BUILDING SURROGATE MODELS BASED ON
DETAILED AND APPROXIMATE SIMULATIONS

Zhiguang Qian*, Carolyn Conner Seepersad***, V. Roshan Joseph *,
Janet K. Allen **, and C.F. Jeff Wu *

*The School of Industrial and Systems Engineering and
**The Systems Realization Laboratory, The George W. Woodruff School of Mechanical
Engineering
Georgia Institute of Technology, Atlanta, GA 30332
***Mechanical Engineering Department, The University of Texas at Austin, Austin, TX 78750

ABSTRACT

Preliminary design of a complex system often involves exploring a broad design space. This may
require repeated use of computationally expensive simulations. To ease the computational burden,
surrogate models are built to provide rapid approximations of more expensive models. However, the
surrogate models themselves are often expensive to build because they are based on repeated experiments
with computationally expensive simulations. An alternative approach is to replace the detailed simulations
with simplified approximate simulations, thereby sacrificing accuracy for reduced computational time.
Naturally, surrogate models built from these approximate simulations are also imprecise. A strategy is
needed for improving the precision of surrogate models based on approximate simulations without
significantly increasing computational time. In this paper, a new approach is taken to integrate data from
approximate and detailed simulations to build a surrogate model that describes the relationship between

* Professor and Corresponding Author
Phone: (404)385-4262; Fax: (404)894-2301; Email: jeffwu@isye.gatech.edu
output and input parameters. Experimental results from approximate simulations form the bulk of the data, and they are used to build a model based on a Gaussian process. The fitted model is then “adjusted” by incorporating a small amount of data from detailed simulations to obtain a more accurate prediction model.

The effectiveness of this approach is demonstrated with a design example involving cellular materials for an electronics cooling application. The emphasis is on the method and not on the results per se.

NOMENCLATURE

\(D \) Fixed overall depth of heat exchanger
\(H \) Fixed overall height of heat exchanger
\(k \) Thermal conductivity of the solid material
\(\dot{m} \) Total mass flow rate of cooling fluid
\(n \) Number of sample points
\(n_a \) Number of sample points for approximate simulations
\(n_d \) Number of sample points for detailed simulations
\(p \) Power parameters for a correlation function
\(\dot{Q} \) Total rate of steady state heat transfer
\(R \) Correlation matrix
\(R_a \) Correlation matrix for an approximate simulation
\(R_\delta \) Correlation matrix for \(\delta(x) \)
\(R(x,x') \) Correlation between points \(x \) and \(x' \)
\(T_{in} \) Inlet temperature of the cooling fluid
\(T_{wall} \) Temperature of the heat source
\(W \) Fixed overall width of the heat exchanger
\(x_i \) Input variable \(i \)
\(y(x) \) Output of a computer simulation at input value \(x \)
\(y_a(x) \) Output of an approximate simulation at input value \(x \)
Output of a detailed simulation at input value x

$\delta = y_d - \rho(x)y_a$

β Coefficients of mean function

β_a Coefficients of mean function for $y_a(x)$

δ_0 Constant mean function of $\delta(x)$

$\rho(x)$ Scale adjustment term

ρ_1 Linear coefficients for $\rho(x)$

σ^2 Variance of a stationary Gaussian process

σ^2_a Variance of $y_a(x)$

θ Scale correlation parameters

θ_a Scale correlation parameters of $y_a(x)$

θ_δ Scale correlation parameters of $\delta(x)$

KEYWORDS: Surrogate models, metamodels, conceptual design

1. **FRAME OF REFERENCE**

Preliminary design of a complex system often involves exploring a broad design space or region of design variable values. Many detailed analysis programs are available for use in the latter stages of design, but they can be extremely expensive for exploring broad regions. One solution has been to simplify the simulations and obtain data from more approximate simulations. For these approximate simulations, accuracy is sacrificed to reduce computational time. However, when it is desirable to explore a large design space that includes broad ranges of design variables, repeated approximate simulations still generate substantial computational loads.

Another approach is to create surrogate models to replace individual simulations. These surrogate models have been used widely in design. Computer experiments in which the design variables cover a
carefully chosen range of values are used to create the surrogate models. Values of the design variables are chosen in specific patterns called experimental designs1,2 and performance is simulated at these points. The responses and input values are combined statistically to create functional relationships between input variables and performance; these functional relationships are the surrogate models. The surrogate models can be used for robust design3 or linked to optimization routines, or they can serve as a bridge for integration across multiple functions4 or across different levels of abstraction5.

Familiar methods for creating surrogate models include response surface modeling6 and kriging7,9, and an example of their use in design is presented by Chen and coauthors3. However a wide variety of techniques are available10. In addition to the choice of the metamodeling method, the accuracy of a surrogate model is determined by the experimental design used to select data points, the size of the design space or range of explored values of design variables, the accuracy of the simulation at each data point and the numbers of data points available to compute the surrogate model10.

In the last decade, methods for improving the accuracy and computational efficiency of metamodeling procedures have been actively studied. One approach has been to successively reduce the design space, thus simultaneously reducing the extent of the approximation of the metamodels. There are several ways to accomplish this, including the use of trust regions,11-14 heuristics,15 move limits,16 and an adaptive response surface method in which the design space is systematically reduced by discarding regions with large objective function values at each modeling-optimization iteration17-18. Entropy maximization has also been studied.19-20 Wang and Simpson21 propose an intuitive metamodeling method based on hierarchical fuzzy clustering which helps a designer reduce metamodels to regions of interest to a designer.

Another way of reducing the design space is by reducing its dimensionality22. Typically, the design space is screened to identify and remove design variables that are less important. However, it can be difficult to obtain substantial reductions of dimensionality for large-scale problems23. Super-efficient screening methods for removing less important design variables are also available. Both group-screening24 and sequential bifurcation25-26 must be applied cautiously for designs in which multiple responses are considered; screening using supersaturated statistical experimental designs is preferable for situations with multiple responses27-28.
We believe that the choice of metamodeling method must take into consideration both computational time and metamodel accuracy because different aspects of metamodeling may be important in different circumstances. Our method involves creating metamodels based on both approximate and detailed (accurate) simulations and thus using information that is developed necessarily when creating the simulations; a preliminary report of our approach has appeared29. Osio and Amon30,31 also propose a multistage kriging method to sequentially update and improve model accuracy. This method is compared with our approach in greater detail in Section 2.4. Further, our approach is consistent with space mapping and provides an alternative method for aligning and enhancing a coarse model with a fine model32-33.

In general there is a trade-off between the accuracy of a surrogate model and the resources needed to build it. If surrogate models are built with a reduced number of data points, they are generally less accurate than models built with a larger number of data points. If detailed, computationally expensive simulations are replaced with approximate simulations, many more data points can be obtained. However, a surrogate model built with approximate information may produce biased results. A practical, alternative strategy is to run a large number of approximate simulations and a smaller number of detailed simulations and then combine the two sets of results to produce a final surrogate model.

In this paper, we develop a framework in which we can combine results from both detailed simulations and approximate simulations to create surrogate that are as accurate as possible, given the resources available. Since the approximate simulations form the bulk of the data, they are used to build a model based on a Gaussian process that assumes a simple mean part with a flexible residual part. The fitted model is then adjusted by incorporating information from the detailed simulations.

In Section 2, we briefly review our approach along with the procedure of Gaussian process modeling that is foundational to it. As an illustration, we apply this approach for designing linear cellular alloys in Section 3. Discussions and possible extensions of our approach are presented in Section 4.

2. BUILDING A SURROGATE MODEL BASED ON DETAILED AND APPROXIMATE SIMULATIONS

Integration of results from detailed simulations (DS) and approximate simulations (AS) is not a straightforward task because the two sets of results have significantly different distributional assumptions.
One possible way to combine the AS and DS data is to link them by a simple structure and then build a prediction model for DS directly. This one-step approach has one major disadvantage. Due to the paucity of the DS runs, the resulting surrogate model can be very imprecise and can lead to inaccurate predictions. To overcome this problem and create an accurate surrogate model, we propose a novel two-step approach based on Gaussian process modeling. In this work, we assume that the DS produces results that are in agreement with the results from the true process. Thus, we neglect the error in the DS results compared to the true process. This is a reasonable assumption in many computer experiments including the example in Section 3. Thus, the objective is to create a surrogate model that can produce predictions close to the DS results.

A generic diagram is presented for the new two-stage approach in Fig. 1. Stage 1 involves designing and generating computer experiments for detailed and approximate simulations. Key to the approach is Stage 2—a novel two-step modeling strategy. This sets our method apart from existing surrogate model building techniques. The basic idea is to use AS results to provide a base surrogate model and adjust the model by DS results. The detailed description of these two steps will be given in Sections 2.3 and 2.4, respectively. Stage 3 consists of the application part of the procedure. When a final surrogate model is available, various further investigations, such as optimization, sensitivity analysis, and calibration can be performed.

![Fig. 1. Diagram of the proposed approach for combining detailed and approximate data into a surrogate model](image-url)
The modeling part of the procedure consists of the following two steps:

(1) Fit a Gaussian process model using only AS data.

(2) Adjust the fitted model in step 1 with DS data.

Since AS results form the bulk of the data, AS results can be used to fit a smooth response surface in the first step. In the second step, this fitted surface is adjusted by DS data, so that the resulting model is close to DS data. The detailed description of these two steps is given in Sections 2.2 through 2.4.

2.1 Gaussian Process Modeling

Gaussian process modeling (also referred to as a kriging model in spatial statistics and other fields) is widely used in computer experiments because of its many desirable properties. A brief introduction is given here. Suppose that the data consist of \(n \) vectors of input variable values denoted by \(X = (x_1, \ldots, x_n) \) for \(d \) covariates and the corresponding response values \(y = (y_1, \ldots, y_n) \). The Gaussian process model assumes the following structure:

\[
y(x_i) = \beta^T f(x_i) + \epsilon(x_i), \quad i = 1, \ldots, n,
\]

where \(f(x) = (f(x_1), \ldots, f(x_m)) \) is a set of pre-specified functions and \(\beta = (\beta_1, \ldots, \beta_m) \) is a set of unknown coefficients. The \(\epsilon(x) \) is assumed to be a realization of a stationary Gaussian process with covariance

\[
\text{cov}(\epsilon(x_i), \epsilon(x_j)) = \sigma^2 R(x_i, x_j) = \sigma^2 \exp[-d(x_i, x_j)].
\]

The correlation function \(R(x_i, x_j) \) in Eq. (2) is a function of the “distance” between \(x_i \) and \(x_j \). If the “distance” is measured as a Euclidean distance, there will be a tendency to give the same weight to all variables and therefore the Euclidean distance cannot be used to distinguish different factor effects. To overcome this, the following flexible “weighted” distance function is adopted:

\[
d(x_i, x_j) = \sum_{h=1}^{d} \theta_h | x_{ih} - x_{jh} |^{\nu_h},
\]
where $\theta = (\theta_1, \cdots, \theta_d)$ and $p = (p_1, \cdots, p_d)$ in Eq. (3) are scale and power parameters, respectively. The Gaussian correlation is for the case $p_h = 2$, $h = 1, \ldots, d$ and its associated processes are infinitely differentiable in the mean square sense343. As a result, the Gaussian correlation is often adopted in the modeling35-36. In the example given in Section 3, we will follow this convention.

In the general case, we observe $y = (y_1, \cdots, y_n)'$ and are interested in predicting Y at a new point x^*. The empirical best linear unbiased predictor (BLUP)34 is adopted to predict the value at an untried x^*

$$\hat{y}(x^*) = f.\hat{\beta} + rR^{-1}(y - F\hat{\beta})$$ \hspace{1cm} (4)

where $R = (R(x^*, x_1), \ldots, R(x^*, x_n))'$, $f. = f(x^*)$, $\hat{\beta} = (F' R^{-1} F)^{-1} F' R^{-1} y$, R is the $(n \times n)$ matrix with entries $R(x_i, x_j)$ for $i, j = 1, \ldots, n$ and $F = (f(x_1)', \ldots, f(x_n)')'$ matrix of It can be shown that $\hat{y}(x_i)$ equals y_i. Thus, the BLUP smoothly interpolates all the observed data points. The predictor in Eq.(4) involves unknown correlation parameters θ that can be estimated by maximizing

$$-\frac{1}{2}(n \ln(\sigma^2) + \ln |R|)$$ \hspace{1cm} (5)

where $\sigma^2 = \frac{(y - F\hat{\beta})' R^{-1} (y - F\hat{\beta})}{n}$. In the example in Section 3, a version of quasi-Newton algorithm37, implemented in the optim function in R38, is used to solve the optimization problem in Eq. (5). The estimated r and R will be denoted as \hat{r} and \hat{R}.

2.2 Modeling the Approximate Simulation Data

Using the Gaussian process modeling described in Section 2.1, we now develop an approach for building a surrogate model. We first build a surrogate model based on the approximate simulations only. This model is further refined later. Usually only a constant term (i.e., $\beta'f(x_i) = \beta_0$ in Eq. (1)) is used in the main part of the Gaussian process model36. However, in some circumstances it is reasonable to assume that the factors considered in the experiment have linear effects on the output39-40. By following this convention, we choose the model below for the output of the approximate simulation y_a.
\[y_a(x) = \beta_a^0 + \sum_{k=1}^{d} \beta_{a_k} x_k + \varepsilon_a(x) \quad (6) \]

where \(\beta_a^0 + \sum_{k=1}^{d} \beta_{a_k} x_k \) is the linear mean part and \(\varepsilon_a(x) \) is the residual part that is assumed to be a stationary Gaussian process with mean zero, variance \(\sigma_a^2 \) and correlation parameters \(\theta_a \). Because a large number of AS runs are available, \((\beta_a, \theta_a, \sigma_a^2)\) can usually be estimated accurately. The BLUP for \(y_a(x^*) \) at an untried \(x^* \) is

\[\hat{y}_a(x^*) = f_a \hat{\beta}_a + \hat{r}_a \hat{R}_a^{-1} (y_a - F_a \hat{\beta}_a), \quad (7) \]

where \(f_a, \hat{r}_a, \hat{R}_a \) and \(\hat{F}_a \) are defined as in Section 2.1. Throughout the remaining part of this paper, we shall refer to the model in Eq. (7) as the base surrogate model.

2.3 Adjustment Based on Detailed Simulation Data

Because approximate and detailed models typically differ by modeling assumptions, numerical solution methods, mesh resolutions, and other factors, the associated data values can be moderately or significantly different. For the example analyzed in Section 3, when the same input values are used for the AS and DS, the worst-case difference between AS and DS results is on the order of 16% with respect to the DS value. Therefore the DS data can be used to adjust the base surrogate model. The accuracy of the adjusted model depends on the degree of difference between AS and DS results and the parametric relationship between the AS and DS results. Because these are all computer experiments, the results are deterministic, and there is no experimental error to consider. In this case, we simplify the adjustment procedure by modeling the adjustment terms conditioned on the value of \(y_a \). If \(n_d \) AS runs share the same input values as \(n_d \) DS runs, a very simple adjustment can be done by using a location-scale adjustment, i.e.,

\[y_a(x_i) = \rho y_a(x_i) + \delta, i = 1, \ldots, n_d. \quad (8) \]

However, some cases may also exhibit a non-linear discrepancy between AS and DS. As an extension of the above procedure, a more sophisticated adjustment can be obtained by making the following two
changes in Eq. (8): (a) substitute the constant ρ with a linear regression function $\rho(x)$, and (b) replace the constant δ by a Gaussian process $\delta(x)$. These modifications lead to the following model:

$$y_d(x_i) = \rho(x_i)y_a(x_i) + \delta(x_i), \quad i = 1, \ldots, n_d,$$

where

$$\rho(x_i) = \rho_0 + \sum_{j=1}^d \rho_j x_{ij}$$

is the linear regression function. Conditioning on y_a, $\delta(x)$ is assumed to be a stationary Gaussian process with mean δ_0, variance σ^2_{δ} and correlation parameters θ_{δ}. Thus, conditioning on $(y_a(x_1), \ldots, y_a(x_{n_a}))$, the distribution of $y_d = (y_d(x_1), \ldots, y_d(x_{n_d}))^T$ is normal and the log likelihood of y_d, up to an additive constant, can be written as

$$-\frac{1}{2} [n_d \ln \sigma^2_{\delta} + \ln |R_{\delta}| - \frac{(y_d - F_d \alpha)^T R^{-1}_{\delta}(y_d - F_d \alpha)}{2\sigma^2_{\delta}}],$$

where F_d is the regression matrix

$$
\begin{pmatrix}
1, & y_a(x_1), & y_a(x_1)x_{11}, & \ldots, & y_a(x_1)x_{1d} \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
1, & y_a(x_{n_a}), & y_a(x_{n_a})x_{n_a1}, & \ldots, & y_a(x_{n_a})x_{n_ad}
\end{pmatrix}
$$

and $\alpha = (\delta_0, \rho_0, \rho_1, \ldots, \rho_d)^T$ is the collection of unknown parameters associated with the mean part in Eq. (9). The estimates $\hat{\alpha}$ and $\hat{\theta}_{\delta}$ can be obtained by maximizing the function in Eq. (11). The optimization procedure is very similar to the one described in Section 2.1, so its details are omitted.

For given values of $\hat{\rho}_i$'s ($i = 0, \ldots, d$), we can compute the values of $\delta = (\delta(x_1), \ldots, \delta(x_{n_a}))$ by using

$$\delta(x_i) = y_d(x_i) - \hat{\rho}(x_i)y_a(x_i), \quad i = 1, \ldots, n_d,$$

where
\[
\hat{\rho}(x^*) = \hat{\rho}_0 + \sum_{j=1}^{J} \hat{\rho}_j x^*_j
\] (13)

is the fitted regression function for the scale adjustment.

At an untried point \(x^* \), a BLUP predictor can be constructed as

\[
\hat{\delta}(x^*) = \hat{\delta}_0 + \hat{\rho}_x \hat{R}_\delta^{-1} (\hat{\delta} - F \hat{\delta}_0),
\] (14)

where \(\hat{\rho}_x \) and \(\hat{R}_\delta \) are defined in Section 2.1, and \(\hat{\delta}_0 \) is obtained previously as part of \(\hat{\alpha} \). The predictor \(\hat{\delta}(x^*) \) in Eq. (14) is used as a building block to establish the final surrogate model.

2.4 Building and Evaluating the Final Surrogate Model

From the base surrogate model in Eq. (7) and the adjustments results in Eqs. (13) and (14), a simple plug-in method is used to establish the final surrogate model for an untried \(x^* \),

\[
\hat{y}_a(x^*) = \hat{\rho}(x^*) \hat{y}_a(x^*) + \hat{\delta}(x^*),
\] (15)

where \(\hat{\rho}(x^*) \) is the fitted scale adjustment term in Eq. (13), \(\hat{y}_a(x^*) \) is the predicted value from the base surrogate model in Eq. (7), and \(\hat{\delta}(x^*) \) is the fitted location adjustment term in Eq. (14). As mentioned in Section 2.1, the prediction from the base surrogate model is not very accurate. Because we have adjusted this model using detailed simulation data, the prediction from Eq. (15) will be closer to the output from the detailed simulations than the prediction from the base surrogate model (7). In addition, it can be shown that the final surrogate model, \(\hat{y}_a(\cdot) \) in Eq. (15) smoothly interpolates all the detailed simulation data. This is another benefit of our two-step procedure. If we are interested in making accurate predictions based on detailed simulations in some regions of specific interest, we can select a few more points in these regions and conduct the appropriate detailed simulations.

In some situations, the multistage Bayesian approach proposed by Osio and Amon and Pacheco, Amon and Finger can be adapted to deal with approximate and detailed simulations data. In their approach, a kriging model is fit to the AS data. Then this model is used as the prior mean for modeling DS data. In comparison with our approach, the first stage modeling with AS data is exactly the same. The difference is in the second stage. It is well known that a kriging predictor is pulled towards the prior mean.
in regions where data are scarce. Thus in their approach, the final surrogate model will pass through the DS data due to the interpolating property, but it will be pulled towards the base surrogate model in regions where DS data are not available. This feature can lead to a rough final surrogate model, particularly when the DS is very different from the AS. In contrast, we only do a location and scale adjustment and therefore, the profile of the base surrogate model is approximately preserved. Our approach is more suitable when there are very few DS data points compared with AS data, a characteristic of our example.

To illustrate our approach in the next section, we consider the design of a linear cellular material, which is used to dissipate heat from a microprocessor.

3. DESIGNING LINEAR CELLULAR MATERIALS WITH THE SURROGATE MODEL

BUILDING APPROACH

Consider the design of a heat exchanger for a representative electronic cooling application. As illustrated in Fig. 2, the device is used to dissipate heat generated by a heat source such as a microprocessor. The mechanism for heat dissipation is forced convection via air with entry temperature, \(T_{\text{in}} \), in degrees Kelvin and total mass flow rate, \(m \), measured in kilograms per second. Steady state, incompressible laminar flow is assumed. The device is assumed to have fixed overall width (\(W \)), depth (\(D \)), and height (\(H \)) of 9, 25, and 17.4 millimeters, respectively. It is insulated on the left, right, and bottom sides and is subjected to a heat source at constant temperature, \(T_{\text{wall}} \), in degrees Kelvin on the top face.

Fig. 2 Compact, forced convection heat exchanger with graded
rectangular linear cellular alloys

The device is comprised of linear cellular material—ordered, metallic cellular material with extended prismatic cells. These materials can be produced with nearly arbitrary two-dimensional topologies, metallic base materials, and wall thicknesses as small as 50 microns via a thermo-chemical extrusion fabrication process developed at Georgia Tech\cite{41}. Prismatic cellular materials have a combination of properties that make them especially suitable for many multifunctional applications, including actively cooled, lightweight structures\cite{4,42-44}. Although cell topology and dimensions can be varied, the prismatic cellular material is composed exclusively of rectangular cells for this example. There are four columns of cells with interior cell widths of 2 mm, and three rows of cells with interior cell heights of 10, 5, and 2 mm for the uppermost, middle, and lower rows of cells, respectively. The solid material in the walls of the prismatic cellular material is assumed to have thermal conductivity, k, in Watts per meter-Kelvin.

The design objective is to maximize the total rate of steady state heat transfer achieved by the device. Some of the factors affecting this objective include the topology and dimensions of the cells and cell walls, the flow rate and temperature of the incoming air, the temperature of the heat source, and the thermal conductivity of the solid material in the walls of the device. In other design activities, we have adjusted the dimensions of the device\cite{4}; here, we intend to explore the heat transfer rate as a function of the mass flow rate of entry air, m, the temperature of entry air, T_{in}, the temperature of the heat source, T_{wall}, and the solid material thermal conductivity, k.

To analyze the impact of these factors on heat transfer rates, we use two types of simulations—computationally expensive FLUENT\cite{45} finite element simulations and relatively fast but more approximate finite difference simulations. Details of the two approaches are available in the literature, but it is important to highlight their differences and their relative costs and benefits in terms of accuracy and computational time. First, the models are based on different methods. The finite difference approach, used here for approximate simulations (AS), is a numerical technique for solving two- or three-dimensional heat transfer problems\cite{46}. Finite difference models are based on difference equations that approximate continuous variables as quantities at discrete points or nodes on a grid\cite{46}. FLUENT is a commercial software package for analyzing fluid flow and heat transfer problems with a computational fluid dynamics
(CFD) solver. FLUENT models, used here as detailed simulations, are based on finite volume methods that approximate governing partial differential equations over a control volume and are more flexible than finite difference methods that require a structured mesh. FLUENT models also account for details such as entry effects that are not modeled explicitly in the finite difference models. Secondly, as described for the present example by Seepersad and coauthors, the FLUENT grid is approximately four times denser than the finite difference grid for this example. Finally, for examples similar to the present one, each FLUENT simulation requires two to three orders of magnitude more computing time than the corresponding finite difference simulation. For example, on a 2.0 GHz Pentium 4 PC with 1 GB of RAM, the first data point in Table 2 requires approximately 1.75 hours of computing time for a FLUENT (DS) simulation versus approximately 2 seconds for the finite difference simulation. However, the FLUENT simulations are generally more accurate than the finite difference simulations by 10 to 15% or more.

Our objective is to build a surrogate model that can be used in the design process and represents the functional relationship between design factors and the total rate of steady state heat transfer. To build the surrogate model, we utilize results from both FLUENT and finite difference simulations. A large number of data points are generated using the finite difference simulation with fewer data points obtained from the FLUENT simulation. We show that even a limited amount of data from FLUENT simulations can be used to improve the accuracy of surrogate models based on approximate finite difference models alone.

3.2 Generating Design Points for Detailed and Approximated Simulations

An orthogonal array-based Latin Hypercube design with a run size of 64 data points is used to determine the appropriate set of approximate (finite difference) simulations. The assumed ranges of design variables are shown in Table 1. The Latin Hypercube design has good space-filling properties. This can be seen in Fig. 3 in which the four-variable design is projected onto spaces of two variables. For each pair of variables the data points are uniformly distributed in each of the 64 reference square bins. Also, if we divided each bin in Fig. 3 into 8 equally spaced new bins with smaller size (64 new bins in each dimension), we find that each individual variable in each dimension has a nearly uniform distribution in

Footnote: Seepersad and coauthors describe the details of the finite difference and FLUENT models for this example, including grid sizes and boundary conditions.
these 64 bins. Among these 64 approximate simulation experiments, results for detailed simulations are generated for 22 of them. Sixteen of the twenty-two experiments are identified using a simulated annealing algorithm and a minimax distance criterion34. The remaining six detailed simulation experiments are chosen with a roughly uniform distribution in the portion of the design space in which the value of air flow rate, \dot{m}, of entry air is small. Background information suggests that there may be a special relationship between the detailed (FLUENT) results, y_{dl}, and the approximate (finite difference) results, y_{al}, in this subregion. The six additional points are added to explore this relationship. The sample data and corresponding response values are listed in Table 2. In this table, the results for the 64 approximate experiments are shown in the y_{al} column, and the 22 detailed simulation experiments are listed in the y_{dl} column. It is clear from Table 1 that the four input variables have very different scales. These variables are standardized (subtracting their means and multiplying by the reciprocal of their standard deviations) before the analysis.

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>\dot{m} (kg/s)</th>
<th>T_{in} (K)</th>
<th>k (W/mK)</th>
<th>T_{wall} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>0.00055</td>
<td>270.00</td>
<td>202.4</td>
<td>330</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>0.001</td>
<td>303.15</td>
<td>360.0</td>
<td>400</td>
</tr>
</tbody>
</table>
Fig. 3. 64 points of an orthogonal array-based Latin Hypercube sample. In each plot, there is one point in each of the square bins bounded by dashed lines.

Table 2. Sample data for approximate and detailed simulations

<table>
<thead>
<tr>
<th>Run</th>
<th>\dot{m} (kg/s)</th>
<th>T_{in} (K)</th>
<th>k (W/mK)</th>
<th>T_{wall} (K)</th>
<th>y_a</th>
<th>y_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000552</td>
<td>293.53</td>
<td>318.63</td>
<td>388.29</td>
<td>25.61</td>
<td>23.54</td>
</tr>
<tr>
<td>2</td>
<td>0.000557</td>
<td>290.18</td>
<td>298.27</td>
<td>377.49</td>
<td>23.24</td>
<td>21.23</td>
</tr>
<tr>
<td>3</td>
<td>0.000566</td>
<td>285.77</td>
<td>268.71</td>
<td>367.27</td>
<td>21.13</td>
<td>20.15</td>
</tr>
<tr>
<td>4</td>
<td>0.000578</td>
<td>302.17</td>
<td>358.13</td>
<td>343.72</td>
<td>11.44</td>
<td>10.17</td>
</tr>
<tr>
<td>5</td>
<td>0.000580</td>
<td>272.26</td>
<td>211.71</td>
<td>333.65</td>
<td>15.03</td>
<td>15.29</td>
</tr>
<tr>
<td>6</td>
<td>0.000589</td>
<td>278.16</td>
<td>225.78</td>
<td>351.83</td>
<td>18.55</td>
<td>18.39</td>
</tr>
<tr>
<td>7</td>
<td>0.000594</td>
<td>279.54</td>
<td>258.51</td>
<td>360.13</td>
<td>20.74</td>
<td>20.52</td>
</tr>
<tr>
<td>8</td>
<td>0.000603</td>
<td>296.75</td>
<td>332.15</td>
<td>399.45</td>
<td>28.40</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.000612</td>
<td>280.83</td>
<td>291.53</td>
<td>394.72</td>
<td>30.22</td>
<td>30.12</td>
</tr>
<tr>
<td>10</td>
<td>0.000619</td>
<td>300.28</td>
<td>270.74</td>
<td>355.79</td>
<td>9.53</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.000626</td>
<td>284.89</td>
<td>350.46</td>
<td>352.29</td>
<td>18.13</td>
<td>18.17</td>
</tr>
<tr>
<td>12</td>
<td>0.000627</td>
<td>287.60</td>
<td>243.96</td>
<td>382.54</td>
<td>25.02</td>
<td>24.68</td>
</tr>
<tr>
<td>13</td>
<td>0.000639</td>
<td>270.45</td>
<td>241.21</td>
<td>341.81</td>
<td>17.92</td>
<td>19.05</td>
</tr>
<tr>
<td>14</td>
<td>0.000643</td>
<td>276.17</td>
<td>216.99</td>
<td>371.60</td>
<td>24.20</td>
<td>24.96</td>
</tr>
<tr>
<td>15</td>
<td>0.000652</td>
<td>288.04</td>
<td>303.96</td>
<td>361.56</td>
<td>17.47</td>
<td>16.95</td>
</tr>
<tr>
<td>16</td>
<td>0.000657</td>
<td>294.24</td>
<td>330.63</td>
<td>375.53</td>
<td>22.48</td>
<td>22.3</td>
</tr>
<tr>
<td>17</td>
<td>0.000669</td>
<td>296.33</td>
<td>343.16</td>
<td>385.81</td>
<td>25.07</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.000670</td>
<td>303.07</td>
<td>321.41</td>
<td>370.48</td>
<td>18.93</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.000683</td>
<td>287.05</td>
<td>227.31</td>
<td>358.24</td>
<td>18.61</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.000689</td>
<td>272.70</td>
<td>260.91</td>
<td>355.37</td>
<td>21.31</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.000694</td>
<td>278.35</td>
<td>212.79</td>
<td>376.24</td>
<td>25.11</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.000698</td>
<td>277.52</td>
<td>299.39</td>
<td>338.40</td>
<td>16.02</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.000711</td>
<td>292.26</td>
<td>273.31</td>
<td>392.54</td>
<td>27.47</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Building a Base Surrogate Model

The first step is to build a surrogate model using the approximate simulation results only. Based on background knowledge of the physics of this problem, we know that there should be a significant linear component in the relationship between the response and the four factors. As a result, a linear structure is included when modeling the mean part of the Gaussian process in Eq. (9). As described in Section 2, the maximum likelihood method is used for estimation. Table 3 lists the linear main effects \(\hat{\beta}_i \) for \(i = 1, \ldots, 4 \) (corresponding to \(m, T_{in}, k, \) and \(T_{wall} \), respectively) with their p-values for the t-test for \(i = 1, \ldots, 4 \) and \(\hat{\sigma}_a^2 \). The linear main effects for \(T_{in} \) and \(T_{wall} \) are relatively large, -2.77 and 5.450, respectively and their p-values are quite small, 1.59e-08 and 1.543e-22, respectively; therefore \(T_{in} \) and \(T_{wall} \) are the two most

<table>
<thead>
<tr>
<th>i</th>
<th>(\hat{\beta}_i)</th>
<th>p-value</th>
<th>(\hat{\beta}_i)</th>
<th>p-value</th>
<th>(\hat{\beta}_i)</th>
<th>p-value</th>
<th>(\hat{\beta}_i)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.77</td>
<td>1.59e-08</td>
<td>2.75</td>
<td>0.00772</td>
<td>278.93</td>
<td>0.00775</td>
<td>307.99</td>
<td>0.00777</td>
</tr>
<tr>
<td>2</td>
<td>5.450</td>
<td>1.543e-22</td>
<td>4.41</td>
<td>3.00785</td>
<td>308.86</td>
<td>3.00786</td>
<td>309.51</td>
<td>3.00787</td>
</tr>
<tr>
<td>3</td>
<td>-1.01</td>
<td>0.1064</td>
<td>3.84</td>
<td>3.00788</td>
<td>309.51</td>
<td>3.00789</td>
<td>309.51</td>
<td>3.00790</td>
</tr>
<tr>
<td>4</td>
<td>0.596</td>
<td>0.555</td>
<td>3.84</td>
<td>3.00791</td>
<td>309.51</td>
<td>3.00792</td>
<td>309.51</td>
<td>3.00793</td>
</tr>
</tbody>
</table>
significant factors. The values of $\hat{\beta}_{a2}$ and $\hat{\beta}_{a4}$ have different signs, implying that T_{in} and T_{wall} have opposite effects on the response. This agrees with the known physics of the problem, i.e., a decrease in T_{in} or an increase in T_{wall} causes an increase in the total rate of steady state heat transfer. As shown in Table 3, the p-values for $\hat{\beta}_{a1}$ and $\hat{\beta}_{a3}$ are quite large. Therefore, \dot{m} and k do not have significant linear main effects on the response in this region of the design space.

Table 3. Results of estimation

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_{a0}$</th>
<th>$\hat{\beta}_{a1}$: main effect of \dot{m}</th>
<th>$\hat{\beta}{a2}$: main effect of $T{in}$</th>
<th>$\hat{\beta}_{a3}$: main effect of k</th>
<th>$\hat{\beta}{a4}$: main effect of $T{wall}$</th>
<th>σ^2_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>20.606</td>
<td>0.409</td>
<td>-2.77</td>
<td>0.673</td>
<td>5.450</td>
<td>3.352</td>
</tr>
<tr>
<td>P-values</td>
<td>0.449</td>
<td>1.59e-08</td>
<td>0.106</td>
<td>1.543e-22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The maximum likelihood estimators for the correlation parameters $\hat{\theta}_a$ are (1.1780, 0.904, 0.300, and 0.01). These values are quite different from each other; therefore different factors affect the correlation of two close points in different scales. Among them, the correlation parameters for \dot{m} and T_{in} are relatively high. The responses of two points, even if there is a small distance between them in the \dot{m}-dimension or the T_{in}-dimension, may still have a low correlation. Note that \dot{m} does not have a significant linear main effect but has a large value for its correlation parameter. This implies that the relationship between \dot{m} and the response is nonlinear. This observation may aid our understanding of its physical relationship.

The data used to build the base surrogate model cannot be used to assess the fit of the model, because the Gaussian process model interpolates the training data. Therefore, we generate a testing set of 14 AS runs and compare the prediction results using the base surrogate model and the observed values of these 14 runs. The data is also used to validate the final surrogate model, so a detailed description of these runs is deferred to Section 3.5. Columns \hat{y}_a and y_a in Table 4 of Section 3.5 give the values of predictions and the responses from the approximate simulations. The root-mean-square-errors (RMSE) for these 14 runs are
only 2.588. This is relatively small, since the mean of the values of y_d is 21.499 and the range (max-min) is 29.54. Thus, the base surrogate we constructed for y_d is a decent proxy.

The basic surrogate model is consistent with our background knowledge of the physics of the problem. In general, one would expect the mass flowrate, \dot{m}, the temperature of the heat source, T_{wall}, and the thermal conductivity of the material, k, to have positive linear main effects on the total rate of steady state heat transfer; on the other hand, T_{in} should have a negative linear main effect. The signs of the linear main effects in Table 3 correspond to our expectations. Also, one would expect the temperatures, T_{in} and T_{wall}, to have more significant linear main effects on the response than the mass flowrate, \dot{m}, or the thermal conductivity, k—two factors that have much more complex relationships with the response via the Reynold’s number and the temperature gradients throughout the structure, respectively. Their linear main effects are dominated in this region of the design space by the strong linear relationship between the temperatures and the response. However, we might expect them to have significant nonlinear relationships with the response, and we observe this for the mass flowrate, \dot{m}.

3.4 Using Detailed Simulation Data to Adjust the Base Surrogate Model

Both y_d and \dot{y}_d are generated for 22 factor level combinations. Fig. 4 presents a plot of y_d vs. \dot{y}_d for these 44 experiments. It is clear that the detailed simulation and the approximate simulation values are quite different. Some detailed simulation values are higher than approximate simulation values, while some are lower. This demonstrates the need for modeling $\rho(x)$ as a function of x in Eq. (13).
Next we use the more accurate detailed simulation output, $y_d(x)$, to adjust the fitted model of $y_a(x)$, as described in Section 2.4. Overall, we have a good fit for the adjusted model as σ^2 has a small value of 0.00515. For the scale adjustment term $\rho(x)$ the parameter estimates are $(\hat{\rho}_0, \hat{\rho}_1, \hat{\rho}_2, \hat{\rho}_3, \hat{\rho}_4) = (1.130, 0.090, -0.032, 0.004, -0.012)$. Among these estimates, the coefficients for \hat{m} and T_{in} are relatively large with significant p-values of 2.165×10^{-5} and 3.839×10^{-3}. For the location adjustment term $\delta(x)$, the results are $\hat{\delta}_0 = -0.690$ with the p-value 0.0102 and $\hat{\theta}_a = (0.173, 0.176, 0.01, 3.66)$. In Fig. 5, plots of $\hat{\delta}$ vs. different pairs of variables are plotted. In each plot, a 40 by 40 equally-spaced grid is chosen for the two variables used for plotting and the values of the other two remaining variables are fixed at their mean values.
Finally, for a new input x^* we can create the final surrogate model:

$$\hat{y}_d(x^*) = \hat{\rho}(x^*)\hat{y}_d(x^*) + \hat{\delta}(x^*),$$

(16)

where $\hat{\rho}(x^*) = 1.130 + 0.090x_1^* -0.032x_2^* +0.004x_3^* -0.012x_4^*$. $\hat{\rho}(\cdot)$ is the BLUP of $\rho(\cdot)$ as described in Eq. (7) and $\hat{\delta}(\cdot)$ is the BLUP of $\delta(\cdot)$ in Eq. (14).

3.5 Validation of the Final Surrogate Model

In order to test and validate the method, 14 additional experiments are performed. These 14 runs are chosen at random in a space slightly larger than the original design space. For each experimental point, both detailed and approximate simulations are performed. Table 4 lists the factor levels for
these experiments, the y_d and y_{id} values, the predicted \hat{y}_{id} obtained using Eq. (16) and the predicted \hat{y}_d obtained using Eq. (7) and the results presented in Section 3.3.

Table 4. Additional simulations for validation

<table>
<thead>
<tr>
<th>Run</th>
<th>m (kg/s)</th>
<th>T_{in} (K)</th>
<th>k (W/mK)</th>
<th>T_{wall} (K)</th>
<th>y_d</th>
<th>\hat{y}_d</th>
<th>y_{id}</th>
<th>\hat{y}_{id}</th>
<th>\hat{y}_a</th>
<th>y_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00050</td>
<td>293.15</td>
<td>362.73</td>
<td>393.15</td>
<td>25.82</td>
<td>23.85</td>
<td>24.09</td>
<td>26.96</td>
<td>27.24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00055</td>
<td>315</td>
<td>310</td>
<td>365</td>
<td>7.48</td>
<td>10.31</td>
<td>11.19</td>
<td>12.44</td>
<td>7.02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00056</td>
<td>277.01</td>
<td>354.98</td>
<td>374</td>
<td>19.77</td>
<td>26.02</td>
<td>24.99</td>
<td>26.38</td>
<td>25.53</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00062</td>
<td>275</td>
<td>225</td>
<td>340</td>
<td>18.78</td>
<td>16.64</td>
<td>16.72</td>
<td>16.14</td>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00068</td>
<td>313.28</td>
<td>259.12</td>
<td>350</td>
<td>4.55</td>
<td>6.44</td>
<td>9.04</td>
<td>7.32</td>
<td>10.23</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.00070</td>
<td>288.15</td>
<td>300</td>
<td>400</td>
<td>34.45</td>
<td>31.93</td>
<td>31.83</td>
<td>30.97</td>
<td>30.90</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.00078</td>
<td>292.73</td>
<td>267.84</td>
<td>369</td>
<td>21.97</td>
<td>23.70</td>
<td>22.49</td>
<td>22.01</td>
<td>20.92</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00080</td>
<td>303.15</td>
<td>250</td>
<td>350</td>
<td>14.83</td>
<td>6.34</td>
<td>13.42</td>
<td>6.45</td>
<td>13.08</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.00085</td>
<td>301.31</td>
<td>317.85</td>
<td>341</td>
<td>32.88</td>
<td>37.88</td>
<td>37.32</td>
<td>31.34</td>
<td>31.14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.00085</td>
<td>301.31</td>
<td>317.85</td>
<td>341</td>
<td>11.92</td>
<td>12.99</td>
<td>12.64</td>
<td>11.94</td>
<td>11.30</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.00091</td>
<td>248.87</td>
<td>206.74</td>
<td>398</td>
<td>47.05</td>
<td>51.77</td>
<td>47.04</td>
<td>39.63</td>
<td>36.56</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.00094</td>
<td>271.32</td>
<td>362.73</td>
<td>400</td>
<td>42.93</td>
<td>44.97</td>
<td>43.51</td>
<td>35.63</td>
<td>35.53</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.00095</td>
<td>280</td>
<td>270</td>
<td>330</td>
<td>17.41</td>
<td>16.82</td>
<td>17.54</td>
<td>13.51</td>
<td>13.54</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00100</td>
<td>293.15</td>
<td>202.4</td>
<td>373.15</td>
<td>22.89</td>
<td>25.74</td>
<td>26.88</td>
<td>21.10</td>
<td>21.60</td>
<td></td>
</tr>
</tbody>
</table>

Root-mean-square-errors (RMSE) are computed to assess prediction performance. Here we present three different comparisons. The first is a comparison between predictions with the final surrogate model in Eq. (15) and detailed simulation data. The second is a comparison between predictions using the base surrogate model in Eq. (7) and the detailed simulation data, and the third is a comparison between approximate and detailed simulation data.

\[
\text{RMSE}_1 = \sqrt{\frac{\sum_{j=1}^{14} (\hat{y}_d(x_j) - y_d(x_j))^2}{14}} = 3.795,
\]

\[
\text{RMSE}_2 = \sqrt{\frac{\sum_{j=1}^{14} (\hat{y}_a(x_j) - y_d(x_j))^2}{14}} = 4.595,
\]

and

\[
\text{RMSE}_3 = \sqrt{\frac{\sum_{j=1}^{14} (y_a(x_j) - y_d(x_j))^2}{14}} = 4.431.
\]
The proposed method provides a significant improvement in terms of prediction accuracy. The RMSE between \(\hat{y}_d \) and \(y_d \) is 3.795, which is 14% smaller than the RMSE (4.430) between \(y_a \) and \(y_d \), and 17% smaller than the RMSE (4.595) between \(\hat{y}_a \) and \(y_d \) given in Table 2. The difference between these RMSE’s is statistically significant. Fig. 5 shows the nonlinear nature of the location adjustment in our procedure. The flexible scale-location adjustment is capable of refining the base surrogate model and obtaining a more accurate surrogate model. To get a sense of the relative size of the RMSE between \(\hat{y}_d \) and \(y_d \) (3.795), we calculated the mean of 14 DS runs (23.05) and their range (42.5). The RMSE is only 16% of the mean value and 8.9% of the range and thus is small for this case.

At this point, it is important to determine whether the improvement in prediction accuracy realized with the proposed method justifies the computational expense of building the final surrogate model. Whereas the RMSE of the base surrogate model, \(\hat{y}_a \), is 17% larger than the RMSE of the final surrogate model, \(\hat{y}_d \), the cost of building the base surrogate model is essentially negligible compared with the cost of building the final surrogate model, requiring minutes versus days of computing time to obtain the approximate and detailed experimental data reported in Table 2. Based on this comparison, a designer may conclude that the improvement in prediction accuracy is not sufficient to justify the increased computational expense of the proposed method. However, the comparison is misleading. In typical engineering applications, a designer would not rely exclusively on data from an uncalibrated approximate model. Because the accuracy of an approximate model is not known \textit{a priori} in an engineering application, data from detailed simulations or physical experiments are typically conducted throughout the region of interest for validation and calibration. If a number of detailed experiments are conducted anyway, the proposed method is both effective and efficient. By gathering only a few additional detailed simulation data points (beyond the number typically required for validating the approximate model) and by strategically choosing their locations, it is possible to assess the accuracy of an approximate model \textit{and} reduce its predication error using the proposed method.

3.6 Maximize the Total Rate of Steady State Heat Transfer
Note that one of the design objectives is to maximize the total heat transfer rate. The ranges of design variables are listed in Table 1. Table 5 contains the maximization results of $\hat{y}_d(x)$ over the ranges. All the optimal values of four design variables are attained at the boundaries of the ranges. These results are not surprising. For this problem we know that as \dot{m} increases, T_{in} decreases, k increases, or T_{wall} increases, the heat transfer rate increases. The maximum value of $\hat{y}_d(x)$, 46.93, is larger than the y_d values given in Tables 2 and 4, except for run 11 in Table 4. This outcome can be explained by noting that the design variable values in Table 5 that maximize heat transfer are not identical to any of the experiments in Tables 2 and 4.

<table>
<thead>
<tr>
<th>\dot{m} (kg/s)</th>
<th>T_{in} (K)</th>
<th>k (W/mK)</th>
<th>T_{wall} (K)</th>
<th>$\hat{y}_d(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>270.00</td>
<td>360.0</td>
<td>400</td>
<td>46.93</td>
</tr>
</tbody>
</table>

4 Closure

In summary, we have presented an approach for building surrogate models based on data from both detailed and approximate simulations. From a design perspective, surrogate models reduce the computational cost of exploring large regions of the design space by replacing repeated detailed simulations. However, there can be a substantial computational cost involved in using data from detailed simulations to build surrogate models. Using the approach presented in this paper, it is possible to improve the accuracy of surrogate models obtained from approximate simulations by supplementing the data from the approximate simulations with relatively few data points from more computationally expensive detailed simulations. Thus, it is possible to explore a design space with improved or enhanced surrogate models that are more accurate that surrogate models based entirely on approximate simulations but less computationally expensive than surrogate models based exclusively on detailed simulations.
An advantage of our method is that surrogate models can be modified adaptively when new simulation results are available. Updating surrogate models requires negligible computational cost because it only involves refitting the model with both old and new data. Therefore it is relatively convenient to improve an existing surrogate model to a desired level of accuracy, if more accurate predictions are required.

The approach is broadly applicable to examples and phenomena from structural, electrical, financial, and other domains. The models usually correspond to different physics-based models or approximations of a problem (e.g., Euler Equations vs. Navier-Stokes, etc.). The primary assumptions are that multiple models or data sources are available and that one model or data source is generally more accurate than the other(s). The method is presented currently to integrate simulation models at only two levels, namely, detailed and approximate. Work is in progress to extend the method for more than two levels of models or data sources.

Acknowledgments

During her graduate study at Georgia Tech, C.C. Seepeersad was sponsored by a Doctoral Fellowship from the Fannie and John Hertz Foundation. Financial support from NSF DMI-0085136, NSF-0407627 and AFOSR MURI 1606U81 is gratefully acknowledged. Qian and Wu are supported by NSF DMS 0072489. We are grateful to D. L. McDowell and B. M. Dempsey for their assistance and insight on the cellular material example and for the finite difference software used to generate the approximate simulation data. The authors appreciate the efforts of Thang Nguyen and Olu Ogunsanya who ran many of the computer experiments.

References

