An accelerated non-Euclidean hybrid proximal extragradient-type algorithm for convex-concave saddle-point problems

O. Kolossoski ∗ R.D.C. Monteiro †

September 18, 2015

Abstract

This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm presented in [13] in two ways, namely: a) it deals with general monotone SP problems instead of bilinear structured SPs; and b) it is based on general Bregman distances instead of the Euclidean one. Similar to the algorithm of [13], it has the advantage that it works for any constant choice of proximal stepsize. Moreover, a suitable choice of the stepsize yields a method with the best known iteration-complexity for solving monotone SP problems. Computational results show that the new method is superior to Nesterov’s smoothing scheme [23].

2010 Mathematics Subject Classification: 90C25, 90C30, 47H05.

Key words: convex programming, complexity, ergodic convergence, maximal monotone operator, hybrid proximal extragradient method, accelerated gradient method, inexact proximal method, saddle point problem, Bregman distances.

1 Introduction

Given nonempty closed convex sets $X \subset \mathcal{X}$ and $Y \subset \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are two inner product spaces, and a convex-concave map $\hat{\Phi} : X \times Y \to \mathbb{R}$, our goal in this paper is to develop algorithms for finding (approximate) saddle-points of $\hat{\Phi}$, i.e., pairs $(\bar{x}, \bar{y}) \in X \times Y$ such that

$$\hat{\Phi}(\bar{x}, y) \leq \hat{\Phi}(\bar{x}, \bar{y}) \leq \hat{\Phi}(x, \bar{y}) \quad \forall (x, y) \in X \times Y,$$

or equivalently, a zero of the operator $T : \mathcal{X} \times \mathcal{Y} \rightrightarrows \mathcal{X} \times \mathcal{Y}$ defined as

$$T(x, y) = \begin{cases} \partial \hat{\Phi}((\cdot), y) - \hat{\Phi}(x, \cdot)(x, y), & \text{if } (x, y) \in X \times Y; \\ \emptyset, & \text{otherwise}. \end{cases}$$

Under mild assumptions on \(\Phi \), the operator \(T \) is maximal monotone, and hence an approximate zero of \(T \) can be computed by using an inexact proximal-type algorithm such as one of the algorithms presented in \([13, 17, 18, 20, 21, 22, 26, 27, 28, 29, 30]\).

In particular, He and Monteiro \([13]\) presented an inexact proximal-point method for solving the special case of the saddle-point problem in which \(\tilde{\Phi} \) is of the form

\[
\tilde{\Phi}(x, y) = f(x) + \langle Ax, y \rangle + g_1(x) - g_2(y)
\]

where \(A : X \to Y \) is a linear operator, \(g_1 \) and \(g_2 \) are proper closed convex functions, \(f \) is a differentiable convex function with Lipschitz continuous gradient and \(X \times Y = \text{dom } g_1 \times \text{dom } g_2 \).

The method is a special instance of the hybrid proximal extragradient (HPE) framework introduced in \([26]\). Any instance of the HPE framework is essentially an inexact proximal point method which allows for a relative error in the prox sub-inclusions. More specifically, consider the monotone inclusion problem

\[
0 \in T(z),
\]

where \(T \) is a maximal monotone operator. Recall that for a given pair \((z_-, \lambda)\), the exact proximal point method computes the next iterate \(z \) as \(z = (\lambda T + I)^{-1}(z_-) \) or equivalently, as the (unique) solution of

\[
\frac{z_--z}{\lambda} \in T(z).
\]

An instance of the HPE framework on the other hand allows an approximate solution of (4) satisfying the (relative) HPE error criterion, namely, for some tolerance \(\sigma \in [0, 1] \), a triple \((\tilde{z}, z, \varepsilon)\) is computed in such a way as to satisfy

\[
\frac{z_--z}{\lambda} \in T^{\varepsilon}(\tilde{z}), \quad \frac{1}{2}\|\tilde{z} - z\|^2 + \lambda\varepsilon \leq \frac{1}{2}\sigma^2\|\tilde{z} - z_-\|^2
\]

where \(T^{\varepsilon} \) denotes the \(\varepsilon \)-enlargement \([2]\) of \(T \). (It has the property that \(T^{\varepsilon}(u) \supset T(u) \) for each \(u \) with equality holding when \(\varepsilon = 0 \).) Clearly, when \(\sigma = 0 \) in (6), then \(z = \tilde{z} \) and \(\varepsilon = 0 \), and the inclusion in (6) reduces to (5). As opposed to other HPE-type methods in the literature (see for instance \([12, 21]\) which have to choose \(\lambda \) relatively small, the HPE method of \([13]\) for solving (4) with \(T \) as in (2) can choose an arbitrarily sized \(\lambda > 0 \) and computes the triple \((\tilde{z}, z, \varepsilon)\) satisfying the HPE error condition (6) with the aid of an accelerated gradient method (e.g., see \([23, 31]\)) applied to a certain regularized convex-concave min-max problem related to \(\tilde{\Phi} \) in (3).

The main goal of this paper is to develop a non-Euclidean HPE (NE-HPE) method which extends the one of \([13]\) in two relevant ways. First, it solves saddle-point problems with general convex-concave functions \(\tilde{\Phi} \) such that \(\nabla_z \tilde{\Phi} \) is Lipschitz continuous instead of those with \(\tilde{\Phi} \) given by (3). Second, the method is a special instance of a more general non-Euclidean HPE framework which is based on a general Bregman distance instead of the specific Euclidean one. More specifically, let \(d_z(z') = w(z') - w(z) - \langle \nabla w(z), z' - z \rangle \) for every \(z, z' \) where \(w \) is a differentiable convex function. Then, the Euclidean distance is obtained by setting \(w(\cdot) = \|\cdot\|^2/2 \) in which case \(d_z(z') = \|z' - z\|^2/2 \) for all \(z', z \) and (6) can be written as

\[
\frac{1}{\lambda} \nabla (dw)_z(z_-) \in T^{\varepsilon}(\tilde{z}), \quad (dw)_z(\tilde{z}) + \lambda\varepsilon \leq \sigma(dw)_{z_-}(\tilde{z}).
\]

The non-Euclidean HPE framework generalizes the HPE one in that it allows an approximate solution of (4) satisfying the more general NE-HPE error condition (7) where \(w \) is an arbitrary
convex function. As an important step towards analyzing the new NE-HPE method, we establish the ergodic iteration-complexity of the NE-HPE framework for solving inclusion (4) where T is a maximal monotone operator with bounded domain. Similar to the method in [13], the new NE-HPE method chooses an arbitrary $\lambda > 0$ and computes a triple $(\tilde{z}, z, \varepsilon)$ satisfying the HPE error condition (7) with the aid of an accelerated gradient method applied to a certain regularized convex-concave min-max problem. Under the assumption that the feasible set of the saddle-point problem is bounded, an ergodic iteration-complexity bound is developed for the total number of inner (accelerated gradient) iterations performed by the new NE-HPE method. Finally, it is shown that if the stepsize λ and Bregman distance are properly chosen, then the derived ergodic iteration-complexity reduces to the one obtained in [23] for Nesterov’s smoothing scheme which finds approximate solutions of a bilinear structured convex-concave saddle-point problem. Such complexity bound is known to be optimal (see for example the discussion in paragraph (1) of Subsection 1.1 of [6]).

Our paper is organized as follows: Section 2 contains two subsections which provide the necessary background material for our presentation. Subsection 2.1 introduces some notation, presents basic definitions and properties of point-to-set operators and convex functions, and discusses the saddle-point problem and some of its basic properties. Subsection 2.2 reviews an accelerated gradient method for solving composite convex optimization problems. Section 3 contains two subsections. Subsection 3.1 reviews the notion of Bregman distances, then presents the NE-HPE framework for solving (4) and establishes its ergodic iteration-complexity. Subsection 3.2 presents a sufficient condition which ensures that the HPE error condition (7) holds for a special class of monotone operators (which includes the one given by (2)). Section 4 describes the new accelerated NE-HPE method for solving the saddle-point problem, i.e., inclusion (4) with the operator given by (2). It contains three subsections as follows. Subsection 4.1 presents a scheme based on the accelerated gradient method of Subsection 2.2 for finding an approximate solution of the prox sub-inclusion according to the NE-HPE error criterion (7) and states its iteration-complexity result. Subsection 4.2 completely describes the new accelerated NE-HPE method for solving the saddle-point problem and establishes its overall ergodic inner iteration-complexity. It also discusses a way of choosing the prox stepsize λ so that the overall ergodic inner iteration-complexity bound reduces to the one obtained for Nesterov’s smoothing scheme [23]. Subsection 4.3 provides the proof of the iteration-complexity result stated in Subsection 4.1. Finally, numerical results are presented in Section 5 showing that the new method outperforms the scheme of [23] on three classes of convex-concave saddle-point problems.

1.1 Previous related works

In the context of variational inequalities, Nemirovski [22] established the ergodic iteration-complexity of an extension of Korpelevich’s method [17], namely, the mirror-prox algorithm, under the assumption that the feasible set of the problem is bounded. More recently, Dang and Lan [8] established the iteration-complexity of a class of non-Euclidean extragradient methods for solving variational inequalities when the operators are not necessarily monotone. Also, Lan et al. [7] established the iteration-complexity of an accelerated mirror-prox method which finds weak solutions of a class of variational inequalities. They obtained optimal complexity for the case where the feasible set of the problem is bounded.

Nesterov [23] developed a smoothing scheme for solving bilinear structured saddle-point problems under the assumption that X and Y are compact convex sets. It consists of first
approximating the objective function of the associated convex-concave saddle-point problem by a convex differentiable function with Lipschitz continuous gradient and then applying an accelerated gradient-type method (see e.g. [23,31]) to the resulting approximation problem.

The HPE framework and its convergence results are studied in [26] and its iteration-complexity is established in [20] (see also [18,21]). The complexity results in [20] depend on the distance of the initial iterate to the solution set instead of the diameter of the feasible set. Applications of the HPE framework to the iteration-complexity analysis of several zero-order (resp., first-order) methods for solving monotone variational inequalities and monotone inclusions (resp., saddle-point problems) are discussed in [20] and in the subsequent papers [18,21]. More specifically, by viewing Korpelevich’s method [17] as well as Tseng’s modified forward-backward splitting (MF-BS) method [30] as special cases of the HPE framework, the authors have established in [18,20] the pointwise and ergodic iteration complexities of these methods applied to either: monotone variational inequalities, monotone inclusions consisting of the sum of a Lipschitz continuous monotone map and a maximal monotone operator with an easily computable resolvent, and convex-concave saddle-point problems.

Solodov and Svaiter [28] has studied a more specialized version of the NE-HPE framework which allows approximate solutions of (4) according to (7) but with $\varepsilon = 0$. Finally, extensions of the proximal method to the context of Bregman distances have been studied in [4,5,10,11,15,16]. However, none of the works cited in this paragraph deal with iteration-complexity results.

2 Background material

This section provides background material necessary for the paper presentation. The first one presents the notation and basic definitions that will be used in the paper. The second subsection reviews a variant of Nesterov’s accelerated method for the composite convex optimization problem.

2.1 Basic notation, definitions and results

This subsection establishes notation and gives basic results that will be used throughout the paper.

The set of real numbers is denoted by \mathbb{R}. The set of non-negative real numbers and the set of positive real numbers are denoted respectively as \mathbb{R}^+ and \mathbb{R}^{++}. Let $\lceil z \rceil$ denote the smallest integer not less than $z \in \mathbb{R}$.

2.1.1 Convex functions, monotone operators and their enlargements

Let \mathcal{Z} denote a finite dimensional inner product space with inner product denoted by $\langle \cdot, \cdot \rangle$. For a set $Z \subseteq \mathcal{Z}$, its relative interior is denoted by $\text{ri} Z$ and its closure as $\text{cl} Z$. A relation $T \subseteq \mathcal{Z} \times \mathcal{Z}$ can be identified with a point-to-set operator $T : \mathcal{Z} \rightrightarrows \mathcal{Z}$ in which

$$T(z) := \{ v \in \mathcal{Z} : (z, v) \in T \} \quad \forall z \in \mathcal{Z}.$$

Note that the relation T is then the same as the graph of the point-to-set operator T defined as

$$\text{Gr}(T) := \{ (z, v) \in \mathcal{Z} \times \mathcal{Z} : v \in T(z) \}.$$
The domain of T is defined as
\[
\text{Dom } T := \{ z \in \mathbb{Z} : T(z) \neq \emptyset \}.
\]

The domain of definition of a point-to-point map F is also denoted by $\text{Dom } F$. An operator $T : \mathbb{Z} \rightrightarrows \mathbb{Z}$ is monotone if
\[
\langle v - \tilde{v}, z - \tilde{z} \rangle \geq 0 \quad \forall (z, v), (\tilde{z}, \tilde{v}) \in \text{Gr}(T).
\]

Moreover, T is maximal monotone if it is monotone and maximal in the family of monotone operators with respect to the partial order of inclusion, i.e., $S : \mathbb{Z} \rightrightarrows \mathbb{Z}$ monotone and $\text{Gr}(S) \supset \text{Gr}(T)$ implies that $S = T$. Given a scalar ε, the ε-enlargement of a point-to-set operator $T : \mathbb{Z} \rightrightarrows \mathbb{Z}$ is defined as
\[
T^\varepsilon(z) := \left\{ v \in \mathbb{Z} : \langle z - \tilde{z}, v - \tilde{v} \rangle \geq -\varepsilon, \quad \forall \tilde{z} \in \mathbb{Z}, \forall \tilde{v} \in T(\tilde{z}) \right\} \quad \forall z \in \mathbb{Z}. \quad (8)
\]

Proposition 2.1. Let $T, T' : \mathbb{Z} \rightrightarrows \mathbb{Z}$ be given. Then, the following statement holds: $T^{\varepsilon_1}(z) + (T')^{\varepsilon_2}(z) \subset (T + T')^{\varepsilon_1 + \varepsilon_2}(z)$ for every $z \in \mathbb{Z}$ and $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$.

Proof. The proof follows directly from definition (8). □

Let $f : \mathbb{Z} \to [-\infty, \infty]$ be given. The effective domain of f is defined as
\[
\text{dom } f := \{ z \in \mathbb{Z} : f(z) < \infty \}.
\]

Given a scalar $\varepsilon \geq 0$, the ε-subdifferential of f is the operator $\partial_\varepsilon f : \mathbb{Z} \rightrightarrows \mathbb{Z}$ defined as
\[
\partial_\varepsilon f(z) := \left\{ v : f(\tilde{z}) \geq f(z) + \langle \tilde{z} - z, v \rangle - \varepsilon, \quad \forall \tilde{z} \in \mathbb{Z} \right\} \quad \forall z \in \mathbb{Z}. \quad (9)
\]

When $\varepsilon = 0$, the operator $\partial_\varepsilon f$ is simply denoted by ∂f and is referred to as the subdifferential of f. The operator ∂f is trivially monotone if f is proper. If f is a proper closed convex function, then ∂f is maximal monotone [25].

For a given set $\Omega \subset \mathbb{Z}$, the indicator function $I_\Omega : \mathbb{Z} \to (-\infty, \infty]$ of Ω is defined as
\[
I_\Omega(z) := \begin{cases} 0, & z \in \Omega, \\ \infty, & z \notin \Omega. \end{cases} \quad (10)
\]

The following simple but useful result shows that adding a maximal monotone operator T to the subdifferential of the indicator function of a convex set containing $\text{Dom } T$ does not change T.

Proposition 2.2. Assume that T is a maximal monotone operator and $\Omega \subset \mathbb{Z}$ is a convex set containing $\text{Dom } T$. Then, $T + \partial I_\Omega = T$.

Proof. Clearly, ∂I_Ω is monotone since, by assumption, the set Ω, and hence the indicator function I_Ω, is convex. Since T is also monotone by assumption, it follows that $T + \partial I_\Omega$ is monotone in view of Proposition 6.1.1(b) of [11]). Clearly, $T \subset T + \partial I_\Omega$ due to the assumption that $\text{Dom } T \subset \Omega$ and the fact that $0 \in \partial I_\Omega(x)$ for every $x \in \Omega$. The conclusion of the proposition now follows from the above two observations and the assumption that T is maximal monotone. □
2.1.2 The saddle-point problem

Let X and Y be finite dimensional inner product spaces with inner products denoted respectively by $\langle \cdot, \cdot \rangle_X$ and $\langle \cdot, \cdot \rangle_Y$ and endow the product space $X \times Y$ with the canonical inner product defined as

$$\langle (x, y), (x', y') \rangle = \langle x, x' \rangle_X + \langle y, y' \rangle_Y \quad \forall (x, y), (x', y') \in X \times Y.$$ \hfill (11)

Let $X \subseteq X$ and $Y \subseteq Y$ be nonempty sets and consider a function $\hat{\Phi} : \text{Dom } \hat{\Phi} \rightarrow \mathbb{R}$ such that $\text{Dom } \hat{\Phi} \supseteq X \times Y$. A pair $(\bar{x}, \bar{y}) \in X \times Y$ is called a saddle-point of $\hat{\Phi}$ with respect to $X \times Y$ if it satisfies (1). The problem of determining such a pair is called the saddle-point problem determined by $\hat{\Phi}$ and $Z := X \times Y$ and is denoted by $\text{SP}(\hat{\Phi}; Z)$.

Setting $Z := X \times Y$, define $T_{\hat{\Phi}} : Z \rightrightarrows Z$ as

$$T_{\hat{\Phi}}(z) := \begin{cases} \partial(\hat{\Phi}_z)(z), & \text{if } z \in Z; \\ \emptyset, & \text{otherwise} \end{cases}$$ \hfill (12)

where, for every $z = (x, y) \in Z$, the function $\hat{\Phi}_z : Z \rightarrow (-\infty, +\infty]$ is defined as

$$\hat{\Phi}_z(x', y') = \begin{cases} \hat{\Phi}(x', y) - \hat{\Phi}(x, y'), & \forall (x', y') \in Z; \\ +\infty, & \text{otherwise.} \end{cases}$$ \hfill (13)

Clearly, $z = (x, y)$ is a saddle-point of $\hat{\Phi}$ with respect to Z if and only if z is a solution of the inclusion

$$0 \in T_{\hat{\Phi}}(z).$$ \hfill (14)

The operator $T_{\hat{\Phi}}$ admits the ε-enlargement as in (8). It also admits an ε-saddle-point enlargement which exploits its natural saddle-point nature, namely, $\partial_\varepsilon(\hat{\Phi}_z)(z)$ for $z \in Z$. The following result whose proof can be found for example in Lemma 3.2 of [13] follows straightforwardly from definitions (8) and (9).

Proposition 2.3. For every $z \in Z$ and $\varepsilon \geq 0$, the inclusion $\partial_\varepsilon(\hat{\Phi}_z)(z) \subseteq [T_{\hat{\Phi}}]_\varepsilon(z)$ holds.

The following result (see for example Theorem 6.3.2 in [1]) gives sufficient conditions for the operator $T_{\hat{\Phi}}$ in (12) to be maximal monotone.

Proposition 2.4. The following statements hold:

(a) $T_{\hat{\Phi}}$ is monotone;

(b) if the function $\hat{\Phi}_z : Z \rightarrow (-\infty, +\infty]$ is closed convex for every $z \in Z$, then $T_{\hat{\Phi}}$ is maximal monotone.

Note that, due to the definition of T^ε, the verification of the inclusion $v \in T^\varepsilon(x)$ requires checking an infinite number of inequalities. This verification is feasible only for specially-structured instances of operators T. However, it is possible to compute points in the graph of T^ε using the following weak transportation formula [3].

Proposition 2.5. Suppose that $T : Z \rightrightarrows Z$ is maximal monotone. Moreover, for $i = 1, \ldots, k$, let $z_i, r_i \in Z$ and $\varepsilon_i, \alpha_i \in \mathbb{R}_+$ satisfying $\sum_{i=1}^k \alpha_i = 1$ be given and define

$$z^a = \sum_{i=1}^k \alpha_i z_i, \quad r^a = \sum_{i=1}^k \alpha_i r_i, \quad \varepsilon^a = \sum_{i=1}^k \alpha_i [\varepsilon_i + \langle z_i - z^a, r_i - r^a \rangle].$$

Then, the following statements hold:
(a) if \(r_i \in T^ε_i(z_i) \) for every \(i = 1, \ldots, k \), then \(ε^a \geq 0 \) and \(r^a \in T^ε_a(z^a) \);

(b) if \(T = T_Φ \) where \(Φ \) is a saddle function satisfying the assumptions of Proposition 2.4 and the stronger inclusion \(r_i \in \partial ε_i(Φ(z_i))(z_i) \) holds for every \(i = 1, \ldots, k \), then \(r^a \in \partial ε_a(\hat{Φ}(z^a))(z^a) \).

2.2 Accelerated method for composite convex optimization

This subsection reviews a variant of Nesterov’s accelerated first-order method \([23, 31]\) for minimizing a (possibly strongly) convex composite function. In what follows, we refer to convex functions as 0-strongly convex functions. This terminology has the benefit of allowing us to treat both the convex and strongly convex case simultaneously.

Let \(X \) denote a finite dimensional inner product space with an inner product denoted by \(\langle \cdot, \cdot \rangle_X \) and a norm denoted by \(\| \cdot \|_X \) which is not necessarily the one induced by the inner product. Consider the following composite optimization problem

\[
\inf f(x) + g(x) \tag{15}
\]

where \(f : X \subset X \to \mathbb{R} \) and \(g : X \to (-\infty, +\infty] \) satisfy the following conditions:

A.1) \(g \) is a proper closed \(µ \)-strongly convex function;

A.2) \(X \) is a convex set such that \(X \supset \text{dom } g \);

A.3) there exist constant \(L > 0 \) and function \(\nabla f : X \to X \) such that for every \(x, x' \in X \),

\[
f(x') + \langle \nabla f(x'), x - x' \rangle_X \leq f(x) \leq f(x') + \langle \nabla f(x'), x - x' \rangle_X + \frac{L}{2} \| x - x' \|_X^2.
\]

Even though the map \(\nabla f \) is not necessarily the gradient of \(f \), it plays a similar role to it and hence our notation.

The accelerated method for solving problem (15) stated below requires the specification of a point \(x_0 \in \text{dom } g \) and a function \(h : X \to (-\infty, \infty] \) satisfying

A.4) \(h \) is a proper closed convex function such that \(\text{dom } h \supset \text{dom } g \);

A.5) \(h \) is 1-strongly convex on \(\text{dom } g \);

A.6) \(x_0 = \text{argmin}\{ h(x) : x \in \text{dom } g \} \).

Clearly, if \(\text{dom } g \) is closed then the above optimization problem always has a unique global minimum which can be taken to be the point \(x_0 \). The special case of the method below with \(µ = 0 \) is the same as the accelerated variant stated in Algorithm 3 of \([31]\). Its proof for \(µ > 0 \) is not given in \([31]\) but follows along the same line as the one for Algorithm 3 of \([31]\) (see also Subsection 2.2 of \([13]\) for the proof of the case where \(µ > 0 \), \(X \) is closed and \(h(\cdot) = \| \cdot - u_0 \|_X^2 / 2 \) for some \(u_0 \in X \)).

[Algorithm 1] A variant of Nesterov’s accelerated method:

0) Set \(A_0 := 0, A_0 := 0, k = 1 \) and \(\bar{x}_0 = x_0 \) where \(x_0 \) is as in A.6;
1) compute
\[A_k := A_{k-1} + \frac{(1 + \mu A_{k-1}) \sqrt{(1 + \mu A_{k-1})^2 + 4L(1 + \mu A_{k-1})A_{k-1}}}{2L}, \] (16)
\[\bar{x}_k := \frac{A_{k-1}}{A_k} \bar{x}_{k-1} + \frac{A_k - A_{k-1}}{A_k} x_{k-1}, \] (17)
\[\Lambda_k := \frac{A_{k-1}}{A_k} \Lambda_{k-1} + \frac{A_k - A_{k-1}}{A_k} \left[f(\bar{x}_k) + \langle \nabla f(\bar{x}_k), \cdot - \bar{x}_k \rangle \right]; \] (18)

2) iterate \(x_k \) and \(\bar{x}_k \) as
\[x_k := \text{argmin} \left\{ \Lambda_k(x) + g(x) + \frac{1}{A_k} h(x) \right\}, \] (19)
\[\bar{x}_k := \frac{A_{k-1}}{A_k} \bar{x}_{k-1} + \frac{A_k - A_{k-1}}{A_k} x_k; \] (20)

3) set \(k \leftarrow k + 1 \) and go to step 1.

end

The main technical result which yields the convergence rate of the above accelerated method is as follows.

Proposition 2.6. The sequences \(\{A_k\} \), \(\{\bar{x}_k\} \) and \(\{\Lambda_k\} \) generated by Algorithm 1 satisfy the following inequalities for any \(k \geq 1 \):
\[A_k \geq \frac{1}{L} \max \left\{ \frac{k^2}{4}, \left(1 + \frac{\mu}{4L} \right)^{2(k-1)} \right\}, \] (21)
\[\Lambda_k \leq f, \quad (f + g)(\bar{x}_k) \leq \Lambda_k(x) + g(x) + \frac{1}{A_k} [h(x) - h(x_0)] \quad \forall x \in \text{dom} \, g. \] (22)

3 The non-Euclidean hybrid proximal extragradient framework

This section describes the non-Euclidean hybrid proximal extragradient framework for solving monotone inclusion problems. Such framework as well as its convergence properties are stated on Subsection 3.1. A sufficient condition for obtaining a HPE error condition is given on Subsection 3.2.

It is assumed throughout this section that \(Z \) is an inner product space with inner product \(\langle \cdot, \cdot \rangle \), and that \(\| \cdot \| \) is a (general) norm in \(Z \), which is not necessarily the inner product induced norm.

3.1 The non-Euclidean hybrid proximal extragradient framework for monotone inclusion problem

This subsection establishes the non-Euclidean hybrid proximal extragradient framework introduced in [26] for finding an approximate solution of the monotone inclusion problem [4], where \(T : Z \rightrightarrows Z \) is a maximal monotone operator such that \(\text{Dom} \, T \) is bounded.

Before presenting the framework, we review the notions of distance generating functions and Bregman distances.
Definition 3.1. A proper closed convex function \(w : Z \to [-\infty, \infty] \) is called a distance generating function if it satisfies the following conditions:

(i) \(W := \text{dom} \, w \) is closed and \(W^0 := \text{int}(W) = \{ z \in Z : \partial w(z) \neq \emptyset \} \);

(ii) \(w \) restricted to \(W \) is continuous and \(w \) is continuously differentiable on \(W^0 \).

Moreover, \(w \) induces the map \(dw : Z \times W^0 \to \mathbb{R} \) defined as
\[
(dw)(z'; z) := w(z') - w(z) - \langle \nabla w(z), z' - z \rangle \quad \forall z' \in Z, \forall z \in W^0,
\]
referred to as the Bregman distance over \(W \) induced by \(w \), or simply, a Bregman distance over \(W \) when \(w \) does not need to be emphasized.

For simplicity, for every \(z \in W^0 \), the function \((dw)(\cdot ; z)\) will be denoted by \((dw)_z\) so that
\[
(dw)_z(z') = (dw)(z'; z) \quad \forall z \in W^0, \forall z' \in Z.
\]

The following useful identities follow straightforwardly from (23):
\[
\nabla (dw)_z(z') = -\nabla (dw)_z(z) = \nabla w(z') - \nabla w(z) \quad \forall z, z' \in W^0, \quad (24)
\]
\[
(\text{dw}_z(z') - (\text{dw}_z)_v(z')) = (\nabla (\text{dw})_v(z), z' - z) + (\text{dw}_z(z')) \quad \forall z' \in Z, \forall v, z \in W^0. \quad (25)
\]

The description of the non-Euclidean hybrid proximal extragradient framework is based on a distance generating function \(w \) which also satisfies the following condition:

B.1) \(\text{Dom} \, T \subset W \).

From now on, denote \(Z := \text{cl(Dom} \, T) \). Clearly, due to B.1 and the fact that \(W \) is closed we have that \(Z \subset W \).

We are now ready to state the non-Euclidean hybrid proximal extragradient framework.

Non-Euclidean Hybrid Proximal Extragradient (NE-HPE) Framework:

0) Let \(z_0 \in W^0 \) be given and set \(j = 1 \);

1) choose \(\sigma_j \in [0, 1] \), and find \(\lambda_j > 0 \) and \((\tilde{z}_j, z_j, \varepsilon_j) \in W \times W^0 \times \mathbb{R}_+ \) such that
\[
\tau_j := \frac{1}{\lambda_j} \nabla (\text{dw})_{z_j}(z_{j-1}) \in T_{\varepsilon_j}(\tilde{z}_j), \quad (26)
\]
\[
(\text{dw})_{z_j}(\tilde{z}_j) + \lambda_j \varepsilon_j \leq \sigma_j (\text{dw})_{z_{j-1}}(\tilde{z}_j); \quad (27)
\]

2) set \(j \leftarrow j + 1 \) and go to step 1.

end

We now make several remarks about the NE-HPE framework. First, the NE-HPE framework does not specify how to find \(\lambda_j \) and \((\tilde{z}_j, z_j, \varepsilon_j) \) satisfying (26) and (27). The particular scheme for computing \(\lambda_j \) and \((\tilde{z}_j, z_j, \varepsilon_j) \) will depend on the instance of the framework under consideration and the properties of the operator \(T \). Second, if \(\sigma_j = 0 \), then (27) implies that \(\varepsilon_j = 0 \) and \(z_j = \tilde{z}_j \), and hence that \(r_j \in T(z_j) \) in view of (26). Therefore, the HPE error
Lemma 3.2. For every σ_j the technical results. We start by deriving some preliminary convergence rate bounds for the NE-HPE framework. We consider the following result follows as an immediate consequence of Lemma 3.2(b).

Lemma 3.3. For every $j \geq 1$ and $z \in W$, we have that

$$(dw)_{z_0}(z) - (dw)_{z_j}(z) \geq \sum_{i=1}^{j} (1 - \sigma_i)(dw)_{z_{i-1}}(\tilde{z}_i) + \sum_{i=1}^{j} \lambda_i [\epsilon_i + \langle r_j, \tilde{z}_j - z \rangle].$$

Proof. The lemma follows by adding the inequality in Lemma 3.2(b) from 1 to j. □
Lemma 3.4. For every $j \geq 1$, define $\Lambda_j := \sum_{i=1}^{j} \lambda_i$,

$$
\begin{align*}
\tilde{z}^a_j &:= \frac{1}{\Lambda_j} \sum_{i=1}^{j} \lambda_i \tilde{z}_i, \\
r_j^a &:= \frac{1}{\Lambda_j} \sum_{i=1}^{j} \lambda_i r_i, \\
\varepsilon_j^a &:= \frac{1}{\Lambda_j} \sum_{i=1}^{j} \lambda_i \left[\varepsilon_i + \langle r_i, \tilde{z}_i - \tilde{z}^a_j \rangle \right].
\end{align*}
$$

Then, we have

$$
\begin{align*}
\varepsilon_j^a &\geq 0, \\
r_j^a &\in T^{\varepsilon_j^a}(\tilde{z}^a_j), \\
\varepsilon_j^a + \langle r_j^a, \tilde{z}^a_j - z \rangle &\leq \frac{(dw)_{z_0}(z)}{\Lambda_j} \quad \forall z \in Z.
\end{align*}
$$

Proof. The relations on (28) follow from (26) and Proposition 2.5(a). Moreover, Lemma 3.3, the assumption that $\sigma_j \in [0, 1]$, the fact that $Z \subset W$, and the definitions of ε_j^a and r_j^a, imply that for every $z \in Z$,

$$
\begin{align*}
(w)_{z_0}(z) - (dw)_{z_j}(z) &\geq \sum_{i=1}^{j} \lambda_i \left[\varepsilon_i + \langle r_i, \tilde{z}_i - z \rangle \right] = \\
\sum_{i=1}^{j} \lambda_i \left[\varepsilon_i + \langle r_i, \tilde{z}_i - \tilde{z}^a_j \rangle + \langle r_i, \tilde{z}^a_j - z \rangle \right] &\leq \Lambda_j \left[\varepsilon_j^a + \langle r_j^a, \tilde{z}^a_j - z \rangle \right],
\end{align*}
$$

and hence that (29) holds. \hfill \blacksquare

To state the main result of this subsection, which establishes an ergodic convergence rate bound for the NE-HPE framework, define the quantity

$$
R = R(z_0; Z) := \sup \{(dw)_{z_0}(z) : z \in Z\} < \infty
$$

and observe that R is finite due to the boundedness assumption on $\text{Dom} T$ and the facts that $Z \subset W$ and $(dw)_{z_0}(\cdot)$ is a continuous function on W (see Definition 3.1(ii)).

Theorem 3.5. For every $j \geq 1$, define $\Lambda_j, \tilde{z}^a_j, r_j^a$ and ε_j^a as in Lemma 3.4, and also

$$
\tilde{\varepsilon}_j := \varepsilon_j^a + \max \left\{ \langle r_j^a, \tilde{z}^a_j - z \rangle : z \in Z \right\}.
$$

Then, the following statements hold:

(a) for every $j \geq 1$, it holds

$$
0 \in T^{\tilde{\varepsilon}_j}(\tilde{z}^a_j), \quad \tilde{\varepsilon}_j \leq \frac{R}{\Lambda_j};
$$

(b) if $T = T_\Phi$ where Φ is a function satisfying the assumptions of Proposition 2.4, and the stronger inclusion

$$
r_j \in \partial \varepsilon_j(\Phi \tilde{z}_j)(\tilde{z}_j)
$$

holds for every $j \geq 1$, then

$$
0 \in \partial \varepsilon_j(\Phi \tilde{z}_j)(\tilde{z}^a_j) \quad \forall j \geq 1.
$$
Proof. (a) Inequality (29), the definition of \(R \) in (30) and the definition of \(\delta_j \) in (31) clearly imply the inequality in (32). Now, let \(\delta_j := \tilde{\varepsilon}_j - \varepsilon_j^a \) and note that (31) and the definitions of the \(\varepsilon \)-subdifferential and the indicator function in (9) and (10), respectively, imply that \(-r_j^a \in \partial_{\delta_j}(\tilde{z}_j^a)\). This inclusion, the inclusion in (28) and Propositions 2.1 and 2.2 then imply that

\[
0 \in T_{z_j^a}^\varepsilon(\tilde{z}_j^a) + (\partial I_Z)^{\delta_j}(\tilde{z}_j^a) \subset (T + \partial I_Z)^{\varepsilon + \delta_j}(\tilde{z}_j^a) = T_{z_j^a}^{\varepsilon + \delta_j}(\tilde{z}_j^a) = T_{z_j^a}^{\delta_j}(\tilde{z}_j^a)
\]

where the last equality is due to the definition of \(\delta_j \).

(b) This statement follows by using similar arguments as the ones used in the proofs of Lemma 3.4 and statement (a) except that Proposition 2.5(b) is used in place of Proposition 2.5(a).

Note that \(\tilde{\varepsilon}_j \) in (31) can be easily computed for those instances of (31) for which the minimization of a linear function on \(Z \) can be trivially performed. Note also that if \(\Lambda_j \) grows to \(\infty \), relation (32) implies that any limit point of \(\tilde{z}_j^a \) is a solution of (4). The inequality in this relation implies that the convergence rate of \(\tilde{z}_j^a \), measured in terms of the size of \(\tilde{\varepsilon}_j \), is on the order of \(\mathcal{O}(1/\Lambda_j) \). Clearly, this convergence rate reduces to \(\mathcal{O}(1/j) \) for the case in which the sequence of stepsizes \(\{\lambda_j\} \) is constant.

3.2 A sufficient condition for the HPE error conditions

In this subsection, a sufficient condition which ensures the HPE error conditions (26)-(27) is derived for special classes of maximal monotone operators and Bregman distances.

Observe that given \(z_- = z_{j-1} \in W^0 \) and \(\sigma = \sigma_j \in [0,1] \), each iteration of the NE-HPE framework involves the computation of a stepsize \(\lambda = \lambda_j > 0 \) and a triple \((\tilde{z}, z, \varepsilon_j) = (\tilde{z}_j, z_j, \varepsilon_j) \in W \times W^0 \times \mathbb{R}_+ \) satisfying the HPE error conditions:

\[
\frac{1}{\lambda} \nabla (dw)_{z_-}(z_-) \in T^\varepsilon(\tilde{z}), \\
(dw)_{z}(\tilde{z}) + \lambda \varepsilon \leq \sigma (dw)_{z_-}(\tilde{z}).
\]

Our goal in this subsection is to derive a sufficient condition for obtaining such a triple. Our discussion in this subsection applies to maximal monotone operators satisfying the following condition:

C.1) for every \(\tilde{z} \in \text{Dom} T \), there exists a proper closed convex function \(f_{\tilde{z}} : Z \to [-\infty, \infty] \) such that \(\tilde{z} \in \text{dom}(f_{\tilde{z}}) \) and \(\partial_\varepsilon(f_{\tilde{z}})(\tilde{z}) \subset T^\varepsilon(\tilde{z}) \) for every \(\varepsilon \geq 0 \).

Note that Proposition 2.2 implies that the operator \(T_{\tilde{z}} \) defined in (12) satisfies condition C.1 with \(f_{\tilde{z}} = \tilde{\Phi}_z \) for every \(\tilde{z} \in \text{Dom} T_{\tilde{z}} \) where \(\tilde{\Phi}_z \) is defined in (13).

To state the main result of this subsection, we need to introduce a special class of Bregman distances that will also be used in other parts of the paper.

Definition 3.6. For a given scalar \(\mu > 0 \) and a nonempty convex set \(\Omega \subset Z \), a Bregman distance \(dw \) over \(W \) is called a \((\mu, \Omega)\)-Bregman distance over \(W \) if \(\Omega \cap W^0 \neq \emptyset \) and

\[
(dw)_{z}(z') \geq \frac{\mu}{2} \|z' - z\|^2 \quad \forall z, z' \in \Omega \cap W^0.
\]
We now make some remarks about the above definition. First, for every $z \in \Omega \cap W^0$, the inequality in (36) holds for every $z' \in \Omega \cap W$ due to the continuity of $(dw)_{z} \cdot \cdot$ Second, (36) is equivalent to the distance generating function w being μ-strongly convex on $\Omega \cap W$.

We now present the aforementioned sufficient condition for obtaining a triple satisfying (34)-(35).

Proposition 3.7. Suppose that T is a maximal monotone operator satisfying condition C.1 and that dw is a $(\mu, \text{Dom} T)$-Bregman distance over W for some $\mu > 0$. Let $\lambda > 0$, $z_- \in W^0$ and $\tilde{z} \in \text{Dom} T \cap W^0$ be given. Assume that there exists a proper closed convex function such that $\Gamma_{\tilde{z}} \leq f_{\tilde{z}}$ and define the quantities

$$z := \text{argmin}_u \left\{ \Gamma_{\tilde{z}}(u) + \frac{1}{\lambda} (dw)_{z_-}(u) \right\}$$

(37)

$$\varepsilon := f_{\tilde{z}}(\tilde{z}) - \Gamma_{\tilde{z}}(z) - \langle r, \tilde{z} - z \rangle$$

(38)

where

$$r := \frac{1}{\lambda} \nabla (dw)_{z}(z_-).$$

(39)

Then, the following statements hold:

(a) z is well-defined, $\varepsilon \in [0, \infty)$ and the following inclusion (which is stronger than (34) due to C.1) holds:

$$r \in \partial \varepsilon (f_{\tilde{z}})(\tilde{z});$$

(40)

(b) if, in addition, for a given scalar $\sigma \geq 0$, we have

$$f_{\tilde{z}}(\tilde{z}) + \frac{1 - \sigma}{\lambda} (dw)_{z_-}(\tilde{z}) \leq \inf \left\{ \Gamma_{\tilde{z}}(u) + \frac{1}{\lambda} (dw)_{z_-}(u) : u \in Z \right\}$$

(41)

then (35) holds.

Proof. (a) The assumptions that $\tilde{z} \in \text{Dom} T \cap W^0$ and $\Gamma_{\tilde{z}} \leq f_{\tilde{z}}$ together with condition C.1 imply that $\tilde{z} \in \text{dom} f_{\tilde{z}} \cap W^0 \subset \text{dom} \Gamma_{\tilde{z}} \cap W^0$. Since dw is a $(\mu, \text{Dom} T)$-Bregman distance over W, it follows from (39) and Proposition A.1 of Appendix A with $\psi = \lambda \Gamma_{\tilde{z}}$ that z is well-defined and satisfies

$$r \in \partial \Gamma_{\tilde{z}}(z).$$

(42)

Clearly, the latter conclusion and the fact that $\tilde{z} \in \text{dom} f_{\tilde{z}}$ imply that $\varepsilon < \infty$. Using the assumption that $\Gamma_{\tilde{z}} \leq f_{\tilde{z}}$, and relations (38) and (42), we conclude that

$$f_{\tilde{z}}(u) \geq \Gamma_{\tilde{z}}(u) \geq \Gamma_{\tilde{z}}(z) + \langle r, u - z \rangle = f_{\tilde{z}}(\tilde{z}) + \langle r, u - \tilde{z} \rangle - \varepsilon \quad \forall u \in Z,$$

(43)

and hence the first inclusion in (40) holds. Note that the second inclusion in (40) is due to condition C.1. Clearly, (43) with $u = \tilde{z}$ implies that $\varepsilon \geq 0$.

(b) Note that (41) and (37) clearly imply that

$$f_{\tilde{z}}(\tilde{z}) + \frac{1 - \sigma}{\lambda} (dw)_{z_-}(\tilde{z}) \leq \Gamma_{\tilde{z}}(z) + \frac{1}{\lambda} (dw)_{z_-}(z).$$

(44)

Moreover, relations (24), (25) and (39) imply that

$$(dw)_{z_-}(\tilde{z}) - (dw)_{z_-}(z) = (dw)_{z}(\tilde{z}) + (\nabla (dw)_{z_-}(z) - \tilde{z} - z) = (dw)_{z}(\tilde{z}) - \lambda \langle r, \tilde{z} - z \rangle.$$

(45)
Now, using (38), (44) and (45), we conclude that
\[
(dw)_{\tilde{z}}(\tilde{z}) + \lambda \varepsilon = (dw)_{\tilde{z}}(\tilde{z}) + \lambda [f_\tilde{z}(\tilde{z}) - (r, \tilde{z} - z)]
\]
\[
= (dw)_{\tilde{z}}(\tilde{z}) - (dw)_{\tilde{z}}(z) + \lambda [f_\tilde{z}(\tilde{z}) - \Gamma_\tilde{z}(z)] \leq \sigma (dw)_{\tilde{z}}(\tilde{z}),
\]
and hence that (35) holds.

4 An accelerated instance of the NE-HPE framework

This section presents and establishes the (inner) iteration-complexity of a particular instance of the NE-HPE framework for solving the saddle-point problem where the triple \((\tilde{z}_j, z_j, \varepsilon_j)\) in step 1 of the framework is computed with the aid of the accelerated gradient method of Subsection 2.2.

Throughout this section, we assume that \(X, Y, Z, \langle \cdot, \cdot \rangle_X, \langle \cdot, \cdot \rangle_Y, \langle \cdot, \cdot \rangle\) and \(\hat{\Phi}\) are as in Subsubsection 2.1.2. Moreover, let \(\|\cdot\|_X\) and \(\|\cdot\|_Y\) be norms in \(X\) and \(Y\), respectively, which are not necessarily the ones induced by their corresponding inner products. Our problem of interest is the saddle-point problem \(SP(\hat{\Phi}; Z)\) endowed with a certain composite structure on the space \(X\) which consists of the existence of a proper closed convex function \(\phi : X \rightarrow (-\infty, +\infty]\) and a function \(\Phi : Dom \Phi \supset Z \rightarrow \mathbb{R}\) satisfying

\[
dom \phi = X, \quad \hat{\Phi}(x, y) = \Phi(x, y) + \phi(x) \quad \forall (x, y) \in Z, \tag{46}
\]

and the following additional conditions:

D.1) \(Z\) is a nonempty bounded convex set;

D.2) for every \(z \in Z\), the function \(\hat{\Phi}_z\) given by (13) is closed and convex;

D.3) for every \(y \in Y\), the function \(\Phi(\cdot, y)\) is differentiable on \(X\) and there exist nonnegative constants \(L_{xx}\) and \(L_{xy}\) such that

\[
\|\nabla_x \Phi(x', y') - \nabla_x \Phi(x, y)\|_X^* \leq L_{xx}\|x - x'\|_X + L_{xy}\|y - y'\|_Y \quad \forall (x, y), (x', y') \in X \times Y,
\]

where \(\|\cdot\|_X^*\) denotes the dual norm of \(\|\cdot\|_X\) defined as

\[
\|x\|_X^* := \max_{\|x'\|_X = 1} \{\langle x, x' \rangle_X : x' \in X\} \quad \forall x \in X.
\]

Observe that D.2 and Proposition 2.4(b) imply that the operator \(T_{\hat{\Phi}}\) given by (12) is maximal monotone.

Our goal in this section is to develop an accelerated instance of the NE-HPE framework for (approximately) solving the saddle-point problem \(SP(\hat{\Phi}; Z)\), or equivalently, the inclusion 14 under the above assumptions. The following definition describes the notion of approximate solution considered in our analysis.

Definition 4.1. Given \(\varepsilon \geq 0\), a pair \((z, \varepsilon) \in Z \times \mathbb{R}_+\) satisfying \(0 \in \partial \varepsilon(\hat{\Phi}_z)(z)\) is called an \(\varepsilon\)-saddle-point of \(\hat{\Phi}\) with respect to \(Z\) if \(\varepsilon \leq \varepsilon\), where \(\hat{\Phi}_z\) is given by (13).
We now describe the Bregman distance used by our instance. Let dw^X (resp., dw^Y) be a (η_X, X)-Bregman (resp., (η_Y, Y)-Bregman) distance over $W_X \subset X$ (resp., $W_Y \subset Y$). Letting $W = W_X \times W_Y$ and $W^0 = \text{int}(W)$, the function dw defined as

$$
(dw)_{z}(z') := (dw^X)_{x}(x') + (dw^Y)_{y}(y') \quad \forall z = (x, y) \in W^0, \forall z' = (x', y') \in W
$$

is a Bregman distance over W.

It is assumed that $Z \subset W$ in order to ensure that the operator $T = T_{\Phi}$ given by (12) satisfies condition B.1, and hence the results of Subsection 3.1 carry over to the present context.

To describe our instance, it suffices to explain how step 1 of the NE-HPE framework is implemented. This will be the subject of Subsection 4.1 below which describes a scheme for implementing this step based on the acceleration gradient method of Subsection 2.2. For now, we just mention that the stepsize λ_j is not chosen to be constant but rather is computed within an interval of the form $[\tau \lambda, \lambda]$ where $\lambda > 0$ and $\tau \in (0, 1)$ are fixed throughout our instance. In addition, the scheme of Subsection 4.1 also describes how to compute a triple $(\tilde{z}_j, z_j, \varepsilon_j)$ satisfying condition (27) with dw given by (48), and the stronger inclusion (33).

More specifically, Subsection 4.1 describes a scheme for solving the following problem.

\[\text{(P1) Given a pair } z_- = (x_-, y_-) \in W^0, \text{ and scalars } \sigma \in (0, 1], \lambda > 0 \text{ and } \tau \in (0, 1), \text{ the problem is to find } \lambda \in [\tau \lambda, \lambda] \text{ and a triple } (\tilde{z}, z, \varepsilon) \in W \times W^0 \times \mathbb{R}_+ \text{ such that} \]

\[
\begin{align*}
\nabla (dw)_{z}(z_-) + \lambda \varepsilon & \leq \sigma (dw)_{z_-}(\tilde{z}), \quad (49) \\
(dw)_{z}(\tilde{z}) & + \lambda \varepsilon \leq \sigma (dw)_{z_-}(\tilde{z}). \quad (50)
\end{align*}
\]

with $\tilde{\Phi}_z$ given by (13).

In addition to Subsection 4.1, this section contains two other subsections. Subsection 4.2 completely describes the accelerated instance of the NE-HPE framework for solving $\text{SP}(\hat{\Phi}; Z)$ and its corresponding iteration-complexity result. It also discusses optimal ways of choosing the prox stepsize in order to minimize the overall inner iteration-complexity of the instance. The proof of the main complexity result of Subsection 4.1 is only given in Subsection 4.3.

4.1 An accelerated scheme for solving (P1)

This subsection presents a scheme for finding a solution of problem (P1) based on the accelerated gradient method of Subsection 2.2 applied to a certain regularized convex-concave min-max problem.

With the above goal in mind, consider the regularized convex-concave min-max problem

\[
\min_{x \in X} \max_{y \in Y} \hat{\Phi}(x, y) + \frac{1}{\lambda} (dw^X)_{x-}(x) - \frac{1}{\lambda} (dw^Y)_{y-}(y).
\]

(51)

It is easy to see that the exact solution of (51) determines a solution of (P1) with $\sigma = 0$ in which $\lambda = \lambda$. Letting

\[
\begin{align*}
\phi_{\lambda}(x) := \max_{y \in Y} \left\{ \Phi(x, y) - \frac{1}{\lambda} (dw^Y)_{y-}(y) \right\} \quad \forall x \in X, \quad (52) \\
g_{\lambda}(x) := \frac{1}{\lambda} (dw^X)_{x-}(x) + \phi(x) \quad \forall x \in X, \quad (53)
\end{align*}
\]
it follows from (47), (52) and (53) that (51) is equivalent to (15) with \((f,g) = (f_\lambda, g_\lambda)\). Moreover, conditions A.1 and A.2 are satisfied with \(\mu = \eta_X/\lambda\) due to (52) and the fact that \(dw^X\) is an \((\eta_X, X)\)-Bregman distance over \(W_X\). Also, the following result establishes the validity of A.3.

Proposition 4.2. The constant \(L = L_\lambda\) and function \(\nabla f = \nabla f_\lambda : X \to X\) defined as

\[
L_\lambda := 2 \left(L_{xx} + \frac{\lambda}{\eta_Y} L_{xy}^2 \right), \quad \nabla f_\lambda(x) := \nabla_x \Phi(x, y_\lambda(x)) \quad \forall x \in X,
\]

respectively, where \(y_\lambda(x)\) is defined as

\[
y_\lambda(x) := \arg\max_{y \in Y} \left\{ \Phi(x, y) - \frac{1}{\lambda} (dw^Y) y_-(y) \right\} \quad \forall x \in X,
\]

satisfy condition A.3 with \(f = f_\lambda\).

Proof. The result follows from Proposition 4.1 of [19] with the function \(\Psi\) given by

\[
\Psi(x, y) = \Phi(x, y) - \frac{1}{\lambda} (dw^Y) y_-(y) \quad \forall (x, y) \in X \times Y,
\]

and with \(\eta = 0\) and \(\beta = \eta_Y / \lambda\).

Next we present a scheme for solving (P1) under the assumption that the input \(z_-\) lies in \(W^0 \cap Z\). The scheme consists on applying the accelerated method of Subsection 2.2 to problem (15) with \((f, g) = (f_\lambda, g_\lambda)\) where \(f_\lambda\) and \(g_\lambda\) are as in (52) and (53), respectively.

[Algorithm 2] Accelerated scheme for solving (P1).

Input: \(\sigma \in (0, 1], \lambda > 0, \tau \in (0, 1)\) and \(z_- = (x_-, y_-) \in W^0 \cap Z\).

0) Set \(A_0 = 0, k = 1, \tilde{\Lambda}_0 \equiv 0, \tilde{y}_0 = 0, L_\lambda\) as in (54), and \(x_0 = \tilde{x}_0 := x_-\);

1) compute \(A_k\) as in (16) with \(\mu = \eta_X / \lambda\), iterate \(\tilde{x}_k\) as in (17), compute \(y_\lambda(\tilde{x}_k)\) according to (55), and the affine function \(\tilde{\Lambda}_k\) as

\[
\tilde{\Lambda}_k := \frac{A_{k-1}}{A_k} \tilde{\Lambda}_{k-1} + \frac{A_k - A_{k-1}}{A_k} \left[\Phi(\tilde{x}_k, y_\lambda(\tilde{x}_k)) + \langle \nabla \Phi(\tilde{x}_k, y_\lambda(\tilde{x}_k)), \cdot - \tilde{x}_k \rangle X \right]
\]

2) set

\[
\lambda_k = \left(\frac{1}{\lambda} + \frac{1}{\eta_X A_k} \right)^{-1},
\]

and compute iterates \(x_k\) and \(\tilde{y}_k\) as

\[
x_k = \arg\min \left\{ \tilde{\Lambda}_k(x) + \phi(x) + \frac{1}{\lambda_k} (dw^X) x_-(x) \right\},
\]

\[
\tilde{y}_k = \frac{A_{k-1}}{A_k} y_{k-1} + \frac{A_k - A_{k-1}}{A_k} y_\lambda(\tilde{x}_k),
\]

and \(\tilde{x}_k\) as in (20).
3) if \(\lambda_k \geq \max\{1 - \sigma, \tau\} \lambda \), then compute
\[
y_k := y_{\lambda_k}(\tilde{x}_k) \quad \text{according to (55)},
\]
set \(\tilde{\lambda} = \lambda_k \),
\(\tilde{z} = \tilde{z}_k := (\tilde{x}_k, \tilde{y}_k) \), \(z = z_k := (x_k, y_k) \) and
\[
\varepsilon = \varepsilon_k := \tilde{\Phi}(\tilde{x}_k, \tilde{y}_k) - \tilde{\Lambda}_k(x_k) - \phi(x_k) - \frac{1}{\lambda_k} \langle \nabla(dw)z(z_\cdot), \tilde{z} - z \rangle,
\]
output \(\tilde{\lambda} \) and the triple \((\tilde{z}, z, \varepsilon)\), and terminate; otherwise, set \(k \leftarrow k + 1 \) and go to step 1.

end

We now make several remarks about Algorithm 2. First, due to the stopping criterion and \((57)\), Algorithm 2 outputs \(\tilde{\lambda} \in [\tau \lambda, \lambda] \). Second, due to Proposition A.1 and relations \((46), (55)\) and \((58)\), the output \(z \) lies in \(W^0 \cap Z \). Third, steps 1 and 2 of Algorithm 2 are specializations of steps 1 and 2 of Algorithm 1 to the instance of \((15)\) in which \((f, g)\) is given by \((f_\lambda, g_\lambda)\) with \(f_\lambda\) and \(g_\lambda\) as in \((52)\) and \((53)\), respectively. The only difference is the extra computation of \(\tilde{y}_k \) in \((59)\) which is used to compute the component \(\tilde{z} \) of the output. Fourth, even though the affine function \(\tilde{\Lambda}_k \) given in \((56)\) and the affine function \(\Lambda_k \) given by \((18)\) with \(f = f_\lambda\) are not the same, they both have the same gradient due to \((54)\), and hence the subproblems \((58)\) and \((19)\) are equivalent. Fifth, each iteration of Algorithm 2 before the last one requires solving two subproblems, namely, \((58)\) and one of the form \((55)\), while the last one requires one additional subproblem of the form \((55)\) in step 3. Sixth, when the termination criterion in step 3 is met, this extra step computes the output \(\tilde{\lambda} \) and \((\tilde{z}, z, \varepsilon)\) which solve \((P1)\) (see Proposition 4.3 below). Seventh, another possible way to terminate Algorithm 2 would be to compute the triple \((\tilde{z}, z, \varepsilon) = (\tilde{z}_k, z_k, \varepsilon_k)\) as described in its step 3 at every iteration and check whether \(\tilde{\lambda} = \lambda_k \) and this triple satisfy the HPE error criterion \((50)\). (They always satisfy \((49)\) due to Proposition 4.3(a).) The drawback of this stopping criterion is that it requires solving an additional subproblem of the form \((55)\) at every iteration. Our computational benchmark presented in Section 5 is based on the stopping criterion of Algorithm 2.

The following result establishes the correctness and iteration-complexity of Algorithm 2. Its proof is given in Subsection 4.3.

Proposition 4.3. For every \(k \geq 1 \) the following statements hold:

(a) the scalar \(\tilde{\lambda} = \lambda_k \) and the triple \((\tilde{z}, z, \varepsilon) \) satisfy inclusion \((49)\);

(b) If \(\lambda_k \geq (1 - \sigma) \lambda \), then \(\tilde{\lambda} = \lambda_k \) and the triple \((\tilde{z}, z, \varepsilon) \) satisfy the condition \((50)\).

Also, Algorithm 2 solves problem \((P1)\) in at most
\[
\mathcal{O}\left(\sqrt{\frac{\lambda \left(L_{xx} + \frac{\lambda}{\gamma_x} L_{xy}^2\right)}{\eta X}}\right)
\]
iterations.
4.2 An accelerated NE-HPE instance for solving SP(\(\hat{\Phi}; Z\))

This subsection describes an accelerated instance of NE-HPE framework for solving the saddle-point problem \(SP(\hat{\Phi}; Z)\) and its corresponding iteration-complexity result. It also discusses optimal ways of choosing the prox stepsize in order to minimize the overall inner iteration-complexity of the instance.

We start by stating an accelerated instance of the NE-HPE framework for solving \(SP(\hat{\Phi}; Z)\) which computes the required stepsize \(\lambda_j\) and triple \((\tilde{z}_j, z_j, \varepsilon_j)\) in its step 1 with the aid of Algorithm 2.

Accelerated NE-HPE method for the saddle-point problem

0) Let \(z_0 \in W^0, \lambda > 0, \sigma \in (0, 1]\) and \(\tau \in (0, 1)\) be given and set \(j = 1;\)

1) invoke Algorithm 2 with input \(\sigma, \lambda, \tau\) and \(z_{j-1}\) to obtain a stepsize \(\lambda_j\) and a triple \((\tilde{z}_j, z_j, \varepsilon_j)\) satisfying (33) and (27);

2) set \(j \leftarrow j + 1,\) and go to step 1.

end

In view of Proposition 4.3, the accelerated NE-HPE method satisfies the error conditions (33) and (27) of step 1 of the NE-HPE framework. Therefore, the accelerated NE-HPE method is clearly a special case of the NE-HPE framework. It follows that the ergodic (outer) convergence rate bound for the accelerated NE-HPE method is as described in Theorem 3.5.

Theorem 4.4. Let \(R = R(z_0; Z)\) be given by (30). Consider the sequences \(\{\tilde{z}_j\}, \{z_j\}\) and \(\{\varepsilon_j\}\) generated by the accelerated NE-HPE method and the respective ergodic sequences \(\{\tilde{z}_j\}, \{z_j\}\) and \(\{\varepsilon_j\}\) as in Lemma 3.4. Then, the following statements hold:

(a) for every positive scalar \(\bar{\varepsilon}\), there exists \(j_0 = O\left(\left\lceil \frac{R}{\lambda \bar{\varepsilon}} \right\rceil\right)\) such that for every \(j \geq j_0, (\tilde{z}_j, z_j)\) is a \(\bar{\varepsilon}\)-saddle-point of \(\hat{\Phi}\) with respect to \(Z\);

(b) each iteration of the accelerated NE-HPE method performs at most

\[O\left(\left\lceil \frac{\lambda (L_{xx} + \frac{L_{xy}^2}{\eta_x})}{\eta_x \bar{\varepsilon}} \right\rceil\right)\]

inner iterations.

As a consequence, the accelerated NE-HPE method finds an \(\bar{\varepsilon}\)-saddle-point of \(\hat{\Phi}\) with respect to \(Z\) by performing no more than

\[O\left(\left\lceil \frac{\lambda (L_{xx} + \frac{L_{xy}^2}{\eta_x})}{\eta_x \bar{\varepsilon}} \right\rceil\right)\]

inner iterations.
Proof. Since the accelerated NE-HPE method is a special instance of the NE-HPE framework, (a) follows from Theorem 3.5 (a) and from the fact that $\lambda_j \geq \tau \lambda$ for every $j \geq 1$. Statement (b) follows from Proposition 4.3. The last assertion of the theorem follows immediately from (a) and (b).

We end this subsection by making a remark about the complexity bound (61) in light of the one obtained in relation (4.4) of [23]. Clearly, when $\lambda = R/\bar{\varepsilon}$, the complexity bound (61) reduces to

$$O \left(1 + \frac{RL_{xy}}{\varepsilon \sqrt{\eta_X \eta_Y}} + \sqrt{\frac{RL_{xx}}{\varepsilon \eta_X}} \right).$$

(62)

It turns out that, for suitably chosen scaled Bregman distances with respect to X and Y, this bound reduces to

$$O \left(1 + \sqrt{R_X R_Y L_{xy}} \bar{\varepsilon} \sqrt{\eta_X \eta_Y} + \sqrt{R_X L_{xx}} \bar{\varepsilon} \eta_X \right).$$

(63)

where $R_X := \max\{(dw^X)_{x_0}(x) : x \in X\}$, $R_Y := \max\{(dw^Y)_{y_0}(y) : y \in Y\}$. The latter bound generalizes the one in relation (4.4) of [23] which is valid only for a special bilinear structured case of $SP(\hat{\Phi}; Z)$.

To obtain the bound (63), consider the Bregman distances defined as

$$dw^{X, \theta} := \theta dw^X, \quad dw^{Y, \theta} := \theta^{-1} dw^Y$$

where $\theta > 0$ is a fixed parameter. Clearly, $dw^{X, \theta}$ (resp., $dw^{Y, \theta}$) is a $(\theta \eta_X, X)$-Bregman distance (resp., $(\theta^{-1} \eta_Y, Y)$-Bregman distance) over W_X (resp., over W_Y). In this case, R becomes

$$R = R_\theta := \theta R_X + \theta^{-1} R_Y.$$

Hence, choosing $\theta = (R_Y/R_X)^{1/2}$, the quantities R, η_X and η_Y in this case reduce to

$$R = 2 \sqrt{R_X R_Y}, \quad \eta_X = \frac{R_Y}{R_X} \eta_X, \quad \eta_Y = \frac{R_X}{R_Y} \eta_Y,$$

and hence (62) reduces to (63).

4.3 Proof of Proposition 4.3

This subsection proves Proposition 4.3.

We start by establishing the following technical result.

Lemma 4.5. For every $k \geq 1$, the affine function $\tilde{\Lambda}_k$ given by (56) satisfies the following statements:

(a) $\tilde{\Lambda}_k(x) \leq \Phi(x, \tilde{y}_k)$ for every $x \in X$;

(b) setting $\tilde{z}_k := (\tilde{x}_k, \tilde{y}_k)$, the function $\Gamma_{\tilde{z}_k} : Z \to [-\infty, \infty]$ defined as

$$\Gamma_{\tilde{z}_k}(z) := \begin{cases}
\tilde{\Lambda}_k(x) + \phi(x) - \hat{\Phi} (\tilde{x}_k, y), & \forall z = (x, y) \in Z; \\
+\infty, & \text{otherwise},
\end{cases}$$

(64)

minorizes the function $\hat{\Phi}_{\tilde{z}_k}$ defined in (13);
(c) if \(\lambda_k \geq (1 - \sigma) \lambda \) then
\[
\frac{(1 - \sigma)}{\lambda_k} (dw)_{(z_\cdot)}(\tilde{z}_k) \leq \inf_{u \in \mathcal{Z}} \left\{ \Gamma_{\tilde{\lambda}_k}(u) + \frac{1}{\lambda_k} (dw)_{(z_\cdot)}(u) \right\}.
\]

Proof. (a) Using the definitions of \(\tilde{\Lambda}_k \) and \(\tilde{\gamma}_k \) given in (56) and (58) as well as the fact that \(\Phi(\cdot, y) - \Phi(x, \cdot) \) is convex for every \((x, y) \in \mathcal{Z}\), we see that for every \(x \in X\)

\[
\tilde{\Lambda}_k(x) = \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_k} \left[\Phi(\tilde{x}_i, y_{\lambda}(\tilde{x}_i)) + \langle \nabla \Phi(\tilde{x}_i, y_{\lambda}(\tilde{x}_i)), x - \tilde{x}_i \rangle \right]
\]

\[
\leq \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_k} \left[\Phi(x, y_{\lambda}(\tilde{x}_i)) \right] \leq \Phi \left(x, \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_k} y_{\lambda}(\tilde{x}_i) \right) = \Phi(x, \tilde{\gamma}_k),
\]

which proves (a).

(b) By (13), (47) and (64), we see that \(\Gamma_{\tilde{z}_k} \) minorizes \(\tilde{\phi}_k \) if and only if \(\tilde{\Lambda}_k \leq \Phi(\cdot, \tilde{\gamma}_k) \), and hence (b) follows.

(c) Assume that \(\lambda_k \geq (1 - \sigma) \lambda \). Observe that due to (52), (54), (55), (56), (59) and the convexity of \((dw)^Y_{y_\cdot}(\cdot) \), we have that
\[
\tilde{\Lambda}_k(x) - \frac{1}{\lambda} (dw)^Y_{y_\cdot}(\tilde{\gamma}_k) \geq \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_i} \left[\Phi(\tilde{x}_i, y_{\lambda}(\tilde{x}_i)) + \langle \nabla \Phi(\tilde{x}_i, y_{\lambda}(\tilde{x}_i)), x - \tilde{x}_i \rangle \lambda - \frac{1}{\lambda} (dw)^Y_{y_\cdot}(y_{\lambda}(\tilde{x}_i)) \right]
\]

\[
= \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_i} \left[f_{\lambda}(\tilde{x}_i) + \langle \nabla f_{\lambda}(\tilde{x}_i), x - \tilde{x}_i \rangle \rangle \right].
\]

Now, letting \(x_0 = x, g = g_{\lambda} \) and \(h = (1/\eta_{\lambda}) dw^X_{x_\cdot} \) where \(g_{\lambda} \) is as in (53), and using the fact that \(dw^X \) is an \((\eta_{\lambda}, X)\)-Bregman distance over \(W \), we easily see that \(x_0, g \) and \(h \) satisfy conditions A.1-A.3 where \(f_1 \) is as in (52), and Algorithm 2 corresponds to Algorithm 1 applied to (15) with \((f, g) = (f_{\lambda}, g_{\lambda})\) and \(h \) as above, it follows from (22), (52), (53) (57) and (66) that

\[
\tilde{\Lambda}_k(x) + \phi(x) - \frac{1}{\lambda} (dw)^Y_{y_\cdot}(\tilde{\gamma}_k) + \frac{1}{\lambda_k} (dw)^X_{x_\cdot}(x)
\]

\[
= \tilde{\Lambda}_k(x) + \phi(x) - \frac{1}{\lambda} (dw)^Y_{y_\cdot}(\tilde{\gamma}_k) + \left(\frac{1}{\lambda} + \frac{1}{\eta_{\lambda} A_k} \right) (dw)^X_{x_\cdot}(x)
\]

\[
\geq \sum_{i=1}^{k} \frac{A_i - A_{i-1}}{A_i} \left[f_{\lambda}(\tilde{x}_i) + \langle \nabla f_{\lambda}(\tilde{x}_i), x - \tilde{x}_i \rangle \rangle + g_{\lambda}(x) + \frac{1}{A_k} h(x)
\]

\[
\geq (f_{\lambda} + g_{\lambda})(\tilde{x}_k) \geq \Phi(\tilde{x}_k, y) - \frac{1}{\lambda} (dw)^Y_{y_\cdot}(y) + \frac{1}{\lambda} (dw)^X_{x_\cdot}(\tilde{x}_k) \forall (x, y) \in \mathcal{Z}.
\]

Now, rearranging the last inequality and using the definitions of \(dw \) and \(\Gamma_{\tilde{z}_k} \) in (48) and (64), respectively, and the fact that \((1 - \sigma) \lambda \leq \lambda_k \leq \lambda \) where the second inequality is due to (57), we easily see that (65) holds.

We are now ready to prove Proposition 4.3.
Proof. (Proof of Proposition 4.3) Let $k \geq 1$ be given. The proofs of the two statements are based on Proposition 3.7 specialized to $\lambda = \lambda_k$, $\tilde{z} = \tilde{z}_k$, $\varepsilon = \varepsilon_k$ and operator $T = T_k$ given by (12), which satisfies condition C.1 with $f_{\tilde{z}} = \Phi_{\tilde{z}}$ given by (13) for every $\tilde{z} \in Z$ (see the remark preceding Proposition 3.7).

(a) Lemma 4.5(b) implies that $\Gamma_{\tilde{z}_k}$ defined in (64) minorizes $\Phi_{\tilde{z}_k}$. Moreover, using the fact that $f_{\tilde{z}}(\tilde{z}) = \Phi_{\tilde{z}}(\tilde{z}) = 0$ for every $\tilde{z} \in Z$ due to definition (13), it is easy to see that the quantities z and ε computed according to (37) and (38), respectively, with $\tilde{z} = \tilde{z}_k$ is equivalent to the way z_k and ε_k are computed in Algorithm 2. Hence, (a) follows from Proposition 3.7(a).

(b) This statement follows from the same arguments above, Lemma 4.5(c) and Proposition 3.7(b).

We now establish the last conclusion of the proposition. When the termination of Algorithm 2 holds (see Step 3), it easily follows from (57) that the output $\hat{\lambda} = \lambda_k$ satisfies $\hat{\lambda} \in [\tau \lambda, \lambda]$. Hence, in view of statements (a) and (b), we conclude that Algorithm 2 outputs $\hat{\lambda}$ and $(\tilde{z}, z, \varepsilon)$ which solves (P1). Finally, using the the estimate $A_k \geq k^2/4L_\lambda$ given in (21), and the definitions of L_λ and λ_k given in (54) and (57), respectively, it is easy to verify that the number of iterations until the stopping criterion of Algorithm 2 occurs is bounded by (60) (when τ and σ are viewed as universal constants such that $\max\{1 - \sigma, \tau\}$ is not close to either zero or one).

5 Numerical experiments

This section presents computational results showing the numerical performance of the accelerated NE-HPE method on a collection of saddle-point problems. All the computational results were obtained using MATLAB R2014a on a Windows 64 bit machine with processor Intel 2.16 GHz with 4 GB memory.

The accelerated NE-HPE method (referred to as ACC-HPE) is compared with Nesterov’s smoothing scheme [23] (referred to as NEST). We have implemented both algorithms based on the Euclidean distance and the Bregman distance induced by the Kulback-Leibler divergence, namely, $d_{\text{KL}}(z^1) = \sum_i z_i^1 \log(z_i^1/z_i^2) + z_i^1 - z_i^2$. Our computational results then consider four variants, namely, E-ACC-HPE, L-ACC-HPE, E-NEST and L-NEST, where the ones starting with E- (resp., L-) are the ones based on the Euclidean (resp., Kulback-Leibler log distance). To improve the performance of the L-variants, we have used the adaptive scheme for choosing the parameter L given in [31], i.e., the initial value of L is set to a fraction of the true Lipschitz constant value and is increased by a factor of 2 whenever it fails to satisfy a certain convergence criterion (see equations (23) and (45) of [31]). The fraction $1/2^9$ was used in our experiments. The same scheme was not used for the E-variants since we have observed that it does not improve their performance. The value of L at the last iteration divided by the true Lipschitz constant varied between $1/64$ and 1 in our experiments. More specifically, this ratio was $1/64$ for one instance, $1/32$ for three instances, $1/8$ for one instance, $1/4$ for four instances, $1/2$ for thirteen instances and 1 for the remaining instances.

The following three subsections report computational results on the following classes of problems: (a) zero-sum matrix game; (b) vector-matrix saddle-point; and (c) quadratic game. The results are reported in tables and in performance profiles (see [9]). We recall the following definition of a performance profile. For a given instance, a method A is said to be at most x times slower than method B, if the time taken by method A is at most x times the time taken by method B. A point (x, y) is in the performance profile curve of a method if it can solve
exactly 100% of all the tested instances \(x \) times slower than any other competing method.

For all problem classes, the stopping criterion used to terminate all methods at the \(k \)-th iteration is

\[
\max_{y \in Y} \hat{\Phi}(\tilde{x}_k, y) - \min_{x \in X} \hat{\Phi}(x, \tilde{y}_k) \leq \bar{\varepsilon}.
\]

The use of this criterion for the second and third problem classes is not the best strategy from the computational point of view, since the computation of the dual function involves solving a quadratic programming problem over the unit simplex. Note that our method has the ability to compute at every iteration a pair \((\tilde{x}_k, \tilde{y}_k, \varepsilon_k) \) such that the above inequality holds with \(\varepsilon = \varepsilon_k \) and hence the above termination criterion will be satisfied whenever \(\varepsilon_k \leq \bar{\varepsilon} \). Since the usual description of Nesterov’s smoothing scheme generates \((\tilde{x}_k, \tilde{y}_k) \) but not \(\varepsilon_k \), we have opted for the gap criterion but adopted the convention of excluding the effort to evaluate the dual functions from the reported cpu times.

We let \(\mathbb{R}^n \) denote the \(n \)-dimensional Euclidean space and \(S^n \) denote the linear space of \(n \times n \) real symmetric matrices. The unit simplex in \(\mathbb{R}^n \) is defined as

\[
\Delta_n := \left\{ x \in \mathbb{R}^n : \sum_{i=1}^{n} x_i = 1, x \geq 0 \right\}.
\]

5.1 Zero-sum matrix game problem

This subsection compares the performance of the four variants on instances of the zero-sum matrix game problem

\[
\min_{x \in \Delta_n} \max_{y \in \Delta_m} \langle x, Ay \rangle
\]

where \(A \) is a real \(n \times m \) matrix. The matrices were generated so that its elements are non-zero with probability \(p \) and the nonzero ones are randomly generated in the interval \([-1, 1]\). We have tested the methods for a set of problems with different sizes of matrices and different values of \(p \). The tolerance used here was \(\bar{\varepsilon} = 10^{-3} \).

Table 1 reports the results of the four variants applied to several instances of this problem with different sizes of matrices and different values of \(p \).

<table>
<thead>
<tr>
<th>Size</th>
<th>E-ACC-HPE</th>
<th>E-NEST</th>
<th>L-ACC-HPE</th>
<th>L-NEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>iter.</td>
<td>time</td>
<td>iter.</td>
</tr>
<tr>
<td>1000 100 0.01</td>
<td>0.2721</td>
<td>196</td>
<td>1.8915</td>
<td>1806</td>
</tr>
<tr>
<td>1000 100 0.1</td>
<td>0.6587</td>
<td>480</td>
<td>14.5410</td>
<td>12738</td>
</tr>
<tr>
<td>1000 1000 0.01</td>
<td>0.4562</td>
<td>224</td>
<td>3.9617</td>
<td>2560</td>
</tr>
<tr>
<td>1000 1000 0.1</td>
<td>0.7927</td>
<td>213</td>
<td>47.3204</td>
<td>14602</td>
</tr>
<tr>
<td>10000 100 0.01</td>
<td>0.7082</td>
<td>100</td>
<td>28.0016</td>
<td>4213</td>
</tr>
<tr>
<td>10000 100 0.1</td>
<td>3.5575</td>
<td>196</td>
<td>698.2147</td>
<td>38410</td>
</tr>
<tr>
<td>10000 1000 0.01</td>
<td>1.8140</td>
<td>461</td>
<td>33.8041</td>
<td>4603</td>
</tr>
<tr>
<td>10000 1000 0.1</td>
<td>11.5663</td>
<td>1381</td>
<td>745.7268</td>
<td>100384</td>
</tr>
<tr>
<td>10000 1000 0.01</td>
<td>0.7976</td>
<td>121</td>
<td>34.0278</td>
<td>5038</td>
</tr>
</tbody>
</table>
Figure 1 gives the performance profile for the same set of instances. Overall, it shows that the accelerated NE-HPE variants perform better than NEST variants on this set of zero-sum games instances.

![Performance profile for the zero-sum matrix problem](image)

Figure 1 – Performance profile for the zero-sum matrix problem

5.2 Vector-matrix saddle-point problem

This subsection compares the four variants on instances of the vector-matrix saddle-point problem. Given \(c \in \mathbb{R}^n \), a real \(n \times n \) matrix \(B \) and a linear operator \(A : \mathbb{R}^n \rightarrow \mathcal{S}^m \), the vector-matrix saddle-point problem is

\[
\min_{x \in \Delta_n} \frac{1}{2} \| Bx + c \|^2 + \theta_{\text{max}}(A(x))
\]

where \(\theta_{\text{max}}(A(x)) \) denotes the largest eigenvalue of \(A(x) \). Such problem is equivalent to the saddle-point problem

\[
\min_{x \in \Delta_n} \max_{y \in \Omega} \frac{1}{2} \| Bx + c \|^2 + \langle A(x), y \rangle,
\]

where \(\Omega := \{ y \in \mathcal{S}^m : \text{tr}(y) = 1, y \text{ is positive definite} \} \). We have tested the four variants on a set of problems where the matrices \(B \) and \(A_i := A(e_i), i = 1, \ldots, n \), were generated so that its elements are non-zero with probability 0.1 and the non-zero ones are randomly generated in the interval \([-1, 1]\). (Here, \(e_i \) denotes the \(i \)-th unit \(n \)-dimensional vector.) The tolerance used was \(\bar{\varepsilon} = 10^{-2} \).

Table 2 reports the results of the four variants applied to several instances of this problem with different sizes of matrices.
Table 2 – Test results for the vector-matrix saddle-point game problem

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td></td>
<td></td>
<td>n</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td></td>
<td>1.5987 266</td>
<td></td>
<td>3.9912 750</td>
<td></td>
<td>1.2079 240</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td></td>
<td>10.4205 456</td>
<td></td>
<td>44.2678 2335</td>
<td></td>
<td>16.7225 265</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td></td>
<td>0.6970 113</td>
<td></td>
<td>4.4376 725</td>
<td></td>
<td>2.2108 315</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td></td>
<td>3.6108 218</td>
<td></td>
<td>32.5960 1855</td>
<td></td>
<td>5.9332 395</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td></td>
<td>22.6149 316</td>
<td></td>
<td>370.1234 5145</td>
<td></td>
<td>26.1798 330</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td></td>
<td>2.2427 214</td>
<td></td>
<td>4.3349 605</td>
<td></td>
<td>2.1502 305</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td></td>
<td>3.9892 281</td>
<td></td>
<td>30.1342 1530</td>
<td></td>
<td>7.4743 345</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td></td>
<td>22.9626 312</td>
<td></td>
<td>342.4116 4335</td>
<td></td>
<td>23.9602 355</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 gives the performance profile for the same set of instances. It also shows that the accelerated NE-HPE variants perform better than NEST variants on this set of vector-matrix saddle-point instances.

Figure 2 – Performance profile for the vector-matrix saddle-point problem

5.3 Quadratic game problem

This subsection compares the four variants on instances of the quadratic game problem

\[
\min_{x \in \Delta_n} \max_{y \in \Delta_m} \frac{1}{2} \|Bx\|^2 + \langle x, Ay \rangle
\]

for different sizes of matrices and different values of \(p\). The matrices were generated in the same way as in the zero-sum matrix game problem (see Subsection 5.1). The tolerance used was \(\varepsilon = 10^{-4}\).

Table 3 reports the results of the four variants applied to several instances of this problem with different sizes of matrices and different values of \(p\).
Table 3 – Test results for the quadratic game problem

<table>
<thead>
<tr>
<th>Size</th>
<th>n</th>
<th>m</th>
<th>p</th>
<th>Time E-ACC-HPE (sec)</th>
<th>Iter E-ACC-HPE</th>
<th>Time E-Nest (sec)</th>
<th>Iter E-Nest</th>
<th>Time L-ACC-HPE (sec)</th>
<th>Iter L-ACC-HPE</th>
<th>Time L-Nest (sec)</th>
<th>Iter L-Nest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0.01</td>
<td>2.9931</td>
<td>3325</td>
<td>3.4325</td>
<td>3865</td>
<td>15.5991</td>
<td>16485</td>
<td>24.5904</td>
<td>29115</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>0.01</td>
<td>1.5389</td>
<td>1375</td>
<td>22.0383</td>
<td>19595</td>
<td>33.8117</td>
<td>30060</td>
<td>42.1352</td>
<td>39040</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>100</td>
<td>0.01</td>
<td>6.1160</td>
<td>4535</td>
<td>4.3215</td>
<td>2675</td>
<td>21.3346</td>
<td>12010</td>
<td>34.0820</td>
<td>20285</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
<td>0.01</td>
<td>1.1044</td>
<td>595</td>
<td>8.8350</td>
<td>4960</td>
<td>22.6147</td>
<td>9230</td>
<td>53.5389</td>
<td>23255</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0.1</td>
<td>4.4928</td>
<td>4985</td>
<td>8.6743</td>
<td>10345</td>
<td>10.9572</td>
<td>13125</td>
<td>12.0119</td>
<td>15415</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>0.1</td>
<td>6.7362</td>
<td>5040</td>
<td>39.7344</td>
<td>31185</td>
<td>15.3777</td>
<td>12915</td>
<td>18.1534</td>
<td>15010</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>100</td>
<td>0.1</td>
<td>42.2032</td>
<td>15105</td>
<td>41.8742</td>
<td>15310</td>
<td>47.2913</td>
<td>16540</td>
<td>52.9498</td>
<td>18810</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
<td>0.1</td>
<td>116.7657</td>
<td>22820</td>
<td>118.2056</td>
<td>22850</td>
<td>50.3541</td>
<td>9450</td>
<td>84.0200</td>
<td>16820</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>0.2</td>
<td>7.7375</td>
<td>8585</td>
<td>14.9389</td>
<td>17815</td>
<td>18.8705</td>
<td>22605</td>
<td>20.6869</td>
<td>26545</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>0.2</td>
<td>11.6011</td>
<td>8675</td>
<td>68.4306</td>
<td>39355</td>
<td>26.4835</td>
<td>22240</td>
<td>31.2638</td>
<td>25845</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>100</td>
<td>0.2</td>
<td>28.8739</td>
<td>26015</td>
<td>72.1152</td>
<td>26415</td>
<td>81.4451</td>
<td>16275</td>
<td>91.1901</td>
<td>28970</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1000</td>
<td>0.2</td>
<td>72.6806</td>
<td>39305</td>
<td>203.5757</td>
<td>53710</td>
<td>86.7198</td>
<td>28490</td>
<td>144.6992</td>
<td>32390</td>
</tr>
</tbody>
</table>

Figure 3 gives the performance profile for the same set of instances. It shows that the accelerated NE-HPE variant based on the Euclidean (resp., Kulback-Leibler log) distance performs better than the NEST variant based on the Euclidean (resp., Kulback-Leibler log) distance on this set of quadratic game instances.

Figure 3 – Performance profile for the quadratic game problem

5.4 Concluding Remarks

In this subsection, we make some final remarks about the computational results described in this section. We have shown in Subsection 4.2 that the accelerated NE-HPE method has the same complexity as the Nesterov’s smoothing technique of [23]. The experiment results of this section involving three problem sets have shown that the accelerated NE-HPE variants outperform the variants of Nesterov’s smoothing scheme. The experiments have also shown
that the accelerated NE-HPE variant based on the Euclidean distance performs better than the accelerated NE-HPE variant based on the Kulback-Leibler log distance.

A Appendix

This appendix presents two existence/uniqueness results about solutions of certain regularized convex minimization and/or monotone inclusion problems.

We begin by stating without proof a well-known result about regularized convex minimization problems.

Proposition A.1. Let $\psi : \mathbb{Z} \to [-\infty, \infty]$ be a proper closed convex function and, for some $\mu > 0$, assume that dw is a $(\mu, \text{dom } \psi)$-Bregman over W (see Definition 3.6). Then, for any $z_0 \in W^0 \cap \text{dom } \psi$, the problem

$$
\inf \{ \psi(u) + (dw)_{z_0}(u) : u \in \mathbb{Z} \}
$$

has an unique optimal solution z, which necessarily lies in $W^0 \cap \text{dom } \psi$. Moreover, z is the unique zero of the inclusion $\nabla w(z) \in (\partial \psi + \partial w)(z)$.

The next result generalizes Proposition A.1 to the context of regularized monotone operators.

Proposition A.2. Let $T : \mathbb{Z} \rightrightarrows \mathbb{Z}$ be a maximal monotone operator and, for some $\mu > 0$, assume that dw is a $(\mu, \text{Dom } T)$-Bregman over W (see Definition 3.6). Then, for every $z' \in \mathbb{Z}$, the inclusion

$$
z' \in (T + \partial w)(z)
$$

has an unique solution z (which necessarily lies on $W^0 \cap \text{Dom } T$ due to Definition 3.1(i)).

Proof. Define $\bar{w} := w + \mathcal{I}_Z$ where $Z := \text{cl} (\text{Dom } T)$. We claim that \bar{w} is a proper closed μ-strongly convex function such that

$$
\text{Dom } \partial \bar{w} = Z \cap W^0, \quad T + \partial w = T + \partial \bar{w}.
$$

Indeed, in view of Proposition 6.4.1 of [1], the set Z, and hence the indicator function \mathcal{I}_Z, is closed convex. This conclusion with Definition 3.6 imply that \bar{w} is a proper closed μ-strongly convex function. Since the assumption that dw is a $(\mu, \text{Dom } T)$-Bregman distance over W implies that $W^0 \cap \text{Dom } T \neq \emptyset$ and W^0 is open, it is straightforward to see that $W^0 \cap \text{ri } Z = W^0 \cap \text{ri } (\text{Dom } T) \neq \emptyset$, and hence that the relative interiors of the domains of the convex functions w and \mathcal{I}_Z intersect. This conclusion together with Theorem 23.8 of [24] then imply that $\partial \bar{w} = \partial (w + \mathcal{I}_Z) = \partial w + \partial \mathcal{I}_Z$, and hence that $\text{Dom } \partial \bar{w} = \text{Dom } \partial w + \text{Dom } \partial \mathcal{I}_Z \cap \text{Dom } \partial w = Z \cap W^0$. Now using the assumption that T is maximal, Proposition 2.2 and the latter conclusion, we conclude that

$$
T + \partial \bar{w} = T + (\partial w + \partial \mathcal{I}_Z) = (T + \partial \mathcal{I}_Z) + \partial w = T + \partial w,
$$

and hence that the claim holds.

We next establish the conclusion of the Lemma. By changing μ if necessary, we may assume without any loss of generality that $\| \cdot \|$ is the norm associated with the inner product $\langle \cdot, \cdot \rangle$. Since \bar{w} is a proper closed μ-strongly convex function, it follows from the above claim
and Proposition 1.12 in Chapter IV of [14] that $\bar{w}_0 := \bar{w} - \mu \cdot \|\cdot\|^2/2$ is a proper closed convex function. Now, define $\bar{T} := T + \partial \bar{w}_0$ and note that

$$T + \partial w = T + \partial \bar{w} = \bar{T} + \mu I,$$

due to the above claim and the fact that $\partial \bar{w} = \partial \bar{w}_0 + \mu I$. Hence, the conclusion of the Lemma will follow from Minty’s theorem (e.g., see Theorem 6.2.2 of [1]) if we show that \bar{T} is maximal monotone. Indeed, first note that the above claim implies that

$$\text{ri}(\text{Dom } \partial \bar{w}) = \text{ri}(Z \cap W^0) = \text{ri} Z \cap W^0$$

due to the fact that the latter set is nonempty. Since both T and $\partial \bar{w}_0$ are maximal monotone (the second one due to Theorem 6.3.1 of [1]) and the intersection of the relative interior of their domains is clearly equal to $\text{ri} Z \cap W^0 \neq \emptyset$, it follows from Theorem 6.5.6 of [1] that \bar{T} is maximal monotone.

References

