
Chapter 7. Continuous Point 
Location 

This is an introduction chapter quotation.  It is offset three 

inches to the right. 

7.1. Location Introduction 
Location Theory is concerned with the formulation and solution of location problems, i.e. where to 

place or locate an object or facility.  An enormous variety of location problems exist from the very large 

(locating a new manufacturing complex or military base) to the very small (arranging silverware and 

china on a table or placing integrated circuits on a printed circuit board).  A large body of literature has 

been dedicated to solving these location problems. 

The emphasis in this class is on obtaining efficiently computable solutions to models of practical 

interest.  Interesting theoretical developments without practical applications or situations where 

mathematical analysis is not useful will not be covered in detail.  The lectures will focus on problem 

formulation, model construction, and solution algorithms of real life location problems. 

There is a strong geometrical component to location problems.  A picture can usually provide a large 

amount of insight in the problem and suggest a solution.  Similarly, algorithms that exploit the 

geometrical properties tend to be more efficient. 

Examples of Location Problems 

• Several new distribution centers for a national company. 

• A new fire station for a growing suburban county. 

• Reorganization of a manufacturing facility. 

• Determination of lane depths in a block stacking warehouse. 
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• Placement of garment components on a cloth roll. 

• Placement of workstations along a microload WIP system. 

• Automatic pallet building from boxes arriving on a conveyor. 

• Placing sprinklers on the lawn. 

• Military aircraft loading. 

• Assignment of storage locations to products in a warehouse. 

• Solving a traditional cardboard puzzle. 

• Selecting a parking space in a mall parking lot. 

Classification of Location Problems 

Introduction 

When faced with a location problem, the following series of questions should be asked: 

1. what kind of object has to be located, 

2. how is the target location area structured, 

3. what are the objective(s) and costs parameters, and 

4. what are the constraint(s)? 

Based upon the answer to these questions, the location problem can be classified, the model formulated, 

and a solution procedure selected. 

Dimensionality and Structure of the Object to be Located 

Object Dimensionality 

Volume Location is concerned with locating three-dimensional objects.  An example of volume location 

is the loading of trucks or aircraft or the building of pallet loads out of boxes. 
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Area Location is concerned with locating two-dimensional objects.  An example of area location is 

determining the department layout of a manufacturing facility or the location of garment components on 

a roll of raw material. 

 
Figure 7.1.  Facilities Design as an Example of Two-Dimensional Location 

Line Location is concerned with locating one-dimensional objects.  An example of line location is 

determining the picking zones for order picking of both sides of a wide aisle to a cart driving on the 

centerline of the aisle. 

 
Figure 7.2.  Order Picking Zone Design as an Example of One-Dimensional Location 

Point Location is concerned with locating zero-dimensional objects.  Point location is used any time the 

size of the object is negligible compared to the size of the target area.  This case accounts for the large 
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majority of location problems and location algorithms.  Frequent applications are industrial distribution 

systems such as locating a new distribution center. 

 
Customer
Distribution  Center

Factory
Supplier

Figure 7.3.  Supply Chain Design as an Example of Zero-Dimensional Location 

Higher dimensional location problems do exist but are rare.  If the constraints or parameters change 

over time, then a temporal dimension has to be added to the problem and this class of problems is 

referred to as dynamic location.  Other characteristics of the location can be modeled as constraints.  For 

example, the loading of goods on an aircraft requires that the goods fit in three dimensions but also that 

their weight is balanced along the fuselage and perpendicular to the fuselage.   

Object Structure 

The structure or lack thereof of the object to be located is also important.  For example, a manufacturing 

facility with a very long and narrow shape is usually not acceptable.  Hence, it is important that not only 

there is enough ground space for a manufacturing department but also that it is of the right shape. 

Objects such as liquids and gases have no internal structure, while objects such as boxes on a pallet have 

a completely defined structure.  Manufacturing departments in plant layout usually have a partial 

structure, since their shape can vary between certain boundaries.  In warehouse operations, the size of a 

shipment can sometimes be reduced by nesting the items efficiently in the shipping container.  These 

nesting characteristics are an example of relevant object structure in location decisions. 

Consider the case of facilities design where the shape ratio of the minimum enclosing rectangle of a 

department must be less than a certain limit to avoid long and narrow departments.  If yt yb xr xlk k k k, , ,  are 

the top, bottom, right, and left coordinates of the minimum enclosing rectangle and Sk  is the maximum 

shape ratio, then the following constraints on the length lk  and width wk  must hold for each department 

k. 
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Figure 7.4.  Variable and Parameter Illustration  
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Number of Object to be Located (Single versus Multiple)  

Location problems can have one (single facility) or more (multifacility) objects to be located.   

Structure of the Target Area for Point Location 

Continuous Location (Planar and Spherical) 

The target location area is a plane or a sphere without any further structure.  The number of possible 

locations is then infinitely large.  The distance costs are based on a distance norm (since a distance table 

would be also infinitely large).  The models are continuous and usually can be analyzed fairly 

efficiently.  Typical applications are the rough-cut location of distribution centers for national 

companies. 

 
Figure 7.5.  Varignon Frame as an Example of Continuous Location 
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Grid or Subdivision Location 

The target location area is a plane, subdivided in a number of (equal square) areas.  The number of 

candidate locations is finite, but very large.  Distance costs are based on a distance norm.  A typical 

example is the assignment of unit loads of different products to storage locations in a warehouse.  For 

example, assigning 100,000 products to 200,000 possible locations using discrete locations would create 

20,000,000,000 binary assignment variables, which is clearly too large to be a practical formulation and 

to yield a reasonable solution method. 

 
Figure 7.6.  Discrete Facilities Design as an Example of Grid Location 

Network and Tree Location 

The target location area is a network, i.e. a collection of nodes and arcs or edges.  If there is no special 

network structure that can be exploited, then the models are solved by the algorithms used in discrete 

point location.  If the network has no cycles, i.e. it is a tree, then as a general rule specialized and 

efficient algorithms exist. 

The primary application of network location models is when the problem is based upon a transportation 

network, such as roads, railroads, or waterways. 
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Figure 7.7.  Distribution Center Location as an Example of Network Location 

Discrete Candidate Locations 

The target location area is a collection of discrete candidate locations.  The number of the candidate 

locations is finite and usually fairly small.  These models are the most realistic location models, but the 

associated computational and data collection costs are very high.  Actual distances can be used in the 

objective and constraints and complex regions with obstacles and infeasible areas can be incorporated. 

Typical applications are the detailed design of distribution networks for national companies. 

Location Costs 

Feasibility versus Optimization 

For many location problems the first and overriding goal is to obtain a feasible solution, i.e., a solution 

that satisfies all the constraints.  Once such a feasible solution has been found, the secondary goal is to 

find a "better" solution, i.e., to optimize with respect to some objective function.  The two most common 

types of objective functions are described next. 

Minisum versus Minimax Objective Functions 

The minisum objective consists of the sum of the individual cost components and the objective is thus to 

optimize the overall or average performance.  This objective is appropriate and used in business systems 

and is also called economic efficiency.  This problem is also called the median problem on networks. 

The objective function for the minisum problem can then be written as 

7 ● Chapter 7. Continuous Point Location Logistics Systems Design 



min ( )
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 (7.2) 

where X indicates the coordinates of the new object to be located, j is the index of the existing and fixed 

objects and C denotes the cost of locating the new object at X with respect to the existing object j. Xj ( )

The minimax objective consists of the largest individual cost component of an existing facility and the 

objective is thus to optimize the worst case behavior.  This objective is often used in military, 

emergency, and public sector systems and is also called economic equity.  This problem is also called 

the center problem on networks. 

The objective function for the minimax problem can then be written as 

min max ( )
X j

jC X
RST

UVW  (7.3) 

For example, assume 4 points located on a line at positions 0, 5, 6 and 7, respectively.  Assume further 

that the cost of serving each of these points is strictly proportional to the distance between these points 

and the new facility.  The optimal location of the new facility with respect to the minisum objective is 

the median of these points, i.e. X * .= 55 , so that as many points are to the left as to the right.  Actually, 

the line segment between five and six contains an infinite number of alternative median locations.  The 

optimal location with respect to the minimax objective is the center of these points, i.e. X * .= 35 , so that 

the distance to the leftmost and rightmost point is equal. 

5 6 70

center = 3.5
median = 5.5  

Figure 7.8. Median versus Center Illustration 

Observe that the optimal median location would not change if the leftmost point was located at -1000 

rather than at 0.  For this particular example, where the location domain is a line, the order of the fixed 

locations is important rather than their actual location.  Also observe that the optimal center location 

would not change if an additional 1000 points were located between coordinates 5 and 6.  The center 

location is always determined by a number of "extreme" locations and the number and location of all the 

other "interior" objects does not matter. 
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A third type of objective function often used in the location of "obnoxious" facilities such as waste water 

treatment plants or military installations is the maximin objective, where objects are located in such way 

as to maximize the minimum distance. 

The objective function of the maximin problem can then be written as: 

max min ( )
X j

jC X
RST

UVW  (7.4) 

If we call the optimal solution to the maximim problem then anti-center then the location of the anti-

center in the previous example is 2.5 as illustrated in the following figure.  The Maximin objective 

consists of the smallest individual cost component of an existing facility and the objective is thus to 

optimize the worst-case behavior.  This objective is often used in military, emergency, and public sector 

systems and is also called economic equity.   

5 6 70

center = 3.5
median = 5.5

anti-center = 2.5

 

Figure 7.9. Center versus Anti-Center Illustration 

Fixed Weights versus Variable Weights 

Location problems have fixed weights or relationships if the relationship between the new and existing 

facilities does not depend on the location of the new facility but is fixed in advance.  These problems are 

also called pure location problems. 

If the relationship or weight depends on the location of the new facility, then these weights themselves 

become variables and these problems are called location-allocation problems.  An example is the 

assignment of customers to the closest distribution center, moving the distribution center might not only 

increase the distance to a customer but also assign this customer to another distribution center. 

Linear versus Concave Costs (Fixed costs or not) 

A location problem is said to have linear costs is the cost increase linearly with the distance to existing 

facilities. 

A location problem is said to have fixed costs or concave costs if the overall location cost consists of a 

linear function plus a fixed cost.  The overall location cost curve is then concave.  Economies of scale as 

well as different technologies or different sizes of the objects to be located generate concave cost curves.  
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The most common concave objective function is a piecewise linear concave function with an offset at 

the origin.  The offset corresponds to a fixed cost and the breakpoints correspond to cost discounts in 

function of the distance.   

Interaction between Objects to be Located 

An important distinction is if the to be located objects have interactions among themselves or only with 

already existing facilities.  If there are multiple new facilities with interactions among themselves then 

the objective function typically becomes a quadratic or higher order function.  The problem of locating 

two-dimensional departments in a block layout in a facilities design project typically has a quadratic 

objective function.  The number of new facilities is sometimes indicated by p. 

Deterministic or Stochastic 

If the cost (and parameters) are given by a single value then the problem is said to be deterministic.  If 

on the other hand either costs or parameters are sample from a probability distribution then the problem 

is said to be stochastic.  In the design of distribution systems the customer demand is usually stochastic, 

but it is approximated by its deterministic mean value. 

Static or Dynamic 

A location problem is said to be static or single period if costs and parameters do not change over time.  

A problem is said to be dynamic is the costs and or parameters change over time. 

Location Constraints 

Capacitated versus Uncapacitated 

If the capacity of a new facility to serve old facilities is limited then the location problem is called 

capacitated, otherwise uncapacitated. 

Infeasible Regions 

If certain regions of the solution space are not feasible for the location of the objects then the problem is 

said to contain infeasible regions.  An example is the location of distribution centers in the continental 

US, where the Great Lakes and the Gulf of Mexico are infeasible regions. 
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7.2. Euclidean Location 

Euclidean Distance Norm 

Definition 

A distance norm is the formula for computing the distance between two points in the plane.  Let  

denote the distance between two points i and j in the plane with coordinates 

dij

( )x yi i,  and d i , 
respectively.  The Euclidean norm is then computed as 

a bj j,

d x a y bij
E

i j i j= − + −( ) (2 )2

∀

 (7.5) 

The superscript E denotes the Euclidean distance norm.  The Euclidean distance is also called the 

straight line travel and is frequently used in national distribution problems and for communications 

problems where straight line travel is an acceptable approximation.  The actual over the road distances 

in national distribution problems can then be approximated by multiplying the Euclidean distance with 

an appropriate factor, e.g. 1.2 for continental United States or 1.26 for the South Eastern United States. 

Euclidean Norm Properties 

Since it is proper distance norm, the Euclidean norm satisfies the four properties of any distance norm: 

Non-Negativity 

d X XE ( ) ≥ ∀0  (7.6) 

Equality to Zero 

d X XE ( ) = ⇔ =0 0  (7.7) 

Homogeneity 

d kX k d X XE ( ) | | ( )=  (7.8) 

This property is sometimes also called scalability. 
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Triangle Inequality 

d X d Y d X Y X YE E E( ) ( ) ( ) ,+ ≥ + ∀ ∀

X

 (7.9) 

Symmetry 

d X d XE E( ) ( )− = ∀  (7.10) 

This property follows from the homogeneity with k= -1. 

In addition to the distance properties, the Euclidean norm satisfies the following properties. 

Continuous 

A function is said to be continuous at point a if the following condition holds 

∀ > → ∃ > − < ⇒ − ≤δ ε ε δ0 0: ( ) ( )if x a f x f a  (7.11) 

Convex 

A function is said to be convex if the chord or line segment connecting any two points on the graph of 

the function never lies below the graph of the function, i.e., if the following condition holds. 

d X X d X d XE E E( ( ) ) ( ) ( ) ( ) [ ,λ λ λ λ λ1 2 1 21 1+ − ≤ + − ∈ ]0 1  (7.12) 

If the second derivative of the function is defined everywhere in the domain of the function, then a 

function is said to be convex if the second derivative is nonnegative everywhere in the domain of the 

function. 

A function is said to be strictly convex if the above inequality holds as a strict inequality for any pair of 

distinct and  and any X1 X2 λ ∈( , )0 1 .  In other words, strictly convex means that the line segment lies 

strictly above the graph of the function except at the two endpoints of the line segment.  The Euclidean 

distance norm is not strictly convex. 

Differentiable except at the fixed facilities 

The gradient of the Euclidean distance is given by 

∂
∂

∂
∂

d X
x

x a

x a y b

d X
y

y b

x a y b

E

i

i j

j

E

i

i j

j j

( ) ( )

( ) (

( ) ( )

( ) (

=
−

− + −

=
−

− + −

2 2

2 2

j )

)

 (7.13) 
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This gradient is not defined at the location of the existing facilities . a bj j,d i

Single Facility Minisum Location 

Introduction 

Varignon Frame 

Weber (1909) published his treatment of industrial location and in an appendix the use of the Varignon 

Frame was described as a way to solve the single facility minisum Euclidean location problem.  The 

Varignon Frame is illustrated in Figure 7.10.   

 
Figure 7.10. Varignon Frame 

The optimal location of the knot can be found based on the principles of statics.  The position of the knot 

is such that the (vector) sum of all forces on it equals zero.  Projecting the force vectors on the x and y 

axes gives us two equations.  The variables are illustrated in Figure 7.11. 
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Figure 7.11. Varignon Force Schematic 

To determine the equilibrium position, the horizontal and vertical components of the forces need to be 

balanced.  The projection of the force vectors on the horizontal and vertical axis are based on the point 

coordinates.  This is illustrated in the next figure. 

V1

X1

Y1

θ1

X(x,y)

P1(a1,b1)

 
Figure 7.12. Varignon Force Projection 
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The stationary position of the knot requires that the force components are balanced, i.e., sum up to zero. 

X

Y

j
j

j
j

∑

∑

=

=

0

0
 (7.16) 
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These forces at equilibrium equations are equal to the gradient optimality conditions for the Euclidean 

distance minisum problem. 

z w x a y b

z
x

w x a

x a y b

z
dy

w y b

x a y b

j j j
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 (7.18) 

Hyperboloid Approximation 

To avoid the singularities of the derivative at the existing facilities, the distance norm can be perturbed 

by adding a small constant ε.   

d X P x a y bE
i j i j i j( , ) ( ) ( )= − + − +2 ε2  (7.19) 

 
Figure 7.13.  Illustration of the Hyperboloid Approximation 

The partial derivatives for a single existing facility are then given in the next equation. 

∂
∂ ε

d
x

x a

x a y bi

i j

i j i j

=
−

− + − +

( )

( ) ( )2 2
 (7.20) 
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The partial derivatives for a multiple existing facilities are then given in the next equation. 

∂
∂ ε

d
x

w x a

x a y bi

j i j

i j i jj
=

−

− + − +
∑

( )

( ) ( )2 2
 (7.21) 

Weiszfeld's Iterative Procedure 

( )
( ) ( )2 2

, ij
ij i i

i j i j

w
g x y

x a y b ε
=

− + − +
 (7.22) 

( )

( )

i j ij
j

i j ij
j

x a g

y b g

− ⋅ =

− ⋅ =

∑

∑

0

0

ij

j

 (7.23) 

i ij j
j j

i ij j i
j j

x g a

y g b g

= ⋅

= ⋅

∑ ∑

∑ ∑

g
 (7.24) 

λ ij i i
ij i i

ij i i
j

x y
g x y

g x y
,

,
,

b g b g
b=

∑ g  (7.25) 

0 1

1

≤ ≤

=∑
λ

λ
ij

ij
j

 (7.26) 

x x y

y x y

i ij i i
j

i ij i i
j

= ⋅

= ⋅

∑

∑

λ

λ

,

,

b g

b g

a

b

j

j

a

b

 (7.27) 

x x y

y x y

i
k

ij
k

i
k

i
k

j
j

i
k

ij
k

i
k

i
k

j
j

+

+

= ⋅

= ⋅

R
S
||

T
||

∑

∑

1

1

λ

λ

,

,

e j

e j
 (7.28) 

Logistics Systems Design Chapter 7. Continuous Point Location ● 16 



Properties 

Convex Hull Property 

a1 a2x
 

Figure 7.14. Convex Combination Illustration 
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Majority Property (Scalar Sum) 

A sufficient but not necessary condition for the location of an exiting facility k to be the optimal location 

of the Euclidean single facility minisum problem is 

w W
w

w w

P Xk

j
j

N

k j
j j k

N
k

≥ =

≥

U

V
|||

W
|||

⇒ =
=

= ≠

∑

∑
2 2

1

1,

*  (7.31) 

This property can be interpreted based on the mechanical analog of the Varignon frame.  An existing 

facility k is the optimal location if the vector sum of all the forces to the other existing facilities is 

smaller than the affinity with facility k, even if all the other existing facilities fall on a line through 

facility k.  This property is only based on the size of the forces, not on their direction.  Given the name 

of the next property, the majority property could then also be called the scalar sum property. 

A

B C
D

DA BC  
Figure 7.15.  Scalar Sum Property Illustration 
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Vector-Sum Property 

The location of an existing facility k is the optimal location of the Euclidean single facility minisum 

problem if and only if the following inequality holds 

2 2

*

2 2 2 2
1, 1,

( ) ( )

( ) ( ) ( ) ( )

N N
j k j j k j

k k
j j k j j kk j k j k j k j

w a a w b b
w P X

a a b b a a b b= ≠ = ≠

   − −   +
   − + − − + −   

∑ ∑ ≤ ⇒ =  (7.32) 

This property can be interpreted based on the mechanical analog of the Varignon frame.  An existing 

facility k is the optimal location if the vector sum of all the forces to the other existing facilities is 

smaller than the affinity with facility k. 

A

B C
D

ABC
D  

Figure 7.16.  Vector Sum Property Illustration 

This property allows checking all the existing facilities for optimality before entering the iterative 

procedure, which then never has to consider or visit the existing facilities, where its derivative is 

undefined. 

Lower Bounds 

Lower and Upper Bounds based on the Rectilinear Norm 

 
Figure 7.17. Geometrical Illustration of the Rectilinear Norm Based Lower Bound  

z X z X z X z XR R E E RX RX RY RY( ) ( ) ( ) (* * *≥ ≥ +2 2 )*  (7.33) 

Logistics Systems Design Chapter 7. Continuous Point Location ● 18 



The disadvantage of this lower bound is that it requires the optimal solution to another location problem.  

Luckily, solving the rectilinear point location problem is easy.  The advantage of this lower bound is that 

it does not require the determination of the vertex points of the convex hull of existing facilities like the 

lower bound derived below and that it needs only to be computed once.  

Lower Bound based on Convex Function Support 

X

z(X)

XkX*

 
Figure 7.18.  Convex Function Support 
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 (7.35) 
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Figure 7.19. Vector Sizes inside the Convex Hull 
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Location Algorithm 

1. Problem Reduction 

Majority Theorem 

Vector Sum Theorem 

2. Initial Starting Point 

Center of Gravity 

Largest Fixed Facility 

Optimal Rectilinear Location  

3. Check Stopping Criteria 

Maximum Number of Iterations 

Compute Lower Bound 

Stop if Gap within Tolerance 

4. Compute Next Location 

Weiszfeld's Method -  

Hyperboloid Approximation 

Go to Step 3 

Single Facility Location Example 

 
Figure 7.20. Excel Spreadsheet for Single Facility Location 

Logistics Systems Design Chapter 7. Continuous Point Location ● 20 



 
Figure 7.21. Excel Solver Parameters for Single Facility Location 

 
Figure 7.22. Excel Solver Options for Single Facility Location 

 
Figure 7.23.  Excel Location Graph for Single Facility Location 
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Multiple Facility Minisum Location 
H is the set of movable facilities and G is the set of fixed facilities.   is the affinity or flow from 

moveable facility i to fixed facility j, v  is the affinity or flow from movable facility i to moveable 

facility j.  b  is the variable location of the moveable facility i and d  is the location of the fixed 

facility j.  The Euclidean minisum problem is then given by. 

wij
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x yi i, g ia bj j,
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To minimize z the partial derivatives with respect to x and y are calculated and set to zero, which yields 

the following recursive expressions for x and y.   
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First, define the following two functions: 

g x y
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Note that the denominators are adjusted by the (small) positive constant ε.  This prevents the 

denominators from ever being zero.  Without the ε term, these functions would be undefined whenever a 

moveable facility was located at the same site as a fixed facility.  This adjustment method is called the 

Hyperbolic Approximation Procedure or HAP.  Further details can be found in Francis and White (1974) 

and Love et al. (1988). 
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Now, the set of locations e  is determined as follows: x yk k, j

x
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The recursive formulas require an initial location e as input and then the procedure uses an 

iterative improvement scheme to get the next estimation.  The superscript k denotes the iteration 

number.  The iterative procedure continues until a stopping criterion is satisfied.  Examples of stopping 

criteria are the location of all moveable facilities falls within the relative tolerance of their previous 

location, the objective function is within an acceptable tolerance of a lower bound on the objective 

function, or the maximum number of iterations has been reached.   

x y0 0, j

Minisum Location-Allocation 

Introduction 

The strategic logistics design problem can be defined as follows: given a set of plants and customers 

with known characteristics, and the potential components of a logistics network, determine the number 

and location of warehouses, allocate of customers to warehouses, and select transportation channels such 

that customer requirements are met at the lowest possible cost. 

Solution procedures for the strategic logistics system design problem can be divided into two types, each 

with different assumptions.  Site generating procedures, such as location-allocation solution procedures, 

generate a set of new sites for the distribution centers, but do not consider whether to open or close 

distribution centers.  That is, location-allocation procedures assume that each specified potential 

distribution center is open (though not necessarily used).  Thus, to minimize total relevant costs, 

location-allocation procedures need only minimize the variable cost, which include at least the total 
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transportation cost.  To summarize, the location-allocation procedures minimize distribution cost by 

moving the distribution centers, while leaving their number unchanged.   

The second class of solution procedures selects desirable distribution centers to open from among a list 

of possible candidate locations.  They are called site selection procedures.  The optimal solution 

algorithms of this type are based on Mixed Integer Programming (MIP) techniques.  The MIP 

procedures determine the optimal number of distribution centers to open out of a set of candidate 

distribution centers.  The candidate distribution centers are fixed in place.  A mathematical model is 

constructed which captures all the cost and the solution is obtained by using a  MIP solution program 

such as CPLEX, LINDO or MINTO.  To summarize, the MIP procedures minimize the distribution cost 

by opening and closing distribution centers, while leaving their location unchanged.  These procedures 

are further discussed in the chapter on discrete location. 

Eilon-Watson-Ghandi Iterative Location-Allocation Algorithm 

This particular location-allocation procedures attempts to find a good set of locations for the distribution 

centers by repeatedly executing the following steps: 

1. Allocate customers to depots and depots to plants 

2. Relocate depots to minimize transportation costs of the current allocations by using . 

3. Repeat steps 1 and 2 until done. 

The allocation phase is solved via a network flow algorithm.  The location phase is solved by the 

Weiszfeld algorithm with hyperbolic approximation.  Further details are given below. 

The network flow model considers plant, customers and depots.  It determines the location of the 

distribution centers and the allocation of customers to distribution centers based on transportation costs 

only.  The distribution centers are capacitated and flows between the distribution centers are allowed.  In 

addition, more than one flow between two facilities is allowed.  This corresponds to having more than 

one transportation mode between two facilities. 

The following iterative and heuristic algorithm obtains the solution. 

Allocation Phase 
The algorithm starts with an initial solution in which the initial location of the distribution centers is 

specified.  This initial location can be random, specified by the user, or the result of another algorithm.  
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Based on this initial location, the network flow algorithm computes transportation costs and then assigns 

each customer to the nearest distribution center or plant with sufficient capacity by solving the following 

network flow problem: 

Min.∑   (7.c d wijm ijm ijm
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wijm ≥ 0  

M is the total number of source facilities which is equal to the number of plants plus the number of 

depots.  N is the total number of sink facilities which is equal to the number of depots plus the number 

of customers.  L is the number of transportation modes.  The modes are indexed by the subscript m.  w  

is the flow from facility i to facility j by mode m, c  is the cost per unit flow per unit distance for 

transportation from facility i to facility j by mode m, d  is the distance from facility i to facility j by 

mode m, dem

ijm

ijm

ijm

k  is the demand of customer k, and cap  is the capacity of plant i.  Further information on 

solving the network flow problem can be found in Bazaraa and Jarvis (1977). 
i

Location Phase 
After all the customers have been allocated to the nearest distribution center with available capacity, a 

second sub-algorithm locates the distribution centers so that the sum of the weighted distances between 

each source and sink facility is minimized for the given flows.  This problem is formulated as a 

continuous, multiple facility weighted Euclidean minisum location problem: 
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 (7.47) 

A preprocessing step combines all modes (L) between a pair of facilities into one aggregate mode: 
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H is the set of movable facilities, i.e. the distribution centers.  G is the set of fixed facilities which is 

composed of plants and customers.   is the flow from moveable facility i to fixed facility j,  is the 

flow from movable facility i to moveable facility j.  b  is the variable location of the distribution 

center i and d  is the fixed location of customer j or of plant j.  The distance between centers is 

assumed to be proportional to the straight line Euclidean distance.   

wij vij

x yi i,

a bj j,

To minimize  the partial derivatives with respect to x and y are calculated and set to zero which 

yields the following recursive expressions for x and y.  First, define the following two functions: 
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Note that the denominators are adjusted by the (small) positive constant ε.  This prevents the 

denominators from ever being zero.  Without the ε term, these functions would be undefined whenever a 

distribution center was located at the same site as a customer.  This adjustment method is called the 

Hyperbolic Approximation Procedure or HAP.  Further details can be found in Francis and White (1974) 

and Love et al. (1988). 

Now, the set of locations e  is determined as follows: x yk k, j
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The recursive formulas require an initial location e as input and then the procedure uses an 

iterative improvement scheme to get the next estimation.  The index k denotes the iteration number.  The 

iterative procedure continues until a stopping criterion has been satisfied.   

x y0 0, j

Single Facility Minimax Location 

Assumptions 

Single New Facility 

Equal Affinities 

Primal Algorithm 

1. Pick Initial Radius z0, set k = 0 

2. Draw Circles Around Pj with radii zk 

3. Determine Intersection Z of the Circles 

4. If Z is Empty, Increase zk, k=k+1, Go to 2 

If Z is More than Single Point, Decrease zk, k=k+1, Go to 2 

If Z is Single Point, Stop 
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Dual Elzinga-Hearn Algorithm 

90
>90

<90

 
Figure 7.24.  Angles of Triangles based on Circle Perimeters 

A
D

ABD

AD

ABD

D
 

Figure 7.25. Regions for Extending a Circle based on Two Points 

C

A
B

c

a

b

AD

ACD

CD

ABD

BCD

BD

D

D  
Figure 7.26. Regions for Extending a Circle based on Three Points 
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Rectilinear Location 

Rectilinear Distance Norm 

Norm 

d x a y bR j= − + −e j j  (7.53) 

Applications 

Factories and warehouse with aisles and cross aisles. 

Cities with a street plan of perpendicular streets and avenues such as the prototypical Manhattan. 

Material handling equipment with sequential travel. 

Used in lower bound computation for the Euclidean minisum location and location-allocation 

algorithms. 

Graph 

aj

arctan wj

zRX

x

 
Figure 7.27.  Rectilinear Distance Norm Component Graph 

Properties 

Distance Norm Properties 
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Continuous 

Convex 

Non-Differentiable 

Decomposable in independent X and Y components 

Single Facility Minisum Location 
We assume that all weights are nonnegative. 

w jj ≥ ∀0   (7.5

Objective Function 
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Vector Notation 
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Majority Property or Witzgall Property 
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Minisum Objective Function Graph 

3 6 1020 100  
Figure 7.28. Rectilinear Minisum Objective Function Illustration 

Table 7.1.  Rectilinear Minisum Function Characteristics 

a j 0 3 6 100 102
w j 5 1 3 2 4
L j 0 5 6 9 11 15
R j 15 10 9 6 4 0
s x -15 -5 -3 3 7 15  

Properties of the Objective Function and Optimal Location 

Piecewise linear objective function. 

Breakpoints occur at the coordinates of the existing facilities, where the slop changes. 

The optimal location falls at the location of an existing facility or alternative optima between the 

location of two existing facilities. 

Since the objective function is convex, this is a global optimum. 
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Median Conditions 

Renumber existing facilities by increasing coordinates along the axis.  The optimal location is then 

where the sum of the weights of the facilities to the left is larger than or equal to half the total weight. 
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Grid Lines 

Grid lines are the horizontal and vertical lines through the existing facilities. 

Optimal location falls on the intersection of two grid lines.  There can exist alternative locations on a 

line segment of a grid line determined by the intersection of two adjacent grid lines.  The set of 

alternative locations can also be a rectangle determined by two pairs of adjacent grid lines that intersect. 

1 2 3

1

2

1.0

1.0

-1.0

-1.0 -0.5

0.5

P1 (0.25)

P2 (0.75)

 
Figure 7.29. Grid Lines Illustration 

Contour Lines 

Contour lines are lines of equal objective function value.  They are also called iso-cost lines.  Inside a 

rectangle bounded by two pair off adjacent contour lines. The slope of a contour line can be found based 

on the following formula. 

∆ ∆x s y sx y⋅ + ⋅ = 0  (7.66) 

s y
x

s
sc

x

y
= = −

∆
∆

 (7.67) 
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The slope of the contour curve is constant inside the box, so the curve is a line segment.  All the contour 

curves in a box of the grid are parallel lines.  The contour lines themselves are closed polygons. 

1 2 3

1

2

1.0

1.0

-1.0

-1.0 -0.5

0.5

P1 (0.25)

P2 (0.75)

z=2.25 z=1.0z=1.75

 
Figure 7.30. Contour Lines Illustration 

Linear Programming Formulation 

Recall that the objective function for the single facility minisum location problem is based on the 

rectilinear norm is given by: 

min Z w x a y bR j j
j

N
= − + −

=
∑ e

1
j j  (7.68) 

This primal objective decomposes into two independent objectives functions based exclusively upon x 

and y, and denoted by  and , respectively.  We will restrict ourselves to  in the following 

discussion since the equivalent steps can be executed for the y component of the problem.  The objective 

functions for the horizontal and vertical subproblems are then 
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To circumvent the problem of the non-linear absolute value operator two auxiliary variables and 

are introduced.   
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This yields the following equations. 

x a p p
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 (7.72) 

Using these equations, the primal formulation is transformed from an unconstrained nonlinear 

optimization problem to a linear constrained optimization formulation.   
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Observe that the simplex method for linear programming automatically satisfies the conditions that one 

of the pair of auxiliary variables must be zero, so this constraint need not be explicitly included in the 

formulation.   and  cannot be simultaneously significant, i.e., positive, in the optimal solution of 

the primal formulation since their coefficient columns are linearly dependent and the basic, non-zero 

variables must have linearly independent columns.  This can also be seen by example.  Assume that 

 and , then the constraint reduces to  and the objective function value is .  If 

both ’s are reduced by one, then  and .  The constraint reduces again to  and the 

objective function value is 2 , which is clearly better.  Observe that the above discussion requires that 

all weights w , otherwise the problem becomes unbounded if this transformation is applied. 

p j
+

j
− = 1

j ≥ 0

p j
−

p j
+ = 3

p

p x j− =2

j
− = 0

a 4w j

a jj p j
+ = 2 p x − =2

w j

Note that additional linear constraints can be added without making the problem significantly harder as 

long the constraints also decompose into independent x and y components.  Adding constraints in both x 

and y will destroy the decomposition property and instead of two smaller linear programming 

formulation a single formulation of twice the size has to be solved. 

The dual formulation is given by 
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Using the following variable and parameter transformations the dual can be condensed and converted to 

a minimization problem. 
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The following redundant (linearly dependent) constraint can be created and be added to the dual. 
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This linear programming formulation corresponds to a network flow problem with a node corresponding 

to the new facility and a sink node, since all variables r have exactly two non-zero coefficients, equal to 

+1 and -1, respectively.  The first two constraints represent the flow balance conditions in the new 

facility and sink nodes and the last set represents the lower and upper bounds constraints on the flows.  
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This network is a minimum cost network and, more in particular, a transportation network, which can be 

solved with a variety of network flow algorithms.  The network structure is illustrated in Figure 7.31.   

S f1f
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Figure 7.31. Single Facility Transportation Network 

f w

j w f w

j
j

N

j
j

j

j
j

j

=

⇐ < ≥
R
S|
T|

U
V|
W|

=

=

−

=

∑

∑ ∑

1

1

1

1
2 2*

* *

, f

 (7.79) 

This simple transportation network can be solved optimally by the following greedy algorithm. 

Algorithm 7.1. Single Facility Transportation Network 

1. Order and renumber existing facilities 

rank the existing facilities j by non-decreasing a  and renumber them by this sequence j

2. Initialize the algorithm 

set j = 1, set F = f 

3. Assign the flows sequentially 

if  

 then set r F , , and stop 

 else set r w , , 

2w Fj ≥

j =

j j= 2

j* =

F F

j

w j= − 2 j j= +1, and go to step 3 

The primal optimal solution to the original location problem can be found by using the complementary 

slackness conditions and the dual variables at optimality.  The stopping existing facility is determined 

by the condition that 0 2  or 

j*

< = <r F wj j* * 0 2< − <w u wj j* * j* . This means that these dual constraints are 

not binding and the complementary slackness conditions 
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force  and , and thus  p
j*
+ = 0 p j*

− = 0
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In the case when r F ,  and  do not have to be zero and there exist alternative primal optimal 

locations between  and . 

j* =

j*

p
j*
+

j* +

p j*+
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1

1

Notice the similarities between this network solution method based on linear programming and the 

previous graphical algorithm based directly on the piecewise linear concave objective function.  There 

the median conditions determined the optimal primal solution as the first existing facility for which the 

slope of the objective function became positive.  Passing an existing facility going from left to right 

increased the objective function by 2 . w j

Multiple Facility Minisum Location 

Linear Programming Formulation 

Objective Function 

Just as in the case of the single new facility, the primal formulation decomposes again into independent 

x and y components.  Let be the non-negative relationship between new (to be located) facilities i and 

k.  The objective function for the horizontal subproblem is then 

vik

min Z X w x a v x xRX ij i j
j

N
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M
ik i k

k i

M

i

M
b g = − +

== >=
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∑∑ ∑∑
11 1

1
−  (7.81) 

The auxiliary variables and are introduced as in the case of the single new facility.  We define the 

auxiliary variables q and q to represent the distance between the new facilities as: 

pij
+ pij
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 (7.82) 

This yields the following equations. 
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The problem again is transformed from an unconstrained nonlinear optimization problem to a linear 

constrained optimization formulation using these equations.  Observe that again the simplex method for 

linear programming automatically satisfies the conditions that one of each pair of auxiliary variables 

must be zero. 
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The dual formulation is given by 
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Using the following variable and parameter transformations the dual can be condensed and converted to 

a minimization problem. 
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By adding the first set of constraints for all new facilities, denoted by i, the following redundant (linearly 

dependent) constraint can be created and be added to the dual. 
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This linear programming formulation again corresponds to a network flow problem with a node 

corresponding to every new facility and a single sink node, since all variables r and s have exactly two 

non-zero coefficients, equal to +1 and -1, respectively.  The first two sets of constraints represent the 

flow balance conditions in every node and the next two sets are lower and upper bounds constraints on 

the flows.  This network is a minimum cost network, which can be solved with a variety of network flow 

algorithms.  The network structure is illustrated in Figure 7.32.  The primal optimal solution to the 

original location problem can again be found by using the complementary slackness conditions and the 

dual variables at optimality. 

1
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S F

f1

f2

f3

fM

sik (0, 0, 2 vik)

rij (aj, 0, 2 wij)

 
Figure 7.32. Multifacility Minimum Cost Network 

Sequential Multifacility Algorithm 

The sequential multifacility algorithm was developed by Picard and Ratliff (1978) and exploits the fact 

that the optimal location is based on the sequence and weights of the existing facilities, but not the 

interfacility distances.  The optimal location is based on cuts in a sequence of q-locate networks. 
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Relationships between Euclidean and Rectilinear Location 
Problems 

Upper and Lower Bound Property 

Prove for the case of the multifacility location problem when there are relationships between the new 

facilities that the following series of inequalities holds: 

z X z X z X z XR R E E RX RX RY RY( ) ( ) ( ) (* * *≥ ≥ +2 2 )*   (7.91) 

where E denotes the Euclidean norm, R denotes the rectilinear norm, and RX and RY denote the 

horizontal and vertical component of the rectilinear norm, respectively.   denotes the optimal 

Euclidean point and  denotes the optimal rectilinear point with horizontal and vertical components 

 and , respectively. 

X E
*

X R
*

X RX
* X RY

*

Minimax Location 

Graphical Algorithm 

Algorithm 7.2. Rectilinear Minimax Location Graphical Algorithm 

1. Draw Smallest Enclosing 45-Degree Rectangle of Existing Points 

2. Extend the rectangle in the direction of the smallest side to Form a Diamond (Center of the 

Diamond is Point A) 

3. Extend Rectangle in Opposite Direction to Form a Diamond (Center of the Diamond is Point B) 

4. Line Segment AB is Set of Optimal Locations 
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Algebraic Solution 
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 (7.92) 

Primal Algorithm 

Algorithm 7.3. Rectilinear Minimax Location Primal Algorithm 

1. Pick Initial Radius z0, set k = 0 

2. Draw Diamonds Around Pj with radii zk 

3. Determine Intersection Z of the Diamonds 

4. If Z is Empty, Increase zk, k=k+1, Go to 2 

If Z is More than a line segment, Decrease zk, k=k+1, Go to 2 

If Z is a Line Segment of Point, Stop 
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Equivalency between Chebyshev and Rectilinear Location 
Problems. 

45 Degree Rotation and Scaling Transformation 
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 (7.93) 

Chebyshev to Rectilinear Norm Equivalence 

d X P x a y bR j j j,d i = − + − =  

max , max ,x a x a y b y bj j j j− − + + − − + =o t o t

t

t

 

max , , ,x a y b x a y b x a y b x a y bj j j j j j j j− + − − − + − + + − − + − + =o t  

max max , , max ,x a y b x a y b x a y b x a y bj j j j j j j j− + − − + − + − + + − − − + =o t o{ }  

max max , , max ,x y a b x y a b x y a b x y a bj j j j j j j j+ − − − − + + − + + − − − + =o t o{ }  

max ( ) ,x y a b x y a bj j j j+ − + − + − − + =b g b g d i{ }  

max , ,u c v d d U Qj j c− − ={ } d ij  
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Rectilinear minimax problem transformation 

z G X P w d X P
X X j

j R j= =
RST

UVW =min ( , ) min max ( , )o t  

min max ,
U j

j C jw d U Qd i{ }RST
UVW =  

min max max ,
U j

j j jw u c v d− −
RST

UVW ={ }{ }  

min max max ,
U j

j j j jw u c w v d− −
RST

UVW ={ }{ }  

min max max , max
U j

j j
j

j jw u c w v d− −
RST

UVW
RST

UVW
={ } { }  

max min max ,min max
u j

j j
v j

j jw u c w v d−
RST

UVW −
RST

UVW
RST

UVW
={ } { }  

max min , , min ,
u

u j
v

v jG u c G v dd i d iRST
UVW  

Chebyshev minisum problem transformation 
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min , min ,
x

x j
y

y jF x a F y bd i d+ i  

Dwell Point Determination in an AS/RS rack (Simultaneous Travel) 

 
Figure 7.33.  AS/RS Illustration 

A dwell point policy is a set of rules determining where to position the crane when it becomes idle.  

Several varieties exist.  The object can be to minimize the expected distance to the next service or load 

request location.  The objective can also be to minimize the distance to the next service load request 

location. 

The objective is to minimize the expected travel distance between the to be determined dwell point (F) 

and the expected events, either a storage (E) or one of four retrievals (A, B, C, or D). 
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Figure 7.34. Location of Input/Output Point and Expected Retrievals in the AS/RS rack 
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F

Figure 7.35. Optimal Rectilinear Minisum Location Based on the Rotated Points 
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Figure 7.36. Optimal Chebyshev Minisum Location Based on the Original Points 
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Dwell Point Determination in an AS/RS Rack (Sequential Travel) 

The objective is to minimize the maximum response time or travel distance between the to be 

determined dwell point (F) and the expected events, either a storage (E) or one of four retrievals (A, B, 

C, or D). 
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E  
Figure 7.37. Location of Input/Output Point and Expected Retrievals in the Order Picking Rack 
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Figure 7.38. Optimal Rectilinear Minimax Location Based on the Rotated Points 
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Figure 7.39. Optimal Rectilinear Minimax Location Based on the Original Points 

Exercises 

Euclidean Minisum Exercise 1 

Consider the following Euclidean minisum multifacility facility location problem.  The location of the 

four existing facilities is given in the following table. 

Table 7.2.  Existing Facilities Locations 

j aj bj

1 1 2
2 2 4
3 3 3
4 4 1  

The interaction between the three new facilities and the four existing facilities is given in the following 

table. 

Table 7.3.  New to Existing Facilities Interaction 

P1 P2 P3 P4

X1 4 2 3 1
X2 2 3 1 2
X3 11 1 2 2  

The interaction between the three new facilities is given by the following table. 
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Table 7.4. New to New Facilities Interaction 

X2 X3

X1 1 2
X2 - 4  

Solve in the most efficient way for the optimal location of the new facilities and compute the objective 

function value.  While solving for the optimal locations, show in a clear table your initial locations and 

the initial objective function.  Then, execute one iteration of the iterative algorithm, if necessary.  Show 

again in a clear table the locations of the new facilities and the objective function value.  Describe 

clearly the assumptions and steps you have made in this algorithm. 

Minimax Location Exercise 

Consider the problem of finding the location of the Euclidean minimax center of a number of points 

with equal weight with the additional constraint that excludes certain regions for the location of the 

minimax center.  For this particular case the gray circle represents the infeasible region for the center.  

The location of the points is given in the Figure 7.40.   
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Figure 7.40. Minimax Problem with Infeasible Region 

The solution is found by first finding the unconstrained optimal center with the dual Elzinga-Hearn 

algorithm.  The location of this unconstrained center falls within the infeasible region.  Observe that the 

intersection points of the contour lines of two points fall on the perpendicular bisector of the line 

connecting those two points.  The intersection point of the perpendicular bisector with the infeasible 
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region then gives the optimal constrained center location.  The solution is shown in Figure 7.41.  The 

unconstrained objective function has a value of 3.5, while the constrained objective function has a value 

of 3.63. 
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Figure 7.41. Minimax Solution with Infeasible Region 

Exercise 

Consider the problem of locating a single new facility in a continuous two dimensional plane.  Distances 

are measured by the rectilinear norm.  The objective is to minimize the weighted sum of distances to 

three existing facilities.   The three existing facilities, their coordinates, and their associated weights are 

given in the table below. 

Table 7.5. Location Data 

j a j b j w j

1 30 20 15
2 50 30 25
3 40 20 30  

Write the complete final dual programming formulation for this problem with the additional constraints 

x ≤ 35  and  for the x component of the problem only.  Use the notation developed in class.  Define 

clearly all the transformations and/or extra constraints that you have introduced.  The dual variable 

y ≤ 25
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associated with the extra constraint is denoted by e (for extra.  Write out all constraints and objective 

function fully, i.e. without summation signs for the final dual program only.   

Can the resulting dual program still be converted to a network structure?  If so, draw the complete 

network and explain how the dual and corresponding primal solution can be found for this case. 

Exercise 

Consider the following rectilinear minisum multifacility facility location problem.  The three existing 

facilities are located at , and .  The interactions between the four new facilities 

and the three existing facilities are given by the following table. 

P1 15 10,b g P2 5 15,b g gP3 10 5,b

Table 7.6. New to Existing Facilities Interaction 

P 1 P 2 P 3

X 1 5 1 0
X 2 0 3 1
X 3 2 0 2
X 4 1 0 9  

The interactions between the new facilities are given by the following table. 

Table 7.7. New to New Facilities Interaction 

X 2 X 3 X 4

X 1 2 0 1
X 2 1 0
X 3 6  

Solve in the most efficient way for the optimal location of the new facilities and compute the objective 

function value.  Show in a clear table the optimal locations.  Show also any locale networks and their 

corresponding cuts that you have used to derive your solution.  Compute the lower and upper bound on 

the objective function value of the same facility location problem but with the Euclidean norm.   

Exercise 

Solve the following planar, multifacility rectilinear location problem.  The three existing facilities are 

located at (3,1), (2,2), and (1,0), respectively.  There are five new facilities.  Show the locale network at 

each iteration.  Give the optimal location of each new facility and the optimal objective function value.  

The relationships between new and old facilities are given in the matrix W, the relationships between 

new facilities are given in matrix V. 
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Q

PPPPPP

2 2 2 2
2 20 1
2 20 0 0
2 1 0 40
2 0 0 40

0
  

Solve the above problem for the Euclidean distance norm with the HAP procedure.  The HAP procedure 

is available in the ISYE computer lab and documented in the ISYE software manual.  Give the number 

of iterations, the locations of the new facilities and the objective function value. 

Verify the following bounds numerically for this case.  Discuss the quality of these bounds. 

z X z X z X z XR R E E RX RX RY RY( ) ( ) ( ) (* * *≥ ≥ +2 2 )*  

Exercise 

Consider the problem of finding the location of the rectilinear minimax center of a number of points 

with equal weight with the additional constraint that excludes certain regions for the location of the 

minimax center.  For this particular case the gray rectangle represents the infeasible region for the 

center.  The location of the points is given in the next figure.  The grid lines are drawn at one-unit 

intervals. 
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Figure 7.42. Minimax Problem with Infeasible Region 

Determine first the location of the unconstrained rectilinear center, i.e. ignoring the infeasible region.  

Describe this location completely.  What is the unconstrained minimax distance?  Determine next the 

location of the constrained rectilinear center, i.e. observing the infeasible region.  What is the 

constrained minimax distance. 
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Figure 7.43.  Minimax Solution with Infeasible Region  

The unconstrained minimax distance is 4.75 and the alternative optimal locations of the center are given 

by the line segment 

λ λ
2 375
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.
( )
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QP + −
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NM
O
QP  

The constrained minimax distance is 5.00 and the optimal location of the constrained center is given by 

(2.375, 4.250). 
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