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Abstract

We present and motivate a new model of the Truss Topology Design
problem, where the rigidity of the resulting truss with respect both
to given loading scenarios and small “occasional” loads is optimized.
It is shown that the resulting optimization problem is a Semidefinite
Program. We derive and analyze several equivalent reformulations of
the problem and present illustrative numerical examples.
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1 Introduction

Truss Topology Design (TTD) deals with the selection of optimal configu-
ration for structural systems (mechanical, civil engineering, aerospace) and
constitutes one of the newest and most rapidly growing fields of Structural
Design (see the excellent survey paper by Rozvany, Bendsøe and Kirsch
[12]). The TTD problem was studied extensively, both mathematically and
algorithmically, in [1, 2, 3, 4, 5].
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In this paper we bring forth the issue of the robustness of the truss; here
we say that a truss is robust, if it is reasonable rigid with respect both to
the given set of loading scenarios and to all small uncertain (in size and
direction) loads which may act at any of the active nodes of the truss, i.e.,
those which are linked at least by one bar. In the engineering literature
rigidity is modeled by considering different loading scenarios on the structure
(the multi-load TTD problem) or by imposing upper and lower bounds on
nodal displacements. The first approach depends on the engineer’s ability
to “guess right” the relevant scenarios, while the second approach leads
to a mathematical problem which is not tractable computationally. Here
we suggest a new modeling approach which circumvents both of the above
mentioned difficulties.

The paper is organized as follows. Section 2 describes the modeling ap-
proach in question. The preliminary Section 2.1 presents the basic notions
related to the TTD problem and the traditional formulations of the problem.
We demonstrate by simple example (Section 2.2) that robustness restrictions
(which are basically ignored in the traditional formulations) are critical to
obtain reasonable designs; this observation motivates our modeling approach
presented in Section 2.3. Its computational tractability is demonstrated in
Section 2.4, where we show that the TTD problem in our new formulation
can be equivalently cast as a semidefinite program. This brings the problem
into the realm of Convex Programming for which efficient (polynomial time)
interior point algorithms can be employed. Sections 3 – 5 are devoted to
mathematical processing of the semidefinite program of Section 2.4; the goal
is to get a program better suited for interior point algorithms. Possibilities
for Robust Truss Topology Design by these algorithms are discussed in Sec-
tion 6. We end up (Section 7) with illustrating usefulness of our approach by
considering several examples of optimal trusses with and without robustness
considerations. We show that at least for these examples robustness can be
gained without sacrificing much in the optimality of the resulting trusses.
Concluding Section 8 contains remarks on the possibility to extend the idea
of “robust reformulation” of an optimization program from the particular
case of the TTD problem to other problems of Mathematical Programming.
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2 Truss Topology Design with Robustness Con-
straints

2.1 Trusses, loads, compliances

Informally, a truss is a 2D or 3D construction comprised of thin elastic bars
linked with each other at nodes – points from finite nodal set V given in
advance in 2D plane, respectively, 3D space. When subjected to a given
load – distribution of external forces applied at the nodes – the construction
deformates, until the reaction forces caused by deformations of the bars
compensate the external load. The deformated truss capacitates certain
potential energy, and this energy – the compliance – measures stiffness of
the truss, its ability to withstand the load; the less is compliance, the more
rigid is the truss with respect to the load.

In the usual Truss Topology Design (TTD) problem we are given the
nodal set and one (single-load TTD) or several (multi-load TTD) loads, along
with total volume of the bars. The displacements of some of the nodes are
completely or partially fixed, so that the space Rv of virtual displacements
of node v is certain linear subspace and the problem is to distribute the given
volume of the truss between the bars in order to get the most rigid construc-
tion, i.e., the one which minimizes the maximal compliance over the given
set of loads. Some of the bars can get zero volume, i.e., be eliminated from
the resulting construction, so that in fact the topology of the construction
is optimized as well (this is the origin of the term “Topology Design”).

The mathematical formulation of the problem, in its simplest form, is as
follows.

Given are:

• graph (V,B) (ground structure) with the nodal set V ⊂ RD (D = 2, 3)
comprised of n̂ nodes and with arc set B of m tentative bars;

• collection of linear subspaces Rv ⊂ RD, v ∈ V – the spaces of virtual
displacements of the nodes.

We refer to the quantity n =
∑
v∈V dimRv as the number of degrees

of freedom of the nodal set and call the space Rn =
∏
v∈V Rv the

space of nodal displacements. A vector x ∈ Rn can be naturally inter-
preted as collection of virtual displacements of the nodes. Similarly,
a load – collection of external forces applied at the nodes – can be
interpreted as a vector from Rn (one can ignore the components of
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the forces orthogonal to the subspaces of virtual nodal displacements,
since these components are compensated by supports restricting vir-
tual displacements of nodes; the remaining components of the forces
can be naturally assembled in a vector from Rn).

• When designing the truss, we are given a finite set F ⊂ Rn of loading
scenarios; the truss should be able to carry the load for each of the
scenarios.

• The design variables in the problem are bar volumes ti, i = 1, ...,m;
along with the nodal set V, they completely determine the truss. we
allow ourselves, for the sake of brevity, truss t. We are given the total
volume V > 0 of the bars, so that the set of all admissible vectors of
bar volumes is the simplex

T = {t ∈ Rm| t ≥ 0,
m∑

i=1

ti = V }.

With the elastic model of the bars, deformation of truss accompanied
by displacement x ∈ Rn of the nodes results in the vector of reaction
forces A(t)x, where t is the vector of bar volumes and

A(t) =
m∑

i=1

tiAi

is the n× n bar-stiffness matrix of the truss. The bar-stiffness matrix
Ai of the i-th bar is readily given by the geometry of the nodal set,
and involves the Young modulus of the material. What is crucial for
us, is that, for all i,

Ai = bib
T
i (1)

is a rank 1 positive semidefinite symmetric matrix (for explanations
and details, see, e.g., [1, 2, 3]).

Given t ∈ T and a load f ∈ F , one can associate with this pair the
equilibrium equation

A(t)x = f (2)

(as was explained, x is the vector of nodal displacements caused by the load
f , provided that the vector of bar volumes is t). Solvability of this equation
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means that the truss is capable of carrying the load f , and if this is the case,
then the compliance1

cf (t) ≡ fTx = sup
u∈Rn

[
2fTu− uTA(t)u

]
(3)

is regarded as a measure of internal work done by the truss with respect to
the load f ; the smaller is the compliance, the larger is the stiffness of the
truss. If the equilibrium equation (2) for a given t is unsolvable, then it is
convenient to define the compliance cf (t) as +∞, which is compatible with
the second equality in (3).

The problem of optimal minmax Truss Topology Design is to find the
vector of bar volumes which results in the smallest possible worst-case com-
pliance:

(TDminmax) : find t ∈ T which minimizes the worst-case com-
pliance cF (t) = supf∈F cf (t).

From now on we assume that the problem is well-posed, i.e., that

A. The matrix
∑m
i=1Ai is positive definite

(this actually means that the supports prevent rigid body motion of the
truss).

2.2 Robustness constraint: Motivation

The “standard” case of problem (TDminmax) is the one when F is a singleton
(single-load TTD problem) or a finite set comprised of small number (3-5)
of loads (multi-load TTD problem). An evident shortcoming of both these
settings is that they do not take “full” care of the robustness of the resulting
truss. The associated optimal design ensures reasonable (in fact the best
possible) behaviour of the truss under the loads from the list of scenarios
F ; it may happen however that a load not from this set, even a “small”
one, will cause an inappropriately large deformation of the truss. Consider,
e.g., the following toy example. Fig. 1 represents 6-element nodal set with 2
fixed nodes (Rv = {0}) and 4 free nodes (Rv = R2), the “ground structure”
– the set of all tentative bars, and the load f which is the unique element
of F .

1The “true” compliance, as defined in Mechanics, is one half of the quantity given by
(3); we rescale the compliance in order to avoid multiple fractions 1

2
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Figure 1: Ground structure and loading scenario * – free nodes; # – fixed
nodes; arrows – forces.
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Figure 2: Optimal single-load design.
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Fig. 2 shows the results of the usual single-load design which results in
the optimal compliance 16.000. Note that the resulting truss is completely
unstable: e.g., the bar linking nodes 5 and 6 can rotate around node 5,
so that arbitrarily small non-horizontal force applied at node 6 will cause
infinite compliance.

It seems that a “good” design should ensure reasonable compliances
under all tentative loads of reasonable magnitude acting at the nodes of the
resulting truss, not only “the best possible” compliance under the small list
of loads in F of primary interest.

The indicated requirement can be modeled as follows. When formulating
the problem, the engineer embeds a small finite set of loads F = {f1, ..., fq}
he is especially interested in (“primary” loads) into a “more massive” set
M containing F , but also “occasional loads” of perhaps much smaller mag-
nitude (“secondary” loads), and looks for the truss t ∈ T which minimizes
the worst-case compliance cM (t) taken with respect to this extended set M
of loading scenarios.

In order to get a computationally tractable problem, in what follows we
restrict ourselves to the case where M is an ellipsoid centered at the origin2.

M = QWq ≡ {Qe| e ∈ Rq, eT e ≤ 1}.

Here Q is a given n × q “scale” matrix, and Wq is the unit Euclidean ball
in Rq. Note that we allow the case q < n as well, where M is ”flat” q-
dimensional ellipsoid.

The corresponding modification of (TDminmax) is as follows:

(TDrobust) : find t ∈ T which minimizes the compliance

cM (t) = max
eT e≤1

max
x∈Rn

[
2(Qe)Tx− xTA(t)x

]
.

2.3 Selection of scale matrix Q

Problem (TDrobust) takes care of all loads f ∈M , M being the image of the
unit q-dimensional Euclidean ball under the mapping e 7→ Qe. It follows
that if a load f ∈M has a nonzero force acting at certain node l, then this
node will for sure be present in the resulting construction. This observation

2the only other case when the indicated problem is computationally tractable seems to
be that one of a polytope M given by the list of its vertices. This case hardly deserves a
special consideration, since it leads to the standard multi-load TTD problem
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means that we should be very careful when forming Q – otherwise we en-
force incorporating into the final construction the nodes which in fact are
redundant. There are two ways to meet the latter requirement:

A. We could use the indicated approach as a postoptimality analysis;
after we have found the solution to the usual multi-load TTD problem,
given the resulting nodal structure, we can improve the robustness of the
solution by solving (TDrobust) associated with this nodal structure.

B. We know in advance some nodes which for sure will present in the
solution (certainly the nodes where the forces from the given loading scenar-
ios are applied) and it seems to be natural to require rigidity with respect
to all properly scaled forces acting at these ”active” nodes.

Let us discuss in more details the latter possibility. Let F = {f1, ..., fk}
be the given set of loading scenarios. We say that a node v ∈ V is active with
respect to F if the projection of certain load fj on the space Rv of virtual
displacements of the node is nonzero. Let V∗ be the set of all active nodes.
Our goal is to embed F into a ”reasonably chosen” ellipsoid M in the space
Rq =

∏
v∈V∗ Rv (which for sure will be the part of the displacement space

in the final construction). According to our motivation, M should contain

• the set F of given loads;

• the ball B = {f ∈ Rq| fT f ≤ r2} of all “occasional” loads of prescribed
magnitude r.

The most adequate to our motivation setup M = F ∪ B is inappropriate –
as it was explained, we need M to be an ellipsoid in order to get a computa-
tionally tractable problem, so that we should look for “the smallest possible”
ellipsoid M containing F ∪B. The simplest interpretation of “the smallest
possible” here is in terms of q-dimensional volume. Thus, it is natural to
choose as M the ellipsoid in Rq centered at the origin and containing F ∪B
of the minimum q-dimensional volume. To form the indicated ellipsoidal
envelope M of F and B is a convex problem; since normally q is not large,
there is no difficulty to solve the problem numerically. Note, however, that
there exists an “easy case” where M can be pointed out explicitly. Namely,
let L(F ) ⊂ Rk be the linear span of F . Assume that

1. the loads f1, ..., fk are linearly independent;

2. the convex hull F̂ of the set F ∪ (−F ) contains the k-dimensional ball
B′ = B ∩ L(F ).
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Note that in actual design both these assumptions normally are satisfied.

Lemma 2.1 Under the indicated assumptions the ellipsoidal envelope of F
and B is

M = QWq, Q = [f1; ...; fk; re1; ...; req−k] , (4)

where e1, ..., eq−k is an orthonormal basis in the orthogonal complement to
L(F ) in Rq.

Proof. We can choose an orthonormal basis in Rq in such a way that
the first k vectors of the basis span L(F ) and the rest q − k vectors span
the orthogonal complement L⊥(F ) to L(F ) in Rq. Let x = (u, v) be the
coordinates of a vector in this basis (u are the first k and v are the rest q−k
coordinates). A centered at the origin ellipsoid E in Rq can be parameterized
by a positive definite symmetric q × q matrix A:

E = {x|xTAx ≤ 1};

the squared volume of E is inversely proportional to detA. The matrix
A∗ corresponding to the minimum volume centered at the origin ellipsoid
containing F and B is therefore an optimal solution to the following convex
program:

ln detA→ max |A = AT > 0, xTAx ≤ 1 ∀x ∈ B ∪ F̂ . (5)

The problem clearly is solvable, and since its objective is strictly concave on
the cone of positive definite symmetric q×q matrices, the solution is unique.
On the other hand, let J be the matrix of the mapping (u, v) 7→ (u,−v); then
the mappingA 7→ JTAJ clearly is a symmetry of (5): this mapping preserves
feasibility and does not vary the value of the objective. We conclude that
the optimal solution is invariant with respect to the indicated mapping:
A∗ = JA∗J , whence A∗ is block diagonal with k × k diagonal block U∗ and
(q − k) × (q − k) diagonal block V∗. Since the ellipsoid {x|xTA∗x ≤ 1}
contains B ∪ F̂ , the k-dimensional ellipsoid M ′ = {u|uTU∗u ≤ 1} in L(F )
contains F̂ , while the (q − k)-dimensional ellipsoid M ′′ = {v| vTV∗v ≤ 1} in
L⊥(F ) contains the ball B′′ centered at the origin of the radius r in L⊥(F ).

Now let U = UT > 0 and V = V T > 0 be k×k and (q−k)× (q−k) ma-
trices such that the ellipsoids E′ = {u|uTUu ≤ 1} and E′′ = {v| vTV v ≤ 1}
contain F̂ and B′′, respectively. We claim that then the ellipsoid {x|xTAx ≤
1}, A = Diag(U, V ), contains B ∪ F̂ . Indeed, the ellipsoid clearly contains
F̂ , and all we need is to verify that if x = (u, v) ∈ B, i.e., uTu+ vT v ≤ r2,
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then uTUu + vTV v ≤ 1. This is immediate: since E′ ⊃ F̂ ⊃ B′, we have
uTUu ≤ 1 whenever uTu ≤ r2, or, which is the same, uTUu ≤ r−2uTu for all
u. Similarly, E′′ ⊃ B′′ implies that vTV v ≤ r−2vT v, so that uTu+vT v ≤ r2

indeed implies uTUu+ vTV v ≤ 1.
The above observations combined with the identity ln detA = ln detU +

ln detV for positive definite symmetric A = Diag(U, V ) demonstrate that
the block U∗ of the optimal solution to (5) corresponds to the minimum
volume ellipsoid in L(F ) containing F̂ , and similarly for V∗, L⊥(F ) and B′′.
In other words, M is the “ellipsoidal product” of the ellipsoid M ′ of the
minimum volume in L(F ) containing F ∪ (−F ) and the ball B′′ in L⊥(F ):
if M ′ = Q′Wk, then

M =
[
Q′; re1; ...; req−k

]
Wq.

To conclude the proof, it suffices to verify that one can choose, as Q′, the
matrix [f1; ...; fk], which is immediate. Indeed, let s1, ..., sk be an orthonor-
mal basis in L(F ), and let D be the linear transformation of L(F ) which
maps si onto fi, i = 1, ..., k. Since the ratio of k-dimensional volumes of
solids in L(F ) remains invariant under the transformation D, M ′ = DN ′,
where N ′ is the minimum volume ellipsoid centered at the origin in L(F )
containing s1, ..., sk. The latter ellipsoid is clearly [s1; ...; sk]Wk, whence

M ′ = DN ′ = {D(
k∑

i=1

λisi)|λ ∈Wk} = {
k∑

i=1

λifi|λ ∈Wk} = [f1; ...; fk]Wk.

Remark 2.1 Evident modification of the proof of Lemma 2.1 demonstrates
that the minimum volume ellipsoid in Rq centered at the origin and con-
taining F ∪ B always is the “ellipsoidal product” of the minimum volume
ellipsoid M ′ in L(F ) containing F ∪ (−F ) ∪ B′ and the ball B′′ in L⊥(F ):
if M ′ = Q′W

k̂
, k̂ = dim L(F ), then M =

[
Q′; re1, ..., req−k̂

]
Wq, e1, ..., eq−k̂

being an orthonormal basis in L⊥(F ). Thus, to find M is, basically, the
same as to find M ′, and this latter convex problem normally is of quite a
small dimension, since k̂ ≤ k and typically k ≤ 5.

The outlined way of modeling the robustness constraint is, perhaps, more
reasonable than the usual multi-load setting of the TTD problem. Indeed,
the new model enforces certain level of rigidity of the resulting construction
with respect not only to the primary loads, but also to loads associated
with “active” nodes. At the same time, it turns out, as we are about to
demonstrate, that the resulting problem (TDrobust) is basically not more



ROBUST TRUSS DESIGN VIA SDP 11

computationally demanding than the usual multi-load TTD problem of the
same size (i.e., with the same ground structure and the number of scenario
loads equal to the dimension of the loading ellipsoid used in (TDrobust)).

2.4 Semidefinite reformulation of (TDrobust)

Our goal now is to rewrite (TDrobust) equivalently as a so called semidefinite
program. To this end we start with the following simple result.

Lemma 2.2 Let A be a positive semidefinite n× n matrix, and let

c = max
x∈Rn;e∈Rq :eT e≤1

[
2(Qe)Tx− xTAx

]
. (6)

Then the inequality c ≤ τ is equivalent to positive semidefiniteness of the
matrix

A =
(
τIq QT

Q A

)
,

Iq being the unit q × q matrix.

Proof. We have

c ≤ τ ⇔ ∀(x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τ − 2(Qe)Tx+ xTAx ≥ 0⇔
[by homogeneity reasons]

∀(λ > 0, x ∈ Rn, e ∈ Rq, eT e ≤ 1) : τλ2 − 2(Qλe)T (λx) + (λx)TA(λx) ≥ 0⇔
[set λe = f, λx = y]

∀(λ > 0, y ∈ Rn, f ∈ Rq, fT f ≤ λ2) : τλ2 − 2(Qf)T y + yTAy ≥ 0⇒
∀
((

f
y

)
∈ Rq+n

)
:
(
f
y

)T (
τIq QT

Q A

)(
f
y

)
≡ τfT f − 2(Qf)T y + yTAy ≥ 0.

Thus, τ ≥ c ⇒ A ≥ 0. Vice versa, if A ≥ 0, then clearly τ ≥ 0, and
therefore the implication ⇒ in the above chain can be inverted.

Remark 2.2 It is well-known that a symmetric matrix
(
U QT

Q A

)
with

positive definite U is positive semidefinite if and only if A ≥ QU−1QT .
Applying this observation to the case of U = τIq, we can reformulate the
result of Lemma 2.2 as follows:

The compliance c of a truss t with respect to the ellipsoid of loads M =
QWq is ≤ τ if and only if A(t) ≥ τ−1QQT .
In the particular case when QQT is the orthoprojector P onto the linear
span L of the columns of Q, the above observation can be reformulated as
follows:
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c ≤ τ if and only if the minimum eigenvalue of the restriction of A(t)
onto L is ≥ τ−1

(in the general case, the interpretation is similar, but instead of the usual
minimum eigenvalue of the restriction we should speak about minimum
eigenvalue of the matrix pencil (A|L, QQT |L) on L).

In view of Lemma 2.2, problem (TDrobust) can be rewritten equivalently
as the following Semidefinite Program:

(TDsd)
min

t∈Rm,τ∈R
τ

s.t. (
τIq QT

Q A(t)

)
≥ 0,

t ≥ 0∑m
i=1 ti = V

(here and in what follows the inequality A ≥ B between symmetric matrices
means that the matrix A−B is positive semidefinite).

3 Deriving a dual problem to (TDsd)

Here we derive the Fenchel-Rockafellar [11] dual to the problem (TDsd) .
The latter problem is of the form

min{τ : A(τ, t) +B ∈ S+, t ∈ T},

where
A(τ, t) =

(
τIq 0
0 A(t)

)

is a linear mapping from R × Rn to the space S of symmetric (n + q) ×
(n+ q) matrices equipped with the standard Frobenius Euclidean structure
〈X,Y 〉 = Tr(XY ), S+ is the cone of positive semidefinite matrices from S
and

B =
(

0 QT

Q 0

)
∈ S.

We write the problem in the Fenchel-Rockafellar primal scheme:

(P) min {f(τ, t)− g(A(τ, t))} ,
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where
f(τ, t) = τ + δ(t|T ), g(X) = −δ(X +B|S+)

and δ(x|W ) is the indicator function of a set W . To derive the dual to (P),
we need to compute the conjugates f∗ and g∗ of the convex function f and
the concave function g, which is quite straightforward:

f∗(σ, s) = supτ,t{στ + sT t− τ | t ∈ T} =
{
V max1≤i≤n si ,σ = 1
+∞ ,otherwise

;

g∗(R) = infS{Tr(SR)|S +B ∈ S+} = inf{Tr((Z −B)R)|Z ∈ S+}
=

{−Tr(BR), R ∈ S+

−∞, otherwise

(we have used the well-known fact that the cone of positive semidefinite
matrices is self-conjugate with respect to the Frobenius Euclidean structure).

The Fenchel-Rockafellar dual to (P) is

(D) supR∈S {g∗(R)− f∗(A∗R)} ,
where A∗ : S→ R×Rn is the adjoint to A.

Representing R ∈ S in the block form

R =
(

Λ XT

X Y

)

(Λ is q × q, Y is n× n), we get

A∗R =




τ = Tr Λ
t1 = Tr(A1Y )

...
tn = Tr(AnY )


 .

Substituting the resulting expressions for f∗, g∗ and A∗, we come to the
following explicit formulation of the dual problem (D):

(D) max
[
−2 Tr(QXT )− V maxi=1,...,m[Tr(AiY )]

]
,

s.t. (
Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being: symmetric q × q and n × n matrices Λ, Y , re-
spectively, and n× q matrix X.

Note that the functions f and g in (P) are clearly closed convex and
concave, respectively. Moreover, from the well-posedness assumption A, it
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immediately follows that (P) is strictly feasible (i.e., the relative interiors of
the domains of f(τ, t) and φ(τ, t) = g(A(τ, t)) have nonempty intersection,
and the image of the mapping A intersects the interior of the domain of g);
to see this, choose arbitrary positive t ∈ T and enforce τ to be large enough).
Of course (P) is bounded below (the compliance always is nonnegative), thus,
all requirements of the Fenchel-Rockafellar Duality Theorem are satisfied,
and we come to

Proposition 3.1 (D) is solvable, and the optimal values in (P) and (D) are
equal to each other.

Remark 3.1 To the moment, we dealt with the TTD problem with simple
constraints on the bar volumes:

t ∈ T = {t ∈ Rn| t ≥ 0,
n∑

i=1

ti = V }.

In the case when there are also lower and upper bounds on the bar volumes,
so that the constraints on t are

t ∈ T+ = {t ∈ T |L ≤ t ≤ U},

(U > L ≥ 0 are given n-dimensional vectors), the above derivation results
in a dual problem as follows:

(Db) max
[
−2 Tr(QXT )− λV −∑n

i=1 max [(Tr(Y Ai)− λ)Li; (Tr(Y Ai)− λ)Ui]
]

s.t. (
Λ XT

X Y

)
≥ 0, Tr Λ = 1,

the design variables being real λ, symmetric q×q matrix Λ, symmetric n×n
matrix Y and n× q matrix X.

4 A simplification of the dual problem (D)

Our next goal is to simplify problem (D), derived in the previous section, by
eliminating the matrix variable Y . To this end it suffices to note that (D)
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can be rewritten as
(TDdl)

min
X∈Rn×q ,Λ=ΛT∈Rq×q ,Y=Y T∈Rn×n,ρ∈R

[2 Tr(QXT ) + V ρ]

s.t.
(α) Tr(Y Ai) ≤ ρ, i = 1, ...,m

(β)
(

Λ XT

X Y

)
≥ 0

(γ) Tr(Λ) = 1

(we have replaced the maximization problem (D) by an equivalent mini-
mization one). Note that (TDdl) is strictly feasible – there exists a feasible
solution where all scalar inequality constraints and the matrix inequality
one are strict (take Λ = q−1Iq, Y = In and enforce ρ to be large enough).

The matrix inequality (β) clearly implies that Λ is positive semidefinite.
Thus, we do not vary (TDdl) when adding (in fact, redundant) inequality
Λ ≥ 0. Now let us strengthen, for a moment, the latter inequality to

Λ > 0 (7)

i.e. to positive definiteness of Λ; it is immediately seen from strict feasibility
of (TDdl) that the transformation does not violate the optimal value of the
problem, although it may cut off the optimal solution (anyhow, from the
computational viewpoint the exact solution is nothing but a fiction). Thus,
we may focus on the problem (TD′dl) obtained from (TDdl) by adding to the
list of constraints inequality (7).

The pair of matrix inequalities (β), (7) which are present among the
constraints of (TD′dl) is equivalent to the pair of matrix inequalities

Λ > 0; Y ≥ Y ∗(Λ, X) = XΛ−1XT .

Now let (Λ, X, Y, ρ) be a feasible solution to (TD′dl) ; then, as we just have
mentioned, Y ≥ Y ∗(Λ, X) and the collection (Λ, X, Y ∗ = Y ∗(Λ, X), ρ) satis-
fies (β), (γ) and (7). Moreover, since Ai are symmetric positive semidefinite
and Y ≥ Y ∗, we have Tr(Y Ai) ≥ Tr(Y ∗Ai), so that the updated collection
satisfies (α) as well, and (Λ, X, Y ∗, ρ) is feasible for (TD′dl) . Note that the
transformation (Λ, X, Y, ρ) 7→ (Λ, X, Y ∗(Λ, X), ρ) does not affect the objec-
tive function of the problem. We conclude that (TD′dl) can be equivalently
rewritten as

minX∈Rn×q ,Λ=ΛT∈Rq×q ,ρ∈R 2 Tr(QXT ) + V ρ
s.t.

Λ > 0, Tr(Λ) = 1, ρ ≥ Tr(XΛ−1XTAi), i = 1, ...,m.
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Substituting Ai = bib
T
i (see (1)), we can rewrite the constraints

ρ ≥ Tr(XΛ−1XTAi)

as
ρ ≥ (XT bi)TΛ−1(XT bi),

which is the same (since Λ = ΛT > 0), as
(

Λ XT bi
bTi X ρ

)
≥ 0.

With this substitution, the problem (TD′dl) becomes

minX∈Rn×q ,Λ=ΛT∈Rq×q ,ρ∈R 2 Tr(QXT ) + V ρ
s.t.

Λ > 0, Tr(Λ) = 1,
(

Λ XT bi
bTi X ρ

)
≥ 0, i = 1, ...,m.

When replacing the strict inequality Λ > 0 in the latter problem with the
nonstrict one Λ ≥ 0, we clearly do not vary the optimal value of the problem;
in the modified problem, the inequality Λ ≥ 0 is in fact redundant (it follows

from positive semidefiniteness of any of the matrices
(

Λ XT bi
bTi X ρ

)
). With

these modifications, we come to the final formulation of the problem dual
to (TDrobust) :

(TDfn)
min

Λ=ΛT∈Rq×q ,X∈Rn×q ,ρ∈R
2 Tr(QXT ) + V ρ

s.t. (
Λ XT bi
bTi X ρ

)
≥ 0, i = 1, ...,m,

Tr(Λ) = 1

.

Note that (TDfn) is very similar to the standard multi-load TTD problem
in dual setting [5]; the only difference is that in the latter problem Λ is further
restricted to be diagonal.

5 Recovering the bar volumes

To the moment, the only relation between the initial primal problem (TDrobust) and
the dual one (TDfn) is that their optimal values are negations of each other
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(note that when coming to (TDfn) from the maximization problem (TDdl) which
has the same optimal value as (TDsd) , we have changed the sign of the
objective and have replaced maximization with minimization). Thus, the
problem arises: how to restore good approximate solutions to (TDrobust) via
good approximate solutions to (TDfn) . To resolve this problem, we first
derive the Fenchel-Rockafellar dual (TD∗fn) to (TDfn) and recognize in it the
initial problem (TDrobust) , and then use the well-known relation in Interior-
Point Theory between “central path” approximate solutions to (TDfn) and
approximate solutions to (TD∗fn) .

5.1 A dual problem to (TDfn)

Similar to the above, we represent problem (TDfn) in the Fenchel-Rockafellar
scheme:

(PI) min {f(Λ, X, ρ)− g(A(Λ, X, ρ))} ,
where

f(Λ, X, ρ) = 2 Tr(QXT ) + V ρ+ δ(Tr(Λ)|{1}),

A(Λ, X, ρ) = Diag
{(

Λ XT bi
bTi X ρ

)
, i = 1, ...,m

}

is the linear mapping from the space of design variables of (TDfn) to the
space S of block-diagonal symmetric matrices with m diagonal blocks of the
sizes (q + 1)× (q + 1) each, and

g(W ) = −δ(W |S+),

S+ being the cone of positive semidefinite matrices from S.
The dual to (P) is

(DI) maxR∈S {g∗(R)− f∗(A∗R)} ,
where A∗ is the operator adjoint to A. Here

f∗(L,Ξ, r) = supΛ,X,ρ

[
Tr(ΛL) + Tr(ΞXT ) + rρ− f(Λ, X, ρ)

]

= supΛ [Tr(ΛL)− δ(Tr(Λ)|{1})] + supX
[
Tr(ΞXT )− 2 Tr(QXT )

]
+

supρ [rρ− V ρ]
= 1

q Tr(L) + δ((L,Ξ, r)|{(L = λIq, 2Q,V )|λ ∈ R})
=

{
λ, if L = λIq for some λ ∈ R and Ξ = 2Q, r = V
∞, otherwise
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and
g∗(R) = inf

S
[Tr(SR) + δ(S|S+)] = −δ(R|S+)

(here we again used the fact that the cone S+ is self-dual with respect to
the Frobenius Euclidean structure of S).

Denoting a generic element of S as

R = Diag
{(

Li di
dTi ti

)
, i = 1, ...,m

}

(Li are symmetric q × q matrices, di are q-dimensional vectors, ti are reals)
it can be seen that:

A∗R = (L =
m∑

i=1

Li,Ξ = 2
m∑

i=1

bid
T
i , r =

m∑

i=1

ti).

With these relations, the dual (DI) to (PI) becomes

(TD∗fn)
min

λ∈R,Li=LTi ∈Rq×q ,di∈Rq ,ti∈R
λ

s.t.
(α)

∑m
i=1 Li = λIq,

(β)
∑m
i=1 bid

T
i = Q,

(γ)
∑m
i=1 ti = V,

(δ)
(
Li di
dTi ti

)
≥ 0, i = 1, ...,m

(we again have replaced a maximization problem with the equivalent mini-
mization one).

Problem (TDfn) clearly satisfies the assumption of the Fenchel-Rockafellar
Duality Theorem, and this together with Proposition 3.1 proves

Proposition 5.1 Problem (TD∗fn) is solvable, and its optimal value λ∗ is
equal to the optimal value c∗ of the initial problem (TDrobust) .

It is not difficult to guess that the variables ti involved into (TD∗fn) can
be interpreted as our initial bar volumes ti. The exact statement is given
by the following

Theorem 5.1 Let R = {λ;Li, di, ti, i = 1, ...,m} be a feasible solution to
(TD∗fn) . Then the vector t = (t1, ..., tm) is a feasible solution to (TDrobust) ,
and the value of the objective of the latter problem at t is less than or equal
to λ. In particular, if R is an ε-solution to (TD∗fn) (i.e., λ− λ∗ ≤ ε), then t
is an ε-solution to (TDrobust) (i.e., cM (t)− c∗ ≤ ε).
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Proof. The “in particular” part of the statement follows from its first part
due to Proposition 5.1, and all we need is to prove the first part. From
the positive semidefiniteness constraints (δ) in (TD∗fn) it follows that t ≥ 0,
which combined with (γ) implies the inclusion t ∈ T . To complete the proof,
we should verify that cM (t) ≤ λ.

Let e ∈ Rq, eT e ≤ 1. From (β) we have

Qe =
m∑

i=1

(dTi e)bi.

Let x ∈ Rn. Due to Ai = bib
T
i , we have

φe(x) ≡ 2(Qe)Tx− xTA(t)x
=

∑m
i=1 2(dTi e)(b

T
i x)− ti

∑m
i=1(bTi x)2

=
∑m
i=1

[
2(dTi e)(b

T
i x)− ti(bTi x)2

]

[denoting si = −bTi x]
= −∑m

i=1

[
eTLie+ 2(dTi e)si + tis

2
i

]
+
∑m
i=1 e

TLie

= −∑m
i=1

(
e
si

)T ( Li di
dTi ti

)(
e
si

)
+
∑m
i=1 e

TLie

[by (δ)]
≤ ∑m

i=1 e
TLie

[by (α)]
= λ.

Thus, φe(x) ≤ λ for all x. By definition, cM (t) is the upper bound of φe(x)
over x, and the inequality cM (t) ≤ λ then follows.

Remark 5.1 Note that (TD∗fn) is a natural modification of the “bar-forces”
formulation of the usual multi-load Truss Topology Design problem, see [5].

6 Solving (TDfn) and (TD∗fn) via interior point meth-
ods

Among numerical methods available for solving semidefinite programs like
(TDfn) and (TD∗fn) , the most attractive (in fact the only meaningful in the
large scale case) are the recent interior point algorithms (for relevant gen-
eral theory, see [10]). Here we discuss the corresponding possibilities. In
what follows we restrict ourselves with outlining the main elements of the
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construction, since our goal now is not to present detailed description of the
algorithms, but to demonstrate that

I. From the above semidefinite programs related to Truss Topology De-
sign with robustness constraints, the most convenient for numerical process-
ing by interior point methods is the problem (TDfn)

II. Solving (TDfn) by interior point path-following methods, one has the
possibility of generating, as a byproduct, good approximate solutions to the
problem of interest (TD∗fn) , i.e., of recovering the primal design variables
(bar volumes).

When solving a generic semidefinite program

(SP) σT ξ → min | A(ξ) ∈ S+,

ξ ∈ RN being the design vector, A(ξ) being an affine mapping from RN

to the space S of symmetric matrices of certain fixed block-diagonal struc-
ture, and S+ being the cone of positive semidefinite matrices from S, by a
path-following interior point method, one defines the family of barrier-type
functions

Fs(ξ) = sσT ξ + Φ(A(ξ)), Φ(Ξ) = − ln Det Ξ,

and traces the central path – the path of minimizers

ξ∗(s) = argmin
ξ∈DomFs

Fs(ξ).

If (SP) is strictly feasible (i.e., A(ξ) is positive definite for certain ξ) and
the level sets

{ξ ∈ RN | A(ξ) ∈ S+, σ
T ξ ≤ a},

a ∈ R, are bounded, then the path ξ∗ is well-defined and converges, as
s → ∞, to the optimal set of the problem. In the path-following scheme,
one generates close (in certain exact sense) approximations ξi to the points
ξ∗(si) along certain sequence {si} of penalty parameters “diverging to ∞
fast enough”, thus generating a sequence of strictly feasible approximate
solutions converging to the optimal set. Updating (si, ξi) 7→ (si+1, ξi+1) is
as follows: first, we increase, according to certain rule, the current value si
to a larger value si+1. Second, we restore closeness to the path of the new
point ξ∗(si+1) by running the damped Newton method – the recurrence

y 7→ y+ = y − (1 + λ(Fs, y))−1[∇2
yFs(y)]−1∇yFs(y),

λ(Fs, y) =
√
∇Ty Fs(y)[∇2

yFs(y)]−1∇yFs(y),
(8)
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with s set to si+1. The recurrence is started at y = ξi and is terminated
when, for the first time, it turns out that λ(Fsi+1 , y) ≤ κ, κ ∈ (0, 1) being
a once for ever fixed threshold. (Thus, the exact meaning of “closeness of
a point ξ to the point ξ∗(s) is given by the inequality λ(Fs, ξ) ≤ κ. In
what follows, for the sake of definiteness, it is assumed that κ = 0.1). The
resulting y is chosen as ξi+1, and the process is iterated.

It is known that

• it is possible to trace the path “quickly”: with reasonable policy of
updating the values of the penalty parameter, it takes, for any T > 2,
no more than

M = M(T ) = O(1)
√
µ lnT

Newton steps (8) to come from a point ξ0 close to ξ∗(s0)

to a point ξM close to ξ∗(sM ), with sM ≥ Ts0; here µ is the total row
size of the matrices from S and O(1) is an absolute constant;

• if ξ is close to ξ(s), then the quality of ξ as an approximate solution
to (SP) can be expressed via the value of s alone:

σT ξ − σ∗ ≤ 2µ
s
, (9)

σ∗ being the optimal value in (SP);

• being close to the path, it is easy to come “very close” to it: if λ ≡
λ(Fs, y) ≤ 0.1, then (8) results in

λ+ ≡ λ(Fs, y+) ≤ 2.5λ2. (10)

Although the indicated remarks deal with the path-following scheme only,
the conclusions related to the number of “elementary steps” required to solve
a semidefinite program to a given accuracy and to the complexity of a step
(dominated by the computational cost of the Newton direction, see (8)) are
valid for other interior point methods for Semidefinite Programming. The
“integrated” complexity characteristic of an interior point method for (SP)
is the quantity

C =
√
µCNwt,

where CNwt is the arithmetic cost of computing the Newton direction. In-
deed, according to the above remarks, it takes O(1)

√
µ Newton steps to

increase the value of the penalty by an absolute constant factor, or, which
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is the same, to reduce by the same factor the (natural upper bound for)
inaccuracy of the current approximate solution.

Now let us look at the complexity characteristic C for the semidefinite
programs related to (TDrobust) . In the table below we write down the prin-
cipal terms of the corresponding quantities (omitting absolute constant fac-
tors); it is assumed (as it is normally the case for Truss Topology Design)
that

m = O(n2); q << n.

The expression for CNwt corresponds to the “explicit” policy when we first
assemble, in the natural manner, the Hessian matrix ∇2

ξFs(·) and then solve
the resulting Newton system by traditional direct Linear Algebra routines
like Choleski decomposition. It turns out that the specific structure of ma-
trix inequalities in our problems3 allows to assemble the Hessians at rela-
tively low cost, so that the cost of a single Newton step is dominated by
the complexity of Choleski factorization of the Hessian, i.e., by cube of the
design dimension of the corresponding problem. With this remark, we come
to the results as follows:

Model µ CNwt C
(TDsd) m m3 m3.5 ≈ n7

(TDdl) m m3 m3.5 ≈ n7

(TDfn) qm q3n3 q3.5n4

(TD∗fn) qm q6m3 q6.5m3.5 ≈ q6.5n7

The reader should be aware that there are “implicit” schemes of comput-
ing the Newton direction in in (TD∗fn) with arithmetic cost O(q3n3) (the
same as in (TDfn) ). Thus, in fact the primal and dual problems in primal-
dual pairs ((TDsd) ,(TDdl) ), ((TDfn) ,(TD∗fn) ) are theoretically equivalent
in complexity; moreover, there are “symmetric” primal-dual methods which
solve simultaneously the primal-dual pair of the problems at the complexity,
respectively, O(n7) and O(q3.5n4). Nevertheless, we believe that at the mo-
ment practical considerations still are in favour of “purely primal” methods
as applied to (TDsd) in the first primal-dual pair and to (TDfn) in the second
pair. The reason is that the feasible planes L in the “unfavourable” problems
of the above pairs are given by linear equalities, while in the “favourable”
components of the pairs they are parameterized (from the very beginning
they are represented as images of affine mappings). Now, the theoretically

3in particular, the fact that in TTD design each of the vectors bi has O(1) nonzero
entries – at most 4 in the case of 2D and at most 6 in the case of 3D trusses
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efficient way to compute the Newton direction for an “unfavourable” prob-
lem represents the direction as the difference of certain “exactly known”
vector and its projection on the orthogonal complement to L. Such a com-
putation is relatively unstable: rounding errors make the actually computed
Newton directions non-parallel to L, and the iterates eventually become far
from the feasible plane. In order to overcome this instability, in the existing
software for Semidefinite problems “expensive” Linear Algebra routines, like
QR factorization, are used, at least at the final phase of computations. In
contrast to this, in the “favourable” problems the Newton direction is com-
puted in the space of parameters identifying a point on the feasible plane,
so that there is no danger of being kicked off this plane.

With the above remarks, it is clear that among the semidefinite programs
we introduced, the most convenient for numerical processing by interior
point methods is (TDfn) , as it was claimed in I. There is, however, an a
priori drawback of this approach: what we need, are the bar volumes, and
they “are not seen” at all in (TDfn) . We are about to demonstrate that in
order to overcome this difficulty it suffices to solve (TDfn) not by an arbitrary
interior point method, but with a path-following one.

Assume that we are applying a path-following method to (TDfn) and
have computed a point ξ = (Λ, X, ρ) close (in the aforementioned sense) to
the point ξ∗(s). From (10) it follows that a small number of steps of the
recurrence (8) started at ξ allows to come “very close” to ξ∗(s) (6 steps of
the recurrence restore ξ∗(s) within machine accuracy). We may, therefore,
assume for the sake of simplicity that we can “stand at the path”, i.e.,
operate with ξ∗(s) itself rather than with a tight approximation of the point4.
It turns out that given ξ∗(s), one can explicitly generate a feasible solution
to (TD∗fn) of inaccuracy ≤ O(1/s). The exact statement is as follows:

Proposition 6.1 Let s > 0, and let ξ∗(s) = (Λs, Xs, ρs) be the minimizer
of the function

Fs(Λ, X, ρ) = s
[
2 Tr(QXT ) + V ρ

]
+ Φ(A(Λ, X, ρ)) (11)

over the set of strictly feasible solutions to (TDfn) . Here

Φ(S) = − ln DetS : int S+ → R, (12)
4This is an idealization, of course, but it is as well-motivated as the standard model of

precise real arithmetic. We could replace in the forthcoming considerations ξ∗(s) by its
tight approximation, with minor modification of the construction, but we do not think it
makes sense
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S is the space of block-diagonal symmetric matrices with m diagonal blocks
of the size (q + 1)× (q + 1) each, and

A(Λ, X, ρ) = Diag
{(

Λ XT bi
bTi X ρ

)
, i = 1, ...,m

}
, (13)

Then the matrix

R(s) ≡ Diag
{(

Li di
dTi ti

)
i = 1, ...,m

}

= s−1A−1(Λs, Xs, ρs)
[
= −s−1∇S |S=A(Λs,Xs,ρs)Φ(S)

] (14)

is such that
∑m
i=1 Li = λsIq for some real λs, and

(R(s), λs) is a feasible solution to (TD∗fn) with the value of the objective

λs ≤ c∗ +
µ

s
, (15)

where c∗ is the optimal value in (TD∗fn) and µ = m(q + 1) is the total row
size of the matrices from S.

The proposition is an immediate consequence of general results of [10];
to make the paper self-contained, below we present a direct proof.

Let us set Y = A(Λs, Xs, ρs), Z = Y −1, so that

R(s) = s−1Z; ∇Φ(Y ) = −Z.

The set G of strictly feasible solutions to (TDfn) is comprised of all triples
ξ = (Λ, X, ρ) which correspond to positive definite A(ξ) and are such that
Tr Λ = 1; this is an open convex subset in the hyperplane given by the
equation Tr Λ = 1. Since ξ∗(s) = (Λs, Xs, ρs) is the minimizer of Fs over G,
we have, for certain real p,

∇ΛFs(ξ∗(s)) = pIq; ∇XFs(ξ∗(s)) = 0; ∇ρFs(ξ∗(s)) = 0.

Substituting the expression for Fs and A, we obtain
∑m
i=1 Li ≡ [A∗R(s)]Λ ≡ −s−1 [A∗∇Φ(Y )]Λ = −s−1pIq,

2
∑m
i=1 bid

T
i ≡ [A∗R(s)]X ≡ −s−1 [A∗∇Φ(Y )]X = 2Q,∑m

i=1 ti ≡ [A∗R(s)]ρ ≡ −s−1 [A∗∇Φ(Y )]ρ = V

(here [·]Λ, [·]X and [·]ρ denote, respectively, the Λ-, the X- and the ρ-
component of the design vector of (TDfn) ). Note also that Y (and therefore
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Z) is positive definite. We see that (R(s), λ ≡ −s−1p) indeed is a feasible
solution of (TD∗fn) .

Now, if (Λ, X, ρ) is a feasible solution to (TDfn) , and
(
R ≡ Diag

{(
Mi ci
cTi ri

)
, i = 1, ...,m

}
, λ

)

is a feasible solution to (TD∗fn) , then

2 Tr(QXT ) + V ρ =
[
Tr([A∗R]XXT ) + [A∗R]ρρ+ Tr([A∗R]ΛΛ)

]
− λ

[since [A∗R]Λ = λIq, [A∗R]X = 2Q, [A∗R]ρ = V by the
constraints of (TD∗fn) and Tr Λ = 1
by the constraints of (TDfn) ]

= Tr(RA(Λ, X, ρ))− λ,

whence
[2 Tr(QXT ) + V ρ] + λ = Tr(RA(Λ, X, ρ)).

Since the optimal values in (TDfn) and (TD∗fn) , by Fenchel-Rockafellar Du-
ality Theorem are negations of each other, we come to

ε[Λ, X, ρ] + ε∗[R, λ] = Tr(RA(Λ, X, ρ)); (16)

here ε[Λ, X, ρ] is the accuracy of the feasible solution (Λ, X, ρ) of (TDfn) (i.e.
the value of the objective of (TDfn) at (Λ, X, ρ) minus the optimal value of
the problem), and ε∗[·] is similar accuracy in (TD∗fn) .

Specifying (Λ, X, ρ) as (Λs, Xs, ρs) and (R, λ) as (R(s), λs), we make the
right hand side of (16) equal to

Tr(R(s)Y ) = s−1 Tr(ZY ) = s−1 Tr(Y −1Y ) = s−1µ,

and with this equality (16) implies (15).

7 Numerical Examples

Let us illustrate the developed approach by few examples.

Example 1. Our first example deals with the toy problem presented on Fig.
1; as it was explained in Section 2.2, here the single-load optimal design
results in unstable truss capable to carry only very specific loads; the com-
pliance of the truss with respect to the given load is 16.000. Now let us apply
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Figure 3: Optimal design without (left) and with (right) robustness con-
straints

approach B from Section 2.3, where the robustness constraint is imposed
before solving the problem and corresponds to “active” nodes – those where
the given load is applied. When imposing robustness requirement, we choose
Q as explained in Section 2.3. Namely, in our case we have 2 fixed and 4 free
nodes, so that the dimension n of the space of virtual nodal displacements
is 2× 4 = 8. Since all free nodes are active, the ellipsoid of loads in robust
setting is full-dimensional (q = n = 8); this ellipsoid is chosen as explained
in Section 2.3 – one of the half-axis is the given load, and the remaining
7 half-axes are 10 times smaller. The corresponding matrix (rounded to 3
decimal places after the dot) is

Q =




2.000 0.014 −0.026 0.117 −0.063 0.170 −0.264 −0.054
0 0.235 0.216 0.125 −0.032 −0.161 −0.070 0.104
0 −0.040 −0.107 0.099 0.311 −0.158 −0.117 −0.035

2.000 0.045 0.137 −0.263 0.162 0.039 0.002 0.043
0 −0.202 0.148 −0.081 −0.111 −0.190 −0.124 −0.164

−2.000 0.149 −0.108 −0.203 −0.030 0.006 −0.210 −0.009
−2.000 −0.089 0.219 0.057 0.129 0.203 −0.052 −0.003

0 0.173 0.028 0.020 0.042 0.035 0.098 −0.341




(to relate Q to the nodal structure presented on Fig. 1, note that the coor-
dinates of virtual displacements are ordered as 2X,2Y,3X,3Y,5X,5Y,6X,6Y,
where, say, 3X corresponds to the displacement of node #3 along the X-
axis).

The result of “robust” design is presented on Fig. 3.
Now the maximum over the 8-dimensional loading ellipsoid compliance

becomes 17.400 (8.75% growth). But the compliance of the truss with re-
spect to the load f is 16.148, i.e., it is only by 0.9% larger than for the truss
given by single-load setting.

Example 2: “Console”. The second example deals with approach A from
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Table 1: Optimal designs for Example 1.

Problem setting Compliance Bars, node : node Bar volumes, %

1 : 2 25.00
4 : 5 25.00

without robustness constraints 16.000 3 : 5 25.00
5 : 6 12.50
2 : 3 12.50

4 : 5 24.48
1 : 2 24.48
3 : 5 23.68

with robustness constraints 17.400 2 : 3 11.95
5 : 6 11.95
2 : 4 1.27
1 : 5 1.27
2 : 6 0.92

Section 2.3, where the robustness constraint is used for postoptimality anal-
ysis. The left part of Fig. 4 represents optimal single-load design for 9× 9
nodal grid on 2D plane; nodes from the very left column are fixed, the
remaining nodes are free, and the load is the unit force acting down and
applied at the mid-node of the very right column (long arrow). The compli-
ance of the resulting truss w.r.t. f∗, in appropriate scale, is 1.00. Now note
that the compliance of t with respect to very small (of magnitude 0.005‖f∗‖)
“occasional” load (short arrow) applied at properly chosen node is > 8.4 !
Thus, in fact t is highly unstable.

The right part of Fig. 4 represents the truss obtained via postoptimality
design with robustness constraint. We marked the nodes incident to the
bars of t (there were only 12 of them) and formed a new design problem
with the nodal set comprised of these marked nodes, and the tentative bars
given by all 66 possible pair connections in this nodal set (in the original
problem, there were 2040 tentative bars). The truss represented in the right
part corresponds to optimal design with robustness constraint imposed at
all 10 free nodes of this ground structure in the same way as in the previous
example (i.e., the first column in the 20× 20 matrix Q is the given load f∗,
and the remaining 19 columns formed orthogonal basis in the orthogonal
complement to f∗ in of 20-dimensional space of virtual displacements of the
construction; the Euclidean lengths of these additional columns were set to
0.1 (10% of the magnitude of f∗).

The maximal compliance, over the resulting ellipsoid of loads, of the
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Figure 4: Single-load optimal design (left) and its postoptimal “robust cor-
rection” (right).

“robust” truss is now 1.03, and its compliance with respect to f is 1.0024 –
i.e., it is only by 0.24% larger than the optimal compliance c∗ given by the
single-load design; at the same time, the compliance of the new truss with
respect to all “occasional” loads of magnitude 0.1 is at most by 3% greater
than c∗.
Example 3: “N × 2- truncated pyramids”. The examples below deal with
simple 3D trusses. The nodal set is comprised of 2N points. N “ground”
nodes are the vertices of equilateral N -polygon in the plane z = 0:

xi = cos(2πi/N), yi = sin(2πi/N), zi = 0, i = 1, ..., N,

and N “top” nodes are the vertices of twice smaller concentric polygon in
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the plane z = 2:

xi =
1
2

cos(2πi/N), yi =
1
2

sin(2πi/N), zi = 2, i = N + 1, ..., 2N.

The ground nodes are fixed, the top ones are free. The ground structure is
comprised of all pair connections of the nodes, except connections between
the ground – fixed – ones.

We dealt with two kinds of loading scenarios, referred to, respectively,
as “N × 2s-” and “N × 2m” – design data. N × 2s-data corresponds to a
singleton scenario set, where the load is comprised of N nearly horizontal
forces acting at the top nodes and “rotating” the construction: the force
acting at i-th node, i = N + 1, ..., 2N , is

fi = α(sin(2πi/N),− cos(2πi/N),−ρ), i = N + 1, ..., 2N (17)

where ρ is small parameter and α is normalizing coefficient which makes the
Euclidean length of the load equal to 1 (i.e., α = 1/

√
N(1 + ρ2)). N × 2m-

data correspond to N -scenario design where the forces (17) act nonsimulta-
neously (and are renormalized to be of unit length, i.e., α = 1/

√
1 + ρ2).

Along with the traditional “scenario design” (single-load in the case of
s-data and multi-load in the case of m-data), we carried out “robust de-
sign” where we minimized the maximum compliance with respect to a full-
dimensional ellipsoid of loads Mθ – the “ellipsoidal envelope” of the unit
ball in the linear span L(F ) of the scenario loads and the ball of radius θ in
the orthogonal complement of L(F ) in the 3N -dimensional space of virtual
displacements of the nodal set. In other words, dim L(F ) of the princi-
pal half-axes of Mθ are of unit length and span L(F ), and the remaining
principal half-axes are of length θ. In our experiments with robust design,
we used θ = 0.3 and measured the worst-case compliance of the resulting
trusses, same as those given by the usual scenario design, with respect to
three sets of loads:

• the original set of scenarios,

• the ellipsoid of loads M0.1,

• the ellipsoid of loads M0.3.

The resulting structures Fig. 5 (data N×2s) and Fig. 6 (data N×2m), and
the corresponding compliances – in Table 2. In Table 2, Compl(Scen) means
the maximum compliance of the designed structure w.r.t. the set of loading
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Table 2: Compliances in Example 3.

Design data Scenario design Robust design
Compl(Scen) Compl(0.1) Compl(0.3) Compl(Scen) Compl(0.3)

3x2s 1.0000 7.5355 67.820 1.0029 1.0029
4x2s 1.0000 12.209 109.88 1.0028 1.0028
5x2s 1.0000 2.7311 24.580 1.0022 1.0022

3x2m 1.0000 1.2679 1.2679 1.0942 1.0943
4x2m 1.0000 4.1914 37.722 1.2903 1.2903
5x2m 1.0000 1.5603 1.6882 1.5604 1.5604

scenarios given by the corresponding data, while Compl(θ), θ = 0.1, 0.3
is the maximum compliance with respect to the ellipsoid Mθ. In order to
make the comparison more clear, we normalize the data in each row to
make the compliance of the truss given by Scenario design with respect to
the underlying set of scenarios equal to 1.

The summary of the numerical results in question is as follows.

1. N × 2s design data. The trusses given by the scenario and the robust
designs have the same topology and differ only in bar volumes; the
difference basically is in the thickness of the “top” – horizontal – bars
(see Fig. 5): for the “robust” truss they are approximately 80 times
larger in volume than for the “scenario” one (0.1% of the total bar
volume instead of 0.0012% for N = 3). Although this difference in
sizing seems small, it is in fact quite significant. The scenario design
results in highly unstable constructions: appropriately chosen “occa-
sional” loads with magnitude only 10% of the scenario load, result in
2.6 - 13.0 times larger compliance than the “scenario” one. When the
occasional load is allowed to be 30% of the scenario one, the ratio in
question may become 15 - 100. Note that bad robustness of the trusses
given by the scenario design has very simple origin: in the limiting case
of ρ = 0 (purely horizontal rotating load – the torque) the top bars
disappear at all, and the optimal truss given by the usual single-load
design becomes completely unstable.

The robust design associated with the ellipsoid M0.3 (”occasional”
loads may be as large as 30% of the scenario one) results in trusses
nearly optimal with respect to the scenario load (“nonoptimality” is at
most 0.3%). Surprisingly enough, for the trusses given by the robust
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design the maximum compliance with respect to the ellipsoid of loads
is the same as their compliance with respect to the scenario load. Thus,
in the case in question the robustness is “almost costless”.

2. N × 2m design data. Here the trusses given by the scenario design
are of course much more stable than in the case of N × 2s data, and
both kinds of design possess their own advantages and drawbacks. On
one hand, the maximum compliance, over the ellipsoid M0.3 of loads,
of the truss given by the scenario design is considerably larger than
the optimal value of this quantity (by 27% for N = 3, by 3670 % for
N = 4 5 and by 69% for N = 5). On the other hand, the maximum
compliance, over the scenario set, of the truss given by robust design
is also considerably larger than the optimal value of this quantity (by
9% for N = 3, by 29% for N = 4, and by 56% for N = 5). Thus, it is
difficult to say which design – the scenario or the robust one – results
in better construction.

The results in question suggest a seemingly better approach to ensuring
robustness than those mentioned in Section 2.3, namely, as follows. Given a
scenario set F , we embed it into an ellipsoid M (see Section 2.3) and solve
the resulting problem (TDrobust) ; let c∗robust be the corresponding optimal
value. After this value is found, we increase it in certain fixed proportion
1 + χ, say, by 10%, and solve the problem

find t ∈ T which minimizes the compliance cF (t) = maxf∈F cf (t)
subject to cM (t) ≡ maxf∈M cf (t) ≤ (1 + χ)c∗robust.

Note that the latter problem can be posed as a semidefinite program which
only slightly differs from (TDsd) :

min
t∈Rm,τ∈R

τ

s.t. (
τ fT

f
∑m
i=1 tiAi

)
≥ 0, ∀f ∈ F

(
a QT

Q
∑m
i=1 tiAi

)
≥ 0

5this huge difference mainly comes not from the difference in the topology of trusses,
but from different sizing of the bars linking bottom nodes with “the same” top ones: for
the robust design these bars are approximately 30 times thicker than for the scenario
design (1.5% of the total bar volume vs. 0.05%, respectively)
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where
a = (1 + χ)c∗robust.

The dual to the latter problem is the computationally more convenient pro-
gram

min
{
aTr(Λ) + 2 Tr(QXT ) + 2

∑
f∈F fTxf + V ρ

}

s.t. (
Λ XT bi
bTi X σi

)
≥ 0, i = 1, ...,m

σi +
∑
f∈F

(bTi xf )2

λf
≤ ρ, i = 1, ...,m

λf ≥ 0, f ∈ F∑k
f∈F λf = 1

the design variables being Λ ∈ Sk, X ∈ Rn×q, σ ∈ Rn, {(λf , xf ) ∈ R ×
Rn}f∈F , and ρ ∈ R.

The reported numerical experiments were carried out with the LMI Con-
trol toolbox [7], the only software for Semidefinite Programming available
for us for the moment. The Projective interior point method ([10], Chapter
5) implemented in the Toolbox is of the potential reduction rather than of
the path-following type, and we were enforced to add to the Toolbox solver
a “centering” interior point routine which transforms a good approximate
solution to (TDfn) into another solution of the same quality belonging to
the central path, which enabled us to recover the optimal truss, as it is ex-
plained in Section 6. The time of solving (TDfn) by the toolbox solver was
moderate, as it is seen from the following table:

8 Concluding remarks

Uncertainty of the data is a generic property associated with optimization
problems of real world origin. Accordingly, “robust reformulation” of an
optimization model as a way to improve applicability of the resulting solu-
tion is a very traditional idea in Mathematical Programming, and different
approaches to implement this idea were proposed. One of the best known
approaches is Stochastic Programming, where uncertainty is assumed to be
of stochastic nature. Another approach is robust optimization (see [9] and
references therein); here, roughly speaking, the “robust solution” should
not necessarily be feasible for all “allowed” data, and the “optimal robust
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Figure 5: Scenario and Robust design, single “rotating” load (ρ = 0.001 for
3× 2s and 4× 2s, ρ = 0.01 for 5× 2s).
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Figure 6: Scenario design vs. Robust design, multiple “rotating” loads
(ρ = 0.001 for 3× 2m and 4× 2m, ρ = 0.01 for 5× 2m).
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Table 3: Computational performance.

Problem Scenario design Robust design
(Ndsg, NLMI, Nimg) Nwt CPU (Ndsg, NLMI, Nimg) Nwt CPU

Example 2 (146,2041,6121) 75 3′58′′ (611,67,15247) 95 24′42′′

3x2s (11,13,37) 14 0.2′′ (127,13,661) 62 14.5′′

4x2s (14,23,67) 16 0.4′′ (223,23,2003) 77 1′18′′

5x2s (17,36,106) 17 0.6′′ (346,36,4761) 59 3′13′′

3x2m (31,13,121) 16 0.4′′ (127,13,661) 101 24′′

4x2m (53,23,331) 23 1.5′′ (223,23,2003) 65 1′6′′

5x2m (81,36,736) 23 3′′ (346,36,4761) 65 3′32′′

In the table:
Ndsg – number of design variables in (TDfn)
NLMI – number of Linear Matrix Inequalities in (TDfn)
Ning – total image dimension of (TDfn) , i.e., the dimension

of the corresponding semidefinite cone
Nwt – number of Newton steps performed by the interior point solver

when solving (TDfn)
CPU – solution time (workstation RS 6000)

solution” minimizes the sum of the original objective and a penalty for in-
feasibilities, the infeasibilities being taken over a finite set of scenarios. The
approach used in our paper is somewhat different: a solution to the “sta-
bilized” problem should be feasible for all allowed data. This approach is
exactly the one used in Robust Control. The goal of this concluding section
is to demonstrate that the approach developed in the paper can be naturally
extended to other Mathematical Programming problems. To this end let us
look what in fact was done in Section 2.

I. We start with an optimization program in the “conic” form

(P ) cTu→ min | Au ∈ K, u ∈ E,

where u is the design vector, A is M ×N matrix, K is closed convex cone
in RM and E is an affine plane in RN .

This is exactly the form of a single-load TTD problem min{σ | σ ≥
cf (t), t ∈ T} (see Section 2.1): to cast TTD as (P ) it suffices to specify (P )
as follows:

• u = (t, τ, σ) ∈ Rm ×R×R;

• E = {(t, τ, σ) | τ = 1,
∑m
i=1 ti = V };
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• K is the direct product of the cone of positive semidefinite symmetric
(n+ 1)× (n+ 1) matrices (“matrix part”) and Rm+ (“vector part”)

• the “vector” part of the linear mapping (t, τ, σ) 7→ A(t, τ, σ) is t, and

the “matrix” part is
(
σ τfT

τf A(t)

)
, f being the load in question.

II. We say that the data in (P ) (entries in the data matrix A) are inexact
(in TTD, these are entries associated with the load vector f). We model
the corresponding uncertainty by the assumption that A ∈ U , where U is
certain ellipsoid in the space of M ×N matrices6. Accordingly, we impose
on the decision u the requirement to be robust feasible, i.e., to satisfy the
inclusions u ∈ E and Au ∈ K for all possible data matrices A ∈ U . This
leads to our robust reformulation of (P ):

(Pst) cTu→ min | u ∈ E, Au ∈ K ∀A ∈ U .

Note that this is a general form of the approach we have used in Sec-
tion 2;and the goal of the remaining sections was to realize, for the case
when (P ) is the single load TTD problem, what is (Pst) as a Mathematical
Programming problem and how to solve it efficiently.

Problem (P ) is a quite general form of a Convex Programming problem;
the advantage of this conic form is that it allows to separate the “structure”
of the problem (c,K,E) and the “data” (A)7. The data now become a quite
tractable entity – simply a matrix. Whenever a program in question can be
naturally posed in the conic form, we can apply the above approach to get
a “robust reformulation” of (P ). Let us look at some concrete examples.

Robust Linear Programming. Let K in (P ) be the nonnegative
orthant; this is exactly the case when (P ) is a Linear Programming problem
in the canonical form8. It is shown in [6] that (Pst) is a conic quadratic

6here, as in the main body of the paper, a k-dimensional ellipsoid in RM is, by defi-
nition, the image of the unit Euclidean ball in Rk under an affine embedding of Rk into
RM .

7in some applications the objective c should be treated as a part of the data rather
than the structure. One can easily reduce this case to the one in question by evident
equivalent reformulation of (P ).

8up to the fact that the mapping u 7→ Au is assumed to be linear rather than affine.
This assumption does not restrict generality, since we incorporate into the model the affine
constraint u ∈ E; at the same time, the homogeneous form Au ∈ K of the nonnegativ-
ity constraints allows to handle both uncertainties in the matrix of the linear inequality
constraints and those in the right hand side vector.
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program (i.e., a conic program with K being a direct product of the second
order cones).

Robust Quadratic Programming. Let K be a direct product of the
second order cones, so that (P ) is a conic quadratic program (a natural ex-
tension of the usual quadratically constrained convex quadratic program).
It can be verified (see [6]) that in this case, under mild restrictions on the
structure of the uncertainty ellipsoid U , the problem (Pst) can be equiva-
lently rewritten as a semidefinite program (a conic program with K being
the cone of positive semidefinite symmetric matrices).

Note that in these examples (Pst) is quite tractable computationally, in
particular, it can be efficiently solved by interior point methods.

A somewhat “arbitrary” element in the outlined general approach is that
we model uncertainty as an ellipsoid. Note, anyhow, that in principle the
above scheme can be applied any other uncertainty set U , and the actual
“bottleneck” is our ability to solve efficiently the resulting problem (Pst).
Note that the robust problem (Pst) always is convex, so that there is a
sufficient condition for its “efficient solvability”. The condition, roughly
speaking (for the details, see [8]), is that we should be able to equip the
feasible domain

G = {u | u ∈ E,Au ∈ K ∀A ∈ U}
of (Pst) with a Separation oracle – a “computationally efficient” routine
which, given on input u, reports on output whether u ∈ G, and if it is
not the case, returns a linear form which separates G and u. Whether this
sufficient condition is satisfied or not depends on the geometry of U and K,
and the “more complicated” is U , the “simpler” should K be. When U is
very simple (a polytope given as a convex hull of a finite set), K could be
an arbitrary “tractable” cone (one which can be equipped with a Separation
oracle); when U is an ellipsoid, K for sure could be the nonnegative orthant
or a direct product of the second order cones. On the other hand, if K
is simple (the nonnegative orthant, as in the Linear Programming case), U
could be more complicated than an ellipsoid – e.g., it could be an intersection
of finitely many ellipsoids. Under mild regularity assumptions, in the latter
case (Pst) turns out to be a conic quadratic program [6]. In other words,
there is a “tradeoff” between the flexibility and the tractability, i.e., between
the ability to express uncertainties, on one hand, and the ability to produce
computationally tractable problems (Pst), on the other hand.

We strongly believe that the approach advocated here is promising and
is worthy of investigation, and we intend to devote to it a separate paper.
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