Statistics = Data Science?

C. F. Jeff Wu

University of Michigan, Ann Arbor

- What is "Statistics"?
- A Statistical Trilogy
- Frontier and Beyond
- A Bold Proposal
Layman’s definition and perception of statistics and statisticians

• Oh, you are doing **accounting**!

• Descriptive statistics:

 tables and charts (sports, economy),
 summary figures (from surveys, census, opinion pools),
 occasionally standard errors are attached.

• Lies, Damned Lies, and Statistics.
Old definitions of “Statistics”:

Statistik used by the German statistician G. Achenwall in 1748, from the Latin word “status” (state or condition)

1. ... teaches us what is the political arrangement of all the modern states of the known world (W. Hooper *tr. Bielfeld’s Elem. Universal Educ.*, 1770)

2. ... an inquiry into the state of a country, for the purpose of ascertaining the quantum of happiness enjoyed by its inhabitants, and the means of its future improvement (Sir J. Sinclair *Statist. Acc. Scot.*, 1798)

3. ... a form of knowledge - a mode of arranging and stating facts which belong to various sciences (*Lond. & Westm. Rev*, 1838)

4. ... consists in the observation of phenomena which can be counted or expressed in figures (Mayo-Smith *Statist. & Sociol*, 1895)
Dictionary definitions of "Statistics":

 statistician: one skilled in collecting and tabulating statistical data.

In Chinese language,

Statistics

統計

collecting counting

Accounting

會計
Do statistics and statisticians deserve this public image or stereotype?

Yes and No!

The current state of statistical work can be described by a **Statistical Trilogy:**

1. Data Collection (experimental design, sample surveys)

2. Data Modeling and Analysis

3. Problem Understanding/Solving, Decision Making
Promising Current/Future Directions:

- Large/complex data:
 neural network models,
 data mining (of massive data bases)

- Empirical - Physical Approach:
 driven by data and mechanistic knowledge,
 mechanistic:
 unknown state $\xrightarrow{\text{deduction}}$ manifestation
 statistical:
 unknown state $\xleftarrow{\text{induction}}$ observed data

- Representation and Exploitation of Knowledge:
 Representation of knowledge as a Bayesian prior and model (possibly in high-dimensional spaces), Computational algorithm, interaction with cognitive science
Why can neural network modeling solve some complex/tough problems?

- can model complex (i.e., nonlinearity, interaction) relationships
- use cross-validation and other statistical techniques to find parsimonious models and gain predictive power
- good at developing simple and efficient computational algorithms, develop problem-specific hardware

Think Big, Learn from Others!
• Tremendous progress has been made in image reconstruction: penalized maximum likelihood, Bayesian Gibbs sampling

• Much less is known and much needs to be done in computer vision:
 “Vision is a *process* that produces from images of the external world a *description* that is *useful* to the viewers and not cluttered with irrelevant information (Marr, 1976)”

• Computer vision:
 an infusion of psychophysics, neural physiology, statistics, engineering and artificial intelligence
Some suggestions:

- A balanced curriculum:
 more emphasis on data collection,
 scientific/mathematical basis for modeling,
 computing for large/complex systems

- Interdisciplinary training:
 requirement of a cognitive minor,
 joint teaching by statisticians and scientists

- A radical idea:
 an applied master or doctoral program with
 30% - 50% courses outside statistics
• Long tradition and deeply rooted perception of statistics \Rightarrow difficult to break this undeserving image

• It is time in the history of statistics to make a bold move

• A good role model,

 Professor Harry Clyde Carver

 founding editor of the Annals of Mathematical Statistics (1930 - 38),
 founding member of the Institute of Mathematical Statistics (1935)

 foresight, courage, unorthodox approach
A proposal:

“Statistics” → “Data Science”
“Statisticians” → “Data Scientists”

• Several good names have been taken up: computer science, information science, material science, cognitive science

• “Data Science” is likely the remaining good name reserved for us

• “Statistical Science” not as attractive, but much better than “Statistics”
Summary

- Descriptive statistics is a small part of statistical work

- Data collection \implies data modeling/analysis
 \implies problem solving/decision making

- Statistical education:
 more balanced and science driven

- More focus on large/complex data,
 interface with other disciplines

- A joint data - knowledge approach to problem solving:
 knowledge from physical, engineering, cognitive, ...