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Abstract 

The performance of a call center is sensitive to customer abandonment. In this survey paper, we 

focus on / /G GI n GI  parallel-server queues that serve as a building block to model call center 

operations. Such a queue has a general arrival process (the G ), independent and identically distri-

buted (iid) service times with a general distribution (the first GI ), and iid patience times with a gen-

eral distribution (the GI ). Following the square-root safety staffing rule, this queue can be operated 

in the quality- and efficiency-driven (QED) regime, which is characterized by large customer volume, 

the waiting times being a fraction of the service times, only a small fraction of customers abandoning 

the system, and high server utilization. Operational efficiency is the central target in a system whose 

staffing costs dominate other expenses. If a moderate fraction of customer abandonment is allowed, 

such a system should be operated in an overloaded regime known as the efficiency-driven (ED) regime. 

We survey recent results on the many-server queues that are operated in the QED and ED regimes. 

These results include the performance insensitivity to patience time distributions and diffusion and 

fluid approximate models as practical tools for performance analysis.  

Keywords: Heavy traffic, square-root safety staffing, quality- and efficiency-driven regime, efficien-

cy-driven regime, piecewise OU process 
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1. Introduction 
Customer call centers have become an 

important part of the service economy in a 

modern society. To take advantage of the 

economy of scale, call centers with hundreds of 

agents are ubiquitous in many industries. These 

systems face a large amount of daily traffic that 

is intrinsically stochastic and has temporal 

variations. In a call center, a customer waiting 

for service may hang up the phone before being 

served. This is called customer abandonment. 

Such a phenomenon is common because 

customers usually have limited patience. 

Customer expectation demands that a proper 
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staffing level be maintained in the call center so 

that most customers are served without waiting 

for a long time and only a small fraction of 

customers abandon the system. As pointed by 

Garnett et al. (2002), customer abandonment is a 

crucial factor for call center operations. It may 

significantly impact the system performance and 

must be modeled explicitly in order for an 

operational model to be relevant for decision 

making.  

In this paper, we focus on a mathematical 

model that is denoted by a / /G GI n GI  

queue. In this queue, we model customer 

abandonment by assigning each customer a 

patience time. When a customer’s waiting time 

for service exceeds his patience time, he 

abandons the system without service. In the 

/ /G GI n GI  notation, the G  refers to a 

general arrival process, the first GI  refers to 

independent and identically distributed (iid) 

service times with a general distribution, n  is 

the number of identical servers, and GI  refers 

to iid patience times with a general distribution. 

As we do not assume iid interarrival times, the 

symbol for the arrival process is G , not GI . 

We call a / /G GI n GI  queue with a large 

number of parallel servers a many-server queue. 

Such a queue serves as a building block to 

model large-scale call centers. For call center 

operations, it is reasonable to assume that the 

patience times are iid, as the queue is usually 

invisible to waiting customers.  

As argued by Halfin & Whitt (1981), the 

performance of many-server queues is 

qualitatively different from that of single-server 

queues or queues with a small number of servers. 

Due to the stochastic variability in inter arrival 

and service times, the mean customer waiting 

time in a single-server queue goes to infinity as 

the server approaches 100% utilization. A 

manager has to make a painful choice between 

quality of service (short waiting times) and 

operational efficiency (high server utilization) in 

a single-server service system. In contrast, a 

many-server system can be operated in the 

quality- and efficiency-driven (QED) regime that 

is characterized by large customer volume, the 

mean waiting time being a fraction of the mean 

service time, only a small fraction of customers 

abandoning the queue, and high server 

utilization. This regime is also called the 

rationalized regime in Garnett et al. (2002) 

because in most cases, a manager should operate 

his service system in such a regime. To achieve 

both quality and efficiency, the manager can 

exploit the pooling effect by operating a large 

number of servers in parallel. More specifically, 

the manager can apply the square-root safety 

staffing rule to drive the system to the QED 

regime. This rule is an important staffing 

principle that is both theoretically justified and 

widely practiced. In certain service systems, the 

staffing costs dominate the costs of customer 

delay and abandonment. In such systems, a more 

reasonable operational regime is the 

efficiency-driven (ED) regime. In the ED regime, 

the service capacity is set below the customer 

arrival rate by a moderate fraction. In such a 

many-server system, the mean waiting time is 

comparable to the mean service time, a moderate 

fraction of customers abandon the system, and 

all servers are almost always busy. These two 

operational regimes are elaborated in Section 2.  

It is empirically reported that in call centers, 

both the service time distributions and the 

patience time distributions are far from 
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exponential; see, e.g., Brown et al. (2005). 

Therefore, one must use general distributions to 

model service and patience times. Recent papers, 

such as Zeltyn & Mandelbaum (2005), Dai & 

He (2010), and Mandelbaum & Momčilović 

(2012), have demonstrated that the performance 

of a many-server queue in the QED regime is 

insensitive to the patience time distribution as 

long as the patience time density at the origin is 

fixed. This phenomenon is discussed in 

Section 3. 

When the service and patience time 

distributions are general, except by computer 

simulation, no analytical or numerical methods 

are available to evaluate the performance of such 

a queue. We survey approximate models for 

many-server queues in Sections 4 and 5. In 

Section 4, we study diffusion approximations for 

many-server queues in the QED regime. In these 

diffusion models, the service time distribution is 

modeled by a phase-type distribution and the 

patience time distribution is assumed to be 

general. We demonstrate that the diffusion 

models are accurate in predicting the system 

performance in the QED regime. For a 

many-server queue in the ED regime, fluid 

approximations have been shown to be useful. In 

Section 5, we survey a fluid model proposed by 

Whitt (2006). This fluid model is shown to be 

adequate in estimating the performance of a 

many-server queue in the ED regime.  

2. Operational Regimes in the Pres-
ence of Customer Abandonment 
As argued by Whitt (2006), most service 

systems can be classified into two types: 

revenue-generating systems and service-oriented 

systems. The former type aims to maintain high 

quality of service while the latter type focuses 

more on operational efficiency. As the scale of 

service systems goes large, the congestion due to 

variability in customer service demands can be 

offset by pooling service facilities. If the 

customer arrival rate and the service capacity are 

well balanced, it is possible to achieve both 

quality and efficiency in a service system with 

many servers. In this case, the service system is 

said to be working in the quality- and 

efficiency-driven (QED) regime. We 

demonstrate in Section 2.1 that one can follow 

the square-root safety staffing rule to operate a 

service system in the QED regime.  

Customer abandonment may have a 

significant impact on the performance of a 

service system. For a service system whose 

customers are human beings, one must consider 

the abandonment phenomenon in decision 

making and operations. In Section 2.2, we 

demonstrate that in the presence of customer 

abandonment, the square-root safety staffing 

rule can still lead the system to the QED regime 

while keeping a small abandonment fraction.  

To achieve the most operational efficiency in 

a service-oriented system, a certain percentage 

(say, 15% to 20%) of customer abandonment is 

usually allowed. In this case, the service system 

can be operated in an overloaded regime while 

still maintaining certain service levels. The key 

insight here is that customer abandonment could 

compensate for a slight excess in the arrival rate 

over the service capacity. Such a service system 

is highly efficient because all servers are busy 

almost all the time. This overloaded regime for a 

many-server system is called the efficiency- 

driven (ED) regime. We introduce the ED 

regime in Section 2.3. Usually, the arrival rate of 
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a service system is time-varying. It is worth 

mentioning that despite the best efforts, there 

would be certain time periods in which the 

service system has to be operated in the 

overloaded regime. These two regimes, QED 

and ED, were coined by Mandelbaum for 

many-server queues; see Gans et al. (2003) for 

more details.  

2.1 The QED Regime and the 
Square-root Safety Staffing Rule 
In a service system with a single or a small 

number of servers, the manager has to strike a 

compromise between service quality and 

operational efficiency. In contrast, it is possible 

to achieve both of them in a service system with 

many parallel servers. We use a numerical 

example to demonstrate this distinction.  

To evaluate the quality of service in a service 

system, the fraction of customers who have to 

wait before receiving service (known as the 

delay probability) and the mean customer 

waiting time are two important performance 

measures. These two measures should be 

maintained under certain levels to meet 

customer expectations. Let us consider an 

/ /M M n queue that has a Poisson arrival 

process with rate  , exponentially distributed 

service times with mean 1  , and n  identical 

parallel servers. The traffic intensity of this 

queue is defined by  

n




  .                 (1) 

We assume that 1  , which is also equal to 

the average utilization per server. The delay 

probability is given by the well-known Erlang-C 

formula (see, e.g., Gross & Harris (1985)), 
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and by Little’s law, the mean queue length is 
.Q W                       (4) 

We evaluate the waiting time factor wf , which 

is defined as the ratio of the mean waiting time 

to the mean service time, in the following 

numerical example. By this definition, the 

waiting time factor is 

w
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for the / /M M n  queue. 

In Figure 1, we plot the delay probability and 

the waiting time factor as the number of servers 

increases from 1. All these queues have the same 

traffic intensity 0.95  . The figure shows that 

the delay probability decreases gradually while 

the waiting time factor decreases rapidly. For 

example, when 18n  , the delay probability is 

76.7% and the waiting time factor is 0.85. Thus, 

the average utilization per server is 95%, 76.7% 

of customers are delayed before receiving 

service, and the mean waiting time is less than 

the mean service time. This level of quality of 

service is considered good for many service 

systems. If one further increases the number of 

servers to 100n   and the average utilization 

per server is kept at 95%, the delay probability 

decreases to 50.7% and the waiting time factor 

is 0.101. In this case, nearly half of customers 

are served without delay and the mean waiting 

time is only around 10% of the mean service 

time. This level of service is highly attractive 
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despite the fact that the servers are 95% utilized. 

Such a system is operated in the QED regime. In 

this regime, the system has a large number of 

parallel servers, the arrival rate is high, and the 

arrival rate and the service capacity are 

approximately equal so that the server utilization 

is close to 1. 

Even though the average server utilization is 

close to 1, only a fraction of customers need to 

wait in the queue with many parallel servers. 

This phenomenon is in sharp contrast to the 

observation that almost all customers have to 

wait in a single-server queue. To illustrate how 

the waiting time factor changes with the server 

utilization, we also plot the waiting time factor 

curves for a single-server queue and for a queue 

with 18 servers in Figure 2. Compared with the 

curve for the single-server queue, the waiting 

time factor for the multi-server queue increases 

much more slowly as the server utilization 

approaches 1. 

 

Figure 1 Delay probability and waiting time factor vs number of servers, for / /M M n  queues with 0.95   

 

Figure 2 Waiting time factor vs server utilization, for an / /1M M  queue and for an / /18M M  queue  
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In general, the variability in customer arrival 

and service processes contributes to the system 

congestion, degrading the quality of service, 

particularly when the system is heavily loaded. 

Figure2, however, illustrates that the influence 

of the variability can be offset by pooling 

service facilities. The pooling principle has been 

widely used in resource management under 

uncertainty. 

The QED regime can be achieved by 

applying the square-root safety staffing rule. Let 

/R    be the offered load of the queue. One 

expects that an appropriate staffing level (i.e., 

the number of servers) should be 

,n R    

where   is the excess service capacity against 

the system’s stochastic variability. To keep the 

server utilization high,   should be much 

smaller than R . The square-root safety staffing 

rule recommends an amount of excess service 

capacity of 

R   

for some 0  . Thus, following the square-root 

safety staffing rule, the staffing level is 

n R R   ,                (6) 

when the offered load R  is high. Of course, the 

value of n  given by (6) should be rounded to 

an integer. It turns out that with a fixed 0  , as 

the offered load increases, the corresponding 

staffing level n  in (6) stabilizes the delay 

probability and makes the waiting time factor on 

the order of 1/2( )O n . It was proved by Halfin 

& Whitt (1981) that when the offered load R  is 

high in the / /M M n  setting, 

w
1

( ) / ( ) 1
P

   


 
 .           (7) 

Where   and   are the probability density 

and the cumulative distribution function, 

respectively, of the standard normal distribution. 

Formulas (6) and (7) can be used for 

performance analysis with a given staffing level, 

or to determine the staffing level that achieves a 

given delay probability. For a given staffing 

level n and a given utilization level 1  , we 

can set 

(1 )n                   (8) 

and use the right side of (7) to approximate the 

delay probability wP . With the delay probability, 

the waiting time factor wf  in (5) becomes 

w
w .

P
f

n
                  (9) 

For example, when 100n  and 0.95  , one 

has 0.5  , the right side of (7) predicts wP  to 

be 0.505, compared to the exact value 0.507 

from (2). The waiting time factor computed 

through (5) is 0.101 based on both the exact and 

approximate values of wP . 

The second and more important usage of (6) 

is that it leads to the following staff provision in 

the / /M M n  setting. Suppose that the delay 

probability is required to be less than a target 

value 0 1  . One needs to set the staffing 

level so that the delay probability is 

approximately  . For this, one first solves for 

  from the following equation 
1

,
( ) / ( ) 1


   


 

 

and then set the staffing level n  using (6) for a 

given offered load R . 

2.2 Modeling Customer Abandonment 
Customer abandonment is present in most 

service systems that serve human beings. For a 

service system with significant customer 

abandonment, any queueing model that ignores 
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the abandonment phenomenon is likely 

irrelevant to operational decisions. 

To demonstrate the significant influence of 

customer abandonment to the system 

performance, let us consider an / /M M n M  

queue. It has n  identical servers, the arrival 

process is Poisson with rate  , and the service 

times are iid following an exponential 

distribution with mean 1/  . In this queue, each 

customer has a patience time and the patience 

times are iid following an exponential 

distribution with mean 1/ . This model is also 

known as the Erlang-A model. The traffic 

intensity of a queue with customer abandonment 

is still given by (1), but it should no longer be 

understood as the average server utilization 

since the customers who abandon the system do 

not receive any service. The / /M M n M  

queue is also a tractable model whose 

performance measures have explicit formulas. 

For example, the delay probability is 
1 1
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denotes the blocking probability in the 

/ / /M M n n  (Erlang-B) model. In addition, the 

fraction of customers who abandon the system is 

1a 1 w
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the mean waiting time (among all customers 

including those who have abandoned the system) 

is 

a ,
P

W


                      (12) 

and the mean queue length is 

Q W                      (13) 

by Little’s law. Using the formula of the 

abandonment fraction aP , the average utilization 

per server can be computed by 

a
a

(1 )
(1 ).

P
P

n
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

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See Mandelbaum & Zeltyn (2007) for the 

complete details on the Erlang-A model. 

We assume that the / /M M n M  queue 

has 50n   servers, the arrival rate is 55   

customers per minute, the mean service time is 1 

minute, and the mean patience time is 2 minutes. 

Several performance measures of this queue, 

obtained via formulas (10)–(14), are listed in 

Table 1. In the same table, we also list the 

performance measures for a modified queue. The 

modified queue is an / /M M n  queue with the 

same mean service time, the same number of 

servers, and the same throughput as the original 

queue, but it has no customer abandonment. The 

arrival rate   of the modified queue is equal 

to the throughput of the original queue, i.e., 

55 (1 0.102) 49.39     . The correspond- 

ing performance measures can be obtained by 

formulas (2)–(4) and the fact that the average 

server utilization is equal to the traffic intensity. 

Table 1 shows that both the mean waiting time 

and the mean queue length in the original queue 

are much shorter than the corresponding 

quantities in the modified queue. In other words, 

with the same service capacity and throughput, 

some key performance measures in a queue with 

abandonment are much better than in a queue 

without abandonment. The performance 
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measures of the original queue indicate that the 

system is working in the QED regime, even 

though it is slightly overloaded (i.e., 1  ). To 

meet a certain service requirement without 

considering customer abandonment, one tends to 

overestimate the staffing level. Of course, 

customer abandonment can be costly. One needs 

to find a trade-off between customer 

abandonment and staffing cost using a correct 

model. 

The better performance on the waiting times 

in a queue with customer abandonment can be 

explained intuitively as follows. In the original 

queue with abandonment, when the system is in 

a congestion period, the customers who 

experience long waiting abandon the system. 

Their waiting times are capped by their patience 

times. In the modified queue without 

abandonment, these customers will experience 

extremely long delays, which degrades the 

overall waiting time statistics. With customer 

abandonment, a service system can reach a 

steady state even if the customer arrival rate is 

larger than its service capacity, i.e., 1  . As 

more and more customers accumulate in the 

buffer, the abandonment rate keeps increasing 

until arrivals and departures (including both 

service completions and abandonments) reach 

an equilibrium. 

The square-root safety staffing rule (6) also 

applies to a service system with high offered 

load in the presence of customer abandonment. 

It was proved by Garnett et al. (2002) that when 

the staffing level of the / /M M n M queue 

follows (6), the delay probability can be 

approximated by 
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is the hazard rate function of the standard 

normal distribution. Therefore, to meet a target 

delay probability 0 1  , one can set the 

staffing level using (6), with the value of   

determined by solving 
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Table 1 Comparison between queues with and without customer abandonment 

 
/ / 50M M M  / / 50M M  

Delay probability (%) 86.6 89.8 

Abandonment fraction (%) 10.2 N/A 

Mean waiting time (in seconds) 12.5 87.7 

Mean queue length 11.2 72.2 

Server utilization (%) 98.8 98.8 

 



Dai and He: Many-Server Queues with Customer Abandonment: a Survey of Diffusion and Fluid Approximation 
J Syst Sci Syst Eng  9 

When solving (16) for ,  it is possible to 

have a negative solution that results in a staffing 

level below the offered load. Because the small 

fraction of customer abandonment reduces the 

excess service demands, the service system can 

still achieve a satisfactory quality of service 

when the system is slightly overloaded (as 

indicated by the performance of the 

/ /M M n M  queue in Table 1). Zeltyn & 

Mandelbaum (2005) proved that when the 

staffing level n  follows (6) with a given   

(which is not necessarily positive), the fraction 

of customers who abandon the / /M M n M  

queue is approximately 

 1 1
a
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1
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P h
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We can see that aP  is on the order of 1/2( )O n  
as n  . It follows from (12) that the mean 

waiting time is on the same order, and it follows 

from (14) that the average server utilization is 

close to one. Therefore, in the presence of 

customer abandonment, the square-root safety 

staffing rule still leads the system to the QED 

regime and yields high server utilization, short 

waiting times, and a very small abandonment 

fraction. 

Diffusion models have been demonstrated to 

be accurate in estimating the performance of 

many-server queues in the QED regime. We will 

survey these diffusion models in Section 4. 

2.3 The ED Regime 
In certain service systems, the staffing costs 

dominate the expenses of customer delay and 

abandonment. For these systems, the rational 

operational regime is the ED regime that 

emphasizes server utilization over quality of 

service. In this regime, the arrival rate exceeds 

the service capacity by a moderate fraction (e.g., 

20%). More precisely, the ED regime requires 

that the traffic intensity   be greater than 1 

and that the order of 1   be (1)O  as n  . 

Since the fraction of customers who cannot be 

served is at least 1  , the fraction of customer 

abandonment in the ED regime must also be on 

the order of (1)O  as n  . Note that if the 

square-root safety staffing rule (6) is applied 

with 0  , the resulting service capacity is 

also below the arrival rate. In this case, however, 

both 1   and the fraction of customer 

abandonment are on the order of 1/2( )O n . The 

system is in the QED regime, not in the ED 

regime. 

Because the system is overloaded, almost all 

customers are delayed in the buffer and all 

servers are busy nearly 100% of the time in the 

ED regime. Although it might be 

counterintuitive, a service system operated in the 

ED regime can still result in reasonable 

performance as measured by the mean waiting 

time and the fraction of customer abandonment. 

This is because the lost service demands of the 

abandoned customers compensate for the excess 

in the arrival rate over the service capacity. A 

fluid model proposed by Whitt (2006) has been 

shown to be useful in estimating the 

performance of a many-server queue in the ED 

regime. We will survey this model and discuss 

the performance of queues in the ED regime in 

Section 5. 

A fluid model was studied by Bassamboo & 

Randhawa (2010) to solve the staffing problem 
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of an / /M M n GI  queue. The goal is to 

balance the staffing costs and the costs from 

customer delay and abandonment. Since the 

exact optimization is not possible, they 

employed the fluid model to approximate the 

queue. They proved that if the patience time 

distribution has a non-decreasing hazard rate, it 

is asymptotically optimal for the system to 

operate in the QED regime with the service 

capacity approximately equal to the arrival rate. 

However, if the patience time distribution has a 

decreasing hazard rate, the operation costs are 

reduced when the system is overloaded. Hence, 

the optimized staffing level drives the queue to 

the ED regime. In the same paper, the authors 

also proved that in the steady state, the accuracy 

gaps of the fluid approximations for the mean 

queue length and the rate of customer 

abandonment do not increase with the arrival 

rate. This implies that the fluid approximations 

could be particularly accurate when the 

underlying system is operated in the ED regime. 

3. Performance Insensitivity to Pa-
tience Time Distributions in the 
QED Regime 
As we have demonstrated in the previous 

sections, service systems operated in the QED 

regime are characterized by short customer 

waiting times. For an / /M M n M  queue in 

the QED regime with (1 )n    being 

fixed, it can be seen from (12) and (17) that the 

mean waiting time decreases to zero at rate 
1/2n  as the staffing level n goes to infinity. If 

a service system has hundreds of parallel servers 

and the service times are typically several 

minutes, then in the QED regime, the waiting 

times should be on the order of seconds. The 

above observation implies that when n  is large, 

the patience time distribution, outside a small 

neighborhood of zero, has little influence on the 

system dynamics. Such a result can be 

confirmed by the numerical example below. 

Consider an / /M M n GI  queue. Let F  

be the cumulative distribution function of the 

patience times that satisfies 
1

0
lim(0 (d ,)) 0 an
x

x F xF  


      (18) 

where   is the density of F  at the origin. In 

particular,   is identical to the abandonment 

rate when the patience time distribution is 

exponential. If the waiting times are short, the 

abandonment process should depend on the 

patience time distribution mostly through its 

density at the origin. Suppose that the queue has 

100n   servers, the Poisson arrival process has 

rate 105,  and the service times are 

exponentially distributed with mean 1. This 

system is slightly overloaded but still in the 

QED regime. A small fraction of traffic, at least 

( 100) / 4.8%    of the arrivals, has to 

abandon the system. We consider three patience 

time distributions with the same density at the 

origin: an exponential distribution (Exp) with 

rate  , a uniform distribution (Uniform) on the 

interval [0,1/ ],  and a two-phase 

hyperexponential distribution 2( ).H  A 

two-phase hyperexponential distribution can be 

determined by its initial distribution 

1 2( , )p p p  with 1 2 1p p   and its rate 

vector 1 2( , ).   For such a hyperexponentially 

distributed random variable, with probability 1p  

it is exponentially distributed with mean 11/ ,  
and with probability 2p it is exponentially 

distributed with mean 21/ . In our example, the 

hyperexponential patience time distribution has 
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(0.21,p   0.79) and (0.3 ,79 / 30)   . Thus, 

21% of customers have long patience times with 

mean 10 / (3 )  and79% of customers have 

short patience times with mean 30/(79 ) . 

Equivalently, the density function of the 

hyperexponential patience time distribution is 

given by 

( ) 0.21 exp( 0.3 )f x x    

0.79 exp( 79 / 30), 0.x x     (19) 

The squared coefficient of variation of this 

distribution is 1.612. All three distributions have 

density   at the origin. 

The exact formulas for several performance 

measures of the / /M M n GI  model are 

summarized in Section 9 of Zeltyn & 

Mandelbaum (2005). We follow these formulas 

to obtain the abandonment fraction and the mean 

queue length. Table 2 displays the results for 

different  values and different patience time 

distributions. For each row with a fixed  , the 

performance is very close for different patience 

time distributions. (The “Diffusion” column in 

Table 2 will be explained in Section 4.2.) 

This example indicates that in the QED 

regime, the system performance is generally 

invariant with the patience time distribution as 

long as its density at the origin is fixed and 

positive. This invariance also suggests that to 

obtain performance measures for a many-server 

queue with a general patience time distribution, 

it is generally accurate to replace the patience 

time distribution by an exponential distribution 

with the same density at the origin. An 

exponential patience time distribution is 

attractive in many aspects. For example, when 

the service time distribution is phase-type, 

sometimes the matrix-analytic method can be 

effective to compute the performance of a queue 

with an exponential patience time distribution. 

The computed performance is in turn used to 

approximate the original queue with a general 

patience time distribution. Section 4 will have 

more discussion on phase-type distributions and 

the matrix-analytic method. 

Table 2 supports the replacement of an 

/ /100M M GI queue by an / /100M M M  

queue. However, it is important that the two 

systems match the patience time density at the 

origin, not any other statistics such as the mean 

patience time. To highlight this point, suppose 

that a manager uses an / /100M M M  system 

to replace an / /100M M GI  system. But this 

time, the manager matches the mean patience 

time, a practice that is often used in industry. In 

Table 3, for a fixed mean patience time m , the 

mean queue lengths are given for different 

patience time distributions, including an 

exponential distribution with rate 1/ ,m   a 

uniform distribution on [0,2 ]m  with 

1/ (2 ),m   and a hyperexponential 

distribution given by (19) with 2.447 / m  . 

Table 3 shows that for each fixed m, the 

performance is drastically different as the 

patience time distribution changes. This example 

illustrates that the mean patience time is a wrong 

statistic to focus on and one should never use it 

to calibrate a customer abandonment model. 

The phenomenon of performance 

insensitivity to patience time distributions was 

first studied by Zeltyn & Mandelbaum (2005) 

for the steady-state analysis of / /M M n GI  
queues and was later elaborated by Dai & He 

(2010) for the process level analysis under the 

/ /G G n GI  setting. In Dai & He (2010), a 
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Table 2 Performance insensitivity to patience time distributions 

 Abandonment fractions (%) Mean queue length 

 Exp Uniform 2H  Diffusion Exp Uniform 2H  Diffusion

0.1   4.97 4.98 4.96 4.97 52.2 50.6 54.2 52.2 

0.5   6.04 6.08 5.99 6.03 12.7 12.1 13.4 12.7 

1   6.70 6.76 6.62 6.69 7.03 6.58 7.59 7.02 

2   7.40 7.48 7.30 7.38 3.88 3.55 4.31 3.88 

10   8.86 9.02 8.69 8.86 0.93 0.75 1.17 0.93 

Table 3 Mean patience time is a wrong statistic 

 Abandonment fractions (%) Mean queue length 

 Exp Uniform 2H  Exp Uniform 2H  

0.1m   8.86 8.40 9.27 0.93 1.50 0.58 

0.5m   7.40 6.76 8.12 3.88 6.58 2.08 

1m   6.70 6.08 7.49 7.03 12.1 3.66 

2m   6.04 5.50 6.82 12.7 22.1 6.44 

10m   4.97 4.81 5.43 52.2 98.1 24.5 

 

deterministic relationship is established between 

the abandonment processes and the queue length 

processes for many-server queues. This 

relationship says that for many-server queues in 

the QED regime, the cumulative number of 

customers who have abandoned the system is 

approximately equal to a constant multiple of 

the cumulative amount of waiting time among 

all customers. Clearly this constant should be 

interpreted as the abandonment rate per unit of 

waiting time. It was proved by Dai & He (2010) 

that this constant is equal to the patience time 

density at the origin when it is strictly positive. 
More specifically, if ( )A t  is the number of 

abandonments by time t  and ( )Q t  is the 

queue length (i.e., the number of waiting 

customers) at time ,t  then 
0

( )d
t
Q s s  is the 

cumulative waiting time by time t  among all 

customers. The relationship says that the scaled 

difference 

 0

1
( ) ( )d

t
A t Q s s

n
   

is close to zero for any time 0t   when n  is 

large. Hence, one may use 

0
( ) ( )d

t
A t Q s s              (20) 

to approximate the abandonment process for a 

many-server queue in the QED regime. 

4. Diffusion Models for Many-Server 
Queues in the QED Regime 
The exact analysis of a many-server queue 

with customer abandonment has largely been 

limited to the / /M M n M  model, which has 

a Poisson arrival process and exponential service 

and patience time distributions. However, as 

pointed out by Brown et al. (2005), the service 

time distribution in a call center appears to 
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follow a log-normal distribution. In Zeltyn & 

Mandelbaum (2005), the patience time 

distribution in a call center has also been 

observed to be far from exponential. With 

general service and patience time distributions, 

there is no finite-dimensional Markovian 

representation of the queue. Except computer 

simulations, no methods are available to analyze 

such a queue either analytically or numerically. 

Much attention has been devoted to the 

approximate analysis of such a queue. 

In our approximate analysis, we approximate 

a general service time distribution with a 

phase-type distribution. A phase-type random 

variable is defined to be the time until 

absorption of a transient, finite-state Markov 

chain. Any positive-valued distribution can be 

approximated by phase-type distributions. See 

Neuts (1981) for more discussion on phase-type 

distributions. For a / /GI Ph n GI  queue with 

a phase-type service time distribution, two 

multidimensional diffusion processes were 

proposed by He & Dai (2011) to approximate 

the dynamics of the queue. 

In Section 4.1, we introduce Brownian 

motion and illustrate how an arrival process 

such as a Poisson process can be approximated 

by a Brownian motion model. In Section 4.2, we 

illustrate the diffusion approximation for 

/ /M M n GI  queues. Because the service 

time distribution is exponential, we are able to 

spell out the details of every step in deriving the 

diffusion approximation. The resulting diffusion 

process is a one-dimensional piecewise 

Ornstein–Uhlenbeck (OU) process, whose 

stationary distribution has an explicit formula. In 

Section 4.3, the diffusion model for 

2/ /M H n GI  queues is presented. The 

resulting diffusion process is two-dimensional, 

whose stationary distribution can be computed 

numerically using the algorithm developed in He 

& Dai (2011). Diffusion approximations are 

rooted in the limit theorems for many-server 

queues in heavy traffic. These theorems require 

that the number of servers go to infinity. 

Section 4.4 shows that the diffusion 

approximation is accurate, sometimes even for 

queues with as few as 20 servers. The patience 

time distribution is built into the above diffusion 

models only through its density at the origin. 

When the patience time density is zero at the 

origin or changes rapidly near the origin, we 

present in Section 4.5 an alternative diffusion 

model that uses the hazard rate function of the 

patience time distribution. The hazard rate 

diffusion model is shown to be accurate when 

the previous diffusion model works poorly or 

fails. 

4.1 Brownian Approximation 
Let { ( ) : 0}E E t t   be a Poisson process 

with rate 100   arrivals per minute. In Figure 

3a, we plot a sample path of the Poisson process 

in the first 10 minutes. One can see that ( )E t  

evolves around the straight line given by its 

expectation t . To focus on the stochastic 

variability, we plot the sample path of the 

centered process { ( ) : 0}t tE t   in Figure 3b. 

The centered process records the fluctuation of 

the Poisson process around its mean. In the plot, 

the x -axis represents the time, in a span of 10 

minutes. The fluctuation represented by the 

y -axis is scaled automatically by the plotting 

software. To further examine the effect of the 

scaling, in Figure 4 we plot the centered process 

when 10,000.   It turns out that the 

magnitude of the centered process is on the 

order of   as   becomes large. 
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(a) A sample path                 (b) The sample path of the centered process 

Figure 3 Poisson process with rate 100   

 
(a) A sample path                (b) The sample path of the centered process 

Figure 4 Poisson process with rate 10000   
 

Let    and 2 0   be given. A 

stochastic process { ( ) : 0}B B t t   is called a 
2( , )  -Brownian motion if (i) (0) 0B   and 

almost every sample path is continuous, (ii) B  

has stationary, independent increments, and (iii) 

( )B t  is normally distributed with mean t  and 

variance 2t  for every 0t  . The parameters 

  and 2  are called the drift and the variance, 

respectively, of the Brownian motion. The 

process B  is called a standard Brownian 

motion if 0  and 2 1  . By the well-known 

Donsker’s theorem, (see, e.g., Billingsley 

(1999)), { ( ) : 0}E E t t     converges in 

distribution to a standard Brownian motion 

as    , where the scaled, centered process 

E
 is defined by 

( )
( ) .

E t t
E t



               (21) 

For a Poisson process, Donsker’s theorem 

suggests that one may replace its scaled 



Dai and He: Many-Server Queues with Customer Abandonment: a Survey of Diffusion and Fluid Approximation 
J Syst Sci Syst Eng  15 

fluctuation in (21) by the standard Brownian 

motion when   is large. Donsker’s theorem is 

a functional central limit theorem. Donsker’s 

theorem holds for much more general processes 

including renewal processes. 

For a general renewal process E  associated 

with a sequence of iid random variables that has 

mean 1/   and squared coefficient of 

variation 2
ac , its scaled fluctuation process E

 in 

(21) converges to a Brownian motion with 

drift 0   and variance 2 2
ac   as .    

The central idea of diffusion approximations is 

to replace a scaled fluctuation process such as 

the one in (21) by an appropriate Brownian 

motion. 

For a many-server queue with a renewal 

arrival process (or an arrival process that 

satisfies the conditions of a functional central 

limit theorem) and a certain service time 

distribution, we may use Brownian motions to 

approximate the random variations in arrival and 

service. A diffusion model is obtained by 

replacing certain scaled processes in system 

equations by Brownian motions. 

4.2 Diffusion Model for 
/ /M M n GI Queues 

To illustrate the diffusion approximation of a 

queue, let us consider an / /M M n GI  queue 

that has arrival rate  , service rate  , and a 

patience time distribution satisfying (18). We 

use ( )X t  to denote the number of customers in 

the system at time t , including those in service 

and those waiting. Let 

1
( ) ( ) .( )X t X t n

n
   

We call { ( ) : 0}X X t t    the scaled 

customer-count process. When the arrival rate 

  is high and the square-root safety staffing 

rule is adopted so that 

(1 )n    

is a moderate number, we can use a diffusion 

process Y  to approximate X . The diffusion 

process may be described as follows. Let  be 

the space of functions :u    that are right 

continuous on [0, )  and has left limits on 

(0, ) . For each u , one can find a unique 

function y  that satisfies 

0 0
( ) ( ) ( ) d ( ) d ,

t t
y t u t y s s y s s       

0,t   

where   is the patience time density at the 

origin in (18), max{ ,0},x x  and 

max{ ,0}x x   for .x  Thus, u y  

defines a map   from an arbitrary function 

u  to another function y . Let 

( ) (0) ( ),U t X t B t    

where B  is a 2(0, ) -Brownian motion with 

variance 

2 1 .( )                   (22) 

Each sample path of U  is a function in  . 

Thus, ( )Y U   is a well-defined function on 

each sample path. Note that Y  satisfies the 

stochastic differential equation 

0
( ) (0) ( ) ( ) d

t
Y t X t B t Y s s        

0
( ) d .

t
Y s s                  (23) 

The stochastic differential equation (23) is 

the diffusion model for the / /M M n GI  

queue. Its solution ( )Y U   is the diffusion 

process that we use to approximate the scaled 

customer-count process X . 

The drift coefficient of Y  is piecewise 
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linear, given by 

when 0,
( )

when 0.

x x
b x

x x

 
 

  
   

 

Suppose that 0  . At any time t , the drift 

is negative if ( ) /Y t     and is positive if 

( )Y t   . When ( )Y t  is either well above or 

well below zero, this drift will “pull it back” to 

an equilibrium level. The process tends to 

evolve around its long-term mean over time. An 

Ornstein–Uhlenbeck (OU) process that has a 

linear drift has the similar mean-reverting 

property. Because of its piecewise linear drift, 

Y  is called a piecewise Ornstein–Uhlenbeck 

(OU) process. The piecewise OU process is 

analytically tractable. It admits a piecewise 

normal stationary distribution, whose density is 

1 2

1 2

2

2 2

( )
exp when 0,

( )
( )

exp when 0,

x
a x

g x
x

a x

  


 


         
      
 

(24) 

where 1a  and 2a  are normalizing constants that 

make ( )g x  continuous at zero; see Browne & 

Whitt (1995). One may derive formula (15) for 

the delay probability in an / /M M n M  queue 

by using (24) as well as the approximation 

0w ( )d .P g x x


   

Because of the performance insensitivity to 

patience time distributions, formula (15) applies 

to the / /M M n GI  model so long as   is 

taken to be the patience time density at the 

origin. Recall that ( )Q t  is the number of 

customers waiting in the buffer at time t . Let 

( )Z t  be the number of customers in service at 

time t . Clearly, 

( ) ( ) and ( ) ( ) .Q t nX t Z t n nX t      

One can compute performance estimates such as 

the mean queue length Q and the fraction of 

customer abandonment aP  using the diffusion 

model. For that, let ( )Y   be a random variable 

that has the stationary distribution of Y . Using 

the stationary density in (24), the mean queue 

length Q  can be computed by 

0
[ ( ) ] ( )dQ n Y n xg x x

       (25) 

and the mean number of idle servers I  can be 

computed by 
0

( ) ( )d .[ ]n Y n xgI x x


      

Since n I  is the mean number of busy servers, 

the abandonment fraction aP  can be computed 

via 

a
( )

1 .
n

P
I


                 (26) 

We show the performance estimates computed 

by (25) and (26) from the diffusion model in 

Table 2 under the “Diffusion” columns. The 

diffusion estimates agree well with the exact 

results. 

In the rest of this section, we give a detailed 

derivation of the diffusion model (23). Let ( )E t  

be the number of customer arrivals by time t , 

and let { ( ) : 0}S S t t   be a Poisson process 

with rate 1. We assume that (0),X  

{ ( ) : 0},E E t t   and S  are mutually 

independent. Let 

0
( ) ( )d ,

t
T t Z s s   

which is the cumulative service time received by 

all customers up to time t . Since   is the 

service rate, ( ( ))S T t  must be equal in 

distribution to the number of service 

completions. Recall that ( )A t  is the cumulative 
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number of abandoned customers by time t . One 

must have 

( ) (0) ( ) ( ( )) ( ).X t X E t S T t A t      (27) 

To derive Brownian approximations, we define 

several scaled processes by 

1
( ) ( ( ) ),E t E t t

n
   

1
( ) ( ( ) ),S t S nt nt

n
   

1 1
( ) ( ), ( ) ( ( ) ),Q t Q t Z t Z t n

n n
     

1
( ) ( ).A t A t

n
  

Correspondingly, the dynamical equation (27) 

has a scaled version 

1( ) (0) ( ) ( ( ))X t X t E t S n T t         

0
( )d ( ),

t
Z s s A t             (28) 

with   given in (8). 

In the diffusion model, we replace the scaled 

primitive processes in (28) by certain Brownian 

motions. These approximations can be justified 

by Donsker’s theorem. When the number of 

servers n  is large, the corresponding diffusion 

process can be proved close to X . Please refer 

to Dai et al. (2010) for related convergence 

results. 

Since E  is a Poisson process with rate  , 

the scaled process { ( ) : 0}E E t t    is close to a 

Brownian motion. Note that ( )E t  has mean zero 

and variance t . We use a Brownian motion 

{ ( ) : 0}E EB B t t   with variance   to 

replace E  in (28). Because S  is a Poisson 

process with rate 1, the scaled process S  can be 

replaced by a standard Brownian motion SB . 

We assume that (0)X , EB , and SB  are 

mutually independent. Since ( )T t  is the 

cumulative service time for all customers up to 

t , ( ) / ( )T t nt  should be close to the average 

utilization per server, i.e., 
1

( ) ( 1) .T t t
n

   

Because ( )Z t   is the scaled number of idle 

servers and ( )Q t  is the scaled queue length, we 

have 

( ) ( ) and ( ) ( ) .Q t X t Z t X t        

Because of (20), we may approximate the scaled 

abandonment process by 

0
( ) ( ) d .

t
A t X s s                  (29) 

It follows from (28) that 

( ) (0) ( ) ( 1)( )E SX t X t B t B t         

0 0
( ) d ( ) d .

t t
X s s X s s       

Let ( ) ( ) ( ( 1) )E SB t B t B t    . Then B  is a 

driftless Brownian motion with variance 

( 1)    , the same one as in (22). Thus, X  

is approximately a solution to the stochastic 

differential equation (23). In the proposed 

diffusion approximation, we use the solution Y  

to the stochastic differential equation (23) to 

replace X . 

4.3 Diffusion Model for 

2/ /M H n GI Queues 
Via a similar Brownian replacement 

procedure as in Section 4.2, a diffusion model 

has been derived by He & Dai (2011) for 

/ /GI Ph n GI  queues in the QED regime. A 

two-phase hyperexponential distribution ( 2H ), 

which has been discussed in Section 3, is a 

special case of phase-type distributions. In this 

section, we restrict our discussion to 2H  

service time distributions, and illustrate the 

diffusion approximation proposed by He & Dai 
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(2011).  

When the service times in a queue follow a 

two-phase hyperexponential distribution with 

initial distribution 1 2( , )p p p  and rate 

1 2( , )   , one can envision two types of 

customers. With probability 1p , a customer 

belongs to the first type and his service time is 

exponentially distributed with mean 11/  and 

with probability 2p , he is of type two and the 

service time is exponentially distributed with 

mean 21/ . Then, the service rate is given by 

1 1 2 2

1
.

/ /p p


 



            (30) 

In the steady state, one expects that the 

customers in service are distributed between the 

two types following a distribution 1 2( , )   , 

given by 

1 1 2 2
1 2

1 1 2 2 1 1 2 2

/ /
and .

/ / / /

p p

p p p p

  
   

 
 

 

(31) 

Let 1( )X t  and 2( )X t  be the respective 

numbers of customers of these two types at time 

t . Since the customers in service are distributed 

following distribution  , we define its scaled 

version after centering by 

1
( ) ( ( ) ), 1, 2.j j jX t X t n j

n
    

In the diffusion model, we use a 

two-dimensional diffusion process 1 2( , )Y Y  to 

approximate 1 2( , )X X  , where 1 2( , )Y Y satisfies 

the following stochastic differential equation 

( ) (0) ( )j j j j EY t Y p t p B t    

1( 1) ( ) (( 1) )j
M j j jB t B t        

1 20
( ( ) ( ( ) ( )) )d

t

j j jY t p Y t Y t s     

1 20
( ( ) ( )) d

t

jp Y s Y s s          (32) 

for 1,2j  . In (32), EB  is the same Brownian 

motion as in Section 4.2, 1B  and 2B  are two 

independent standard Brownian motions, and 

MB  is a Brownian motion with drift zero and 

variance 1 2p p . It has been proved by Dieker & 

Gao (2011) that Y  has a unique stationary 

distribution. The algorithm proposed by He & 

Dai (2011) can be used to compute the stationary 

distribution numerically. Section 4.4 presents the 

performance estimates obtained from this 

diffusion approximation. 

In the rest of this section, we derive the 

diffusion approximation that uses 1 2( , )Y Y  to 

replace 1 2( , )X X  . Let 1 2( ) ( ( ), ( ))C i C i C i  be a 

two-dimensional random vector indicating the 

i th customer’s type. The random vector takes 

(1,0)  with probability 1p  and takes (0,1)  with 

probability 2p . We assume that (1), (2),C C  

are iid. Then, 

1

( ) ( ), 1, 2,
k

j j
i

M k C i j


   

is the number of type j  customers among the 

first k  arrivals. Let { ( ) : 1,2, }j jM M k k    

and { ( ) : 0}j jS S t t   be a Poisson process 

with rate 1. We assume that 1 2( (0), (0))X X , 

1 2( , )M M , 1S , 2S , and E  are mutually 

independent. 
Let ( )jZ t  denote the number of type j  

customers in service at time t .Then, 

0
( ) ( )d

t

j jT t Z s s                 (33) 

is the cumulative service time received by type 

j  customers. Let ( )jL t be the cumulative 

number of type j  customers who have 

abandoned the system by time t . Then, the 

number of type j  customers in the system must 

follow 
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( ) (0) ( ( ))

( ( )) ( ).

j j j

j j j j

X t X M E t

S T t L t
 

 
      (34) 

We define the scaled processes by 

1
( ) ( ( ) ),j jS t S t nt

n
   

1
( ) ( ( ) ),j jZ t Z t n

n
   

1
( ) ( ),j jL t L t

n
  

1

1
( ) ( ( ) ).j

t

j j
i

n

M t C i p
n 

  
   

Then using (30), (31), (33), and (34), we have 

the following scaled system equation 

( ) (0) ( )j j j jX t X p t p E t      

1 1( ( )) ( ( ))j j j jM n E t S n T t     

0
( )d ( )

t

j j jZ s s L t     

for 1,2j  . 

In the diffusion model for 2/ /M H n GI  

queues, we replace E  with the Brownian 

motion EB  as in Section 4.2. The processes 1S  

and 2S  are replaced by 1B and 2B , two 

independent standard Brownian motions. Note 

that we always have 1 2( ) ( ) 0M t M t   . Hence, 

the process 1M  is replaced by a Brownian 

motion MB  with variance 1 2p p  and 2M  is 

replaced by MB . When the number of servers 

n  is large, both the abandoned customers and 

the waiting customers in the queue are 

approximately distributed between the two types 

according to distribution p . Hence, 

( ) ( ),j jL t p A t   

where ( )A t  is the scaled number of abandoned 

customers by time t  as defined in Section 4.2. 

Recall that ( )Q t  is the queue length at time t . 

Then, 

( ) ( ) ( ).j j jZ t X t p Q t   

Since 1 2( ) ( ( ) ( ) ,)Q t X t X t n     this 

approximation has a scaled version 

1 2( ) ( ) ( ( ) ( )) .j j jZ t X t p X t X t        

We also exploit the approximations 

( )( )
, ( 1) ,

j
jn

T tE t t
t t

n n

        

as well as 

1 20 0
( ) ( )d ( ( ) ( )) d .

t t
A t Q s s X s X s s          

These replacements lead to the diffusion model 

(32) for 2/ /M H n GI  queues. 

In our diffusion model, a two-dimensional 

diffusion process is used to approximate the 

scaled number of customers of each type. When 

this procedure applies to a general phase-type 

service time distribution with d  phases, the 

corresponding diffusion model is a 

d -dimensional piecewise OU process. 

4.4 Performance Estimation Using the 
Diffusion Model 
To obtain the performance estimates of a 

queue using the diffusion model, one needs to 

know the stationary distribution of the 

multidimensional diffusion process. Except for 

the one-dimensional case, the stationary 

distribution of a multidimensional piecewise OU 

process does not have an explicit formula. In He 

& Dai (2011), the authors also developed a finite 

element algorithm computing the stationary 

distribution of a multidimensional diffusion 

process. Using the numerical results obtained by 

this algorithm, they demonstrated that the 

diffusion model is a good approximation of a 
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many-server queue. 

Consider an 2/ /M H n M  queue with 

500n   servers. We set the arrival rate to be 

522.36   customers per minute and the rate 

of the exponential patience time distribution to 

be 0.5  . The hyperexponential service time 

distribution has parameters 

(0.9351,0.0649) and (9.354,0.072).p    

So the mean service time of the second-type 

customers is more than 100 times longer than 

that of the first type. Although over 93% of 

customers are of the first type, the fraction of its 

workload is merely 10%. Such a distribution has 

a large squared coefficient of variation 2 24sc  . 

One can check that the mean service time is 1 

minute. Hence, the queue is a bit overloaded 

with 1.045  . 

Recall that ( )X t  is the number of 

customers in the system at time t . For this 

2/ /M H n M  queue, the process X  is a 

quasi-birth-death process. One can use the 

matrix-analytic method to solve the stationary 

distribution of X . See Neuts (1981) for details 

on the matrix-analytic method. To evaluate the 

accuracy of the diffusion model, in Figure 5a we 

plot both the (approximate) stationary 

distribution of X  obtained by the diffusion 

model and the stationary distribution produced 

by the matrix-analytic method. We see very 

good agreement between the two results. 

When the number of servers is moderate, the 

diffusion model can still capture the dynamics of 

the queue. Next, we consider an 2/ /M H n M  

queue with 20n   servers. Let the patience and 

service time distributions be the same as in the 

previous scenario, and the arrival rate be 

22.24  . Thus, 1.112  . As illustrated by 

Figure 5b, the diffusion model can still capture 

the exact stationary distribution for a queue with 

as few as20 servers.  

With an appropriate algorithm, performance 

estimation using the diffusion model can be 

much more computationally efficient than the 

matrix-analytic method. The computational 

complexity of the algorithm proposed by He & 

Dai (2011), whether in computation time or in 

memory space, does not change with the number 

of servers n . In contrast, the matrix-analytic 

method becomes computationally expensive 

when n  is large. In particular, the memory 

 
(a) 1.045  and 500n                            (b) 1.112   and 20n   

Figure 5 Stationary distribution of the customer number in the 2/ /M H n M  queue  
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usage becomes a serious constraint when a huge 

number of iterations are required in the 

matrix-analytic method. For the 500n   

scenario in this example, it took around 2 hours 

to finish the matrix-analytic computation and the 

peak memory usage was nearly 5GB. Using the 

diffusion model and the proposed algorithm, it 

took less than 1 minute and the peak memory 

usage was less than 200MB on the same 

computer.  

4.5 A Refined Diffusion Model Using 
the Hazard Rate of Patience Times 
In the above diffusion model, the patience 

time density at the origin is the key parameter 

for modeling the abandonment process. This 

diffusion model, however, has its own 

limitations. First, one needs to estimate the 

patience time density at the origin using the data 

collected from the service system. Estimating 

the density at the origin is statistically unreliable. 

The patience times are heavily censored data, 

i.e., a customer’s patience time can be observed 

only if he has abandoned the system. For a 

queue in the QED regime, only a small fraction 

of customers abandon the system. Although 

standard survival analysis tools, such as the 

Kaplan–Meier estimator (see, e.g., Cox & Oakes 

(1984)), can be used to estimate this parameter, 

one still has to record each customer's waiting or 

patience time and a good estimate requires a 

large amount of data. Second, for a queue in the 

QED regime, no matter how short the waiting 

times are, the abandonment process still depends 

on the behavior of the patience time distribution 

in a neighborhood of the origin, not just at the 

origin. When the patience time density near the 

origin changes rapidly, using the density at the 

origin solely may not yield an adequate 

approximation for the abandonment process. 

Third, when 0  , the integral term 

corresponding to the abandonment process in the 

diffusion model, either (23) or (32), becomes 

zero. In this case, the diffusion model 

approximates a queue as if there is no customer 

abandonment. But in a queue with a zero 

patience time density at the origin, customer 

abandonment still occurs and may affect the 

system performance significantly. For example, 

if such a queue is slightly overloaded 

(i.e., 1  ), it still has a stationary distribution 

thanks to the customer abandonment that 

reduces service demands. However, the diffusion 

model, with 0  and 1  , does not have a 

stationary distribution and fails to provide any 

performance estimates for this queue. 

Now we present a refined diffusion model 

using the entire patience time distribution. This 

model was proposed by He & Dai (2011). It 

exploits the idea of scaling the patience time 

hazard rate function, which was first proposed 

by Reed & Ward (2008) for single-server queues 

and was extended to many-server queues by 

Reed & Tezcan (2009). This refined diffusion 

model provides a more accurate approximation 

for many-server queues. 

In this model, we assume that F , the 

cumulative distribution function of the patience 

times, satisfies (0) 0F   and has a bounded 

hazard rate function Fh , given by 

( )
( ) , 0,

1 ( )
F

F
f t

h t t
F t

 


           (35) 

where Ff  is the density of F . With the hazard 

rate function, F  can be written by 



Dai and He: Many-Server Queues with Customer Abandonment: a Survey of Diffusion and Fluid Approximation 
22  J Syst Sci Syst Eng 

 0
( ) 1 exp ( )d , 0.

t

FF t h s s t     

In the refined diffusion model, the scaled 

abandonment process A  is approximated by 

( )

0 0
( ) d d , 0.

t X s

F
nv

A t h v s t


  
   

 
 

  (36) 

The entire patience time distribution is built into 

the approximation through its hazard rate 

function. The intuition of the hazard rate scaling 

approximation was explained by Reed & Ward 
(2008): Consider the ( )Q s  waiting customers in 

the buffer at time s . In general, only a small 

fraction of customers can abandon the system 

when the queue is working in the QED regime. 
Then by time s , the i th customer from the 

back of the queue has been waiting around /i   

time units. Approximately, this customer will 
abandon the queue during the next   time units 
with probability ( / )Fh i   . It follows that for 

the system, the instantaneous abandonment rate 

at time s  is around 
( )

1
( / )

Q s
Fi

h i  . Hence, the 

scaled abandonment rate can be approximated 

by 
( ) ( )

0
1

1
d

Q s Q s

F F
i

i nv
h h v

n  


  
  

   
 


 

( )

0
d ,

X s

F
nv

h v


  
 


 





  (37) 

from which (36) follows. Note that the arrival 

rate   is on the order of ( )O n  and ( )Q s  is on 

the order of 1/2( )O n . The patience time 

distribution in a small neighborhood of zero, not 

just its density at zero, is considered in the 

instantaneous abandonment rate in (37). Hence, 

the hazard rate scaling approximation in (36) is 

more accurate than that in (29). 

Let k  be a nonnegative integer. Suppose 

that the hazard rate function Fh  is k  times 

continuously differentiable in a neighborhood of 

zero. By Taylor’s theorem, 

( )

1

( ) (0) (0)
!

k

F F F
x

h x h h


 




 
 

for 0x   small enough, where ( )
Fh   is the  th 

order derivative of Fh . In this case, the 

approximation in (36) turns out to be 

0
( ) (0) ( )d

t

FA t h Q s s    

( )/2
1

0
1

(0)
( ) d .

( 1)!

k tFn h
Q s s








 










 

Because (0)Fh  is identical to the patience time 

density at zero, the approximation in (29) can be 

regarded as the zeroth degree Taylor’s 

approximation of (36). When the patience times 

are exponentially distributed, the hazard rate 

function is constant and the two approximations 

in (29) and (36) are identical. 

Using the hazard rate scaling approximation 

and the Brownian motion replacements, we 

obtain another diffusion model for the 

/ /M M n GI  queue 

0
( ) (0) ( ) ( ) d

t
Y t X t B t Y s s        

( )

0 0
d d ,

t Y s

F
nv

h v s


  
  
 

      (38) 

in which B  is the driftless Brownian motion 

with variance given by (22). In (38), the 

diffusion process Y  has the same diffusion 

coefficient as in (23), but its drift coefficient is 

0
d when 0,

( )

when 0.

x

F
nv

h v x
b x

x x




 

 
  



  

 
 




  

Comparing (23) and (38), one can see that the 

two models differ only in how the patience time 

distribution is incorporated. Because a more 

accurate approximation is used for the 
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abandonment process, the latter model can 

provide a better approximation for the queue. 

Following the similar procedure as in 

Section 4.3, we can obtain the diffusion model 

for the 2/ /M H n GI  queue using the hazard 

rate scaling approximation, where the 

two-dimensional diffusion process 1 2( , )Y Y  
satisfies 

( ) (0) ( )j j j j EY t Y p t p B t    

1( 1) ( ) (( 1) )j
M j j jB t B t        

1 20
( ( ) ( ( ) ( )) )d

t

j j jY t p Y t Y t s     

1 2( ( ) ( ))

0 0
d d

t Y s Y s

j F
nv

p h v s


  
   

 
   (39) 

for 1,2j  . 

Let us consider an 2 2/ /M H n H  queue in 

which the patience time density changes rapidly 

near the origin. In this queue, the 

hyperexponential service time distribution has 

(0.5915,0.4085) and (5.917,0.454).p    

(40) 

The squared coefficient of variation of this 

distribution is 2 3sc   and the resulting mean 

service time is still 1  minute. We assume that 

the patience times follow a two-phase 

hyperexponential distribution that has 

(0.9,0.1) and (1,200).p   Among the 

customers, 90% of them have exponentially 

distributed patience times with mean 1 minute, 

but the rest of customers are extremely impatient. 

Their patience times are exponentially 

distributed with mean 0.005 minute. These 

customers would abandon the system right away 

if no servers are available upon their arrival. 

Although the customer-count process X  of 

this queue is a quasi-birth-death process, the 

extremely high computational complexity 

prevents the matrix-analytic method from 

producing the stationary distribution when the 

number of servers n  is moderate to large. See 

He & Dai (2011) for more discussion. We have 

to simulate the queue to obtain adequate 

performance estimates. Two scenarios with 

50n   and 500 servers are investigated. The 

respective arrival rates are 57.071   and 

522.36. Thus, 1.141  and 1.045. Several 

performance estimates obtained by simulation, 

including the abandonment fraction, the mean 

queue length, and several tail probabilities, are 

listed in Table 4. We use ( )X  to denote the 

stationary number of customers in this system. 

These simulation results are averaged over 20 

independent runs and in each run, the system is 

simulated for 510  time units of operation. For 

each performance estimate, we list its 95% 

confidence interval (CI) generated from the 20 

simulation runs. In the same table, we also list 

the performance estimates from the diffusion 

model (32) with 20.9  . In this example, 

using the patience time density at the origin 

solely cannot capture the behavior of the 

abandonment process. This diffusion model fails 

to produce proper performance estimates. 

This issue can be fixed when the entire 

patience time distribution is built into the 

diffusion model. In the same table, we list the 

performance estimates obtained by the diffusion 

model (39) that exploits the hazard rate scaling 

approximation. This time, we see good 

agreement between the refined diffusion model 

and the simulation results. 

Next, we consider an 2 3/ /M H n E  queue, 

where 3E  signifies an Erlang- 3  patience time 

distribution. In this queue, each patience time is 
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the sum of three stages and the stages are iid 

following an exponential distribution with mean 

1/ 3  minute. So the mean patience time is 1 

minute. The density at the origin of the Erlang-3 

distribution is zero. The diffusion model (32) has 

0   and hence does not have a stationary 

distribution when 1  . In this queue, the 

hyperexponential service time distribution is 

taken to be identical to that of the 

previous 2 2/ /M H n H  queue. 

We study two scenarios, with 50n   and 

500 servers, respectively. The arrival rates are 

57.071   and 522.36 again. Then, 1.141   

and 1.045. We list performance estimates from 

simulation (with 95% confidence intervals) and 

from the diffusion model using the hazard rate 

scaling in Table 5. As in the previous example, 

the refined diffusion model produces accurate 

performance approximations. 

5. Fluid Model for Many-Server 
Queues in the ED Regime 
In a many-server queue in the ED regime, 

the arrival rate exceeds the service capacity by a 

moderate fraction. As a result, almost all 

customers have to wait upon arrival and the 

queue length grows on the order of ( )O n  as the 

number of servers n  . The fluid-scaled 

queue length, defined as the queue length 

divided by ,n  then converges to a non-zero 

deterministic limit under certain conditions. 

Such a limit is called a fluid limit and it can be 

used to build a fluid model for many-server 

queues. A fluid model, to be developed below, is 

appropriate for the analysis of a queue in the ED 

regime. In the QED regime, however, the queue  

Table 4 Performance measures of the 2 2/ /M H n H  queue 

(a) 1.141   and 50n   

 Simulation (with 95% CI) Diffusion in (32) Refined diffusion 

Mean queue length 4.845 0.010  0.4709 4.869 

Abandonment fraction (%) 14.99 0.025  17.14 15.04 

[ ( ) 40]X    40.9728 2.3 10   0.9578 0.9749 

[ ( ) 50]X    40.6111 7.4 10   0.3158 0.6377 

[ ( ) 60]X    40.1737 5.0 10   71.044 10  0.1749 

(b) 1.045   and 500n   

 Simulation (with 95% CI) Diffusion in (32) Refined diffusion 

Mean queue length 6.413 0.015  1.475 6.359 

Abandonment fraction (%) 5.512 0.0088  5.863 5.517 

[ ( ) 480]X    40.8881 6.3 10   0.8663 0.8929 

[ ( ) 500]X    40.4720 6.6 10   0.3192 0.4822 

[ ( ) 520]X    40.1050 3.7 10   59.274 10  0.1074 
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Table 5 Performance measures of the 2 3/ /M H n E  queue 

(a) 1.141   and 50n   

 Simulation (with 95% CI) Refined diffusion 

Mean queue length 19.31 0.032  19.44 

Abandonment fraction (%) 13.05 0.031  13.03 

[ ( ) 45]X    40.9645 4.1 10   0.9704 

[ ( ) 50]X    40.9066 7.4 10   0.9169 

[ ( ) 70]X    0.4761 0.0012  0.5037 

(b) 1.045   and 500n   

 Simulation (with 95% CI) Refined diffusion 

Mean queue length 119.1 0.22  119.5 

Abandonment fraction (%) 4.337 0.012  4.340 

[ ( ) 480]X    40.9940 2.3 10   0.9946 

[ ( ) 500]X    40.9756 6.3 10   0.9770 

[ ( ) 600]X    0.6645 0.0018  0.6733 

 

 

length is on the order of 1/2( )O n . The fluid limit 

of the queue length is thus zero and the fluid 

model gives little insight to the dynamics of the 

queue. In this case, we should focus on a 

different scaling. Under certain conditions, the 

diffusion-scaled queue length, i.e., the queue 

length divided by 1/2n , converges to a diffusion 

process. Therefore, a diffusion model, as devel-

oped in Section 4, is more appropriate for the 

analysis of a queue in the QED regime. 

In Whitt (2006), a fluid model was proposed 

by Ward Whitt and was shown to be useful in 

estimating the performance of a many-server 

queue in the ED regime. The system of interest 

is a / /G GI n GI  queue, which has a general 

customer arrival process, iid service times, and 

iid patience times. 

5.1 Whitt’s Fluid Model for 
/ /G GI n GI Queues 

The fluid model is a deterministic 

approximation determined by a triple of 

parameters ( , , )H F . Here,   is the traffic 

intensity, H  is the cumulative distribution 

function of the service times, and F  is the 

cumulative distribution function of the patience 

times. Recall that in the queue, ( )Z t  and ( )Q t  

are the respective numbers of busy servers and 

waiting customers at time t . The fluid model is 

used to approximate the dynamics of the scaled 

processes /Z n and /Q n . Under this scaling, 

individual customers in the queue are 

approximated by “quanta” of fluid. The length 

of time that a quantity of fluid stays in the 

system is determined by the present fluid level 

and distributions H  and F . If a quantity of 
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fluid enters service at time zero, then by time 

0,t   a proportion ( )H t  of it will have 

finished service and left the system, while the 

remaining proportion 1 ( )H t  will be in 

service at time t . For a quantity of fluid that 

enters the buffer at time zero, if it has not 

entered service by time t , then a proportion 

( )F t  of it will have abandoned the system and 

the remaining proportion 1 ( )F t  will be 

waiting in the buffer at time t . Suppose that the 

fluid model has amount ( )z t  of fluid in service 

at time t . Then in the corresponding queue, 

there are around ( )nz t  customers in service. 

Similarly, if the fluid model has amount ( )q t  of 

fluid in the buffer, then there are around ( )nq t  

customers waiting for service in the queue. 

The service capacity of the fluid model is 

normalized to be 1. Accordingly, the rate of fluid 

input to the model is scaled to be  . The state 

of the fluid model is described by two functions 

( , )z t x  and ( , )q t x  for 0t  and 0x  . The 

function ( , )z t x  is the amount of fluid in service 

at time t  that has been served for no more than 

x  time units, and ( , )q t x  is the amount of fluid 

in the buffer at time t  that has been waiting for 

no more than x  time units. Clearly, the total 

amounts of fluid in service and in the buffer at 

time t  are ( ) ( , )z t z t  and ( ) ( , )q t q t  , 

respectively. Assume that Hf  is the density of 

H . Then, its hazard rate function is 
( )

( ) , 0.
1 ( )

H
H

f x
h x x

H x
 


 

Let 0   be a small number. In the queue, 

a customer who has been in service for x  time 

units would finish his service during the next 

 time unit with probability ( ) .Hh x   

Correspondingly, for a quantity of fluid that has 

been in service for x  time units in the fluid 

model, a proportion ( )Hh x   of it will finish 

service during the next  time unit. Hence, 

( )Hh x  is the conditional service rate for the 

fluid that has been in service for x  time units. 

Assume that ( , )z t x  has a density ( , )z t x  with 

respect to x , i.e., 

0
( , ) ( , )d .

x
z t x z t v v               (41) 

Then, the total service rate at time t  is given by 

0
( ) ( , ) ( )d .Hr t z t x h x x


           (42) 

Similarly, in the queue, a customer who has been 

waiting in the buffer for x time units would 

abandon the system during the next   time unit 

with probability ( )Fh x  , where Fh , defined in 

(35), is the hazard rate function of the patience 

times. Hence in the fluid model, for the quantity 

of fluid that has been waiting for x  time units, 

a proportion ( )Fh x   of it will abandon the 

system during the next   time unit if the fluid 

will not enter service. If we assume 

0
( , ) ( , )d

x
q t x q t v v              (43) 

where ( , )q t x  is the density of ( , )q t x  with 

respect to x , the total abandonment rate at 

time t  is 

0
( ) ( , ) ( )d .Fa t q t x h x x


         (44) 

The fluid model evolves according to the 

following dynamical equations. For the fluid 

that is in service at time t , the first equation 

describes the proportion of it that will be 

remaining in service at time t v , i.e., 

1 ( )
( , ) ( , )

1 ( )

H x v
z t v x v z t x

H x

    


  (45) 

for 0t  , 0x  , and 0v  . If the buffer is not 

empty at time t , the fluid moves into service at 

rate ( );r t  if there is idle service capacity 

available, the fluid enters service at rate  ; if 
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the buffer is empty but all service capacity is 

used, this rate becomes ( )r t  . Therefore, we 

have 

( ) if ( ) 0,

( ,0) if ( ) 1,

( ) if ( ) 1 and ( ) 0.

r t q t

z t z t

r t z t q t





  
   

(46) 

Consider the small amount of fluid at the 

front of the buffer at time t . Let ( )w t  be the 

length of time that it has been waiting by time t . 

Because of the first-in-first-out (FIFO) 

discipline, at time t  there is no fluid that has 

been waiting for more than ( )w t  time units. 

Hence, we must have 

( , ) 0q t x                      (47) 

for all ( )x w t . For the fluid that is in the 

buffer at time t , if it has not begun service by 

t v , the proportion remaining in the buffer at 

time t v  must satisfy 

1 ( )
( , ) ( , )

1 ( )

F x v
q t v x v q t x

F x

    
  

(48) 

for 0t  , 0x  , and 0v  . If the buffer is not 

empty, the new fluid input to the buffer arrives 

at rate  ; if there is idle service capacity, no 

fluid input remains in the buffer; if the buffer is 

empty but all service capacity is used, then by 

(46), the fluid input to the buffer increases at 

rate ( )r t   . Hence, 

if ( ) 0,

( ,0) 0 if ( ) 1,

( ) if ( ) 1 and ( ) 0.

q t

q t z t

r t z t q t



 


  
    

(49) 

The fluid model given by (41)–(49) depends 

on both the service time distribution and the 

patience time distribution through their entire 

distributions. It is in sharp contrast to most 

single-server fluid models in which the 

distributions appear only through their first 

moments. 

5.2 The Fluid Model and the Fluid 
Limit 

The fluid model is rooted in the 

stochastic-process limits for many-server queues. 

In the same paper, Whitt conjectured that under 

certain conditions, the two-parameter functions 

z and q , given by (41)–(49), are two limit 

processes for / /G GI n GI  queues. To set up 

these limits, a sequence of / /G GI n GI  

queues, indexed by the number of servers n , is 

considered. These queues are assumed to be 

working in the many-server heavy-traffic regime, 

i.e., n   as n   where n  is the 

arrival rate of the n th system. The service and 

the patience time distributions are assumed to be 

invariant with .n  For simplicity, the mean 

service time is set to be 1unit of time and all 

these queues have the same traffic intensity .  

In the n th queue, let ( , )nZ t x  be the number of 

customers in service at time t  that has been 

served for no more than x  time units, and 

let ( , )nQ t x  be the number of customers in the 

buffer at time t  that has been waiting for no 

more than x  time units. Then, their respective 

fluid-scaled versions are defined by 

( , ) ( , )
( , ) and ( , ) .n n

n n
Z t x Q t x

Z t x Q t x
n n

   

Whitt conjectured that as the number of servers 

n  goes to infinity, the pair of processes 

{( ( , ), ( , )) : 0, 0}n nZ t x Q t x t x   weakly 

converges to the pair of deterministic functions 

{( ( , ), ( , )) : 0, 0}z t x q t x t x   in a functional 

space. Therefore, when n  is large, the 

two-parameter functions z  and q  could serve 

as an approximation for the queue’s dynamics. 

Although the two-parameter fluid limits 
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remain as a conjecture in Whitt (2006), the fluid 

limits in terms of measure-valued processes 

were proved for / /G GI n GI  queues by 

Kang & Ramanan (2010). In this work, the 

queue’s dynamics are described by a pair of 

measure-valued processes, one keeping track of 

the customer waiting times in the buffer and the 

other keeping track of the amount of service 

each customer has received. Kang and Ramanan 

proved that in the many-server heavy-traffic 

regime and under certain assumptions, this pair 

of measure-valued processes weakly converges 

to the unique solution of a coupled pair of 

deterministic integral equations. 

5.3 The Fluid Model in Steady State 
Whitt (2006) also proved that the fluid model 

that satisfies (41)–(49) has a unique steady state. 

Since the performance of the fluid model does 

not change with time in the steady state, we 

delete the argument t  and use ,z  ,q  ,z  ,q  

,r  a  for the corresponding quantities in the 

steady state. Whitt discussed the steady state in 

two different cases: When 1,   i.e., the 

/ /G GI n GI  queue is operated in the 

underloaded or the QED regime, the fluid model 

has 

, 0, ( ) (1 ( )), 0.r z a q z x H x x         

When 1  , i.e., the queue is operated in the 

ED regime, the fluid model has 

1, 1, ( ) 1 ( ), 0;r z a z x H x x         

in addition, by (48) and (49), 

(1 ( )) for 0
( )

0 f
,

or 

F x x w
q x

x w

      
 

where w  is the solution of the equation 

1
( ) ,F w



                   (50) 

and the total fluid in the buffer is 

0 0
( )d (1 ( ))d .

w w
q q x x F x x     

The above steady-state quantities can be 

explained as follows. As we discussed earlier, 

for a queue with n  servers that are operated in 

the QED regime, both the queue length and the 

number of abandonments are on the order 

of 1/2( )O n . When n  is large, one can expect 

that for any 0t  , both ( ) /Q t n  and ( ) /A t n  

are very small. So in the fluid model, both the 

queue length q  and the abandonment rate a  

must be zero when 1  . Because the 

abandonment rate is zero, the service rate must 

be equal to the arrival rate, i.e., r  . It follows 

from (45) and (46) that (0)z   and 

( ) (1 ( ))z x H x   . One can check that z   

using (42). In the ED regime, since the queue is 

overloaded, we must have the service rate 1r   

and the abandonment rate 1a   . By similar 

arguments, one can deduce that ( ) 1 ( )z x H x    
and 1z  . Using (49), we have (0)q   . Then 

it follows from (44) and (48) that 

0

( )
( ) d

1 ( )

w Ff x
a q x x

F x


  

0
(0) ( )d ( ),

w

Fq f x x F w   

from which (50) follows. 

Although the entire service time distribution 

is built in the diffusion model, the steady-state 

quantities, such as the abandonment fraction a  

and the mean waiting time w , does not depend 

on the service time distribution beyond its mean. 

However, these performance measures still 

depend on the entire patience time distribution. 

The current fluid model clearly demonstrates the 

efficiency of many-server queues when 1  : 

As the fraction of abandonment compensates for 
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the excess arrival rate, the overloaded queue can 

still reach a steady state. In the steady state, all 

servers are working at 100% utilization while 

most customers need only wait for around w  

time units before receiving service. Hence, for a 

service system working in the ED regime, it is 

possible to meet a certain target service level 

(e.g., the average waiting time is less than 1 

minute while the abandonment fraction is less 

than 20%) without sacrificing any utilization. 

5.4 Performance Estimation Using the 
Fluid Model 
Three queues are considered to evaluate the 

fluid model. All of them have 100n   servers 

and Poisson arrival processes with arrival rates 

120  , while both the mean service times and 

the mean patience times are 1 minute. Hence, 

the traffic intensities are all 1.2  . The first 

system is an 2/ /M H n M  queue, whose 

hyperexponential service time distribution is 

specified by (40) with variance 3 and whose 

patience time distribution is exponential. Several 

performance estimates by simulation and by the 

fluid model are listed in Table 6, where we can 

find a good agreement. 

In the second queue, we change the patience 

time distribution to an Erlang-3 distribution with 

mean 1 minute. Table 7 compares the simulation 

results and the fluid model estimates. The third 

queue is an 3/ /M LN n E  queue, where 

LN stands for a log-normal service time 

distribution. We assume that the service time 

distribution has mean 1 and variance 8. The 

results for this queue can be found in Table 8. 

Again, the fluid model provides accurate 

performance estimates for those two queues. 

Comparing Tables 6 and 7, one can see that 

the performance of a queue in the ED regime 

depends strongly upon the patience time 

distribution. Tables 7 and 8, however, indicate 

that these performance measures are not 

sensitive to the service time distribution as long 

as the mean service time is fixed. 

 
6. Related Literature 

We present a brief review of relevant 

research work at the end of this article. We 

would like to refer the readers who are interested 

in related topics to the original papers for full 

details. 

The study of many-server queues has been 

mostly motivated by call center operations. Call 

centers have become a fertile ground for 

academic research due to the ever-growing size, 

complexity, and importance of the call center 

industry. A comprehensive tutorial and review 

for call center studies can be found in Gans et al. 

(2003). The paper covers both traditional 

operational models, such as multiple-server 

queues for performance analysis and control, 

and emerging multi-disciplinary topics, such as 

human resources problems, customer and agent 

behavior, and statistical analysis. Another 

important survey paper is Aksin et al. (2007). It 

is a valuable supplement to Gans et al. (2003). 

Brown et al. (2005) presented an extensive 

empirical study of historical operational data 

from an Israeli bank's call center. They 

performed a comprehensive statistical analysis 

and concluded that the arrival process of the call 

center follows an inhomogeneous Poisson 

process, the service times follow a log-normal 

distribution, and the patience time distribution 

appears to be non-exponential.  
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Table 6 Performance measures of the 2/ /100M H M  queue with 1.2   

 Simulation (with 95% CI) Fluid model 

Abandonment fraction (%) 16.95 0.023  16.67 

Mean waiting time (in minutes) 40.1781 2.9 10   0.1823 

Mean queue length 20.33 0.031  20.00 

Server utilization (%) 99.660 0.0027  100.00 

Table 7 Performance measures of the 2 3/ /100M H E  queue with 1.2   

 Simulation (with 95% CI) Fluid model 

Abandonment fraction (%) 16.69 0.026  16.67 

Mean waiting time (in minutes) 40.4324 4.1 10   0.4669 

Mean queue length 50.50 0.043  53.15 

Server utilization (%) 499.973 7.4 10   100.00 

Table 8 Performance measures of the 3/ /100M LN E  queue with 1.2   

 Simulation (with 95% CI) Fluid model 

Abandonment fraction (%) 16.71 0.030  16.67 

Mean waiting time (in minutes) 40.4328 4.7 10   0.4669 

Mean queue length 50.54 0.049  53.15 

Server utilization (%) 499.968 9.1 10   100.00 

 

The mathematical study of customer 

abandonment in call centers can be traced back 

to the work of Palm (1937, 1946), where the 

author studied the / /M M n M  (Erlang-A) 

model for the first time. Performance measures 

of the Erlang-A model are summarized in 

Mandelbaum & Zeltyn (2007). There is a 

growing list of papers that study queueing 

models with customer abandonment: The 

phenomenon of customer abandonment is 

studied for single-server queues in Baccelli et al. 

(1984) and Stanford (1979) under the 

/ /1GI GI GI  setting, and for multi-server 

queues in Boxma & de Waal (1994). Both the 

exact and asymptotic formulas of performance 

measures for the / /M M n GI  model are 

summarized in Mandelbaum & Zeltyn (2004) 

and Zeltyn & Mandelbaum (2005). The 

queueing model with multiple servers and 

customer abandonment are also studied in 

Brandt & Brandt (1999, 2002), where the arrival 

and service rates are allowed to change with the 

respective numbers of customers in the system 

and in service. The stochastic monotonicity 

properties of multi-server queues with 

abandonment are investigated in Bhattacharya & 

Ephremides (1991) and Dai & He (2010). An 

asymptotic relationship between the 

abandonment processes and the queue length 

processes for many-server queues is proved in 
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Dai & He (2010). With respect to call center 

management in the presence of customer 

abandonment, the staffing and call routing 

problems were explored by Bassamboo et al. 

(2005, 2006), where asymptotic analysis is 

conducted to obtain the optimal policies. 

The origin of the square-root safety staffing 

rule can be traced back to Erlang’s paper written 

in 1923, which is collected in Brockmeyer et al. 

(1948). In the / / /M M n n  setting that models 

a loss system (e.g., a telephone system), Erlang 

derived this rule by the marginal analysis of the 

benefit of adding a server. He also mentioned 

that such a rule had been practiced as early as in 

1913. The square-root safety staffing rule has 

also been advocated and extended by later 

researchers in their research work, including 

Grassmann (1986, 1988), Kolesar (1986), 

Newell (1973, 1982), and Whitt (1992). Among 

them, Whitt (1992) formally proposed and 

analyzed this rule. 

The QED regime was first introduced by 

Halfin & Whitt (1981) as an asymptotic regime 

in heavy traffic. In this regime, a sequence of 

queues indexed by their numbers of servers are 

considered. The traffic intensity of a queue in 

the sequence approaches 1 as its number of 

servers goes to infinity. The arrival rates of the 

queues increase with their numbers of servers, 

whereas the service rates of all queues remain 

the same. In this paper, Halfin and Whitt 

pioneered the study on diffusion approximations 

for many-server queues by establishing a 

diffusion limit for / /GI M n  queues. Ever 

since then, diffusion approximations have been 

demonstrated to be powerful in estimating the 

performance of many-server queues in the QED 

regime. Puhalskii & Reiman (2000) proved a 

diffusion limit for / /GI Ph n  queues. Garnett 

et al. (2002) proved a diffusion limit for the 

/ /M M n M  model that allows for customer 

abandonment. Whitt (2005) generalized this 

result to the / /G M n M  model, and he set up 

a limit process for the 2/ /G H n  model that has 

two customer classes in the same paper. For 

/ /G Ph n GI  queues in the QED regime, Dai 

et al. (2010) established a diffusion limit. This 

limit process is a multidimensional piecewise 

OU process. A numerical algorithm was 

developed by He & Dai (2011) for computing 

the stationary distribution of the piecewise OU 

process. This paper also demonstrates via 

numerical examples that a diffusion model can 

be a good approximation for a many-server 

queue. A recent work by Reed & Tezcan (2009) 

establishes a diffusion limit for the 

/ /GI M n GI  model in a new framework that 

scales the patience time hazard rate functions. 

As pointed out by He & Dai (2011), a refined 

diffusion model can be built in this framework 

and may produce more accurate performance 

estimates. Using the diffusion limits, the staffing 

problem for / /M M n GI  queues is 

considered in Mandelbaum & Zeltyn (2009). 

Koçağa & Ward (2010) studied the admission 

control problem for / /M M n M  queues. 

The optimal dynamic scheduling for a queue 

with multiple customer classes and a single 

agent pool in the QED regime is investigated in 

Harrison & Zeevi (2004). The optimal routing 

policies in a service system with multiple 

customer classes and multiple agent pools are 

considered in Dai & Tezcan (2008), Gurvich & 

Whitt (2009), and Tezcan & Dai (2010). The 

limit processes for the more general 

/ /G GI n GI  model in the QED regime can 
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be found in Mandelbaum & Momčilović (2012) 

and Talreja & Whitt (2009). These limit 

processes, however, are not diffusion processes. 

For a call center with customer abandonment, 

the ED regime was introduced by Garnett et al. 

(2002). Whitt (2004) explored the key properties 

of queues in the ED regime by establishing and 

investigating the fluid limit for / /M M n M  

queues. The “efficiency” of the ED regime was 

reinforced by Bassamboo & Randhawa (2010): 

They proved that for / /M M n GI queues 

with certain patience time distributions and 

certain operational costs, the optimized staffing 

level leads the queues to the overloaded regime. 

For many-server queues with abandonment and 

multiple customer classes, a routing policy that 

is asymptotically optimal in the ED regime was 

studied by Atar et al. (2010, 2011). A fluid 

model proposed by Whitt (2006) is able to 

capture the dynamics of a / /G GI n GI  

queue in the ED regime. This fluid model was 

extended by Liu & Whitt (2011) to 

the / /t t tG GI n GI  model in which arrival rates, 

staffing levels, and patience time distributions 

are all allowed to change with time. For a 

many-server queue with a general service time 

distribution, measure-valued processes have 

been used to give a Markovian description of the 

system. Kaspi & Ramanan (2011) obtained a 

measure-valued fluid limit for the 

/ /G GI n model. Kang & Ramanan (2010) 

obtained a measure-valued fluid limit for 

the / /G GI n GI  model with customer 

abandonment, and Zhang (2009) obtained a 

similar measure-valued fluid limit independently. 

Their work partially justifies the fluid model in 

Whitt (2006). 

7. Summary 
In service systems such as call centers, the 

system performance is sensitive to customer 

abandonment. When a system has a significant 

amount of abandonment, it is crucial to model 

the customer abandonment explicitly. According 

to the structure of operational costs, the manager 

of a call center may choose to operate his system 

in the QED or ED regime. Following the 

square-root safety staffing rule, he can drive the 

system to the QED regime, achieving both a 

high level of service quality and a high level of 

server utilization. When a moderate fraction of 

customer abandonment is allowed, the manager 

can even staff the system in an overloaded 

regime, known as the ED regime, to achieve 

higher efficiency while still maintaining 

satisfactory system performance. When the 

system is operated in the QED regime, it is the 

behavior of the patience time distribution near 

the origin, not the mean patience time, that has 

the most impact on the system performance. The 

diffusion approximations are useful in 

evaluating the performance of a many-server 

queue in the QED regime, while the fluid model 

is useful for a queue in the ED regime. These 

approximate models can be practical tools, 

sometimes the only tool besides computer 

simulation, to evaluate the performance of a 

many-server queue in heavy traffic. 
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