First-Price Sealed-Bid Auction

- Two bidders, one good
- Bidder i’s valuation for the good is \(v_i \), is known only by bidder i. Valuations are independently and uniformly distributed on \([0,1]\).
- Each bidder i submits a nonnegative bid \(b_i \). The higher bidder wins and pays his bid. Other bidder pays and receives nothing.
- In case of a tie, the winner is determined by a coin flip
- Bidder i’s payoff, if wins and pays \(p \), is \(v_i - p \)
- Bidders are risk-neutral
- All of this information is common knowledge

First-Price Sealed-Bid Auction

- Action spaces
 - \(A_1 = A_2 = [0,\infty) \)
- Type spaces
 - \(T_1 = T_2 = [0,1] \)
- Beliefs
 - \(p_1(t_2|t_1) = p_1(t_2) \)
 - \(p_2(t_1| t_2) = p_2(t_1) \)
- Player i’s (expected) payoff function

\[
\pi_i(b_1, b_2; v_1, v_2) = \begin{cases}
 v_i - b_i, & \text{if } b_i > b_j \\
 (v_i - b_i)/2, & \text{if } b_i = b_j \\
 0, & \text{if } b_i < b_j
\end{cases}
\]
First-Price Sealed-Bid Auction

- Strategy for player i: $b_i(v_i)$
- Strategies $(b_1(v_1), b_2(v_2))$ are a Bayesian Nash equilibrium if for each v_i in [0,1], $b_i(v_i)$ solves
 \[\max (v_i - b_i) \Pr\{b_i > b_j(v_j)\} + (v_i - b_i) \Pr\{b_i = b_j(v_j)\}/2 \]

- What type of strategy might make sense?

First-Price Sealed Bid Auction

- Let’s see if there is a linear equilibrium $b_i(v_i) = a_i + c_i v_i$, $i = 1, 2$

- Assuming player j adopts the strategy $b_j(v_j) = a_j + c_j v_j$, player i’s best response:
 \[\max (v_i - b_i) \Pr\{b_i > b_j(v_j)\} = (v_i - b_i) \Pr\{b_i > a_j + c_j v_j\} \]

- Player i knows:

<table>
<thead>
<tr>
<th>a_j</th>
<th>$a_j + c_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pdf of b_j</td>
<td></td>
</tr>
</tbody>
</table>

Example strategies

Recall for values in range that Uniform variables have pdf $= 1/(b-a)$ and cdf $= (x-a)/(b-a)$.

3

4
First-Price Sealed-Bid Auction

- Given \(b_i(v_j) = a_i + c_j v_j \), player i should not bid below player j’s minimum or above player j’s maximum so
 \[b_i, a_j, \quad b_i \cdot a_j + c_j \]

- We expect a higher-value type to bid more than lower ones
 \[c_j, 0 \]

- We know \(\text{Prob}(b_i > a_i + c_j v_j) = \text{Prob}(v_j < (b_i - a_i)/c_j) \)
 \[= (b_i - a_i)/c_j \] From cdf for
 \[v_j = (x - 0)/(1 - 0) \]

- Player i’s objective:
 - \(\max (v_i - b_i) \text{Prob}(b_i > a_i + c_j v_j) = (v_i b_i - b_i^2 + b_i a_i - v_i a_j)/c_j \)
 - From FOC, \(b_i = (v_i + a_i)/2 \) (and SOC okay)

- Player i’s best response (thus far):
 - \(b_i = a_i \) if \(v_i \leq a_i \) (from constraint \(b_i, a_i \)),
 - \(b_i = (v_i + a_i)/2 \) otherwise

First-Price Sealed-Bid Auction

- Player i’s best response
 \(b_i = a_i \) if \(v_i \leq a_i \), \(b_i = (v_i + a_i)/2 \) otherwise

- Can \(a_i \) be
 - Between 0 and 1?
 - For some values, \(v_i \cdot a_i \), so not linear
 - Greater than or equal to 1?
 - Since \(c_j, 0 \), \(b_i(v_j) = a_j + c_j v_j \geq 1 \)
 - Then \(b_i(v_j), v_i! \)
 - Less than or equal to zero?
 - \(b_i(v_i) = (v_i + a_i)/2 \)

We have \(a_j \leq 0, b_i = a_i + c_i v_i \) (from linear form)
\[= a_i/2 + (v_i) (\text{best response to } j) \]
\[\rightarrow a_i = a_j/2 \quad c_i = 1/2 \]
First-Price Sealed-Bid Auction

- Player i’s best response
 \[a_i \leq 0, \quad a_i + c_i v_i = a_j / 2 + 1/2(v_i) \rightarrow a_i = a_j / 2, \quad c_i = 1/2 \]
- Player j’s best response
 \[a_j \leq 0, \quad a_j + c_j v_j = a_i / 2 + 1/2(v_j) \rightarrow a_j = a_i / 2, \quad c_j = 1/2 \]

We have
\[a_i = a_j = 0, \quad c_i = c_j = 1/2 \]
and
\[b_i(v_i) = v_i / 2 \quad i = 1, 2 \]
Each player bids half his/her valuation in a linear equilibrium. (If players’ strategies are strictly increasing and differentiable, this is the unique symmetric equilibrium)

A Double Auction Example

- A seller and a buyer have private valuations \(v_s \) and \(v_b \)
 - Assume drawn from independent uniform distributions on [0,1]
- Seller names asking price \(p_s \); buyer simultaneously names offer price \(p_b \)
- If \(p_b \geq p_s \), then trade occurs at price \(p = (p_b + p_s) / 2 \); if \(p_b < p_s \) then no trade occurs
- Utilities if trade occurs are \(p-v_s \) and \(v_b-p \) (and 0 otherwise)
- Find strategies that specify the price to offer (or demand) for each of the other party’s valuations
Double Auction Example

- A pair \(\{p_b(v_b), p_s(v_s)\} \) is a BNE if below true:

- For buyer, for each \(v_b \) in \([0,1]\), \(p_b(v_b) \) solves
 - 1. \(\max_{p_b} [v_b - (p_b + \varepsilon)/2] \times \text{Prob}(p_b, p_s(v_s)) \)
 - where \(\varepsilon = E[p_s(v_s) | p_b, p_s(v_s)] \) is the expected price the seller will demand, conditional on demand being less than the buyer’s offer of \(p_b \)

- For seller, for each \(v_s \) in \([0,1]\), \(p_s(v_s) \) solves
 - 2. \(\max_{p_s} [(p_s + \varepsilon)/2 - v_s] \times \text{Prob}(p_b(v_b), p_s) \)
 - where \(\varepsilon = E[p_b(v_b) | p_b(v_b), p_s] \)

Double Auction

- Trades will never occur when a seller’s valuation is higher than the buyer’s valuation.

- What are several simple strategies?
Double Auction

Consider a 1-price equilibrium

- For any value x in $[0,1]$,
 - buyer offers x if v_b · x and 0 otherwise
 - seller demands x if v_s · x and 1 otherwise

Trade here would be "efficient" but does not occur

Is there a linear equilibrium?

- If seller’s strategy is $p_s(v_s) = a_s + c_s v_s$
 - v_s is U[0,1] and p_s is U[a_s, $a_s + c_s$]

To determine buyer’s response we need

1. $\text{Prob}\{p_b, p_s(v_s)\}$ which is $\text{Prob}\{(p_b - a_s)/c_s, v_s\}$
 - $\text{CDF} \Rightarrow \text{Prob} = (p_b - a_s)/c_s.$
2. $\text{EPS} = \mathbb{E}[p_s(v_s)|p_b, p_s(v_s)] = (a_s + p_b)/2.$
Double Auction

- Then from buyer’s function (1):
 - \(\max_{p_b} \left[v_b - \frac{p_b + (a_s + p_b)/2}{2} \right] \frac{(p_b - a_s)}{c_s} \)
 - FOC \(p_b = \frac{2v_b}{3} + \frac{a_s}{3} \) gives buyer’s response (which is linear)
 - And SOC okay

Double Auction

- If buyer’s strategy is \(p_b(v_b) = a_b + c_b v_b \),
 - \(v_b \) is \([0,1]\) and \(p_b \) is \([a_b, a_b + c_b]\)
- To find seller’s best response we need
 1. \(\text{Prob}\{p_b(v_b), p_s\} \) which is \(\text{Prob}\{a_b + c_b v_b, p_s\} \)
 = \(\text{Prob}\{v_b, (p_s - a_b)/c_b\} \) \(\text{CDF} \Rightarrow \text{Prob} = 1 - \frac{(p_s - a_b)/c_b}{(c_s + p_s + a_b)/c_b} \)
 2. \(\text{EPB} = E[p_b(v_b)|p_b(v_b), p_s] \)
 = \((p_s + a_b + c_b)/2. \)
Double Auction

- Then from seller’s function (2):
 - \(\max_{p_s} \left[\{p_s+(p_s+a_b+c_b)/2\}/2-v_b \right] + (a_b+c_b-p_s)/c_b \)
 - FOC \(p_s = 2v_s/3 + 1/3(a_b+c_b) \) is seller’s best response (which is linear)
 - And SOC okay

- Now the best response functions are
 - \(p_b = 2v_b/3 + a_b/3 \)
 - \(p_s = 2v_s/3 + 1/3(a_b+c_b) \)
 - So \(c_b = 2/3 \) and we can solve for \(a_b \).

Double Auction

- 2 BR functions together give us:
 - \(p_b(v_b) = 2/3 v_b + 1/12 \)
 - \(p_s(v_s) = 2/3 v_s + 1/4 \)
- Trade occurs only if \(p_b \geq p_s \) or if \(v_b \geq v_s + 1/4 \)
Double Auction

- Compare trades in 1-price and linear equilibrium
- Linear may “dominate” 1-price BNE
 - (for uniform valuations, gives higher expected gains than any other BNE)

Revelation Principle

- There may be many different “mechanisms” to achieve a goal
 - Direct mechanism is a game where a player’s only action is to submit a (possibly dishonest) claim about his or her type
 - A direct mechanism in which truth-telling is a Bayesian Nash equilibrium is called “incentive-compatible”
 - Players should be “willing to play”

- Myerson (1979):
 - Any Bayesian Nash equilibrium of any Bayesian game can be represented by an incentive-compatible direct mechanism