1. If \(\{X(t) : t \geq 0\} \) and \(\{Y(t) : t \geq 0\} \) are independent time-reversible continuous time Markov chains, show that the process \(\{(X(t), Y(t)), t \geq 0)\) is also time reversible.

2. Consider two queues with Poisson arrivals and single server with exponentially distributed service times. Suppose that the arrival rate for queue \(i \) is \(\lambda_i \) and service rate is \(\mu_i \) for \(i = 1, 2 \). Assume that the queues share the same waiting room which has finite capacity \(N \). That is whenever this room is full, all potential arrivals to either queue are lost. Compute the limiting probability that there will be \(n \) customers at the first queue and \(m \) at the second queue.

3. \(N \) customers move among \(r \) servers. The service times at server \(i \) are exponential with rate \(\mu_i \) and when a customer leaves server \(i \) it joins the queue (if there are others waiting or else it enters service) at server \(j, j \neq i \), with probability \(1/(r - 1) \). Let the state be \((n_1, \ldots, n_r) \) when there are \(n_i \) customers at server \(i, i = 1, \ldots, r \). Show that the corresponding continuous time Markov chain is time reversible and find the limiting probabilities.