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ABSTRACT 

Preliminary design of a complex system often involves exploring a broad design space.  This may 

require repeated use of computationally expensive simulations.  To ease the computational burden, 

surrogate models are built to provide rapid approximations of more expensive models.  However, the 

surrogate models themselves are often expensive to build because they are based on repeated experiments 

with computationally expensive simulations.  An alternative approach is to replace the detailed simulations 

with simplified approximate simulations, thereby sacrificing accuracy for reduced computational time.  

Naturally, surrogate models built from these approximate simulations are also imprecise.  A strategy is 

needed for improving the precision of surrogate models based on approximate simulations without 

significantly increasing computational time.  In this paper, a new approach is taken to integrate data from 

approximate and detailed simulations to build a surrogate model that describes the relationship between 
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output and input parameters.  Experimental results from approximate simulations form the bulk of the data, 

and they are used to build a model based on a Gaussian process.  The fitted model is then “adjusted” by 

incorporating a small amount of data from detailed simulations to obtain a more accurate prediction model.   

      The effectiveness of this approach is demonstrated with a design example involving cellular materials 

for an electronics cooling application. The emphasis is on the method and not on the results per se. 

NOMENCLATURE 

D Fixed overall depth of heat exchanger 

H Fixed overall height of heat exchanger 

k Thermal conductivity of the solid material 

m&  Total mass flow   rate of cooling fluid 

 n Number of sample points 

  na Number of sample points for approximate simulations 

  nd Number of sample points for detailed simulations 

  p Power parameters  for a correlation function 

 Q&  Total rate of steady state heat transfer 

 R  Correlation matrix 

 aR    Correlation matrix for an approximate simulation   

  δR  Correlation matrix for ( )δ x  

( ')R x,x   Correlation between points x and x '  

Tin Inlet temperature of the cooling fluid 

Twall Temperature of the heat source 

W Fixed overall width of the heat exchanger 

xi Input variable i  

  ( )y x  Output of a computer simulation at input value x   

 ( )ay x  Output of an approximate simulation at input value x  
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 ( )dy x  Output of a detailed simulation at input value x  

    δ    ( )d aρ−y x y  

β  Coefficients of mean function 

aβ  Coefficients of mean function for ( )ay x  

0δ   Constant mean function of ( )δ x  

( )ρ x  Scale adjustment term  

    iρ  Liner coefficients for ( )ρ x  

   2σ   Variance of a stationary Gaussian process 

  2
aσ   Variance of ( )ay x  

θ   Scale correlation parameters  

aθ  Scale correlation parameters of ( )ay x  

   δθ   Scale correlation parameters of ( )δ x  
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1.    FRAME OF REFERENCE  

      Preliminary design of a complex system often involves exploring a broad design space or region of 

design variable values. Many detailed analysis programs are available for use in the latter stages of design, 

but they can be extremely expensive for exploring broad regions. One solution has been to simplify the 

simulations and obtain data from more approximate simulations. For these approximate simulations, 

accuracy is sacrificed to reduce computational time.  However, when it is desirable to explore a large 

design space that includes broad ranges of design variables, repeated approximate simulations still generate 

substantial computational loads.   

Another approach is to create surrogate models to replace individual simulations. These surrogate 

models have been used widely in design.  Computer experiments in which the design variables cover a 
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carefully chosen range of values are used to create the surrogate models.  Values of the design variables are 

chosen in specific patterns called experimental designs1-2 and performance is simulated at these points.  

The responses and input values are combined statistically to create functional relationships between input 

variables and performance; these functional relationships are the surrogate models. The surrogate models 

can be used for robust design3 or linked to optimization routines, or they can serve as a bridge for 

integration across multiple functions4 or across different levels of abstraction5. 

Familiar methods for creating surrogate models include response surface modeling6 and kriging7-9 , 

and an example of their use in design is presented by Chen and coauthors3.  However a wide variety of 

techniques are available10. In addition to the choice of the metamodeling method, the accuracy of a 

surrogate model is determined by the experimental design used to select data points, the size of the design 

space or range of explored values of design variables, the accuracy of the simulation at each data point and 

the numbers of data points available to compute the surrogate model10.   

In the last decade, methods for improving the accuracy and computational efficiency of metamodeling 

procedures have been actively studied. One approach has been to successively reduce the design space, 

thus simultaneously reducing the extent of the approximation of the metamodels.  There are several ways 

to accomplish this, including the use of trust regions,11-14 heuristics,15 move limits,16 and an adaptive 

response surface method in which the design space is systematically reduced by discarding regions with 

large objective function values at each modeling-optimization iteration17-18. Entropy maximization has also 

been studied.19-20 Wang and Simpson21 propose an intuitive metamodeling method based on hierarchical 

fuzzy clustering which helps a designer reduce metamodels to regions of interest to a designer.  

Another way of reducing the design space is by reducing its dimensionality22. Typically, the design 

space is screened to identify and remove design variables that are less important.  However, it can be 

difficult to obtain substantial reductions of dimensionality for large-scale problems23. Super-efficient 

screening methods for removing less important design variables are also available. Both group-screening24 

and sequential bifurcation25-26 must be applied cautiously for designs in which multiple responses are 

considered; screening using supersaturated statistical experimental designs is preferable for situations with 

multiple responses27-28.  
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We believe that the choice of metamodeling method must take into consideration both computational 

time and metamodel accuracy because different aspects of metamodeling may be important in different 

circumstances. Our method involves creating metamodels based on both approximate and detailed 

(accurate) simulations and thus using information that is developed necessarily when creating the 

simulations; a preliminary report of our approach has appeared29. Osio and Amon30-31 also propose a 

multistage kriging method to sequentially update and improve model accuracy. This method is compared 

with our approach in greater detail in Section 2.4. Further, our approach is consistent with space mapping 

and provides an alternative method for aligning and enhancing a coarse model with a fine model.32-33. 

In general there is a trade-off between the accuracy of a surrogate model and the resources needed to 

build it.  If surrogate models are built with a reduced number of data points, they are generally less accurate 

than models built with a larger number of data points. If detailed, computationally expensive simulations 

are replaced with approximate simulations, many more data points can be obtained.  However, a surrogate 

model built with approximate information may produce biased results. A practical, alternative strategy is to 

run a large number of approximate simulations and a smaller number of detailed simulations and then 

combine the two sets of results to produce a final surrogate model. 

       In this paper, we develop a framework in which we can combine results from both detailed simulations 

and approximate simulations to create surrogate that are as accurate as possible, given the resources 

available.  Since the approximate simulations form the bulk of the data, they are used to build a model 

based on a Gaussian process that assumes a simple mean part with a flexible residual part.  The fitted 

model is then adjusted by incorporating information from the detailed simulations.  

             In Section 2, we briefly review our approach along with the procedure of Gaussian process 

modeling that is foundational to it. As an illustration, we apply this approach for designing linear cellular 

alloys in Section 3. Discussions and possible extensions of our approach are presented in Section 4. 

 

2.   BUILDING A SURROGATE MODEL BASED ON DETAILED AND APPROXIMATE 

SIMULATIONS 

       Integration of results from detailed simulations (DS) and approximate simulations (AS) is not a 

straightforward task because the two sets of results have significantly different distributional assumptions. 
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One possible way to combine the AS and DS data is to link them by a simple structure and then build a 

prediction model for DS directly. This one-step approach has one major disadvantage. Due to the paucity 

of the DS runs, the resulting surrogate model can be very imprecise and can lead to inaccurate predictions. 

To overcome this problem and create an accurate surrogate model, we propose a novel two-step approach 

based on Gaussian process modeling. In this work, we assume that the DS produces results that are in 

agreement with the results from the true process. Thus, we neglect the error in the DS results compared to 

the true process. This is a reasonable assumption in many computer experiments including the example in 

Section 3. Thus, the objective is to create a surrogate model that can produce predictions close to the DS 

results.         

      A generic diagram is presented for the new two-stage approach in Fig. 1. Stage 1 involves designing 

and generating computer experiments for detailed and approximate simulations. Key to the approach is 

Stage 2—a novel two-step modeling strategy. This sets our method apart from existing surrogate model 

building techniques. The basic idea is to use AS results to provide a base surrogate model and adjust the 

model by DS results.  The detailed description of these two steps will be given in Sections 2.3 and 2.4, 

respectively.  Stage 3 consists of the application part of the procedure. When a final surrogate model is 

available, various further investigations, such as optimization, sensitivity analysis, and calibration can be 

performed.  

 Fig. 1. Diagram of the proposed approach for combining detailed and approximate data into a surrogate model 
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The modeling part of the procedure consists of the following two steps: 

 (1) Fit a Gaussian process model using only AS data. 

 (2) Adjust the fitted model in step 1 with DS data. 

         Since AS results form the bulk of the data, AS results can be used to fit a smooth response surface in 

the first step.  In the second step, this fitted surface is adjusted by DS data, so that the resulting model is 

close to DS data. The detailed description of these two steps is given in Sections 2.2 through 2.4.  

 

2.1 Gaussian Process Modeling 

Gaussian process modeling (also referred to as a kriging model in spatial statistics and other fields) is 

widely used in computer experiments because of its many desirable properties34.  A brief introduction is 

given here. Suppose that the data consist of n vectors of input variable values denoted by 

tt
n

t ),,( 1 xxX K=  for d covariates and the corresponding response values 1( , , )t
ny y=y L . The Gaussian 

process model assumes the following structure: 

                                                  ,,,1),()()( niy ii
t

i K=+= xxfβx ε                                       (1) 

where  t
mff ))(,),(()( 1 xxxf K=  is a set of  pre-specified functions and t

m ),,( 1 ββ K=β   is a set 

of unknown coefficients. The  ε(x) is assumed to be a realization of a stationary Gaussian process with 

covariance  

                                 )].,(exp[),())(),(cov( 22
jijiji dR xxxxxx −== σσεε                    (2) 

              The correlation function ( ),i jR x x in Eq. (2) is a function of the “distance” between ix  and jx .  

If the “distance” is measured as a Euclidean distance, there will be a tendency to give the same weight to 

all variables and therefore the Euclidean distance cannot be used to distinguish different factor effects. To 

overcome this, the following flexible “weighted’’ distance function is adopted: 

                                                 
1

( , ) | | ,h

d

h

p
i j h ih jhd θ

=

= −∑x x x x                                        (3) 
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where 1( , , )dθ θ=θ L and 1( ), , dp p=p L in Eq. (3) are scale and power parameters, respectively. The 

Gaussian correlation is for the case dhph ,,1,2 K==  and its associated processes are infinitely 

differentiable in the mean square sense343. As a result, the Gaussian correlation is often adopted in the 

modeling35-36.  In the example given in Section 3, we will follow this convention. 

            In the general case, we observe 1( , , )t
ny y=y L and are interested in predicting Y at a new point 

*x .  The empirical best linear unbiased predictor (BLUP)34 is adopted to predict the value at an untried *x  

                                    ),ˆ(ˆ)(ˆ 1
*

* βFyrRβfx −+= −ty                                                   (4) 

where   t
nRR )),(,),,(( *

1
* xxxxr K= , )( *

* xff = , β̂   = (Ft  R-1  F)-1   Ft R-1 y, R is the ( )n n× matrix 

with entries ( , )i jR x x  for i, j = 1,…,n and   tt
n

t ))(,,)(( 1 xfxfF K=  matrix of It can be shown that 

ˆ ( )iy x equals iy . Thus, the BLUP smoothly interpolates all the observed data points. The predictor in 

Eq.(4) involves  unknown correlation parameters  θ that can be estimated by maximizing  

                                                          2
,

1
ˆ( ln( ) ln | |)

2
n σ− + R                                                 (5) 

where    
1

2
ˆ ˆ( ) ( )

ˆ
t

n
σ

−− −
=

y Fβ R y Fβ
.   In the example in Section 3, a version of quasi-Newton algorithm37 

, implemented in the optim function in R 38 , is used to solve the optimization problem in  Eq. (5).    The 

estimated r and R will be denoted as r̂  and R̂ . 

 

2.2 Modeling the Approximate Simulation Data 

       Using the Gaussian process modeling described in Section 2.1, we now develop an approach for 

building a surrogate model. We first build a surrogate model based on the approximate simulations only.  

This model is further refined later. Usually only a constant term (i.e., 0)( β=i
t xfβ in Eq. (1)) is used in 

the main part of the Gaussian process model36. However, in some circumstances it is reasonable to assume 

that the factors considered in the experiment have linear effects on the output39-40. By following this 

convention, we choose the model below for the output of the approximate simulation ay , 
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1

0 ( )( )
d

h
a a ah h ay xβ β ε

=

= + +∑ xx  (6) 

where 
1

0

d

h
a ah hxβ β

=

+ ∑  is the linear mean part and ( )aε x  is the residual part that is assumed to be a 

stationary Gaussian process with mean zero, variance 2
aσ  and correlation parameters aθ . Because a large 

number of AS runs are available, ( aβ , aθ , 2
aσ ) can usually be estimated accurately. The BLUP for ( *)ay x  

at an untried *x  is  

 1ˆ ˆˆˆˆ ( * ) ( ),t
a a a a a a a ay −= + −x f β r R y F β       (7) 

where af , âr , ˆ
aR and ˆ

aF are defined as in Section 2.1. Throughout the remaining part of this paper, we 

shall refer to the model in Eq. (7) as the base surrogate model. 

 

2.3 Adjustment Based on Detailed Simulation Data 

      Because approximate and detailed models typically differ by modeling assumptions, numerical solution 

methods, mesh resolutions, and other factors, the associated data values can be moderately or significantly 

different.  For the example analyzed in Section 3, when the same input values are used for the AS and DS, 

the worst-case difference between AS and DS results is on the order of 16% with respect to the DS value. 

Therefore the DS data can be used to adjust the base surrogate model. The accuracy of the adjusted model 

depends on the degree of difference between AS and DS results and the parametric relationship between 

the AS and DS results.  Because these are all computer experiments, the results are deterministic, and there 

is no experimental error to consider.  In this case, we simplify the adjustment procedure by modeling the 

adjustment terms conditioned on the value of ya. If dn AS runs share the same input values as dn   DS 

runs, a very simple adjustment can be done by using a location-scale adjustment, i.e., 

                  ( ) ( ) , 1, , .d i a i dy y i nρ δ= + =x x L           (8)                        

         However, some cases may also exhibit a non-linear discrepancy between AS and DS. As an extension 

of the above procedure, a more sophisticated adjustment can be obtained by making the following two 
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changes in Eq. (8): (a) substitute the constant ρ  with a linear regression function ( )ρ x , and (b) replace 

the constantδ  by a Gaussian process ( )δ x . These modifications lead to the following model: 

            

 ( ) ( ) ( ) ( ), 1, , ,d i i a i i dy y i nρ δ= + =x x x x L      (9) 

where 

                
1

0( )
d

j
i j ijxρ ρ ρ

=

= + ∑x       (10)  

is the linear regression function. Conditioning on ay , ( )δ x is assumed to be a stationary Gaussian process 

with mean 0δ , variance 2
δσ  and correlation parameters δθ . Thus, conditioning on 1( ( ), , ( ))

da a ny yx xK , 

the distribution of 1( ( ), , ( ))
d

t
d d d ny y=y x xL is normal and the log likelihood of dy , up to an additive 

constant, can be written as  

 

 
1

2
2

( ) ( )1
[ ln ln |

2 2
]

t
d d d d

dn δ
δ δ

δ

σ
σ

−− −
+ −−

y F α R y F α
R | ,  (11) 

 

where dF  is the regression matrix 
1 1 11 1 1

1
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d d d dn n n n d
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a a n a

y y x y x
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and ( )0 0 1, , , ,
t

dα δ ρ ρ ρ= L   is the collection of unknown parameters associated with the mean part in 

Eq. (9). The estimates α̂ and ˆ
δθ can be obtained by maximizing the function in Eq. (11).  The optimization 

procedure is very similar to the one described in Section 2.1, so its details are omitted.  

         For given values of ˆiρ ’s ( 0, , )i d= L , we can compute the values of 1( ( ), , ( ))
dnδ δ=δ x xL  by 

using  

            ˆ( ) ( ) ( ) ( ), 1, ,i d i i a i dy y i nδ ρ= − =x x x x L ,  (12) 

where   
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1

0ˆ ˆ ˆ( *) *
d

j
j jxρ ρ ρ

=

= + ∑x     (13) 

is the fitted regression function for the scale adjustment. 

          At an untried point *x , a BLUP predictor can be constructed as  

   1
0 0

ˆ ˆ ˆˆˆ( *) ( )δ δ δδ δ δ−= + −x r R δ F ,  (14) 

where δ̂r and ˆ
δR  are defined in Section 2.1, and 0δ̂  is obtained previously as part of α̂ . The predictor 

ˆ( *)δ x  in Eq. (14)  is used as a building block to establish the final surrogate model.  

 

2.4 Building and Evaluating the Final Surrogate Model 

      From the base surrogate model in Eq. (7) and the adjustments results in Eqs. (13) and (14), a simple 

plug-in method is used to establish the final surrogate model for an untried *x , 

 ),(ˆ)(ˆ)(ˆ)(ˆ **** xxxx δρ += ad yy   (15)                  

where ˆ ( *)ρ x  is the fitted scale adjustment term in Eq. (13), ˆ ( *)ay x  is the predicted value from the base 

surrogate model in Eq. (7), and ˆ( *)δ x is the fitted location adjustment term in Eq. (14). As mentioned in 

Section 2.1, the prediction from the base surrogate model is not very accurate. Because we have adjusted 

this model using detailed simulation data, the prediction from Eq. (15) will be closer to the output from the 

detailed simulations than the prediction from the base surrogate model (7). In addition, it can be shown that 

the final surrogate model, ˆ ( )dy ⋅  in Eq. (15) smoothly interpolates all the detailed simulation data.  This is 

another benefit of our two-step procedure.  If we are interested in making accurate predictions based on 

detailed simulations in some regions of specific interest, we can select a few more points in these regions 

and conduct the appropriate detailed simulations.  

In some situations, the multistage Bayesian approach proposed by Osio and Amon30 and Pacheco, 

Amon and Finger31 can be adapted to deal with approximate and detailed simulations data. In their 

approach, a kriging model is fit to the AS data. Then this model is used as the prior mean for modeling DS 

data. In comparison with our approach, the first stage modeling with AS data is exactly the same. The 

difference is in the second stage.  It is well known that a kriging predictor is pulled towards the prior mean 
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in regions where data are scarce. Thus in their approach, the final surrogate model will pass through the DS 

data due to the interpolating property, but it will be pulled towards the base surrogate model in regions 

where DS data are not available. This feature can lead to a rough final surrogate model, particularly when 

the DS is very different from the AS. In contrast, we only do a location and scale adjustment and therefore, 

the profile of the base surrogate model is approximately preserved. Our approach is more suitable when 

there are very few DS data points compared with AS data, a characteristic of our example.  

To illustrate our approach in the next section, we consider the design of a linear cellular material, 

which is used to dissipate heat from a microprocessor.  

 

3. DESIGNING LINEAR CELLULAR MATERIALS WITH THE SURROGATE MODEL 

BUILDING APPROACH 

 

      Consider the design of a heat exchanger for a representative electronic cooling application.  As 

illustrated in Fig. 2, the device is used to dissipate heat generated by a heat source such as a 

microprocessor.  The mechanism for heat dissipation is forced convection via air with entry temperature, 

Tin, in degrees Kelvin and total mass flow rate, m& , measured in kilograms per second.  Steady state, 

incompressible laminar flow is assumed.  The device is assumed to have fixed overall width (W), depth 

(D), and height (H) of 9, 25, and 17.4 millimeters, respectively.  It is insulated on the left, right, and bottom 

sides and is subjected to a heat source at constant temperature, Twall, in degrees Kelvin on the top face.   
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Fig. 2 Compact, forced convection heat exchanger with graded 
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rectangular linear cellular alloys 

 

The device is comprised of linear cellular material—ordered, metallic cellular material with extended 

prismatic cells.  These materials can be produced with nearly arbitrary two-dimensional topologies, 

metallic base materials, and wall thicknesses as small as 50 microns via a thermo-chemical extrusion 

fabrication process developed at Georgia Tech41.  Prismatic cellular materials have a combination of 

properties that make them especially suitable for many multifunctional applications, including actively 

cooled, lightweight structures4, 42-44.  Although cell topology and dimensions can be varied, the prismatic 

cellular material is composed exclusively of rectangular cells for this example.  There are four columns of 

cells with interior cell widths of 2 mm, and three rows of cells with interior cell heights of 10, 5, and 2 mm 

for the uppermost, middle, and lower rows of cells, respectively. The solid material in the walls of the 

prismatic cellular material is assumed to have thermal conductivity, k, in Watts per meter-Kelvin. 

The design objective is to maximize the total rate of steady state heat transfer achieved by the device. 

Some of the factors affecting this objective include the topology and dimensions of the cells and cell walls, 

the flow rate and temperature of the incoming air, the temperature of the heat source, and the thermal 

conductivity of the solid material in the walls of the device.  In other design activities, we have adjusted the 

dimensions of the device4;  here, we intend to explore the heat transfer rate as a function of the mass flow 

rate of entry air, m& , the temperature of entry air, inT , the temperature of the heat source, wallT , and the solid 

material thermal conductivity, k.   

To analyze the impact of these factors on heat transfer rates, we use two types of simulations—

computationally expensive FLUENT45 finite element simulations and relatively fast but more approximate 

finite difference simulations.  Details of the two approaches are available in the literature, but it is 

important to highlight their differences and their relative costs and benefits in terms of accuracy and 

computational time.  First, the models are based on different methods.  The finite difference approach, used 

here for approximate simulations (AS), is a numerical technique for solving two- or three-dimensional heat 

transfer problems46.  Finite difference models are based on difference equations that approximate 

continuous variables as quantities at discrete points or nodes on a grid 46.   FLUENT is a commercial 

software package for analyzing fluid flow and heat transfer problems with a computational fluid dynamics 
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(CFD) solver45. FLUENT models, used here as detailed simulations, are based on finite volume methods 

that approximate governing partial differential equations over a control volume and are more flexible than 

finite difference methods that require a structured mesh45. FLUENT models also account for details such as 

entry effects that are not modeled explicitly in the finite difference models.  Secondly, as described for the 

present example by Seepersad and coauthors4, the FLUENT grid is approximately four times denser than 

the finite difference grid for this example.† Finally, for examples similar to the present one, each FLUENT 

simulation requires two to three orders of magnitude more computing time than the corresponding finite 

difference simulation.  For example, on a 2.0 GHz Pentium 4 PC with 1 GB of RAM, the first data point in 

Table 2 requires approximately 1.75 hours of computing time for a FLUENT (DS) simulation versus 

approximately 2 seconds for the finite difference simulation, However, the FLUENT simulations are 

generally more accurate than the finite difference simulations by 10 to 15% or more.   

Our objective is to build a surrogate model that can be used in the design process and represents the 

functional relationship between design factors and the total rate of steady state heat transfer.  To build the 

surrogate model, we utilize results from both FLUENT and finite difference simulations. A large number of 

data points are generated using the finite difference simulation with fewer data points obtained from the 

FLUENT simulation. We show that even a limited amount of data from FLUENT simulations can be used 

to improve the accuracy of surrogate models based on approximate finite difference models alone.   

 

3.2 Generating Design Points for Detailed and Approximated Simulations 

        An orthogonal array-based Latin Hypercube design34 with a run size of 64 data points is used to 

determine the appropriate set of approximate (finite difference) simulations. The assumed ranges of design 

variables are shown in Table 1. The Latin Hypercube design has good space-filling properties.  This can be 

seen in Fig. 3 in which the four-variable design is projected onto spaces of two variables. For each pair of 

variables the data points are uniformly distributed in each of the 64 reference square bins.  Also, if we 

divided each bin in Fig. 3 into 8 equally spaced new bins with smaller size (64 new bins in each 

dimension), we find that each individual variable in each dimension has a nearly uniform distribution in 

                                                           
† Seepersad and coauthors4 describe the details of the finite difference and FLUENT models for this example, including grid 

sizes and boundary conditions. 
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these 64 bins. Among these 64 approximate simulation experiments, results for detailed simulations are 

generated for 22 of them. Sixteen of the twenty-two experiments are identified using a simulated annealing 

algorithm and a minimax distance criterion34.  The remaining six detailed simulation experiments are 

chosen with a roughly uniform distribution in the portion of the design space in which the value of air flow 

rate, m& , of entry air is small.  Background information suggests that there may be a special relationship 

between the detailed (FLUENT) results, yd, and the approximate (finite difference) results, ya, in this 

subregion.. The six additional points are added to explore this relationship.  The sample data and 

corresponding response values are listed in Table 2.  In this table, the results for the 64 approximate 

experiments are shown in the ya column, and the 22 detailed simulation experiments are listed in the yd 

column.  It is clear from Table 1 that the four input variables have very different scales. These variables are 

standardized (subtracting their means and multiplying by the reciprocal of their standard deviations) before 

the analysis.  

 

 

Table 1. Assumed ranges for design variables values 
 

 Design Variables 
 m& (kg/s) inT (K) k (W/mK) 

 
wallT (K) 

 
Lower 
Bound 

0.00055 270.00 202.4 330 

Upper 
Bound 

0.001 303.15 360.0 400 
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Fig. 3. 64 points of an orthogonal array-based Latin Hypercube sample.  In each plot, there is one point in each of 
the square bins bounded by dashed lines. 

 
 
 
 

 

Table 2. Sample data for approximate and detailed simulations 

 Design variables Responses 

 1 2 3 4 5 6

Run m& (kg/s) inT (K) k (W/mK) wallT (K) ay  dy  

1 0.000552 293.53 318.63 388.29 25.61 23.54
2 0.000557 290.18 298.27 377.49 23.24
3 0.000566 285.77 266.71 367.27 21.23 20.15
4 0.000578 302.17 358.13 343.72 11.44 10.17
5 0.000580 272.26 211.71 333.65 15.03 15.29
6 0.000589 278.16 225.78 351.83 18.55 18.39
7 0.000594 279.54 258.51 360.13 20.74 20.52
8 0.000603 296.75 323.15 399.45 28.40
9 0.000612 280.83 291.53 394.72 30.22 30.12
10 0.000615 300.28 270.74 335.79 9.53
11 0.000626 284.89 350.46 352.29 18.13 18.17
12 0.000627 287.60 243.96 382.54 25.02 24.68
13 0.000639 270.45 241.21 341.81 17.92 19.05
14 0.000643 276.17 216.99 371.60 24.20 24.96
15 0.000652 298.04 303.96 361.58 17.47 16.95
16 0.000657 294.24 330.63 375.53 22.48 22.3
17 0.000669 296.33 343.16 385.81 25.07
18 0.000670 303.07 321.41 370.48 18.93
19 0.000683 287.05 227.31 358.24 18.61
20 0.000689 272.70 260.91 355.37 21.31
21 0.000694 278.35 212.79 376.24 25.11
22 0.000698 277.52 299.39 338.40 16.02
23 0.000711 292.26 273.31 392.54 27.47
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24 0.000714 283.08 306.69 344.34 16.43
25 0.000722 276.53 353.75 374.41 26.50
26 0.000730 285.51 217.74 383.92 25.88
27 0.000738 295.01 295.02 347.22 14.37
28 0.000741 270.95 275.19 356.87 22.36
29 0.000751 287.99 326.02 354.08 18.17 19.57
30 0.000757 300.64 235.03 391.68 14.37
31 0.000763 292.82 254.84 373.38 21.96 23.33
32 0.000772 278.93 301.75 331.55 14.02
33 0.000782 299.86 317.84 348.41 13.68
34 0.000786 275.51 247.29 340.19 16.82
35 0.000791 271.64 284.88 365.09 25.06
36 0.000800 291.42 341.48 358.59 18.83
37 0.000803 281.47 232.64 389.46 28.69
38 0.000814 286.39 339.92 332.40 12.68 14.36
39 0.000823 288.53 207.55 393.49 27.96
40 0.000828 297.33 280.13 379.86 23.17
41 0.000836 289.62 347.65 335.44 12.79
42 0.000842 294.39 203.45 346.05 13.75 15.12
43 0.000851 273.71 315.27 381.14 29.08 34.8
44 0.000857 282.12 262.30 350.10 18.25 21.31
45 0.000865 274.35 335.16 362.30 23.89
46 0.000870 295.76 237.65 366.25 19.36
47 0.000874 282.50 253.25 396.36 30.90 36.11
48 0.000882 299.22 288.45 385.07 24.45 27.36
49 0.000891 273.43 336.04 386.95 31.05
50 0.000901 302.02 249.57 382.33 22.64
51 0.000903 284.25 290.90 364.99 22.22 25.37
52 0.000911 280.17 355.34 370.03 25.03
53 0.000920 276.89 310.73 397.78 33.27
54 0.000929 298.65 205.40 349.02 13.67
55 0.000934 288.86 265.53 339.54 13.89
56 0.000943 292.77 231.01 330.19 10.16
57 0.000947 283.62 222.95 378.66 25.48
58 0.000956 290.33 312.97 368.96 22.22
59 0.000964 271.23 348.00 398.52 35.05
60 0.000968 297.80 244.50 337.41 10.99
61 0.000979 291.21 283.10 353.60 17.45
62 0.000985 301.50 220.37 363.20 17.14
63 0.000987 281.11 329.45 342.32 16.95
64 0.000996 275.01 278.27 390.35 31.35

 

 

 

3.3 Building a Base Surrogate Model 

     The first step is to build a surrogate model using the approximate simulation results only. Based on 

background knowledge of the physics of this problem, we know that there should be a significant linear 

component in the relationship between the response and the four factors.  As a result, a linear structure is 

included when modeling the mean part of the Gaussian process in Eq. (9). As described in Section 2, the 

maximum likelihood method is used for estimation. Table 3 lists the linear main effects ˆ
aiβ  for i = 1,…,4 

(corresponding to m& , Tin, k, and Twall, respectively) with their  p-values for the t-test for i = 1,…,4 and 2ˆaσ  .  

The linear main effects for inT and wallT  are relatively large, -2.77 and 5.450, respectively and their p-

values are quite small, 1.59e-08 and 1.543e-22, respectively; therefore inT and wallT  are the two most 



- Page 18 -  

significant factors. The values of 2
ˆ
aβ and 4

ˆ
aβ have different signs, implying that inT and wallT  have 

opposite effects on the response. This agrees with the known physics of the problem, i.e., a decrease in inT  

or an increase in wallT  causes an increase in the total rate of steady state heat transfer.   As shown in Table 

3, the p-values for 1
ˆ
aβ  and 3

ˆ
aβ are quite large. Therefore, m& and k do not have significant linear main 

effects on the response in this region of the design space.   

Table 3. Results of estimation  
      

               The maximum likelihood estimators for the correlation parameters ˆ
aθ are (1.1780, 0.904, 0.300, 

and 0.01). These values are quite different from each other; therefore different factors affect the correlation 

of two close points in different scales.   Among them, the correlation parameters for m&  and inT  are 

relatively high.  The responses of two points, even if there is a small distance between them in the m& -

dimension or the inT -dimension, may still have a low correlation.  Note that m&  does not have a significant 

linear main effect but has a large value for its correlation parameter. This implies that the relationship 

between m&  and the response is nonlinear. This observation may aid our understanding of its physical 

relationship.  

       The data used to build the base surrogate model cannot be used to assess the fit of the model, because 

the Gaussian process model interpolates the training data.  Therefore, we generate a testing set of 14 AS 

runs and compare the prediction results using the base surrogate model and the observed values of these 14 

runs. The data is also used to validate the final surrogate model, so a detailed description of these runs is 

deferred to Section 3.5. Columns aŷ and ay in Table 4 of Section 3.5 give the values of predictions and the 

responses from the approximate simulations. The root-mean-square-errors (RMSE) for these 14 runs are 

 
0

ˆ
aβ

 1
ˆ

aβ :  

main effect of m&  

2
ˆ

aβ :  

main effect of inT  

3
ˆ

aβ :  

main effect of k  

4
ˆ

aβ :  

main effect of wallT  

2ˆ aσ  

Values 20.606 0.409 -2.77 0.673 5.450 3.352 
P-

values 
 0.449 1.59e-08 0.106 1.543e-22  
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only 2.588. This is relatively small, since the mean of the values of ay  is 21.499 and the range (max-min) 

is 29.54. Thus, the base surrogate we constructed for ay is a decent proxy. 

The basic surrogate model is consistent with our background knowledge of the physics of the problem.    

In general, one would expect the mass flowrate, m& , the temperature of the heat source, wallT , and the 

thermal conductivity of the material, k, to have positive linear main effects on the total rate of steady state 

heat transfer; on the other hand, inT  should have a negative linear main effect.  The signs of the linear main 

effects in Table 3 correspond to our expectations.  Also, one would expect the temperatures, inT and wallT , 

to have more significant linear main effects on the response than the mass flowrate, m& , or the thermal 

conductivity, k—two factors that have much more complex relationships with the response via the 

Reynold’s number and the temperature gradients throughout the structure, respectively.  Their linear main 

effects are dominated in this region of the design space by the strong linear relationship between the 

temperatures and the response.  However, we might expect them to have significant nonlinear relationships 

with the response, and we observe this for the mass flowrate, m& . 

 

3.4 Using Detailed Simulation Data to Adjust the Base Surrogate Model  

      Both dy and ay are generated for 22 factor level combinations. Fig. 4 presents a plot of dy vs. ay  for 

these 44 experiments. It is clear that the detailed simulation and the approximate simulation values are 

quite different. Some detailed simulation values are higher than approximate simulation values, while some 

are lower.  This demonstrates the need for modeling ( )ρ x as a function of x in Eq. (13).  



- Page 20 -  

15 20 25 30

10
15

20
25

30
35

yd vs. ya

ya

y d
yd = ya

 

Fig. 4 dy vs. ay  for the same design values, where the straight line is d ay y=  

 

       Next we use the more accurate detailed simulation output, ( )d iy x , to adjust the fitted model 

of ( )a iy x , as described in Section 2.4.  Overall, we have a good fit for the adjusted model as 2ˆδσ  has a 

small value of 0.00515.  For the scale adjustment term ρ(x) the parameter estimates are 

0 1 2 3 4ˆ ˆ ˆ ˆ ˆ( , , , , )ρ ρ ρ ρ ρ =  (1.130, 0.090, -0.032, 0.004, -0.012). Among these estimates, the coefficients for 

m& and inT are relatively large with significant p-values of 2.165e-23 and 3.839e-13. For the location 

adjustment term ( )δ x , the results are 0
ˆ 0.690δ = − with the p-value 0.0102 and ˆ

δθ = (0.173, 0.176, 0.01, 

3.66). In Fig. 5, plots of δ̂  vs. different pairs of variables are plotted.  In each plot, a 40 by 40 equally-

spaced grid is chosen for the two variables used for plotting and the values of the other two remaining 

variables are fixed at their mean values.   
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                                                                           Fig. 5 δ̂  for different pairs of factors                  

          Finally, for a new input *x  we can create the final surrogate model: 

          ),(ˆ)(ˆ)(ˆ)(ˆ **** xxxx δρ += ad yy     (16) 

where 1 2 3 4ˆ ( *) 1.130 0.090 * 0.032 * 0.004 * 0.012 * .x x x xρ = + − + −x  ˆ ( )ay ⋅ is the BLUP of ( )ay ⋅ as 

described  in Eq. (7) and ˆ( )δ ⋅  is the  BLUP  of ( )δ ⋅  in Eq. (14) . 

  

3.5 Validation of the Final Surrogate Model 

        In order to test and validate the method, 14 additional experiments are performed. These 14 runs 

are chosen at random in a space slightly larger than the original design space. For each experimental 

point, both detailed and approximate simulations are performed.  Table 4 lists the factor levels for 
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these experiments, the ya and yd values, the predicted ˆdy  obtained using Eq. (16) and the predicted ˆay  

obtained using Eq. (7) and the results presented in Section 3.3. 

Table 4.  Additional simulations for validation 

  Run  m& (kg/s) inT (K) k (W/mK) wallT (K) dy    
1ˆdy 2ˆdy ˆay  ay  

1 0.00050 293.15 362.73 393.15 25.82 23.85 24.09 26.96 27.24 
2 0.00055 315 310 365 7.48 10.31 11.19 12.44 7.02 
3 0.00056 277.01 354.98 374 19.77 26.02 24.99 26.38 25.53 
4 0.00062 275 225 340 18.78 16.64 16.72 16.14 16.40 
5 0.00068 313.28 259.12 350 4.55 6.44 9.04 7.32 10.23 
6 0.00070 288.15 300 400 34.45 31.93 31.83 30.97 30.90 
7 0.00078 292.73 267.84 369 21.97 23.70 22.49 22.01 20.92 
8 0.00080 303.15 250 350 14.83 6.34 13.42 6.45 13.08 
9 0.00085 270 325 385 32.85 37.88 37.32 31.34 31.14 
10 0.00085 301.31 317.85 341 11.92 12.99 12.64 11.94 11.30 
11 0.00091 248.87 206.74 398 47.05 51.77 47.04 39.63 36.56 
12 0.00094 271.32 362.73 400 42.93 44.97 43.51 35.63 35.53 
13 0.00095 280 270 330 17.41 16.82 17.54 13.51 13.54 
14 0.00100 293.15 202.4 373.15 22.89 25.74 26.88 21.1 21.60 

                   

       Root-mean-square-errors (RMSE) are computed to assess prediction performance. Here we present 

three different comparisons.  The first is a comparison between predictions with the final surrogate model 

in Eq. (15) and detailed simulation data. The second is a comparison between predictions using the base 

surrogate model in Eq. (7) and the detailed simulation data, and the third is a comparison between 

approximate and detailed simulation data.   

14
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1
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14
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      The proposed method provides a significant improvement in terms of prediction accuracy. The RMSE 

between ˆdy  and dy  is 3.795, which is 14% smaller than the RMSE (4.430) between ay  and dy , and 17% 

smaller than the RMSE (4.595) between ˆay  and dy given in Table 2. The difference between these 

RMSE’s is statistically significant. Fig. 5 shows the nonlinear nature of the location adjustment in our 

procedure. The flexible scale-location adjustment is capable of refining the base surrogate model and 

obtaining a more accurate surrogate model.  To get a sense of the relative size of the RMSE between  ˆdy  

and dy (3.795),  we calculated the mean of 14 DS runs (23.05) and  their range (42.5). The  RMSE is only  

16% of the mean value and 8.9% of the range and thus is small for this case. 

        At this point, it is important to determine whether the improvement in prediction accuracy realized 

with the proposed method justifies the computational expense of building the final surrogate model.  

Whereas the RMSE of the base surrogate model, ˆay , is 17% larger than the RMSE of the final surrogate 

model, ˆdy , the cost of building the base surrogate model is essentially negligible compared with the cost 

of building the final surrogate model, requiring minutes versus days of computing time to obtain the 

approximate and detailed experimental data reported in Table 2.  Based on this comparison, a designer may 

conclude that the improvement in prediction accuracy is not sufficient to justify the increased 

computational expense of the proposed method.  However, the comparison is misleading.  In typical 

engineering applications, a designer would not rely exclusively on data from an uncalibrated approximate 

model.  Because the accuracy of an approximate model is not known a priori in an engineering application, 

data from detailed simulations or physical experiments are typically conducted throughout the region of 

interest for validation and calibration.  If a number of detailed experiments are conducted anyway, the 

proposed method is both effective and efficient.  By gathering only a few additional detailed simulation 

data points (beyond the number typically required for validating the approximate model) and by 

strategically choosing their locations, it is possible to assess the accuracy of an approximate model and 

reduce its predication error using the proposed method.   

 
3.6 Maximize the Total Rate of Steady State Heat Transfer 
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        Note that one of the design objectives is to maximize the total heat transfer rate.  The ranges of design 

variables are listed in Table 1.  Table 5 contains the maximization results of ˆ ( )dy x  over the ranges. All the 

optimal values of four design variables are attained at the boundaries of the ranges. These results are not 

surprising.  For this problem we know that as m& increases, inT decreases, k  increases, or wallT increases, 

the heat transfer rate increases.  The maximum value of ˆ ( )dy x , 46.93, is larger than the dy values given in 

Tables 2 and 4, except for run 11 in Table 4. This outcome can be explained by noting that the design 

variable values in Table 5 that maximize heat transfer are not identical to any of the experiments in Tables 

2 and 4.   

 

Table 5. Maximizing ˆ ( )dy x  over the acceptable ranges  
 

m& (kg/s) inT (K) k (W/mK) 
 

wallT (K) 
 

ˆ ( )dy x  

0.001 270.00 360.0 400 
 

46.93 

           

 

4 Closure    

             In summary, we have presented an approach for building surrogate models based on data from both 

detailed and approximate simulations.  From a design perspective, surrogate models reduce the 

computational cost of exploring large regions of the design space by replacing repeated detailed 

simulations.  However, there can be a substantial computational cost involved in using data from detailed 

simulations to build surrogate models.  Using the approach presented in this paper, it is possible to improve 

the accuracy of surrogate models obtained from approximate simulations by supplementing the data from 

the approximate simulations with relatively few data points from more computationally expensive detailed 

simulations. Thus, it is possible to explore a design space with improved or enhanced surrogate models that 

are more accurate that surrogate models based entirely on approximate simulations but less 

computationally expensive than surrogate models based exclusively on detailed simulations. 
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An advantage of our method is that surrogate models can be modified adaptively when new simulation 

results are available. Updating surrogate models requires negligible computational cost because it only 

involves refitting the model with both old and new data. Therefore it is relatively convenient to improve an 

existing surrogate model to a desired level of accuracy, if more accurate predictions are required. 

         The approach is broadly applicable to examples and phenomena from structural, electrical, financial, 

and other domains.  The models usually correspond to different physics-based models or approximations of 

a problem (e.g., Euler Equations vs. Navier-Stokes, etc.). The primary assumptions are that multiple 

models or data sources are available and that one model or data source is generally more accurate than the 

other(s).  The method is presented currently to integrate simulation models at only two levels, namely, 

detailed and approximate. Work is in progress to extend the method for more than two levels of models or 

data sources.  
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