH

⊤)

– tight within the factor O(ln(L+1)), at least for ξ ∼ N (0, σ2Im)
• β(H) ≤ β(H) := max

ℓ≤L
rℓ(H),

rℓ(H) = minµ,λ

{
λ+ ϕT (µ) : µ ≥ 0,

[
λIν

1
2
Π1/2

ℓ [B −H⊤Anom]
1
2
[B −H⊤Anom]⊤Π1/2

ℓ

∑
kµkTk

]
⪰ 0

}

– tight within the factor 3
√
ln(3K)
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• γ(H) ≤ γ(H) := max
ℓ≤L

sℓ(H),

sℓ(H) = min
µ,υ,λ,Us,Vs,U t,V t

{
1
2
[µ+ ϕT (υ)] : µ ≥ 0, υ ≥ 0, λ ≥ 0[

Us Π1/2
ℓ H⊤As

A⊤
s HΠ1/2

ℓ Vs

]
⪰ 0, s ≤ S,

[
U t Π1/2

ℓ H⊤L⊤
t

LtHΠ1/2
ℓ λtIpt

]
⪰ 0, t ≤ T

µIν −
∑

sUs −
∑

tU
t ⪰ 0,

∑
kυkTk −

∑
sVs −

∑
tλtR⊤

t Rt ⪰ 0


– tight within the factor κ(K)max[ϑ(2κ), π/2],

κ = max
s≤S

Rank (As), κ(K) =

{
1, K = 1,
5
2

√
ln(2K), K > 1,

• For every H, we have

Riskϵ[ŵ
H |X ] ≤ α(H) + β(H) + γ(H).

Presumably good linear estimate is obtained by minimizing the right hand side in H.
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How It Works

• Situation: We observe the noisy image of imprecise convolution

ωt =
∑

0≤τ<d[χτ + ρ ηt,τ ]xt−τ + ξt, 1 ≤ t < n+ d
• x = {xs : s = 0,±1,±2, ...}: unknown signal known to have ∥x∥∞ ≤ 1,

with xt = 0 ∀t ̸∈ {1, ..., n},
• χ ∈ Rd – nominal kernel
• ηt,τ ∈ [−1,1] – perturbations

⇒ structured norm-bounded uncertainty with S = 0, T = nd
• ρ – perturbation level
• ξt ∼ N (0, σ2) – independent across t observation noises

and want to recover x, measuring the recovery error in ∥ · ∥∞.
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• SetUp: n = 64, d = 8, σ = 0.001, ρ = 0.0005, Cond(Anom) ≈ 90
• ∥ · ∥∞ recovery errors, data over 1,000 simulations

mean median max
0.119 0.116 0.224

• 0.01-risk: ✓ upper bound: 0.833 ✓ lower bound 0.189
• Sample recovery:

0 10 20 30 40 50 60 70
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◦ - signal, + - recovery
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