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“Bucket brigades” are a way of sharing work on a flow line that results in the spontaneous emergence of balance and consequent high
throughput. All this happens without a work-content model or traditional assembly line balancing technology. Here we show that bucket
brigades can be effective even in the presence of variability in the work content. In addition, we report confirmation at the national
distribution center of a major chain retailer, which experienced a 34% increase in productivity after the workers began picking orders by
bucket brigade.

Bucket brigades are a way of coordinating workers who
progressively assemble a product along a flow line.

Each worker follows this simple rule: Carry work forward
from station to station until someone takes over your work;
then go back for more. When the last worker completes a
product, he walks back upstream and takes over the work
of his predecessor, who then walks back and takes over the
work of his predecessor, and so on until the first worker
begins a new product at the start of the line. No unattended
work-in-process (WIP) is allowed in the system.
Workers are not restricted to any subset of stations;

rather, each is to carry his work as far toward completion
as possible, except that workers may not pass one another.
This means that, at least in principle, a worker might catch
up to his successor and be blocked; the bucket brigade rule
requires that the blocked worker remain idle until the sta-
tion is available. (As we shall see, the art of implementing a
successful bucket brigade is to make such events unlikely.)
The final requirement of bucket brigades is that the work-

ers be sequenced from slowest to fastest along the direction
of material flow. When these requirements are met, work is
paced by the fastest worker, who triggers each successive
series of walk-backs. The result is a pure pull system.
Bucket brigades are distinguished from similar work-

sharing protocols, such as the Toyota Sewing System
(TSS), by insisting on the total abolishment of any a priori
work assignment or zones that might restrict the move-
ment of the workers, and by requiring that the workers be

sequenced from slowest to fastest along the direction of
material flow.
The distinctive and valuable feature of bucket brigades

is that they are self-balancing; that is, a balanced partition
of the work will emerge spontaneously, which reduces the
need for traditional industrial engineering technologies of
time-motion studies, work-content models, and assembly
line balancing. Moreover, under quite general conditions
the emergent balance results in the maximum possible rate
of production. Finally, the simplicity of bucket brigades
makes them easy to implement and so to realize these
benefits.
Bartholdi and Eisenstein (1996) analyzed the perfor-

mance of bucket brigades performing high-volume assem-
bly of a mature product, for which a deterministic model
of work content was appropriate. Here we extend this anal-
ysis to a stochastic model of work content and show that
the dynamics and production rate will be similar to those
of the deterministic model when there is “sufficient work”
distributed among “sufficiently many” work stations. We
also report confirmation of the practical value of this at the
national distribution center of a major chain retailer, where
the products are customer orders, which are “assembled”
by order-pickers. Because customer orders vary in hard-to-
predict ways, their work content may be imagined to be
stochastic. After converting to bucket brigades, the order-
pickers realized a 34% increase in productivity, and sim-
ilar successes have subsequently been achieved in other
distribution centers.
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1. BUCKET BRIGADES

The simplest model of the dynamics of bucket brigades is
based on the following assumptions.

Assumption 1 (Insignificant Walking Time). The total
time to assemble a product is significantly greater than the
time to walk the length of the flow line. Therefore all hand-
offs occur, for all practical purposes, simultaneously, syn-
chronized by item completions of the last worker.

Assumption 2 (Total Ordering of Workers by Velocity).
Each worker i = 1� � � � � n is characterized by a distinct,
constant work velocity vi.

Assumption 3 (Smoothness and Predictability of Work).
The nominal work content of the product is a constant
(which we normalize to 1), and the work content is spread
continuously and uniformly along the flow line.

We call this the normative model because it represents
ideal conditions sufficient to guarantee that bucket brigades
achieve the maximum possible throughput. For the nor-
mative model a variation of a result from Bartholdi and
Eisenstein (1996) applies: Because of Assumption 3, we
can model the work content as the unit interval �0�1�.
Consider the moment at which the kth item is completed
and worker i takes over the item being assembled by
worker i− 1. Let x
k�i represent the fraction of work com-
pleted for that item at that moment.

Theorem 1 (Self-Balancing).

lim
k→�

x

k�
i =

∑i−1
j=1 vj∑n
j=1 vj

for 1< i � n�

This means that when workers are sequenced from slow-
est to fastest, worker i comes to repeatedly execute the
interval of work content

[∑i−1
j=1 vj∑n
j=1 vj

�

∑i
j=1 vj∑n
j=1 vj

]
�

and the production rate of the flow line increases to
∑n

j=1 vj ,
the largest possible.

Proof. At the moment of handoff coinciding with comple-
tion of the kth item, the clock time separating workers i
and i+1 is

t

k�
i = x


k�
i+1−x


k�
i

vi
�

and the next item will be completed after time

t
k�n = 1−x
k�n

vn
�

After completion of the 
k+ 1�st item the clock-time
separating adjacent workers becomes

t

k+1�
i = x


k+1�
i+1 −x


k+1�
i

vi

= 
x

k�
i +vit


k�
n �− 
x


k�
i−1+vi−1t


k�
n �

vi

=
(
vi−1

vi

)
t

k�
i−1+

(
1− vi−1

vi

)
t
k�n �

The workers are sequenced from slowest to fastest, so
we may interpret these equations as describing a finite state
Markov chain with transition matrix:

A=




0 0 � � � 0 1
v1/v2 0 � � � 0 1−v1/v2
0 v2/v3 � � � 0 1−v2/v3
���

���
���

���
���

0 0 � � � vn−1/vn 1−vn−1/vn


 �

with t
k+1� = At
k� = Ak+1t
0�. This Markov chain is irre-
ducible and, because vi−1 < vi for all i, aperiodic. There-
fore, by basic results about Markov chains, Ak converges
to a matrix, each row of which is(

v1∑
j vj

�
v2∑
j vj

� � � � �
vn∑
j vj

)
�

The convergence of the t
k�i and x
k�i and the specific claims
follow by simple algebra. �

Assumption 1 seems uncontroversial. (We use its
extreme form, instantaneous walk-backs, for convenience.)
Assumption 2 holds for unskilled work or whenever
workers have similar training (Bartholdi and Eisenstein
1996). Assumption 3 tends to hold for mature technologies
because management and engineering continually strive
to remove variation from work and to eliminate bottle-
necks. However, in some important economic contexts,
such as order-picking in a warehouse, this last assumption
is unreliable. Therefore, the object of this paper is to
explore the behavior of bucket brigade lines when this
assumption is modified to allow randomness in the amount
and location of work.
Under the normative model, bucket brigades achieve

the maximum possible throughput; furthermore, in real
life, bucket brigades have performed with remarkable effi-
ciency in a range of commercial applications, many of
which are described on our web page at �www.isye.gatech.
edu/faculty/John_Bartholdi/bucket-brigades�. Why is it that
bucket brigades perform well even when the strong assump-
tions about the nature of work content do not hold? Here
we prove that the conclusions of Theorem 1 continue to
apply in a useful sense even when there is randomness in
the work content.
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2. A STOCHASTIC MODEL OF WORK

Consider the behavior of bucket brigades in which
Assumption 3 is replaced by the following stochastic
model.

Assumption 3′ (IID, Exponentially Distributed Work).
Let the work to assemble a product consist of m discrete
task primitives at m successive work stations. The nominal
work-content at each station is independent and follows
an exponential distribution with common mean normalized
to 1.

This means that the time required for the ith worker to
complete a task follows an exponential distribution with
mean 1/vi. We will prove that, as the number of stations
increases, the moment-to-moment behavior of the stochas-
tic line will increasingly resemble that of the normative
model. Moreover, this resemblance will assert itself with
great uniformity.
Increasing the number of stations may also be taken to

model the partition of tasks into subtasks.
One may interpret our conclusion in the following way:

Imagine a video of workers operating according to the nor-
mative model and another video of the same workers oper-
ating under the stochastic model (with work rescaled to be
comparable). The two copies of the workers begin at the
same starting positions relative to the total (expected) work
content. Then our claim is that the two videos will become
indistinguishable as the number of stations increases in the
stochastic model, so all measurements of the two lines,
including the instants at which each successive item is com-
pleted, become similar. Therefore the stochastic line ever
more resembles the deterministic line, which Theorem 1
has shown to achieve the maximum production rate. Fur-
thermore, as we show by both simulation and by case study,
this similarity asserts itself for few enough stations to be
of practical benefit.
Our analysis is conservative in assuming work that is

exponentially distributed. This means that there will be
greater variance at each work station than one would expect
to find in practice. (It is hard to imagine an economically
viable production process in which a partially completed
task had no memory of the work invested in it!) This unre-
alistically large variance reduces the throughput of bucket
brigades because it increases the chances of blocking.
To compare the stochastic and deterministic models, we

will build and analyze a more detailed model of the deter-
ministic system. Where Theorem 1 considered a series of
“snapshots” of the workers taken immediately after walk-
back, our new model, the fluid model, is more like a video
in that it captures not just the system state after walk-backs,
but the dynamics of the bucket brigade in continuous time.

3. THE FLUID MODEL

Here we model the evolution of the bucket brigade in
continuous time. Assume there are n workers located
on the unit interval �0�1�. Worker i moves to the right

with speed 0 < vi < � unless blocked by worker i+ 1.
When worker n reaches the end of the unit interval, a
part is completed, and the workers instantaneously reset
(walk back to get more work). Let 	X � �0��� → E be
the function which gives the location of the n workers
at any arbitrary time t � 0. In particular, 	Xi
t� denotes
the location of worker i at time t. Note that at reset
times 	X is not well defined because the workers instanta-
neously move from one location to another. To avoid this
ambiguity, we select 	X so that it is right-continuous at all
t ∈ �0��� and has limits from the left at all t ∈ 
0���.
Thus, none of the workers is ever at one, and 	X
t� ∈ E
where E ≡ �
�1� � � � � �n��0 � �1 � �2 � · · · � �n < 1�. Let
E− denote the closure of E; thus, E− ≡ �
�1� � � � � �n��0 �
�1 � �2 � · · · � �n � 1�. Define 	R � E−\E → E to
be the reset function such that 	R
x
t−�� = x
t� where
x
t−� = lims↑t x
s�. In particular, if x
t−� ∈ E−\E, then
x
t−� is of the form 
x1
t−�� � � � � xi
t−��1� � � � �1� for
some i < n with xi
t−� < 1. In this case, 	R
x
t−�� =

0� � � � �0� x1
t−�� � � � � xi
t−�� and m− i parts were fin-
ished at time t.
At this point, it is convenient to define several classes

of functions. Let DE�0��� be the space of all E-valued
functions on �0��� that are right-continuous with limits
from the left (RCLL). Thus, 	X ∈ DE�0���. Similarly, we
let D�n+ �0��� denote the space of RCLL �n

+-valued func-
tions, and C�n+ �0��� the space of continuous, �n

+-valued
functions on �0���.
The following result gives the equations describing the

fluid model of the system, where 	Xi
t� represents the loca-
tion of the worker i at time t, 	Ti
t� represents the amount
of time that worker i was productive during the interval
�0� t��	Ii
t� the amount of time worker i was idle (blocked
by worker i+1) in �0� t�, and 	Si
t� represents the total dis-
tance walked back (instantaneously) by worker i during the
interval �0� t�.

Lemma 1. Given a starting position x ∈ E and vector of
speeds v, there exists a unique triple 
	X�	T�	S� where 	X ∈
DE�0����	T ∈ C�n+ �0���, and 	S is a pure jump process in
D�n+ �0��� that satisfy for i = 1� � � � � n and t > 0:

	Xi
t�=xi+vi	Ti
t�−	Si
t�� (1)

	X
t�∈E� (2)

	Ti
0�=0 and 	Ti
t� is nondecreasing in t� (3)

	Ii
t�= t−	Ti
t�� (4)∫ �

0
1
	Xi+1
t�>	Xi
t��d	Ii
t�=0� (5)

	Si
t�=
∫ t

0
1
	Xn
s−�=1�
	Xi
s−�−	Ri
	X
s−��d	N
s�� (6)

where 1
A� is the indicator function of A� 	N is counting
measure, and 	Xn+1
t�≡ 1 so 	In
t�= 0.

Proof. See the appendix. �
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4. STOCHASTIC DYNAMICS

Assume m stations labeled 0 through m−1, with the nom-
inal length of time to process a job at station j being
exponentially distributed with mean one. Worker i works
at velocity vi, so the time for worker i at each station is
exponentially distributed with rate vi. For each of the n
workers let Xm

i 
t� denote the location of worker i at time t,
and Xm
t� be the column vector of these locations. We
explicitly carry the number of stations m as part of the
notation because in the next section we allow the number
of stations to vary. One difference between our stochastic
and deterministic models is that in the stochastic model a
slower worker may catch up to a faster worker and be at
the same station. If there are several workers at a station,
only the highest numbered among them will be allowed to
work, while the others must remain idle.
Because the durations of work are independent, identi-

cally distributed exponential random variables, the number
of movements of the ith worker behaves like a Poisson pro-
cess with rate vi unless the worker is blocked. Let N
t�
be a vector of independent Poisson processes with rates

v1� � � � � vn�. Let T

m be the vector of the amounts of time
that each worker is productive during the interval �0� t�;
let Imi 
t� be the amounts of time that worker i is idle
(blocked) during �0� t�, and let Smi 
t� be the total distance
that worker i has walked during resets. Then the follow-
ing set of equations, which hold for i= 1� � � � � n and t > 0,
uniquely define these processes:

Xm
i 
t�= Xm

i 
0�+Ni
T
m
i 
t��−Smi 
t�� (7)

Xm
t� ∈ Em� (8)

Tm
i 
0�= 0 and Tm

i 
t� is nondecreasing� (9)

Imi 
t�= t−Tm
i 
t�� (10)∫ �

0
1
Xm

i+1
t� > Xm
i 
t��dI

m
i 
t�= 0� (11)

Smi 
t�=
∫ t

0
1
Xm

n 
s−�=m−1�Dm
i 
X

m
s−��dNn
s�� (12)

where Em = �i ∈�n
+�0� i1 � i2 · · · in �m−1��Xn+1
t�≡m,

Dm
X
s−��= X
s−�−Rm
X
s−�� (13)

Rm
X
s−��= 
0�X1
s−�� � � � �Xn−1
s−��� (14)

and the stochastic integral in Expression (11) is a sample
path integral; cf. Wong and Hajek (1985, Ch. 6).

5. CONVERGENCE OF THE STOCHASTIC
MODEL TO THE FLUID MODEL

We would like to compare the behavior of the stochastic
model and the continuous deterministic model, but their
state spaces are quite different—�0� � � � �m−1� vs. �0�1�—
and their time scales are quite different—one worker
working with velocity 1 takes 1 unit of time to pro-
duce an item in the deterministic model—but the expected

time in the stochastic model is m units of time. How-
ever, we can directly compare the two in a reasonable
way by rescaling the stochastic model, in effect speed-
ing up time while reducing resolution by a factor of m.
Define X̃m
t� ≡ Xm
mt�/m, and X̃m ≡ �X̃m
t�� t � 0�.
Then rewriting Expressions (7)–(12) under this rescaling,
we obtain S̃mi 
t�= Smi 
mt�/m� Ĩ

m
i 
t�= Imi 
mt�/m� T̃

m
i 
t�=

Tm
i 
mt�/m and

X̃m
i 
t�= X̃m
0�+Ni
T̃

m
i 
mt��/m− S̃mi 
t�� (15)

X̃m
t� ∈ E� (16)

T̃ m
i 
0�= 0 and T̃ m

i 
t� is nondecreasing� (17)

Ĩmi 
t�= t− T̃ m
i 
t�� (18)∫ �

0
1
(
X̃m
i+1
t� > X̃m

i 
t�
)
dĨi
t�= 0� (19)

S̃mi 
t�=
∫ t

0
1
X̃m

n 
s−�
= 
m−1�/m�Dm

i 
X
m
s−��dNn
ms�� (20)

where Dm
X̃m
s−��= X̃m
s−�−Rm
X̃m
s−��.
We show that the rescaled stochastic model converges

in a certain sense to the deterministic fluid model as
the number of stations m increases. The following lim-
its hold almost surely as m → �. We use X

u�o�c�−→ Y

or X
t�
u�o�c�−→ Y 
t� to denote uniform convergence over

compact sets (u.o.c.); that is, X
t� → Y 
t� uniformly
for t restricted to compact sets. It is well known that
N
mt�/m

u�o�c�−→ vt. Unfortunately, our rescaled model X̃m

does not converge u.o.c. to 	X because the two processes
may reset at slightly different times. Consequently, we must
resort to a weaker metric that considers the two processes
to be close if they jump approximately the same distance

at approximately the same time. Let X
J1−→ Y denote con-

vergence in the Skorohod J1 topology (Skorohod 1956).

Theorem 2. If 0<v1 � v2 � · · ·� vn <� and the rescaled
starting positions of the workers X̃m
0�→ x= 
x1� � � � � xn�

with 0 � x1 < x2 < · · · < xn < 1 then X̃m
J1−→ 	X and

T̃ m
t�
u�o�c�−→ 	T
t�≡ et, where e is the n-dimensional vector

of one.

Proof. See the appendix. �

6. THE EFFECTIVENESS OF BUCKET
BRIGADES IN PRACTICE

6.1. Order-Picking in a Distribution Warehouse

In the stores of chain retailers, space for inventory is expen-
sive, so the distribution centers (DCs) supporting them
replenish stock-keeping units (SKUs) frequently and in
small, less-than-caseload amounts. This means that a typ-
ical store orders many SKUs, but small numbers of each,
so that picking these orders is labor intensive. Often a DC
employs hundreds of order-pickers.
Under these circumstances, the fast-moving SKUs are

generally picked from flow rack, as illustrated in Figure 1.
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Figure 1. A team picking from an aisle of flow rack to a conveyor (from “Warehouse Modernization and Layout
Planning Guide,” Department of the Navy, Naval Supply Systems Command Publication 529, March 1985,
p. 8–17). The “passive” conveyor (closer to pickers) holds partially completed orders. The powered “take-
away” conveyor transports completed orders to the shipping department.

Flow rack is arranged in aisles, through which runs a uni-
directional conveyor. The racks are divided into bays, and
within each bay are tilted shelves with rollers to slide the
cases forward.
An order is a list of SKUs for a single customer, together

with quantities to be picked. Workers assemble each order
progressively along the aisle, putting the SKUs into totes
(cartons), which travel together. Workers keep the orders
in sequence so they arrive at the shipping dock in reverse
order of delivery.
Because broken-case order-picking is so labor intensive,

managers naturally want to keep all pickers busy. Stan-
dard practice is to adopt an assembly line model, parti-
tioning the bays into contiguous sections called zones and
then restricting each picker to work within her zone. (In
our experience most pickers are female.) The picker in the
first zone begins a new order by opening a tote and slid-
ing it along the passive lane of the conveyor while picking
the SKUs for that order. On reaching the end of her zone,
she leaves the order for the next worker and returns to the
beginning of her zone for more work. Each worker remains
in her zone, moving totes forward while picking, and pos-
sibly standing idle if there is no work in her zone. The last
picker pushes the totes of a completed order onto a powered
conveyor, which takes them to the shipping department.
The idea, like that of an assembly line, is that all workers
will presumably remain busy if their zones have approx-
imately the same total work. This style of order-picking
is called sequential zone-picking. (For more about order-
picking protocols, see “The warehouse manager’s guide to

effective order picking,” Monograph M-8, Tompkins Asso-
ciates, Inc., Raleigh, NC.)
Under zone-picking each assembly line must be balanced

one or more times a day. To support this, the DC must
maintain a model of work content on which to base the
zones. But the work-content model will always be wrong,
despite the effort invested in it, because of issues such as
the following.
• Work-content models ignore speeds of the workers

because their identities will not be known until work
begins. Instead, work-content models are based on the
notion of a mythical “standard worker.” However, in our
experience it is common for people to differ in work veloc-
ity by a factor of three or four, in part because of the use
of temporary labor to match large seasonalities in business.
Consequently, the rigid zones of an assembly line underuti-
lize the faster workers while frustrating the slower workers,
who, under pressure to keep up, may introduce errors.
• The work-content model attempts to balance only the

total work accomplished but fails to maintain balance from
order to order.
• There are more factors that determine work content

than can be economically modeled. In addition to the num-
ber and locations of the SKUs to be picked, work-content is
also determined by heights of the locations (at waist level
or inconveniently high?), weight and shape of the SKUs
(heavy? hard to handle?), and so on. Moreover, such mod-
els cannot account for inevitable disruptions such as dis-
posing of an empty case, opening a new case, sealing a full
tote, pulling stalled cases to the front of the flow rack, and
so on.
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Figure 2. Production rate efficiency decreased with increasing difference in worker velocities for zoned lines, but bucket
brigades remained highly productive. Maximum possible value of production rate efficiency is 1, which is
achieved by bucket brigades under the deterministic model of work-content.

Because of these inaccuracies, the work-content model
will be wrong, so the assembly line will not be balanced.
This is why zone-picking requires constant supervision—
but is imbalanced nonetheless. The cost is reduced pick
rates resulting from underutilized pickers. Furthermore,
imbalances cause congestion because the length of the con-
veyor strictly limits the work in process, and congestion
further reduces the effective pick rate by making it harder
to put product in the right totes.
Bucket brigades seem to be an ideal solution to this prob-

lem because they restrict WIP and dynamically balance
themselves to achieve high production rates, all without the
need of a work-content model.

6.2. Bucket Brigades vs. Zone Picking

Our stochastic model provides a good description of order-
picking in a distribution warehouse. In particular:
1. Walking time in a high-volume DC is at least an order

of magnitude less than picking time.
2. Workers proceed at different velocities and may be

ranked from slowest to fastest because the same skill per-
tains all along the line. Indeed, many DCs track the indi-
vidual pick rate of workers and base part of their pay on
this; and, in any event, everyone on the floor knows who is
faster and who slower.
3. The work at a “station” (storage location) varies from

order to order, which suggests a stochastic model of work.
Finally, because the number of stations (storage loca-

tions) is much greater than the number of workers (by sev-
eral orders of magnitude), Theorems 1 and 2 suggest that
bucket brigades can be very effective in coordinating work
among order-pickers.

We tested this in both simulations and in a commer-
cial distribution center. Figure 2 shows typical simula-
tion results comparing a bucket brigade, with workers
sequenced from slowest to fastest, to zone-picking that
allows up to 0, 1, 2, or 3 units of WIP to build between
adjacent zones. Each line has 5 workers and 20 work
stations, with work at each station independently follow-
ing an exponential distribution. The velocities of the team
are spread uniformly with the ratio of the velocity of the
fastest to slowest worker varying along the x-axis from 1
(all workers identical) to 4 (the last worker is four times
the velocity of the first), which are representative of our
observations in practice. To make the comparison meaning-
ful, we imposed a constraint that the sum of the velocities
of all worker remain constant, so that each team had the
same inherent productive capacity.
As is common in industry, we balanced zones based on a

common work standard. Then the workers were sequenced
as closely as possible to adhere to the “bowl” phenomenon
(Hillier and Boling 1979). In addition, we granted a special
advantage exclusively to the simulated zone-picking by not
penalizing it for accumulation of WIP, which in real life
slows throughput by creating opportunities to put product
in the wrong tote.
In this family of simulations we measured production

rate efficiency, the realized production rate divided by the
maximum possible rate, which is the sum of the velocities
of the workers. The largest possible value of production
rate efficiency is 1 and this is achieved by bucket brigades
under the deterministic model (cf. Theorem 1). When all
workers were identical (which, of course, is never the case
in the real world) the production rate efficiency of the sim-
ulated bucket brigade was similar to that of zone picking
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that allows WIP between stations. But as the velocities of
the workers were allowed to become distinct, as one invari-
ably finds in the real world, then bucket brigades were more
productive. This is because bucket brigades spontaneously
and continually adjust to account for variances in the sys-
tem, including variances in the velocities of workers and in
the amount and location of work.

6.3. Experience at Revco Drug Stores, Inc.

The strongest proof of the effectiveness of bucket brigades
when work varies comes from practice.
We implemented order-picking by bucket brigade at the

national distribution center of Revco Drugs, Inc., which
supports more than 2,000 retail outlets. A key advan-
tage of bucket brigades is simplicity, so implementation
required less than an hour with no special equipment and
no changes to the warehouse management system or related
operations. This made it easy to experiment one morning
on a single aisle that had previously been using sequen-
tial zone-picking. We described the idea to the workers in
15 minutes, sequenced them from slowest to fastest, and
watched them work.
The most striking benefit of order-picking by bucket

brigade was the increase in pick rates, which reached sus-
tained levels of 34% greater than the previous historical
averages under zone-picking, while simultaneously reduc-
ing management intervention (Figure 3). This was achieved
at essentially no cost, and in particular, with no change to
the product layout, equipment, or control system (except to
render parts of the latter unnecessary).
Picking by bucket brigade produced additional benefits,

including the following.
• Spontaneous (re)balance of the work has freed man-

agement time. Previously each aisle was monitored by
a manager who adjusted zones within the aisle to cor-
rect the inevitable intermittent imbalances and the result-
ing congestion or starvation. This level of supervision is no

Figure 3. Average pick rate as a fraction of the
work-standard. Zone-picking was replaced
by bucket brigade in week 12. (The solid
lines represent best fits to weekly average
pick rates before and after introduction of the
bucket brigade protocol.)

longer necessary because adjustments are spontaneous and
continual.
• Furthermore, differences in work rates are now visible,

so it has become easier to recognize problems. For exam-
ple, at Revco each bay contains comparable amounts of
work for each order, so under the bucket brigade protocol,
each worker tends to visit a length of aisle proportional to
her pick rate. In one case, an unusually slow worker at the
first position was repeatedly “pushed back” by her faster
teammates: She was unable to pick quickly enough ever to
leave the first bay of flow rack, so her teammates asked that
she be removed. It was apparent to all that they could pick
as fast without her and they preferred to split the incentive
pay n−1 ways. Under zone-picking such imbalances were
harder to recognize because they could be hidden by work
in process.
• The synchronization of multiple aisles has become

easier. A manager can now monitor the progress of an
aisle by simply checking what order any worker is picking.
Under zone-picking it was difficult to know the status of
an aisle because of the considerable and variable work in
process.
It has also become easier to move workers to maintain

the balance among aisles. Under zone-picking, when one
picker was moved, work was interrupted while management
redefined the zones in each aisle; but under bucket brigades,
the pickers in each aisle spontaneously adjust to account
for the new configuration.
• A bucket brigade is extensible. For example, at Revco

there was a worker picking from carousels immediately
upstream from one aisle, and she occasionally got ahead
of the workers in that aisle. Under zone-picking she had to
cease working until the congestion was cleared. Now she
simply joins the bucket brigade to help them pick. After
they have caught up, she returns to the carousels at the next
walk-back.
• Reduced levels of work in process increased the accu-

racy of order-picking. Because the number of totes on the
conveyor is strictly controlled, there is no congestion, and
workers rarely put SKUs in the wrong totes.
• The pickers claim to be more satisfied because they

prefer working in teams, with clear instructions about
where to go and when. Furthermore, the simplified and
regularized movements mean that temporary workers can
become productive more quickly.
• The expense and inaccuracy of a work-content model

can be avoided. Revco had calculated zones several times
a day based on a sophisticated, computer-hosted model of
work content and advance knowledge of all 100,000 pieces
to be picked that day. With bucket brigades, Revco can
abandon its detailed work-content model and get better bal-
ance and higher productivity nonetheless.
Revco has subsequently implemented bucket brigades in

all its regional warehouses, involving hundreds of order-
pickers, all of whom had previously picked by zone. As
of this writing they have been successfully using bucket
brigades for over four years.
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7. EXTENSIONS AND OPEN PROBLEMS

In the statement and proof of Lemma 1 we have followed
the normative model, in which the velocity of worker i is
a constant, vi, unless blocked by the worker immediately
downstream. However, the queueing equivalence used in
our proof allows extending the result to more general mod-
els in which the velocity of each worker may be either
state dependent (dependent on the locations of the workers,
as in Bartholdi and Eisenstein 1996), or time dependent.
(Discussions of state- and/or time-dependent dynamic com-
plementarity may be found in Pats (1995, Appendixes 2
and 3).
A result similar to Theorem 2 holds when workers

are sequenced other than slowest to fastest. However, the
Skorohod J1 topology does not allow several jumps accu-
mulating at the same point in time, which could occur if
vi > vi+1 or if vi = vi+1 and xi = xi+1 (in which case the
conditions at the end of the proof fail, with %m

k /m and
%m

k+1/m both converging to the same time &j). Therefore, to
show a similar result for any sequence of workers (not just
slowest to fastest), we would need to use an even weaker
topology than the Skorohod J1. However, the model with
instantaneous movement and v1 � v2 � · · ·� vn is the most
interesting, so we have presented the analysis for this case
only.
Other researchers have considered stochastic models of

work-sharing on a flow line; but all assume that the work-
ers are identical in velocity (Bischak 1996, Zavadlav et al.
1996). We believe that it is unrealistic to assume that
workers proceed at identical speeds when the workers
are humans. However, assuming the workers are identi-
cal can be useful—in particular, it gives a case in which
the throughput is easily computed and should be a lower
bound on achievable throughput for heterogeneous workers.
If the n workers have identical velocities, then the columns
of the generator also sum to zero. Hence, the stationary
distribution has all states equally likely, as when the tran-
sition matrix of a Markov chain is doubly stochastic. The
throughput is simply the proportion of states with worker n
at the last machine times the velocity of a single worker. If
we scale the velocities vi =m/n, then the system through-
put would be one if there were no blocking. The actual
system throughput is simply(
n+m−2
n−1

)
(
n+m−1

n

) m
n

= m

n+m−1
� (21)

This expression appears in Bischak (1996) except that
the velocities of the workers are ' instead of m/n. Bischak
derived the result by showing an equivalence between
bucket brigades and cyclic queues when worker’s velocities
are equal.
Note that the throughput achieves the maximum possi-

ble rate of 1 when there is n = 1 worker. Also note that
throughput increases with the number of machines m, but
decreases with the number of workers n. Of course, this is
under the assumption that increasing the number of workers

does not increase their combined work rate m, but simply
splits it evenly over more workers. Thus, the result implies
that it is better to have fewer workers with the same com-
bined speed than many. As the lower bound suggests, we
would not expect bucket brigades to work particularly well
when there is a small number of machines and a relatively
large number of workers. For example, if there are two
workers and three machines, the lower bound guarantees a
throughput of only 3/4. Of course, it is even worse if there
are three workers and two machines since at least one of
the workers is always blocked and the lower bound drops
to 1/2. However, if m is large relative to n, bucket brigades
should function well, as they have in practice.
Expression (21) also gives an upper bound on the frac-

tion of production rate lost as a result of blocking:

1− m

n+m−1
= n−1
m+n−1

� (22)

The preceding discussion alludes to two interesting open
problems for the stochastic model. The first problem is,
“Which arrangement of workers is optimal in the bucket
brigade?” The intuitively obvious answer is, “slowest to
fastest,” but this is unproven. The second problem is
whether assuming workers are homogeneous (that is, their
combined speed is divided evenly among the workers) pro-
vides a lower bound on the production rate of the workers
arranged slowest to fastest. Again the intuitively obvious
answer is “yes,” but this result is also unproven. These
two results together with the simple Expression (21) would
combine to give a useful lower bound on throughput of any
bucket brigade with m machines and n workers sequenced
slowest to fastest.
When work-content is “sufficiently variable,” bucket

brigades could, in principle, be outperformed by a policy
that allowed instantaneous resequencing of the workers.
For example, if at some instant worker 1 was far behind
worker 2, and worker n−1 was close to worker n, it would
be better to swap workers 1 and n−1 to decrease the like-
lihood of blocking in the near future. It is an interesting
control problem to determine which sequence of workers is
optimal at each instant; however, it is unlikely that an opti-
mal policy for this model would be worth implementing in
most real world situations.

8. CONCLUSIONS

The main benefits of bucket brigades are increased produc-
tion rate, reduced dependence of work-content models, and
simplified management. These benefits were so substan-
tial at Revco that other initial concerns, such as whether
brigade members might shirk or free-ride, were dismissed
as second-order effects at most.
Bucket brigades can be more productive than tradi-

tional assembly lines for a number of reasons. First,
bucket brigades constantly and spontaneously seek bal-
ance. Second, balance is based on the actual, realized
work content, and the particular workers—and not mere
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estimates of work-content based on standardized workers.
Furthermore, bucket brigades can achieve high production
rate without resorting to high work in process because
they absorb variance in the work by moving the work-
ers where the work is. Of course the strongest “proof” of
the effectiveness of bucket brigades is experience across a
range of commercial applications, one of which we have
reported here. Others may be found at our web site �www.
isye.gatech.edu/faculty/John_Bartholdi/bucket-brigades�.
Our work may be seen to lie within two current streams

of thought. Most immediately, it is a special case of
dynamic line-balancing, wherein an intelligent controller
adjusts the allocation of work in real time (for example,
Ostolaza et al. 1990). For bucket brigades the allocation
occurs spontaneously, which has the considerable advan-
tage of requiring no controller at all. Furthermore, as of
this writing, bucket brigades are unique in that local adjust-
ments (worker movement) have been proved to lead to
global balance.
The second stream of thought into which our work fits is

the hosting of computational processes on analog devices.
In our case the assembly line is the computer of its own
allocation of work. It might be said that we program
this computer by sequencing the workers from slowest to
fastest. There is no need to measure and input data because
the work content is read directly by the doing of it. The
output is the balance.

APPENDIX A: PROOF OF LEMMA 1

Proof. To solve the set of equations we first consider a
related problem in which the workers are not constrained
to �0�1�, but instead are allowed to continue moving to the
right on �0��� without ever resetting. This process 
X̂� T̂ �
will be the solution to the following set of equations, which
hold for i = 1� � � � � n and t > 0:

X̂i
t�= xi+viT̂i
t�� (23)

X̂
t� ∈ Ê� (24)

T̂i
0�= 0 and T̂i
t� is nondecreasing� (25)

Îi
t�= t− T̂i
t�� (26)∫ �

0
1
(
X̂i+1
t� > X̂i
t�

)
dÎi
t�= 0� (27)

where Ê ≡ �
�1� � � � � �n��0� �1 � �2 � · · ·� �n <��.
If we define Qi
t� ≡ X̂i+1
t� − X̂i
t�, we can view


Q1
t�� � � � �Qn−1
t�� as the vector of amounts of fluid in
a deterministic fluid queueing system consisting of n− 1
servers in tandem. Fluid arrives continuously to the last
queue, Qn−1
t�, at rate vn. The ith queue pumps fluid
to the 
i − 1�st queue at rate vi as long as fluid is
present. Fluid pumped out of the first queue is lost from
the system. Rewriting Equations (23)–(27) in terms of

Q1
t�� � � � �Qn−1
t�� yields a special case of the dynamic
complementarity problem (DCP) discussed in Dai (1995),
Pats (1995), and Harrison and Reiman (1981). From

Theorem 1 in Harrison and Reiman (1981), there exists
a unique solution to these rewritten equations even when
they are restricted to t ∈ �0�M� for any positive M; hence,
there exists a unique solution 
X̂� T̂ � Ŝ� to (23)–(27). Let
&1 ≡ inf�t � 0�X̂n
t� = 1�, which will be the first reset
time. Thus, for t ∈ �0� &1�, we must have 	X
t� = X̂
t�,
	T
t�= T̂ 
t� and 	S
t�= 0.
Now assume that 
	X�	T�	S� is uniquely defined for

t ∈ �0� &k�. Redefine and reconstruct 
X̂� T̂ �, except use
R
	X
&k−�� as the starting position of the workers. This
must be the starting point due to (1) and (6). Define
&k+1 = &k+ inf�t � 0�X̂n
t�= 1�. Note that R
	X
&k−�� ∈
E and &k+1 > &k. For t ∈ �&k� &k+1�, define 	X
t� = X̂
t�,
	T
t� = T̂ 
t�+	T
&k�, and 	S
t� = 	X
&k−�−R
	X
&k−��+	S
&k�. Note that &k is not necessarily the kth reset time
because more than one reset may occur (more than one
item may be produced) at &k. Continuing in this fashion, we
will have constructed 
	X�	T�	S�, which is the only solution
to (1)–(6) provided &k →�. However, this follows because
the number of items produced in any interval of length t is
bounded above by n+ t/
v1+· · ·+vn�. �

APPENDIX B: PROOF OF THEOREM 2

Proof. Let %m
1 be the first reset time in the stochas-

tic model, and let *m be the first time that that one
of the workers is blocked in the stochastic model. In
the rescaled model, the first reset time is %m

1 /m and the
first time blocking occurs is at *m/m. During the inter-
val �0�min�%m

1 /m�*
m/m��, we have 	Xm
t� = 	Xm
0�+

N

mt��/m. Because N
mt�/m
u�o�c�−→ vt and Xm
0� → x,

we have

	Xm
t�→ x+vt uniformly

for 0� t <min
[
M� lim

m→�min�%m
1 /m�*

m/m�
]
� (28)

where M is any positive finite constant. Under the assump-
tions that xi < xi+1 and vi � vi+1, the ith and i+1st coor-
dinates of x+ vt differ by at least xi+1 − xi for all t � 0.
Hence, Pr�%m

1 /m < *m/m�→ 1 and %m
1 /m→ &1, where

&1 is the first reset time of the fluid model as used in the
proof of Lemma 1. To see that Pr�%m

1 /m < *m/m�→ 1,
note that if *m/m � %m

1 /m, then two workers are at the
same location, i.e., have zero separation, at time *m/m.
If Pr�%m

1 /m < *m/m� → 1− + with + > 0, then (28)
would not hold. Thus, 	Tm
t� → et for t ∈ �0� &1� and
X̃m
%m

1 /m−�→ 	X
&1−�; hence,
X̃m
%m

1 /m�

= 
0� X̃m
1 
%

m
1 /m−�� � � � � X̃m

n−1
%
m
1 /m−��→ 	X
&�

= R
	X
&1−���
Furthermore, 	X
&1� has the property that 0 � 	X1
&1� <	X2
&1� < · · · < 	Xn
&1� < 1. Hence, we can repeat the
argument on the next interval of time �&1� &2�. Because
&k < &k+1 and since for any time t, the number of
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resets is at most n+ t/
v1 + · · · + vn�, we can see that
X̃m
t�→ 	X
t� for t �∈ �&1� &2� � � � �, %

m
k /m→ &k, T̃

m
t�→
et, X̃m
%m

k /m−�→ 	X
&k−�, and X̃m
%m
k /m�→ 	X
&k�.

To show X̃m
J1−→ 	X, we use Ethier and Kurtz (1986,

Proposition 6.5, Chapter 3). In our case it suffices to show
that whenever �tm�⊂ �0���, t � 0, and tm → t the follow-
ing conditions hold, where r is the sup norm:
• min
r
X̃m
tm�� 	X
t��� r
X̃m
tm�� 	X
t−��→ 0.
• If r
X̃m
tm�� 	X
t��→ 0, sm � tm for each m, and sm →

t, then r
X̃m
sm�� 	X
t��→ 0.
• If r
X̃m
tm�� 	X
t−��→ 0, 0� sm � tm for each m, and

sm → t, then r
X̃m
sm�� 	X
t��→ 0.
These conditions are easy to show after noticing that there
exists - > 0 such that &k+1−&k � - for k = 1�2� � � � . �
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